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Abstract 
 

Mapping the neuronal connectivity of the mouse brain has long been hampered by the 

laborious and time-consuming process of slicing, staining and imaging the brain tissue. 

Recent developments in automated 3D fluorescence microscopy, such as serial two-

photon tomography (STP) and light sheet fluorescence microscopy, now allow for 

automated rapid 3D imaging of a complete mouse brain at cellular resolution. In 

combination with transsynaptic viral tracers, this paves the way for high-throughput 

brain mapping studies, which could greatly advance our understanding of the function 

of the brain. Because transsynaptic tracers label synaptically connected cells, the 

analysis of these whole-brain scans requires detection of fluorescently labelled cells and 

anatomical segmentation of the data, which are very labour- and time-intensive manual 

tasks and prevent high-throughput analysis. 

This thesis presents and validates two software tools to automate anatomical 

segmentation and cell detection in serial two photon (STP) scans of the mouse brain. 

Automated mouse atlas propagation (aMAP) segments the scans into anatomical 

regions by matching a 3D reference atlas to the data using affine and free-form image 

registration. The fast automated cell counting tool (FACCT) then detects fluorescently 

labelled cells in the dataset with a novel approach of stepwise data reduction combined 

with object detection using artificial neuronal networks. The tools are optimised for 

large datasets and are capable of processing a 2.5TB STP scan in under two days. The 

performance of aMAP and FACCT is evaluated on STP scans from retrograde 

connectivity tracing experiments using rabies virus injections in the primary visual 

cortex 
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Chapter 1. Introduction 

The function of the human brain remains one of the greatest unsolved mysteries of our 

time. Despite advances in our understanding of general principles, such as synaptic 

plasticity (Bliss and Collingridge, 1993), regulation of network activity (Marder and 

Goaillard, 2006) or the higher-level function of several brain areas, we currently cannot 

even fully explain the functionality of the brains of simpler organisms, such as the rat, 

mouse or fruit fly. 

To gain a deeper understanding of the function of these nervous systems, we will need 

to methodically characterise the function and connectivity of their networks, ideally 

down to a single neuron, or even a single ion channel. Since such a characterisation is 

impossible on human beings for practical and ethical reasons, it requires the use of 

model organisms. There are a number of animal models in use today, from very simple 

ones, such as the nematode worm Caenorhabditis elegans, with a stereotypical nervous 

system of exactly 302 neurons that can be simulated in a computer (Szigeti et al., 2014), 

to highly advanced organisms such as the macaque, which can be trained to perform 

complex behavioural tasks (Luck et al., 1997). 

Currently, mice are the most popular animal model for scientific research, representing 

61% of all animals used in research in the UK according to the 2015 Home Office 

report1. Mice are an ideal model organism because they are relatively easy and 

inexpensive to breed and allow genetic modification (Gordon and Ruddle, 1981). As a 

result, many specialised transgenic mouse lines that mimic human illnesses or express 

marker genes in genetically defined cell types are readily available 

(http://mousemutant.jax.org/). Finally, mice are intelligent enough to learn a variety of 

behavioural tasks, allowing to manipulate neuronal circuits with the help of genetic 

tools and investigate the behavioural impact (Yizhar et al., 2011). 

                                                
1  Annual Statistics of Scientific Procedures on Living Animals Great Britain 2015, 

https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/537708/scientific-

procedures-living-animals-2015.pdf 



Chapter 1 Introduction 

 

 12 

1.1 History of Brain Mapping 

Efforts to characterise the anatomy and connectivity of the brain to gain a better 

understanding of its function have a long history, dating back to the pioneering 

neuroanatomical studies of Ramón y Cajal and Golgi (Cajal, 1894, 1896, 1899; Golgi, 

1875, 1886, 1989). Recently, the field of brain anatomy has been experiencing a 

renaissance in the form of connectomics, coined by Sporns et al. (2005) to describe a 

“comprehensive structural description of the network of elements and connections 

forming the human brain” but adopted by others to generally describe the analysis of 

neuronal connectivity on a large scale using modern techniques (Reid, 2012).  

1.2 Mapping on Different Scales 

Currently, 3D analysis of neuronal connectivity takes place on three scales. 

Macroscopic approaches focus on magnetic resonance imaging (MRI), with diffusion 

MRI to evaluate connectivity and functional MRI to evaluate activity (“functional 

connectivity”, Biswal et al. (1995)). The great advantage of these techniques is that they 

are non-invasive and can be performed on live specimens. However, MRI provides an 

indirect measure of connection probability and due to its low resolution (~1mm/voxel) 

can only capture clusters of activity or large fibre bundles that connect different brain 

regions (Glasser et al., 2013; Marblestone et al., 2013). 

At the other end of the scale is dense reconstruction using en electron microscope (EM). 

Classically, 3D volumes were generated by cutting and imaging serial sections 

(Sjostrand, 1958; White et al., 1986), but the recent introduction of serial block-face 

electron microscopy vastly accelerated the speed at which data can be acquired. Here a 

sample of brain tissue is scanned using an electron microscope, a slice is automatically 

removed from the surface of the sample and the process is repeated until the complete 

sample is imaged (Denk and Horstmann, 2004). The resolution of this technique is high 

enough to identify every single synapse of a neuron, but the acquisition is currently 

limited to small volumes of ~300µm3 (Helmstaedter et al., 2008; Morgan and Lichtman, 

2013). However, the main limitation for using this technique to map connectivity is that 

EM data is difficult to analyse. The images are extremely detailed, showing all cells and 

many of the compartments within them. While this information can be useful, regions 
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of interest such as the soma, dendrites, axons and synapses need to be traced manually, 

which is extremely time-consuming. Despite years of intensive research and 

development, the output of automated analysis methods still requires extensive manual 

corrections (Helmstaedter, 2013). One group is experimenting with crowdsourcing this 

kind of analysis (www.eyewire.org, Kim et al. (2014a)), but creating a complete map of 

the human brain including every synapse is estimated to take in the order of 10 million 

years at current acquisition and analysis speeds (Morgan and Lichtman, 2013). Even 

mapping the brain of a smaller organism, such as the mouse, is not yet feasible using 

EM, although efforts to map smaller regions of the mouse brain are underway (Kasthuri 

et al., 2015; Kim et al., 2014a). 

Representing a middle ground in terms of resolution and complexity, methods based on 

light microscopy currently appear to be the most promising approach to map 

connectivity in rodents. While EM gives a highly detailed picture of all cells in a tissue 

sample, light microscopy methods usually focus on a subset of cells labelled using 

techniques such as immunohistological stainings, membrane-bound dyes, beads and 

expression of marker proteins introduced via transgenes or viral transfections (Cowan, 

1998; Katz et al., 1984; Lundh, 1990). Classically, tissues are sliced, stained if 

necessary and imaged using fluorescence or transmitted light microscopy. Because 

labelled cells represent the strongest signal in the image and the datasets are orders of 

magnitude smaller than EM data, their analysis is much faster and simpler.  

Recent advancements in automated light microscopy methods (see below) now allow a 

complete mouse brain to be imaged at a sufficiently high resolution to identify 

individual cells without user interaction (Gong et al., 2013; Niedworok et al., 2012; 

Ragan et al., 2012). However, these techniques generate large amounts of data at a rapid 

pace, shifting the major bottleneck from generating data to analysing it. Therefore, the 

lack of freely available and reliable automated analysis tools for such data represents a 

major roadblock on the path to determining the connectivity of the rodent brain.  

1.2.1 Neuronal Tracing 

The methods available for analysing light microscopy data are mainly dependent on 

whether connectivity is assessed using morphological reconstruction or transsynaptic 

labelling. Morphological reconstruction of stained neurons is the oldest technique used 
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to map neuronal connectivity, dating back to the early studies of Ramón y Cajal (Cajal, 

1894). Neuronal tracing in light microscopy data can be used for either highly detailed 

analysis or large-scale approximation of neuronal connectivity. 

In the first case, the labelled cells are reconstructed in 3D, either manually or semi-

automatically (Peng et al., 2014), enabling detailed evaluation of their morphology. 

Although the resolution does not allow the identification of single synapses (typical 

resolutions used for tracing are around ~500-1000nm/pixel), synapses can be 

specifically labelled using antibodies and the morphology of the neurites can provide a 

good estimate of connectivity (Chklovskii, 2004). Although morphological 

reconstruction of individual neurons can provide a comprehensive picture of a cell’s 

connectivity, the analysis is very time-consuming, making it unfeasible for high-

throughput or long-range connectivity tracing. 

While BigNeuron, a recently started collaboration, aims to eventually automate this 

detailed morphological analysis and enable its use in high-throughput studies (Peng et 

al., 2015), currently a more crude form of neuronal tracing is used. Here, a brain area is 

bulk-labelled, e.g. via injection of a viral marker such as recombinant adeno-associated 

virus (rAAV). The virus causes expression of a fluorescent marker protein, and 

fluorescence signal outside the injected area is used to indicate connectivity with the 

injected area (Hunnicutt et al., 2014; Oh et al., 2014). This is considered to provide a 

good approximation of connectivity, however it does not report synaptic connectivity. 

