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ABSTRACT 

 

Pulmonary fibrosis is a progressive scarring disorder of the lung with a dismal 

prognosis and no curative therapy. Clusterin, a multifunctional glycoprotein with 

extracellular chaperone activity and involved in regulating cell function, is reduced in 

bronchoalveolar lavage fluid of patients with pulmonary fibrosis. However, its 

distribution and role in normal and fibrotic lung are incompletely characterised. 

Immunohistochemical localisation of clusterin in human lung revealed strong staining 

associated with fibroblasts in control lung and morphologically normal areas of fibrotic 

lung but weak or undetectable staining in fibroblasts in fibrotic regions and particularly 

fibroblastic foci. Clusterin also co-localised with elastin in vessel walls and additionally 

with amorphous elastin deposits in fibrotic lung. Analysis of primary lung fibroblast 

isolates in vitro confirmed the down-regulation of clusterin expression in fibrotic 

compared with control lung fibroblasts and further demonstrated that TGF-β1 is capable 

of down-regulating fibroblast clusterin expression. shRNA-mediated down-regulation of 

clusterin did not affect TGF-β1-induced fibroblast-myofibroblast differentiation but 

inhibited fibroblast proliferative responses and sensitised to apoptosis. Together, these 

data demonstrate that clusterin promotes lung fibroblast proliferation and survival. 

Down-regulation of clusterin in fibrotic lung fibroblasts at least partly due to increased 

TGF-β1 may, therefore, represent an appropriate but insufficient response to limit 

fibroproliferation. Reduced expression of clusterin in the lung may also limit its 

extracellular chaperoning activity contributing to dysregulated deposition of 

extracellular matrix proteins. Alveolar macrophages express clusterin receptor LRP2, 

suggesting that these cells are responsive to altered clusterin in the lung. In vitro 

studies with human alveolar and blood-derived macrophages, demonstrate that 

exogenous clusterin induces the secretion of pro-inflammatory cytokines/chemokines, 

including TNFα, suggesting a clusterin-mediated polarisation towards an “M1-like” 

phenotype. Reduced levels of secretory clusterin in the fibrotic lung may, therefore, 

benefit polarisation towards “M2-like” macrophages, which produce pro-fibrotic 

mediators, including TGF-β1, resulting in further clusterin reduction and progression of 

pulmonary fibrosis.  
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1 Introduction 

1.1 Lung structure and function  

The human lungs are located in the chest on either side of the heart and vessels 

in the chest cavity. Their main function is to supply the body with oxygen and 

remove carbon dioxide from the circulation. To deliver oxygen to the body, air is 

inhaled and guided by structural passageways of the lung through a branching 

system consisting of trachea, bronchi, bronchioles and alveoli.  

1.1.1 Alveolar capillary unit 
 

The lung is essential for gas exchange by introducing oxygen (O2) into the body 

and by removing carbon dioxide (CO2). The gas exchange takes place in 

minuscule air sacs, called alveoli. These small respiratory sacs are located at the 

end of bronchioles, surrounded by pulmonary capillaries. Figure 1.1 shows a 

schematic of the alveolar-capillary unit where gas exchange takes place. Besides 

gas exchange, this unit is essential for oxygen sensing, the redistribution of the 

pulmonary blood flow, as well as fluid balance and serves as a physical barrier 

against environmental toxins and pathogens. Physical or chemical damage of this 

unit is frequently occurring throughout life and is opposed by tightly regulated 

cellular mechanisms orchestrated to induce wound repair via key molecules 

involved in tissue homeostasis. However, when these repair mechanisms fail to 

contribute to the functional reconstruction of the alveolar structure, gas exchange 

is impaired, with life threatening consequences. The destruction of the alveolar 

structure is, therefore, discussed as one of the earliest events leading to a large 

number of pulmonary diseases, including pulmonary fibrosis (Maher et al. 2007; 

Chambers 2008; Datta et al. 2011), chronic obstructive pulmonary disease 

(COPD) (Chilosi et al. 2012), emphysema (Rennard et al. 2006) and asthma 

(Shifren et al. 2012). The following sections focus on the cellular and matrix 

structures of the alveolar-capillary unit that have been associated with the 

pathogenesis of pulmonary fibrosis. 
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Figure 1.1 Schematic cross section of the alveolar-capillary unit.  

The alveolar capillary unit is compromised of three primary components: the epithelium, 

the endothelium, and the basement membrane with different cellular and extracellular 

interstitial constituents (Simionescu 1980). These components form a thin lining between 

blood and air, allowing the reverse diffusion of O2 and CO2. 95 % of the alveolus is lined 

by EC type I cells and 5 % are cuboidal type II EC. The other component of the blood air 

barrier is formed of flattened extensions of capillary endothelial cells connected via tight 

junctions to form a fluid barrier. Alveolar macrophages are located in the alveolar space 

closely associated with EC type I cells and are involved in the defence mechanism of the 

lungs. The alveolar wall also contains fibroblasts, and occasionally mononuclear cells and 

ECM proteins. EC - epithelial cell, ECM - extracellular matrix (David Kaminsky 2011). 

 

1.1.2 Extracellular matrix 
 

The blood-air barrier consists of epithelial and endothelial cells and basement 

membrane. Respiratory gases located in the alveolar space, have to conquer the 

surface lining surfactant, alveolar epithelium, basement membrane, and the 

microvascular endothelium before entering the blood stream and vice versa. It is 

noteworthy that the gas transfer occurs passing a distance of 0.2 to 0.6 µM (Adds 

et al. 2001). Due to the fragile structure of thin alveolar walls, it is relevant that 

the basement membrane is constituted of extracellular matrix that is highly 

resistant to physical and mechanical stress. The extracellular matrix is a term for 
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acellular components of the basement membrane and interstitial tissue. The 

composition of the extracellular matrix (ECM) and the interaction with cellular 

components is essential to maintain the function of the lung: The ECM forms a 

three-dimensional network to provide structural support for cells but also supports 

various cellular responses including cytoskeletal formation for adhesion and focal 

contacts as well as cell differentiation, the formation of stress fibres, proliferation, 

and migration (Dunsmore & Rannels 1996).  

The ECM of the basement membrane is predominantly formed by type IV 

collagen, laminin, entactin and proteoglycans, while the pulmonary interstitium 

encompasses constituents such as fibrillar collagens, elastic fibres and 

proteoglycans (Dunsmore & Rannels 1996). During development and wound 

repair, other components such as fibronectin and tenascin form a provisional 

matrix (Dunsmore & Rannels 1996). Collagen is the most abundant fibrous ECM 

constituent (Frantz et al. 2010) and provides tensile strength to the lung tissue. 

Collagen exists in 28 different types, however, collagen type I and III form 95 % 

of the lung parenchymal collagen (Last & Reiser 1984). Collagen also locates to 

the tracheobronchial tree, and alveolar interstitium (Hance et al. 1976). As 

outlined in Figure 1.2, collagen biosynthesis involves the formation of a triple 

helix and crosslinking for the formation of collagen fibrils (Chen & Raghunath 

2009). Collagen and elastin are the most frequent non-cellular structural proteins 

in the lung (Townsley 2013). Similarly to collagen, elastin has an important role in 

the formation of new alveoli, by promoting alveolar wall resiliency and patency 

(Dunsmore & Rannels 1996), and its assembly and crosslinking into a functional 

polymer are essential for the functionality of the ECM (Kozel et al. 2006). Elastin 

provides elasticity and flexibility to the lung tissue since each elastin molecule 

uncoils into a more extended conformation when the fibre is stretched and recoils 

spontaneously when the force declines (Alberts et al. 2014). Although both 

collagen and elastin require lysyl oxidase for the crosslinking steps, the chemistry 

underlying these crosslinks is distinct for each protein (Alberts et al. 2014).  

Both elastin and collagen are important components of the airways, vessel walls 

and the lung parenchyma, while elastin is also located to the outermost lamina of 

small vessel walls or in alveolar septal walls (Townsley 2013).  
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(A) Fibrillar collagen (B) Elastin 

Transcription 

Synthesis of procollagen chains Synthesis of tropoelastin chains 

Posttranslational Modification: 

prolyl hydroxylation, 

glycosylation, 

disulfide bond formation 

Posttranslational Modification: 

prolyl hydroxylation 

 

Formation of triple helix with chaperone 

HSP47 

No helix formation 

Secretion of procollagen into the 

extracellular space 

Secretion of tropoelastin into the 

extracellular space 

Propeptidases cleave the C- and N-

terminals of the procollagen chains 

No cleavage 

Covalent crosslinking of collagen 

molecules via lysyl oxidases 

Oxidative deamination of lysine 

residues via lysyl oxidase 

 

 
 

Figure 1.2 Collagen and elastin synthesis. 

(A) Collagen is formed as triple helix, which is cross-linked in the extracellular space to 

form collagen fibrils with high tensile strength. (B) Similarly to collagen, elastin 

polypeptide chains are cross-linked in the extracellular space to form a microfibrillar 

scaffold. Modified from (Alberts et al. 2014) and (Chen & Raghunath 2009). 
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The synthesis and degradation of ECM proteins, including collagen I and elastin 

is tightly regulated in normal human lungs: The degradation of lung ECM proteins 

is mediated by matrix metalloproteinases (MMPs), serine proteases and plasmin 

(Mutsaers et al. 1997). All members of the MMP family are zinc-dependent 

endopeptidases, which together are able to degrade all ECM proteins. MMPs are 

up-regulated in patients with IPF and MMPs and their inhibitors, tissue inhibitor of 

MMPs (TIMPs) have been demonstrated to regulate pulmonary fibrosis in 

multiple murine model systems (Craig et al. 2015). An imbalance of MMPs and 

TIMPs could influence the balance between ECM accumulation and degradation 

and result in aberrant tissue repair (Manoury et al. 2007). In the event of 

uncontrolled matrix deposition for example when MMPs are aberrantly 

expressed, the functional pulmonary architecture can be distorted by excessive 

ECM deposition and result in severe diseases such as pulmonary fibrosis, COPD 

(Clarke et al. 2013), and airway remodelling in asthma (Royce et al. 2009). In 

vitro assays that recapitulate the supramolecular assembly of collagen into fibrils 

under molecular crowding conditions (Chen et al. 2009) provide a useful tool to 

assess the potential of compounds that modulate the processing and deposition 

of collagen.  

 

1.1.3 Respiratory epithelial cells   
 

The respiratory epithelium provides a shield against environmental toxins and 

pathogens and is permanently exposed to physical forces during lung ventilation. 

Therefore, the respiratory epithelium is involved in mucociliary clearance, 

reduction of surface tension in the alveoli and clearance of pathogens and 

allergens (Whitsett & Alenghat 2015). This can be accommodated by different 

cell types of lung epithelium across the bronchial tree. An overview of 

representative epithelial cell types and their distribution in the lung is shown in 

Figure 1.3.   

Human bronchial epithelium in the large and smaller airways are involved in 

regulating the immune response, by secretion of pro- and anti-inflammatory 

mediators such as cytokines, chemokines, growth factors, and arachidonic acid 

metabolites (Van Der Velden et al. 1998). Thus, they impact directly on the 

recruitment, differentiation and activation of immune cells and mesenchymal 

cells. Although bronchial epithelial cells release cytoprotective molecules e.g. to 

activate myofibroblast in the lamina reticularis, they can account for a chronic 
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cycle of inflammation and injury (Hamilton et al. 2001). Bronchial epithelial cells 

are key therefore players in the regulation of inflammation and contribute to 

airway remodelling in the event of tissue damage.  

 

         
Figure 1.3 Cell types of the lung epithelium adapted from (Crystal et al. 
2008).  

The most representative epithelial cell populations in the large airways are ciliated, 

undifferentiated columnar, secretory or basal cells. In the small airways, the number of 

ciliated cells increases and Clara cells replace secretory epithelial cells gradually. In the 

terminal alveoli type I and type II pneumocytes represent the main group of respiratory 

epithelium.  

 

Alveolar epithelial cells, on the contrary, are involved in the process of gas 

exchange and decrease of surface tension within the alveoli. Two main cell 

populations encompass the alveolar epithelium: alveolar type I and type II 

pneumocytes. Squamous type I pneumocytes comprise up to 95 % of the 

alveolar surface area (Haschek & Rousseau 1997) and are connected via tight 

junctions. Due to their squamous cell shape (flattened and thin structure) and 

their cytoplasmic plates, type I pneumocytes provide a large surface area for gas 

exchange (Ward & Nicholas 1984). In contrast type II pneumocytes, act as 

supporter cells in the alveolus, by supplying progenitor cells for both type I and 

type II cells and are, therefore, essential for the regeneration of alveolar cells in 

the event of lung injury (Castranova et al. 1988). Moreover, type II epithelial cells 

produce surfactant, a lipid-protein film to reduce stiffness and protect the patency 

of alveoli. Surfactant consists of phospholipids, neutral lipids, and surfactant 

proteins, to reduce surface tension and prevent alveolar collapse (Zhao et al. 
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2010). In addition, type II pneumocytes have been reported to be involved in 

preventing the accumulation of alveolar fluid but maintaining a fluid layer on the 

alveolar surface. This is achieved by sodium transporters that regulate apical to 

basolateral fluid transport (Eaton et al. 2004; Selman & Pardo 2006; Shannon & 

Hyatt 2004). The delicate structure of the alveolar wall is essential for gas 

exchange but makes it vulnerable to damage and inhaled toxins and pathogens.  

1.1.4 Pulmonary/alveolar macrophages 
 

Pulmonary macrophages, represent a heterogeneous cell population with 

phagocytic, antigen processing and immunomodulatory functions (Gordon & 

Read 2002). Pulmonary macrophages occur throughout the respiratory system, 

are key effector cells in the front line of cellular defence against respiratory 

pathogens (Busse & Lemanske 2001). All lung macrophages originate from 

precursor cells in haemopoietic organs and transit to the lung via blood or lymph 

as monocytes. Once monocytes leave the circulation to enter the lung tissue they 

develop a macrophage phenotype depending on the location and state of 

activation (Gordon & Read 2002). This macrophage phenotype is predominantly 

dependent on chemo- and cytokines derived from bronchial epithelial cells, type II 

pneumocytes or the composition of the surfactant (Striz et al. 2001; Gordon & 

Read 2002; Hussell & Bell 2014a).  

In order to protect and clear respiratory spaces of inhaled particles and 

pathogens, pulmonary macrophages migrate through bronchioles, pulmonary 

interstitium, and alveoli, where they are called alveolar macrophages. Alveolar 

macrophages represent 95 % of the cell burden in BALF (bronchoalveolar lavage 

fluid) of normal lungs (Gordon & Read 2002), whereas interstitial macrophages 

are located in the lung parenchyma. Both cell types are involved in modulating 

immune responses and are important for the phagocytosis of apoptotic cells, 

cellular debris and pathogens (Hussell & Bell 2014a). To accommodate different 

macrophage functions alveolar macrophage phenotypes are highly plastic 

depending on the tissue context (Hussell & Bell 2014b). Similarly, to the 

nomenclature of pro- and anti-inflammatory lymphocytes, the following dichotomy 

has been suggested for macrophage activation: Macrophages that mediate 

inflammation have been classified as “M1”-like whereas macrophages with tissue 

remodelling / pro-fibrotic activity have been classified as “M2”-like and are 

defined by their expression of cell markers and the secretion of pro- or anti-

inflammatory cytokines (Martinez & Gordon 2014; Wermuth & Jimenez 2015). 
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When using this terminology it has to be acknowledged, however, that studies 

with alveolar macrophages demonstrated that most macrophages do not 

accurately fit in this classification (Hussell & Bell 2014a). This suggests the 

existence of dynamic macrophage populations, with intermediate polarisation 

states (N. Wang et al. 2014; Hussell & Bell 2014b; Aggarwal et al. 2014). The 

classification scheme for human macrophage population subsets is outlined in 

Table 1. However, for simplicity reasons traditional macrophage polarisation 

nomenclature was used, within this thesis (M1-like and M2-like) to describe a 

general polarisation towards a pro-inflammatory or anti-inflammatory/profibrotic 

macrophage stage.  

 

Table 1 Simplified classification of main macrophage polarisation subsets - 

modified from Wermuth & Jimenez 2015 and Röszner 2015. 
 Inflammatory  Tissue remodeling/profibrotic 

 M1 M2a M2b M2c 

Differentiating 
agent 

IFNγ, 

TNFα, 

LPS 

IL-4, 

IL-13, 

IL-4 + LPS 

LPS 

 

IL-10 

TGF-β1 

IFN-β 

Cytokines 
produced 

TNF-α 

IL-1β 

IL-6 

IL-12 

IL-23 

CCL8 

IL-10 

TGF-β 

IL-1ra 

IL-4 

IL-6 

IL-10 

TNF-α 

IL-10 

TGF-β 

Chemokine 
/receptor  

IL-8, 

MIG, 

IP-10, 

MIP-2α, 

MIP-2β, 

Eotaxin 2 CCL1 CCR2 

 

 

Classification scheme for monocyte/macrophage subsets demonstrating differentiating 

agents and the production of main cyto- and chemokines.  

 

Due to the close proximity of alveolar macrophages and airway epithelial cells, 

both cell types may amplify the cytokine production in vivo to mediate 

inflammation or tissue repair. Hence, in vitro studies focussing on lung 

pathologies, often study the effects on macrophage polarisation and inflammation 

in co-culture systems with macrophages and bronchial epithelial cells (Fujii et al. 

2002; Tao & Kobzik 2002; Chuquimia et al. 2013; Moon et al. 2015). Together, 

these studies suggest that the interplay of macrophages and epithelial cells in the 

lung tissue may contribute to a pro-inflammatory or pro-fibrotic environment with 



                                                                         Introduction 

 26 

potential consequences for the development of chronic lung disease or tissue 

fibrosis.  

1.1.5 Lung fibroblasts  
 

Fibroblasts, present in the pulmonary parenchyma are essential for the 

functionality of the lung. Together with the components of the extracellular matrix, 

lung fibroblasts provide structural and functional integrity for the alveolar-capillary 

unit and interstitium. Particularly, the interaction of fibroblast cytoskeletal proteins 

and the ECM facilitate cell motility and the generation of contractile forces 

essential during wound healing (Moises Selman & Barrios 1991; McAnulty 2007). 

Furthermore, lung fibroblasts, among other cells are the major source of ECM-

proteins, including collagen I and III but also regulate ECM degradation through 

the production of matrix metalloproteinases (Greenlee et al. 2007). Together, 

lung fibroblasts are fundamental for maintaining the integrity of the lung tissue 

and for orchestrating tissue repair processes (Darby et al. 2014). 

Under normal conditions lung (proto-) fibroblasts exhibit cell-cell or cell-matrix 

contacts (Tomasek et al. 2002). However, in response to mechanical stress or 

tissue injury, lung fibroblasts become activated, migrate to the wound site, and 

differentiate into so-called (proto-) myofibroblasts expressing α-smooth muscle 

actin (αSMA) (schematic of differentiation towards myofibroblast detailed in 

Figure 1.4).  

Fibroblast differentiation is mediated through mechanical stress and cytokines 

released from tissue resident cells or recruited cells at the wound site and 

involves multiple steps: Firstly, interstitial fibroblasts are activated by extracellular 

stress arising from mechanical properties of the ECM (Hinz et al. 2007; Tomasek 

et al. 2002) and differentiate into so-called proto-myofibroblasts, a fibroblast 

differentiation stage which has been demonstrated to be present in normal 

alveolar septa (Hinz et al. 2007).  Proto-myofibroblasts express stress fibres 

including ED-A fibronectin and filamentous actin, as well as focal adhesion 

molecules in order to conquer mechanical stress and to strengthen the wound. In 

the event of high levels of active transforming growth factor- beta (TGF-β) proto-

myofibroblast differentiate further into myofibroblasts, which express abundant 

levels of ED-A fibronectin and filamentous actin, and high levels of stress fibres 

containing αSMA (Skalli et al. 1986), the most reliable marker of the 

myofibroblast phenotype (Tomasek et al. 2002). With the expression of αSMA in 

filament bundles or stress fibres, myofibroblast enhance their contractile 
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properties and contribute to wound contraction in provisional granulation tissue 

(Hinz 2010; Goffin et al. 2006; Hinz et al. 2001; Zhang et al. 1996). 

 

 
 

Figure 1.4 Fibroblast to myofibroblast transition modified from (Falke et al. 
2015). 

Fibroblasts, resident in the pulmonary interstitium, express fibronectin but no filamentous 

actin. Proto-myofibroblasts express ED-A fibronectin, stress fibres, and focal adhesion 

proteins. By contrast, myofibroblasts express high levels of ED-A fibronectin, filamentous 

actin, and αSMA. The differentiation of fibroblasts into myofibroblasts requires three 

different events: 1) high extracellular stress 2) specialized ECM proteins e.g. ED-A 

Fibronectin; 3) accumulation of biologically active TGF-β1 (Hinz et al. 2007).  

 

Apart form the de novo synthesis of αSMA, active TGF-β induces the expression 

of ECM proteins, predominantly fibrillar collagens. Moreover, it has been 

demonstrated that mechanical forces induce matrix production in fibroblasts. 

Mechanical stress is sensed by focal ECM-cell contacts and is translated into 

downstream signalling pathways of multiple receptors (Torday & Rehan 2003; 
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Sarasa-Renedo & Chiquet 2005; Tamada et al. 2004), a process which is called 

mechanosensing.  

 

Transforming growth factor-beta (TGF-β) is a potent cytokine responsible for the 

induction of multiple cellular effects, such as differentiation and collagen 

production, immunomodulation, and is a key mediator in wound healing. 

Additionally, TGF-β is a potent mediator of chemotaxis in fibroblasts and 

myofibroblast and is the key player in mediating a fibroproliferative response (A E 

Postlethwaite et al. 1987). To date, three TGF-β isoforms are described in the 

literature TGF-β1, TGF-β2, and TGF-β3, with distinct tissue functions (Shi & 

Massague 2003; Bottoms et al. 2010). Amongst the three TGF-β isoforms, TGF-

β1 is the most studied isoform. During normal wound healing TGF-β1 is secreted 

as inactive latent precursor by monocytes/macrophages (Grotendorst, Smale, et 

al. 1989), fibroblasts (Kelley et al. 1991), activated leucocytes and stromal cells 

(Li et al. 2006) as well as endothelial cells (Grotendorst, Soma, et al. 1989). 

Before TGF-β1 dimer binds to TβRII to form a complex with TβRI (Penn et al. 

2012) it is inactive and non-covalently associated with latency associated peptide 

(LAP) and forms the large latency complex together with an ECM anchor protein 

LTBP (latent TGF-beta binding protein) (Miyazono et al. 1991; Taipale et al. 

1994). The activation of latent TGF-β1, involves the separation from its non-

covalently linked latency peptide, which dissociates in response to temperature or 

pH changes in vitro (Henderson & Sheppard 2013a). Other, potential 

mechanisms of TGF-β1 activation involve ROS (reactive oxygen species), 

proteases, or shear stress (Brown et al. 1990; Worthington et al. 2011). One of 

the most recently studied mechanisms of TGF-β1 activation involve the integrin 

family, especially αvβ3, αvβ5 and αvβ6 (Araya et al. 2006; Y. Zhou et al. 2010; 

Scotton et al. 2009; Leask & Abraham 2004; Henderson & Sheppard 2013a), 

which are expressed by many cells including lung fibroblasts. In the lung, αvβ6 is 

expressed by the alveolar epithelium and in vitro studies show that the activation 

of TGF-β1 can be inhibited by αvβ6 blocking antibodies (Munger et al. 1999; Van 

Aarsen et al. 2008). More recently it has been demonstrated that integrin-

mediated activation of TGF-β1 is induced by mechanical forces generated by 

these integrins (Shi et al. 2011). The particular role of TGF-β1 in fibroblast 

activation and fibroblast-mediated wound healing will be discussed in the next 

section.   
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1.2 Wound healing  

Normal wound healing involves a sequence of events, tightly regulated by a 

multitude of mediators, resulting in successful tissue repair and restoration of the 

normal lung function. Aberrant wound healing has been associated with the 

pathogenesis of lung disease, particularly in pulmonary fibrosis. In the lung, the 

mechanisms underlying wound-healing events following injury are poorly 

understood. These mechanisms are often explained by studies of cutaneous 

wound healing (Singer & Clark 1999; Clark 1991; Darby et al. 2014). The normal 

wound healing response requires both tissue resident cells as well as circulating 

cells and mesenchymal progenitors. Their recruitment, interaction, activation and 

cytokine profiles are coordinated by a dynamic series of events involving a 

complex composition of cytokines, chemokines, growth and complement factors, 

lipid mediators, as outlined in Figure 1.5 (Sinno & Prakash 2013). The wound 

healing process is driven by four essential, overlapping sequences: The 

haemostasis phase, inflammatory phase, the proliferative phase (development of 

the granulation tissue) and the maturation phase, including scar formation, and 

re-epithelialization (Darby et al. 2014; Micallef et al. 2012).  

 

In the early events following injury during haemostasis, the clotting cascade stops 

the bleeding process, which results in the formation of a provisional wound 

matrix, composed of fibrin and fibronectin (Olczyk et al. 2014). Recruited cells, 

such as lymphocytes, neutrophils, macrophages and endothelial cells use the 

provisional matrix to exaggerate the inflammatory phase. Macrophages, recruited 

in the inflammatory phase originate from monocytes, which are differentiated 

through stimulation e.g. by extracellular matrix components, TGF-β and 

monocyte chemoattractant protein 1 (MCP-1) (Leibovich & Ross 1975). 

Moreover, to coordinate the clearance of bacteria and foreign debris, 

macrophages secrete numerous cytokines and chemokines, interleukins, tumour 

necrosis factor (TNF) as well as platelet-derived growth factor (PDGF) to 

stimulate fibroblast fibroproliferation (Clark 1996; Sinno & Prakash 2013). The 

proliferation phase is characterised by reepithelialisation, neovascularization, and 

the accumulation of granulation tissue as well as collagen deposition. 

Neovascularization is critical for the recruitment of additional macrophages and 

fibroblasts; newly arrived macrophages further secrete growth factors to stimulate 

fibroplasia.  
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Figure 1.5 Cytokines involved in wound healing modified from (Sinno & 
Prakash 2013)1. 

Different cytokines and growth factors orchestrate the wound healing response. 

Complements C3 and C5, epidermal growth factor (EGF), transforming growth factor 

(TGF), platelet-derived growth factor (PDGF), tumour necrosis factor (TNF), vascular 

endothelial growth factor (VEGF), and insulin-like growth factor (IGF).   

                                                
1 This is an open access article distributed under the Creative Commons Attribution License, which 
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is 
properly cited. From http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3741993/. 



                                                                         Introduction 

 31 

Additional factors such as PDGF (Risau et al. 1992), TGF-β and extracellular 

matrix molecules (Xu & Clark 1996) stimulate fibroblast proliferation  and 

differentiation to strengthen the wound. Hence, myofibroblasts become most 

abundant in the proliferation phase of wound healing (Horowitz & Thannickal 

2006). Figure 1.6 outlines the role of lung fibroblasts in normal wound healing. 

 

 
 

Figure 1.6 Potential role of lung fibroblasts during normal wound healing.  

Following epithelial injury, various tissue mediators such as TGF-β, PDGF and PGE2 are 

released by resident epithelial cells and recruited immune cells. Those mediators induce 

fibroproliferation of tissue resident and recruited fibroblasts and differentiation into 

myofibroblasts, which express high levels of alpha smooth muscle actin (αSMA) and 

deposit collagen I and III to contribute to the formation of scar tissue. Fibroblasts and 

myofibroblast secrete MMPs and TIMPs to regulate ECM deposition and degradation. 

During the resolution phase, fibroblasts undergo apoptosis and ECM is remodelled and 

reduced which signals the onset of the maturation phase of functional lung tissue.   

 

The maturation phase is marked by the progressive remodelling of the 

granulation tissue into scar tissue involving further fibroblast activation, 

differentiation into myofibroblasts, proliferation and extracellular matrix deposition 

to continuously remodel and eventually replace the provisional matrix (Darby et 

al. 2014). The expression of αSMA in microfilament and stress fibres and 

extracellular matrix deposition, including collagen I and III fibrils, assist in wound 
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contraction and to strengthen the wound site, approximately three weeks after 

tissue injury. Additionally, (myo-) fibroblasts, secrete matrix metalloproteinases 

(MMPs) and tissue inhibitors of metalloproteinases (TIMPS) to remodel the 

granulation tissue (Darby et al. 2014). Furthermore, collagen III is replaced with 

collagen I and collagen fibres rearranged and cross-linked to further support scar 

formation. During the resolution phase myofibroblasts progressively undergo 

apoptosis, which signals the onset of the maturation phase for normal functional 

tissue (Figure 1.6) (Desmoulière et al. 1995; Horowitz & Thannickal 2006).  

 

1.2.1 Pathological repair in the lung  
 

Dysregulation of the normal wound response has been proposed as one of the 

earliest events in many diseases (Sarrazy et al. 2011). In internal organs, such as 

the lung, aberrant wound healing is proposed to be generally similar to processes 

in pathological cutaneous scar formation. Pathological wound healing often 

involves a repetitive noxious stimulus that leads to persistent epithelial injury, with 

continuous ECM deposition resulting in permanent scar formation (Wilson & 

Wynn 2009; Micallef et al. 2012). In many disease states, as it is proposed for 

fibrosis, the dialogue between (myo-) fibroblasts and their microenvironment may 

be altered or disrupted leading to repair defects and continuous production of 

scar tissue (Darby et al. 2014). Dysregulation of the wound repair-response can 

affect many fibroblast functions including differentiation into myofibroblasts, 

proliferation, ECM deposition, and the balance of apoptosis and survival. 

Consequently, aberrant wound healing can result in uncontrolled fibroblast 

proliferation and excessive ECM deposition, caused by an imbalance between 

extracellular matrix synthesis and degradation by myofibroblasts, common 

pathological features in pulmonary fibrosis and airway remodelling associated 

with asthma (McAnulty 2007; Chambers 2008; Shifren et al. 2012). Conversely, 

dysregulation of wound repair response can result in the destruction of the ECM, 

which is a histopathological hallmark of emphysema (Horowitz et al. 2012). To 

date, the mechanisms of normal and aberrant wound healing are incompletely 

understood and key mediators orchestrating the wound healing response, such 

as TGF-β1, are in the focus of research.  

Apart from (myo-) fibroblasts, M2 macrophages are suggested to be involved in a 

dysregulated wound response. M2 macrophages secrete high levels of growth 

factors, including TGF-β1, driver of fibroblast differentiation (Desmoulière et al. 

1993) and PDGF, which stimulate the fibroproliferative response and the 
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synthesis and deposition of excessive ECM (Falke et al. 2015). Together, M2 

polarised macrophages, through the secretion of TGF-β1 enhance a fibroblast 

driven aberrant wound repair response (Murthy et al. 2015; Zhang et al. 2016).  

The role of TGF-β1 has been the most studied in the context of pathological 

wound healing (Fernandez & Eickelberg 2012). As mentioned earlier, TGF-β1 is 

secreted by a large number of cells, and the active form exerts pleiotropic 

functions to drive fibrogenesis. TGF-β1 does not only induce macrophage 

chemotaxis, but also their expression of PDGF to enhance fibroblast proliferation 

(J.-S. Kim et al. 2006; Fernandez & Eickelberg 2012). Moreover, TGF-β1 

stimulates the expression and secretion of profibrotic cytokines, including TNFα, 

PDGF, IL-1β and IL-13 to perpetuate fibrogenesis (Fernandez & Eickelberg 

2012). In addition, TGF-β1 induces Smad signalling cascades that directly 

influence the transcriptional activity of collagen genes, including collagen I A1 

(Cutroneo et al. 2007) and promotes collagen deposition (Fernandez & 

Eickelberg 2012).  

In contrast to profibrotic mediators including TGF-β1 and PDGF anti-fibrotic 

prostaglandin E2 (PGE2), the most abundant prostanoid within the lung, a lipid 

mediator of inflammation and regulator of wound repair is rapidly upregulated 

upon lung injury and expressed by alveolar epithelial cells, lung fibroblasts and 

alveolar macrophages (Churchill et al. 1989; Hempel, Monick & Hunninghake 

1994; Hempel, Monick, He, et al. 1994; Jordana et al. 1994; Kolodsick et al. 

2003). During normal wound healing PGE2 promotes epithelial proliferation and 

angiogenesis (Fairweather et al. 2015). In addition, a growing body of evidence 

suggests that PGE2, secreted by alveolar epithelial cells promotes the inhibition 

of fibroproliferation (Lama et al. 2002). Moreover, it has been demonstrated that 

PGE2 reduces fibroblast migration (Y. J. Li et al. 2010), proliferation (Bitterman et 

al. 1986; Elias et al. 1985), collagen synthesis, and induces fibroblast apoptosis 

(Lama et al. 2002; Huang et al. 2009; Maher et al. 2010). 

 

Aberrant wound healing in the lung is a complex sequence of tightly regulated 

events. A dysregulation of these events can result in the ignition and progression 

of many lung diseases.  
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1.3 Pulmonary Fibrosis  

 

Pulmonary fibrosis is a progressive and ultimately fatal condition that currently 

affects more than 5 million people worldwide, the incidence is increasing, and 

there is no known cure (Meltzer & Noble 2008; Hutchinson et al. 2015; Kreuter et 

al. 2015). Pulmonary fibrosis occurs in association with several lung diseases, 

either in isolation, as in idiopathic pulmonary fibrosis (IPF) or multi-organ 

connective tissue diseases such as systemic sclerosis (SSc) (Maher et al. 2007; 

Varga & Abraham 2007; Herzog, Mathur, Tager, et al. 2014). Other 

manifestations of pulmonary fibrosis with known aetiology are associated with 

various triggers including allergens, chemicals, environmental particles or 

radiation (Wilson & Wynn 2009). Histopathologically, pulmonary fibrosis is 

defined by excessive extracellular matrix deposition into the parenchyma with 

consequent destruction of the normal functioning lung architecture. Hence, 

clinical symptoms involve progressive breathlessness, which often leads to 

respiratory failure resulting in morbidity and mortality. The most common 

disorders that lead to the final stage of pulmonary fibrosis are the idiopathic 

interstitial pneumonias (IIPs). This group of disorders has been partly 

characterised, however, the aetiology for IIPs remain elusive. Since many IIPs 

share pathological and clinical characteristics, identification, treatment, and 

diagnosis of IIPs are demanding (Travis et al. 2013). Moreover, its has been 

proposed that pulmonary fibrosis associated with SSc shares some features with 

interstitial lung disease (ILD) and their most common form IPF (Herzog, Mathur, 

Tager, et al. 2014). 

 

1.3.1 Idiopathic Pulmonary Fibrosis  
 

The most common and aggressive form of pulmonary fibrosis is idiopathic 

pulmonary fibrosis (IPF), typically described as a specific form of chronic, 

progressive and fatal scarring ILD with unknown aetiology (Trawinska et al. 2016; 

Daccord & Maher 2016). The median survival with IPF following diagnosis is less 

than three years, which is worse than for many cancers (Gribbin et al. 2006) and 

there are more than 5,000 new patients diagnosed with IPF each year in the UK 

(Navaratnam et al. 2011). The incidence of IPF increases with age (Trawinska et 

al. 2016) and is 7.44 per 100,000 in the United Kingdom and is considered as the 

most common cause of death within the heterogeneous group of progressive 
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lung disease (Rafii et al. 2013). More recent numbers of the incidence of IPF in 

Europe and North America were estimated to be 3 – 9 diagnosed patients per 

100,000 (Hutchinson et al. 2015). Additionally, the prevalence of IPF is rising in 

the United Kingdom and the USA (Navaratnam et al. 2011). IPF affects patients 

predominantly between 40 to 70 years of age and occurs more frequently (twice 

as often) in man than in woman (Han et al. 2008; Raghu et al. 2006).   

Two recently approved treatments, pirfenidone, and nintedanib, slow disease 

progression (King et al. 2014; Richeldi et al. 2014) but are only indicated for a 

small proportion of patients, have modest beneficial effects and considerable 

side-effects. The mechanism by which pirfenidone, a pyridone derivative, exerts 

its treatment effects is incompletely understood. It has been suggested that 

pirfenidone decreases fibroblast proliferation and TGF-β downstream signalling in 

primary human lung fibroblasts (Conte et al. 2014; Inomata et al. 2014). 

Nintedanib is a compound that inhibits many receptor-associated tyrosine 

kinases, including receptors for vascular endothelial growth factor (VEGF) and 

PDGF blocking profibrotic signalling cascades that contribute to fibroblast 

proliferation, migration, differentiation, and the secretion of ECM (Richeldi et al. 

2014; Wollin et al. 2015). These treatment options may slow down disease 

progression, and the rate of decline of pulmonary function but, in some cases 

lung transplants are considered as only treatment option (Lynch et al. 2016; 

Kistler et al. 2014). There, therefore, remains a significant unmet clinical need 

and a requirement to further characterise the pathogenesis of pulmonary fibrosis 

and develop more effective treatments. 

 

1.3.2 IPF diagnosis  
 

Clinically, IPF is characterised by the histological pattern, described as usual 

interstitial pneumonia (UIP) with the exclusion of other alternative aetiologies, 

including connective tissue disease, drug toxicity or environmental insults 

(Herzog, Mathur & Tager 2014; Raghu et al. 2011). Other symptomatic features 

of IPF include cough, dyspnoea, bilateral interstitial infiltrates visible on 

radiographs or computed tomographic (CT) scans, progressive fibrosis and 

destruction of the lung parenchyma (Lynch et al. 2016). Due to common features 

with other interstitial lung diseases (ILDs), specialists urge that the diagnosis IPF, 

should be based on the histological evaluation of UIP or when a classical high-

resolution CT (HRCT) scan supports the diagnosis of IPF (Lynch et al. 2016; 
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Raghu et al. 2011). There is, however, an unmet need for non-invasive diagnostic 

tools since many patients are too unwell for lung biopsies, which makes the 

diagnosis of IPF inaccessible. Genomic techniques together with advanced 

sampling methods, including transbronchial cryobiopsies, biomarkers and 

improved imaging techniques (micro-CT) could influence diagnosis in the future 

to help improve therapeutic efforts (Richeldi 2016). 

 

1.3.3 Histopathology of IPF  
 

As mentioned previously, the international, multidisciplinary ATS/ERS consensus 

for diagnostic criteria for IIPs suggests the diagnosis of IPF, based on the 

histological phenomenon UIP (ATS/ERS 2002). UIP is heterogeneous and is 

characterised by areas of active lung injury, inflammation, fibroproliferation, 

extracellular matrix remodeling, areas of apparently normal lung structure 

alongside dense fibrotic tissue with irreversible distortion of the lung architecture 

(Lynch et al. 2016). Additionally, hyperplastic, cuboidal type II pneumocytes are 

an additional characteristic of UIP (Kasper & Haroske 1996). Although not 

prominent, scattered neutrophils, macrophages, or eosinophils are present 

throughout the fibrotic parenchyma (Lynch et al. 2016) and macrophages infiltrate 

the lung and form clusters in airspaces and bronchioles. In addition, collagen 

intermingled with proliferating myofibroblasts and fibroblasts; so-called 

“fibroblastic foci” are distributed in active fibrotic lesions, which intersperse with 

areas of almost acellular collagen accumulation and morphologically normal lung. 

These foci are composed of collagen deposits, and proliferating (myo-) fibroblasts 

and are overlaid with hyperplastic epithelium (Scotton et al. 2009). In past 

studies, fibroblastic foci have been suggested to present an organising stage of 

focal acute tissue injury (Cool et al. 2006; Myers & Katzenstein 1988; Fukuda et 

al. 1995; Kuhn & McDonald 1991). Cool and colleagues, suggest that fibroblastic 

foci are the forefront of a highly interconnected, complex reticulum, that originates 

in the subpleura and expands to nearby parenchyma (Cool et al. 2006). As 

assessed in various studies the number of fibroblastic foci identified in biopsy 

specimens is associated with disease severity of IPF, poor survival, and provides 

a diagnostic tool to assess the progression of the disease (King et al. 2001; 

Nicholson et al. 2002; Flaherty et al. 2003; Enomoto et al. 2006). It is noticeable 

that, although fibroblastic foci are a hallmark of IPF, these structures are also 

present in up to 30 % of patients with SSc-associated ILD (Raghu et al. 2011; 
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Solomon et al. 2013). In addition, aberrant responses to TGF-β have been 

observed in both SSc-associated ILD and IPF (Castelino & Varga 2010). This 

suggests that similar phenotypic changes occur in both IPF and SSc-derived lung 

fibroblasts (Herzog, Mathur, Tager, et al. 2014).  

In summary, fibroblastic foci represent a hallmark of UIP, correlate with disease 

severity and are focal points of active disease between morphologically normal 

lung and mature collagen deposits throughout fibrosing tissue that ultimately 

contribute to the architectural distortion of the normal lung tissue (Cool et al. 

2006). 