1.2.2 Transsynaptic Tracers 

To facilitate mapping of functional connectivity, various markers have been developed 

that can cross the synapse and thus label connected cells. The first examples of such 

transsynaptic tracers were radioactively labelled precursor molecules (e.g. [3H]proline, 

[3H]leucine), horseradish peroxidase or fluorescent beads (Bennett et al., 1973; Jones 

and Hartman, 1978; Katz et al., 1984; Kristensson et al., 1971). These pioneering 

methods are based on passive transport and markers are thus diluted at every synapse. 

As a result, the tracers are only able to produce a weak and partial staining of connected 

cells (Büttner-Ennever et al., 1981; Jankowska, 1985; Jones and Hartman, 1978).  

To overcome the issue of marker dilution, neurotropic viruses that can cross the synapse 

were employed as a new form of active transsynaptic tracers. Examples are herpes 
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simplex virus (Kristensson et al., 1982), suid herpesvirus (pseudorabies; Martin and 

Dolivo (1983)), vesicular stomatitis virus (Lundh et al., 1987) and rabies virus (RV; 

Gillet et al. (1986)). Unlike passive tracers, viral tracers actively replicate after crossing 

the synapse, leading to a robust expression of proteins in all infected cells (Kuypers and 

Ugolini, 1990). Depending on the type and strain of virus used, the virus crosses the 

synapse either strictly anterogradely (Sun et al., 1996), retrogradely (Ugolini, 1995) or 

in both directions (Lundh, 1990). Initial tracing studies used wild type viruses and relied 

on antibody stainings to visualise the infected cells, but later versions were based on 

modified versions of viral tracers that cause neurons to express fluorescent markers 

(Jansen et al., 1995; Mebatsion et al., 1996), enabling more straightforward and reliable 

analysis.  

RV, in particular, has been the target of several modifications that greatly enhance its 

usefulness in mapping neuronal connectivity (Luo et al., 2008; Osakada et al., 2011; 

Rancz et al., 2011; Wall et al., 2010; Wickersham et al., 2007a; Wickersham et al., 

2007b). Wickersham et al. (2007b) provided the basis for these modifications by 

developing a monosynaptic tracing protocol based on a glycoprotein-deficient RV 

(Etessami et al., 2000) that only labels neurons directly connected to the initially 

infected neurons. RV uses its capsid glycoprotein (RG) to cross synapses in a strictly 

retrograde fashion and infect cells that provide input to the initially infected cell 

(Miyamichi et al., 2011; Osakada et al., 2011; Wickersham et al., 2007a). However, in 

the modified version, the sequence for RG has been replaced by that of a fluorescent 

markers such as EGFP or mRFP (Figure 1-1 a) and RG is provided by a non-

transsynaptic vector such as rAAV. This vector is injected either prior to (Figure 1-1 b, 

Wickersham et al. (2007b)) or mixed with RV (Niedworok et al., 2012). Within the 

initially infected cells, rAAV provides the RV with RG, which is necessary for the 

assembly of functional virus particles that can cross the synapse (Figure 1-1, b & c). 

However, as RG is not present in the presynaptic cells, RV cannot spread any further. 

As a result, the method provides a monosynaptic label of upstream connectivity (Figure 

1-1 c). 
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Figure 1-1: Schematic of Cre-dependent monosynaptic rabies tracing 

a) Wildtype RV is modified by pseudotyping with EnvA and replacement of its RG gene with 

a fluorescent protein (mCherry). This renders the RV unable to infect mammalian cells or 

cross the synapse (b). At the injection site, the RV is complemented by two Cre-dependent 

rAAVs, one expressing the receptor for EnvA (TVA), the other expressing RG. (d) 11 days 

later RV is injected at the same location, where it can infect the Cre-positive, rAAV infected 

cells and cross the synapse. Since the presynaptic cells lack RG, the infection cannot spread 

further, resulting in monosynaptic labeling. RV: rabies virus; RG: rabies glycoprotein; EnvA: 

avian sarcoma leukosis virus glycoprotein; TVA: tumor virus A (EnvA receptor); Adapted 

from Wickersham et al. (2007b)  

 

 To increase the specificity of the tracing, the population of “target cells” can be 

restricted to defined cell types by packaging the RV with the glycoprotein of the avian 

sarcoma leukosis virus (EnvA), a process called pseudotyping (Figure 1-1 a, 

Wickersham et al. (2007b)). EnvA lacks an endogenous receptor in mammals (Lewis et 

al., 2001), which results in an RV that is unable to infect mammalian cells unless they 

have been modified to express the tumor virus a/EnvA receptor (TVA) (Wickersham et 

al., 2007b). By using Cre-recombinase-expressing mouse lines in combination with 

stereotaxic injection of a Cre-dependent rAAV expressing TVA, the initial cell 
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population can be restricted to genetically and spatially defined cell types  (Figure 1-1, 

b&c; (Lo and Anderson, 2011; Wall et al., 2010)). 

This system can also be used to trace the input onto a single cell. This is accomplished 

by in-vivo electroporation (Marshel et al., 2010) or patch-clamping using an internal 

solution containing plasmids for expression of RG and TVA (Rancz et al., 2011). RV is 

then injected at the target location after transfecting the cell, resulting in a labelling of 

the presynaptic input to the original cell (Marshel et al., 2010; Rancz et al., 2011). 

1.3 Advances in Light Microscopy 

While transsynaptic tracers remove the time-consuming task of having to trace axons 

and dendrites to evaluate cell to cell connectivity, the brain tissue still needs to be sliced 

and imaged. Recent advances in fluorescence microscopy, such as the combination of 

light sheet fluorescence microscopy (LSFM) with new clearing methods (Chung et al., 

2013; Dodt et al., 2007; Renier et al., 2016; Schwarz et al., 2015) or the development of 

serial two-photon tomography (STP, Ragan et al. (2012)) allow automated generation of 

high resolution 3D imaging data from large tissue samples, paving the way for high-

throughput mapping of the mouse brain.  

1.3.1 Light Sheet Fluorescence Microscopy 

In LSFM, the brain is illuminated with a thin sheet of light and images are captured 

with a camera whose light path is perpendicular to the illumination plane. It can 

therefore be used on transparent samples such as zebrafish embryos and its use with 

rodent brain tissue requires protocols that clear the specimen. LSFM completely 

removes the need to slice the sample and thus permits multiple scans using different 

imaging parameters. In addition, the acquisition time per image is considerably shorter 

than with scanner-based microscopes, since the whole image is illuminated in a single 

acquisition frame (50-200ms vs ~1s for an STP microscope).  

Unfortunately, successful tissue clearing has been elusive until recently. The first 

published protocol severely reduced the fluorescence signal and was incompatible with 

antibody staining procedures (Dodt et al., 2007), while a second protocol failed to 

achieve the level of transparency necessary for LSFM (Hama et al., 2011). However, 

several recently published clearing methods have made advances towards solving these 
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issues and have turned light sheet microscopy into a promising candidate for large-scale 

brain analysis (Chung et al., 2013; Lee et al., 2016; Renier et al., 2016; Schwarz et al., 

2015). However, because the technology is still in its infancy, a limited number of 

devices can scan samples the size of a mouse brain (Ultramicroscope, LaVision BioTec 

GmbH; Open SPIM project). So far there are few specialised objectives that combine 

high optical resolution with large working distances, so an adult mouse brain has to be 

scanned in at least two orientations (dorsal and ventral) as the effective resolution 

decreases with increasing depth (Menegas et al., 2015). 

Crucially, while the LSFM has a short acquisition time, the brains need to be cleared 

before scanning, which usually takes several days. Furthermore, clearing protocols can 

change the morphology by shrinking or enlarging the tissue (Richardson and Lichtman, 

2015). If immunohistology is required, some protocols require another week for 

rehydration, followed by the time needed for slicing and immunohistology (Niedworok 

et al., 2012). The CLARITY clearing protocol on the other hand requires 6 days of 

antibody incubation and washing to stain 1mm sections and 6 weeks to stain a complete 

brain (Chung et al., 2013). However due to its potential for rapid 3D imaging of 

complete organs, tissue clearing and LSFM are extremely active areas of research.  

1.3.2 Serial Two-Photon Tomography 

In contrast, STP is an amalgamation and automation of conventional slicing and 

imaging methods. A two-photon microscope is used to scan the surface of an agarose-

embedded tissue sample, which is then automatically transferred to a vibratome, cut to 

remove a slice and moved back under the microscope. This process is repeated until the 

whole brain is sliced and imaged at x/y resolutions of up to 500nm/voxel, high enough 

to visualise single spines if necessary (Ragan et al., 2012).  By using a short pulse 

Ti:Saphire laser, rather than a conventional non-pulsed laser, it is possible to achieve 

sufficient tissue penetration while minimising photobleaching of out-of-focus areas. The 

system is adjusted to scan below the surface of the brain to avoid slicing artefacts in the 

image. The combination of a laser scanning system and physical sectioning of the brain 

leads to a longer scan time (~60hrs per brain at a resolution of 1µm per pixel and a z-

spacing of 5µm) and because the tissue is cut during the process, a brain can only be 

scanned once. While there is only one commercial system (TissueCyte 1000, Tissue 
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Vision Cambridge) and one open platform (Economo et al., 2016) available, the optics 

and mechanics of the system do not differ substantially from well-established 

microscopy and histology components. Also, as opposed to LSFM, there are no special 

requirements for preparing and embedding of the tissue. The brain slices could 

theoretically be stained and re-imaged for further analysis, however this is a time 

consuming, error-prone manual process (Ragan et al., 2012). While STP can be used in 

combination with clearing methods (Economo et al., 2016), it is not a prerequisite for 

the technique. 

1.3.3 The Choice of Microscope 

The capability to produce high resolution full-brain 3D data, combined with high 

throughput mean both LSFM and STP are useful for imaging intact brains that have 

been injected with transsynaptic tracers to map both local and long-range neuronal 

connectivity. LSFM does not require an expensive two-photon laser system and thus 

has the potential to eventually become the more widespread method, however at present 

suboptimal optics and the lack of a well-established scanning system for large samples 

prevent it from reaching its full potential.  

While STP requires longer scanning times, it is not dependent on laborious and time-

consuming clearing procedures. The technology is based on well-established 

components and in our experience, reliable results can be achieved without changing 

existing experimental protocols. While our lab decided to use STP, and this method is 

relied upon for this study, the tools developed in this project should be applicable to 

other types of high throughput whole-brain imaging.  

1.4 The Analysis Bottleneck 

For a single adult mouse brain imaged in three fluorescent channels, STP generates 

approximately 2.5TB of single images, each covering a field of view of approximately 

1mm2. These images need to be stored, archived, assembled into coherent 3D datasets 

(“stitched”), and finally analysed. While handling such amounts of data is a rather new 

problem in neuroscience, many other sectors such as internet services (Google), particle 

physics (CERN) and genetics (Human Genome Project) have been working with 
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similarly large datasets for some time, so the necessary hardware is commercially 

available.  

Since the whole brain is too large to fit into a single field of view, it is mounted on an x-

y-stage and scanned using 9x6 partially overlapping images (“tiles”) per layer. The first 

processing step after acquisition corrects for depth-dependent illumination changes, 

aligns the tiles and stitches them into complete image planes. For this, our lab uses a 

pipeline combining ImageJ plugins and scripts written in Python. These scripts make 

heavy use of parallel processing (multithreading) to effectively use the available 

computational resources and allow to process the STP data in roughly the same time it 

takes to acquire them. This software pipeline is fully automated and provides a 

comprehensive 3D volume of the whole mouse brain. However, as with many “big data” 

projects, this results in a new bottleneck: Classic manual analysis can no longer keep up 

with the speed at which new data can be generated.  

1.4.1 Mapping the Brain  

The first crucial step in the analysis of these whole-brain STP datasets is to accurately 

and reliably determine the locations of anatomical regions in the dataset. Classically, 

anatomical segmentation has been a manual process with no direct means of quantifying 

the accuracy of the result. While manual segmentation by expert anatomists is still 

relevant, especially on 2D data and data suffering from e.g. slicing artefacts, it has 

significant drawbacks, in particular on 3D fluorescence data: The background 

fluorescence of brain tissue only provides few anatomical landmarks compared to 

histological stainings. So while some structures such as the hippocampal formation or 

cortical regions can be easily identified, the correct segmentation of hypothalamic 

nuclei or different cortical subregions is much more challenging, even for a skilled 

neuroanatomist. In addition, variations between animals can complicate the correct 

assignment of structures, because irregularities in the prominent structures used as 

reference points can make it more difficult to estimate the correct location and shape of 

anatomical regions that do not have clear visual boundaries. Irregularities in ventricle 

size or shape, for example, may lead to choosing the wrong plane from the reference 

atlas, which will corrupt all segmentations based on that assumption. Different 

anatomists may also have different opinions about the locations of discrete borders, 
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which may make it more difficult to meaningfully compare results between different 

labs. Furthermore, it has been shown on MRI data that a human rater is likely to show 

significant variation when segmenting the same data multiple times (Nestor et al., 2013). 

The impact of these issues can be reduced by segmenting the same data multiple times 

using multiple human raters and generating a “consensus segmentation” from all 

individual segmentations (Jorge Cardoso et al., 2013; Rohlfing and Maurer, 2007; 

Warfield et al., 2004). However, manual segmentation is already a very tedious and 

time-consuming task, and multiple segmentations only exacerbate this issue. Hence, this 

technique is mostly used in the clinical field, where the correct segmentation of e.g. a 

tumour is of absolute importance (Warfield et al., 2004). 

To improve the speed and reliability of 3D segmentation, automated and semi-

automated segmentation algorithms have been pioneered by the MRI community 

(Collins et al., 1995; Haller et al., 1997), who have been working with 3D datasets since 

the introduction of clinical MRIs in the 1980s (Mallard, 2003). Automated 

segmentation has been introduced to the field of rodent fluorescence imaging with the 

recent emergence of techniques such as the LSFM (Dodt et al., 2007; Renier et al., 

2016) and STP (Oh et al., 2014; Ragan et al., 2012) that are capable of imaging a 

complete rodent brain in 3D at cellular resolution. The segmentation approaches that are 

most promising for rodent data are based on image registration and atlas propagation. 

These methods require an atlas, which is comprised of a reference brain (usually an 

average of multiple 3D brain scans) and a manual anatomical segmentation of this 

reference brain. The reference brain is then registered to the individual dataset (or vice 

versa), meaning that it is “deformed” to “best fit” the individual dataset. The manual 

anatomical segmentation of the reference brain is thus imposed on the individual 3D 

dataset (Jorge Cardoso et al., 2013; Klein et al., 2010; Ma et al., 2014). The set of 

available deformations and the definition of a “good fit” are dependent on the 

registration technique and vary between registration toolkits. 
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Figure 1-2: Schematic of segmentation propagation 

In a first step, the reference brain dataset of the atlas is registered to an individual 3D dataset 

(here: STP data), using affine and free-form registration. As a result, the registered reference 

brain now matches the shape of the STP dataset. The transformation parameters that describe 

the image registration are then applied to the 3D segmentation file that contains the brain 

structure outlines of the mouse atlas (step 2). As a result, the transformed segmentation file 

now contains the brain structure outlines describing the anatomy of the STP dataset. 

1.4.2  Mouse Atlases 

The atlases currently available can be separated into those based on MRI data and those 

based on serial histological sections (slice-based). While MRI atlases offer full 3D 

segmentation, they are hampered by the relatively low resolution of MRI data and 

contain only major brain structures (Johnson et al., 2010; Ma et al., 2005; Ma et al., 

2008) or only map certain brain areas in reasonable detail (Richards et al., 2011; 

Ullmann et al., 2012; Ullmann et al., 2014; Ullmann et al., 2013) making them of 

limited use for mapping high-resolution STP data. Slice-based atlases on the other hand, 
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suffer from deformations generated during slicing and handling of the sections, which 

leads to high frequency noise along the axis perpendicular to the cutting plane (Ng et al. 

(2007), see 2.7.2), but provide very detailed segmentation of individual structures. 

Currently, there are two major slice-based atlases. The first is the Paxinos and Franklin 

(2004), which is based on 120 µm thick coronal sections of one mouse brain, alternately 

stained using nissl and cresyl violet. These sections were then manually segmented into 

over 900 brain structures. However, this atlas is only available in printed form. While 

recent versions also include a digital PDF version of the book, extracting the anatomical 

structures from this format is difficult and the atlas still lacks a suitable reference-brain 

dataset for 3D fluorescence images. The second major atlas is the Allen brain atlas 

(Lein et al., 2007; Ng et al., 2007). It was created using a series of 25µm thick nissl-

stained coronal sections that were manually segmented into “several hundred” 

structures (Ng et al., 2007). These structures were later mapped onto a reference brain 

generated by averaging 1231 individual STP datasets (Oh et al., 2014). The atlas is still 

under active development and both segmentations and raw image data are freely 

available in digital form. It has hence become the basis for many studies requiring 

segmentation of 3D fluorescence microscopy data (Kim et al., 2014b; Vousden et al., 

2015). 

1.4.3 Standardising Automated Segmentation 

While several studies have used automated image registration on whole-brain 3D 

fluorescence data, the quality of the resulting segmentations has not yet been adequately 

quantified. Furthermore there have been no attempts to establish a standardised image 

registration pipeline for 3D fluorescence data. Past publications either omitted details 

about the software and parameters used for registration (Lein et al., 2007; Oh et al., 

2014) or used closed in-house pipelines based on open source registration tools with 

only partially published parameters (Menegas et al., 2015; Vousden et al., 2015). One 

aim of this thesis was hence to establish a fast, open and validated pipeline for 

automated segmentation of 3D fluorescence mouse brain data. 

To accomplish this, automated mouse atlas propagation (aMAP) was developed. It 

provides an interface to NiftyReg (Modat et al., 2010), a fast MRI registration toolkit 

for affine and b-spline-based free-form registration (see 2.7.3) that was kindly modified 
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by Marc Modat to run on larger datasets. The Kim et al. (2014b) atlas was used to 

evaluate the performance of aMAP. The atlas is based on the original Allen atlas (Lein 

et al., 2007) and was modified to better match the 3D reference brain template. We 

further smoothed the structures in the Kim et al atlas along the z-axis (dorso-ventral) to 

reduce the high-frequency noise in the segmentations along this axis (see 2.7.2). Using 

the parameters of this study, aMAP was capable of segmenting a complete STP dataset 

in 40 minutes on a Dell T7500 dual-processor workstation. 