 

The end stage of IPF is characterised by large cystic airspaces and dense scar 

tissue, often referred to “honeycomb” structures, a specific hallmark of IPF 

(Katzenstein et al. 2008). The airspaces of honeycomb-like structures are 

separated from the fibrotic tissue by bronchialised epithelium. An 

immunohistochemical comparison between the normal and fibrotic lung 

architecture is presented in Figure 1.7. 

 



                                                                         Introduction 

 38 

    
 

Figure 1.7 Normal lung architecture and distorted architecture in IPF lung. 

Elastica van Giesson staining in tissue of normal (A) and IPF lung (B): collagen (pink), 

elastin (black), and other structures (yellow). In normal lung, alveoli are thin-walled 

structures with occasionally small amounts of interstitial collagen. By contrast, IPF tissue 

is characterised by thickened alveolar walls and fibroblastic foci (arrow) as well as dense 

collagen deposition in the interstitium. Fibroblastic foci are revealed as accumulations of 

fibroblasts and deposited collagen, with hyperplastic epithelium overlying the foci (arrow). 

Bronchialised epithelium (*) produces and secretes excessive amounts of mucin, which is 

deposited in the cystic airspaces of the fibrotic lung.  

 

With increasing disease progression, the lung tissue looses its elasticity, alveoli 

collapse leading ultimately to impaired gas exchange and breathlessness 

resulting in high morbidity and mortality (McAnulty 2007; Datta et al. 2011; Yang 

2012; Loveman et al. 2015). 

 

1.3.4 Pathogenesis of IPF  
 

The development of pulmonary fibrosis is incompletely understood. Medical and 

scientific efforts have helped to identify advanced diagnostic tools to improve our 

understanding of this devastating disease. The mechanisms contributing to the 

early and progressing events of the disease are predominantly studied in biopsy 

specimens from IPF patients and a model of bleomycin-induced fibrosis in mice 

(Williamson et al. 2015). Over the last decades, different theories about the 

pathogenesis and aetiology have shaped our perception of the disease, with 

conflicting theories up until today. In the mid 1970s, Crystal and colleagues 

argued that IPF begins with alveolitis and transitions into an interstitial fibrotic 
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disease, which could be potentially reversed by therapies targeting inflammatory 

and immune processes (Crystal et al. 1976). Turner-Warwick later argued that in 

IPF viral infection could be aetiologically involved (Turner-Warwick 1998). 

Up until today the inflammation appears to be a prominent feature in the 

pathogenesis of IPF (Bringardner et al. 2008; Keane 2008; Moore et al. 2014; 

Balestro et al. 2016), despite the lack of treatment benefits with 

immunomodulatory drugs (Gross & Hunninghake 2001; Thannickal et al. 2004). 

The hypothesis that IPF is a chronic inflammatory/autoimmune disease has been 

further countered with arguments that the presence of inflammatory cells is low 

when compared with other interstitial lung diseases (Selman et al. 2001). 

Additional studies with high-dose immunosuppressive therapy demonstrated no 

benefit regarding disease progression or outcome (Maher & Wells 2008). More 

recently, a hypothesis emerged, that suggests that the pathophysiology of the 

disease is more a consequence of fibroblast dysfunction than of dysregulated 

inflammation. This hypothesis was put forward by Laurent and McAnulty in the 

early 1980s (Laurent & McAnulty 1983). Abnormal tissue repair mechanisms 

following alveolar epithelial cell damage (Selman et al. 2001; King Jr. et al. 2011), 

have been suggested to result in the release of profibrotic mediators, which drive 

the activation of fibroblasts (Lovgren et al. 2011). Hence, the persistence of 

wound healing processes, involving increased numbers of fibroblast/ 

myofibroblast cells driving excessive production of extracellular matrix proteins, 

are considered to be central to the IPF pathogenesis (McAnulty 2007).  

 

The initiation of the fibrotic process, in the early stages of the disease, is 

proposed to be induced by recurrent micro-injuries and chronic damage to 

alveolar epithelial cells, followed by sequential exposure to toxic stimuli. Potential 

causes for these reoccurring epithelial cell damage may involve various risk 

factors, such as smoking (Baumgartner et al. 1997; E. B. Meltzer 2008; Selman 

et al. 2008; Maher 2013; Daccord & Maher 2016), viral infections (Irving et al. 

1993; Egan et al. 1995), ER stress (Korfei et al. 2008; Lawson et al. 2008; 

Kropski et al. 2013; Camelo et al. 2014; Daccord & Maher 2016) and genetic risk 

factors, 5 % of cases in IPF are familiar (Noble et al. 2012). Other risk factors 

involve oesophageal reflux (Tobin et al. 1998) and epigenetic factors (Sanders et 

al. 2008; Yang & Schwartz 2015; Evans et al. 2016). Despite the fact that the 

detailed mechanisms that lead to the early events in IPF remain unknown, it is 

noticeable that many observations in IPF share characteristics and mediators of 

the normal wound healing response.  
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Studies point towards disrupted basement membranes, damaged, apoptotic and 

necrotic alveolar and bronchial epithelial cells in IPF tissue (Plataki et al. 2005; 

Katzenstein 1985; Lovgren et al. 2011) with ultrastructural alterations of alveolar 

epithelial cells, including hypertrophy and hyperplasia and loss of adhesion 

molecules (Kasper & Haroske 1996). Albeit, IPF has been traditionally described 

as an interstitial lung disease, bronchial epithelium in the airways have been 

proposed to play a role in the pathogenesis of IPF (Sakai & Andrew M. Tager 

2013). Bronchial epithelial cells display pro-apoptotic features in IPF (Plataki et 

al. 2005) but are also considered as a source for profibrotic mediators such as 

TGF-β in conditions of stress (Tschumperlin et al. 2003). Furthermore, bronchial 

epithelial cells are associated with chronic airway disease (Kamio et al. 2005) 

and pathobiology of IPF (Speer et al. 2011). Histologically, bronchialised 

epithelium lines cystic airspaces in IPF and produce excessive amounts of mucin 

and matrix metalloproteinases (MMPs), which further promotes ECM remodelling 

and disruption of the basement membrane in lungs of IPF patients (Lovgren et al. 

2011). The persistent damage and apoptosis of epithelial cells and consequent 

loss of the epithelial cell barrier increases vascular permeability and leads to the 

recruitment of inflammatory cells (Mora et al. 2006; Chambers 2008; Leppäranta 

et al. 2012). The continuity of these processes induces the activation of various 

stress pathways, including ER stress, resulting in further dysfunction of alveolar 

and bronchial epithelial cells. Epithelial injury is found neighbouring 

myofibroblasts (Li et al. 2004) and correlates with the sites of fibroblastic foci 

(Kuhn & McDonald 1991). This suggests that damaged alveolar epithelial cells 

are involved in the induction of a fibroblast-driven aberrant wound healing 

response (Puglisi et al. 2016). It has been demonstrated in a bleomycin-induced 

model of fibrosis in mice that epithelial damage induces the secretion of TGF-β1 

(Kumar et al. 1996). In addition apoptotic bronchial epithelial cells have been 

reported to produce high levels of TGF-β1 (Hodge et al. 2002) further 

perpetuating the profibrotic response. 

Originally, fibroblast accumulation in fibrotic lung tissue was described to develop 

from resident tissue fibroblasts. More recent studies hypothesise that fibroblasts 

additionally originate from type II pneumocytes by epithelial to mesenchymal 

transition (EMT) driven by TGF-β (Willis et al. 2005). Other studies suggest that 

some fibroblasts that contribute to pulmonary fibrosis originate from circulating 

fibrocytes, which are bone marrow-derived mesenchymal progenitor cells able to 

differentiate into fibroblasts and myofibroblasts (Strieter et al. 2009). However, it 

seems more likely that the majority of fibroblasts involved in the pathomechanism 
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of fibrosis derive from initially quiescent, tissue resident fibroblasts and proto-

myofibroblasts in normal alveolar septa (Hinz et al. 2007; Puglisi et al. 2016). 

As mentioned earlier activated epithelial cells and recruited inflammatory cells 

secrete profibrotic mediators, including TGF-β1 and PDGF both of which regulate 

proliferation, migration of fibroblasts and their differentiation into myofibroblasts 

as well as ECM deposition (Yi et al. 1996; Antoniades et al. 1990; Khalil et al. 

1991; Chambers 2008; Thompson et al. 2006; Hostettler et al. 2008). Moreover, 

in vitro co-culture experiments have shown that mechanical stress in epithelial 

cells can promote the activation of TGF-β1 in the ECM (Morishima et al. 2001). 

Although all three isoforms of TGF-β are expressed in the lung, TGF-β1 has been 

particularly associated with fibrotic development (Coker et al. 1997; Jagirdar et al. 

1997). TGF-β1 has been reported to be elevated in IPF lungs, particularly in lung 

epithelium and macrophages (Khalil et al. 1991; Khalil et al. 1996) and impacts 

on fibroblast function in a paracrine manner (Leppäranta et al. 2012). Several 

lines of evidence support that the phenotype of IPF fibroblasts differs from the 

one found in fibroblasts derived from healthy lungs: IPF fibroblasts exhibit a 

invasive fibroproliferative phenotype (Mio et al. 1992; Khalil et al. 2005b; Huang 

et al. 2014; H. Chen et al. 2016a) and demonstrate enhanced migration when 

isolated from fibrotic lesions (Suganuma et al. 1995; Pierce et al. 2007). 

Moreover, in IPF several reports postulate that dysregulated apoptotic 

mechanisms result in increased epithelial apoptosis, while IPF fibroblasts appear 

resistant to different pro-apoptotic stimuli, including FasL (Hampel et al. 2005; 

Tanaka et al. 2002; Moodley et al. 2004; Bühling et al. 2005; Maher et al. 2010; 

Chang et al. 2010). This phenomenon is called the apoptosis paradox in IPF 

(Maher et al. 2010). 

PGE2, the major prostaglandin in the lung, counters the profibrotic effects of 

TGF-β1, inhibits fibroproliferation (Lama et al. 2002; Bitterman et al. 1986; Elias et 

al. 1985) and induces apoptosis in fibroblasts (Huang et al. 2009). However, the 

levels of PGE2 in IPF-BALF are reportedly decreased (Wardlaw et al. 1989; 

Borok et al. 1991; Bozyk & Moore 2011) and PGE2 production and signalling, 

through its four receptors, E prostanoid (EP) receptors, is reduced (Bozyk & 

Moore 2011). In particular, TGF-β1-induced PGE2 synthesis is reduced in 

fibroblasts from fibrotic lung due to an impaired upregulation of COX-2 mRNA 

(Keerthisingam et al. 2001). Keerthisingam and colleagues suggest that 

decreased antifibrotic PGE2 may lead to unopposed fibroproliferation and 

collagen synthesis further perpetuating the development of pulmonary fibrosis. 

Moreover, reduced levels of PGE2 have been suggested to contribute to the 
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apoptosis paradox in IPF (Maher et al. 2010). Maher and colleagues suggest that 

the lack of PGE2 is one mechanism capable of being responsible for both 

increased epithelial apoptosis and reduced fibroblast apoptosis. Together, the 

mechanisms that contribute to this fibroproliferative and apoptosis-resistant 

phenotype in IPF fibroblasts remain incompletely understood. 

 

Recruited and tissue-resident macrophages indirectly regulate fibrogenesis by 

the secretion of growth factors, cytokines, and metalloproteases (Song et al. 

2000). Uh and colleagues addressed in the late 1990s if these growth factors, 

cytokines, and metalloproteases contribute to the progression of IPF and found, 

that the occurrence of interstitial macrophages in the IPF lung corresponded with 

the level of clinical deterioration and deposited collagen (Uh et al. 1998). So-

called alternatively activated macrophages (M2 macrophages) have been 

proposed as key effector cells in the advancement of wound healing, tissue 

remodelling and resolution of inflammation (Martinez et al. 2008; Zhang & Mosser 

2008; Martinez et al. 2009). Interestingly, studies with alveolar macrophages 

derived from IPF patients display the phenotype of alternatively activated 

macrophages and have also been associated with increased fibroproliferation 

and collagen deposition in IPF (Prasse et al. 2006; Gong et al. 2012; Stahl et al. 

2013; Murthy et al. 2015; Lech & Anders 2013; Byrne et al. 2016). Furthermore, 

M2 macrophages have been associated with acute exacerbation (AE), a phase of 

enhanced progression of respiratory symptoms and deterioration of pulmonary 

function in IPF (Schupp et al. 2015). Schupp and colleagues described that in 

AEs, M2 cytokines such as IL-1ra, MCP-1, CCL17, MIP-4, and CCL22 were 

increased, further implying that M2 cytokines are involved in exaggerating the 

progression of the disease. The role of macrophage-derived MMPs and 

endogenously derived tissue inhibitors of metalloproteinases (TIMPs) have been 

discussed in association with the IPF pathogenesis. MMPs are known to be 

elevated in IPF lungs and play a role in extracellular matrix remodelling and 

basement membrane disruption (Pardo & Selman 2012). Although it is 

challenging to predict the effects of MMPs in IPF lung due to their cleavage and 

activation of cytokines (Lech & Anders 2013) some MMPs may exert anti-fibrotic 

effects under certain circumstances. MMP-9 has been reported to be elevated in 

IPF-BALF samples (Henry et al. 2002), is produced by fibroblasts and alveolar 

and interstitial macrophages (Lemjabbar et al. 1999; Suga et al. 2000; Pardo & 

Selman 2012) and has been suggested to induce a pro-fibrotic feedback loop via 
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the activation of TGF-β1 (Yu & Stamenkovic 2000). It is, however, incompletely 

understood how MMP-9 secretion is regulated in human alveolar macrophages.   

Macrophages play a key role in tissue homoeostasis and wound healing. In the 

context of IPF M2 macrophage polarisation appears to impact directly on a pro-

fibrotic environment that exaggerates the fibroproliferative response via the 

expression of pro-fibrotic mediators, including TGF-β1 and the secretion of 

MMPs, including MMP-9.  

 

In summary, aberrant regulation of multiple pathways involved in inflammation 

and wound repair have been suggested to contribute to the pathogenesis of IPF, 

and it is, therefore, likely that multifactorial events contribute to the onset and 

progression of this devastating disease. Figure 1.8 summarises all discussed 

cellular processes involved in the development of pulmonary fibrosis. The cause 

for an altered, pro-fibrotic phenotype in fibrotic lung fibroblasts and sustained M2 

macrophage activation remains elusive. It is, therefore, important to assess the 

cellular role of altered proteins in IPF in order to help improve our understanding 

of the pathogenesis of this devastating disease. Clusterin, a multifunctional 

protein expressed by a wide range of cells in the human body is altered in IPF.  

 

The next section summarises what is known about the role of clusterin in the lung 

and its potential links to the pathobiology of pulmonary fibrosis.  
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Figure 1.8 Schematic diagram of the normal alveolar architecture and a 
simplified hypothetical overview of cellular processes involved in the 
development of pulmonary fibrosis modified from (Byrne et al. 2016). 

In normal lung tissue fibroblasts and occasionally myofibroblast contribute to the integrity 

of the lung. Alveolar macrophages are located in the alveolar space and interstitial 

macrophages resident in the interstitial parenchyma. In response to tissue injury, and the 

destruction of the epithelial integrity and alveolar basement membrane, inflammatory 

cells and mesenchymal progenitor cells are recruited towards the site of injury. Resident 

and recruited fibroblasts proliferate and differentiate into myofibroblasts; resulting in 

excessive ECM deposition and form subepithelial fibroblastic foci composed of fibroblast, 

myofibroblast, and extracellular matrix deposits. Activated epithelial cells and activated 

macrophages secrete numerous profibrotic mediators, including TGF-β1 and PDGF and 

promote fibroproliferation and further perpetuate fibrogenic processes. 
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1.4 Clusterin 

1.4.1 Clusterin in pulmonary fibrosis  
 

Clusterin (also called apolipoprotein J) is a heterodimeric secretory glycoprotein, 

ubiquitously expressed in human tissues and body fluids. In a proteomic analysis 

of bronchoalveolar lavage fluid (BALF) Kim and co-workers showed that clusterin 

levels were approximately 7-fold lower in IPF compared with controls (T. H. Kim 

et al. 2010). In addition, studies of fibrosis in other organs, including heart, 

kidney, liver, and in animal models suggest that down- or up-regulation of 

clusterin enhance or limit the development of fibrosis respectively (Jung et al. 

2012; Gangadharan, Bapat, Rossa, R Antrobus, et al. 2012; Greer et al. 2006; 

Rosenberg & Silkensen 1995; Klahr & Morrissey 1997) suggesting that clusterin 

may play an important role in the pathogenesis of fibrosis. 

However, the localisation of clusterin in normal and fibrotic lung, the mechanisms 

contributing to its down-regulation in IPF-BALF and its role in the pathogenesis of 

pulmonary fibrosis have not been investigated. 

 

The next sections summarise what is known about clusterin in human and rodent 

lung, its role in tissue injury and disease and its biosynthesis, regulation and 

multifunctional role in different cell types. 

 

1.4.2 Clusterin in the human and animal lung 
 

To date, there is very little information on distribution and function of clusterin in 

the lung. The following section summarises the current literature on clusterin in 

the human lung in health and disease and relevant animal models. 

 

Human lung 

Clusterin expression in the human lung and human lung fibroblasts, in particular, 

has been previously described in the context of oxidative stress caused by 

cigarette smoke extract (Carnevali et al. 2006). In this study Carnevali et al. 

analysed clusterin expression in bronchial biopsy specimens, of smokers and 

non-smokers and demonstrated that clusterin was mildly expressed in lung of 

non-smokers and clusterin immunostaining was markedly increased in the 

submucosa of lungs from active smokers. In addition, this study demonstrated 

that the expression of clusterin in lung fibroblasts was increased in response to 
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2.5 % to 5 % cigarette smoke extract in the culture medium. Although Carnevali 

and colleagues suggest that clusterin may have a protective effect in the airways 

of smokers, their report, however, did not outline other cell specific clusterin 

expression and potential implications in cell function in fibroblasts or the human 

lung. 

Other studies on clusterin in the human lung, focused on its increased expression 

in lung cancer cells. Clusterin has been reported to be elevated in lung 

adenocarcinoma cells (X. Chen et al. 2016) and induces treatment resistance in 

lung cancer cells in vivo (Ma et al. 2015). Silencing of secretory clusterin in vitro 

promotes cisplatin anti-tumour activity (Zhang et al. 2014) and inhibits 

proliferation, migration and promotes apoptosis in non small lung cancer cells 

(NSLCC) (H. Li et al. 2010; C. Y. Cheng et al. 2012; Yan et al. 2013a). The 

protective effects of clusterin, which promote treatment resistance in cancer cells, 

may be attributed to its effects on inhibiting pro-apoptotic protein Bax (Zhang et 

al. 2005). Phase III and IV clinical trial studies are currently assessing the effects 

of antisense oligonucleotides targeting the clusterin gene in lung and prostate 

cancer2.  

 

Rodent lung 

Numerous studies in rodents have assessed the role of clusterin during lung 

injury. A study investigated the potential protective effects of clusterin in perfused 

rabbit lungs: Heller and colleagues showed that the administration of clusterin 

reduced pulmonary hypertension and oedema due to a protective effect of 

clusterin in fMLP-mediated leukocyte-induced pulmonary injury via complement 

inhibitory mechanism (Heller et al. 2003). Additionally, clusterin was elevated in 

rat lungs exposed to systemic pulmonary shunt-induced pulmonary arterial 

hypertension (PAH). Here, clusterin was identified as a phenotypic modulator of 

pulmonary artery smooth muscle cells (PASMCs) with an important role in 

vascular pulmonary remodelling: In vitro evidence suggests, that clusterin 

promotes proliferation, migration and apoptosis resistance in human PASMCs, 

potentially through the engagement of Erk1/2 and Akt signalling pathways (Liu et 

al. 2015).  

Another model in mice investigated the effect of clusterin-deficiency on house 

dust mite-induced airway inflammation (Hong et al. 2016). In clusterin-deficient 

mice the total number of immune cells was increased in BALF and the lung. 
                                                
2 www.clinicaltrials.gov NCT01578655 (on-going) and NCT01630733 (recruiting). Status 
September 2016. 
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Furthermore, profibrotic mediator CCL-20 was enhanced in BALF from clusterin-

deficient mice, suggesting that CCL-20 secretion was negatively regulated by 

clusterin in bronchial epithelial cells. Moreover, clusterin-deficient mice 

demonstrated increased levels of Th2 and M2 cytokine IL-4 in BALF. Hence, 

clusterin was suggested as anti-inflammatory mediator and dysregulation of 

clusterin expression could be linked to persistent airway inflammation (Hong et al. 

2016).  

Together, the data suggests that clusterin is protective in smoker’s lung but 

promotes survival in various lung cancer cells. In animal studies focusing on the 

role of clusterin in the lung, clusterin was suggested to act as an 

immunomodulator to protect against lung injury in rodents. However, the detailed 

distribution of clusterin, its immunomodulatory affects associated with fibrosis and 

its function in the human lung remains unknown. 

 

1.4.3 Clusterin expression in lung disease and response to tissue injury. 
 

Clusterin expression has been reported to be altered in many disease states that 

are associated with tissue injury and repair. In asthma, clusterin serum levels 

were significantly increased, and correlated with asthma severity (Kwon et al. 

2014). A more recent study describes clusterin sputum levels in childhood 

asthma were elevated, reflecting airway inflammation and severity of symptoms 

(Sol et al. 2016). Additionally, clusterin serum levels increased with severity in 

COPD (severe COPD 167.50 ± 18.13 µg/ml) when compared with healthy 

controls (121.30 ± 13.56 µg/ml), and clusterin was suggested to be a potential 

peripheral biomarker of cognitive dysfunction in COPD patients (Li & Huang 

2013). In these studies it was solely indicated, that clusterin serum levels were 

increased with disease severity. However, it remains unknown if altered clusterin 

levels in lung disease are causative or protective throughout the course of the 

disease. Another study with 61 Systemic sclerosis (SSc) patients and 24 healthy 

individuals indicated that serum levels in SSc patients (median, 162.9 µg/ml) 

were increased when compared with controls (median, 142.2 µg/ml). However, 

SSc patients with elevated clusterin levels had digital ulcers and pulmonary 

arterial hypertension less often than those with normal clusterin levels (Yanaba et 

al. 2012). This suggests that elevated clusterin levels, at least in patients with 

SSc, could be a protective mechanism to conquer the progression of the disease. 

In conclusion, clusterin serum levels are altered in various lung-associated 
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diseases. Yet, the distribution of clusterin in normal lung is incompletely 

described. Further insights, into cell dependent clusterin expression patterns in 

health, compared with disease would allow new insights into the role of clusterin 

in the lung and its impact on disease severity. 

In order to better understand the role of clusterin in the lung, it may be of interest 

to review the literature on clusterin role and function in other organs. Generally, 

clusterin is reported to be elevated in states of tissue injury (Silkensen et al. 

1994), which strongly suggests a role of clusterin in regulating repair and 

remodelling processes.  

 

In acute head injury, clusterin expression was elevated in astrocytes from 30 min 

after injury and remained increased at high levels for several weeks after injury, 

with potential immunoregulatory effects (Troakes et al. 2016). Clusterin has been 

suggested to be a stress-inducible biomarker (Viard et al. 1999; J. H. Kim et al. 

2010; Antonelou et al. 2011). Additional studies in Crohn’s disease, suggested 

that clusterin is increased in crypt epithelial cells to exert a cytoprotective function 

to prevent further injury (Gassler et al. 2001).  

On a cellular level clusterin was induced in many cell types following 

experimental injury, including VSMC in a model of balloon-injured rabbit aorta 

(Miyata et al. 2001), in tubular epithelial cells (Girton et al. 2002), astrocytes 

(Imhof et al. 2006), corneal epithelia cells (Shin et al. 2009) and ventricular 

myocytes (Swertfeger et al. 1996). Consistent with a protective role, 

clusterin-deficiency worsens the injury in rodent models of kidney injury (W. Zhou 

et al. 2010) and attenuates renal fibrosis in response to obstruction (Jung et al. 

2012).  

In summary, clusterin, a stress-regulated protein appears to be a potential 

mediator of the response to injury and tissue remodelling (Bailey et al. 2002). 

However, little has been reported about the role of clusterin in lung injury and 

potential implications in normal and aberrant wound repair. A detailed analysis of 

clusterin distribution and function in healthy and fibrotic lung would significantly 

enhance our understanding of its role in protecting against or contributing to 

disease severity of lung fibrosis. 
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1.4.4 Clusterin biosynthesis  
 

Although extensive efforts have been undertaken to understand the biosynthesis 

and regulation of clusterin in the past decades, only basic information about 

clusterin’s gene expression and regulation have been reported. In humans, the 

CLU gene (CLU) is a single, nine exon gene, located on chromosome 8 (Wong et 

al. 1994). This CLU gene organisation is well conserved across species including 

mouse and rat (Rizzi et al. 2009). The CLU gene expression is tightly regulated 

and very tissue specific: It is known that the clusterin promoter is highly 

conserved and contains numerous regulatory elements, which control clusterin 

expression in a tissue-and stress specific manner (Michel et al. 1995; Wilson 

2000; Trougakos 2013). Clusterin expression is linked to environmental cytokine 

signals and growth factors including TGF-β, nerve growth factor, epidermal 

growth factor, and heat shock transcription factor 1 (reviewed in Park et al. 2013). 

Before 2006, it was believed that CLU gene originates a unique transcript (Rizzi 

et al. 2009). However, more recent reports suggest that more transcripts code for 

CLU. As listed most recently in the NCBI database the human CLU-gene 

encodes for at least three different mRNA variants (variant 1: NM_001831.3; 

variant 2: NR_038335.1 and variant 3: NR_045494.1)3. These transcripts are 

probably originated from two alternative transcriptional initiation start sites and 

only produced in humans and chimpanzees (Rizzi et al. 2009). All transcripts 

have a unique exon 1 and share exon 2-9 (Prochnow et al. 2013). Transcript 

variant 1 (NM_001831.3) is the most abundant of all CLU mRNA variants and its 

translation initiation starts from an AUG start codon upstream of the ER-signal-

peptide-sequence, which results in the translation of a 449 amino acid long 

precursor protein including an ER-signal peptide (Wong et al. 1993; Prochnow et 

al. 2013; Mydlarz et al. 2014). In the early stages of its maturation precursor 

protein appears as an unfolded 48 kDa protein in the rough ER where it is 

cleaved from its ER-signal peptide before it is folded and glycosylated at six 

glycosylation sites resulting in a 60k Da sized precursor protein (Figure 1.9).  

The glycosylated precursor is then processed to the Golgi apparatus for further 

glycosylation and proteolytic cleavage into α and β subunits (Kirszbaum et al. 

1992). The α and β chain are reassembled in an anti-parallel manner and are 

connected via five disulphide bounds leading to a 75-80 kDa heterodimer (de 

Silva et al. 1990a), which is then destined for secretion (Figure 1.9). In U251 

                                                
3 http://www.ncbi.nlm.nih.gov/gene/1191 
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human astrocytoma cells, stress-induced retranslocation of clusterin from the ER 

into the cytosol has been demonstrated (Nizard et al. 2007). In some cells, it has 

been reported that the unfolded precursor clusterin (pnCLU, Figure 1.9) 

translocates to the nucleus, where it has been proposed to induce pro-apoptotic 

effects (Zhang et al. 2005; Shannan et al. 2006). The molecular mechanism of 

induction of this protein form remains unclear. In some cell lines, it has been 

reported that precursor CLU is able to escape the secretory pathway using the 

ER-associated protein degradation pathway to accumulate in the cytosol and 

mitochondria (Nizard et al. 2007; Li et al. 2013). Cleavage and secretion of 

mature secretory clusterin are independent of its state of glycosylation (Burkey et 

al. 1991; Kapron et al. 1997; Charnay et al. 2012). 

     
Figure 1.9 Clusterin biosynthesis modified from (Shannan et al. 2006). 

Clusterin is translated from the fist AUG start codon upstream of the ER-signal-peptide-

sequence resulting in a 60 kDa precursor protein (psCLU). In some cells, alternative 

transcriptional initiation results in translation of a truncated nuclear form (pnCLU 48 kDa) 

that translocates into the nucleus to exert pro-apoptotic effects. Cytoplasmic precursor 

clusterin (psCLU 60 kDa) is glycosylated on six sites, cleaved into α and β, assembled in 

an antiparallel manner and as protein of ≈ 78 kDa secretory clusterin with five disulphide 

bonds between the α and β subunit. Secretory clusterin was reported to act as 

extracellular chaperone. It assembles with misfolded proteins in the extracellular space 

and is internalised via receptor mediated endocytosis (Stewart et al. 2007). ER – 

endoplasmic reticulum, CLU - clusterin.   
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1.4.5 Clusterin regulated by cell stress and TGF-β1 
 

As previously mentioned clusterin is elevated in response to stress. This was 

confirmed in several in vitro models, where clusterin was upregulated in response 

to cell stress: Clusterin was induced in response to TNFα in murine fibroblasts 

(Humphreys D.T et al. 1997), heat shock (Michel et al. 1997), UV (Hsieh et al. 

2005) and oxidative stress in human breast cancer cells (Yang et al. 2000). 

Moreover, clusterin mRNA and protein was induced by TGF-β1 in a dose-

dependent manner in astrocytes (Morgan et al. 1995). TGF-β has been reported 

to up-regulate clusterin expression in epithelial cells, including mink lung 

epithelial cells, affecting differentiation and apoptosis (Reddy, Jin, et al. 1996; 

Itahana et al. 2007; Wegrowski et al. 1999; Reddy, Karode, et al. 1996; Jin & 

Howe 1999). It is, however, unknown if TGF-β1 affects clusterin expression in 

human pulmonary cell types, including lung fibroblasts.  

 

1.4.6 Clusterin regulates cell differentiation and function 
 

Clusterin is a multifunctional protein. Numerous roles have been assigned to 

clusterin in regulating differentiation, proliferation, migration and survival of 

various cells. The following sections outline the effects of clusterin on these 

processes. Insights into clusterin’s role in various cell types may help us to 

understand its potential role in pulmonary cells types with possible implications 

for clusterin’s role in the normal lung and in disease states. The previously 

identified effects of clusterin in various cell types may provide insights into its 

potential role in pulmonary cells in the normal and distorted fibrotic lung.  

 

1.4.7 Differentiation  
 

Clusterin has been suggested to be expressed during differentiation processes in 

the embryonic mouse lung (French et al. 1993; Min et al. 1998), and clusterin 

staining was located to termini of developing bronchioles (Zheng et al. 2013). 

However, the role of clusterin in the development of the human lung remains 

unknown.  

Other studies suggest a role for clusterin in mesenchymal cell differentiation: 

Initial experiments from Thomas-Salgar et al. reported that endogenous clusterin 

supports the rapid formation of nodules in monolayer cultures of smooth muscle 
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cells (Thomas-salgar & Albert 1994), similar to its role in differentiation, 

reorganisation and nodule formation of vascular smooth muscle cells (VSMCs) 

(Millis et al. 2001). Additional studies using Boyden chambers demonstrated that 

clusterin promoted VSMC migration (Millis et al. 2001; Miwa et al. 2004). This 

data suggests that clusterin is a critical player in regulating the phenotype of 

smooth muscle cells, with important implications for vascular diseases. 

Alterations of clusterin could hence contribute to the pathogenesis of vascular 

diseases. Additionally, it has been suggested that clusterin promotes 

differentiation of pancreatic beta cells into insulin-secreting cells (B. M. Kim et al. 

2006). Together, the current literature demonstrates that clusterin may have a 

potential role in regulating differentiation processes during embryogenesis and in 

response to injury. 

1.4.8 Migration  
 

Reports about the role of clusterin in cell migration appear to be controversial and 

cell-specific: In vitro studies examined the effects of silenced clusterin expression 

on cell migration and invasion in a human breast cancer cell line, MDA-231. 

Clusterin knock-down cells demonstrated significantly less cell migration in a 

wound healing assay than control cells suggesting a role of clusterin in migration 

and invasion of human breast and renal cancer cells (Li et al. 2012; Niu et al. 

2012; X. Wang et al. 2014). These results are consistent, with findings in lung 

adenocarcinoma cell lines where clusterin silencing resulted in reduced migration 

and pulmonary infiltration in vitro (Chou et al. 2009).  

 

In the context of vascular remodeling, adenovirus-mediated overexpression of 

clusterin repressed TNF-alpha-stimulated expression of ICAM-1, VCAM-1, and 

MMP-9, leading to inhibition of VSMC migration (Kim et al. 2009). This conflicts 

with earlier reports, in which recombinant clusterin (10 µg/ml) was shown to 

promote VSMC migration (Millis et al. 2001). Similar, studies in human umbilical 

vein endothelial cells (HUVECs), demonstrate that decreased secretory clusterin 

levels resulting from radiation lead to inhibition of migration (Hwang et al. 2013).  

Apart from cancer and mesenchymal cells, clusterin has been associated with 

increased migration in monocytes and macrophages of human and murine origin. 

Checkerboard analysis demonstrated that clusterin-induced the chemotactic 

migration of human monocyte and murine peritoneal macrophages (Kang et al. 

2014). Administration of pertussis toxin or Gβγ inhibitor suppressed clusterin-
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induced migration in these cells suggesting that this was G-protein-coupled Gβγ-

pathway dependent. Previous studies in murine (Raw264.7) and peritoneal 

macrophages demonstrated that clusterin-induced chemotactic migration and the 

secretion of TNFα via ERK, JNK, and PI3K/Akt dependent pathways (Y.-J. Shim 

et al. 2012). In addition, the same study suggested that clusterin regulated 

chemotactic cytokines, such as monocyte chemotactic protein-1 (MCP-1), 

macrophage inflammatory protein-1b (MIP-1b) and regulated upon activation and 

normal T cell expressed and secreted (RANTES). Another study by Shim and 

colleagues showed that clusterin induced the expression of matrix 

metalloproteinase-9 (MMP-9) in macrophages potentially enabling cancer cell 

invasion via basement membrane breakdown (Shim et al. 2011). 

In summary, these studies suggest that clusterin promotes migration and 

invasion in cancer cell lines, vascular remodelling via enhanced migration of 

mesenchymal cells and serves as a molecular bridge between inflammation and 

remodelling via recruitment of immune cells, including macrophages. 

 

1.4.9 Proliferation 
 

Several lines of evidence suggest that clusterin plays a major role in tissue repair 

via inducing proliferation of various cells after injury. Nguan and colleagues 

studied the role of clusterin in renal tissue repair after experimental ischemia 

induced injury. Clusterin-deficient mice demonstrated enhanced tubular damage 

in response to reperfusion-induced injury, resulting in renal failure. In vitro data 

derived from these studies strongly suggest that clusterin is a mediator of 

proliferation in tubular epithelial cells (Nguan et al. 2014). Similar data have been 

demonstrated for reactive astrocytes during brain injury. Shin and colleagues 

demonstrated that clusterin induced proliferation in astrocytes in vitro while 

targeting clusterin expression via antisense oligonucleotides induced growth 

arrest in astrocyte cultures (Shin et al. 2006). Apart from beneficial effects of 

clusterin on proliferation, these effects have also been demonstrated for many 

cancer cell lines, such as non-small lung and renal, breast and ovarian cell lines 

(Yan et al. 2013b; Shi et al. 2013; Niu et al. 2012; Fu et al. 2015). However, 

secretory clusterin and overexpression in VSMC inhibited proliferation in vitro, 

suggesting that clusterin may play a protective role during vascular injury rather 

than a causative role in the pathogenesis of neointimal hyperplasia (Kim et al. 

2009). 
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In summary, these data strongly support that clusterin is essential in regulating 

proliferation dependent repair processes in kidney and the brain. However, in the 

context of the lung, kidney and breast cancer clusterin’s pro-proliferative 

properties may promote uncontrolled proliferation and tumour growth. Clusterin 

effects on proliferation appear tissue and cell dependent and may be protective 

against neointimal hyperplasia. The effects of clusterin on (lung) fibroblast 

proliferation have not been described. 

 

1.4.10 Apoptosis/Survival 
 

Over 500 PubMed articles about the role of clusterin in apoptosis are listed 

indicating the importance and manifold implications of this protein in this form of 

cell death. At this moment, the majority of articles focus on the role of clusterin in 

impaired apoptosis in treatment resistant cancer cells. Clusterin is upregulated by 

apoptotic triggers and induces treatment resistance in many cancers, including 

human lung adenocarcinoma, myeloid leukaemia, pancreatic and prostate cancer 

cells while silencing of clusterin mRNA levels enhances treatment induced 

apoptosis (Xiu et al. 2013b; July et al. 2004; Wang et al. 2015; Xu et al. 2015; 

Yamamoto et al. 2015). A potential mechanism by which clusterin exerts its anti-

apoptotic effects was demonstrated in studies with prostate cancer cells. Zhang 

et al. suggest that clusterin inhibits apoptosis by associating with Bax in the 

cytosol to prevent the initiation of the intrinsic apoptosis pathway in response to 

pro-apoptotic stimuli such as anti-cancer therapies (Zhang et al. 2005; 

Muhammad & Saad 2015). More recently it has been reported that cytoplasmic 

clusterin exerts pro-survival effects through the activation of the AKT pathway in 

hepatocellular carcinoma cells (Xiu et al. 2013b). Moreover, it has been shown in 

prostatic cells that overexpression of clusterin protects against tumour necrosis 

factor-alpha (TNFα)-induced apoptosis via the up-regulation of the 

phosphorylation of AKT (Ammar & Closset 2008). Due to the promising effects of 

clusterin gene silencing in cancer progression, an antisense oligonucleotide drug 

called “custirsen” is currently being assessed in clinical phase III an IV studies in 

a combination therapy with anti-cancer drugs.4 

In contrast, TGF-β1, has been reported to up-regulate clusterin expression in 

HepG2 hepatocellular carcinoma cells and CCL64 mink lung epithelial cells 

resulting in induced apoptosis in these cells (Reddy, Jin, et al. 1996; Itahana et 

                                                
4 (www.clinicaltrials.gov NCT01578655 and NCT01630733) 
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al. 2007; Wegrowski et al. 1999; Reddy, Karode, et al. 1996). These effects may 

be caused by a nuclear isoform of clusterin with pro-apoptotic properties that 

translocates into the nucleus in response to TGF-β1 to induce cell death (Reddy, 

Jin, et al. 1996). 

As alluded to earlier clusterin has been suggested to play an important role in 

pulmonary vascular remodelling in response to injury. Liu and colleagues suggest 

that clusterin plays a vital role in regulating these processes and to contribute to 

biological behaviour modification in human PASMCs. Their in vitro studies 

suggest that secretory clusterin induces resistance to apoptosis in human 

PASMCs, potentially mediated through ERK 1/2 and Akt signalling pathways (Liu 

et al. 2015). Liu and colleagues also provide evidence for the reverse effect: 

Clusterin silencing via siRNA induced spontaneous apoptosis in human 

PASMCs.  

However, the effects of clusterin in fibroblast-like synoviocytes (FLS) were in 

conflict to the effects in human PASMCs. In FLS transgenic overexpression of 

clusterin-induced apoptosis within 24 hours (Devauchelle et al. 2006), while in 

human PASMCs clusterin promoted the resistance to apoptosis. Devauchelle and 

colleagues further suggested that high levels of extracellular and low levels of 

intracellular clusterin in FLS may enhance NFκB activation and survival of 

synoviocytes.  

 

Interestingly, clusterin has been suggested to be a biomarker of senescence in 

human fibroblasts, as a secondary consequence rather than playing a causative 

role in senescence (Petropoulou et al. 2001) and is upregulated in quiescent skin 

fibroblasts (Bettuzzi et al. 2002). Furthermore, clusterin has been suggested as a 

biosensor of oxidative stress in lung fibroblasts (Trougakos & Gonos 2006), and 

overexpression of clusterin protects against cytotoxicity in response to oxidative 

stress in WI-38 human embryonic lung fibroblasts (Dumont et al. 2002). In 

clusterin-deficient mouse embryonic fibroblasts (MEFs) genotoxic stress induced 

NFκB levels were enhanced, suggesting that clusterin stabilises IκBs to inhibit 

NFκB signalling (Santilli et al. 2003). Together, this suggests that the effects of 

clusterin on survival and apoptosis are diverse and may be tissue and cell type 

specific. However, it is noticeable that clusterin silencing in cancer cells generally 

induces the same effects while clusterin gene silencing in mesenchymal cells 

resulted in conflicting effects in response to apoptosis. The effects of clusterin on 

basal and induced apoptosis in adult human lung fibroblasts have not been 

described. 
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1.4.11 Extracellular chaperone  
 

Apart from clusterin’s multiple effects on cell differentiation and function, many 

studies suggest that clusterin acts as an extracellular molecular chaperone 

involved in promoting the appropriate folding and conformation of extracellular 

proteins and shielding proteins under conditions of tissue stress (Poon et al. 

2000; Aigelsreiter et al. 2009). Secretory clusterin is ubiquitously expressed in 

most mammalian tissues and body fluids, such as blood plasma, urine, semen, 

breast milk and cerebrospinal fluid. Strong evidence suggests that secretory 

clusterin exerts extracellular chaperone activity similar to that of small heat shock 

proteins intracellularly (Kirszbaum et al. 1992; Poon et al. 2000; Wilson 2000; 

Lakins et al. 2002). Secretory clusterin assembles with misfolded proteins in the 

extracellular space via hydrophobic and amphipathic α-helices based at the N-

terminus of both α and β chain and the c terminus of the β chain to mediate the 

interaction with hydrophobic ligands (Law & Griswold 1994). Clusterin chaperone 

activity has been associated with neurodegenerative diseases such as 

Alzheimer’s disease, since clusterin sequesters with Aβ oligomers and regulates 

their aggregation and disaggregation (Narayan et al. 2011). Moreover, clusterin 

chaperone properties were associated with decreased enzymatic MMP-9 activity, 

to maintain the epithelial barrier in the events of high MMP-9 aggregation (Jeong 

et al. 2012). The clusterin receptor called LDL receptor family member 

glycoprotein 330 (LRP2) is the clusterin receptor that has been most frequently 

studied in association with clusterin endocytosis (Byun et al. 2014; Gil et al. 2013; 

Park et al. 2013; Marzolo & Farfán 2011). Clusterin has been demonstrated to 

bind to LRP2 via three independent, discrete binding sites (Lakins et al. 2002; 

Lakins et al. 2006). It has been reported that secretory clusterin mediates the 

recognition and disposal of miss-folded, long-lived protein intermediates and 

damaged proteins via LRP2/megalin receptor-mediated endocytosis (Bartl et al. 

2001; Kang et al. 2005; Stewart et al. 2007) followed by lysosomal degradation 

(Wyatt et al. 2011).  

 

In aged human skin, clusterin has been shown to associate with altered elastic 

fibres (Janig et al. 2007). It was, therefore, proposed that clusterin may contribute 

to the clearance of defective and degraded elastin via megalin/gp330 receptor-

mediated endocytosis (Bartl et al. 2001; Janig et al. 2007). Nevertheless, the 

distribution of clusterin in normal and fibrotic lung and its role as extracellular 

chaperone in the lung has not been described.   
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1.5 Summary, Hypothesis and Aims  

Pulmonary fibrosis is a progressive, diffuse, parenchymal lung disease with 

dismal prognosis and no curative therapy. Dysregulated repair processes 

promote the polarisation of macrophages into a profibrotic M2 phenotype 

secreting pro-fibrotic mediators including TGF-β1 and PDGF, which results in 

unopposed fibroproliferation. Dysregulation of fibroblast function in pulmonary 

fibrosis, involving uncontrolled proliferation, myofibroblast-differentiation and 

resistance to apoptosis, results in excessive deposition of extracellular matrix, 

leading to progressive scarring of the lung tissue and impaired gas exchange. 

Clusterin, a multifunctional glycoprotein with extracellular chaperone activity and 

which is involved in regulating cell function, is reduced in BALF of patients with 

pulmonary fibrosis. However, its distribution and role in normal and fibrotic lung, 

particularly in fibroblast and macrophage biology are incompletely characterised. 

These observations led to the generation of the hypothesis examined in this 

thesis; that clusterin plays an important role in normal human lung 

homoeostasis and changes in clusterin distribution and expression may be 

protective against the pathogenesis of pulmonary fibrosis. To address this 

hypothesis I will: 

1) Determine the expression and localisation of clusterin and its receptor LRP2 

in normal and fibrotic human lung.  

 

2) Examine the extracellular protein binding characteristics of clusterin and its 

functional effects on human lung fibroblast differentiation, proliferation, αSMA 

expression and collagen synthesis and apoptosis in vitro in cells isolated 

from control and fibrotic lung.  

 

3) Investigate potential mechanisms for the regulation of clusterin and its role in 

mediating the pro-fibrotic effects of TGFβ1 in control lung fibroblasts and 

compared with its effects on fibrotic lung fibroblasts.  

 

4) Examine the regulation of clusterin in and the effect of plasma-derived 

human clusterin on macrophage phenotype by assessing the secretion of 

pro- and anti-inflammatory cyto- and chemokines.  

 

5)  Investigate the effects of exogenous clusterin on macrophage polarisation 

towards a pro-inflammatory or pro-fibrotic phenotype.      
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2 Material and Methods  

Materials  

2.1 General plastic ware, chemicals, and cell culture reagents 

 

Sterile tissue culture plates and flasks were purchased from Nunc (Roskilde, 

Denmark) and Corning (Flintshire, UK). Sterile polypropylene centrifuge tubes 

and pipettes were purchased from Falcon (Fisher Scientific, UK). Whatman 

cyclopore 0.2 µm polyester syringe filters were purchased from Whatman (UK), 

sterile 12-well Transwell® (6.5 mm polycarbonate inserts with 8 µm pore size) 

from Corning (Flintshire, UK), 96-well black tissue culture-treated plates and 

Staurosporine from VWR International (UK). Deionised water was prepared using 

a Millipore Water Purification System (Milli-Q Plus; Millipore Ltd, UK) for the 

preparation of dilutions and buffers. Sterile Dulbecco’s Modified Eagle Medium  

(DMEM; high glucose, sodium pyruvate, no L-glutamine), Roswell Park Memorial 

Institute (RPMI) 1640 medium, Hank’s Balanced Saline Solution (HBSS), 

penicillin-streptomycin, L-glutamine, 0.25 % trypsin-EDTA, amphotericin B, Foetal 

Bovine Serum (FBS) and Opti-MEM® Reduced Serum Medium were purchased 

from Gibco Life technologies (Thermo Fisher Scientific, UK) as well as 

Histopaque 1077 for PBMC isolation. HEPES buffer was purchased from Lonza 

(UK). DMSO and L-Ascorbic acid 2-phosphate sesquimagnesium salt hydrate, 

Hydrogen peroxide solution (30 %, v/v), Triton X, goat serum, puromycin 

dihydrochloride and polybrene transduction reagent was purchased from Sigma-

Aldrich (UK). PBS tablets were ordered from Oxoid Ltd. (Hampshire, UK). 

INTERFERin siRNA transfection reagent was received from Polyplus Bioscience 

Ltd (UK). CD14+ MicoBeads (human) and Midi MACS 25 LS columns were 

purchased from MACS Miltenyi Biotec (Surrey, UK). 

 

2.2 Cytokines, eicosanoids, growth factors, peptides and toxins  

Synthetic, cell culture tested PGE2 was obtained from Cambridge bioscience 

(UK). PDGF-AB was received from PeproTech EC Ltd. (UK). Recombinant 

human FasL was purchased form Merck Biosciences (Germany). Purified porcine 

TGF-β1, IFNγ, IL-4, PDGF-BB and M-CSF were purchased from R&D systems 

(Abingdon, UK) and native, exogenous human plasma clusterin5 from BioVendor 

                                                
5 Endotoxin levels < 1.0 EU/ug as measured by LAL.  
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(Oxford, UK). Lipopolysaccharide (LPS) was purchased from Sigma (Sigma-

Aldrich, UK).  

 

2.3 Antibodies  

Antibodies used for immunohistochemical localisation studies are listed in Table 

2 Polyclonal rabbit isotype IgG (ab37415) and mouse isotype IgG1 (ab91353) 

were also purchased from Abcam and used at matching concentrations of 

primary antibody concentrations.  

 

Table 2 List of antibodies used for immunohistochemical localisation studies. 
 

Antibody 

target 

Antibody 

type 

Source 

company 

Cat.-no Antigen 

unmasking 

method 

Final antibody 

concentration 

Clusterin 

(α,β) 

rabbit 
polyclonal 
 

Santa 
Cruz  
 

sc-8354 
 

Citrate buffer  

 
 

0.67 µg/ml 
 

TGF-β1 rabbit 
polyclonal 

Santa 
Cruz  
 

sc-146 
 

Proteinase K 1.0 µg/ml 
 

α-SMA mouse 
monoclonal 

Dako Clone 
1A4 
M0851  

Citrate buffer  142 ng/ml 

LRP2  rabbit 
polyclonal 

Abcam  ab76969 Citrate buffer 1.0 µg/ml  

 

The antibodies used for Western blotting are listed in Table 3. Polyclonal 

secondary antibodies, goat anti-rabbit, rabbit anti-mouse, rabbit anti-goat were 

purchased from Dako (Glostrup, Denmark).  
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Table 3 List of antibodies used for Western blotting.  
 

Antibody 

target 

Antibody type Source 

company 

Cat.-# Final antibody 

concentration 

Clusterin (α,β) rabbit polyclonal Santa Cruz  sc-8354 267 ng/ml 

Clusterin (α) mouse monoclonal Santa Cruz  sc-5289 267 ng/ml 

αSMA mouse monoclonal Dako  M0851 7.10 ng/ml 

Vinculin goat polyclonal  Santa Cruz  sc-7649 267 ng/ml 

anti-rabbit goat polyclonal Dako  P0448 50 ng/ml 

anti-mouse  rabbit polyclonal Dako P0260 260 ng/ml 

anti-goat  rabbit polyclonal Dako P0449 275 ng/ml  

 

The antibodies used for immunocytochemistry are listed in Table 4. Mouse and 

rabbit IgG isotype controls were purchased from Vector (New Zealand) and 

mouse IgG1 was purchased from (ab91353) from Abcam (Cambridge, UK) and 

(5415S) Cell Signalling Technology (UK). Polyclonal secondary antibodies, goat 

anti-mouse IgG (H+L) Alexa Fluor® 555 (A-21422), goat anti-mouse IgG (H+L), 

Alexa Fluor® 488 (A-11001) and goat anti-rabbit IgG (H+L), Alexa Fluor® 647 

were purchased from Thermo Fisher Scientific (Ma, US).  

 

Table 4 List of antibodies used for immunocytochemistry. 

Antibody 

target 

Antibody 

type 

Source 

company 

Cat.-no Dilution Final antibody 

concentration 

Clusterin (α,β) rabbit 

polyclonal 

Santa Cruz  sc-8354 

 

1 in 100 2.0 µg/ml 

Clusterin (α) mouse 

monoclonal 

Santa Cruz  sc-5289 1 in 100 2.0 µg/ml 

αSMA mouse 

monoclonal 

Denmark M0851 1 in 600 118 ng/ml 

Collagen I mouse 

monoclonal 

Sigma, Aldrich C2456 1 in 1000 4.7µg/ml 

 

All antibody-coated magnetic bead performance assays were purchased from R&D 

Systems and are listed in Table 5. 
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Table 5 List of single-plex luminex assays. 
 

Target /Kit (human) Cat.-no. Dilution of sample required 

Human base A kit LUHM000 N/A 

IL-10 LUHM217 1:1 

IL-1RA LUHM280 1:1 

IL-4 LUHM204 1:1 

IL-6 LUHM206 1:1 

IL-8 LUHM208 1:5 

MCP-1 LUHM279 1:1 

MIP-1α LUHM270 1:1 

RANTES LUHM280 1:5 

TNFα LUHM210 1:1 

IFNγ LUHM285 1:1 

Human MMP base kit LMPM000 N/A 

MMP-8 LMPM908 1:1 

MMP-9 LMPM911 1:1 

 

2.4 Kits 

BCATM protein Assay Reagents A & B were purchased from Pierce (USA) and 

Quick StartTM Bradford Protein Assay form Bio-Rad (UK). Luminata Crescendo 

Western HRP substrate kit was purchased from Millipore (Darmstadt, Germany). 

Precision DNase kit was obtained from Primerdesign Ltd. (UK). qScript cDNA 

SuperMix® kit was purchased from Quanta Biosciences (USA). RT-PCR kit for 

cDNA synthesis was purchased from Applied Biosystems (Roche, Lewes, UK). 

Proteinase inhibitor cocktail complete, Mini, EDTA-free was obtained from 

(Roche, UK) and phosphosafe extraction reagent from Merck Chemicals Ltd. 

(UK). The human MMP and human base kit A and all magnetic bead-based 

multiplex Luminex assays were purchased from R&D Systems (Abingdon, UK) 

and the Human cytokine magnetic 25-plex panel kit from Novex (Thermo Fisher 

Scientific, UK).  

2.5 Human biological samples 

The human biological samples were sourced ethically and their research use was 

in accord with the terms of the informed consents. 
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Methods 

2.6 Patient population and primary cell isolation  

Fibrotic lung tissue was obtained from lung biopsies and at transplant surgery 

(IPF n = 7, aged 62 ± 4 years, four male; SSc n = 7, aged 52 ± 2 years, one 

male). All IPF samples used in this study were classified using the diagnostic 

criteria of the American Thoracic Society / European Respiratory Society 

(ATS/ERS) consensus criteria: namely, a pattern of usual interstitial pneumonia 

(UIP) (Raghu et al. 2011). All SSc samples were classified using the diagnostic 

criteria of the American college of rheumatology/European league against 

rheumatism collaborative initiative (ACR/EULAR) (van den Hoogen et al. 2013). 

Control lung tissue was obtained from histologically normal areas of peripheral 

lung distal to lung cancer resection (uninvolved tissue) or from patients who died 

as a result of an accident with no signs of lung disease (n = 6, aged 59 ± 7 years, 

two male). Approval for the use of all material was obtained from the ethics 

committee of University College London and University College London Hospital 

and the Royal Brompton & Harefield NHLI. Informed consent was received from 

each subject. An overview of patient information associated to the used method 

is presented in Appendix 1. The method used to isolate the fibroblasts from the 

lungs was the same for each donor and was conducted as previously described 

(Akers et al. 2000; Keerthisingam et al. 2001). 

Briefly, lung tissue was collected from hospital into DMEM and transported to the 

laboratory on ice. The peripheral lung tissue was trimmed under sterile conditions 

into sections sized 1 mm3 or less and fixed on petri dishes with 2 ml of 20 % FBS 

in DMEM (containing 400 U/ml penicillin streptomycin, 2 mM L-glutamine and 

0.1 % amphotericin B). Tissue fragments were allowed to adhere for 24 hours 

(37 oC, 10 % CO2) before adding a further 8 ml media. Amphotericin B and 

Penicillin / Streptomycin (1:1 ratio) were replenished at 200 µL every following 2 - 

3 days. During 2 - 4 weeks cells were proliferating and growing out of the explant 

and reached 80 - 90 % confluence before they were washed with 2 mL trypsin - 

EDTA once, followed by treatment with 2 mL trypsin-EDTA at 37 oC. The cells 

were inspected after approximately three minutes, using an Olympus TCK-2 

inverted phase contrast light microscope (Olympus Optical Ltd, UK) for shape 

change (rounding up) and detachment from the plastic.!Once most cells were 

detached from the plastic dish, trypsin was subsequently neutralised with 10 % 

FBS in DMEM. The cells were then centrifuged (300 x g, 5 minutes). The 
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supernatant was discarded, and the pellet was resuspended in 10 % FBS in 

DMEM. The cells were counted with Millipore Cell Scepter and seeded into tissue 

culture flasks or transferred into cryogenic vials in freezing medium (40 % DMEM, 

40 % FBS and 20 % DMSO) for storage in liquid nitrogen. (Keerthisingam et al. 

2001; Maher et al. 2010). Once established, cells were cultured in 75 cm2 or 175 

cm2 tissue culture flasks (Corning, UK) in DMEM containing 10 % FBS with 50 

units/ml penicillin and 50 µg/ml streptomycin at 37 °C in a humidified atmosphere 

of air containing 10 % CO2. Media was changed every 72 hours and cells 

detached with trypsin solution (0.05 % Trypsin–EDTA). Fibroblasts were 

passaged on reaching confluence approximately every 5 – 7 days and were used 

for experiments between passage 3 and 12. All tissue culture media and 

supplements were purchased from Gibco, Life Technologies, UK.  

When using lung fibroblasts from explant cultures the following limitations have to 

be considered: In vitro systems do not represent effects of systemic factors, 

which are present in vivo. Actively migrating/apoptosis-resistant cells are 

positively selected, since they are more likely to extra-migrate from the explant 

tissue and survive, whilst quiescent fibroblasts remain in the deteriorating tissue 

and are excluded from the analysis in long term in vitro culture.  

2.7 Preparation of growth factors and cytokines for in vitro experiments 

PGE2 was reconstituted in DMSO at a concentration of 10 mM and was stored at 

4 °C. FasL was reconstituted in sterile deionized water at 50 µg/ml and was 

stored prior to use in aliquots at - 80 °C. Lyophilized human plasma clusterin was 

dissolved in sterile deionized water at a concentration of 0.5 mg/ml. 

Staurosporine was reconstituted in DMSO at concentration of 1 mM and stored at 

- 20°C. PDGF-BB and TGF-β1 were dissolved in sterile 4mM HCL containing 

0.1 % BSA. Prior to use an aliquot of the relevant compound was defrosted on 

ice and diluted to the required concentration in the appropriate medium. Because 

of the potential of DMSO to affect cell function, DMSO vehicle alone was added 

to control wells in each experiment in a concentration equal to that of wells 

containing growth factors or cytokines. LPS (1mg/ml), IFNγ (100 µg/ml) and IL-4 

(10 µg/ml) were reconstituted in RPMI culture medium and stored at -20 °C.  

2.8 Clusterin siRNA transfection  

Mammalian cell transfection with siRNA (small interfering RNA) is a molecular 

method, commonly used to transiently knock down gene expression (Elbashir et 

al. 2001). siRNA duplexes are formed by a guide strand, complementary to the 
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mRNA target and passenger strand. During transfection, specific siRNA duplexes 

are introduced into the host cell via transfection reagent. Inside the cell, the 

siRNA complex unwinds and the guided strand is incorporated into the RNA 

Interference Specificity Complex (RISC) and exposed to endogenous target 

mRNA. Following ligation of the guided strand with endogenous specific target 

mRNA, the mRNA is cleaved and degraded resulting in silencing of gene 

expression.  

In order to transiently knock down clusterin expression, cells were transfected 

following reverse transfection protocol provided by Polyplus-transfection® (Illkirch, 

France). Silencer® Select Human siRNA targeting clusterin and the Silencer® 

Select Negative Control No. 1 siRNA (Thermo Fisher Scientific, UK) were 

reconstituted to 1 µM stock in RNA buffer. A range of siRNA concentrations 

(1 nM, 5 nM, 10 nM) was tested to optimise the conditions and combined with 

Interferin transfection reagent (Polypus, UK) as per manufacturer’s protocol. 

Interferin is composed of non-liposomal amphiphilic molecules that form stable 

complexes with siRNA and transport it into the cell cytoplasm. Interferin can be 

used in the presence of serum and antibiotics and does not affect cell viability. 

Primary cells were seeded at 1.5 x 105 in 6 well plates in 2 mL 10 % FBS in 

DMEM and grown to 50 % confluence. The medium was replaced with freshly 

prepared transfection mix. Cells were then incubated for 24 hours, 48 hours and 

72 hours. After each time the medium was removed, and whole cell lysates 

collected for mRNA and protein analysis.  

 

2.9 Clusterin shRNA lentiviral transduction and silencing 

Lentiviral transduction of mammalian cells with shRNA (short hairpin RNA) allows 

stabile silencing of gene expression in vitro. In contrast to siRNA transfection, 

shRNA are endogenously expressed in the host cell, resulting in a sustained and 

specific silencing of target mRNA. shRNAs are expressed from polymerase II 

promoters cloned into plasmids for example lentiviral plasmids (Brummelkamp et 

al. 2002).  

 

Lentiviral shRNA and vectors (pGIPZ) targeting clusterin expression were 

provided by the UCL Cancer Institute Cancer Genome Engineering (CAGE) 

Facility, which houses the GE Life Sciences Human Open Biosystems GIPZ 

shRNA collection. The non-silencing shRNA construct (scrambled shRNA) 

served as negative control. All sequences are shown in Table 6. 
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Table 6 Sequences of shRNA targeting clusterin and non-silencing control. 
 

Target 

gene 

Name  Thermo Scientific 

Clone ID 

Mature Antisense 

hCLU LP 1  V3LHS_337309 5´-TGTATTTCCTGGTCAACCT-3` 

hCLU LP 2 V3LHS_337307 5´-TCTTCTAGGTTGCTGAGCA-3` 

hCLU  LP 3  V3LHS_337304 5´-TGAATTTCCTTATTGACGT-3` 

No 

target  

LP 4 Non-silencing 

shRNA control 

5´-TCTCGCTTGGGCGAGAGTAAG-3` 

 

All clusterin shRNA sequences were analysed via sequencing and blast search to 

ensure that they were target-specific. Sequence comparison was performed 

using the NCBI nucleotide BLAST tools (http://www.ncbi.nlm.nih.gov/tools/primer-

blast/).  

Consequently, all lentiviral constructs have been designed to give high specificity 

and increased knockdown efficiency of clusterin. Visual accessibility of 

knockdown efficiency was granted by Turbo - GFP tag marking cells expressing 

shRNA (see Figure 2.1).   
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Figure 2.1 Illustration of the pGIPZ vector. 
 

Abbreviations: hCMV (human cytomegalovirus promoter drives strong transgene 

expression); tGFP TurboGFP reporter for assessment of transduction efficiency; IRES: 

Internal ribosomal entry site that allows expression of TurboGFP and puromycin 

resistance genes in a single transcript; PuroR Puromycin resistance permits antibiotic-

selective pressure and propagation of stable integrants. Illustration modified from 

www.thermoscientificbio.com.  

 

For preparation of lentiviral particles, HEK 293T cells were grown in DMEM (10 % 

FBS) in 10 cm dish. At 70 % confluence the medium was replaced and 8 ml of 

DMEM were added to the cells.  

Cells were co-transfected with 1.5 µg lentiviral construct (pGIPZ) plus 1 µg 

encapsidation plasmid (p8.91) and 1 µg envelope plasmid (pMDG) in 200 µl 

Optimem per dish using FuGENE® 6 transfection reagent as per suppliers 

instructions (Promega, UK) overnight at 37 °C in a humidified atmosphere of air 

containing 10 % CO2. The Optimem medium (10 % FBS in DMEM) was changed 

18 hours after transfection, and the virus-containing supernatant was harvested 

24 , 48  and 72 hours after medium change and filtered through a 0.22 µm 

syringe filter unit to remove cells debris. Un-concentrated virus particles were 

stored at 4 °C prior to transduction of fibroblasts. To determine the titre of the 

lentiviral stocks a four-step one in three dilution was performed and dilutions at 

1.5 mL were added to HEK 293T cells on 24 well plates. After 72 hours the GFP-

positive fraction was determined via FACS and the titre determined via the 

following formula:  
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Transforming units/ ml = fraction cell infected (%) / 100. 

 

The titre was expected to be between 1-20 % GFP+, according to Catherine King, 

who performed the lentiviral preparation up until this point. 

 

For transduction of control lung fibroblasts, cells were grown to 80 % confluence 

in DMEM plus 10 % FBS in T75 flasks and supernatant replaced with media 

containing 5 MOI (multiplicity of infection) lentiviral particles in 12 mL per T75 

flask together with polybrene (10 µg/ml, Millipore UK Ltd.) for 6 hours at 37 °C. 

The supernatant was removed, and replaced with 10 % FBS (v/v) in DMEM. 

Transduction efficiency was determined 72 hours after transduction by accessing 

the proportion of GFP-positive cells via fluorescence microscopy; thereafter, 

transduced cells were positively selected via resistance to puromycin (3 µg/ml, 

Sigma, UK) in the culture medium. Non-transduced fibroblasts were not treated 

with puromycin (see Figure 2.2.). 

  

 
Figure 2.2 Illustration of GFP-positive, puromycin-selected cell population. 

Transduced cells were positively selected via puromycin resistance and visualised via 

pGIPZ lentiviral vector - induced GFP expression. 

2.10 Immunohistochemistry 

Immunohistochemistry describes a method of localising proteins in vivo, within a 

tissue section by using the principle of antibodies binding specific antigens. 

Immunohistochemistry was performed on 3 µm thick paraffin-embedded sections 

of human lung using micro-polymer peroxidase antibody method (Reinhardt et al. 

2005).  
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Table 7 Protocol sequence for dewaxing and rehydration.  

Step No. Solution Time 

1 Dry 30 sec 

2 Xylene 3 min 

3 Xylene 3 min 

4 100 % Ethanol  2 min 

5 100 % Ethanol 2 min 

6 70 % Ethanol 2 min 

7 30 % Ethanol 2 min 

8 Wash in dH2O ∞ 
 

 

Following dewaxing, sections were rehydrated (details in Table 7) and antigen 

retrieval achieved by either proteinase K digestion (20 µg/ml) for 5 minutes at RT 

for TGF-β1 staining or by microwaving/steaming in 10 mM citrate buffer (pH 6) in 

H20 for 20 minutes for clusterin, LRP-2 or α-SMA staining.  

Sections were washed in TBS (pH 7.6); sections on the slides were outlined via 

ImmEdge Hydrophobic Barrier Pen (PAP Pen) (Vector Laboratories, 

Peterborough, UK) and endogenous peroxidase blocked with 3 % hydrogen 

peroxide (Sigma-Aldrich) for 30 minutes at RT. After another wash sections were 

incubated with 2.5 % (v/v) horse serum (ImmPRESS, Vector Labs CA) in TBS for 

20 minutes at room temperature. Excess serum was removed, and the sections 

incubated overnight at 4°C with primary antibodies at pre-optimised 

concentrations in TBS with 1 % BSA: TGF-β1 (1 µg/ml, sc-146, Santa Cruz 

Biotechnology), clusterin (0.67 µg/ml, H330 Santa Cruz Biotechnology, α/βchain 

AB: sc-8354) and α-SMA (142 ng/ml, M0851, Dako, Denmark) and LRP2 (at 

1µg/ml, ab76969 Abcam, UK) as demonstrated in Table 8. Non-immune isotype 

IgG, in place of primary antibody, was used as a negative control (ab37415 or 

ab91353, Abcam, Cambridge, UK). Sections were washed and incubated with 

anti-rabbit or anti-mouse Ig reagent as appropriate (ImmPRESS, Vector Labs 

CA) for 30 min at room temperature. Further washes in TBS were performed, and 

antibody binding was visualised using Vector NovaRED substrate (Vector Labs 

Pty) at established times for colour development. Sections were further 

processed in an Autostainer (Tissue Tek DRS Autostainer, Sakura, USA): 

Sections were washed in distilled water, counterstained with Mayer’s 

haematoxylin, differentiated in acid alcohol (1% HCL in 70 % Ethanol (v/v) in 

distilled water), washed in tap water, dehydrated, cleared in xylene and mounted 
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via Sakura Coveraid cover slipper (Bayer Diagnostics) (details in Table 9). To 

visualise elastic fibres, sections were stained via Elastica van Giesson staining 

(Elastic Stain Kit, Sigma-Aldrich, UK) according to the manufacturer’s 

instructions. Section scans were performed with NanoZoomer Digital Scanner 

and analysis software NDP.view2 (Hamamatsu Corp). Following staining, 

sections were assessed by two reviewers.  

 
Table 8 Antibodies used for immunohistochemically stained human lung 
tissue.  

 

Antibody 

target 

Antibody type Source 

company 

Cat.-no Pre-

treatment 

Final antibody 

concentration 

Clusterin 

(α,β) 

rabbit polyclonal Santa Cruz sc-8354 Microwave 0.67 µg/ml 

TGF-β1 rabbit polyclonal Santa Cruz sc-146 Proteinase K 1.0 µg/ml 

α-SMA mouse 

monoclonal 

Dako M0851 Microwave 142 ng/ml 

LRP-2 rabbit polyclonal Abcam ab76969 Microwave 1µg/ml 

 

Table 9 Protocol sequence for counterstain with haematoxylin and 
dehydration. 

Step No. Solution Time 

1 dH2O 30sec 

2 Haematoxylin 10sec 

3 Tap Water 20sec 

4 1 % HCL in 70 % Eth 5sec 

5 Tap Water 2min 

6 dH2O 30sec 

7 70 % EtOh 2min 

8 100 % EtOH 2min 

9 100 % EtOH 2min 

10 Xylene 3min 

11 Xylene 3min 
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2.11 Reverse transcription polymerase chain reaction (RT-PCR) and 

microarray analysis  

Samples for microarray analysis were generated by Dr Iona Evans and analysed 

on a Human HT-12 v4 Expression BeadChip according to supplier’s instructions 

(Illumina Inc. San Diego, California, US). Microarray data was statistically 

analysed by Cambridge Genomic Services (CGS, UK). All other gene expression 

analysis was performed via RT-PCR. To perform the analysis of cellular gene 

expression through quantification of mRNA, cDNA copies of mRNA were 

generated in a process called reverse transcription (RT). RT-PCR facilitates 

amplification and simultaneous quantification of a specific-targeted molecule of 

RNA into its DNA complement. Relative quantification can be achieved using the 

total copy number normalised to one or more simultaneously measured 

housekeeping gene. SYBR green was used to label double stranded DNA. As 

copies of DNA increase with each PCR cycle, SYBR emission increased and was 

detected via Lightcycler following quantification of copy number. Qualitative 

analysis was performed by normalising the gene of interest to a simultaneously 

measured house keeping genes using the ΔΔCt-method (Livak & Schmittgen 

2001). 

 

2.11.1 RNA isolation 
 

RNA isolation was performed with molecular biology grade chemicals and DEPC-

treated deionised water. Furthermore, equipment used was thoroughly cleaned 

with RNaseZap (Sigma Aldrich, UK) and nuclease-free, filter pipette tips 

(Gentaur, UK) were used to prevent RNA degradation as well as contamination 

with external nuclear material. Cells in 6 well plates or pelleted cells were lysed 

with 0.5 ml of TRI-reagent (Sigma, UK). TRI-reagent is a solution of phenol and 

guanidine isothiocyanate, which disrupts cell membranes and dissolves cell 

components leaving RNA integrity intact. To isolate mRNA, 500 µl TRI-reagent 

was added to each sample and was incubated for 5 minutes at room temperature 

and 100 µl of chloroform was added. The mixture was mixed vigorously and left 

for 10 minutes at room temperature to allow separation of upper aqueous and a 

lower organic phase. The samples were then centrifuged for 15 minutes ~ 

16,000 x g at 4 °C, and the aqueous phase containing RNA was transferred to a 

new Eppendorf tube containing 250 µL isopropanol. The RNA was allowed to 

precipitate for 10 minutes at room temperature and was then centrifuged at 
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~ 16,000 x g for 15 minutes at 4 °C. The supernatants were discarded, and the 

RNA pellet was resuspended in 80 % ethanol in DEPC-treated deionised water. 

Following further 15 minutes centrifugation at ~ 16,000 x g at 4 °C, the 

supernatants were discarded, the pellets air dried and then resuspended in 

12.5 µl of nuclease free water (Ambion, UK). Contaminating genomic DNA was 

removed using PrimerDesign DNAase I kit: 1.5 µL DNase I was added to the total 

RNA and incubated at 37 °C for 20 minutes. The DNase reaction was terminated 

by heating the sample to 55 °C. The concentration and purity of the RNA was 

further quantified using a Nanodrop 8000 spectrophotometer (Thermo Scientific, 

UK). The ratio of the A260/A280 was used as a measure of protein contamination of 

the sample. A ratio of 2 was considered ideal with a range from 1.7 to 2 

considered acceptable. 

 

2.11.2 cDNA synthesis  
 

Complementary DNA (cDNA) was prepared by reverse-transcription (RT) using 

the qScript cDNA SuperMix kit (Quanta BioSciences, USA). Following the 

manufacturer’s instructions, up to 1 µg of RNA sample was made up to a volume 

of 16 µL with nuclease-free water. 4 µL of qScript cDNA SuperMix (5 x reaction 

buffer containing optimised concentrations of MgCl2, dNTPs (dATP, dCTP, 

dGTP, dTTP), recombinant RNase inhibitor protein, qScript reverse transcriptase 

and primers, was then added to each sample, to achieve a final volume of 20 µL. 

Samples were then incubated for 5 minutes at 25 °C, 30 minutes at 42 °C and 

five minutes at 85 °C. After completion of cDNA synthesis, the cDNA product was 

diluted one in four with nuclease-free water and frozen in aliquots at -20 °C. RT-

PCR was performed with 1.0 µg of cDNA using SYBR green (MESA FAST qPCR 

MasterMix Plus dTTP for SYBR® Assay (Eurogentec, UK) or Power SYBR® 

Green PCR Master Mix (ThermoFisher Scientific, UK) and primers (forward and 

reverse each at a final concentration of 400 nM; 10 µL reaction, Table 10) on an 

Eppendorf Realplex Mastercycler (Eppendorf, Germany). Cycling conditions were 

as follows: For MESA FAST SYBR: activation of SYBR Green 95 °C for 

10 minutes; cDNA amplification 95 °C for five seconds, 60 °C for 45 seconds for 

40 cycles followed up by melting curve analysis. For Power SYBR®: 95 °C for 

10 minutes; and 40 cycles of 95 °C (15 s) and 60 °C (45 s). 

The efficiency of each primer pair was assessed by determining the relationship 

of primer crossing point (Cp) values with cDNA concentration using a series of 
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half-log dilutions of template cDNA. Cp values were defined as the earliest point 

of the linear region of the logarithmic amplification plot reaching a threshold level 

of detection. The log of cDNA concentrations was plotted against Cp values, and 

the slope of the plot was used to ascertain primer efficiency. Primer efficiency 

was given by the equation: Efficiency= 10(-1/slope) and was only used if the slope 

was close to 1 indicating PCR efficiency greater than 90 %.  

To examine the quantitative differences in target mRNA expression in each 

sample, Ct values were determined from the linear region of the logarithmic 

amplification plot. Each sample was also tested for the expression of the 

housekeeping genes B2M, CYC 1 and ATPB5 to normalise between samples. 

The listed housekeeping genes were selected, as their expression was the most 

consistent in combination with TGF-ß1 stimulation according to geNORM 

(Primerdesign, UK) studies conducted by Dr Natalia Smoktunowicz. The Ct 

values of the housekeeping genes were used to normalise between samples. 

Statistical analysis was performed using the ΔCt values. Fold-change was 

subsequently calculated using the standard 2-ΔΔCt approach (Livak & Schmittgen 

2001). 

The specificity of the products obtained by PCR was confirmed by analysis of the 

melting curve. Double-stranded DNA has a melting temperature (Tm) defined as 

a temperature at which half of the DNA is denatured, and its value is primarily 

dependent on the nucleotide sequence. The melting curve analysis is performed 

by measuring a decrease in fluorescence due to the dissociation of DNA helix as 

a function of temperature, and a single melting curve is indicative of a single PCR 

product.  

 

2.11.3 Primer design 
 

All primers used in RT-PCR studies were designed by Dr Iona Evans, Dr Chris 

Scotton or myself and using internet based software (Invitrogen custom primers, 

www.thermofisher.com). Accession numbers were located from 

http://www.ncbi.nlm.nih.gov/gene. This number was then entered into primer 

BLAST  (www.ncbi.nlm.nih.gov/tools/primer-blast/). The parameters were set at: 

product size 80-120 bp; primer size 18-23 nucleotides long; primer melting 

temperature 58 °C to 62 °C with an optimum of 60 °C and a maximum 

temperature difference of 0.5 °C; primer GC % was 40 % to 60 % with an 

optimum of 50 %; maximum self-complementary was set at 6.0 and maximum 3’ 
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self-complementarity of 2.0 and finally, the maximum poly-X was set at 3 to avoid 

same 2 base runs of nucleotides. A BLAST search was also performed to check 

that the forward and reverse primers were specific for the intended sequence. 

The primers were manufactured by Invitrogen (UK). Primer sequences are listed 

in Table 10. In order to verify clusterin primers, PCR products were run on a 1 % 

agarose gel, bands were visualised by UV transillumination (Syngene, 

Cambridge, UK) and product size determined. An example of the results obtained 

is shown in Figure 2.3. Since the resulting product length of primer pair CLU 1° 

was shorter than CLU 2° all RT-PCR, which enables easy binding to the template 

at annealing temperatures, experiments were performed with primer pair CLU 1°.  

 
Table 10 Real-time RT-PCR primers 

Gene Forward sequence Reverse sequence  

CLU 1° 5´-CAAGTGCCGGGAGATCTTGT-3` 5´-GTCAACCTCTCAGCGACCTG-3` 

CLU 2° 5´-CCAACAGAATTCATACGAGAAGG-3` 5´-CGTTGTATTTCCTGGTCAACCTC-3` 

PAI-1  5´-AACTATACTGAGTTCACCACGCC-3` 5´-GAACATGCTGAGGGTGTCCC-3` 

α-SMA 5´-AATCCTGTGAAGCAGCTCCAG-3` 5´-TTACAGAGCCCAGAGCCATTG-3` 

FN1 5´-CCTCGAAGAGCAAGAGGCAG-3` 5´-GCTTCAGGTTTACTCTCGCA-3` 

COL1A1 5´-ATGTAGGCCACGCTGTTCTT-3` 5´-GAGAGCATGACCGATGGATT-3` 
 

 

 

                                                  
Figure 2.3 Example of PCR products, separated by gel electrophoresis. 

Abbreviations; M – marker, 1° - CLU primer no 1., 2° - CLU primer no 2. 
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2.12 SDS-Polyacrylamide electrophoresis and Western blotting  

 

Western blotting is a well-established method to separate and detect proteins in 

polyacrylamide electrophoresis gels via specific antibody-antigen interaction after 

transfer on a nitrocellulose or polyvinylidene difluoride (PVDF) membrane 

(Reisfeld et al. 1962). To assess fibroblast levels of clusterin and αSMA lung 

fibroblasts were grown in 6 well plates. On reaching confluence cells were 

washed twice with PBS and grown in serum-free DMEM for 24 hours before 

being treated with TGF-β1 for 20 or 48 hours and lysed in RIPA buffer (1 % Igepal 

Ca-630, 0.05 % sodium deoxycholate, 0.1% sodium dodecyl sulphate in PBS) 

containing complete protease inhibitor cocktail (Complete-mini; Roche, UK). 

Following the addition of lysis buffer samples were frozen and stored at -80 °C. 

For analysis, following defrosting on ice, lysates were centrifuged at 13 000 x g 

for 5 minutes at 4 °C to remove insoluble cell debris and the supernatant 

transferred to a clean centrifuge tube. Prior to analysis, the protein concentration 

of each sample was measured by BCA protein assay (section 2.12.1). 

2.12.1 BCA assay  
 

The assay is based on the biuret reaction where protein reduces Cu2+ to Cu1+ in 

an alkaline medium. Two bicinchoninic acid molecules chelate with the reduced 

cuprous cation, developing an intense purple colour. The BCA-copper complex is 

linearly proportional to protein concentration and displays strong absorbance at 

562 nm. The assay was performed as per manufacturer’s instructions and the 

results compared with an eight-point standard curve of bovine serum albumin 

with 2 mg/ml as highest concentration (example see Figure 2.4). The assay was 

conducted in 96-well plate format with 5 µl of sample in duplicate mixed with 

100 µl freshly prepared BCA working reagent. The plate was incubated for 30 

minutes at 37 oC and the absorbance measured at 562 nm on a VersaMax™ 

Microplate Reader (Molecular Devices, USA). 
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Figure 2.4 BCA standard curve. 

A representative standard curve generated for the BCA protein assay. Standards 

represent serial dilutions of bovine albumin from 0 µg/ml to 2000 µg/ml. Standards and 

samples were measured, and absorbance calculated 562 nm after the background values 

were subtracted from all values. Each point represents the mean of two duplicate wells 

per standard. The line of best fit is demonstrated.               

 

2.12.2 SDS-gel preparation  
 

Samples were adjusted with deionized water to standardise total protein 

concentrations and proteins reduced and denatured for antibody detection. To 

achieve this, 5 – 20 µg of total protein was mixed in a 5 : 1 ratio with 5 x Laemmli 

buffer (100 mM dithiothreitol - DTT, 1M Tris pH 6.8, 10 % w/v sodium dodecyl 

sulphate (SDS), 20 % w/v glycerol, ddH2O, bromphenol blue dye) and boiled for 

5 minutes at 100 °C. Samples or 5 µl PageRuler Plus protein ladder (Thermo 

Scientific UK) were then subjected to non-reducing SDS-PAGE using 12.5 % 

resolving/ 4.8% stacking polyacrylamide gels prepared as indicated in Table 11 in 

the presence of running buffer (0.25 M Tris-Base, 1.92 M glycine,0.1 % w/v SDS, 

ddH2O) and the gel was run at 150V for 45 min. 
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Table 11 SDS gel preparation for Western blot analysis. 