To validate the suitability of aMAP, a cohort of 22 neuroscientists was split into two 

groups and each person was asked to segment 10 structures in 3 brains. The two groups 

were shown data from different brains, so a total of 6 brains were segmented, each by 

11 raters. The segmentation quality of aMAP was then compared to that of the manual 

segmentations performed by human raters. 

1.5 Automated Cell Detection 

When mapping connectivity using transsynaptic tracers, it is necessary to detect the 

precise anatomical location of all fluorescently labelled neurons to evaluate the synaptic 

connectivity. While automated mapping allows to describe the location of any point in 

the whole-brain dataset in anatomical terms, the fluorescent cells still need to be 

detected. Classically this is done by manually marking all fluorescently labelled neurons 

in the dataset (“cell counting”). However, in our whole-brain tracing experiments, the 

number of labelled cells can be in the tens of thousands, making manual cell counting 

extremely laborious and time-consuming. It would thus be highly advantageous to 

automate this task. 

1.5.1 2D Cell Counting Approaches 

Detection and even classification of cells in 2D images is routinely used in the analysis 

of cell culture microscopy images and a variety of free and commercial solutions are 

available to aid in this task (Abbas et al., 2014). While cell detection tools have 

classically relied on image filtering algorithms to isolate and detect cells (Carpenter et 

al., 2006; Malpica et al., 1997; Meyer and Beucher, 1990), machine learning approaches 

using e.g. random forests (Sommer et al., 2011) or support vector machines (Han et al., 

2012; Misselwitz et al., 2010) on a set of parameters calculated from the image data 
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have recently gained popularity. Despite the high quality of cell detection on cell culture 

data, accurate and reliable analysis of histological or fluorescence tissue data presents a 

far more challenging task and has remained elusive (Irshad et al., 2014; Madabhushi 

and Lee, 2016; Meijering, 2012). However, recent results on histological data using 

deep learning have shown very promising results (Xue et al., 2016). 

Despite the fact that whole-brain scanning using STP or LSFM generates 3D datasets, 

automated 2D cell counting has been employed to approximate the number of cells in 

whole-brain STP data (Kim et al., 2014b) by multiplying the detected cell number with 

a correction factor to account for missed cells. 

1.5.2 3D Cell Counting Approaches 

The widespread adoption of 3D fluorescence imaging methods such as confocal 

microscopy has led to an increased interest in 3D cell detection. As a result, several 3D 

cell detection algorithms have been developed for these relatively small high-resolution 

datasets (LaTorre et al., 2013; Oberlaender et al., 2009; Toyoshima et al., 2016). 

Whole-brain imaging, however, presents a new and unique challenge due to the fact that 

the amount of data is orders of magnitude larger (~2.5TB per brain for our STP scans), 

while resolution and image quality are lower. For example, the data for this thesis was 

acquired using a 10x lens, as opposed to the 40x or 62x lenses used for automated cell 

counting in confocal images (LaTorre et al., 2013; Oberlaender et al., 2009; Toyoshima 

et al., 2016). As a result, these 3D cell counters cannot be directly applied to STP data. 

This has led to the development of 3D cell counting algorithms specially tailored for 

whole-brain microscopy (Menegas et al., 2015; Renier et al., 2016; Vousden et al., 

2015). Unfortunately, two of these algorithms are in-house pipelines without published 

quantification of accuracy (Menegas et al., 2015; Vousden et al., 2015). While the 

recently published cell counting tool by Renier et al. (2016) is freely available, it has 

only been used on relatively small low-resolution datasets (voxel size of 4µm, 

20GB/brain), and its performance has only been quantified in a small region of one 

dataset (203x203x65 voxels). 

Thus, there is a need for a validated open source 3D cell counting method aimed at 

large whole-brain datasets. These datasets are of lower resolution than the data typically 

generated with confocal microscopes, and can contain a number of artefacts of similar 
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shape and size as a cell (e.g. due to contaminations or background fluorescence). As a 

result, detailed morphological analysis, e.g. using machine learning is required for 

accurate classification, however the huge size of the datasets prevents such a 

computationally costly analysis on a complete whole-brain STP dataset. 

1.6 Machine Learning in Image Analysis 

Machine learning algorithms are a class of algorithms that – rather than following a 

static set of instructions with predefined parameters – can modify their internal 

parameters to improve their performance at a defined task in response to repeated 

execution of the task. Learning algorithms started in the 1950s and were driven by the 

goal of artificial intelligence (Feigenbaum and Feldman, 1963). To allow computers to 

“perceive” their environment, learning algorithms were successfully applied to object 

recognition tasks such as the recognition of handwritten characters (Uhr and Vossler, 

1961). To understand the motivation for using machine learning instead of a fully 

deterministic algorithm, consider the task of recognising a boat in a picture. A boat 

could be a catamaran, canoe, rubber boat or any other type of boat. It could be on water 

(partially submerged), on the beach or mounted on a trailer. In addition the colour, 

illumination profile and size of the boat will vary from picture to picture. This large 

variability makes it extremely challenging to develop an accurate deterministic 

algorithm for the task. However, given enough training data, an adequately designed 

learning algorithm should be able to determine a matching set of parameters to detect 

the object. Learning such a classification task is known as supervised learning, as the 

algorithm is given a set of images with a corresponding set of labels that describes its 

content, and the goal is to accurately predict the label, given the data2. The algorithm 

learns by adapting its parameters in response to the errors during training. 

1.6.1 Parameter-Based Machine Learning 

Most early machine learning algorithms that achieved success in object recognition 

tasks did not process raw image data. Instead they relied on human experts to define and 

calculate a set of features from the images that sufficiently describe their content 

(Feigenbaum and Feldman, 1963). The machine learning algorithms operated on these 

                                                
2As!opposed!to!unsupervised!learning,!which!is!used!to!find!patterns!in!unlabeled!data.!
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features to try and classify the image. For example, a support vector machine (Hearst et 

al., 1998) attempts to fit a hyperplane through the feature space, whereas a decision tree 

will follow a path of binary decisions until it reaches a conclusion about the object in 

the image (Quinlan, 1986). 

While these algorithms modify their parameters during learning to best fit a model to 

the features, they still essentially rely on external parameters defined by human experts 

with prior knowledge of the problem to describe the image for them. This has led to the 

development of a range of specialised image filters and feature detectors that attempt to 

detect key points while being invariant to e.g. scale or differences in exposure (Bay et 

al., 2008; Lowe, 2004; Zhang et al., 2007). It would be desirable, however, to have a 

machine learning algorithm that is able to directly recognize features in and learn from 

the raw data, removing the need to manually develop mathematical feature descriptors. 

1.6.2 Artificial Neuronal Networks 

As machine learning was first introduced to try to create artificial intelligence, it is not 

surprising that artificial neuronal networks (ANN) were amongst the first machine 

learning algorithms to be used (Farley and Clark, 1954; Rochester et al., 1956). 

Arguably the most notable early neuronal model that is still in use today (in an extended 

form) is the perceptron (Rosenblatt, 1958). Its neuronal model states that given a real 

valued input vector x, a weights vector w and a bias b, the model will output 1 if 

! ∙ ! + ! > 0 and 0 otherwise. The perceptron was eventually developed in hardware, 

with a single layer of 512 artificial neurons (AN), randomly connected to 20x20 

photocells (Bishop, 2006). The machine was trained to perform object detection in 

images projected onto the photocells and “learning” was implemented via motorised 

potentiometers that encoded the weights matrix w. 

However, single layer perceptrons were later proven to only be capable of learning 

patterns that were separable by simple linear equations (Minsky and Papert, 1969), 

leading to a decline in interest in the techniques. While it was known that an ANN with 

multiple stacked layers of ANs (“hidden layers”, as they are “hidden” between the input 

and output) could learn more complex patterns (Minsky and Papert, 1969), such 

networks required large computational power, which was not available at the time. 
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Figure 1-3: Illustration of a simple ANN 

A diagram of an ANN with 2 hidden layers using a hyperbolic tangent activation function, 

performing classification (blue/orange) of a 2-dimensional input value. The dots in the graph 

show the training data, with the color representing their class. Each box represents an AN; the 

colour within the box illustrates an AN’s output mapped to its input space. The lines between 

individual ANs represent connections, with the colour showing their sign (blue: positive, 

orange: negative) and the thickness illustrating the weight of the connection. Each AN 

calculates the weighted sum of all its inputs, with its output being the hyperbolic tangent of the 

summed input. The colour map in the output plot shows the segmentation of the data space by 

the neuronal network. The error plot shows the error as a function of the training iteration. 

Visualisation was created using the tensorflow playground (playground.tensorflow.org).  