Resolving gel Stacking gel 

Chemical Volume Chemical Volume 

1.5M Tris pH 8.9 2.5 ml 1 M Tris pH 6.8 0.63 ml  

30% acrylamide/methylene 

bisacrylamide solution 

4.2 ml 30% acrylamide/methylene 

bisacrylamide solution 

  0.8 ml  

Water  3.3 ml Water    3.5 ml  

20% SDS 100 µL 20% SDS    50 µL 

10 % APS  (0.1g/ml) 67 µL 10 % APS  (0.1g/ml)    67 µL 

TEMED  4 µL TEMED     10 µL    
  

 

Electrophoresed proteins were electroblotted onto polyvinyldene difluoride 

(PVDF, Sigma-Aldrich, UK) membrane at constant voltage of 20 V for one hour in 

transfer buffer (25 mM Tris, 0.2 M glycine, 1% w/v SDS, 20% v/v methanol) and 

the quality of transfer was assessed via Ponceau S staining (in 5% acetic acid, 

Sigma, UK). To reduce unspecific binding the membrane was blocked with and 

immunodetection was carried out in Tris-buffered saline Tween-20 (TBST), 

10 nM Tris pH 8, 150 nM NaCl, 0.1% v/v Tween-20, ddH2O) pH 7.6 with 5 % w/v 

non-fat milk (Sigma-Aldrich,UK). Polyclonal rabbit anti-human or mouse-

monoclonal clusterin (0.267 µg/ml, sc-8354 or sc-5289, Santa Cruz) or mouse 

monoclonal anti - human α-smooth muscle actin (7.1 ng/ml, M0851, Dako 

Denmark) and goat polyclonal anti-human vinculin (0.267 µg/ml, sc-7649, Santa 

Cruz) antibodies in 5 % w/v non-fat milk in 0.1% v/v Tween-20 in ddH2O were 

incubated with the membrane over night at room temperature. After washing the 

membrane 6 x 5 minutes in TBST, secondary antibodies conjugated to HRP 

(goat anti-rabbit, 50 ng / ml; rabbit anti – mouse, 260 ng/ml; rabbit anti-goat, 

110 ng/ml, Dako, Denmark) were applied for 1.5 hours at room temperature. 

Following 6 x 5 minute washes; signal detection via chemiluminescence 

(Luminata Crescendo Western HRP substrate, Millipore) was captured via 

ImageQuant and TL analysis software (GE healthcare, UK). Protein sizes were 

analysed via PageRuler Pre-stained Protein Ladder (Thermo Fisher Scientific, 

UK). The optical density of control protein (vinculin) was determined to allow the 

correction for variability in protein loading for comparison between samples on 

one membrane. Vinculin was used as high molecular weight loading control for all 

western blots with clusterin since clusterin α, β chain low molecular weight bands 

appear as bands were low molecular weight loading controls such as α-tubulin, 

GAPDH are expected.  
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2.13 Clusterin Enzyme Immunoassay 

Quantification of clusterin was performed using a clusterin DuoSet 

Enzymeimmunoassay (ELISA) Kit (R&D Systems, Abingdon, UK) according to 

the manufacturer´s protocol. The R&D assay is sensitive to recombinant, and 

natural human clusterin in standards and the samples tested. The test principle is 

based on a sandwich immunoassay. Firstly, polystyrene microplates are coated 

with a fixed quantity of clusterin specific antibodies (mouse - anti - human 

clusterin capture antibodies) and unbound capture antibodies are washed away. 

In the following step clusterin in samples or standards competes for binding sites 

on all clusterin-specific capture antibodies and unbound materials are washed 

away. Following this, the plate is incubated with biotinylated mouse anti-human 

clusterin detection antibody, which is then labelled with streptavidin-HRP (horse 

radish peroxidase) for amplification and high sensitivity of the target signal. The 

signal is then detected using TMB (tetramethylbenzidine) solution (Sigma, UK). 

TMB reacts with peroxidase, which results in the development of a blue coloured 

solution in proportion to the analyte present in the sample or standard. To avoid 

saturation of the assay colour development is stopped by addition of acid and the 

colour of the solution turns yellow. This then permits colourimetric assessment of 

colour intensity at a wavelength of 450 nm. The ELISA assay detects clusterin in 

the range between 1 - 200 pg/well (20 and 4000 pg/ml). Briefly, a 96 well plate 

was coated with capture antibody (2 µg/ml) over night and the plate washed the 

next day three times with 0.05 % Tween 20 in PBS before 50 µl of cell culture 

media or clusterin standards were pipetted into appropriate wells. Where 

necessary, samples were pre-diluted in reagent diluent (1 % BSA in PBS). All 

clusterin standards were prepared by serial dilution from 4000 pg/ml down to 

31.25 pg/ml. All standards were run in duplicate and diluted assay buffer alone 

was used to determine non-specific binding. Two wells were left as empty blanks. 

50 µl of sample or standard were added to all wells except for the blank, and the 

plate was then incubated for 2 hours at room temperature. After two washing 

steps with wash buffer (0.05 % Tween in PBS), 50 µl of detection antibody (180 

µg/ml) was added to each well and the plate incubated for another 2 hours at 

room temperature. Wells were washed twice before 50 µl streptavidin conjugated 

to horseradish-peroxidase (HRP) was added to each well and incubated for 20 

minutes at room temperature avoiding direct light. Unbound Steptavidin-HRP was 

then removed with two washing steps before 50 µl of room temperature 

equilibrated enzyme substrate (TMB) was added to all wells. Direct exposure to 

light was avoided during colour development, and the 96-well plate was mixed on 
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a microplate shaker. The colorimetric reaction was terminated by the addition of 

25 µl 2 N H2SO4 to each well. Optical density was then determined at an 

absorbance wavelength of 450 nm on a Fluostar Omega microplate reader (BMG 

Labtech, Germany). Results were calculated by comparison of sample 

concentrations to known ones of clusterin standards. A representative standard 

curve is shown in Figure 2.5. 

                    
Figure 2.5 Representative standard curve for clusterin DuoSet ELISA. 

Each point represents the mean of two duplicate wells per standard. The regression line 

is shown. Standard concentrations displayed from 4000 pg/ml to 0 pg/ml. Background 

values were subtracted for all wells. 

2.14 Immunocytofluorescence  

Immunocytofluorescence is a cell imaging technique based on the use of 

antibodies, conjugated to fluorescent dyes to label a specific target antigen within 

cells. Experiments are based on using indirect immunofluorescence. Hereby, a 

primary antibody binds the specific target antigen and is then detected by a 

fluorophor conjugated detection antibody. The fluorescent signal is detected via 

fluorescence microscopy.  
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2.14.1 Clusterin and αSMA expression and collagen I deposition post TGF-β1 
stimulation  

 

In order to achieve collagen I deposition in vitro, experiments were performed 

under molecular crowding conditions as previously described (Chen et al. 2009). 

Molecular crowding is based on the “excluded volume effect”. Neutral non-

aggregating crowders such as Ficoll (here 400k Da and 70 kDa) exclude volume 

through their mass and reduce the volume, in which potential substrate reactions 

occur, which increases the frequency of such reactions. Chen et al. suggest that 

this is in part due to a low bioavailability of an enzyme called procollagen C-

proteinase, which is required for the conversion of procollagen to collagen via the 

removal of C-terminal pro-peptides. To increase the bioavailability and in vitro 

activity of procollagen C-proteinase, ficoll and ascorbic acid were added to the 

culture medium of lung fibroblasts, with or without TGF-β1. Briefly, cells were 

seeded at 1 x 104 cells/ well in a 96-well plate and allowed to attach to the plate 

over night. On the next day cells were serum starved (0.4 % FBS in DMEM) for 

16 hours. Crowding of the culture medium was achieved with neutral mixed ficoll 

(70 kDa ficoll at 37.5 mg/ml-1 and 400 kDa 25 mg/ml-1). Additionally, porcine 

TGF-β1 (1 ng/ml, R&D Systems) at a concentration previously established 

(Tiggelman et al. 1997) and L-ascorbic acid (16.6 µg/ml, Sigma-Aldrich) were 

added to the culture medium (0.4 % FBS/ 2 mM L-Glutamine in DMEM) to induce 

collagen I expression and deposition. The medium was removed 20 - 48 hours 

post TGF-β1-stimulation and cells were processed for immunocytochemistry 

(section 2.14.2). 
 

2.14.2 Immunocytochemistry  
 

Cells were fixed with ice-cold methanol for 2 minutes following 3 washes in PBS 

and permeabilisation with 0.1 % Triton-X (Sigma Aldrich, UK) for 90 seconds. In 

order to avoid unspecific binding cells were blocked with 1 % bovine serum 

albumin (Merck Millipore UK) and 3 % goat serum (Sigma Aldrich, UK) in PBS for 

30 minutes at room temperature. Monoclonal mouse antibodies against collagen 

type I (Sigma, Aldrich, C2456 at 4.7 µg/ml) or mouse monoclonal against 

clusterin-α (Santa Cruz, sc-5289, at 2.0 µg/ml) in separate wells were incubated 

over night at 4° C followed by three washes with 0.05 % (v/v) Tween in PBS 

(T-PBS). Secondary antibody (AlexaFluor 555 goat anti-mouse: A-21422, 

Thermo Fisher Scientific, UK) together with 1.43 nM 4′,6- diamidino-2-



                                                                         Material and Methods 

 80 

phenylindoldilactate (DAPI, ThermoFisher Scientific, UK) to stain nuclei were 

incubated for 1.5 hours at room temperature and plates washed three times with 

0.05 % T-PBS and stored with 200 µl PBS per well at 4 °C until optical analysis 

(Section 2.14.4). 

 

2.14.3 High – throughput proliferation assay 
 

Fibroblasts were seeded at a density of 4 x 103 in 96-well plates in 0.4 % FBS 

(10 % for PGE2 experiments) in DMEM. 18 hours after seeding, cells were 

treated with specific proliferation mediators at indicated concentration and time 

points for 48 - 72 hours. Thereafter, cells were fixed and stained with 4′,6- 

diamidino-2-phenylindoldilactate (DAPI) as described in section 2.14.2. Cell 

numbers were quantified at 48 – 72 hours post treatment by counting DAPI-

positive nuclei in a high-throughput immunofluorescence assay (see 2.14.4). Cell 

numbers were normalised to cell counts of untreated controls and results 

expressed as proliferation percent relative to untreated control.  

 

2.14.4 Optical analysis  
 

Optical analysis was performed via ImageXpress Micro XLS Widefield High 

Content Screening System acquiring 6 - 9 images at 20 x original magnification 

and analysed using the MetaXpress High Content Image Acquisition & Analysis 

Software (Molecular Devices, Sunnyvale, CA, USA). An integrated Multi 

Wavelength Cell Scoring method was established to quantify the area of 

fluorescent collagen I or clusterin staining, data was converted into ‘mean stain 

integrated intensity’ (total pixel intensity over the stained area, divided by the total 

number of cells) as shown in Table 12.  
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Non-immune isotype controls at concentrations of primary antibodies were used 

to determine fluorescent intensity thresholds for background removal. The total 

number of cells was assessed by nuclear staining with DAPI. Results were 

compared with untreated controls for each time point. Isotype controls were used 

to determine the suitable fluorescent intensity thresholds for background removal 

as demonstrated for clusterin in Figure 2.6.  

In order to merge multiple fluorescent raw data channel images in one RGB 

stack, ImageJ software was used (ImageJ 1.47v, Wayne Rasband, National 

Institute of Health, USA). In some cases, contrast and brightness were adjusted 

equally for all images of one experiment.  

 

           
Figure 2.6 Establishment of mask settings for quantification of clusterin 
signal. 

Contrast and brightness were equally adjusted in all images. Control – mock transduced 

fibroblasts, shCLU – shRNA targeting the clusterin gene. CLU – clusterin.  

 

Table 12 Module settings for multi wavelength cell scoring module. 

Settings  DAPI Collagen I  α-SMA Clusterin 

Approximate min width in µm 9 11 5 11 

Approximate max width in µm 20 50 30 50 

Intensity above local 

background in grey levels  

100 2000 800 1200 

Min stained area in µm2 N/A 400 400 400 
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2.15 Confocal microscopy  

Cells seeded in glass chamber slides (density 10,000 cells/ well) were washed 

three times with PBS and fixed with methanol for 2 minutes or 4 % 

paraformaldehyde for 20 minutes. The cells were then blocked with 3 % serum 

(same species as secondary antibody) and 1 % BSA in PBS for 1 hour, followed 

by incubation with primary antibody (at 4 µg/ml, H330 Santa Cruz Biotechnology, 

α/βchain AB: sc-8354) diluted in Dulbecco's phosphate-buffered saline (DPBS) 

with 1% BSA over night. The cells were then washed three times with DPBS, 

followed by incubation with fluorescently labelled secondary antibody (goat anti-

rabbit IgG (H+L), Alexa Fluor® 488) with DAPI for 1 hour at room temperature in 

the dark. The cells were then washed and mounted with Shandon Immu-mount 

(Fisher Scientific Ltd, CA). The LSM 700 confocal microscope from Zeiss was 

used to visualise and capture images. 

 

2.16 Scratch assay  

Fibroblasts were seeded into a 96-well plate at a density of 12 x 103 cells per well 

and allowed to adhere for 24 hours. A 96-needle device (Wound MakerTM) was 

used to create a disruption in the cell monolayer, by moving a needle three times 

through the cell monolayer in each well to create a scratch 800 µm in width. By 

washing the monolayer three times with media all detached cells were removed 

from the well, and the scratch area was checked microscopically for remaining 

cells in the scratch area. Subsequently, medium was added to the cells (0.4% 

FBS in DMEM) with or without TGF-β1 (5 ng/ml). The duration of scratch closure 

was assessed via capturing images of migrated cells every 2 hours and was 

analysed via image analysis software (IncuCyte ZOOM software®) based on the 

criteria described in Figure 2.7. The scratch closure was determined as state in 

which the scratch width was zero. The scratch width was determined as the 

average distance (µm) between the edges of the scratch mask in each line of 

resolution within an image and was assessed independently from the initial 

scratch wound mask. 

 



                                                                         Material and Methods 

 83 

                    
Figure 2.7 Illustration of mask criteria for the scratch assay. 

Phase contrast images of disrupted fibroblast monolayer taken 0, 18 and 72 hours after 

scratch application. Confluence mask (orange overlay) indicate areas of the image that 

are occupied by cells. The initial scratch wound mask (blue) is superimposed on the 

phase image and outlines the scratch after scratch application. Scratch wound mask 

(green) indicating the scratch border locations after 18 and 72 hours and are overlaid on 

the initial scratch mask. 

 

2.17 Transwell® migration assay  

The Transwell® migration assay assesses migratory responses to chemotactic 

agents in vitro and is based on the Boyden chamber assay (Chen 2005): A 

chamber of two medium-filled compartments, separated by a microporous 

membrane, through which cells migrate towards a chemotactic gradient. 

Transwell migration assays were performed with lung fibroblasts as previously 

described for skin fibroblasts (Rodriguez-Menocal et al. 2012). To assess the 

effect of clusterin-deficiency on lung fibroblast chemotaxis and/or chemokinesis, 

primary human lung fibroblasts were seeded at 5 x 104 cells in 0.4 % FBS in 

DMEM into the upper compartment of culture inserts (6.5 mm polycarbonate 

membrane pore size 8 µm, Corning Inc., NY) and allowed to migrate for 18 hours 

towards diffusing gradients of PDGF-BB (25 ng/ml, R&D Systems), TGF-β1 

(1 ng/ml, R&D Systems) or human plasma-derived clusterin (1 µg/ml, Biovendor, 

CR) in the lower chamber prepared in 0.4 % FBS in DMEM. Cells were fixed with 

methanol and non-migrating cells in the upper chamber were removed with a 

cotton swab, while migrated cells adhering to the lower surface of the membrane 

were stained with crystal violet (0.5 % v/v in 10 % methanol in PBS, Sigma 

Aldrich, Germany). Quantification of migrated cells was performed via elution of 

crystal violet and spectrophotometric analysis of absorbance at 570 nm.  
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2.18 In vitro induction of apoptosis  

Fibroblasts were seeded into 96-well plates at a density of 8.0 x 103 cells/well 

and were grown to 80 % confluence in DMEM supplemented with 10 % FBS. 

Prior to experiments, the medium was removed, fibroblasts washed with 5 % FBS 

in DMEM to remove detached cells. Cells were exposed to 0 - 200 ng/ml FasL or 

exogenous plasma-derived clusterin (10 µg/ml concentration from (Jun et al. 

2011)) for 19 hours unless otherwise stated in the figure legends. Apoptosis was 

either assessed morphologically (see section 2.19) or by Annexin V/DAPI 

staining detected by flow cytometry. A minimum of five separate wells was used 

for each treatment condition per experiment.  

 

2.19 Induction and detection of apoptosis  

During early apoptosis, a phospholipid named phosphatidylserine (PS), that is 

usually facing the inner cytoplasmic surface of the cell membrane, flips to the 

outer surface of the cell membrane. In vivo, this provides a signal to nearby and 

resident inflammatory cells that the affected cell has commenced apoptosis. 

Fluorescence labelled antibodies targeting Annexin V bind to PS and mark early 

apoptotic cells. DAPI is a DNA intercalating fluorescent dye that binds to nuclear 

material. Since it passes the intact cell membranes of live cells less effectively, it 

predominantly stains nuclei of late apoptotic or necrotic cells. On this basis, 

Annexin V- /DAPI- cells were judged to be non-apoptotic. Annexin+ / DAPI- cells 

were considered to be apoptotic, and Annexin+ / DAPI+ cells were recorded as 

being necrotic (example see Figure 2.10).  

To assess if clusterin-deficiency affects levels of basal and FasL-induced 

apoptosis, fibroblasts were seeded at 8.0 x 103 cells/well in 96 well plates and 

were grown to 80 % confluence in DMEM supplemented with 10 % FBS. The 

medium was replaced to remove detached cells and replaced with medium 

containing FasL (Calbiochem, CA; 100 – 200 ng/ml) in 5 % FBS for 19 hours and 

human plasma-derived clusterin (Biovendor, CR) was added at doses and times 

indicated in the figure legends. Subsequently after FasL exposure media, 

including floating cells, were collected from each well. Adherent cells were 

washed twice with PBS, and the PBS washes, including dislodged cells were 

added to the media collected from each well. Thereafter the cells were detached 

with 0.05 % trypsin in EDTA and detachment of cells confirmed visually, followed 

by neutralization of trypsin by the administration of 10 % FBS in DMEM. Media 

and cells were then transferred into FACS tubes and pelleted by centrifugation 
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(300 x g for 5 minutes). The pellet was then resuspended in 100 µL of 1 x 

Annexin V binding buffer (Becton, Dickinson and Company, UK) in PBS and 5 µL 

of Alexa Fluor® 647 Annexin V antibody (Cambridge Bioscience, UK) and 

incubated for 15 minutes at room temperature in the dark. Samples were then 

transferred on ice before the addition of 1 µg/ml DAPI in 1 x Annexin V binding 

buffer. Cells were kept on ice and analysed immediately by flow cytometry 

(Section 2.20.).  

Verification of results was performed by morphological assessment of cell nuclei 

(Maher et al. 2010). Briefly, adherent cells in 96-well plates were fixed in 70 % 

ethanol for 2 minutes. Cell nuclei were then stained with 1.43 nM DAPI in PBS 

and analysed by fluorescent microscopy. For each well apoptotic and non-

apoptotic cells were counted in six consecutive high power fields. Cells were 

considered to be apoptotic if nuclei were condensed with fragmented or 

aggregated DNA (Doonan & Cotter 2008) as shown in Figure 2.8. 

 

 
Figure 2.8 Morphological assessment of apoptosis.  

Apoptosis was assessed morphologically in fixed, untreated cells that were permeabilised 

following nuclei staining with DAPI: (A) untreated fibroblasts, (B) FasL- treated fibroblasts 

(100 ng/ml). Apoptotic nuclei initially demonstrate condensation of chromatin (B, high-

power inset) before progressing to form dense, highly fluorescent apoptotic bodies 

(arrows in B). Scale bar represents 10 µm. 

 

2.20 Flow Cytometry  

 Flow cytometric analysis was performed on a BD FACS VerseTM flow cytometer 

using an excitation wavelength of 405 nm, 488 nm and 640 nm band pass filter 

for DAPI, GFP (transduced cells) and Annexin V detection, respectively. Samples 

were gated according to forward and side scatter characteristics to exclude cell 

debris (Figure 2.9). A minimum of 4,000 gated events were collected for each 

sample analysed. Sample analysis and quantification was performed using the 

BD FACSuiteTM and the FlowJo V10 analysis software. Electronic compensation 
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was not required due to no overlap of the emission spectra. Samples of cells that 

were only stained for DAPI or Annexin V and GFP-positive cells were analysed 

separately by flow cytometry. Readings from these samples were then used to 

facilitate a selection of positive signal, which determined the thresholds for a 

positive signal as indicated in Figure 2.10  
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Figure 2.9 Forward scatter (FSC-A) and side scatter (SSC-A) profile of 
normal human lung fibroblasts.  

Gate “Fibroblast” used to select viable cells and exclude cell debris. 
 

 
Figure 2.10 Example of flow cytometry analysis of Annexin V / DAPI stained 
untreated and FasL treated fibroblasts.  

Cells in the lower left quadrant are AV- / DAPI- (living), cells in the lower right 

quadrant are AV+/ DAPI- (apoptotic) and cells in the upper right quadrant are AV+/ 

DAPI+ (late apoptotic/ necrotic). 
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2.21 Isolation of human alveolar macrophages and co-culture with BEAS-

2B cell line 

Alveolar macrophages were isolated by Ben Calvert (GSK, Stevenage, UK) from 

a healthy, male, control lung (donor age 35) received from National Disease 

Research Interchange (Philadelphia, USA). Briefly, 20 - 30 g lung tissue sections 

were perfused with PBS to flush out cells, including alveolar macrophages from 

the airways onto a petri dish. Cells were transferred into a 50 ml falcon tube and 

centrifuged at 350 x g for 5 minutes at room temperature. The cell pellet was 

resuspended in 25 ml of RPMI medium supplemented with 10 % FBS and 

layered onto 15 ml Histopaque®  to separate mononuclear cells from red blood 

cells and platelets in a 50 ml tube and centrifuged at 350 x g for 25 minutes 

without deceleration. Mononuclear cells were collected at the interface between 

Histopaque® and serum and transferred to a fresh tube. Cells were washed three 

times by resuspension in culture medium and centrifugation at 350 x g for 5 

minutes and counted (1.4 x 107 total cells) and assessed microscopically. Total 

cells were resuspended in culture medium to obtain 1 x 106 cells/ml solution. 

Cells were seeded onto 96 well plates, and macrophage cell morphology was 

confirmed microscopically. In order to assess cytokine/chemokine levels released 

into the medium by macrophages in co-culture with BEAS-2B cells in response to 

exogenous clusterin (5 µg/ml), 1 x 104 cells in 100 µl culture medium were added 

to the cell monolayer of BEAS-2B cells (section 2.22) per well of a 96-well plate, 

and monocultures for each cell type were retained throughout the duration of the 

experiment (Illustration Figure 2.11). 24 hours after adding airway cell isolates to 

the monolayer of BEAS2B cells, the cell supernatant, including undetached cells, 

were removed, and culture medium replaced with medium containing clusterin at 

concentrations of 1 µg/ml or 5 µg/ml or no clusterin. 24 hours after addition of 

clusterin, supernatants were collected and subjected to luminex analysis (section 

2.26).   

 

2.22 Human bronchial epithelial cell (BEAS-2B) culture 

Immortalised human bronchial epithelial cells were purchased from ATCC® and 

cultured as per suppliers instructions. Cells were cultured in 75 cm2 tissue culture 

flasks and sub-cultured before reaching confluence to prevent squamous terminal 

differentiation. For this purpose, culture medium was removed, and replaced with 

10 ml PBS to wash away cell debris and detached cells. After removal of PBS, 

3 ml TrypLE (Thermo Fisher Scientific, UK) was added to the cells at 37 °C and 
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cells were observed under an inverted microscope until the cell layer was 

dispersed (2 - 5 min) and TrypLE was neutralised by adding RPMI culture 

medium containing 10 % FBS. Cells were centrifuged at 350 x g for 5 min to 

remove neutralised TrypLE, the cell pellet was resuspended in media and 1 x 104 

cells were seeded per well into a 96-well plate. The following day alveolar 

macrophages were added to the monolayer of BEAS-2B cells as described in 

section 2.21. 

 

 
Figure 2.11 Schematic overview of the experimental design for alveolar 
macrophage – BEAS-2B cell co-culture. 

A monolayer of immortalised bronchial epithelia cells (BEAS-2B) cells was established for 

24 hours before adding isolated alveolar macrophages (AM) at matching cell number to 

assess the effect of exogenous clusterin (CLU) on secreted cytokines and chemokines in 

co- and mono culture of BEAS-2B and AM cells. Detection of cytokines and chemokines 

in the cell culture medium was assessed by luminex analysis.  

 

2.23 PBMC preparation and CD14+ isolation from human blood cones 

PBMC (peripheral blood mononuclear cell) isolation from whole blood results in 

small PBMC yields due to the restriction of blood volume that can be donated at a 

time by one individual donor. A novel medical technology called platelet 

aphaeresis allows the collection of platelets and PBMCs from a larger volume of 

whole blood while red blood cells and plasma are returned to the donor. This 

form of blood cell separation can yield large amounts of PBMCs collected in so 

called blood cones while keeping them sterile for tissue culture and is based on 
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cell-plasma separation through centrifugation. All blood-derived cells were 

collected from the Blood Donor Panel at GSK (Stevenage, UK), from individuals 

who have previously given their informed consent. Blood cones from 4 healthy 

control donors were processed within a period of a day after blood donation.  

The content of 1 cone was diluted in sterile PBS to a volume of 40 ml and 20 ml 

were each layered onto 15 ml of Histopaque®, a polysucrose density gradient 

solution of 1.077 g/ml and centrifuged at 800 g for 20 minutes without 

deceleration. The PBMC layer was collected and transferred to a new 50 ml tube 

topped up with PBS to 50 ml. To remove Histopaque® residues PBMCs were 

centrifuged at 300 x g for 10 min at room temperature with deceleration and the 

supernatant removed, and the wash step repeated. The cell pellet was 

resuspended in 27 ml of PBS and cells were counted using the NucleoCounter 

nc-3000 (ChemoMetec, Copenhagen) and a total cell number of 3 - 4 x 108 total 

cells were expected with a cell viability ≥ 85%. In order to isolate CD14+ cells 

(monocytes) cells were pelleted by centrifugation at 365 x g for 5 minutes at room 

temperature. The supernatant was removed, and the cells were resuspended in 

3 ml MACS buffer (0.5 % BSA, 2 mM EDTA in PBS, pH 7.2) and 300 µL CD14+ 

MicroBeads (magnetic beads conjugated to mouse IgG2a monoclonal anti-

human CD14 antibodies) and incubated for 15 minutes at 4 °C after mixing the 

cell bead suspension by flicking the tube. The cell-bead suspension was then 

loaded onto three MACS LS columns (1 ml per column), which were subjected to 

an electric field of a MACS separator. During three wash steps with MACS buffer, 

which removed unlabelled CD14- cells, magnetically labelled CD14+ cells remain 

in the column. Columns are then removed from the magnet and placed onto a 

15 ml tube to collect CD14+ cells by eluting labelled cells in 5 ml MACS buffer. All 

cell suspensions from three columns were merged, and the cell number counted 

and cell numbers of 2.0 – 2.5 x 108 total cells with a cell viability of ≥ 95% were 

expected.  

 

2.24 Cell culture and polarisation of human blood-derived macrophages  

The CD14+ MACS buffer cell suspension (section 2.23) was centrifuged at 

365 x g for 5 minutes at room temperature, resuspended in RPMI medium 

(supplemented with 10 % FBS, 400 U/ml penicillin streptomycin, 2 mM 

L-glutamine and plated into 96-well plate at a cell density of 1 x 105 cells per well. 

Cells were allowed to differentiate into macrophages in the presence of M-CSF at 

100 ng/ml for four days. Thereafter cells were stimulated to differentiate towards 
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an “M1” phenotype with LPS / IFNγ (at 10 ng/ml for LPS and 50 ng/ml for IFNγ) 

or an “M2” phenotype with IL-4 (20 ng/ml) in the presence and absence of human 

plasma-derived clusterin (1 - 30 µg/ml) or remained untreated. Supernatants 

were collected after 72 hours and secreted proteins analysed via Luminex assay 

as described in section 2.26. 

 

2.25 Neutralisation of TNFα in the culture medium of human blood-derived 

macrophages  

Human-blood-derived macrophages were isolated and cultured as indicated in 

sections 2.23 and 2.24. After differentiation of monocytes with M-CSF (100 ng/ml) 

for four days, supernatants were replaced with culture medium (RPMI with 10 % 

FBS) as untreated control of medium containing clusterin at 5 µg/ml with or 

without soluble TNF-α neutralising antibodies at 10 µg/ ml (R&D Systems, AF-

210-NA) or isotype control (R&D Systems, AB-108-C) at matching concentrations 

(R&D Systems, Abingdon, UK). Supernatants were collected after 72 hours and 

analysed via luminex assay as described in section 2.26.  

 

2.26 Luminex assay  

In order to measure multiple cytokines simultaneously in a small sample volume 

for example cell culture supernatants, multiplex detection assays following a 

principle that is similar to a traditional ELISA were used. The principle of the 

multiplex technology relies on analyte-specific antibodies that are coupled to 

magnetic microparticles that are dyed with fluorophores of differing intensities, 

which allows the combination and simultaneous identification of individual beads 

in the same sample.  

In order to measure changes of cytokines and chemokines in supernatants of 

macrophages and bronchial epithelial cells in response to clusterin in the culture 

medium, 25-plex (Human Cytokine magnetic 25-plex panel, Life Technologies, 

UK) and/ or combined single-plex luminex assays (listed in Table 5, R&D 

Systems, Abingdon, UK) were performed according to manufacturer´s protocol.  

Briefly, 25 µL (25-plex) or 50 µL (single-plex) antibody coupled beads (of differing 

specificities) were vortexed and sonicated for 30 seconds and pipetted into each 

well of a 96 well plate. Analyte-specific standards in a 6 point, 3-fold dilution and 

samples at 50 µl (25-plex) or 100 µl (single-plex) were added to the wells of a 96-

well plate and incubated over night at 4 °C after mixing the plate on an orbital 

plate shaker at 500 rpm. Next day the 96-well plate was placed on a magnetic 
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plate separator to keep all magnetic beads including bead-bound substances in 

the plate while unbound substances were washed away (3 x), by adding and 

removing 100 µL of provided wash buffer to each well. After discarding the final 

wash solution from each well 100 µl (25-plex) or 50 µL (single-plex) of 

biotinylated antibody cocktail, specific to analytes of interest, were added to each 

well and incubated for 1 hour on an orbital plate shaker at 500 rpm. Thereafter, 

all wells were washed three times with kit-specific wash buffer after placing the 

96-well plate onto the magnetic plate separator to remove unbound biotinylated 

antibody. To amplify the signal, 100 µl Streptavidin-RPE (25-plex) or 50 µL 

streptavidin-phycoerythrin conjugate (single-plex) which binds to biotinylated 

capture antibodies were added to each well and incubated for 30 minutes at room 

temperature on an orbital shaker at 500 rpm. After washing the 96-well plate on 

the magnetic plate separator with 100 µl kit-supplied wash solution, the plate was 

removed from the magnetic plate holder, and magnetic beads including bound 

analytes were resuspended in 100 µl wash buffer. The plate was mixed on the 

orbital shaker for 3 minutes before the plate was read via Flexmap 3D system®  

(Merck-Millipore, UK) and analysed with the Luminex xPONENT software.  

 

2.27 Statistics 

All data in figures are presented as mean ± standard error of the mean (SEM) 

unless otherwise stated. Statistical evaluations were performed by ANOVA and 

Tukey-Kramer post hoc test for multiple comparisons or unpaired t-tests for single 

comparisons using GraphPad Prism version 6.0 for Mac OS X (GraphPad 

Software, San Diego, CA). Non-parametric data were analysed using a Mann-

Whitney U test. P-values of less than 0.05 were considered significant. 
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3 Results  

3.1 Overview 

All experimental results described in this thesis have been divided into different 

sections. The first section demonstrates the immunolocalisation of clusterin in normal 

and fibrotic lung and highlights fibrosis – specific changes in the fibrotic lung. The 

following section explores the in vitro evidence for the role of pro-fibrotic mediator 

TGF-β1 in modulating clusterin expression in control lung fibroblasts and discusses the 

immunolocalisation of clusterin, αSMA, collagen and TGF-β1 in fibroblastic foci in 

sections of fibrotic lung tissue. Subsequent sections determine the effect of shRNA-

induced clusterin-deficiency in differentiation and function of control fibroblast and 

compare those to the effects of low clusterin expression in fibrotic lung fibroblasts in 

vitro. The final two sections explore the immunolocalisation of clusterin receptor LRP-2 

in tissue of control and fibrotic lungs and discuss the effect of exogenous, human 

plasma-derived clusterin on cytokine and chemokine secretion in human blood-derived 

macrophages of differing polarisation states and in alveolar macrophages and 

bronchial epithelial cells in vitro.  

 

3.2 Clusterin distribution in fibrotic compared with control lungs 

Clusterin is significantly down-regulated in IPF-BALF of patients when compared with 

BALF from normal lungs (T. H. Kim et al. 2010). Although clusterin has been described 

to be altered in smoker’s lung when compared with control lungs (Carnevali et al. 2006) 

the detailed distribution and expression of clusterin in control lung and fibrosis relevant 

changes remain undescribed. To assess whether lung-associated changes may, at 

least partly, cause the reduction of measurable clusterin in IPF-BALF and to examine 

the expression and localisation of clusterin in normal and fibrotic lung 

immunohistochemical staining was performed as described in section 2.10. For this 

purpose, paraffin-embedded specimens of IPF lung tissue obtained from patients 

undergoing surgical biopsy or lung transplantation and control tissue from histologically 

normal areas of peripheral lung removed at lung cancer resection were used (as 

described in section 2.6). All tissue was obtained with appropriate consent and its use 

approved by the relevant local research ethics committee. For all antibodies used 

during immunohistochemical staining optimal epitope, unmasking procedures were 

established and optimal antibody concentrations determined as listed in section 2.10. 

Non-immune isotype Ig controls, at matched concentrations to the primary antibodies  
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were used as a negative control. Representative images of staining with isotype 

controls are shown in Appendix 2.  

 

3.2.1 Clusterin distribution and expression in control human lungs.  
 

In normal human lung, clusterin was localised to fibroblast-like cells (Figure 3.1A) and 

in areas of bronchial epithelial cells (Figure 3.1B). Additional clusterin staining was 

observed in the alveolar interstitium and vessel walls (Figure 3.1C) and co-localised 

with elastin as assessed by Elastica van Gieson (EvG) staining (Figure 3.1D). Weak or 

undetectable immunopositivity was observed in macrophages (Figure 3.1A). 

Furthermore, clusterin was undetectable in alveolar epithelial cells (Figure 3.1A), 

endothelial cells and smooth muscle cells (Figure 3.1C). 

 

       
Figure 3.1 Localisation of clusterin in normal human lung.  

Representative images of clusterin (A-C, α/βchain AB: sc-8354, brown, nuclei - blue) and elastic 

fibres (D, dark black) in tissue obtained from control lung. Clusterin localises to fibroblast-like 

cells (A), to small areas of bronchial epithelia cells (B) and to elastic fibres in blood vessels and 

alveolar walls (C). Weak or undetectable immunopositivity was observed for macrophages and 

alveolar epithelial cells (A) and endothelial cells (C). Different cell populations/structures are 

indicated by arrows: f - fibroblast-like cell, m - macrophage, e – alveolar epithelial cell, be - 

bronchial epithelial cells, en - endothelial cell, smc – smooth muscle cells, ef - elastic fibres. 

Scale bar represents 25 µm. 
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3.2.2 Clusterin distribution and expression in IPF lungs 
 

In contrast, in IPF lung clusterin staining was weak or undetectable in fibroblasts 

associated with fibrotic regions (Figure 3.2A), whereas fibroblasts in morphologically 

normal areas of IPF lung showed strong clusterin staining (Figure 3.2B) comparable to 

that of fibroblast-like cells in control lungs (Figure 3.1A). Hyperplastic epithelial cells 

overlying fibroblastic foci showed weak or no clusterin staining (Figure 3.2A). Clusterin 

staining of macrophages, smooth muscle cells and endothelial cells of IPF lungs was 

weak or undetectable similar to control lungs (Figure 3.2D,E).  

Figure 3.2C and Figure 3.3A show a more extensive clusterin staining located to the 

apical compartment of bronchial epithelium in IPF-lungs compared with controls. It is 

well known that alveolar macrophages express high levels of TGF-β1 in pulmonary 

fibrosis (Corrin et al. 1994). In order to exclude the possibility that positive clusterin 

staining locates to macrophages associated with the apical surfaces of bronchial 

epithelial cells, rather than being located to bronchial epithelial cells, staining of serial 

sections were performed for clusterin and TGF-β1 (Figure 3.3A, B). Clusterin localised 

apically in bronchial epithelium while TGF-β1 was not detectable in bronchial 

epithelium. On the contrary, TGF-β1 localised to interstitial tissue macrophages (see 

also Figure 3.8). This demonstrates that clusterin is expressed by bronchial epithelium 

in IPF and not in alveolar macrophages that are associated with the luminal bronchial 

epithelium. 
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Figure 3.2 Localisation of clusterin in IPF lung (continued over the page). 
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Figure 3.2 Localisation of clusterin in IPF lung. 

Immunohistochemical staining of clusterin in IPF lung (overview, A-D, α/βchain AB: sc-8354, E, 

G, brown, nuclei - blue) and elastin (F, H, EvG, black). Clusterin is undetectable in fibrotic lung 

fibroblasts forming and in cells covering fibroblastic foci (A), compared with strong staining of 

fibroblast-like cells in apparently non-fibrotic areas (B). Clusterin staining in macrophages, 

smooth muscle cells, endothelial cells and associated with elastic fibres appears consistent with 

that of clusterin staining in control lungs (D-E). IPF-specific increase in clusterin staining is 

located to larger areas of bronchial epithelial cells (C) and associated with thickened blood 

vessel walls (E) and extracellular matrix deposits (G) associated with strong staining for elastin 

(F, H). Different cell populations/structures are indicated by arrows; f - fibroblast-like cell, m - 

macrophage, he - hyperplastic epithelia cell, be-bronchial epithelial cell, en – endothelial cell, 

smc – smooth muscle cell, ef- elastic fibres. Scale bar represents 25 µm. 

 

3.2.3 Clusterin associated with widespread elastin-rich deposits in IPF-lung 
 

Consistent with control lung, clusterin staining was associated with vessel walls in 

lungs from IPF-patients (Figure 3.2E; EvG staining F). Additionally, clusterin also 

associated with amorphous elastin-rich deposits arising within fibrotic areas (Figure 

3.2G; EvG staining H). Interestingly, those elastin-rich deposits were not located in 

fibroblastic foci, as examined by additional staining of serial sections of one 

representative fibroblastic focus in IPF-lung (Figure 3.4). Immunohistochemistry 

confirmed that clusterin is undetectable in areas of αSMA-positive fibrotic lung 

fibroblasts and surrounding matrix (Figure 3.4A, B). As demonstrated via EvG staining, 
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the matrix consisted predominantly of collagen (light red, EvG), while elastin (black, 

EvG) was only detectable in areas outside the focus, where αSMA expression was 

undetectable (Figure 3.4.C).   

                    

                    

Figure 3.3 Clusterin staining associates with the bronchial epithelium and not 
with macrophages associated with the bronchial epithelium.  

Immunohistochemical staining of serial sections of a representative bronchiole. Clusterin (A, 

brown, α/βchain AB: sc-8354, nuclei blue) staining is associated with bronchial epithelial cells 

(closed arrowheads. TGF-β1 staining (B, brown, nuclei blue) did not co-localise with clusterin 

staining in bronchial epithelial cells (open arrow heads) but associated with interstitial 

macrophages (arrows). Clusterin and TGF-β1 co-localise in the subepithelial matrix. Scale bar 

represents 50 µm. 
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Figure 3.4 Undetectable clusterin in fibroblastic foci. 

Immunohistochemical staining of clusterin (CLU in A, brown, nuclei - blue), αSMA (B, brown, 

nuclei – blue), C elastin (EvG, black) and collagen (EvG, light red) in serial sections of 

fibroblastic foci in IPF lung. Scale bar represents 250 µm. 
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3.2.4 Summary  
 

The results in this section examine the expression of clusterin in vivo in human fibrotic 

and control tissue and explore changes in the immunohistochemical localisation of 

clusterin associated with key pro-fibrotic proteins αSMA and TGF-β1. The main findings 

are;  

 

• In normal lung clusterin staining associates with fibroblasts but is undetectable 

in fibroblasts associated with fibroblastic foci in IPF, particularly myofibroblasts 

expressing αSMA which were surrounded by high levels of deposited collagen. 

 

• Clusterin staining co-localised with elastin staining in vessel walls of control and 

fibrotic lung and co-localised with elastin in extracellular matrix deposits, which 

were widely distributed across areas of fibrotic tissue. Elastin was not 

detectable in fibroblastic foci.   

 

• In control lung tissue clusterin staining localised to sporadic areas of bronchial 

epithelial cells, but showed more extensive and intense staining in bronchial 

epithelial cells of IPF lungs.   

 

• Weak or modest staining of clusterin in macrophages, smooth muscle cells and 

alveolar epithelial cells in IPF lung was comparable to that in control lung.  

 

Together, the results in this section demonstrate a detailed analysis of clusterin 

distribution and expression in control lungs and outlines fibrosis-specific changes in 

control lung, which has not previously been described. These results suggest that a 

reduction of measurable clusterin in IPF-BALF may at least partly occur due to its 

association to elastin in widespread elastin deposits in fibrotic lungs. The results in this 

section further suggest that clusterin expression is down-regulated in fibrotic lung 

fibroblasts when compared with fibroblasts in control lungs. To validate these results 

and further assess the mechanisms contributing to a down-regulation of clusterin in 

IPF-BALF, the expression and regulation of clusterin was studied in fibroblasts isolated 

from control and fibrotic lungs in vitro.   
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3.3 In vitro assessment of clusterin expression in control and fibrotic lung 

fibroblasts and its regulation by TGF-β1 

3.3.1 In vitro expression and secretion of clusterin in control lung fibroblasts.  
 

To validate the observations of different clusterin expression levels in fibroblasts from 

control and fibrotic lung, studies were conducted to assess clusterin expression and 

secretion in vitro. Clusterin expression and distribution in human lung fibroblasts has 

been previously described in the context of oxidative stress caused by cigarette smoke 

extract (Carnevali et al. 2006). Consistent with the report from Carnevali and 

colleagues, clusterin expression located to the cytoplasm and nucleus of control 

fibroblasts (Figure 3.5A). This result was further validated with different antibodies 

targeting the α- and/or the β-chain of clusterin (Figure 3.5B). It has been reported in 

other cell lines and lung fibroblasts that the protein size of clusterin varies depending 

on its level of maturation. Consistent with the report from Carnevali, Western blot 

analysis showed two clusterin bands of about 60 kDa and 40 kDa (Carnevali et al. 

2006). Under reducing conditions, the mature, heterodimeric form of clusterin (76 – 80 

kDa) is seen as 40 kDa band, separate α-chain and β-chain, reported to appear as 

bands at 36-39 kDa and 34-36 kDa (Figure 3.6A Blot 1), appears as double band in the 

cytoplasmic fraction. The 60 kDa band has been reported to represent the 

unglycosylated, uncleaved precursor form of the mature 76-80 kDa isoform and can 

only be found intracellularly, while the 34 – 39 kDa band (mature clusterin) is observed 

in the supernatant of primary lung fibroblasts (Figure 3.6A Blot 2).  

Primary lung fibroblasts were routinely cultured in 10 % FBS in DMEM. In order to 

exclude the possibility that measurements of secretory clusterin are not originating from 

FBS, secretory clusterin cell culture medium alone or in the presence of primary 

fibroblast were measured. Results in Figure 3.6B show that the secretory clusterin 

value was very low in the culture medium containing FBS, while clusterin was 

measurable in cell supernatants of primary lung fibroblasts.  
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Figure 3.5 Clusterin expression in cytoplasm and perinuclear area of control 
lung fibroblasts in vitro.  

Primary human lung fibroblasts were seeded at a density of 1 x 104 in chamber slide wells or 

96-well plate wells and allowed to reach over 80 % confluence. Cells were serum-starved 18 

hours, fixed in paraformaldehyde (A) or methanol (B) and stained for clusterin. DAPI (blue) 

was used to visualise the nucleus. For (A) a polyclonal anti-clusterin antibody as used against 

amino acids 120-449 (α-chain). For (B) a monoclonal antibody against amino acids 425-449 

(α-chain, sc-5289, red) and a polyclonal antibody mapping near the N-terminus of clusterin 

(β-chain, green). Areas of co-localisation appear orange-red (large arrow). Clusterin localises 

to the cytoplasm (large arrow) and perinuclear area (small arrow) as visualised via confocal 

microscopy (A) or Image Xpress analysis (B). Scale bar 10µm.  
 

  
Figure 3.6 Primary lung fibroblasts derived from healthy lung tissue express 
and secrete detectable levels of clusterin. 

Western blot analysis using an antibody detecting both α and β chain (α/βchain AB: sc-8354) 

shows clusterin protein expression in 10 µg whole cell lysates (Blot 1) and 20 µl cell 

supernatant (Blot 2) of primary lung fibroblasts cultured in T75 tissue culture flask as 

confluent monolayer. Under reducing conditions clusterin appears as a 60 kDa precursor and 

cleaved α and β subunits sized (34 - 39 kDa). (B) Clusterin in 50 µl culture medium (10 % 

(v/v) FBS in DMEM) without and with primary human lung fibroblasts. 
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3.3.2 Clusterin mRNA and protein levels in fibrotic fibroblasts compared with control 
fibroblasts in vitro.  

 

To confirm the changes in clusterin expression observed in IPF lung (see section 3.2.1 

and 3.2.2) the expression of clusterin in fibroblasts isolated from control and fibrotic 

lung was examined. Consistent with the immunohistochemical data, clusterin mRNA 

expression was reduced in fibrotic compared with control lung fibroblasts (Figure 3.7A 

microarray analysis). The differences were confirmed at protein level in representative 

donor fibroblast isolates assessed by protein array analysis (Figure 3.7B) and 

immunofluorescent staining (Figure 3.7C-E).  

 

3.3.3 TGF-β1 associates with areas of decreased clusterin expression in fibrotic lung.  
 

TGF-β1 is a major profibrotic mediator, which drives myofibroblast differentiation with 

up-regulation of αSMA and collagen expression. IPF lungs are characterised by 

increased levels of TGF-β1 associated with the extracellular matrix and expressed by 

epithelial cells (Denney et al. 2015) and alveolar macrophages (Leppäranta et al. 

2012). As described in Figure 3.8 there is a strong staining for TGF-β1 associated with 

alveolar macrophages and the extracellular matrix (Henderson & Sheppard 2013b; 

Taipale et al. 1994). While previous studies suggest TGF-β1 up-regulates clusterin 

expression in mammary epithelial cells (Itahana et al. 2007), there is little information 

on its effect on fibroblasts. To gain an overview of clusterin expression in TGF-β1-rich 

areas of fibrotic lung immunohistochemical staining for TGF-β1 and clusterin in 

fibroblastic foci in fibrotic lung was performed (see Figure 3.8). Results show that 

fibroblastic foci are rich in extracellular matrix-bound TGF-β1 and myofibroblasts 

associated with these foci exhibit low clusterin expression. The inverse correlation of 

staining for TGF-β1 and clusterin suggests a potential regulatory link between both 

proteins.  
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Figure 3.7 Clusterin mRNA and protein are decreased in fibrotic compared with 
control lung fibroblasts.  

(A) Microarray mRNA analysis shows decreased clusterin gene expression in fibroblasts 

derived from IPF (n=5) and SSC (n=7) lungs (open circles) compared with controls  (closed 

circles; n=6) in vitro. Proteome profiler array (B, performed by Dr. Toby Maher) and 

immunofluorescence staining (α-chain, sc-5289) of non-fibrotic and fibrotic fibroblasts (C) 

confirm low clusterin protein expression in fibrotic compared with control fibroblasts in vitro. (E) 

Quantification of panel (C, D) clusterin signal (pixel intensity) normalised to cell numbers per 

visual field (n=6). *P < 0.05, ****P < 0.0001; Scale bar in D represents 10 µm. 
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Figure 3.8 TGF-β1 associates with areas of decreased clusterin expression in 
fibroblastic foci in fibrotic lung.  

Representative images of TGF-β1 staining (A, red/brown, nuclei blue) and clusterin staining (B, 

α/βchain AB: sc-8354, CLU red/brown, nuclei blue) in serial sections of fibroblastic foci in IPF-

lung. While TGF-β1 localises to ECM, fibroblasts and macrophages, staining for clusterin is 

weak or undetectable. f - fibroblast-like cell, m - macrophage, he - hyperplastic epithelia cell, 

ecm – extracellular matrix. Scale bar represents 100 µm. 
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3.3.4 TGF-β1 down-regulates fibroblast clusterin mRNA and protein expression in 
vitro. 

 
Results in the previous section showed that increased expression of TGF-β1 co-

localises with reduced expression of clusterin. While previous studies suggest TGF-β1 

up-regulates clusterin expression in epithelial cells (Itahana et al. 2007), there is little 

information on its effect on fibroblasts. It was therefore determined if TGF-β1 regulates 

clusterin expression in control lung fibroblasts in vitro: Stimulation of control lung 

fibroblasts with TGF-β1 (1 ng/ml, a dose which has been established to induce 

fibroblast differentiation (Tiggelman et al. 1997)) reduced clusterin mRNA levels in a 

time-dependent manner (Figure 3.9A). Clusterin expression began to decline by 4 

hours and was significantly reduced by ≈ 77 % by 24 hours (Two-way ANOVA p = 

0.0051). Clusterin down-regulation was maintained for at least 48 hours as confirmed 

by immunofluorescent staining (Figure 3.9C,D). Western blot analysis confirmed that 

clusterin levels are decreased in response to TGF-β1 by 24 hours (Figure 3.9B) and 

TGF-β1-induced fibroblast differentiation was confirmed by increased αSMA protein 

levels. Consistently, immunofluorescence analysis (Figure 3.9C-D) post TGF-β1 

stimulation, confirmed the down-regulation of clusterin by TGF-β1.  
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Figure 3.9 TGF-β1 down-regulates fibroblast clusterin mRNA and protein 
expression in vitro.  

(A) In vitro analysis of mRNA levels in TGF-β1-stimulated (1 ng/ml) fibroblasts shows a time-

dependent down-regulation of clusterin expression (n=3). Post TGF-β1-stimulation (1 ng/ml) 

clusterin (CLU) protein levels are down-regulated compared with control as demonstrated via 

Western blot at 24 hours (B) and immunofluorescent staining at 48 hours (C, red, α-chain, sc-

5289, nuclei - blue). (D) Quantification of fluorescent signal of panel C: clusterin signal (pixel 

intensity) was normalised to cell numbers per visual field and compared with control (n=6). *P < 

0.05, **P < 0.01. 
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3.3.5 Summary  
 

This results section focuses on the expression of clusterin in association with profibrotic 

mediator TGF-β1 in human fibrotic and control tissue. Modulatory effects of TGF-β1 on 

clusterin expression have been assessed by analysis of mRNA and protein levels in 

vitro. The key findings are; 

 

• In vitro studies confirm that control lung fibroblasts express and secrete high levels 

of clusterin. 

 

• Consistent with findings in control and fibrotic lung fibroblasts in vivo, clusterin 

mRNA and protein are decreased in fibrotic compared with control lung fibroblasts. 

 

• TGF-β1 associated with areas of reduced clusterin expression in fibrotic lung. 

 

• TGF-β1 down-regulated clusterin mRNA and protein expression in lung fibroblasts in 

vitro. 

 

In this section previous observations of reduced clusterin levels in fibrotic lung 

fibroblasts compared with controls were validated in in vitro studies. In addition, 

mechanisms contributing to a down-regulation in fibrotic lung fibroblasts were assessed 

in vitro studies with fibroblasts from control lung. This data suggests that reduced levels 

of clusterin in IPF-BALF could, at least in part be caused by a down-regulation of 

clusterin in response to TGF-β1. However, the functional effects of a down-regulation of 

clusterin in lung fibroblasts remain unknown. Interestingly, TGF-β1 down-regulated 

clusterin at a concentration, which induced fibroblast differentiation, as assessed by 

increased αSMA levels (Figure 3.9B). The next section will, therefore, address if the 

effects of TGF-β1–induced fibroblast differentiation is dependent on clusterin down-

regulation.  
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3.4 Effect of low clusterin expression on myofibroblast differentiation in vitro 

TGF-β1 is a key-mediator in pulmonary fibrosis and drives myofibroblast differentiation. 

Myofibroblasts express high levels of αSMA, exhibit a contractile phenotype as a result 

of increased stress fibre formation and secrete high levels of matrix proteins, e.g. 

collagen I. Results in the previous section 3.3 have demonstrated that TGF-β1, down-

regulates the expression of clusterin in lung fibroblasts, at a concentration and time, at 

which αSMA was increased. This section, therefore, investigates if the effect of TGF-

β1-induced fibroblast differentiation is dependent on its effects on clusterin expression. 

To begin to address this question, TGF-β1-induced fibroblast - to myofibroblast 

differentiation was studied via increased αSMA expression and collagen deposition in 

vitro.  

3.4.1 The effect of TGF-β1 on αSMA protein expression and collagen I deposition 
under molecular crowding conditions. 

 

Soluble procollagen levels can be measured in in vitro cultures using reverse-phase 

HPLC quantification of hydroxyproline, or by ELISA and Western blotting.  However, 

the measurement of mature collagen is not possible without so-called molecular 

crowding conditions. Therefore, deposited collagen was measured via an 

immunocytofluorescence assay as described in section 2.14.1. To assess the degree 

of differentiation over time, αSMA protein levels were analysed in response to TGF-β1 

and compared with untreated controls (Figure 3.10A). As with previous experiments, 

fibroblasts were grown to confluence and serum-starved overnight. αSMA protein 

levels were assessed via Western blot analysis 18 – 72 hours post treatment with or 

without TGF-β1 at 1 ng/ml. As Figure 3.10 demonstrates, αSMA expression was 

increased by approximately five-fold at 18 hours in response to TGF-β1. By 48 hours 

αSMA protein levels were increased by just under ten-fold when compared with 

controls without administration of TGF-β1 and increased further to over ten-fold by 

72 hours. Based on these results subsequent experiments focussing on fibroblast 

differentiation were analysed at 48 or 72 hours.  
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Figure 3.10 αSMA expression in response to TGF-β1 over time and under crowding 
conditions. 

Fibroblasts were grown to confluence, serum-starved with 0.4 % FBS in DMEM before 

treatment with and without TGF-β1 (1 ng/ml) for 18-72 h. 10 µg of whole cell lysates were used 

for Western blot analysis (A, graph representative of three experiments). (B) 

Immunofluorescence staining for αSMA 72 h after TGF-β1 –stimulation under crowding and no 

crowding conditions (quantification in C). 

 
To confirm that changing tissue culture conditions do not affect the degree or course of 

differentiation, αSMA expression in response to TGF-β1 under standard or under 

molecular crowding conditions was assesses at 72 hours (Figure 3.10B, C). At the 

endpoint measurement of 72 hours, molecular crowding conditions did not alter the 

course and levels of αSMA expression in response to TGF-β1, when compared with 

non-crowding culture conditions. To confirm these results and to test the impact of 

different TGF-β1 concentrations on both αSMA expression and collagen deposition, a 

dose response to TGF-β1 was conducted at concentrations ranging from (0 pg/ml to 10 

ng/ml) under molecular crowding conditions. Results in Figure 3.11A,C show collagen 

deposition was increased significantly (One-way ANOVA p < 0.0001) at 72 hours 

starting at a TGF-β1 concentration of 0.1 ng/ml by a 44 ± 1.36 fold increase of collagen 

deposition when compared with controls without TGF-β1.  
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Figure 3.11 The effect of TGF-β1 on αSMA expression and collagen I deposition 
under molecular crowding conditions.  

Immunofluorescent staining of collagen I (A, collagen I green, nuclei blue) and αSMA (B, αSMA 

red, nuclei blue) 72 hours after TGF-β1 stimulation (0 - 10ng/ml) under molecular crowding 

conditions (n=8).  Quantification of the fluorescent signal (C for A and D for B): pixel intensity 

was normalised to cell numbers per visual field and compared with control respectively (8 

technical replicates). 
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An increase by 89 ± 1.2 fold was measured for a TGF-β1 concentration of 1 ng/ml and 

was not significantly different to the 83 ± 1.7 fold increase at a concentration of 

10 ng/ml. Similarly, αSMA protein levels were significantly increased in response to 

TGF-β1 (One-way ANOVA p < 0.0001) at 72 hours (Figure 3.11B,D). At a TGF-β1 

concentration of 0.1 ng/ml αSMA protein levels were increased by 3.5 ± 0.9 fold and 

were increased by 20.1 ± 2.4 fold at a concentration of 1 ng/ml when compared with 

untreated controls. Consistently, at a concentration of 10 ng/ml TGF-β1 significantly 

increased αSMA protein expression by 15.2 ± 1.3 fold when compared with untreated 

controls. 

 

3.4.2 siRNA targeting the clusterin gene reduces clusterin mRNA but not protein 
levels. 

 

To begin to investigate the importance of clusterin in regulating TGF-β1-induced 

myofibroblast differentiation, control fibroblasts were transfected with siRNA targeting 

the clusterin gene (section 2.8). Results in Figure 3.12A show that clusterin siRNA 

reduced the levels of measurable mRNA at 48 hours and 72 hours after targeting 

exon 7 of the clusterin gene: At 24 hours clusterin mRNA levels were reduced by 48 % 

in response to transfection with siRNA targeting the clusterin gene when compared 

with non-transduced controls and remained reduced up until 72 hours after 

transduction by 67 %, while transfection with non-silencing control siRNA did not 

significantly affect clusterin mRNA levels at 24, 48 and 72 hours when compared with 

non-transduced controls. However, protein levels were not reduced at those times 

(Figure 3.12.B). Consequently, in following studies in this thesis clusterin expression 

was modulated by an alternative, more stable gene silencing technique, using lentiviral 

shRNA (section 3.4.3).  

 

3.4.3 Lentiviral shRNA- mediated clusterin knockdown in control lung fibroblasts. 
 

A model of sustained clusterin knockdown based on small hairpin interference RNA 

(shRNA) was established as described in section 2.9. To exclude effects of 

transduction-induced changes, mock (non-silencing) shRNA-transduced fibroblasts 

were compared with untransduced controls. In such cases where there was no 

difference between untransduced controls and mock-transduced controls, only the 

results for mock-transduced fibroblasts are presented in this thesis. shRNA-induced 

clusterin knockdown compared with both mock-transduced and control was confirmed 



                                                                                    Results 

 113 

for mRNA, protein and secretory clusterin (Figure 3.13). Figure 3.13A shows that 

clusterin mRNA levels were reduced in fibroblasts treated with shRNA targeting the 

clusterin gene when compared with controls. Clusterin mRNA levels were reduced to 

4.6 % of mRNA levels observed with non-silencing controls. There was no significant 

difference between clusterin mRNA levels with non-silencing controls compared with 

non-transduced controls as assessed via qRT-PCR. Further ELISA analysis 

demonstrates that secretory clusterin levels are significantly reduced by 68.2 % 

to 0.11 ± 0.01 µg/ml with shRNA targeting clusterin gene expression when compared 

with non-transduced (0.35 ± 0.02 µg/ml) and non-silencing controls (0.38 ± 0.04 µg/ml) 

(Figure 3.13B). Clusterin knockdown by 92.5 % was further demonstrated by 

immunofluorescence (Figure 3.13D, E) and by western blotting (Figure 3.13C).  
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Figure 3.12 siRNA-mediated transfection of control lung fibroblasts down-
regulated clusterin mRNA but not protein levels.  

Fibroblasts were grown to 50 % confluence and transfected with siRNA targeting the clusterin 

gene or non-silencing siRNA or remained un-transfected. 24 -72 hours after transfection cells 

were lysed and clusterin mRNA and protein levels were assessed by qRT-PCR (A) and Western 

blot (B, α/βchain AB: sc-8354, semi-quantitative analysis). The mean ± SEM are shown for 

three experimental replicates for one representative cell line. This data is representative of two 

biological experiments; statistical significance was tested against clusterin expression of non-

transduced cells. *P < 0.05, **P < 0.01, ****P < 0.0001. 
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Figure 3.13 shRNA-modulated knockdown of clusterin in human normal lung 
fibroblast. 

Clusterin gene and protein expression were silenced 48 hours post lentiviral transfection with 

shRNA targeting the clusterin gene (shCLU, open bars) compared with non-silencing (mock, 

grey bars) and non-transduced fibroblasts (control, black bars). qRT-PCR (A, n=3), ELISA of 

secretory clusterin (B), Western blot (C) and immunofluorescence staining (panel D, clusterin 

red (α-chain, sc-5289), nuclei - blue, n=3, quantitative analysis in E, isotype striped bar) 

confirmed low clusterin gene and protein expression in shCLU transfected fibroblasts. Scale bar 

in panel D represents 10 µm. *P < 0.05, **P < 0.01. 
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3.4.4 Effect of shRNA-mediated clusterin-deficiency on TGF-β1-induced myofibroblast 
differentiation and collagen deposition. 

 

In order to address whether clusterin-deficiency affects basal and TGF-β1-induced 

αSMA and collagen mRNA and protein deposition, non-transduced control, 

mock-transduced and shRNA transduced clusterin-deficient fibroblasts were treated 

with or without TGF-β1 (1 ng/ml) for 48 hours. Results in Figure 3.14 show that, 

although TGF-β1 induced αSMA mRNA and protein in trend as assessed by qRT-PCR 

(Figure 3.14A) and Western blot analysis (Figure 3.14B), basal and induced αSMA 

levels did not show significant differences between control, mock and shCLU 

transduced fibroblasts. In detail αSMA mRNA were in trend induced by TGF-β1 by 92.6 

% for non-transduced shRNA, by 108,7 % for non-silencing shRNA and 89.9 % for 

shRNA targeting the clusterin gene.  

As expected, TGF-β1 significantly induced collagen I mRNA (Figure 3.14C) and protein 

deposition (Figure 3.15A,B) as assessed by qRT-PCR and immunofluorescent staining, 

respectively. However, there was no significant difference in response to TGF-β1 

between control, mock-transduced and shCLU fibroblasts. Which suggests that 

clusterin deficiency does not affect basal or TGF-β1-induced collagen production. 

Collagen mRNA levels were increased by 9.5-fold for non-transduced shRNA and by 

5.3-fold for non-silencing control and 4.8-fold for shRNA targeting the clusterin gene. 

Collagen deposition as assessed by fluorescence staining was increased by 2.07 ± 

0.15 fold for non-transduced cells, 1.70 ± 0.28 fold for non-silencing shRNA induced 

cells and 1.94 ± 0.24 fold for fibroblasts transduced with shRNA targeting the clusterin 

gene (Figure 3.15B). The fold-increase in collagen deposition in response to TGF-β1 

was not significantly different between all groups although basal and TGF-β1-induced 

deposited collagen levels diverged between clusterin deficient, mock and non-

transduced fibroblasts.  

This suggests that the observed TGF-β1 induced down-regulation of clusterin is 

independent of its effect on myofibroblast differentiation, collagen synthesis, and 

deposition. The results are representative of two different experiments for fibroblasts 

from two donors.  

 



                                                                                    Results 

 117 

 

 

 
 

Figure 3.14 Effect of clusterin-deficiency on TGF-β1-induced αSMA and collagen I 
mRNA and αSMA protein expression.  

αSMA mRNA and protein and collagen mRNA levels were assessed in clusterin-deficient 

fibroblasts (open bars), mock-transduced (grey bars) and non-transduced control fibroblasts 

(black bars) 48 hours following TGF-β1 stimulation (1ng/ml) and in untreated controls. qRT-PCR 

(A) and Western blot analysis (α-chain, sc-5289) (B) showed an increase of αSMA mRNA and 

protein post TGF-β1 stimulation. Basal and increased levels of αSMA mRNA and protein, 

however, did not vary between clusterin-deficient, mock-transduced and control fibroblasts. 

Collagen mRNA (C) assessed by qRT-PCR was significantly increased in response to TGF-β1. 

Although, basal and TGF-β1 induced changes in collagen levels varied between 

clusterin-deficient, mock and control fibroblasts, the overall fold-increase in collagen mRNA 

levels did not significantly change between clusterin-deficient fibroblasts and control/mock 

fibroblasts. **P < 0.01, ***P < 0.001, compared with untreated controls respectively. 
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Figure 3.15 Effect of clusterin-deficiency on basal and TGF-β1-induced 
collagen I deposition under molecular crowding conditions. 

Clusterin-deficient fibroblasts (open bars), mock-transduced (grey bars) and non-

transduced control fibroblasts (black bars) were grown to confluence, serum starved 

(0.4 % FBS) overnight. Ficoll, ascorbic acid and TGF-β1 (1 ng/ml) were added for 48 

hours. Collagen I deposition (A, B quantification) assessed by immunofluorescence 

staining was significantly increased in response to TGF-β1. Although, basal and TGF-β1 

induced changes in collagen levels varied between clusterin-deficient mock and control 

fibroblasts, the overall fold-increase in collagen I deposition levels did not significantly 

change between clusterin-deficient fibroblasts and control/mock fibroblasts. Scale bar in 

A represents 10 µm. ***P < 0.001 compared with untreated controls respectively. 
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3.4.5 Summary  
 

The results in this section have examined the consequences of clusterin gene silencing 

on TGF-β1-induced lung fibroblast differentiation into myofibroblast. αSMA expression 

and collagen deposition were established as myofibroblast markers under standard 

and crowding cell culture conditions. The principle findings of these experiments are; 

 

• Increasing αSMA protein expression in response to TGF-β1 is time dependant 

and was increased by approximately 10-fold by 48 hours and 72 hours.  
   

• Cell culture of lung fibroblasts under molecular crowding conditions 

demonstrated similar TGF-β1 effects on αSMA protein expression compared 

with standard culture conditions at 72 hours.   

 

• The effect of TGF-β1 on control lung fibroblast collagen deposition and αSMA 

protein expression is dose dependent. 

 

• Clusterin protein levels can be reduced by a stable knockdown of clusterin via 

shRNA, while transient gene silencing with siRNA resulted in a reduction of 

clusterin mRNA but not protein levels.  

 

• Stable shRNA-induced clusterin-deficiency does not affect levels of basal or 

TGF-β1-induced αSMA and collagen I mRNA and protein and collagen I 

deposition, when compared with untreated mock controls.  

 

In summary, this section assessed the effect of low clusterin expression on TGF-β1-

induced fibroblast differentiation in vitro. The results presented in this section suggest 

that the TGF-β1-induced downregulation of clusterin is independent of its effect on 

fibroblast differentiation. The next section will address if altered intra- or extracellular 

clusterin levels affect lung fibroblast migration.  
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3.5 Role of clusterin in modulating fibroblast migration in vitro 

3.5.1 In vitro assessment of migration in clusterin-deficient fibroblasts compared with 
control fibroblasts in response to TGF-β1 in a scratch assay.  
  

Clusterin has been demonstrated to induce chemotaxis of human monocytes, murine 

macrophages (Kang et al. 2014) and porcine vascular smooth muscle cells (Millis et al. 

2001). However, little is known about the role of clusterin in regulating migration of lung 

fibroblasts. To assess the effect of clusterin-deficiency on migration under basal 

conditions (0.4 % FBS in DMEM) or in response to TGF-β1, a scratch assay was 

performed with non-transduced, mock-transduced and clusterin-deficient fibroblasts. 

For this purpose, cells were seeded in a 96-well plate and grown to confluence for 24 

hours, as described in section 2.16. Subsequently, the cell monolayer was disrupted 

with a 96-needle device (Wound MakerTM) creating a scratch of approximately 800 µm 

width in each well. In order to ensure that all detached cells are fully removed from the 

scratch area, needles in each well were moved up and down vertically in line with the 

scratch area three times. Detached cells were washed away, and cells in the wells 

remained untreated or were stimulated with TGF-β1 (5 ng/ml) in 0.4 % FBS in DMEM. 

 

Figure 3.16 demonstrates that under basal conditions the scratch was closed at similar 

time-points (non-transduced: 22 ± 2 hours, mock transduced 25.6 ± 2 hours and 

clusterin-deficient fibroblast 24 ± 2 hours, mean ± SEM) for all cell lines tested. Since 

there were no significant changes measurable between times of scratch closure of 

untransduced and mock-transduced cells, all subsequent experiments were conducted 

with mock-transduced fibroblasts as a control.   

Interestingly, when TGF-β1 was added to the culture medium after initiating the scratch 

the time needed for migrating cells to close the scratch increased in control fibroblast 

(from 25.6 ± 2 to 36 ± 2 hours). However, in clusterin-deficient fibroblasts the time 

required to close the scratch remained unchanged when compared with clusterin-

deficient fibroblast without TGF-β1 (27 ± 1.8 hours). This suggests that clusterin is 

important for a delay in migration in response to TGF-β1.   

Given the duration of the measurements of up to 48 hours, caution needs to be applied 

in interpreting differences between clusterin-deficient fibroblast and control fibroblast. 

At 48 hours migratory as well as proliferative effects in both cell lines may affect the 

duration of scratch closure. In order to limit proliferative effects, migration was 

assessed via directed transwell migration assays, which were limited to the duration of 

19 hours (see next subsection, 3.5.2).   
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Figure 3.16 Migratory response of control and clusterin-deficient lung fibroblasts 
at baseline and in response to TGF-β1. 

Fibroblasts were seeded at 12 x 103 cells per well in a 96-well plate, grown to 80 % confluence 

and 800 µM wide scratches were applied via a 96-needle device. The migratory / proliferative 

response was captured 0 – 48 hours using phase-contrast microscopy. (A) Baseline migration 

did not vary between untransduced (control) fibroblasts, mock-transduced (mock) and 

clusterin-deficient (shCLU) lung fibroblasts. (B) Representative images of the scratch closure in 

control and clusterin-deficient fibroblasts at 28 hours (yellow lines: scratch edges at 0 h) in 

response to TGF-β1 (5 ng/ml) compared with control (0.4% FBS in DMEM). (C) Time course 

demonstrating the decrease of scratch width in response to TGF-β1 at 0 – 48 hours. The rate of 

scratch closure was defined as the scratch width at a particular time point divided by the initial 

scratch width. Data is representative of two individual experiments. Each point represents the 

mean +/- SEM of 6 replicates; scare bar in (B) 400 µm. 
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3.5.2 In vitro assessment of human lung fibroblast migration in response to PDGF-BB 
or TGF-β1 in a Transwell® assay. 

 

To determine the effect of clusterin-deficiency on migration in response to PDGF-BB or 

TGF-β1 or exogenous clusterin, a transwell migration assay was established (Section 

2.17). Previous reports demonstrated that PDGF-BB is one of the most potent inducers 

of fibroblast migration. Consistent with previous reports (Bonner et al. 1995; Osornio-

Vargas et al. 1993; Tada et al. 2003), PDGF-BB significantly increased lung fibroblast 

migration and reached a maximal response at the lowest dose of 12.5 ng/ml (Figure 

3.17A). At 25 ng/ml, an approximately 3 fold higher migration was induced when 

compared with un-stimulated controls. To assess the responsiveness of human lung 

fibroblasts to increasing cell numbers in combination with 25 ng/ml PDGF-BB or no 

PDGF-BB, experiments using fibroblasts derived from control lung tissue were 

undertaken (Figure 3.17C). Although, the yield of migrated cells could be increased at 

cell numbers larger than 50 x 103 cells/ well, a number of 50 x 103 cells/ well was 

chosen for all experiments presented here since this number of cells allowed the cells 

to adhere as monolayer to the transwell membrane. In addition, these results present 

evidence that the capacity to induce migration by 25 ng/ml PDGF-BB in fibroblast is not 

saturated at cell numbers over 50 x 103 cells/ well. In order to exclude the effect of 

increasing cell numbers as a consequence of proliferation in response to PDGF-BB 

(Blanc-Brude et al. 2001), while allowing maximal time for migration, the duration of this 

experiment was set to 18 h after addition of lung fibroblasts and stimuli to the upper 

chamber compartment of the transwell insert. In accordance with previous reports 

TGF-β1 did not affect chemotaxis (Osornio-Vargas et al. 1993), as demonstrated in 

Figure 3.17D.  
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Figure 3.17 PDGF-BB induced fibroblast migration is concentration dependent.  

Control fibroblasts were exposed to doubling doses of recombinant PDGF-BB from 0 - 50 ng/ml 

(A) for 18 hours in 0.4 % FBS in DMEM. (B) Representative bright field images of crystal violet-

stained migratory fibroblasts on transwell polycarbonate membranes, showing a three fold 

change increase in migration in response to 25 ng/ml PDGF-BB compared with un-stimulated 

controls. (C) Shows that the number of cells that migrated through the membrane was 

dependent on the initial cell number seeded and could be induced by the addition of 25 ng/ml 

PDGF-BB. (D) Shows migratory response to TGF-β1 in five fold increasing doses from 0 –

 5 ng/ml. Quantification of migrated cells via crystal violet elution and spectrophotometric 

analysis of the absorbance at 570 nm. Data represent mean ± SEM of ≥ 2 independent 

experiments. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. 
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3.5.3 Clusterin-deficiency or exogenous clusterin do not affect fibroblast basal and 
induced migration in control lung fibroblasts.  

 

Since lung fibroblasts secrete clusterin (Figure 3.13B) at concentrations known to 

induce migration in other cell types the effects of clusterin-deficiency or addition of 

exogenous clusterin in lung fibroblast migration was examined. Transwell migration 

assays were conducted with control (mock-transduced), shRNA-mediated clusterin-

deficient and fibrotic lung fibroblasts in response to PDGF-BB, TGF-β1 or exogenous 

human plasma-derived clusterin. Results in Figure 3.18A show that exogenous 

clusterin did not affect chemotaxis in clusterin-deficient lung fibroblasts compared with 

controls. Furthermore, basal migration in clusterin-deficient and fibrotic lung fibroblasts 

did not differ when compared with untreated controls or in response to PDGF-BB and 

TGF-β1. In the non-silencing shRNA group PDGF-BB induced migration by 3.9 ± 0.2 

fold. In the group with shRNA targeting the clusterin gene migration in response to 

PDGF-BB was increased by 3.5 ± 0.0 fold. Together, these data suggest clusterin does 

not mediate chemotaxis in control or fibrotic lung fibroblasts in vitro. 

 

3.5.4 Low clusterin expression or exogenous clusterin do not affect basal and 
induced migration in fibrotic lung fibroblasts.  

 

To compare consequences of clusterin-deficiency on migration to those observed in 

fibrotic lung fibroblast with naturally low levels of clusterin (Figure 3.7) fibrotic lung 

fibroblast migration was assessed in response to PDGF-BB, TGF-β1 or exogenous 

human plasma-derived clusterin and compared with fibroblast derived from control lung 

tissue (Figure 3.18B). Consistent with results derived with shRNA-induced clusterin-

deficient fibroblasts, fibrotic lung fibroblast migration was not affected by exogenous 

clusterin. Furthermore, basal migration in fibrotic lung fibroblasts did not differ when 

compared with untreated controls or in response to PDGF-BB and TGF-β1. Together, 

these data suggest clusterin does not mediate migration in control or fibrotic lung 

fibroblasts in vitro.  
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Figure 3.18 Exogenous clusterin and low intracellular clusterin do not affect lung 
fibroblast migration in control and fibrotic fibroblasts.  

The migratory responses of mock-transduced and untransduced fibroblasts did not show 

significant differences, migratory responses of clusterin-deficient fibroblasts were compared with 

mock-controls only. Comparison of migratory response in mock-transduced (control) compared 

with shCLU deficient fibroblasts (A) and control fibroblasts to fibrotic lung fibroblasts (B) in 

response to no stimuli or PDGF-BB (25 ng/ml), TGF-β1 (1 ng/ml) and exogenous, human 

plasma-derived clusterin (10 µg/ml). Quantification of migrated cells via violet elution and 

spectrophotometric analysis of the absorbance at 570nm. Data represent mean ± SEM of two 

independent experiments. *P < 0.05, ****P < 0.0001. 
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3.5.5 Summary 
 

The results in this section examining the in vitro migratory response of clusterin-

deficient control and fibrotic lung fibroblasts to basal, PDGF-BB, TGF-β1 and 

exogenous clusterin demonstrate;  

 

• The migratory response of control lung fibroblasts in response to PDGF-BB was 

increased at a concentration from 12.5 ng/ml by approximately 3-fold.   

 

• The migratory response of control lung fibroblasts correlated with increased 

numbers of cells placed in the upper compartment of the transwell insert. A cell 

number of 50 x 103 cells resulted in a cell monolayer, covering the upper side of 

the transwell membrane.  

 

• Exogenous clusterin did not affect chemotaxis in clusterin-deficient or fibrotic 

lung fibroblasts compared with controls.   

 

• Basal migration in clusterin-deficient and fibrotic lung fibroblasts did not differ 

when compared with untreated controls or in response to PDGF-BB and 

TGF-β1. 

 

Effects observed in the scratch assay in response to TGF-β1 are most likely not due to 

a difference in migration. An alternative hypothesis is that different effects on scratch 

closure in response to TGF-β1 observed for clusterin-deficient fibroblasts compared 

with controls was due to altered proliferation. This possibility will be explored in the next 

section.  
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3.6 Role of clusterin in modulating fibroblast proliferation in vitro 

 

Previous studies have indicated that clusterin promotes proliferation of renal tubular 

epithelial and vascular smooth muscle cells after injury (Nguan et al. 2014; Miyata et al. 

2015). But the role of clusterin in regulating fibroblast proliferation remains unknown.  

3.6.1 Clusterin-deficiency reduces the proliferative response in control fibroblasts.  
 

To explore the impact of clusterin-deficiency on basal and induced proliferation, control, 

mock-transduced and clusterin-deficient fibroblasts were seeded in 96-well plates as 

described in section 2.14.3. After adhering overnight, and ensuring identical cell 

numbers per well among different groups for each experiment (Figure 3.19A, 4 x 103 

cells / well), fibroblasts were exposed to increasing concentrations of serum, TGF-β1 or 

PGE2 and proliferation was quantified via DAPI staining as assessed by 

immunocytochemistry (detailed in section 2.14.2). Non-transduced and mock-

transduced primary fibroblasts did not show a difference in their proliferative response. 

On this basis, results are shown for mock-transduced and clusterin-deficient cells only. 

Data presented in Figure 3.19 and Figure 3.20 is expressed as percent change in cell 

numbers at a given time relative the cell numbers of controls for each time point. 

However, in the text this data is presented as absolute change in cell number per visual 

field (mean ± SEM).  

Figure 3.19B shows that the rate of proliferation seen in response to serum was 

increased from 2.5 % serum in DMEM (Two way ANOVA P < 0.0001). The cell number 

of mock-transduced control cells per field (98.3 ± 4.43 cells mean ± SEM) was similar 

to cell numbers of clusterin-deficient fibroblasts (98.3 ± 3.16 cells mean ± SEM) after 

72 hours in 0.4 % FBS in DMEM. High-serum significantly increased proliferation of 

mock-control and clusterin-deficient fibroblasts. However, the response to serum-

induced proliferation was diminished by approximately 50 % in clusterin-deficient 

fibroblasts compared with controls (Figure 3.19B, mock 241,9 ± 9.71 and clusterin-

deficient 169.65 ± 4.32; mean ± SEM) for 10 % FBS in DMEM. TGF-β1 did not affect 

the proliferative response in control or clusterin-deficient fibroblasts (Figure 3.19C). In 

contrast, PGE2 reduced proliferation in clusterin-deficient fibroblasts in trend compared 

with control (Figure 3.19D), resulting in 68.5 ± 0.76 (mock) versus 51.5 ± 3.49 cells 

(shCLU) per visual field (mean ± SEM) 48 hours after addition of 1 µM PGE2. A 

summary of this data compared with the proliferative response is shown in Figure 3.20.  
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Figure 3.19 Effect of clusterin-deficiency on control lung fibroblast proliferation.  

Clusterin-deficient (open bars), mock-transduced (grey bars) and non-transduced control lung 

fibroblasts (black bars) were seeded at a density of 4 x 103 cells per well in 96 well plates and 

allowed to adhere overnight in 0.4 % FBS in DMEM. Thereafter cell numbers were counted on a 

separate 96-well plate to ensure similar cell numbers among the groups (A). Cell numbers were 

assessed in four fields per well (n=6) by counting DAPI-positive nuclei in a high-throughput 

immunofluorescence assay. Proliferation in shRNA-mediated clusterin-deficient fibroblasts 

compared with controls was assessed in response to indicated concentrations of FBS (B), 

TGF-β1 (C) and PGE2 (D) at 48 hours (or 72 hours for FBS) in 0.4 % FBS in DMEM. Cell 

numbers were normalised to cell counts of low serum controls (0.4 % FBS in DMEM) and 

expressed as percent change in proliferation relative to control. Data represent mean ± SEM of 

three independent experiments. ***P < 0.001, ****P < 0.0001. 
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3.6.2 Exogenous clusterin does not affect lung fibroblast proliferation in vitro. 
 

To determine if low intracellular or extracellular clusterin levels account for a reduced 

proliferative response in clusterin-deficient fibroblast, both mock-controls and clusterin-

deficient fibroblast from control lungs were subjected to human plasma-derived 

clusterin for 48 hours. Interestingly, exogenous clusterin did not affect fibroblast 

proliferation in control or clusterin-deficient fibroblasts (Figure 3.20A). Together, these 

data suggest that endogenously generated intracellular clusterin but not exogenous 

clusterin is involved in promoting fibroblast proliferation.  