 

1.6.3 Deep Learning 

ANNs have regained popularity from the 1980s onwards due to continuing increases in 

processing power and algorithmic optimisations. In particular the introduction of 

backpropagation, a method whereby the output error is proportionally applied to the 

weights of each AN (Werbos, 1974), has been crucial, as it allowed to train neural 

networks by gradient descent, resulting in vastly improved trainability (Schmidhuber, 

2015). More recently, the introduction of libraries such as CUDA (Nickolls et al., 2008) 

and OpenCL (Stone et al., 2010) that allow to use Graphics cards (GPUs) as affordable 

parallel processing units allowed to develop and train extremely complex and deep 

ANNs with tens to hundreds of hidden layers on regular consumer hardware rather than 

large and expensive cluster systems (Krizhevsky et al., 2012). 
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Figure 1-4: Illustration of a convolutional network 

Convolutional network with 6 hidden layers (Conv, horizontal axis) and 10 features (vertical 

axis). The small images show the activation strength for each AN in each layer, with each pixel 

representing an AN. Each AN in a Conv layer receives input from all 10 ANs at the same 

location in the previous layer. In this example, the AN is split to show both the result of the 

weighted summation (Conv) and non-linear activation (rectified linear unit, ReLU, Nair and 

Hinton (2010)). Spatial reduction is achieved via maximum binning (Pool), with a bin size of 

2x2. A grayscale version of the input image is presented to the receptive fields of all 10 feature 

layers. Conv: convolutional layer; ReLU: rectified linear unit; Pool: max pooling layer; FC: 

fully connected layer. Adapted from the Stanford University CS231n course material 

(cs231n.github.io). 

 Working with these multi-layered (deep) networks has coined the term deep learning3. 

Deep ANNs are currently dominating the field of visual object recognition, having won 

every ImageNet challenge since 2012 (Russakovsky et al., 2015). Therefore, they are 

ideal candidates for a cell detection algorithm. 

 

                                                
3!There! are! also! other! deep! (multilayered)! learning! architectures! that! do! not! rely! on! artificial!
neurons,!such!as!multilayer!kernel!machines!(Cho,!Y.!and!Saul,!L.K.!2009),!however!they!are!not!as!
widely!used.!Cho,!Y.,!and!Saul,!L.K.!(2009).!Kernel!methods!for!deep!learning.!Paper!presented!at:!
Advances!in!neural!information!processing!systems.!
!
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1.6.3.1 Basic Components of ANNs 

The first layer in an ANN is the input layer, which represents the data. In the case of 3D 

image classification, each point in the input layer represents an individual voxel. If the 

images are sufficiently small (e.g. 50x50x50), the input layer can cover the whole image. 

If the images are large, the input layer usually represents a sliding window that is 

moved across the dataset. 

The arguably most important layers are the hidden layers, artificial neuronal layers that 

lie between the input and output layer. Figure 1-3 shows an example of a simple ANN 

with a single 2-dimensional input (C1/C2) and two hidden layers. The training data in 

this example is artificial, but one could for example imagine that the input is a single 

pixel (normalised to a mean of 0) of a two-channel fluorescence microscopy image of 

tissue stained with two different antibodies. The task of the net would be to classify 

whether the two colour intensities (C1 and C2) are similar enough to represent a co-

staining at this location. Each point in the training data plot represents a labelled input, 

with blue denoting co-localisation and orange no co-localisation. The ANs of the first 

hidden layer receive the C1/C2 values as input and – like the neurons in the original 

perceptron – calculate a weighted sum of the input. The output of the neuron is then 

calculated from that value using a non-linear activation function. In the case of the 

original perceptron, the activation function was a simple thresholded binary all-or-

nothing response while this example uses the hyperbolic tangent. The non-linearity in 

the activation function is crucial, as an ANN would otherwise simply represent a linear 

model (a composition of linear functions always results in a linear function). 

The ANs of the second hidden layer now receive the output of the first hidden layer and 

likewise perform weighted summation and activation. The output of the second hidden 

layer is then summed to represent the final output of the network. The individual 

activity patterns of the ANs in Figure 1-3 illustrate nicely how complex patterns arise 

using multiple layers of simple summation followed by nonlinear activation. 

In the example in Figure 1-3, a single two-dimensional input (e.g. a 2-colour pixel) is 

routed to four ANs in the first hidden layer, with each of the four ANs representing an 

abstract feature that is used to classify that point. ANNs for image classification use an 

extension of this method called convolutional layer (Figure 1-4, Le Cun et al. (1990)), 

where each pixel of the image is routed to a number of ANs, with each neuron 
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representing an abstract feature of that particular pixel (Figure 1-4, Conv layers, vertical 

axis). Alternatively, an AN can receive the input of a group of neighbouring pixels, 

enabling the detection of spatial patterns, which can be seen as an analogue to a 

receptive field in the visual system. 

Many convolutional ANNs gradually reduce the spatial size of the data, while 

increasing the number of features (Krizhevsky et al., 2012; Szegedy et al., 2015; Zeiler 

et al., 2011). Spatial reduction can be achieved either by using receptive fields with the 

distance of their centres (stride) larger than 1 or by using pooling layers, which use a 

simple binning operation (e.g. mean or max) to reduce the size of the data (Figure 1-4, 

Pool layers). 

In a classification task, the information from the final convolutional layer is projected 

onto one (or multiple) fully connected (FC) layers. Here, every AN receives the input of 

all ANs of the previous layer, irrespective of their spatial position, to combine all 

information and determine the class of the image (Figure 1-4, FC layer). The final FC 

layer contains one AN per class, and the segmentation result is defined by the AN with 

the strongest activation (Figure 1-4, FC shows the relative activation strength of the 5 

strongest ANs). 

1.6.3.2 Training ANNs 

ANNs can either be trained in a supervised or unsupervised manner. Unsupervised 

learning uses unlabelled data and is generally used to find consistent patterns or 

structures in the input data. While unsupervised learning can be used to pre-train an 

ANN for image classification (Bengio et al., 2007), this method has not been used in the 

thesis. 

During supervised learning, the ANN is presented with an image and its associated class 

label, which defines the optimal result of the last FC layer. The ANN then classifies the 

image and calculates the difference between the classification result and the optimal 

result. This serves as input to a loss function (also called cost or error function), which 

is then “backpropagated” through the network by calculating the partial derivatives with 

respect to the weights for each neuron in each layer. This results in a measure of error 

for each weight of each neuron, which is used to update the weights for the next image 

(gradient descent). In regular intervals, the network is evaluated by classifying images 

from a validation dataset without backpropagating the error or updating the weights. 
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Training is usually halted when the error on the validation dataset increases (Sarle, 

1996). 

To prevent the network from oscillating, images can be presented in batches and the 

weights are only updated after a batch of images. Furthermore, a learning rate <1 is 

multiplied with the errors to reduce their influence. Finally, the learning rate is also 

often decreased with increasing training time, which results in gradually smaller 

changes to the weights to improve the stability of the network (Bottou, 2012). While 

training is a computationally expensive task that, depending on the complexity of the 

problem, can take days or weeks even on high performance computers (Iandola et al., 

2015), applying a trained network to input data is relatively fast. The network from 

Figure 1-4 for example was implemented in JavaScript and can be run in a web-browser 

(http://cs231n.stanford.edu/). 

1.7 Applications for Automated Connectivity Analysis 

Whole-brain connectivity analysis driven by advances in viral tracing and automated 

microscopy now makes mapping the whole mouse brain a feasible goal that is actively 

being pursued (Bohland et al., 2009; Osten and Margrie, 2013). It has already led to a 

remarkable online resource by the Allen Brain Institute that shows connectivity in the 

mouse brain mapped using Cre-dependent rAAV in combination with STP (Oh et al., 

2014). Transsynaptic tracing methods take the approach one step further by reporting 

synaptic connectivity. When combined with a potential broader adoption of whole-brain 

imaging techniques and automated data analyses they have the potential to rapidly 

advance our knowledge about connectivity and function of the brain. 

1.7.1 Cell-Type Specific Mapping 

Advances in the development of transgenic mouse lines have led to the availability of a 

large variety of so-called Cre lines, transgenic mice that express Cre recombinase 

(Sauer and Henderson, 1988) in genetically defined populations of neurons (Josh Huang 

and Zeng, 2013; Orban et al., 1992). Using RV and Cre-dependent rAAV helper viruses 

in these mouse lines allows targeting cells not only by location but also by cell type 

(Josh Huang and Zeng, 2013). This can be used to distinguish and unravel distinct 

neuronal circuits in the same anatomical area, as shown by Vélez-Fort et al. (2014), 
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who used Cre-dependent RV tracing in combination with morphological reconstruction 

and electrophysiological characterisation to describe two functionally distinct 

microcircuits within layer 6 of the primary visual cortex. 

1.7.2 Mouse Models of Disease 

Animal models have become a crucial tool for understanding human illnesses by 

enabling the study of severe conditions on a molecular and systemic level. The unique 

ability to mimic, investigate and test treatments for diseases in a way that would be 

impossible with human subjects has led to breakthroughs in many fields, from cancer 

(Semenza, 2003) to HIV (Klein et al., 2013) and spinal cord injuries (Wenger et al., 

2014). Despite that, our understanding of and treatment options for many 

neuropathological disorders remain limited (Nestler and Hyman, 2010). 