 

3.6.3 Fibrotic lung fibroblasts display a hyperproliferative phenotype, despite low 
clusterin levels. 

 

The response to the same mediators was also compared between control and fibrotic 

lung fibroblasts, which express low levels of clusterin (Figure 3.20B). Under low serum 

conditions (control 0.4% FBS in DMEM) control lung fibroblast numbers remained 

steady over time when comparing average cell numbers per visual field (0h: 70.5 ± 1.9 

cells, 48 h 70.9 ± 2.5 and at 72 h 66.3 ± 4.2). By contrast numbers of fibroblasts from 

fibrotic lung increased under low serum conditions over time (0h: 85.1 ± 3.1 cells, 48 h 

119.5 ± 1.8 and at 72 h 103.5 ± 5.5). However, in contrast to shRNA-mediated 

clusterin-deficient fibroblasts, naturally, clusterin-deficient fibrotic lung fibroblasts 

exhibited a greater proliferative response than controls.  

At 48 hours, enhanced serum levels (10 % FBS in DMEM) increased cell numbers of 

fibroblasts from control lung from 121.4 ±1.9 cells/field when compared with numbers 

at low serum controls (70.9 ± 2.5). By contrast, numbers of fibroblast from fibrotic lung 

were increased from 119.5 ± 1.8 at low serum to 182.2 ± 2.6 at high serum conditions. 

This difference may be associated with changes in fibrotic lung fibroblasts unrelated to 

diminished clusterin expression. Moreover, fibrotic lung fibroblasts displayed a 

proliferative response to TGF-β1 compared with untreated and non-fibrotic controls.  

 

3.6.4 PGE2 reduced measurable cell numbers of fibrotic lung fibroblasts and 
clusterin-deficient fibroblasts after 48 hours. 

 

Consistent with shRNA-mediated clusterin-deficiency, PGE2, but not exogenous 

clusterin, reduced measurable cell numbers of fibrotic lung fibroblasts 48 hours after 

administration of PGE2 (Figure 3.19D and Figure 3.20A,B). After 48 hours of exposure 

to PGE2 control fibroblasts numbers were reduced in trend to 111.5 ± 3.1 cells in the 
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presence of PGE2 when compared with cell numbers of controls 121.4 ± 5.3. By 

contrast, this difference was significant for fibrotic lung fibroblasts, were cell numbers 

were reduced in the presence of PGE2 146.6 ± 3.2 when compared with controls 182.2 

± 2.6 (Figure 3.20B).  

Reduced cell numbers in response to PGE2 may either be caused by reduced 

proliferation or induced apoptosis. To test if reduced cell numbers in response to PGE2 

do not only result from growth arrest (Fine & Goldstein 1987) but potentially from PGE2-

induced apoptosis, primary lung fibroblasts from control lung were subjected to 

increasing concentrations of PGE2. Consistent with previous reports (Huang et al. 

2009) in lung fibroblasts, PGE2 induced apoptosis in a dose and time dependent 

manner (One way ANOVA P = 0.0326, Figure 3.21A). The data is expressed as 

percent change in apoptosis compared with baseline level of apoptosis for each time 

point (e.g. 19 hours 20.8 ± 1.17 %). Increasing doses and times of PGE2 treatment 

resulted in a significant increase in apoptosis compared with untreated fibroblasts 

(Figure 3.21A, B).  
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Figure 3.20 Effect of clusterin-deficiency on lung fibroblast proliferation.  

Proliferation in shRNA-mediated clusterin-deficient fibroblasts (A) or fibrotic lung fibroblasts (B) 

compared with controls was assessed in response to the indicated stimuli for 48 hours (72 h for 

FBS) by counting DAPI-positive nuclei in a high-throughput immunofluorescence assay. Cell 

numbers were normalised to cell counts of low serum controls (0.4 % FBS in DMEM) and 

expressed as percent change in proliferation relative to control (n=6,). Significances compared 

with untreated controls are marked with (#) symbol and significances between controls vs. 

shCLU or non-fibrotic vs. fibrotic are indicated with (*). */# P < 0.05, **/ ## P < 0.01, ***/### 

P < 0.001, ****/#### P < 0.0001. 
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Figure 3.21 PGE2 induced apoptosis is time and concentration dependent in 
control lung fibroblasts.  

(A) Control fibroblasts were exposed to increasing doses of PGE2 for 19 hours (B) for 19 hours 

to 72 hours at 10 
-6 M in 5 % FBS in DMEM. Apoptosis was determined by Annexin V/DAPI 

staining with FACS analysis. The data is expressed as change apoptosis compared with 

baseline level of apoptosis measured in untreated control cells for each time point. Each point 

represents the mean ± SEM (n=6). *P < 0.05, ****P < 0.0001 compared with untreated controls 

respectively.  
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3.6.5 Summary  
 

The results in this section examining the in vitro proliferative response to high-serum, 

TGF-β1 and PGE2 in clusterin-deficient and fibrotic compared with control fibroblasts. 

The principle findings of these experiments are; 

 

• Serum significantly increased proliferation of control and clusterin-deficient 

fibroblasts. In clusterin-deficient fibroblasts, serum-induced proliferation was 

diminished by approximately 50 % compared with controls.  

 

• TGF-β1 did not affect the proliferative response in control or clusterin-deficient 

fibroblasts. 

 

• PGE2 significantly reduced proliferation in clusterin-deficient and fibrotic 

fibroblasts compared with controls.  

 

• Exogenous clusterin did not affect fibroblast proliferation in control, clusterin-

deficient or fibrotic lung fibroblasts.   

 

• Naturally, clusterin-deficient fibrotic lung fibroblasts exhibited a greater 

proliferative response to FBS than controls.  

 

• Fibrotic lung fibroblasts displayed a proliferative response to TGF-β1 compared 

with untreated and non-fibrotic controls.  

 

• PGE2 induces apoptosis in control lung fibroblasts in a dose and time 

dependent manner.  

 

Together, this section suggests that in control lung fibroblasts clusterin-deficiency 

results in a decreased proliferative response, while exogenous clusterin did not affect 

proliferation. This suggests that intracellular rather than extracellular levels of clusterin 

are involved in regulating lung fibroblast proliferation. As TGF-β1 did not affect 

fibroblast migration or proliferation it is still uncertain why TGF-β1 delayed scratch 

closure in control but not in clusterin-deficient fibroblasts.  

 



                                                                                    Results 

 134 

3.7 Role of clusterin lung fibroblast apoptosis  

 

Clusterin has been associated with reduced apoptosis in prostate cancer cells (Zhang 

et al. 2005) and has been suggested to induce apoptosis in synoviocytes of RA joints 

(Devauchelle et al. 2006). In the present study, we sought to assess the role of 

clusterin in lung fibroblast apoptosis in vitro by investigating the effects of 

clusterin-deficiency and exogenous clusterin on FasL- induced apoptosis in control and 

fibrotic lung fibroblasts. We and others have previously demonstrated that fibrotic lung 

fibroblasts are more resistant to FasL-induced apoptosis when compared with control 

fibroblasts (Maher et al. 2010; Moodley et al. 2004). In order to determine the response 

of human lung fibroblasts to FasL-induced apoptosis, dose and time course 

experiments were conducted.  

3.7.1 FasL- induced apoptosis of primary lung fibroblasts is dose dependent.  

 

Fibroblasts were exposed to doubling concentrations of FasL from 25 ng/ml up to 

200 ng/ml for 19 hours (Figure 3.22A) and apoptosis was quantified by Annexin V/ 

DAPI staining and flow cytometry as described in section 2.20. The proportion of 

apoptotic, untreated control cells was 24.17 ± 1.60 % (mean ± SEM). The proportion of 

apoptosis seen in response to FasL was dose dependent, increasing significantly in a 

near linear way with each dose doubling (One-way ANOVA = 0.0003).  

At a dose of 100 ng/ml, FasL-induced apoptosis was increased by 31.31 ± 7.28 % 

when compared with untreated cells (P < 0.01), this rose to 48.98 ± 6.10 % at a FasL 

dose of 200 ng/ml (P< 0.001). On the basis of these results and previous studies in our 

lab a dose of 100 ng/ml (� 3.18 nM) was used for all subsequent experiments.  

3.7.2 FasL- induced apoptosis of primary lung fibroblasts is time dependent.  

 

Using a dose of FasL of 100 ng/ml, the effect of exposure to FasL on fibroblast 

apoptosis was determined at time points between 19 and 72 hours (Figure 3.22B). By 

19 hours the number of apoptotic cells increased by 17.40 ± 5.28 % and increased 

further by 36.37 ± 7.86 % at 48 hours compared with untreated time matched cells. 

However, at 72 hours the proportion of apoptotic cells only increase by 4.99 ± 4.50 % 

when compared with time-matched untreated cells at 72 hours. A decreased rate of 

apoptotic cells in response to 72 hours FasL compared with 19 and 48 hour time-points 

may be caused by simultaneously induced fibroblast proliferation in response to FasL 

as demonstrated for fibroblast-like synoviocytes (Audo et al. 2014). To exclude 
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potential errors due to proliferative effects in subsequent experiments fibroblasts were 

exposed to FasL for 19 hours.  

 

 

 
 

Figure 3.22 FasL-induced lung fibroblast apoptosis is concentration and time 
dependent.  

(A) Control lung fibroblasts were exposed to doubling doses of recombinant human FasL from 

25 - 200 ng/ml for 19 hours in 5 % FBS in DMEM; or to 100 ng/ml FasL for 19 -72 hours (B). 

Apoptosis was determined by Annexin V/DAPI staining with FACS analysis. The data is 

expressed as change in apoptosis compared with baseline level of apoptosis for each time point 

in untreated control cells (at 19 hours 24.17 ± 1.60 %). Each point represents the mean ± SEM 

of six experimental replicates. ***P < 0.001, ****P < 0.0001 compared with untreated controls 

respectively. 
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3.7.3 Effects of lentiviral transduction mediated clusterin-deficiency on basal and 
FasL- induced apoptosis. 

 

To assess the importance of clusterin in mediating FasL-induced fibroblast apoptosis, 

clusterin-deficient fibroblasts were compared with mock transduced and non-

transduced control lung fibroblasts. Clusterin-deficient fibroblasts, mock-transduced 

and non-transduced control lung fibroblasts were exposed to 100 ng/ml FasL for 19 

hours as described in section 2.19. Data in Figure 3.23 are expressed as change in 

apoptosis compared with baseline level of apoptosis measured in untreated control 

cells (13.10 ± 0.33 %; mean ± SEM). As expected, treatment with FasL resulted in 

increased fibroblast apoptosis in control fibroblasts (by 21.58 ± 6.73 %) and in mock-

transfected fibroblasts (by 40.54 ± 5.01 %; raw FACS data from representative 

fibroblast experiments are shown Appendix 3). 

However, shRNA-mediated clusterin-deficient fibroblasts exhibited significantly higher 

basal rates of apoptosis (56.53 ± 8.52 %) than non-transduced and mock transduced 

fibroblasts. They also demonstrated an increased sensitivity to FasL-induced apoptosis 

(89.78 ± 9.21 %) compared with non–transduced (p < 0.0001) and mock-transduced  

(p < 0.001) fibroblasts. To explore if deficiency of extracellular or intracellular clusterin 

contributes to the differences seen in responsiveness to FasL, clusterin-deficient 

fibroblasts were exposed to extracellular clusterin (10 µg/ml) in the presence and 

absence of FasL and compared with relative levels of apoptosis in untreated control 

fibroblasts. Results shown in Figure 3.24 demonstrate that basal apoptosis in clusterin-

deficient fibroblasts treated with exogenous clusterin (13.23 ± 3.39 %) tended to be 

lower than basal apoptosis levels of untreated control fibroblasts (17.16 ± 1.23 %) and 

that increased FasL-induced apoptosis could be overcome by administration of 

exogenous clusterin. These data suggest that exogenous or secreted clusterin protects 

lung fibroblasts from apoptosis in vitro.  

 

3.7.4 Fibrotic fibroblasts are resistant to FasL-induced apoptosis and exogenous 
clusterin tends to reduce basal and FasL-induced apoptotic levels further. 

 

In order to confirm that fibrotic lung fibroblasts used in this thesis are resistant to FasL-

induced apoptosis, control and fibrotic lung fibroblast were treated with 0 - 200 ng/ml 

FasL for 19 hours. As previously described (Maher et al. 2010), Figure 3.25 

demonstrates that fibrotic lung fibroblasts were more resistant to FasL-induced 

apoptosis than controls. Basal apoptosis in control (9.37 ± 0.63 %) and fibrotic (11.6 ± 



                                                                                    Results 

 137 

0.69 %) lung fibroblasts was not significantly different. However, the proportion of 

apoptosis in fibrotic lung fibroblasts in response to 100 ng/ml FasL (68.3 ± 6.4 %) and 

to 200 ng/ml (118.9 ± 9.0 %) was significantly lower when compared with control lung 

fibroblasts (100 ng/ml: 212.3 ± 22.8 %, p < 0.0001 and 200 ng/ml: 265.2 ± 26.2 %, 

p< 0.0001). Since clusterin expression is reduced in IPF lung fibroblasts compared with 

controls, we sought to determine the effects of exogenous clusterin on apoptosis. In 

accordance with the protective effect of exogenous clusterin in control fibroblasts, we 

found that exogenous clusterin tended to reduce basal and FasL-induced apoptosis in 

fibrotic lung fibroblasts, but this was not statistically significant (Figure 3.26). This 

suggests that exogenous clusterin protects lung fibroblasts from apoptosis.  
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Figure 3.23 Clusterin-deficient fibroblasts are sensitised to basal and FasL-
induced apoptosis.  

Control lung fibroblasts (closed circle), mock-transduced (grey circle) and clusterin-deficient 

fibroblasts (open circle) were exposed to 100 ng/ml of FasL for 19 hours in 5 % FBS in DMEM. 

Apoptosis was determined by Annexin V/DAPI staining with FACS analysis. The data is 

expressed as change in apoptosis compared with baseline level of apoptosis in untreated 

control cells (13.10 ± 0.33 %). Each point represents the mean ± SEM of six experimental 

replicates. *P < 0.05, **P < 0.01 ***P < 0.001, ****P < 0.0001 compared with untreated un-

transduced controls. 
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Figure 3.24 Increased sensitivity to basal and FasL-induced apoptosis is 
reversed by exogenous clusterin. 

Control (grey circle) and clusterin-deficient fibroblasts (open circle) were exposed to 100 ng/ml 

of FasL for 19 hours in 5 % FBS in DMEM. Apoptosis was determined by Annexin V/DAPI 

staining with FACS analysis. The data is expressed as change in apoptosis compared with 

baseline level of apoptosis in untreated control cells (17.16 ± 1.23 %). Each point represents the 

mean ± SEM of five experimental replicates. **P < 0.01 ***P < 0.001, compared with untreated 

controls. 
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Figure 3.25 Fibrotic lung fibroblasts are resistant to FasL-induced apoptosis 
when compared with control lung fibroblasts. 

Control lung fibroblasts (circle) and fibrotic lung fibroblasts (triangle) were exposed to 0 – 

200 ng/ml of FasL (0 - 6 nM) for 19 hours in 5 % FBS in DMEM. Apoptosis was determined by 

Annexin V/DAPI staining with FACS analysis. The data is expressed as change in apoptosis 

compared with baseline level of apoptosis for each cell line. Basal apoptosis in control (9.37 ± 

0.63 %) and fibrotic (11.6 ± 0.69 %) lung fibroblasts was not significantly different. Each point 

represents the mean ± SEM of five experimental replicates. *P < 0.05 ***P < 0.001, 

****P < 0.0001compared with untreated controls. 
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Figure 3.26 Exogenous clusterin reduces FasL-induced apoptosis in fibrotic 
fibroblasts.  

Fibrotic lung fibroblasts were exposed to 0 - 200 ng/ml of FasL (3 - 6 nM) for 19 hours in the 

presence (open triangle) and absence (closed triangle) of exogenous clusterin (10 µg/ml). 

Apoptosis was determined by Annexin V/DAPI staining with FACS analysis. The data is 

expressed as change in apoptosis compared with baseline level of apoptosis (11.6 ± 0.69 %). 

Each point represents the mean ± SEM of five experimental replicates. ****P < 0.0001, 

compared with untreated controls, respectively. 
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3.7.5 Summary  
 

The results in this section examined the in vitro apoptotic response to clusterin-

deficiency in control and fibrotic lung fibroblasts in response to FasL compared with 

control lung fibroblast. The principle findings of these experiments demonstrate; 

 

• The apoptotic response of control lung fibroblasts to FasL is dose-dependent 

with a measurable increase in apoptosis detectable at a FasL concentration of 

25 ng/ml and continued to increase up to 200 ng/ml.   

 

• FasL-induced apoptosis of control lung fibroblasts increases with the duration of 

FasL exposure up to 48 hours. At later times the assay is unstable 

(proliferation).   

 

• Clusterin-deficient fibroblasts are sensitised to basal and FasL-induced 

apoptosis when compared with mock- and un-transduced controls.  

 

• Increased sensitivity to apoptosis in clusterin-deficient lung fibroblasts can be 

overcome by administration of extracellular clusterin.   

 

• Fibrotic lung fibroblasts are resistant to FasL-induced apoptosis when 

compared with fibroblasts derived from control lungs.   

 

• In fibrotic lung fibroblasts, exogenous clusterin tends to reduce basal and FasL-

induced apoptotic levels further.  

 

In summary, this data suggests that clusterin-deficient fibroblasts are sensitised to 

basal and FasL-induced apoptosis, which could be overcome by exogenous clusterin.  

This suggests that exogenous clusterin protects against basal and FasL-induced 

apoptosis. Fibrotic lung fibroblasts were resistant to FasL-induced apoptosis when 

compared with control lung fibroblasts and exogenous clusterin tends to reduce FasL-

induced apoptotic levels further.  
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3.8 In vivo LRP-2 receptor expression in normal and IPF lung.  

 

LRP-2 (low-density lipoprotein-related protein 2), megalin or glycoprotein 330 has been 

identified as an endocytotic receptor for clusterin in polarised epithelial cell lines 

(Kounnas et al. 1995; Zlokovic et al. 1996; De et al. 2014). LRP-2 is expressed in 

primary alveolar epithelial cells in rodent lungs (Zheng et al. 1994; Kounnas et al. 1994) 

but the distribution of LRP-2 in the human lung has not previously been described. In 

addition, it is not known if LRP-2 receptor expression changes in the lungs of patients 

with pulmonary fibrosis. To assess the LRP-2 distribution in healthy and fibrotic lung 

tissue, immunohistochemistry was performed on control and IPF lung tissue as 

described in section 2.10. LRP-2 localisation on individual lung cell types was 

assessed by two independent reviewers.  

 

In control lung tissue, LRP-2 localised strongly to alveolar monocytes/macrophages 

and weakly or moderately to bronchial epithelial cells (Figure 3.27A and Figure 3.28A). 

All other cell types, including epithelial, fibroblast-like and smooth muscle cells, showed 

low or undetectable staining for LRP-2. In IPF lung tissue immunohistochemical 

staining was similar to that of control lung tissue. In IPF lung LRP-2 staining localised 

to increased numbers of infiltrated macrophages and was predominantly localised to 

the cell surface of those cells (Figure 3.27B). Bronchial epithelial cells displayed a 

similar pattern of LRP-staining compared with control lungs while staining in fibroblast 

in fibrotic tissue was weak or undetectable (Figure 3.28B).  
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Figure 3.27 LRP-2 immunohistochemical localisation in normal and IPF lung. 

Immunohistochemical staining for LRP-2 in paraffin-embedded sections of normal human lung 

(A) and IPF lung (B). Specific staining is red-brown, nuclei are counterstained blue with 

haematoxylin. In control lung, positive staining localised predominantly to alveolar macrophages 

(stars), while modest or undetectable staining was observed for fibroblast-like cells (arrows). In 

IPF lung positive LRP-2 signal localises to increased numbers of alveolar macrophages (stars) 

and is absent in fibroblasts (arrows). Scale bar represents 100 µm. 
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Figure 3.28 LRP-2 expression in bronchial epithelial cells of control and IPF lung 
tissue.  

Immunohistochemical staining for LRP-2 in paraffin-embedded sections of normal human lung 

(A) and IPF lung (B). Specific staining is red-brown, nuclei are counterstained blue with 

haematoxylin. Staining for LRP-2 is similar in bronchial epithelial cells in control and fibrotic lung 

and located to the cytoplasm and displayed a mixed diffuse and punctate staining for LRP-2 in 

both control lung and fibrotic lung (arrows). Smooth muscle cells in fibrotic lung showed no 

detectable signal for LRP-2 (arrow head). Scale bar represents 50 µm. 
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3.9 In vitro assessment of the role of clusterin in modulating protein secretion 

in alveolar and blood-derived macrophages and bronchial epithelia cells. 

3.9.1 Exogenous clusterin induces the secretion of pro-inflammatory cytokines/ 
chemokines and MMP-9 in human alveolar macrophages. 

 

Pulmonary fibrosis has been associated with alternatively activated macrophages 

(Stahl et al. 2013; Mora et al. 2006), which express pro-fibrotic genes such as TGF-β1, 

IGF-1 and PDGF (Wynes & Riches 2003; Gordon 2003; Wynn et al. 2011). 

Further studies outline the significance of altered macrophage polarisation and their 

contribution to the onset and progression of pulmonary fibrosis (Murthy et al. 2015; 

Wermuth & Jimenez 2015).  

Studies in murine macrophages have shown that clusterin induces TNFα secretion and 

the chemotactic migration of monocytes/macrophages (Y. J. Shim et al. 2012). 

However, the role of clusterin in modulating the phenotype and protein secretion of 

human alveolar macrophages is unknown. Similar to alveolar macrophages, bronchial 

epithelial cells secrete various cyto- and chemokines inducing migration and 

proliferation in fibroblasts, contributing to the progression of pulmonary fibrosis 

(Calabrese et al. 2005), but the effects of exogenous clusterin on the secretome of 

bronchial epithelial cells is still unknown.  

This section focuses on the question whether the reduced availability of exogenous 

clusterin in IPF-BALF may affect the recruitment and phenotype of alveolar 

macrophages and the secretion of cytokines in bronchial epithelial cells. Having 

demonstrated that the LRP-2 receptor is highly expressed on the surface of alveolar 

macrophages and bronchial epithelial cells, the effect of exogenous clusterin on 

secreted pro- and anti-inflammatory proteins in alveolar macrophages and bronchial 

epithelial cells in mono- and co-culture were investigated in vitro. During the course of 

the research presented in this thesis, alveolar macrophages were isolated from one 

control donor in collaboration with Dr. Ben Calvert, however, bronchial epithelial 

explants for cell culture could not be established. Therefore, transformed human 

bronchial epithelial cells (BEAS-2B), developed by immortalization of normal human 

bronchial epithelial cells were used, on the basis that it has been demonstrated that 

BEAS-2B cells display many characteristics of bronchial epithelial cells. Furthermore, 

BEAS-2B cells are widely used in the in vitro investigation of bronchial cell behaviour 

(Park et al. 2015) and in pulmonary fibrosis research (Patel et al. 2015; Cabrera-

Benítez et al. 2012).  
To begin to investigate the effects of exogenous clusterin, human alveolar 

macrophages derived from a healthy control lung and BEAS-2B cells were (co-) 
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cultured as described in section 2.21 for 24 hours before being exposed to increasing 

concentrations of exogenous clusterin (1-5 µg/ml). This concentration was chosen on 

the basis of previous experiments with macrophages (Shim et al. 2011). 

For all experiments, monocultures of each cell line were maintained on the same 96 

well plate under the same conditions as the cell-co-culture. This was to control for 

effects resulting from the co-culture of alveolar macrophages with BEAS-2B cells.  

The effects of exogenous clusterin on protein secretion in alveolar macrophages and 

BEAS-2B alone or in co-culture are demonstrated in Figure 3.29. Increasing doses of 

exogenous clusterin-induced the secretion of TNFα by ten-fold for 5 µg/ml exogenous 

clusterin (from 2.19 ± 0.28 pg/ml to 20.59 ± 1.32 pg/ml). This data is consistent with 

previous reports in murine Raw264.7 macrophages (Y. J. Shim et al. 2012) but has not 

been shown for human macrophages previously. 

In addition, exogenous clusterin-induced the secretion of TNFα in BEAS-2B cells alone 

(from 0.3 ± 0.03 pg/ml to 18.02 ± 0.33 pg/ml) or in co-culture with alveolar 

macrophages (from 2.23 ± 2.43 pg/ml to 19.67 ± 0.13 pg/ml) as demonstrated in Figure 

3.29A.  Further analysis of chemotactic cytokine secretion in alveolar macrophages in 

response to exogenous clusterin show that MCP-1, MIP-1β, RANTES secretion is in 

trend induced in response to exogenous clusterin, which is has been previously 

reported in a model with Raw264.7 macrophages (Y. J. Shim et al. 2012). Furthermore 

and in accordance with findings in human monocytic cell line THP-1 and human 

primary monocytes MMP-9 secretion was induced by exogenous clusterin in alveolar 

macrophages (Shim et al. 2011). Together this data suggests that exogenous clusterin 

induces the secretion of pro-inflammatory TNFα and chemotactic cytokines. To confirm 

this and extend the cytokine profile of clusterin treated alveolar macrophages additional 

cytokines were analysed via luminex analysis. Similarly, to TNFα secretion, the 

secretion of other pro-inflammatory cytokines such as IL-6, IL-8 and IL-5 was increased 

in alveolar macrophages in response to increasing exogenous clusterin levels, while 

anti-inflammatory cytokine IL-1ra secretion remained stable in response to exogenous 

clusterin (Figure 3.29 B-F). The effects of clusterin on cytokines secretion was 

predominantly observed for alveolar macrophages in monoculture but were persistent 

for IL-8 and IL-6 in co-culture with BEAS-2B cells. However, no synergetic or additive 

effects on cytokine alteration was observed between BEAS-2B and alveolar 

macrophages. Ultimately, exogenous clusterin-induced changes in chemokine and 

cytokine secretion in BEAS-2B monocultures were limited to clusterin-induced TNFα 

secretion.  
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 Figure 3.29 (continued over the page) 
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Figure 3.29 Exogenous clusterin induces the secretion of pro-inflammatory 
cytokines / chemokines and MMP-9 in alveolar macrophages in mono- or in co-
culture with BEAS-2B cells. 

BEAS-2B cells were cultured at 1 x 104 cells per well in a 96-well plate in medium containing 

10 % FBS for 24 hours. Primary alveolar macrophages (AM) were added to wells containing 

BEAS-2B or seeded in empty wells for monoculture. Cells were then exposed to exogenous 

clusterin (1 - 5 µg/ml) for 24 hours. Cytokine, chemokine, and MMP-9 secretion were assessed 

via Luminex analysis. Bars represent the mean ± SEM of six experimental replicates. *P < 0.05,  

**P < 0.01, ***P < 0.001, ****P < 0.0001, compared with untreated controls respectively. 

 

 

Pulmonary administration of TNFα has been shown to reduce the fibrotic burden in 

mice with bleomycin-induced fibrosis (Redente et al. 2014). In this study, it was 

suggested that TNFα reduced the number and programming status of profibrotic, 

alternatively programmed macrophages. The findings in this section suggest that 

exogenous clusterin shifts the phenotype of alveolar macrophages, resulting in 

increased secretion of TNFα levels and other pro-inflammatory cyto- and chemokines. 
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3.9.2 Exogenous clusterin induces the secretion of pro-inflammatory 
cytokines/chemokines and MMP-9 in human-blood-derived macrophages. 

 

The following subsection focuses on the effect of exogenous clusterin on macrophage 

programming. Due to a limitation in accessibility of human alveolar macrophages, 

subsequent studies were conducted with blood monocyte derived macrophages on the 

basis that alveolar macrophages, at least in part, originate in vivo from blood-derived 

monocytes (Landsman & Jung 2007). For this purpose, monocytes were isolated from 

human blood as described in section 2.21. Monocytes differentiated into macrophages 

in the presence of M-CSF (100 ng/ml) within four days. After 72 hours of treatment with 

1 µg/ml exogenous clusterin supernatants were collected and analysed via luminex 

assay. The results outlined in Figure 3.30 highlight a number of changes in protein 

secretion observed in one donor following clusterin administration in M-CSF 

differentiated macrophages (“M0”). This experiment was repeated for two donors. Due 

to a high variability in donor responses, the observed data derived from two donors 

have not been presented in one graph. Results for the same method in a second donor 

are displayed in Appendix 4.  

Consistent with results in alveolar macrophages (section 3.9) clusterin tends to induce 

the secretion of TNFα, IL-6, and MIP-1α and significantly induces the secretion of 

MMP-9 and IL-8 compared with untreated controls when administered to differentiated, 

unpolarised macrophages for 72 hours (red box in Figure 3.30). Although, the values 

for TNFα, IL-6, and MIP-1α are not significant in a two-way ANOVA presented with 

data obtained from “M1” polarised macrophages, the fold-increase in response to 

exogenous clusterin compared with no clusterin was as follows: For the donor 

displayed here, clusterin tended to induce measurable levels of TNFα from 1.8 ± 0.2 to 

pg/ml 10.8 ± 0.9 pg/ml and IL-6 from 38.6 ± 4.7 to 68.1 ± 19.2 pg/ml in unpolarised 

macrophages. Additionally, the secretory levels of MIP-1α were increased in trend from 

35.4 ± 0.3 pg/ml to 72.0 ± 3.2 pg/ml in unpolarised macrophages. Secretory IL-8 was 

significantly increased by exogenous clusterin from 2671.7 ± 637.8 pg/ml to 

15804.0 ± 487.1 pg/ml (p < 0.01) as well as MMP-9 from 275.9 ± 25.5 ng/ml to 

815.3 ± 33.4 ng/ml. The data obtained from donor 2 (Appendix 4) are consistent with 

the data from donor 1 presented here, except for the results on MMP-9. In donor 2 

exogenous clusterin did not increase the secretion of MMP-9 in unpolarised 

macrophages. Together, this data suggests that clusterin-induced the secretion of pro-

inflammatory cytokines in unpolarised macrophages from two donors, but not for 

MMP-9. This data is preliminary and needs to be confirmed in a larger donor group for 

a wider range of clusterin concentrations (see section 3.9.3.). 
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To begin to investigate the potential role of exogenous clusterin in modulating between 

different induced polarisation states, macrophages were treated with LPS/IFNγ 

(10 ng/ml and 50 ng/ml) to polarize towards “M1” or IL-4 (20ng/ml) to polarize towards 

an “M2” phenotype for 72 hours, in the presence or absence of exogenous clusterin 

(1µg/ml). As expected, stimulation with LPS/IFNγ induced a “M1”-like phenotype in 

macrophages measurable by an induced secretion of pro-inflammatory cytokines, such 

as TNFα, IL-6, IL-8; MIP-1α. MMP-9 levels in response to LPS/IFNγ tended to 

decrease when compared with unpolarised “M0”-like macrophages in both donors 

(Figure 3.30, Appendix 4). Further analysis demonstrates that the presence of 

exogenous clusterin during the polarisation towards an “M1”-like phenotype does not 

alter the levels of pro-inflammatory cytokines when compared with “M1” controls 

without exogenous clusterin. MMP-9 levels in “M1”-like macrophages did not change in 

response to exogenous clusterin when compared to “M1”-like macrophages without 

clusterin.  

Meanwhile, in macrophages that were polarised with IL-4 towards an “M2”-like 

phenotype, pro-inflammatory protein secretion was similar to that of un-polarised 

controls (Figure 3.30, Appendix 4). Besides, the presence of exogenous clusterin 

during the polarisation towards “M2”- phenotype did not alter pro-inflammatory 

cytokines and MMP-9 secretion significantly when compared with polarised controls 

without exogenous clusterin. Together, the present data suggests that exogenous 

clusterin induces the secretion of pro-inflammatory cytokines and MMP-9 in 

unpolarised macrophages, but did not revert or increase the secretion of those 

cytokines in the course of polarisation to towards an “M1” or “M2” phenotype.  
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Figure 3.30 Donor 1: Effect of exogenous clusterin on cytokine and MMP-9 
secretion during polarisation in blood-derived macrophages.  

Human blood-derived CD14+ cells were seeded into a 96 well plate (1 x 105 cells/well) and were 

allowed to differentiate into macrophages in the presence of M-CSF (100 ng/ml) for four days. 

Subsequently, cells were stimulated towards a “M1” phenotype with LPS / IFNγ (at 10 ng/ml for 

LPS and 50 ng/ml for IFNγ) or a “M2” phenotype with IL-4 (20 ng/ml) or remained untreated 

(“M0”) in the presence and absence of human plasma-derived clusterin (1 µg/ml) for 72 hours. 

Cytokine, chemokine and MMP-9 secretion was assessed via Luminex analysis. Bars represent 

the mean ± SEM of three experimental replicates; significances compared with untreated 

controls respectively. Data were generated in a second donor and are displayed in  Appendix 4. 
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3.9.3 Exogenous clusterin-induced alteration in cytokine and MMP-9 secretion in 
unpolarised macrophages is dose-dependent.  

 

To begin to explore if the effects of clusterin on secreted proteins in unpolarised 

macrophages (“M0”) are dose dependent, M-CSF differentiated macrophages from a 

third donor were stimulated with three-fold, six-point increasing concentrations of 

exogenous clusterin for 72 hours. To determine the effect on other 

cytokines/chemokines a 25-plex luminex assay was used to measure 25 proteins in cell 

supernatants simultaneously. Human plasma-derived clusterin mediated a dose-

dependent increase in secretion of pro- and anti-inflammatory cytokines (Figure 3.31), 

chemotactic cytokines and MMP-9 (Figure 3.32) (One-way ANOVA MCP-1: P= 0.0053, 

MMP-9: P = 0.0008 and for all other P< 0.0001). Other secretory proteins were not 

detectable in response to low clusterin concentrations from but showed a trend towards 

an increase in response to higher concentrations of exogenous clusterin (IL-12 and 

IL-2R, Appendix 5). All other analytes were not detected in the cell supernatants (GM-

CSF, IL-4, Eotaxin, MIG, IL-12, IL-17, IL-13, IL-7, IL-15, IFN-α, IL-5, IL-2, IFNγ). The 

levels of secreted TNFα were increased from 1.36 ± 0.40 pg/ml (mean ± SEM) to 

150.68 ± 20.09 pg/ml following treatment with exogenous clusterin at the highest dose 

of 30 µg/ml. 

 

This data was obtained from a third donor and consistent with trends of increase 

cytokine secretion observed with 1 µg/ml exogenous clusterin in donor 1 and 2 (section 

3.9.2). Due to a significantly higher response with exogenous clusterin concentrations 

> 1 µg/ml observed in the third donor data presented in section 3.9.2 need to be 

validated using higher exogenous clusterin concentrations (5 µg/ml). Consecutive 

experiments were, therefore, conducted with an exogenous clusterin concentration of 

5 µg/ml.  
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Figure 3.31 Donor 3: Exogenous clusterin-induced secretion of pro- and anti-
inflammatory cytokines is concentration dependent.  

Human blood-derived monocytes were seeded onto a 96-well plate (1 x 105 cells/well), 

differentiated to macrophages with M-CSF (100ng/ml) for four days and then exposed to human 

plasma-derived clusterin at three-fold increasing doses for 72 hours or remained untreated. 

Cytokine secretion was assessed via Luminex analysis. Bars represent the mean ± SEM of 

three experimental replicates; *P < 0.05,  **P < 0.01, ***P < 0.001, ****P < 0.0001 compared 

with untreated controls.  
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Figure 3.32 Exogenous clusterin-induced secretion of chemotactic cytokines and 
MMP-9 is concentration dependent. 

Human blood-derived monocytes were seeded onto a 96-well plate (1 x 105 cells/well), 

differentiated to macrophages with M-CSF (100ng/ml) for four days and then exposed to human 

plasma-derived clusterin at three-fold increasing doses for 72 hours or remained untreated. 

Cytokine secretion was assessed via Luminex analysis. Bars represent the mean ± SEM of 

three experimental replicates; *P < 0.05,  **P < 0.01, ***P < 0.001, ****P < 0.0001 compared 

with untreated controls. 
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3.9.4 TNFα neutralising antibody attenuates the effect of induced cytokine secretion 
by exogenous clusterin in human blood-derived macrophages.  

 

TNFα is considered to be a master cytokine in inflammation and is reportedly increased 

in patients with pulmonary fibrosis (Gauldie et al. 1993; Ziegenhagen et al. 1998), 

particularly by macrophages. In vivo studies in bleomycin-induced lung injury 

suggested that blocking TNFα signalling attenuates the development of fibrosis (Piguet 

et al. 2002; Zhang et al. 1997a; Ortiz et al. 1998; Oikonomou et al. 2006) . The 

importance of soluble TNFα in contributing to the pathogenesis of fibrosis may underlay 

its downstream induction of many cytokines and chemokines (Oikonomou et al. 2006; 

Zhang et al. 1997b), particularly in macrophages a central cell in the cytokine network 

of the lung (Scheule et al. 1992; Parameswaran & Patial 2010). To begin to explore if 

exogenous clusterin exerts its induction of pro-inflammatory cytokines in macrophages 

through autocrine/paracrine effects induced by increased levels of TNFα, a TNFα 

neutralising antibody experiment was conducted.  

As a representative of pro-inflammatory cytokines IL-6 and for chemotactic cytokines 

MIP-1β was measured in the cell supernatant after 72 hours of exposure to exogenous 

clusterin (5 µg/ml) in the presence or absence of TNFα-neutralising antibody or 

matching isotype control (10 µg/ml). Consistent with previous results in sections 3.9 - 

3.9.3, exogenous clusterin increased levels of secretory TNFα significantly (Figure 

3.33A) by more than 40 fold, from 3.08 ± 0.36 pg/ml to 132.31 ± 11.40 pg/ml (mean ± 

SEM). As expected, no secreted TNFα was detectable in supernatants of macrophages 

with and without exposure to exogenous clusterin in the presence of TNFα neutralising 

antibody.  

Consistent with the results observed for TNFα levels, IL-6 and MIP-1β levels were 

increased in response to exogenous clusterin (Figure 3.33B,C; P < 0.0001, IL-6: from 

7.41 ± 2.85 to 358.75 ± 30.52 pg/ml and MIP-1β: from 21.52 ± 0.92 to 2786.81 ± 

625.41 pg/ml). In the presence of TNFα-neutralising antibodies, this effect was 

attenuated by 98.06 ± 0.36 % for MIP-1β and 55.90 ± 4.06 % for IL-6 when compared 

with exogenous clusterin treated cells in the absence of neutralising antibodies 

(P< 0.0001). Ultimately, these preliminary data suggest that induced cytokine 

secretion, here examined for IL-6 and MIP-1β, is at least in part mediated through 

autocrine/paracrine effects of induced secretory TNFα in response to exogenous 

clusterin. However, this data needs to be confirmed experimentally with an isotype 

control, which does not alter cytokine levels when compared with untreated control. 

Unfortunately, the isotype control performed poorly since it did affect secretory TNFα in 

supernatants of macrophages exposed to isotype antibodies (in presence or absence 
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of exposure to exogenous clusterin), but demonstrated significantly different cytokine 

values when compared with untreated control in the presence of exogenous clusterin 

(p < 0.0001). 

 

3.9.5 Polarisation towards an “M1” phenotype induces the secretion of clusterin in 
human blood-derived macrophages.  

 

In this subsection, it was investigated whether levels of secretory clusterin are altered 

during activation of human blood-derived macrophages. To test this, human blood-

derived macrophages were differentiated with M-CSF for four days and then subjected 

to LPS (10 ng/ml) and/or IFNγ (50 ng/ml) and IL-4 (20 ng/ml) for 72 hours. In 

accordance with immunohistochemical staining for clusterin in sections of healthy 

control lung (Figure 3.1), ELISA analysis demonstrated that M-CSF differentiated 

macrophages (“M0”) secrete low levels of clusterin (0.53 ± 0.12 ng/ml, mean ± SEM, 

Figure 3.34). Interestingly, secretory clusterin levels increased upon activation with 

LPS and further increased when LPS and IFNγ were combined (19.69 ± 0.52 ng/ml, 

mean ± SEM, Figure 3.34). In contrast, secretory clusterin levels were not altered when 

macrophages were polarised towards an “M2” phenotype with IL-4 when compared 

with untreated control cells (Figure 3.34).  
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Figure 3.33 TNFα neutralising antibody attenuates the effect of exogenous 
clusterin on induced cytokine secretion. 

Human blood-derived monocytes were seeded onto a 96-well plate (1 x 105 cells/well), 

differentiated to macrophages with M-CSF (100 ng/ml) for four days and then exposed to 

human plasma-derived clusterin (5 µg/ml) in the presence or absence of TNFα neutralising 

antibody, isotype control (10 µg/ml) or remained untreated. IL-6 and MIP-1β secretion was 

assessed via Luminex analysis. Bars represent the mean ± SEM of three experimental 

replicates; ****P < 0.0001 compared with untreated controls. 

 



                                                                                    Results 

 159 

 

 

 

 

 

 

               
Figure 3.34 Macrophage activation with LPS and/or IFNγ induces the secretion of 
clusterin.  

Human blood-derived monocytes were seeded onto a 96-well plate (1 x 105 cells/well), 

differentiated to macrophages with M-CSF (100ng/ml) for four days and then exposed to LPS 

(10 ng/ml) and/or IFNγ (50 ng/ml) or IL-4 (20 ng/ml) for 72 hours. Clusterin secretion was 

assessed via ELISA analysis. Bars represent the mean ± SEM of three experimental replicates; 

****P < 0.0001 compared to untreated controls. 
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3.9.6  Summary 
 

The experiments reported in this section have explored the production and in vitro 

effects of exogenous clusterin on pro-inflammatory and anti-inflammatory cytokine/ 

chemokine secretion in primary alveolar, blood-derived macrophages and BEAS-2B 

cells. The principle findings reported in this section are;  

 

• Clusterin receptor LRP-2 localises to bronchial epithelial cells in control lung.  

Alveolar macrophages of control lung tissue express clusterin receptor LRP-2 

on the cell surface.   

 

• Localisation and intensity of LRP-2 in IPF lung tissue is similar to that of control 

lung. However in fibrotic lung LRP-2 was located to increased numbers of 

alveolar macrophages.    

 

• Exogenous clusterin induces the secretion of TNFα in alveolar macrophages, in 

bronchial epithelial cells (BEAS-2B) and in co-culture of both cell types.   

 

• Exogenous clusterin induces the secretion of TNFα, pro-inflammatory 

cytokines/chemokines and MMP-9 in human blood derived, unpolarised 

macrophages.   

 

• Exogenous clusterin does, however, not alter protein secretion during the 

polarisation towards an “M1” or “M2” phenotype, when polarised in the 

presence of LPS/IFNγ or IL-4.   

 

• The induction of pro-and anti-inflammatory cytokines by exogenous clusterin in 

human blood-derived macrophages is dose dependent. TNFα neutralising 

antibody attenuates the effect of exogenous clusterin on induced cytokine 

secretion.  

 

• Polarisation towards an “M1” phenotype induces the secretion of clusterin in 

human blood-derived macrophages. This may provide an autocrine feedback 

loop to induce “M1” polarisation in unpolarised “M0” macrophages. 
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4 Discussion  

4.1 Overview  

The development of pulmonary fibrosis is incompletely understood. Although aberrant 

injury repair mechanisms, with persistence of increased numbers of 

fibroblast/myofibroblast cells driving excess production of extracellular matrix proteins, 

are considered to be central to its pathogenesis (McAnulty 2007). It is, therefore, 

essential to understand the mechanisms, which contribute to the development of 

fibrosis. Protein signatures of IPF-BALF may provide new insights into mechanisms 

associated with altered proteins linked to disease pathology. Clusterin, a multifunctional 

protein, has been identified as one of 15 proteins reduced in BALF of IPF patients 

when compared with healthy controls (T. H. Kim et al. 2010). Clusterin is ubiquitously 

expressed and has been reported to regulate multiple cell functions of fundamental 

importance both inside and outside cells (Kapron et al. 1997; Carnevali et al. 2006). 

 

To date there is little information on the distribution and role of clusterin in the normal 

human lung, the study from Kim et al. is currently the only report that adumbrates an 

association of clusterin with the pathology of pulmonary fibrosis. Interestingly, in other 

human disease and animal models up or down-regulation of clusterin was associated 

with diminution or enhancement of fibrogenesis respectively: In human liver fibrosis 

clusterin was one of the top five markers with the highest reliability to change 

expression between the early stages and more advanced hepatic fibrosis 

(Gangadharan, Bapat, Rossa, Robin Antrobus, et al. 2012). Furthermore, clusterin-

deficient mice exhibited accelerated renal fibrosis in response to unilateral ureteral 

obstruction, when compared with wild type-mice (Jung et al. 2012). In addition, 

clusterin has been suggested to act as a primary cellular defence mechanism against 

progressive injury associated with progressive intestinal fibrosis in dogs (Greer et al. 

2006). However, the localisation of clusterin in normal and fibrotic lung, the 

mechanisms contributing to its down-regulation in IPF-BALF and its role in the normal 

lung as well as in the pathogenesis of pulmonary fibrosis have not been investigated. 

These observations led to the generation of the hypothesis examined in this thesis; 

that clusterin plays an important role in normal human lung homoeostasis and 

changes in clusterin distribution and expression may be protective against the 

pathogenesis of pulmonary fibrosis.  
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To begin to address this hypothesis clusterin distribution was examined in human 

control and IPF lung tissue. This study immunohistochemically examined the 

expression and localisation of clusterin in normal and fibrotic human lung. This analysis 

demonstrated that in human control lung clusterin associated with fibroblast-like cells, 

bronchial epithelial cells and elastin in vessel walls. To question disease relevance, 

staining for clusterin in fibrotic lung was performed and compared with intensity and 

staining pattern in normal lung tissue. Strikingly, this analysis demonstrated weak or 

undetectable clusterin staining of fibroblasts in fibrotic regions but not in 

morphologically normal areas of fibrotic lung. Utilising fibroblast isolated from control 

and fibrotic lungs this observation was validated in vitro: Messenger and protein 

expression analysis confirmed that clusterin levels were decreased in fibrotic lung 

fibroblasts compared with controls. Further in vitro analysis revealed that TGF-β1 is 

capable of down-regulating clusterin expression in control fibroblasts, as demonstrated 

by mRNA, immunocytochemistry and western blot analysis. Since TGF-β1 mediates the 

differentiation of fibroblasts to myofibroblasts (Desmoulière et al. 1993), it was 

investigated if TGF-β1-mediated myofibroblast differentiation is dependant on TGF-β1-

induced clusterin down-regulation. However, shRNA-mediated down-regulation of 

clusterin did not affect TGF-β1-induced fibroblast differentiation assessed by αSMA 

expression, collagen I expression and deposition. Since there was no evidence for a 

role of clusterin in fibroblast differentiation, other fibroblast functions in response to 

altered intracellular and extracellular clusterin were addressed: In IPF several lines of 

evidence demonstrate that uncontrolled fibroblast accumulation is at least partly due to 

enhanced fibroblast migration (Suganuma et al. 1995; Sakai & Andrew M Tager 2013), 

proliferation (Calabrese et al. 2005; Khalil et al. 2005a) and fibroblast/myofibroblast 

resistance to apoptosis (Maher et al. 2010; Moodley et al. 2004).  

Based on the characteristic pattern of staining and differences observed in fibrotic lung 

the functional effects of clusterin on human lung fibroblast proliferation, migration and 

apoptosis in vitro in fibroblasts isolated from control and fibrotic lung were investigated.  

To model the effects of clusterin-deficiency in lung fibroblasts, fibroblasts from one 

control lung were isolated and clusterin messenger RNA and protein expression was 

stably silenced via shRNA-mediated knockdown targeting clusterin mRNA. Although 

this procedure was performed for fibroblasts from another control lung, the affects of 

clusterin-deficiency on fibroblast differentiation and function were only studied in cells 

derived from one donor. These studies provide first insights into clusterin dependent 

effects in lung fibroblasts and were established to model for the effects of clusterin in 

this cell type. Administration of human plasma-derived clusterin was used to model 

changes in secretory clusterin levels. Clusterin has been previously reported to 
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promote proliferation of epithelial and vascular smooth muscle cells after injury (Nguan 

et al. 2014; Miyata et al. 2015). To study if clusterin is involved in regulating fibroblast 

proliferation of control and fibrotic lung fibroblasts, cell proliferation in response to 

proliferative and anti-proliferative stimuli was assessed via a DAPI-cell count based 

proliferation assay. High-throughput fluorescence analysis of DAPI stained nuclei 

showed that shRNA-induced clusterin-deficiency decreased fibroblast proliferation in 

response to serum, suggesting that clusterin is involved in regulating fibroblast 

proliferation. In contrast, fibrotic lung fibroblasts with low clusterin levels exhibited a 

hyperproliferative phenotype compared with non-fibrotic control fibroblasts that express 

higher levels of clusterin. Differences in the proliferative response in control compared 

with fibrotic lung fibroblasts may be unrelated to diminished clusterin expression. 

Consistent with previous studies in our group and others (Maher et al. 2010; Moodley 

et al. 2004), FACS analysis demonstrated that fibroblasts isolated from fibrotic lung 

tissue were resistant to FasL-induced apoptosis when compared with control lung 

fibroblasts. Additionally, results in this thesis suggest that shRNA-mediated down-

regulation of clusterin-induced basal and FasL-induced apoptosis in control fibroblasts, 

which was overcome by addition of exogenous clusterin. This supports that clusterin is 

involved in protecting lung fibroblasts from basal and FasL-induced apoptosis. 

Interestingly, when assessing the effects of exogenous clusterin on FasL-induced 

apoptosis; it became evident that exogenous clusterin tended to further potentiate 

resistance to apoptosis in fibrotic lung fibroblasts. This suggests that the down-

regulation of clusterin in IPF fibroblasts may be a physiologically appropriate, but 

insufficient, response of these cells intended to limit the development of an 

environment favouring unopposed fibroproliferation.  

 

Apart from a fibrosis-specific alteration in clusterin expression in fibrotic lung 

fibroblasts, immunohistochemical staining demonstrated that clusterin staining was 

associated with amorphous elastin-rich deposits, a characteristic hallmark within fibrotic 

regions in IPF (Parra et al. 2007). Future studies would be necessary to confirm the 

cause for this association, but the current literature suggests that clusterin, known to 

act as extracellular chaperone, may prevent protein aggregation or clearance of 

defective or degraded elastin (Janig et al. 2007; Poon et al. 2002; Bartl et al. 2001). 

While clusterin was sporadically expressed in bronchial epithelial cells of normal adult 

lung; clusterin staining was both more frequent and intense in IPF lungs. The increased 

expression of clusterin in the bronchial epithelium in IPF may be a reflection of 

epithelial stress/injury or, alternatively, a component of the aberrant re-expression of 

development genes that occurs in IPF (Selman et al. 2008). 
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Alveolar macrophages express clusterin receptor LRP2, suggesting that these cells are 

responsive to altered clusterin levels in the lung. In vitro studies with human alveolar 

and blood-derived macrophages, demonstrate that exogenous clusterin induces the 

secretion of pro-inflammatory cytokines/chemokines, including TNFα. Reduced levels 

of secretory clusterin in IPF may potentially promote the polarisation towards an “M2” 

macrophage phenotype, which has been shown to contribute to the pathogenesis of 

IPF (Stahl et al. 2013; Schupp et al. 2015; Keane 2008; Byrne et al. 2016). 

 

In summary, the results presented in this thesis support the notion that in lungs of 

patients with IPF reduced clusterin is at least partly, due to a combination of TGF-β1-

mediated down-regulation of fibroblast synthesis and increased binding to elastin. This 

appears to represent an appropriate but insufficient response to limit fibroproliferation.  

In IPF elastin-associated clusterin may exert its chaperoning activity in order to 

contribute to the quality control of extracellular matrix proteins. Additionally, in vitro 

experiments with alveolar and blood-derived macrophages demonstrated that 

macrophages are polarised towards an “M1-like” phenotype in response to human 

plasma-derived clusterin. In turn, reduced levels of secretory clusterin in the fibrotic 

lung may, therefore, benefit a polarisation towards “M2-like” macrophages, which 

produce pro-fibrotic mediators, including TGF-β1, resulting in further reduction of 

secretory clusterin by lung fibroblasts and progression of pulmonary fibrosis. 

 

Ultimately, this suggests that the alterations of clusterin distribution and expression in 

fibrotic lung are a protective mechanism against the progression of fibrosis in the lung. 

However, further studies are required to fully understand the complex biology of 

clusterin in normal human lung and its role in the pathogenesis of pulmonary fibrosis. 

The following sections will discuss these findings and their implications in more detail.  
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4.2 Clusterin expression in control and fibrotic lung 

 

To our knowledge, this is the first comprehensive demonstration of clusterin expression 

in normal compared with fibrotic lung. Although analysis of clusterin expression in 

bronchial biopsy specimens of smokers and non-smokers has been reported previously 

(Carnevali et al. 2006), a detailed analysis of clusterin expression and distribution in the 

human lung has not been performed. Carnevali and colleagues showed that clusterin 

was mildly expressed in sections of bronchial biopsy specimens and immunostaining 

was markedly increased in the submucosa of biopsy specimens obtained from active 

smokers (Carnevali et al. 2006). Carnevali et al. conclude in their report, that clusterin 

may have a protective effect in the airways of smokers. This report, however, did not 

outline the cell specific clusterin expression and potential implications in cell function. 

Furthermore, fibrosis relevant changes in clusterin distribution in the human lung 

remain unreported. Consequently, immunohistochemical staining was performed to 

address in detail how clusterin is distributed in the normal compared with fibrotic lung.  

 

Immunohistochemical analysis revealed that clusterin staining was sporadically 

associated with bronchial epithelial cells in normal adult lung (section 3.2.1,Figure 

3.1B) but was more extensive in lung tissue from IPF patients (Figure 3.2C). Previous 

reports indicated that in rodents, clusterin is expressed embryologically in the lung 

epithelium during branching morphogenesis (French et al. 1993; Nyeng et al. 2008; 

Zheng et al. 2013) but is not expressed in post-developmental or healthy adult 

bronchial epithelium (Nyeng et al. 2008; Zheng et al. 2013). Infection and injury have 

been reported to induce the expression of clusterin in bronchial epithelium (Zheng et al. 

2013), epithelium of other organs including the ileum of Crohn’s disease patients 

(Gassler et al. 2001) and in experimental kidney injury (Jung et al. 2012) where 

clusterin is thought to be protective. The increased expression of clusterin in the 

bronchial epithelium in IPF may, therefore, reflect epithelial stress/injury or, 

alternatively, a component of the aberrant re-expression of development genes that 

occurs in IPF (Selman et al. 2008).  

 

4.2.1 Clusterin is associated with elastin in the lung. 
 

Immunolocalisation of clusterin clearly demonstrated its association with elastin in 

vessel walls (section 3.2.3). Staining was increased in IPF lung and was also observed 

in amorphous elastin-rich deposits within fibrotic regions (Figure 3.2E-H). Elastin 
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deposition has previously been shown to be increased in IPF lungs compared with 

controls (Rozin et al. 2005; Enomoto et al. 2013), but there is also evidence for 

increased levels of neutrophil elastase- and MMP7-mediated elastin degradation in IPF 

(Jacob H Kristensen et al. 2015; J H Kristensen et al. 2015). The increase of elastin in 

the IPF lung has been suggested to be a process of “fibroelastosis”; a process in which 

a reactivation of elastin synthesis follows increased elastin destruction in disease. 

However, this elastin synthesis occurs in a disordered manner, contributing to a 

distortion of the alveolar architecture (Rozin et al. 2005). Consequently, increased 

abundant accumulation of elastic fibres in fibrotic areas of the lungs of patients with IPF 

has been associated with poor prognosis (Enomoto et al. 2013). Enomoto and 

colleagues suggested that mechanisms preventing the aberrant accumulation of elastic 

fibres in the lung might present a therapeutic target in fibrotic disease. 

 

Clusterin has previously been found to associate with elastin in the human photo-aged 

skin (Janig et al. 2007), cirrhotic liver (Aigelsreiter et al. 2009) and exfoliation syndrome 

(Zenkel & Schlötzer-Schrehardt 2014) but has not previously been observed in 

association with elastic fibres in patients with pulmonary fibrosis. Several potential 

explanations have been proposed for the association of clusterin with elastin. Clusterin, 

like small heat shock proteins, is a molecular chaperone which, through hydrophobic 

interactions, is able to bind and stabilise partially folded, stressed proteins and long-

lived protein intermediates that slowly aggregate, including elastin, shielding and 

preventing their precipitation (Janig et al. 2007; Poon et al. 2002). Alternatively, 

clusterin may contribute to the clearance of defective and degraded elastin via 

megalin/gp330 receptor-mediated endocytosis (Bartl et al. 2001; Janig et al. 2007). 

Further studies would be necessary to determine the precise role of the association of 

clusterin with elastin in normal and fibrotic lung. Unfortunately, in the context of this, 

thesis it did not prove to be possible to further study the association of clusterin with 

elastin.  
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4.2.2 Clusterin expression in lung fibroblasts.  
 

Immunohistochemical clusterin staining of control and fibrotic lungs presented in this 

thesis provides evidence for a strong staining of clusterin in fibroblasts in the alveolar 

septum of normal human lung (Figure 3.1, section 3.2.1). Similar staining was 

observed in apparently normal areas of IPF lung but in fibrotic regions staining for 

clusterin was weak or undetectable, especially in fibroblasts/myofibroblasts in 

fibroblastic foci (section 3.2.2). Furthermore, weak clusterin staining was associated 

with areas of strong TGF-β1 staining and αSMA positive cells (Figure 3.4 and Figure 

3.8). This observation is in accordance with findings in clusterin-deficient mice, in which 

αSMA-positive myofibroblasts were more frequent when compared with wild-type mice 

(Jung et al. 2012). However, the functional role of clusterin in lung fibroblasts and the 

mechanisms by which it is regulated remain unknown. Potential mechanisms for the 

regulation of clusterin and its role in mediating pro-fibrotic cell functions were 

investigated in control lung fibroblasts and compared with effects on fibrotic lung 

fibroblasts and are discussed in the following sections.  

 

4.3 In vitro assessment of clusterin expression in human control and fibrotic 

lung fibroblasts and its regulation by TGF-β1. 

 

In order to verify if changes in clusterin expression between control and fibrotic lung 

fibroblasts are preserved in vitro, clusterin expression was assessed in fibroblasts 

isolated from control and fibrotic lung. Preliminary data obtained by Dr Toby Maher via 

protein array analysis suggested that clusterin is detectable at high levels in control but 

not in fibrotic lung fibroblasts (Figure 3.7B). Dr Maher emphasised that changes in 

relative clusterin protein levels were the most prominent difference between control and 

fibrotic lung fibroblasts compared with other proteins on the apoptosis array. In order to 

verify this preliminary data, microarray, RT-qPCR and immunofluorescence analysis 

were performed to determine clusterin mRNA and protein expression in control 

compared with fibrotic lung fibroblasts. Overall, clusterin expression analysis in vitro 

confirmed that fibrotic lung fibroblasts express lower clusterin levels when compared 

with fibroblast isolated from control lung (Figure 3.7). This is consistent with 

immunohistochemical observations discussed in section 4.2, where 

fibroblasts/myofibroblasts in IPF lung, predominantly fibroblast forming fibroblastic foci 

demonstrated reduced staining of clusterin when compared with fibroblasts derived 

from normal lung.  
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In the course of this thesis, Dr Nisha Kanda established a 3D spheroid model with 

fibroblasts from control and fibrotic lung and analysed the expression profile for 

spheroids in both groups via microarray analysis. Amongst others, clusterin expression 

was significantly down-regulated in spheroids formed by fibrotic lung fibroblasts 

compared with ones that were formed by control lung fibroblasts (10 cell lines each, 

p = 0.023), and verified the data generated in vivo via immunohistochemistry and in 

vitro culture (section 3.2 and 3.3). In response to this finding, further investigations 

focused on the mechanism by which, clusterin may be reduced in fibrotic lung 

fibroblasts.  

 

To elucidate a potential mechanism by which clusterin may be regulated in lung 

fibroblasts, regulatory mechanisms of clusterin in other cell types were reviewed. 

TGF-β1 has been previously reported to up-regulate clusterin expression in mammary 

epithelial cells, where clusterin expression was suggested as functionally important for 

epithelial cell differentiation (Itahana et al. 2007). Similarly, TGF-β1 is a major 

profibrotic mediator, which drives myofibroblast differentiation and excessive collagen 

deposition in pulmonary fibrosis (Fernandez & Eickelberg 2012; Scotton & Chambers 

2007).  

To explore potential regulatory effects of TGF-β1 on clusterin expression in vitro, control 

fibroblasts were exposed to a dose of 1 ng/ml (40 pM) TGF-β1, which is known to 

stimulate myofibroblast differentiation as demonstrated in section 3.4.1 and previous 

reports (Tiggelman et al. 1997; Guo et al. 2009; Evans et al. 2016). Exposure of control 

lung fibroblasts to TGF-β1 resulted in a significant down-regulation of clusterin 

expression over time, with a significant decrease in clusterin mRNA at 24 hours after 

exposure to TGF-β1 and persistent down-regulation of clusterin protein was maintained 

until at least 48 hours as demonstrated via immunofluorescence and Western blot 

analysis (see section 3.3.4.). This data is in contrast with previous studies in epithelial 

cells in which TGF-β1 has been reported to up-regulate clusterin expression (Itahana et 

al. 2007; Wegrowski et al. 1999) and suggests that the effects of TGF-β1 on clusterin 

expression are cell and tissue specific. It is noticeable that TGF-β1 at a concentration 

that is known to induce myofibroblast differentiation was sufficient to reduce clusterin 

expression. It was, therefore, of importance to clarify whether the pro-fibrotic effects of 

TGF-β1 induced myofibroblast differentiation are mediated by down-regulation of 

clusterin in lung fibroblasts.  
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4.4 In vitro assessment of the effects of clusterin-deficiency on fibroblast 

differentiation  

 

Under normal physiological conditions in response to lung injury, fibroblasts 

differentiate to myofibroblast as part of a proliferative phase during normal wound 

healing (Darby et al. 2014). Myofibroblasts exhibit a contractile phenotype as a result of 

increased stress fibre formation and secrete high levels of ECM proteins, such as 

collagen type I, in order to enable contraction and to strengthen the wound (Darby et al. 

2014). Phenotypically, myofibroblasts are an intermediate cell type between fibroblasts 

and smooth muscle cells and can be identified by the expression of increased levels of 

αSMA (Desmoulière et al. 1993; Skalli et al. 1986). Myofibroblasts become most 

abundant in the proliferation phase during wound healing, and progressively undergo 

apoptosis during the resolution phase, which signals the onset of the maturation phase 

for normal functional tissue (Horowitz & Thannickal 2006). Dysregulation of the wound 

repair-response can result in uncontrolled myofibroblast accumulation, fundamentally 

contributing to the development of fibrosis (Desmouliere et al. 2005; Gabbiani 2003; 

Hinz et al. 2001).! To date, the mechanisms that involve aberrant myofibroblast 

differentiation and accumulation are incompletely understood and key mediators 

orchestrating these processes, are a focus of research (Chambers 2008).  

In order to assess the role of clusterin in myofibroblast differentiation, control fibroblasts 

were genetically modified to downregulate clusterin expression. An overexpression of 

clusterin in control lung fibroblasts was not induced since previous literature suggested 

that clusterin overexpression induces apoptosis within 24h in fibroblast-like 

synoviocytes (Devauchelle et al. 2006). Consequently, clusterin silencing seemed to be 

a suitable model to study multiple cell functions.  

As described in this thesis, transfection with siRNA targeting the clusterin gene 

significantly reduced clusterin mRNA but not protein levels in lung fibroblasts (see 

section 3.4.2). One potential explanation for an impaired knock-down of clusterin 

protein levels via siRNA could be that clusterin half-life is increased, when clusterin 

associates with a wide range of other proteins, including GRP78, which at least in part 

may be responsible for a persistence of clusterin protein over time (Li et al. 2013). The 

half-life of secretory clusterin was significantly prolonged via overexpression of 

secretory clusterin interaction partner GRP78 (424 hours), suggesting that GRP78, a 

member of the HSP70 family, contributes to clusterin stability (Li et al. 2013). While the 

reason for an impaired clusterin protein knock-down via siRNA remains unknown, 

functional consequences of clusterin-deficiency in vitro were assessed via stable 

shRNA-mediated knockdown of clusterin in control lung fibroblasts.  
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Additionally, for this thesis, previously made observations on TGF-β1-induced αSMA 

expression and collagen I deposition in human lung fibroblasts were verified in vitro. 

TGF-β1 dose and time responses were studied, and αSMA expression was analysed 

via fluorescence microscopy and Western blotting (Figure 3.11B and Figure 3.10A). 

Consistent with previous results in the literature, TGF-β1 induced αSMA expression at a 

dose of 1 ng/ml in human lung fibroblasts (Desmoulière et al. 1993), as demonstrated 

in section 3.4.1. Reassuringly, the time-response experiment at this concentration 

resulted in a maximal αSMA protein expression by 48 hours (Figure 3.10A), as 

previously described (Thannickal et al. 2003). In order to assess collagen deposition in 

vitro a so-called “scar in a jar” assay was established in our laboratories, according to 

the procedure first described by Chen and colleagues (Chen et al. 2009). Although 

basal collagen production/deposition is expected in lung fibroblasts as a homeostatic 

process to maintain the normal structure and function of the lung tissue, it is noteworthy 

that relatively high collagen deposition was observed at baseline, in control and 

clusterin-deficient fibroblasts (section 3.4.4.), similarly to studies performed by Chen et 

al. This may underlay an effect of autocrine TGF-β1 secretion by lung fibroblasts (Kelley 

et al. 1991) or an effect induced by “matrix” stiffness since the fibroblasts were grown 

on plastic tissue culture dishes (Petersen et al. 2012). Similarly to αSMA expression 

collagen deposition was dependant on increasing TGF-β1 concentrations at 72 hours 

as demonstrated via immunocytochemistry analysis in section 3.4.4 (Figure 3.11A). 

Collagen deposition in response to TGF-β1 appeared to reach a maximum at 1 ng/ml 

and did not increase beyond these levels at a concentration higher than 1 ng/ml.   

On this basis, subsequent myofibroblast experiments were performed using a 

concentration of TGF-β1 of 1 ng/ml for 48 hours in 0.4 % FBS in DMEM, to assess the 

consequences of clusterin-deficiency on TGF-β1-induced myofibroblast differentiation. 

Although, basal and TGF-β1-induced changes in collagen I levels varied between 

clusterin-deficient, mock-transduced and control fibroblasts, the overall fold-increase in 

collagen mRNA and deposition levels did not significantly change (Figure 3.14). Figure 

3.14 demonstrated that TGF-β1 down-regulated clusterin expression at 20 hours and 

48 hours (Figure 3.14B), which is consistent with changes described in section 3.3.4. 

Consistent with results for collagen and αSMA mRNA basal and TGF-β1 induced αSMA 

protein and collagen deposition did not vary between control mock-transduced and 

clusterin-deficient lung fibroblasts (Figure 3.14C and Figure 3.15).  

 

In conclusion, results in section 3.4.4 show that shRNA-mediated down-regulation of 

clusterin did not affect basal or TGF-β1-induced fibroblast differentiation, as assessed 

by αSMA expression, collagen I expression and deposition when compared with mock- 
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and untransduced controls. This suggests that the TGF-β1-induced down-regulation of 

clusterin is independent of its effects on fibroblast to myofibroblast differentiation. 

These results are consistent with two independent experiments in fibroblasts from one 

control lung cell line and model for the effects of clusterin-deficiency in lung fibroblasts. 

Additional studies in lung fibroblasts from other control lung donors would be required 

to prove reproducibility in fibroblasts from other donors. These findings contrast with 

reports in smooth muscle cells where clusterin has been suggested to be involved in 

phenotypic modulation and differentiation (Liu et al. 2015; Moulson & Millis 1999). 

Furthermore, a reduction in clusterin expression was associated with increased αSMA 

expression in smooth muscle cells (Orlandi et al. 2005). Other studies in renal tubular 

epithelium-like cells, suggested that TGF-β1-induced type I collagen expression was 

reduced in a dose-dependent manner when clusterin was overexpressed (Jung et al. 

2012). Moreover, Jung and colleagues reported that type I collagen and αSMA protein 

were induced in response to renal injury in clusterin-deficient mice compared with wild-

type controls (Jung et al. 2012). The contradictory effects of clusterin-deficiency on 

αSMA expression and collagen deposition in lung fibroblast could point towards tissue 

or model specific effects and underline once again the complexity of clusterin biology.  

 

4.5 Consequences of altered clusterin expression on migration in control and 

fibrotic lung fibroblasts  

 

Fibroblasts play a key role in mediating tissue remodelling after injury and are rapidly 

recruited to the wound site. In vitro studies with fibroblasts from fibrotic regions 

compared with fibroblasts from healthy lung suggest that fibrotic lung fibroblasts display 

increased migratory activity (Suganuma et al. 1995). Furthermore, it has been shown 

that fibrotic lung fibroblasts close wounds faster than fibroblasts from healthy lung as 

assessed in co-culture with A549 epithelial cells in vitro (Prasad et al. 2014). Fibroblast 

migration may, therefore, play a role in the pathogenesis of pulmonary fibrosis leading 

to increased fibroblast accumulation in fibrotic areas. There is currently little known 

about the pathway that is accountable for the invasive migratory phenotype in fibrotic 

lung fibroblasts compared with control lung fibroblasts. White et al. suggested that 

α4β1 integrin signalling induces a migratory phenotype in fibrotic lung fibroblasts, 

inducing tissue invasion in in vitro models (White et al. 2003). A more recent study from 

Chen et al. demonstrated that matrix stiffness regulates increased basement 

membrane invasion by myofibroblasts via mechanosensing integrin α6β1 (H. Chen et al. 

2016b). Clusterin has been demonstrated to be involved in the regulation of migration 
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in many cell types, including macrophages and lung cancer cells in vitro (Y.-J. Shim et 

al. 2012; C.-Y. Cheng et al. 2012). Yet the role of clusterin in lung fibroblast migration is 

unexplored. In this thesis, the effects of clusterin-deficiency or exogenous clusterin on 

lung fibroblast migration were determined via scratch closing assay and transwell 

migration assay analysis. The limitations of these assays are, however, that they do not 

allow a definitive separation between fibroblast migration and proliferation. Results in 

Figure 3.16 show that basal scratch closure in 0.4 % FBS in DMEM did not vary 

between control, mock-transduced and clusterin-deficient-fibroblasts. This was 

assessed by the time that control, mock-transduced and clusterin-deficient fibroblasts 

needed to close an 800 µm wide scratch in six wells of a 96-well plate. Since the time 

needed to close the scratch was not significantly different in non-transduced and mock-

transduced fibroblasts, subsequent scratch assay experiments with clusterin-deficient 

fibroblasts were compared with mock-transduced controls. In the light of previous 

studies, it was interesting to assess the time of scratch closure in response to TGF-β1: 

Studies with rat lung fibroblasts have demonstrated that TGF-β1 does not regulate 

migration (Osornio-Vargas et al. 1993). Contrarily, TGF-β1 has been described to be a 

potent chemoattractant for dermal fibroblasts (Arnold E Postlethwaite et al. 1987). 

Here, the effects of scratch closure in clusterin-deficient and control lung fibroblasts are 

discussed: Up until about 16 - 24 hours after disrupting the monolayer mock-

transduced and clusterin-deficient fibroblasts fill the scratch area at a similar rate 

(Figure 3.16). From 16 - 24 hours the rate at which the scratch closure occurs is 

divergent with TGF-β1-treated cells closing the scratch more slowly in control but not in 

clusterin-deficient cells. This observation was confirmed in two independent 

experiments via scratch assay analysis and suggests that clusterin is essential in 

TGF-β1-induced delayed scratch closure. One possible explanation for this is that 

TGF-β1 induces the differentiation into myofibroblasts but this seems unlikely since it 

was already demonstrated in this thesis that clusterin deficiency does not affect TGF-

β1-induced myofibroblast differentiation. One explanation for this divergence could be 

that at 16 - 24 hours cells mock-transduced and clusterin-deficient lung fibroblasts 

differ in their proliferation rate, resulting in divergent numbers of fibroblasts contributing 

to the scratch closure. One limitation of this scratch assay is that scratch closure is 

likely mediated by a combination of fibroblast migration and proliferation and a TGF-β1-

induced delay in scratch closure may be caused by proliferative or migratory effects. 

The duration of this assay was up to 42 hours before the scratch was closed by all 

fibroblasts groups. Since the relative scratch closure was only divergent after 16 hours 

it seems more likely that the effect was related to changes in proliferation since this 

would be expected to start to show and effect at around 24 hours. To address this, an 
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alternative assay had to be established, to reduce potential effects of varying 

proliferation between cell groups to focus on the migratory response in response to 

altered clusterin expression. Therefore, same conditions were applied in a transwell 

assay, but the experiment was limited to 19 hours to limit proliferative effects in 0.4 % 

FBS in DMEM.  

 

In contrast, results derived in two independent experiments obtained via transwell 

assay showed that TGF-β1 at concentrations ranging from 0-5 ng/ml did not affect the 

number of control lung fibroblasts that had migrated through the transwell membrane 

pores within 19 hours (Figure 3.17D). A possible reason for these contrasting results 

obtained in scratch assay and transwell assays may be related to different endpoints 

between both assays. In the presence of TGF-β1 human fibroblasts have been 

demonstrated to form nodules over time (Xu et al. 2007). This has been observed in 

some wells in the scratch assay videos (< 96 hours). TGF-β1-induced nodule formation 

could reduce the number of lung fibroblasts free to migrate towards the scratch area 

contributing to the scratch closure. It is, therefore, challenging to assess lung fibroblast 

migration in response to TGF-β1 over a longer period of time. In order to allow enough 

time for the lung fibroblasts to migrate through the transwell membrane but limit nodule 

formation and proliferation, transwell analysis with mock-transduced and clusterin-

deficient lung fibroblasts was performed for only 19 hours. At 19 hours no nodule 

formation was observed microscopically. These conditions were, therefore, used to 

assess the migratory response of clusterin-deficient lung fibroblasts compared to mock-

transduced controls. Results in (Figure 3.18A) demonstrate that the number of cells 

that had migrated through the transwell membrane was not significantly different for 

clusterin-deficient fibroblasts when compared to mock-transduced controls. Together, 

this suggests that clusterin-deficiency does not effect fibroblast migration in response 

to TGF-β1 when compared with controls.  

 

Secretory clusterin has previously been shown to increase migration of macrophages 

at doses form 0 - 4 µg/ml (Y. J. Shim et al. 2012) but decreased migration in vascular 

smooth muscle cells (Millis et al. 2001). To begin to examine the effects of exogenous 

clusterin on migration in control and clusterin-deficient lung fibroblasts, the number of 

migrated cells in response to 10 µg/ml exogenous clusterin was assessed. Similar to 

results with TGF-β1, the migratory response in mock-transduced and clusterin-deficient 

fibroblasts was not altered in the presence of exogenous clusterin (10 µg/ml) although 

lower concentrations than 10 µg/ml have been shown to induce migration of 
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macrophages (Y.-J. Shim et al. 2012). These results suggest that exogenous clusterin 

may not be involved in regulating lung fibroblast migration in vitro.  

 

To test the migratory response of clusterin-deficient fibroblasts at a higher magnitude 

the effects of pro-migratory PDGF-BB were tested in mock-transduced and clusterin-

deficient fibroblasts. As demonstrated in section 3.5.2 a PDGF-BB concentration of 

25 ng/ml increased the migratory response by approximately three-fold in control 

fibroblasts compared with a response without PDGF-BB (Figure 3.17). This 

concentration has been already established in migration studies with lung fibroblasts 

(Bonner et al. 1991; Panzhinskiy et al. 2012). Figure 3.18A demonstrates that 

clusterin-deficiency did not significantly result in altered numbers of migrated cells in 

response to PDGF-BB compared with controls. This suggests that reduced intracellular 

clusterin levels do not affect the migratory response in lung fibroblasts.  

 

In conclusion, data generated via transwell assay (Figure 3.18) appears to focus on 

migratory effects and limit proliferative effects. Analysis via transwell assays and 

suggests that clusterin-deficiency (intracellular) and exogenous clusterin are not 

involved in regulating basal, TGF-β1 or PDGF-BB induced migration in vitro. An 

increased duration of endpoints (<96 hours) when assessing fibroblast migration, 

pointed towards divergent proliferation that may have had an effect on the duration that 

was needed to close the scratch area.  

In order to investigate if clusterin-deficiency has an effect on fibroblast proliferation, in 

response to PDGF-BB and TGF-β1, the consequences of altered clusterin expression 

on proliferation of control and fibrotic lung fibroblasts were studied in vitro, and results 

are discussed in section 4.6. 

 

4.6 Consequences of altered clusterin expression in control and fibrotic lung 

fibroblasts on proliferation  

 

Besides increased fibroblast migration, enhanced proliferation has been suggested to 

be one of the causes for increased fibroblast and myofibroblast accumulation in fibrotic 

disease (Mio et al. 1992), particularly in response to TGF-β1 (Chambers et al. 2003). In 

contrast, PGE2 has previously been shown to reduce proliferation in human lung 

fibroblasts (McAnulty et al. 1997; Keerthisingam et al. 2001). 

To begin to explore the role of clusterin in regulating proliferation, the proliferative 

response to serum, TGF-β1, PGE2 and exogenous clusterin in clusterin-deficient and 
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fibrotic lung fibroblast was compared with controls. For this purpose, cell numbers were 

assessed over time (48 - 96 hours) by counting DAPI-stained nuclei in a 

high-throughput fluorescence assay (section 2.14.3). For each experiment, as well as 

all other experiments in this thesis that are cell number sensitive, initially seeded cell 

numbers for each group were assessed and checked for equal numbers (an example is 

given in Figure 3.19). Increasing cell numbers over time were compared with cell 

numbers of controls (0.4 % FBS in DMEM) for each time-point and changes expressed 

as percent change relative to controls. As expected for control lung fibroblasts 

increasing serum concentrations induced proliferation in both control and clusterin-

deficient lung fibroblasts (Two-way ANOVA P < 0.0001) at 72 hours (Figure 3.19B). 

Therefore, FBS concentrations and the endpoint of 72 hours provide a good magnitude 

of effects to explore the effects of clusterin-deficiency on proliferation.  

Nonetheless, Figure 3.19 demonstrates that the response to serum-induced 

proliferation was diminished by approximately 50 % in clusterin-deficient fibroblasts 

compared with controls. This suggests that clusterin is involved in regulating fibroblast 

proliferation since clusterin-deficiency reduces the proliferative response to serum in 

vitro. These results are consistent with findings in two other independent experiments 

using fibroblasts derived from one donor and are in accordance with reports of clusterin 

promoting proliferation in VSMC in vitro (Miyata et al. 2015).  

   

To further explore the role of clusterin in fibroblast proliferation, the proliferative 

response to PGE2 was examined in mock-transduced and clusterin-deficient lung 

fibroblasts. PGE2 concentrations from 0 - 1 µM reduced cell numbers in control lung 

fibroblast in trend but this was not significant (Figure 3.19D). At a higher concentration 

(2.5 µM) PGE2 reduced the cell numbers of clusterin-deficient fibroblasts significantly 

when compared to fibroblasts from control lung fibroblasts (p < 0.05, Figure 3.20A).  

A reason for the reduction in cell numbers in response to PGE2 could be PGE2 induced 

growth arrest, which has been reported previously (Fine & Goldstein 1987). The data in 

Figure 3.20A suggests that clusterin-deficient lung fibroblasts are sensitised to PGE2-

induced growth arrest when compared to controls. Another explanation for reduced cell 

numbers in response to PGE2 could be the induction of apoptosis by PGE2 as 

previously reported for lung fibroblasts (Huang et al. 2009). A preliminary study via 

FACS analysis in line with this hypothesis (section 3.6.4, Figure 3.21A, B), supports 

that decreased cell numbers in response to PGE2 may be a consequence of PGE2-

induced apoptosis as assessed in fibroblasts from control lung. In control lung 

fibroblasts PGE2 induced apoptosis at a concentration of 1 µM at 48 h (p< 0.0001) 

(Figure 3.21). Although PGE2-induced apoptosis was not studied for clusterin-deficient 
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lung fibroblast in line with this thesis the section 4.7 will address if clusterin-deficiency 

is associated with increased lung fibroblast apoptosis. 

 

Furthermore, the proliferative response to altered exogenous clusterin levels was 

studied in clusterin-deficient and control lung fibroblasts. As has been shown in line 

with this work, lung fibroblasts secrete clusterin (Figure 3.6 and Figure 3.13) and may, 

therefore, impact on proliferation levels by increased clusterin secretion. The results in 

Figure 3.20A, however, suggest that secretory clusterin does not affect fibroblast 

proliferation in control or clusterin-deficient fibroblasts since cell counts were not 

altered in response to exogenous clusterin. Ultimately, this data suggests that 

intracellular rather than secretory/ exogenous clusterin regulates fibroblast proliferation.  

 

In contrast, fibroblasts derived from IPF lung with reduced clusterin expression (as 

demonstrated in section 3.3.2), exhibited a hyperproliferative phenotype compared with 

non-fibrotic control fibroblasts that express higher levels of clusterin (Figure 3.20B). 

The reason for this is not known but is likely due to a potential dominance of clusterin-

independent, pro-proliferative mechanisms in fibrotic lung fibroblasts, resulting in 

enhanced proliferation despite low clusterin expression. For example, the inability of 

fibrotic lung fibroblasts to up-regulate COX-2 and subsequently PGE2, which is a potent 

inhibitor of fibroblast proliferation, in response to TGF-β1 (Maher et al. 2010), results in 

TGF-β1-induced PDGF expression and enhanced proliferation of fibrotic lung 

fibroblasts (McAnulty et al. 1997). This would be consistent with the results presented 

here.  