Advances in genetic screening have led to the discovery of potential targets for many 

disorders affecting the nervous system and have thus enabled the development of 

genetically engineered mouse models for a variety of such disorders including 

Parkinson’s (Przedborski and Vila, 2003), Alzheimer’s (Götz and Ittner, 2008), Down’s 

(Li et al., 2007), Depression (Kalueff et al., 2007), Schizophrenia (Belforte et al., 2010) 

and Autism (Peça et al., 2011). However, the ability to evaluate a complex behavioural 

phenotype such as depression or schizophrenia in a mouse model is limited at best 

(Nestler and Hyman, 2010), making evaluation of the validity of these disease models 

difficult. This is compounded by the fact that neuropsychiatric conditions in particular 

can present themselves in a very heterogeneous way, which can lead to two individuals 

being diagnosed with the same disorder despite having different symptoms with little 

overlap (Nestler and Hyman, 2010). 

As these diseases are known to have an impact on brain wiring, for example with 

altered spine number and morphology in Down’s syndrome (Contestabile et al., 2010) 

and abnormalities in the wiring of the cerebral cortex in Autism (Geschwind and Levitt, 

2007), connectivity analysis in these models presents a unique opportunity to shed 

further light on the impact that these diseases have on the level of individual neuronal 

circuits. While low-resolution rfMRI data from human subjects is readily available 

(Broyd et al., 2009), functional connectivity, as measured by rfMRI does not equal 

anatomic connectivity. It does, however provide a set of possible targets for detailed 



Chapter 1 Introduction 

 

 34 

connectivity analysis at cellular resolution to complement the rfMRI data and further 

improve our understanding of the underlying network changes in neuropathological 

disorders. 

1.7.3 Reliability of Connectivity 

When discussing connectivity, many experiments are designed on the assumption that 

connectivity is stereotypical and similar between individuals. Even the large-scale 

connectivity mapping project by Kim et al. (2014b) rarely includes more than a single 

injection with the same parameters (mouse line, injection coordinate, volume and batch). 

However, the assumption that all mice (or men) are essentially the same may be overly 

simplistic. The high-throughput and precise quantification capabilities of automated 

mapping would allow investigation of subject-to-subject variability in neuronal 

connectivity.  

1.8 Aim of the Thesis 

The aim of the thesis was to develop and validate an automated pipeline for tracing 

whole-brain connectivity of defined populations of neurons in 3D STP datasets of the 

mouse brain. To achieve this goal, two essential pieces of software were developed and 

evaluated for the following tasks: 

1. Automated image registration and segmentation 

2. Automated cell counting 
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Chapter 2. Materials & Methods 

2.1 Mouse Lines 

All mice were on a C57BL/6 background. The transgenic Cre-reporter mice used in this 

study were of type Ntsr1Cre to target layer 6 cortico-thalamic projection neurons in the 

primary visual cortex (Vélez-Fort et al., 2014) and GAD2-IRES-Cre to label GAD2 

positive interneurons in the primary visual cortex (Harris et al., 2015). 

2.2 Viral Vectors 

The rabies virus used in this study was an EnvA-pseudotyped SAD19 strain rabies 

expressing mCherry instead of the rabies glycoprotein (EnvA-RV-mCherry). It was 

produced according to previously published methods (Vélez-Fort et al., 2014).  

The EnvA-RV-mCherry was trans-complemented by prior stereotaxic injection of a 

mixture of two recombinant adeno-associated virus vectors, serotype 8 (rAAV8). The 

first rAAV8 expressed an E2A-linked fusion protein of Cerulean and the SAD19 rabies 

glycoprotein (Cerulean-E2A-SADB19RG) under the control of a Synapsin promoter 

and a Flex site (based on Addgene #49101), while the second rAAV8 expressed EGFP-

E2A-TVA under the control of the ef1a promoter and a Flex site (Addgene #26198). 

For injection, the two rAAV8 were mixed in a 2:1 ratio (RG to TVA). 

 

2.3 Stereotaxic Injections 

All procedures were carried out in accordance with UK Home Office regulations 

(Animal Welfare Act 2006) and the local animal ethics committee. Briefly, animals 

were anaesthetised using intraperitoneal injection of Ketamine/Xylazine (2:1 mixture) 

and a minimal craniotomy was performed over the target area. Injections were carried 

using long-shanked volume-calibrated pipettes (Blaubrand, Brand GmbH, Germany) 

that were pulled and broken to a tip diameter of ~7µm. Injection pipettes were tip-filled 

under negative pressure and injected using positive pressure, ensuring an injection 

duration of ~3min. V1 injections were carried out on an in-vivo patch-clamp setup 
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calibrated to target V1. Craniotomies were sealed post injection using Kwik-Cast 

Sealant (World Precision Instruments). Mice were injected with ~20nl of rAAV 

followed 3 days later by ~50nl of RV. Animals were sacrificed 10 days after RV 

injection. 

2.4 Tissue Preparation 

Mice were perfused trans-cardially with cold 4% PFA-solution under deep general 

anaesthesia (Ketamine/Xylazine 2:1). Brains were then removed, post-fixed in 4% PFA 

for at least 24h and embedded in 4% type 1 agarose (Sigma-Aldrich). 

2.5 Data Collection 

Images were acquired in the coronal plane using a TissueCyte 1000 STP (TissueVision, 

Cambridge MA, USA) with an XlumplanFl 10x water immersion objective (Olympus 

Corporation, Tokyo, Japan) and a Mai Tai DeepSee 2-photon excitation laser (Spectra-

Physics, Santa Clara, USA) at an excitation wavelength of 800nm. Images were 

acquired at 16bit with a resolution of 1664x1664 (1µm/pixel, 0.4µs/pixel) per single 

image tile with each optical layer consisting of 9x6 image tiles. After acquiring 10 

optical layers with a z-step of 5µm, a 50µm section was cut automatically. This process 

was repeated until the complete brain was imaged, resulting in 300-320 tissue sections 

per brain.  

2.6 Data Handling 

Acquired image tiles were processed with an automated image processing pipeline 

(tvPy) written in Python. Individual tiles were cropped to a resolution of 1568x1568, 

rotated 90˚ clockwise and corrected for uneven illumination by generating a correction 

tile that is the average of all image tiles of the corresponding optical layer in each of the 

~300 physical slices. The resulting 10 correction tiles (1 per optical layer) were then 

subtracted from the individual image tiles of the corresponding optical layers. The 

processed image tiles were stitched into planes using a custom version of the stitching 

plugin originally developed by Preibisch et al. (2009), which was modified to stitch the 

images based on the XY-stage coordinate output of the TissueCyte STP.  
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Figure 2-1: High frequency noise along the z-axis of the segmentation dataset 

a) Image of a sagittal section through the segmentation of the Kim et al. atlas (scaled to 

isotropic size), with different anatomical areas displayed in a false color map. High frequency 

noise is visible in the structure boundaries from anterior to posterior caused by artifacts 

stemming from the fact that the atlas is based on 2D segmentations of individual coronal 

cryostat sections. b) The same image after two iterations of Gaussian smoothing  of the 

structures (radius 0.5 voxels at a voxel size of 20x20x50µm), showing noticeably reduced 

noise. Scale bars = 1mm. 

2.7 Automated Segmentation using aMAP 

2.7.1 Data Preparation 

For automated segmentation, each STP scan was first smoothed along the z-axis 

(Gaussian, s.d. of 5 voxels) to reduce the influence of depth-dependent illumination 

changes and then downsampled to a voxel size of 12.5µm isotropic. To enable 

registration with NiftyReg, the STP data was converted to the Nifti file format using 

MATLAB (Mathworks) with the “Tools for NIftI and ANALYZE image” 

(http://uk.mathworks.com/matlabcentral/fileexchange/8797-tools-for-nifti-and-analyze-

image). Both manual and automated segmentation were carried out either on 

background fluorescence (n=5 brains) or the RFP signal of a sparsely labelled animal 

(n=1 brain). 

2.7.2 Atlas Preparation 

For use with aMAP, the segmentations from the atlas developed by Kim et al. (2014b) 

were smoothed twice using a Gaussian kernel (s.d. of 0.5 voxels). This was done to 

reduce the impact of high-frequency noise along the z-axis (Figure 2-1). 

a b
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2.7.3 Registration Using NiftyReg 

Image registration with NiftyReg, which forms the basis of aMAP, is a two-step process 

consisting of an affine image registration followed by a free-form registration. During 

this process, the STP data remains unchanged while the average brain is modified to 

maximise the similarity to the STP data. Both registration steps use a pyramidal 

approach, meaning the data is downsampled multiple times by a factor of 2. The 

registration is then performed on the lowest resolution before moving up to the next 

larger version to prioritise global matching of structures and avoid local minima. 

2.7.3.1 Affine Registration Using reg_aladin 

Affine registration was used to obtain a rough overall fit between the atlas and our STP 

data. The atlas data was modified using the set of affine transformations (translation, 

rotation, scaling, shearing) to obtain maximum similarity between the two datasets, 

where similarity was calculated using an iterative symmetric block-matching approach. 

Here, both the atlas and STP data were divided into small blocks and the algorithm 

attempts to find matching blocks in the two datasets using normalised cross correlation. 

The distances between all matching blocks were calculated and the affine 

transformation that minimises these distances was obtained using least trimmed squares 

regression (Modat et al., 2014). 