 

Together, the results in this section suggest that clusterin-deficient fibroblasts and 

fibrotic lung fibroblasts with naturally low clusterin expression display reduced 

proliferation in response to PGE2 when compared with baseline conditions. This 

observation may be due to the anti-proliferative effects of PGE2 as outlined earlier 

(McAnulty et al. 1997), but this observation could also be justified by pro-apoptotic 

properties of PGE2. The observations outlined in this section suggest that 

clusterin-deficiency may affect lung fibroblast apoptosis. Consecutive studies focused, 

therefore, on the effect of clusterin-deficiency on basal and FasL-induced apoptosis.  
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4.7 Consequences of altered clusterin expression in control and fibrotic lung 

fibroblasts on apoptosis  

 

In IPF several lines of evidence demonstrate that uncontrolled fibroblast accumulation 

is at least partly due to fibroblast/myofibroblast resistance to apoptosis (Maher et al. 

2010; Moodley et al. 2004). Detailed studies have demonstrated that human lung 

fibroblasts from fibrotic lung are resistant to Fas-mediated apoptosis when compared 

with fibroblasts derived from normal lung (Tanaka et al. 2002). Additional studies have 

shown that fibroblast apoptosis could be induced via administration of FasL (Moodley 

et al. 2004; Bühling et al. 2005). FasL through the binding of Fas (CD95) is a potent 

inducer of the extrinsic apoptosis pathway (Moodley et al. 2004; Maher et al. 2010; 

Bühling et al. 2005). Of interest for the subject of this thesis is that it has previously 

been demonstrated that down–regulation of clusterin in rheumatoid arthritis (RA), was 

associated with synovial fibroblast resistance to FasL-mediated apoptosis (García et al. 

2010) and that transgenic overexpression of clusterin in RA synovial fibroblasts 

promotes apoptosis (Devauchelle et al. 2006).   

It was, therefore, investigated whether clusterin-deficiency contributes to the resistance 

of fibrotic lung fibroblasts to basal and FasL-induced apoptosis. For these studies, 

recombinant FasL was used. In order to optimise the experimental procedure and 

establish detectable levels of basal and FasL-induced apoptosis, preliminary studies 

were performed and dose response and time course studies were conducted. These 

studies showed that recombinant FasL, induced apoptosis in a time and dose-

dependent manner (Figure 3.22). All experiments were performed in 5 % serum in 

DMEM to enhance apoptotic levels in response to FasL when compared to 10 % serum 

and keep basal apoptosis levels low when compared to no serum in the culture 

medium. Moreover, no significant evidence of cell necrosis or cell apoptosis was 

observed under basal conditions (5 % serum in DMEM) as verified by inverted light 

microscopic analysis. FasL-induced apoptosis was measurable 19 hours after 

administration of FasL (Figure 3.22B), providing a sufficient magnitude of inducible 

apoptosis to study the effect of clusterin-deficiency on basal and FasL-induced 

apoptosis when compared with controls. By contrast, the 72-hour endpoint after 

exposure to FasL was not suitable for these studies since apoptotic levels were 

comparable with baseline apoptosis levels (Figure 3.22B). This may be due to a 

proliferative effect in response to FasL, consistent with previous reports in fibroblast-

like synoviocytes (Audo et al. 2014). In addition, FasL concentrations from 100 ng/ml 

induced apoptosis levels significantly, as demonstrated in Figure 3.22A. Based on the 

combined results of all preliminary experiments subsequent fibroblast apoptosis 
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experiments were carried out with 100 or 200 ng/ml FasL for 19 hours in 5 % serum in 

DMEM, conditions which show a full magnitude of effects sufficient to examine the 

effects of clusterin-deficiency and exogenous clusterin on fibroblast apoptosis.  

The in vitro studies presented here showed that unlike in synovial fibroblasts, shRNA-

mediated down-regulation of clusterin-induced basal and FasL-induced apoptosis in 

control fibroblasts (Figure 3.23) when compared with mock-transduced and non-

transduced controls. Furthermore, it was demonstrated that the increase in basal and 

FasL-induced apoptosis seen with low clusterin expression could be overcome by 

addition of exogenous clusterin (Figure 3.24). Interestingly, it has been previously 

described that secretory clusterin-induced resistance to apoptosis in hepatocellular 

carcinoma cells by activating the Akt pathway (Xiu et al. 2013a), in prostatic cells 

(Ammar & Closset 2008) and in VSMC, where exogenous clusterin protected against 

H202-induced apoptosis (Liu et al. 2015). Conversely, it has been shown in VSMC, that 

anti-clusterin antibodies induced apoptosis (Miwa et al. 2004).  

 

Together data presented in this thesis suggests, that clusterin is involved in regulating 

lung fibroblasts apoptosis in vitro. This data was reproducible and was consistent with 

two other independent experiments. It is, however, noticeable that although significant, 

levels of FasL-induced apoptosis were relatively low when compared to basal 

apoptosis levels. One example is that FasL-induced 20 % more apoptosis when 

compared to basal apoptotic levels (13.10 ± 0.33 % basal apoptosis in Figure 3.23), 

which equates to 2.62 % increase with FasL. It is, therefore, questionable if the full 

magnitude of apoptotic effects by FasL was reached for this set of experiments. The 

following studies focused on the effects of low clusterin in fibrotic lung fibroblasts when 

compared to control lung fibroblasts. These studies confirmed the previously reported 

resistance of fibrotic lung fibroblasts to FasL-induced apoptosis when compared with 

control fibroblasts (Figure 3.25). Furthermore, exogenous clusterin tended to further 

potentiate this resistance to apoptosis (Figure 3.26) in fibroblasts derived from fibrotic 

lung. Together, these in vitro studies suggest that clusterin is protective against basal 

and FasL-induced apoptosis in normal and fibrotic lung fibroblasts in vitro. Although 

clusterin protects against apoptosis in control fibroblasts, low clusterin in fibrotic lung 

fibroblasts does not seem to contribute to increased sensitivity to apoptosis in fibrotic 

lung fibroblasts. Fibrotic lung fibroblasts were resistant to FasL-induced apoptosis 

despite low clusterin levels in vitro. However, these findings are in contrast to the 

effects of clusterin in synovial fibroblasts apoptosis, further supporting the notion that 

the effects of clusterin are cell and tissue dependent.  
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4.8 The distribution of LRP-2 receptors in human control and fibrotic lung. 

 

Reduced levels of secretory clusterin in IPF-BALF suggest that fibrosis-specific 

changes include a decreased availability of secretory clusterin in the lung. To further 

investigate which pulmonary cells are potentially affected by low levels of secretory 

clusterin, clusterin receptor expression in control and fibrotic lung was assessed. 

Clusterin has been reported to associate with a wide range of receptors, and it has 

been shown that the complex formation with other proteins results in internalisation of 

clusterin in cells expressing these receptors (Leeb et al. 2014; Kang et al. 2016). 

Clusterin receptor lipoprotein-related protein 2 (LRP2) or megalin, an endocytotic 

receptor for multiple ligands with signalling potential, has been described to be 

expressed in many absorptive epithelial cells, predominantly in the kidney (Kaseda et 

al. 2007), but its role in the human lung is incompletely understood. To date reports 

about LRP2 in the human lung point towards expression in Type II pneumocytes 

(Lundgren et al. 1997). Willnow and colleagues reported that lungs of new-born LRP2 

knockdown mice were characterised by thickened alveolar walls and poor lung 

inflation, suggesting that clusterin receptor LRP-2 plays a crucial role in pulmonary 

inflation and alveolar expansion (Willnow et al. 1996). In keeping with these reports, it 

is likely that lung inflation and surfactant production in Type II alveolar cells are 

dependant on LRP2 pathways (Fisher & Howie 2006). Interestingly, LRP2 has been 

suggested to be down-regulated by TGF-β1 in proximal-tubule-derived opossum kidney 

cells, and to play a role in clusterin-dependent clearance of cellular debris in non-

professional phagocytes via endocytosis (Hermey et al. 2001; Gekle et al. 2003). Gekle 

and colleagues, therefore, suggest that endocytosis in other tissues than the kidney 

may also be reduced in response to elevated TGF-β1. To date fibrosis related changes 

of LRP2 expression are unexplored.   

To assess the expression of LRP-2 in control and fibrotic lungs in detail, a monoclonal 

antibody targeting human LRP2 was used for immunohistochemical staining.  

The results presented in this thesis (section 3.8) show that LRP2 associated with 

bronchial epithelial cells, while staining was considerably weaker in alveolar epithelial 

cells (including Type II pneumocytes). Bronchial epithelial cells in IPF lung displayed a 

similar LRP2-staining pattern when compared with bronchial epithelial cells in control 

lungs while staining in fibroblasts in control and fibrotic tissue was weak or 

undetectable (Figure 3.28). Consistent with previous results in fibrotic liver (Pieper-

Fürst et al. 2011), macrophages were associated with strong LRP2 staining both 

control and fibrotic lung. However, LRP2 staining in macrophages was not altered in 

control or fibrotic lung, merely the number of infiltrated monocytes/macrophages was 
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increased in fibrotic compared with control lung. LRP2 expression localised 

predominantly to the cell membrane of macrophages, which suggests that LRP-2 acts 

as receptor for clusterin-induced signalling, as described in neuronal cells (Gil et al. 

2013). The effect of exogenous clusterin on the macrophage phenotype in human 

lungs is, however, incompletely understood.  

 

4.9 Effect of exogenous clusterin on protein secretion in alveolar or blood-

derived macrophages in co-culture with bronchial epithelial cells.  

 

Results presented in this thesis suggest that macrophages and bronchial epithelial 

cells express high levels of clusterin receptor LRP2. Due to high LRP2 expression in 

bronchial epithelial cells and alveolar macrophages, these cells are likely to respond to 

altered levels of secretory clusterin in the lung. Altered secretory clusterin levels, such 

as they were described for pulmonary fibrosis may, therefore, impact on these cell 

types affecting phenotype or protein expression levels. The effects of exogenous 

clusterin on protein secretion in alveolar or blood-derived macrophages as well as 

bronchial epithelial cells are incompletely understood.  

Bronchial epithelial cells and alveolar macrophages present the frontline physical 

barrier and defence to confront environmental toxins and pathogens and play a key 

role in mounting an immune response via the production of pro-inflammatory cytokines 

and chemokines responsible for the recruitment and activation of immune cells in the 

lung (Hong et al. 2016; Murthy et al. 2015). In contrast alternatively activated alveolar 

macrophages regulate mechanisms that contribute to repair in response to injury-

induced inflammation. Similar to T cells, macrophages exert divergent functions by 

switching between phenotypically distinct subpopulations: Macrophages that mediate 

inflammation have been classified as “M1”-like whereas macrophages with tissue 

remodelling/pro-fibrotic activity have been classified as “M2”-like and are defined by 

their expression of cell markers and the secretion of pro- or anti-inflammatory cytokines 

(Wermuth & Jimenez 2015). For simplicity reasons traditional macrophage polarisation 

termini were used within this thesis, despite the acknowledgement that macrophage 

polarisation is highly dynamic and can result in intermediate polarisation states with 

increased plasticity as reported in many in vitro studies (N. Wang et al. 2014; Hussell & 

Bell 2014b; Aggarwal et al. 2014).   

As eluded to earlier in this thesis, multiple sources of evidence suggest that 

alternatively activated (“M2”-like) macrophages are linked to progression of pulmonary 

fibrosis (Murthy et al. 2015; Stahl et al. 2013; Mora et al. 2006; Wynes & Riches 2003; 



                                                                                    Discussion 

 181 

Gordon 2003; Wynn et al. 2011). This is because “M2” macrophages secrete pro-

fibrotic mediators, while pro-inflammatory (“M1”-like) macrophages have been 

suggested to oppose these effects in mice (He et al. 2013). It is, therefore, important to 

understand if secretory clusterin affects the polarisation state of alveolar macrophages. 

To identify potential links of altered secretory clusterin levels with the pathogenesis of 

fibrosis, the effect of clusterin on alveolar macrophage phenotype in co-culture with 

bronchial epithelial cells was explored. A co-culture with bronchial epithelial cells was 

essential since it allows the definition of potential immunomodulatory effects of clusterin 

in both cell types individually and in co-culture, considering crosstalk between both cell 

types, such as they occur under physiological conditions in the lung.  

To study the immunomodulatory effects of clusterin, a possible endotoxin 

contamination of the used human plasma-derived clusterin had to be ruled out, since it 

is known that endotoxins modulate the production and secretion of pro-inflammatory 

cytokines by macrophages (at concentrations > 0.5 ng/ml) (Morris et al. 1992). Supplier 

information of the human plasma-derived clusterin used in experiments for this thesis 

declares a low contamination risk with endotoxin (< 1.0 EU/µg or < 0.1 to 0.2 ng 

endotoxin/mL) according to the criteria for industry leading proteins6. An endotoxin 

contamination of human plasma-derived clusterin product seems, therefore, unlikely.  

 
As reported in the results section 3.9, exogenous human plasma-derived clusterin-

induced the secretion of TNFα by 24 hours in both human alveolar macrophages and 

bronchial epithelial cells (Figure 3.29). Clusterin has previously been reported to induce 

the secretion of TNFα in murine macrophages (Y.-J. Shim et al. 2012), but this has not 

been previously reported for human (alveolar) macrophages or bronchial epithelial 

cells. TNFα is a pleiotropic cytokine, demonstrated to be involved in the pathogenesis 

of pulmonary fibrosis (Freeburn et al. 2005). TNFα is a key mediator of inflammatory 

cell recruitment to sites of alveolar injury and induces the production of pro-

inflammatory cytokines by monocytes and neutrophils (Tracey & Cerami 1994; 

Freeburn et al. 2005). There are several lines of evidence that suggest that TNFα plays 

a role in driving profibrotic processes: TNFα has been demonstrated to induce 

proliferation and collagen deposition in lung fibroblasts (Piguet et al. 1990). 

Furthermore, overexpression of TNFα in murine lung caused fibrosing alveolitis 

(Miyazaki et al. 1995) and cytokines orchestrated by TNFα have been suggested to 

amplify the inflammatory response and drive the progression to fibrosis (Zhang et al. 

                                                
6 http://www.ebioscience.com/knowledge-center/functional-activity/animal-free-recombinant-
proteins/endotoxin-effects.htm 
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1997b; Oikonomou et al. 2006). In contrast, a more recent study suggests that TNFα 

contributes to the resolution of established pulmonary fibrosis in mice via a mechanism 

involving reduced numbers and programming status of profibrotic macrophages 

(Redente et al. 2014). Moreover, it has been described that basal resistance of lung 

fibroblasts and myofibroblasts to Fas-induced apoptosis is overcome by sensitization 

with TNFα (Frankel et al. 2006). Together, these observations indicate the complex 

nature of TNFα in controlling the homoeostasis between inflammatory and repair 

responses, with opposing effects on the development and progression of pulmonary 

fibrosis.  

In addition to the secretion of TNFα, the effects on chemotactic cytokine secretion in 

response to clusterin were investigated in human alveolar macrophages and blood-

derived macrophages as described in detail in section 3.9.2. A screening of secretory, 

fibrosis-relevant chemokines in response to secretory clusterin has demonstrated that 

MCP-1, MIP-1β and RANTES secretion was induced in blood-derived MCSF-

differentiated macrophages (Figure 3.32). This observation was in trend reproducible 

for alveolar macrophages at 24 hours (Figure 3.29). It is noteworthy that experiments in 

blood-derived macrophages were conducted at higher clusterin doses and exposure 

time and that these studies are preliminary studies, which require further optimisation. 

A possible explanation for similar but unmatched results in alveolar and blood-derived 

macrophages could lie in duration that clusterin was exposed to these cells. While 

changes in blood-derived macrophages were observed at 72 hours in response to 

clusterin, the effects might have been not fully evolved at 24 hours as studied for 

alveolar macrophages. Future studies should, therefore, focus on the effects of 

clusterin on chemokine secretion in alveolar macrophages derived from a control donor 

lung over time. It is well established, that CC chemokines, such as MCP-1, MIP-1β and 

RANTES, are associated with the expression of adhesion molecules and the 

recruitment of inflammatory cells to the lung (Antoniades et al. 1992; Iyonaga et al. 

1994; Car et al. 1994; Kodama et al. 1998; Suga et al. 1999). Having demonstrated 

that exogenous clusterin induces chemotactic cytokine secretion by blood-derived 

macrophages, this in vitro study suggests that clusterin may induce the recruitment of 

macrophages and other immune cells in vivo.  

 

To further explore the immunomodulatory effects of secretory clusterin on 

macrophages and bronchial epithelial cells, additional analysis of secreted pro- and 

anti-inflammatory cytokines in response to exogenous clusterin was performed. 

Consistent with induced TNFα secretion and chemokines, pro-inflammatory cytokines 

were elevated in supernatants of alveolar macrophages (IL-6, IL-8, IL-5, Figure 3.29) 
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and blood-derived unpolarised macrophages (IL-6, IL-8, IFNα, Figure 3.31). Similarly to 

measurements for TNFα, exogenous clusterin-induced the secretion of IL-6 and IL-8 by 

alveolar macrophages in co-culture with bronchial epithelial cells. However, clusterin 

did not induce these cytokines in monocultures of bronchial epithelial cells, which could 

indicate that the induced cytokines derived from alveolar macrophages in co-culture 

with bronchial epithelial cells in this in vitro model. By contrast, clusterin stimulated the 

secretion of anti-inflammatory cytokines, IL-1ra and IL-10, together with predominantly 

pro-inflammatory cytokines (Figure 3.31). IL-10 and IL-1ra are both potent anti-

inflammatory molecules that curtail the production of inflammatory cytokines during 

infection or tissue damage (Freeburn et al. 2005; Herold et al. 2011; Lech & Anders 

2013). Consistent with previous studies of macrophage treatment with LPS (Chanteux 

et al. 2007), an induction of anti-inflammatory cytokines with pro-inflammatory 

cytokines suggests a biphasic cytokine release in response to clusterin. It has been 

previously suggested that pro- and anti-inflammatory cytokines are released by 

functional divergent alveolar macrophage subsets in disease (Morales-Nebreda et al. 

2015; Hussell & Bell 2014b; Aggarwal et al. 2014). Furthermore, TNFα has been 

shown to stimulate IL-10 production, a potential negative feedback mechanism to 

regulate its expression (Wanidworanun & Strober 1993). In conclusion, clusterin 

induces a biphasic, predominantly pro-inflammatory cytokine release in both alveolar 

and blood-derived macrophages. A shift in the cytokine and chemokine profile in 

alveolar and blood-derived macrophages may underlay a potential effect of clusterin on 

polarisation, which would be relevant for multiple macrophage-dependent pathologies, 

including pulmonary fibrosis. To begin to explore if secretory clusterin affects 

macrophage polarisation the effects of exogenous clusterin during M1 or M2 

polarisation were studied in MCSF differentiated blood-derived macrophages.  

Preliminary data in MCSF-differentiated macrophages from two blood donors 

demonstrated that LPS/IFNγ induced predominantly pro-inflammatory cytokines such 

as TNFα, IL-8, IL-6, MIP-1α as expected (Donor 1: Figure 3.30, Donor 2 Appendix 4). 

However, the level of LPS/IFNγ induced cyto- and chemokines was not altered when 

clusterin was present during polarisation. Although reproducibility of these results has 

to be demonstrated in additional donors, this data suggests that clusterin does not alter 

polarisation in the context of “M1”polarisation with LPS/IFNγ. Similarly, “M2-like” 

polarisation with IL-4 was not altered in the presence of clusterin. When comparing the 

effects of clusterin on the cytokine profile of unpolarised blood-derived macrophages 

the responses in three donors were in trend similar but also dependant on the overall 

responsiveness of individual cell isolate. In donor 3 TNFα, IL-8, IL-6 and IFNα were 

significantly elevated in response to 10 µg/ml clusterin (Figure 3.31). By contrast, donor 
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1 and 2 demonstrated a trend towards the induction of pro-inflammatory cytokines 

TNFα, IL-8, IL-6 and MIP-1α for a concentration of 1 µg/ml exogenous clusterin (Donor 

1: Figure 3.30, Donor 2 Appendix 4). An explanation for this may be that higher 

concentrations than 1 µg/ml exogenous clusterin are required to induce a response. 

Another explanation could be that donor 3 was a low responder to pro-inflammatory 

stimuli, which is why a high clusterin concentration of 10 µg/ml was required to induce 

an effect. Moreover, MMP-9 response to clusterin varied in all tree donors: MMP-9 

secretion was significantly induced in donor 3 (Figure 3.31) by 10 µg/ml clusterin and in 

donor 1 by 1 µg/ml clusterin (Figure 3.30). However, there was no difference observed 

for donor 2 (Appendix 4). It is remarkable that basal MMP-9 secretion in unpolarised 

macrophages from donor 2 was increased when compared with cells from donor 1 and 

3. Overall this preliminary data suggests that secretory clusterin induces a pro-

inflammatory, macrophage phenotype, similar but with a lower magnitude to that of 

“M1-like” in unpolarised blood-derived macrophages in vitro. In order to fully 

understand the magnitude of the effect of exogenous clusterin on the secretory protein 

profile of unpolarised macrophages, further studies are required in cell isolates from 

additional donors. Future in vitro studies should, therefore, focus on the effect of 

increasing clusterin concentrations on multiple donors, with a varying range of 

responsiveness to pro-inflammatory stimuli.  

 

To begin to understand the mechanisms that are involved in clusterin mediated 

polarisation towards an pro-inflammatory, “M1-like” phenotype”, the role of TNFα in 

mediating these changes was assessed. TNFα, a “master regulator” of pro-

inflammatory cytokine production (Maini et al. 1995) could be upregulated or the 

bioavailability increased by clusterin. To address this, clusterin mediated effects were 

studied in the presence of anti-TNFα antibodies (section 3.9.4). Consistent with earlier 

studies presented in this thesis, clusterin-induced the secretion of representative pro-

inflammatory cytokines (IL-6) and chemokines (MIP-1β). However, in the presence of 

anti-TNFα antibodies, this effect was significantly reduced (Figure 3.33). Whether this 

is due to a clusterin-induced enhanced availability of membrane-bound TNFα or 

secretory TNFα or induced expression and secretion remains unknown. The location of 

TNFα was suggested to be relevant in the context of fibrotic disease in mice: A study in  

bleomycin-induced fibrosis in mice suggested that transmembrane TNFα expression is 

sufficient to elicit an inflammatory response, but was incompetent in initiating a fibrotic 

phase of the disease, while soluble TNFα was shown to be essential for the 

development of fibrotic lesions (Oikonomou et al. 2006). Secretory clusterin may play a 
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role in regulating these processes, and future studies should focus on whether clusterin 

affects TNFα expression, localisation within the cell or its bioavailability.  

 

In following studies it was assessed if “M1”- or “M2”-like polarised macrophages 

secrete different levels of secretory clusterin. To address this, monocytes from two 

different donors were differentiated and polarised into “M1-like” or “M2-like” 

macrophages or remained untreated (“M0-like”) and clusterin secretion was assessed 

after 72 hours via ELISA. The data suggest that “M0-like” macrophages secrete low 

clusterin levels (Figure 3.34). This was expected given that macrophages in control and 

fibrotic lung were associated with low clusterin staining in immunohistochemical 

analysis (Figure 3.2 and Figure 3.8). Interestingly, macrophages exposed to pro-

inflammatory stimuli (LPS/IFNγ or LPS alone) increased the secretion of clusterin 

significantly, while IFNγ and IL-4 did not significantly alter clusterin secretion. Although 

this is only preliminary data, reproduced in two donors the induction of clusterin 

secretion in pro-inflammatory macrophages may provide a positive feedback loop, 

ensuring that in the event of inflammation clusterin secretion is induced in those 

macrophages. Moreover, clusterin secretion was also induced in trend in response to 

an “M2-like” polarisation, even though this was not significant.  

In summary, the present preliminary data suggests that secretory clusterin induces a 

pro-inflammatory response in macrophages. Additionally, LPS/IFNγ activated, pro-

inflammatory “M1-like” macrophages secrete increased levels of clusterin when 

compared with unpolarised controls. Although this data was derived in vitro and 

requires validation in a higher number of donors, this mechanism may provide a 

positive clusterin-dependent feedback loop keeping secretory clusterin levels 

increased, which in turn could result in further polarisation towards a pro-inflammatory 

“M1-like” macrophage phenotype.  

 

Taken together these observations suggest that reduced availability of secretory 

clusterin, as it is observed during the development of pulmonary fibrosis, may impede a 

clusterin-induced pro-inflammatory “M1”-like phenotype in macrophages favouring a 

shift towards polarisation of pro-fibrotic, alternatively activated “M2”-like macrophages.  

This hypothesis is supported by immunohistochemical studies in this thesis, which 

show that alveolar macrophages in fibrotic lung tissue express low levels of clusterin 

(Figure 3.2D and Figure 3.8B), as it has been shown to be the case for “M2-like” or 

unpolarised macrophages (Figure 3.34). This may be relevant for the pathogenesis of 

pulmonary fibrosis since it has been reported that acute exacerbation of IPF is linked to 

a shift towards M2 phenotype (Schupp et al. 2015), but the underlying mechanism as 
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to why M2 shift appears in IPF remains unknown. Additional evidence for the 

importance of a shift towards M2 macrophages in the development of pulmonary 

fibrosis has been demonstrated previously (Prasse et al. 2006; Mora et al. 2006). As 

suggested by Schupp and colleagues, a shift towards M2 populations could be induced 

through the context of a wound healing response uncontrolled in on-going repair 

processes (Schupp et al. 2015). Prasse and colleagues propose that alveolar 

macrophages from patients with pulmonary fibrosis display a phenotype of alternatively 

activated macrophages, promoting a positive feedback loop with lung fibroblasts to 

create and maintain a profibrotic milieu (Prasse et al. 2006).  

Alternatively activated, “M2”-like macrophages produce and secrete fibrogenic 

mediators, including TGF-β1 (Fadok et al. 1998) and inversely, TGF-β1 has been 

suggested to mediate alternative macrophage activation (Gong et al. 2012). This is 

consistent with TGF-β1 positive macrophages in fibrotic lung sections as observed in 

Figure 3.8., supporting previous reports stating that human fibrotic lung tissue is 

characterised by TGF-β1 -positive, “M2-like” macrophages.  

In keeping with these reports, it may be possible that reduced clusterin levels 

contribute to an impaired pro-inflammatory “M1-like” shift that would oppose “M2-like” 

driven pro-fibrotic effects. In response to elevated TGF-β1 in the fibrotic lung, clusterin 

secretion, such as it has been demonstrated for lung fibroblasts (Figure 3.13) could be 

further reduced by TGF-β1, creating a vicious circle of low secretory clusterin and 

alternatively activated macrophages perpetuating pulmonary fibrosis.  

 

 

 

. 
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4.10 Summary, conclusions and future directions.  

4.10.1 Summary 
 

The aim of this thesis was to investigate if clusterin plays an important role in normal 

human lung and whether alterations of clusterin are relevant to the pathogenesis of 

pulmonary fibrosis. The results presented in this thesis provide insights into the 

distribution, expression, and function of clusterin in normal lung and compare these 

with lungs from patients with IPF.  

 

Immunohistochemical analysis demonstrated that clusterin co-localised with elastin in 

vessel walls and additionally with amorphous elastin deposits in fibrotic lung. This 

suggests that reduced levels of clusterin in IPF-BALF (T. H. Kim et al. 2010) are, at 

least partly, due to increased binding to elastin. Although future studies would be 

necessary to confirm the cause for the association of clusterin to elastin in fibrotic 

tissue, reduced clusterin expression in the lung may limit its extracellular chaperoning 

activity contributing to dysregulated deposition of elastin, a mechanism that has 

previously been described for UV-aged human skin (Janig et al. 2007).  

 

The work presented here showed for the first time that clusterin was strongly 

associated with fibroblasts in control lung tissue, but was undetectable in fibroblasts in 

fibrotic regions of lungs from patients with pulmonary fibrosis, as verified in in vitro 

studies. TGF-β1 has been shown to down-regulate clusterin expression in control 

fibroblasts but the down-regulation of clusterin by TGF-β1 was shown to be 

independent of its effect on fibroblast-to-myofibroblast transition. Further studies were 

conducted to assess the effect of clusterin-deficiency in control lung fibroblast on 

migration, proliferation, and apoptosis, which were compared with results from fibrotic 

lung fibroblast with low clusterin expression. These data, demonstrate that clusterin is 

involved in regulating fibroblast proliferation and apoptosis in vitro. Down-regulation of 

clusterin in fibrotic lung fibroblasts may be at least partly due to increased TGF-β1 and 

could, therefore, represent an appropriate but insufficient response to limit proliferation 

and reduce the resistance to apoptosis, the main cause for the development and 

progression of pulmonary fibrosis.  

 

Furthermore, while clusterin was sporadically expressed in bronchial epithelial cells of 

the normal adult lung, clusterin staining was both more frequent and intense in IPF 

lungs. An increase in clusterin expression in IPF bronchial epithelial cells may be 
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induced by epithelial stress/injury or, alternatively, a component of the aberrant re-

expression of development genes that occurs in IPF (Selman et al. 2008).  

This thesis also illustrated some intriguing, novel findings, advocating that clusterin 

may play a role in modulating macrophages towards a pro-inflammatory phenotype: 

Preliminary studies demonstrated that exogenous clusterin-induced the secretion of 

pro-inflammatory cyto- and chemokines, most notably TNFα, potentially opposing “M2-

like” driven pro-fibrotic macrophage responses, relevant for the development of 

pulmonary fibrosis.  

 

Ultimately, these results provide support for the initial hypothesis, suggesting that 

clusterin plays an important homeostatic role in normal human lung. Clusterin 

expression and function were highly tissue and cell dependent, underlining once more 

the complex biology of multifunctional protein clusterin, in a novel context of human 

lung. Up- or down-regulation of clusterin in macrophages, epithelial cells and 

fibroblasts, partly by TGF-β1, may contribute to tissue homoeostasis in normal lung and 

the protection against the development of pulmonary fibrosis.  

4.10.2 Conclusions  
 

Figure 4.1 concludes how clusterin may be involved in regulating cell homoeostasis in 

control lung and outlines how changes in clusterin affect different cell types and 

suggests how these changes may be involved in processes that protect against the 

development of lung fibrosis.  

 

1) In the normal lung (A) clusterin associated with elastin in vessel walls. Secretory 

clusterin levels are measurable in solutes from the lower respiratory tract (BALF) 

(T. H. Kim et al. 2010). In fibrotic lung (B) clusterin associates with elastin in 

vessel walls and additionally with amorphous elastin deposits in fibrotic lung, 

potentially reducing secretory clusterin levels in lung solutes as suggested by 

reduced secretory clusterin in IPF-BALF (T. H. Kim et al. 2010).   

 

2) In healthy lung (A) secretory clusterin is available in the solutes from the lower 

respiratory tract and may regulate the homoeostasis of pro-inflammatory (“M1”-

like) and pro-fibrotic (“M2”-like) macrophages: Clusterin has been shown to 

induce the secretion of pro-inflammatory cytokines such as TNFα by alveolar 

macrophages. Pro-inflammatory, “M1”-like macrophages increase the secretion 

of clusterin and contribute at least in part to homeostatic levels of secretory 
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clusterin in control lung. In fibrotic lung (B) low secretory clusterin levels 

potentially result in a shift towards profibrotic “M2-like” macrophages with 

increased secretion of TGF-β1 and reduced secretion of clusterin.  

 

3) In normal lung, TGF-β1 is increased in large amounts upon normal wound healing 

to promote fibroblast to myofibroblast differentiation. Under homeostatic 

conditions TGF-β1 levels are low when compared with levels in fibrotic lung and 

TGF-β1-induced fibroblast to myofibroblast differentiation occurs in a controlled 

manner. In fibrotic lung TGF-β1 levels are enhanced, partly due to induced 

secretion by profibrotic “M2”-like macrophages. Increased levels of TGF-β1 

promote uncontrolled myofibroblasts differentiation with excessive extracellular 

matrix deposition. Down-regulation of clusterin in fibrotic lung fibroblasts may 

provide a mechanism to antagonise proliferation and resistance to apoptosis and 

may therefore provide a protective mechanism against further progression of the 

disease. In turn, reduced intracellular clusterin in fibrotic lung fibroblasts may at 

least in part further contribute to reduce secretory clusterin levels in fibrotic lung 

accelerating profibrotic processes.   
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Figure 4.1 Schematic overview of potential protective effects of clusterin against 
the development of pulmonary fibrosis. Continued over the page.  
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Figure 4.1 Schematic overview of potential protective effects of clusterin against the 
development of pulmonary fibrosis. 

(A) In normal lung clusterin associates with elastin in vessel walls and secretory clusterin is 

involved in regulating the homoeostasis of pro-inflammatory and profibrotic cytokine secretion 

by inducing a pro-inflammatory macrophage phenotype in the lung. A controlled number of 

alternatively activated (“M2”- like) macrophages secrete relatively low levels of TGF-β1, which 

results in controlled myofibroblast differentiation compared with fibrotic lungs. In control lung 

clusterin is expressed and secreted by fibroblasts and promotes fibroblast proliferation and 

protects against apoptosis. Clusterin secretion by lung fibroblasts contributes at least in part to 

secretory clusterin levels regulating homeostatic processes in control lung. (B) In fibrotic lung 

clusterin associates with amorphous elastin deposits, measurable secretory clusterin is reduced 

in fibrotic lung (T. H. Kim et al. 2010), potentially resulting in reduced secretion of pro-

inflammatory cytokines by “M1”-like macrophages and a shift towards “M2”-like profibrotic 

macrophages that secrete high levels of TGF-β1. Increased levels of TGF-β1 induce 

myofibroblast differentiation and excessive extracellular matrix deposition. Fibroblasts isolated 

from fibrotic lung show down-regulated intracellular clusterin to potentially limit fibroproliferation, 

further contributing to reduced levels of secretory clusterin in fibrotic lung.  

 

4.10.3 Future directions  
 

Immunohistochemical studies presented in this thesis suggest that clusterin is 

differentially expressed in various cell types in the lung and that this expression pattern 

is altered in fibrotic lung. Although, the reduction of clusterin in fibrotic lung fibroblasts 

compared with fibroblasts from control lung has been demonstrated for various donors 

(five IPF and seven SSc patients compared with six controls), functional consequences 

of reduced clusterin expression in vitro have only been studied in representative control 

and fibrotic lung fibroblasts. Future in vitro studies are required to test if findings 

presented in this thesis are reproducible for fibroblasts from multiple donors. 

Furthermore, additional data generated in control and fibrotic lung fibroblast 

overexpressing clusterin could verify the results regarding the functional role of 

clusterin presented here.   

Additional studies with LRP2 blocking antibodies would elucidate if the clusterin-

dependent secretion of pro-inflammatory cytokines and chemokines is mediated by an 

interaction of clusterin with its receptor LRP2.   

 

Moreover, these in vitro studies could be complemented with studies in bleomycin-

induced fibrosis in clusterin-deficient compared with wild type mice. This in vivo model 

would provide insight into changes of clusterin expression throughout the development 
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of pulmonary fibrosis in mice. In addition, this model would deliver multiple insights into 

the role of clusterin in regulating cell and tissue homoeostasis in mice: Firstly define the 

effects of depleted secretory clusterin on extracellular matrix quality control, particularly 

with respect to the protection against elastin accumulation and aggregation in 

interstitial elastin deposits. Secondly, investigate if the absence of secretory clusterin 

induces a shift towards profibrotic “M2”-like macrophages accelerating a profibrotic 

environment e.g. via enhanced TGF-β1 secretion. Thirdly, assess if the overall tissue 

distortion by excessive fibroblast/myofibroblast accumulation is increased in clusterin-

deficient mice with and without bleomycin-induced fibrosis. Moreover, explore if 

profibrotic and pro-inflammatory chemokines/chemokines are induced in murine BALF 

to establish the effects of clusterin-deficiency on cytokine profile in mice. Further 

studies of the mechanisms underlying clusterin effects on cell homoeostasis and matrix 

quality control in mice, may enhance our understanding of its role in human control and 

fibrotic lung.  

 

Preliminary in vitro studies presented in this thesis assessed the effects of altered 

secretory clusterin on human macrophage phenotype modulation. These studies 

should be reproduced in a larger donor cohort, including cell isolates from donors with 

a low and high responder profile to pro-inflammatory stimuli. This would further 

contribute to the understanding of a potential modulation of macrophage populations by 

clusterin in the context of health and disease.  

Together, future in vitro and in vivo studies would further enhance our understanding of 

the role of clusterin in tissue homoeostasis in normal lung, and how alterations in 

clusterin distribution and expression may protect against or promote the development 

of pulmonary fibrosis.  
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Appendix 
 

 
Appendix 1 Table of patient information  

Patient information regarding disease state, sex, age and lung area grouped into 

methods used.  
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Appendix 2 Negative controls for immunohistochemistry in human lung tissue 
sections. 

Sections were incubated with isotype IgG or IgG1 in place of primary antibody – antibody 

species matched primary antibody species. No positive staining was observed with any of the 

negative controls. Abbreviations; LRP-2 – low-density lipoprotein-related protein 2.  Scale bar 

represents 100 µm.  
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A  

B 

 
 

Appendix 3 Example of Flow cytometry data derived from fibroblast apoptosis 
experiment.  

(A) For FACS analysis fibroblasts were gated on forward scatter (FSC-A) and side scatter 

(SSC-A) characteristics to exclude cell debris. (B) Shows representative plots from an 

experiment performed in quintuplicate using control, mock-transduced and clusterin-deficient 

control lung fibroblasts exposed to FasL (100 ng/ml) for 19 hours compared with untreated 

controls. Apoptosis was determined by Annexin V (AV) and DAPI staining followed by FACS 

analysis. Cells in the lower left quadrant (Q4) are AV-/DAPI- and are alive. Cells in the lower 

right quadrant (Q3) are AV+/DAPI- and are apoptotic. Cells in the upper right quadrant (Q2) are 

AV+/DAPI+ and are late apoptotic or necrotic. Plots presented correspond to the data shown in 

Figure 3.23 for early apoptotic cells only (AV+/DAPI- and AV+/DAPI+ - black frame).  
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 Appendix 4 Donor 2: Effect of exogenous clusterin on cytokine and MMP-9 
secretion during polarisation in blood-derived macrophages.  

Human blood-derived CD14+ cells were seeded into a 96 well plate (1 x 105 cells/well) and were 

allowed to differentiate into macrophages in the presence of M-CSF (100 ng/ml) for four days. 

Subsequently, cells were stimulated towards a “M1” phenotype with LPS / IFNγ (at 10 ng/ml for 

LPS and 50 ng/ml for IFNγ) or a “M2” phenotype with IL-4 (20 ng/ml) or remained untreated 

(“M0”) in the presence and absence of human plasma-derived clusterin (1 µg/ml) for 72 hours. 

Cytokine, chemokine and MMP-9 secretion was assessed via Luminex analysis. Bars represent 

the mean ± SEM of three experimental replicates; significances compared with untreated 

controls respectively.  
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Appendix 5 IL-12 and IL-2R levels are measurable in supernatants of 
blood-derived macrophages in response to high concentrations of exogenous 
clusterin.   

Human blood-derived macrophages were seeded onto a 96-well plate (1 x 105 cells/well), 

differentiated with M-CSF (100ng/ml) for four days and then exposed to human plasma-derived 

clusterin at three-fold increasing doses for 72 hours or remained untreated. IL-12 and IL-2R 

secretion was assessed via Luminex analysis. Bars represent the mean ± SEM of three 

experimental replicates. One–way ANOVA analysis could not be performed due to 

immeasurable levels of IL-12 and IL-2R at low concentrations of exogenous clusterin.   
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Paper, posters and awards  

Paper 

• Korsen M, Bragado Alonso S, Peix L, Bröker BM, Dressel A. (2015) Cladribine 

Exposure Results in a Sustained Modulation of the Cytokine Response in 

Human Peripheral Blood Mononuclear Cells. PLoS One. 2015 Jun 

18;10(6):e0129182.   

 

• Peix L, Evans IC, Pearce DR, Simpson JK, Maher TM, McAnulty RJ (in 

preparation). The yin and yang of clusterin: Diverse functions promote and 

protect against the development of pulmonary fibrosis.  

 

 

Poster  

• Poster presentation at CRAFT Symposium (GSK, Stevenage). January 2014 

• Poster presentation at the 18th International Colloquium on Lung and Airway 

Fibrosis (ICLAF; Canada). September 2014 

• Poster presentation at CRAFT Symposium (GSK, Stevenage). July 2015 

• Poster presentation at the American Thorax Society Conference (ATS; 

California). May 2016 

• Poster presentation at the 19th International Colloquium on Lung and Airway 

Fibrosis (ICLAF; Ireland). September 2016. 

 

 

Prizes and Awards  

 

• MPhil/Ph.D. Highest mark for MPhil/ Ph.D. upgrade talk in the basic science 

category (2014). 

• Travel award: ICLAF (Canada). September 2014  

• Travel award: ATS (USA). May 2016  

• Travel award: ICLAF (Ireland). September 2016  

• Travel Fellowship from “Action for Pulmonary Fibrosis” (May 2016). 

 