2.7.3.2 Free-Form Registration Using reg_f3d 

Free-form registration was used to optimise the fit after affine registration. Here, a 

regular grid of control points is placed over the image. These control points were moved 

during the registration and influence the area around them via a b-spline relationship. 

The goal or the algorithm is to maximise the registration score, which is a combined 

measure of image similarity and a regularisation term that prevents overfitting. The 

following parameters of the free-form image registration are known to have a large 

impact on the result and were optimised on 2 out of the 6 STP datasets:  

Spacing of the control points of the b-spline grid 

Sets the distance between the individual control points of the b-spline grid. A 

larger spacing enforces more global transformations while a smaller spacing 

allows more local registration. Set to 10 Voxels. 
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Similarity function 

The first term influencing the registration score during optimisation is the 

similarity between the target image (STP data) and the “floating” image 

(reference brain of the atlas), which is calculated for each iteration of the 

optimisation. The similarity function defines how similarity is calculated and 

can be either set to normalised mutual information (NMI, with adjustable 

number of bins) or locally normalised cross-correlation (with adjustable 

Gaussian kernel size for normalisation). Set to NMI with 128 bins. 

Bending Energy Weight 

The second term influencing the registration score is the second derivative of the 

grid point translation, evaluated at each point of the b-spline grid (“bending 

energy”). It acts as a regularization term and penalises high frequency movement 

of the b-spline grid points. The bending energy weight (BE) shifts the relative 

weight of these two terms as follows:  

!"#$%&!'&$()*+(!"! = ! (1 − !") ∗ !"#"$%&"'(!– !!" ∗ !"#$%#&'#"(&) 

Set to 0.95. 

Total number of steps in the downsampling pyramid 

This parameter controls how many downsampling steps are generated for the 

pyramidal registration approach (see 2.7.3). Set to 6. 

Number of computed steps in the downsampling pyramid 

As discussed above, registration starts on the smallest dataset of the 

downsampling pyramid. This parameter controls how many steps are used to 

compute the final registration. It is, for example, possible to increase registration 

speed by calculating 5 downsampling steps but only register 4 of them (omitting 

the registration on the full-sized data). Set to 4. 

The 2 datasets used for optimisation were excluded from all analyses of aMAP’s 

performance. 
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2.8 Manual Segmentations 

22 neuroscientists from the former Division of Neurophysiology at the National 

Institute of Medical Research were recruited as human raters for this task. These 

included P.I.s, postdocs, PhD students and technicians. Raters were asked to use the 

online version of the Allen mouse brain atlas to segment 10 different brain structures. 

Each rater was asked to segment each structure on STP datasets from 3 different 

animals showing background fluorescence. In addition, unbeknownst to the raters, all 

images from one animal were presented again to assess the reliability of segmentation, 

resulting in a total of 40 segmentation tasks per rater. First and repeated presentation of 

the same data were spaced at least 20 segmentation tasks apart. The 22 raters were split 

into two groups that were presented data from different animals, leading to a total of 6 

brains being segmented by 11 raters each. 

2.8.1 Data Preparation 

The STP data was rigidly aligned to the average brain of the Allen Mouse Brain atlas, to 

ensure correct alignment in the coronal plane. The transformation matrices for this 

alignment were determined using reg_aladin on STP data prepared as described above 

and then applied to the full-resolution STP images using MATLAB (MathWorks) 

2.8.2 Choice of Brain Structures 

Brain structures were chosen to cover a large range of areas across the dorsoventral and 

anterior-posterior axes of the brain and varying levels of anticipated segmentation 

difficulty. The brain structures included in the analysis were Anterior Cingulate Area 

(ACA); Anterior Hypothalamic Nucleus (AHN); Dentate Gyrus, granule cell layer (DG-

sg) 4 ; Medial Vestibular Nucleus (MV); Retrosplenial Cortex (RSP); Primary 

Somatosensory Cortex (SSp); Subiculum (SUB); Primary Visual Cortex (VISp); 

Secondary Visual Cortex, anteriomedial part (VISam) and Ventral Posteromedial 

Nucleus of the Thalamus (VPM). 

                                                
4!Analysis!of!the!data!indicated!strong!influence!of!the!zLchoice!on!the!human!DGLsg!segmentations.!
This!structure!was!therefore!excluded!from!segmentation!analysis!(see!Results)!
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2.8.3 Data Presentation 

STP images were presented on a Wacom Cintiq screen to allow segmentation with a 

digital pen. The coronal Allen brain atlas plates were presented on a separate computer 

and raters were free to browse them as required. For each brain structure, the raters were 

presented with a coronal z-stack consisting of 40 STP images, acquired 15µm apart. 

Raters were then given an atlas plate number and structure name from the Allen brain 

atlas, asked to find the image of the STP stack that best corresponded to the atlas plate 

(z-choice) and segment the given structure on that image. Data were presented to each 

of the two groups in four blocks of 10 structures. Data presentation and storage of the 

raters’ segmentations was handled by a custom ImageJ plugin. 

2.8.4 Post-Processing of Manual Segmentations 

Segmentation outlines were manually cleaned by removing artefacts such as isolated 

small areas that occur when a rater accidentally touches an unrelated part of the image 

with the digitizer pen during draw mode. 5 of 880 segmentations were performed on the 

wrong structure or hemisphere and were thus discarded. The remaining segmentation 

outlines were downscaled to an x-y pixel size of 4µm and converted to filled binary 

images. 

2.9 Assessment of Segmentation Performance 

2.9.1 Euclidean Landmark Distance 

The following 10 anatomical landmarks, as used in the study by Kim et al. (2014b) and 

defined by the Waxholm Space (Johnson et al., 2010), were marked in the average brain 

of the Kim et al. atlas and the downscaled version of each STP dataset before 

registration: frontal middle 1; frontal right 2; frontal left 2; anterior commissure right; 

anterior commissure left; corpus callosum middle; hippocampus middle; 

interpeduncular nucleus right; interpeduncular nucleus middle; interpeduncular nucleus 

left. In one STP dataset, hippocampus middle was omitted due to an imaging artefact in 

that area. The free-form registration was then calculated for each of the 6 brains using 

18 different BE values in a range from 0.2 to 0.99.  
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2.9.2 Scoring Using Consensus Segmentations 

Since there is no ‘ground truth’ segmentation that could be used to assess the quality of 

individual segmentations, all segmentations for a given target structure were compared 

to a ‘consensus segmentation’ derived from all manual segmentations of that structure 

using STAPLE (Warfield et al., 2004). STAPLE is an iterative algorithm and aims to 

simultaneously assess the ‘quality’ of each segmentation and the quality-weighted 

consensus segmentation of all segmentations. The quality of a segmentation is derived 

from its overlap with the consensus segmentation and is initialised to equal levels for all 

segmentations. After the first iteration, segmentations with low overlap receive a 

penalty in their quality rating while segmentations with high overlap are assigned a 

higher quality value. This process is then repeated until convergence. STAPLE 

consensus structures were generated from manual segmentations using NiftySeg (Jorge 

Cardoso et al., 2013). Both manual and automated segmentations were scored against 

the consensus segmentation using the Dice score (Dice, 1945). As supplementary 

measures, consensus segmentations were also generated using shape-based averaging 

(SBA, Rohlfing and Maurer (2007)), which calculates the geometric mean of multiple 

areas. All segmentations were also scored using the Hausdorff distance, which is 

defined as the longest distance between any point on one set and its closest neighbour in 

the other set. It measures the maximum distance between two segmentations and is 

hence a good indicator of segmentation artefacts. All segmentations were scored using a 

custom analysis pipeline written in Matlab. 

2.9.3 Comparison of 2D Manual Segmentations and 3D aMAP 
Segmentations 

While aMAP generates 3D segmentations of the complete brain, manual segmentations 

of complete anatomical structures in 3D are not achievable in a reasonable amount of 

time. To score aMAP’s performance, its 3D segmentations were cut coronally to 

generate comparable 2D aMAP segmentations. The section with the highest score was 

used for each anatomical structure. 
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2.10 Manual Cell Counting 

Cells were counted manually on sub-volumes of the STP data using either a custom 

modified version of the ImageJ (Schneider et al., 2012) cell counter plugin originally 

developed by Kurt De Vos, or MASIV, a Matlab visualisation interface for large 3D 

image datasets developed in our lab by Alex Brown. 

2.11 Automated Neuron Detection using FACCT 

FACCT consists of a modular toolkit written in Java and an ANN implemented in Caffe. 

The java toolkit enables simple development of “filters”, which are modules that  

 

Figure 2-2: Schematic of FACCT filter design  

FACCT applies a sequence of filters (red line) to the image data to locate cells in the dataset. 

A global shared data object is used for storing information that is relevant for multiple filters 

or results needed by a later filter. Each filter is comprised of 4 components: a pre-processor 

for initialisation, multiple runnables that process different regions of the dataset in parallel, a 

post-processor that performs clean-up tasks and can store results for later filters and a shared 

data object that contains persistent data and defines the required user input. Images are 

provided to each runnable by the data access layer via an ImageBundle that provides 

read/write-access to the relevant image data of each runnable. 

Filter 1 Filter 2 Filter 3 Filter 4 Filter n

Global Shared Data
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ImageBundle
[1:nThreads]
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 process a series of images in a linear fashion and integrates with ImageJ, enabling 

access to a large range of well-established image processing routines. Image data is 

processed using sequence of multiple filters to locate potential cells in the dataset which 

are than analysed by the ANN. Data access code is completely separated from the filters, 

allowing to process images in memory, stored layer-by-layer on hard disk or even data 

from specialised multi-folder arrangements without modification of the actual image 

processing code. 

 

2.11.1 FACCT Filter Design 

The filter is the core element of FACCT (Figure 2-2). The purpose of each FACCT 

filter is to further reduce the volume of “data of interest” until only marked cells remain. 

A filter can define user-inputs (e.g. a positive integer for cell size, or a directory for 

logging), which are requested from the user during interactive operation or read from 

the script command during scripted runs. 

 

Figure 2-3: Ring buffer and connected structure analysis 

Illustration of two stages in the analysis of connected structures in a hypothetical tile. The red 

2x2 grid denotes the analysis kernel, the grey overlay shows the ring buffer that stores the 

structure IDs that may still be relevant for analysis. a) At this point, the algorithm has detected 

3 different structures (red, orange, blue). Their sizes are stored in a map (Structures) along 

with their ID. b) At this point, structures 1 and 2 (red and blue) are detected to be connected. 

The size of structure 2 is added to structure 1 and structure 2 is marked as obsolete and deleted 

from the Structures map.  

Structures
1-> 22
3 -> 1

Obsolete Structures
2-> 1

Obsolete Structures
[empty]

2- -
1

2
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Structures
1 ->  6
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3 ->  13
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2.11.2 Parallel Processing Model 

Parallel processing of image data is realised via the “runnable” of each filter: The STP 

data is split along the z-axis into as many parts as there are processors available and a 

runnable object is generated for each of these sub-regions. To prevent resource conflicts, 

runnables run independently on different parts of the STP data and their results are 

combined during the post-processing step. 

2.11.3 Tiled Processing System 

To cope with uneven illumination, the initial two filters (tile classifier and thresholder) 

split the images into small 2D tiles that are analysed independently. Each tile has twice 

the height and twice the width of the expected large cell diameter, and tiles can be set to 

partially overlap. The expected large cell diameter has been set to 15µm for this study. 

2.11.4 2D/3D Ring Buffers 

Many of FACCTs filters operate using a 2D or 3D kernel and require a temporary data 

structure that is separate from, but aligned with the image data they operate on (e.g. to 

store the IDs of structures in the image). To ensure high speed and minimal memory 

usage, these temporary data are held in ring buffers that extend over the area of the 

image relevant to the filter’s kernel (Figure 2-3). 

2.11.5 Analysis of Connected Structures 

The Tile classifier, thresholder and 3D structure counter all internally depend on the 

detection of connected binary structures. In all cases detection is carried out by a single 

pass of a 2x2 (or 2x2x2 in 3D) kernel through the image data. If a new structure is 

encountered, it is assigned a unique ID and stored in a Map/Dictionary data structure. 

The structure is then extended or joined to another structure as required (Figure 2-3). 
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2.11.6 Cell Counter Modules: 

2.11.6.1 Initial Data Reduction Using Fast Tile Analysis 

The aim of this filter is to quickly detect and discard areas of the image that contain 

only background fluorescence. It is a 2D tile-based filter and measures the size of the 

largest connected structure at different threshold levels for each tile. It uses a divide-

and-conquer strategy to find the brightness level Bnoise of the noise floor (defined as the  

brightness where the largest structure encompasses at least 98% of the tile, Figure 2-4 a) 

and the peak brightness Bpeak (brightness level at which there is a connected structure 

with a size of at least 4 pixels, Figure 2-4 b). The difference Bnp = Bpeak - Bnoise serves as 

an indicator of whether a tile is relevant: In a sparsely labelled full brain STP dataset, 

the histogram of all Bnp values has a distinct shape with two pronounced peaks (Figure 

2-4 c): A narrow, high peak corresponding to the tiles located outside the brain and a 

 

Figure 2-4: Tile classifier schematic 

a) An exemplary tile from an STP dataset with the threshold set to Bnoise, the brightest value 

which is darker than 98% of all pixels. Thresholded pixels are shown in red. b) The same tile 

with the threshold set to Bpeak, the darkest value that generates a 4-pixel structure (red arrow). 

c) Histogram of Bnp (the difference between Bpeak and Bnoise), computed from all tiles of a 

complete STP dataset. A double Gaussian fit is marked in red. Only values up to 4000 are 

shown, the maximum Bnp was 27111. The red dashed line marks the split between tiles that 

were discarded and tiles that were used for analysis. OSB: Tiles outside the brain without 

significant amounts of signal; ISB Tiles inside the brain without significant amount of signal.  
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broader peak corresponding to the tiles inside the brain that contain only tissue 

background. By specifying a minimum Bnp, which can either be calculated automatically 

using a double Gaussian fit or set by the user, these background tiles are excluded.  

 

2.11.6.2 Size-Checked Otsu Thresholding 

This filter binarises the remaining tiles by individually calculating the optimal threshold 

for each remaining tile. It is an extension of Otsu’s thresholding algorithm (Otsu, 1975) 

that takes the sizes of the resulting thresholded structures into account. First, Otsu’s 

threshold is calculated on the tile histogram. Otsu’s method performs a clustering on the 

histogram under the assumption that the image is best described by a bimodal 

distribution. It calculates the threshold that minimises the sum of the intra-class 

variances for both classes (thresholded and non-thresholded). 

In case of low signal levels, this method can result in underestimation of the correct 

threshold, resulting in structures that are too large to be a cell. To avoid this, the size of 

the largest structure in the tile is calculated using the same 2D structure analysis module 

as the previous filter and compared to a predefined area limit (the square of the 

“expected large cell diameter”, see 2.11.3). If the structure is within the size limit for a 

cell, the threshold is accepted. If the structure is too large, the correct threshold must be 

in the brightness range above the current threshold and Otsu’s method is applied to the 

subhistogram above the current threshold. This process is repeated until the size of the 

largest structure in the tile does not exceed the size limit for a cell. 

2.11.6.3 Simple Morphological Filter for Noise Suppression 

This filter uses the binarised data and fits a 3D spheroid at each position. Each spheroid 

position that results in an overlap of at least 90% between the thresholded voxels and 

the spheroid is marked and all other points are removed from further analysis. This 

results in removal of minor artefacts and structures such as neurites from the data. As 

each runnable only has access to one image at a time, the filter uses a 3D ring buffer to 

keep all relevant image data in memory. 
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2.11.6.4 Structure Counter 

The final filter counts and stores all remaining isolated structures from the above steps 

using a 3D extension of the method described in 2.11.5. Its development was necessary, 

since the standard 3D structure counter in Fiji (Bolte and Cordelieres, 2006) cannot be 

used on large datasets. The result of this filter is a list of the centre of mass positions of 

all cell soma candidates. 

2.11.7 Deep Learning Analysis of Structures 

To remove false positives from the cell soma candidates, cubes of 50x50x20 voxels are 

extracted from the original STP data at the cell candidate positions and classified using 

deep learning. The network used here is based on a ResNet architecture (He et al., 

2015a) with 4 individual ResNet blocks connected to a cascade of two fully-connected 

layers with intermediate normalisation and rectified linear units (ReLU, see Figure 2-5). 

In a ResNet, the layers are not trained to learn the a desired mapping !(!), but instead 

learn its residual ! ! = ! ! − !. In other words, a layer does not learn to generate 

new features from the previous layer, but rather how the output of the previous layer 

needs to be changed to obtain the desired features. This design was motivated by the 

observation that the addition of further layers to regular convolutional ANNs would at 

some point lead to a sudden drop in its training performance. This is somewhat 

counterintuitive, as a deeper network can – by construction – perfectly represent its 

shallower counterpart if the additional layers perform an identity mapping. A deeper 

network should thus not perform worse during training unless the solving algorithm is 

unable to find the optimal solution. He et al. (2015a) hypothesised that residual layers 

would be easier to optimise by current stochastic gradient descent solvers, because an 

identity mapping (or a solution close to it) is easy to express with a residual function 

(the residual of identity equals zero). On the CIFAR-10 image dataset (Krizhevsky, 

2009), adding layers to the ResNet resulted in a performance increase for up to 110 

layers. A test with 1202 layers resulted in similar training- but worse testing 

performance, suggesting overfitting. This is in contrast to the non-residual VGG 

network (Simonyan and Zisserman, 2014), which the ResNet was based on. The non-

residual VGG showed a decrease in training performance at 34 layers (He et al., 2015a). 

Due to the combination of high performance (it has won the 2015 ImageNet object 
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localisation challenge) and extendibility, the ResNet architecture was chosen for cell 

detection in FACCT. 

 The neural network was implemented in a version of Caffe (Jia et al., 2014) that was 

modified to accept n-dimensional data. All computations were carried out on a Nvidia 

Titan X GPU (EVGA). For training purposes, cells were defined as locations that had a 

human count within a distance of 20µm, while false positives were defined as locations 

that had no human count within a distance of 40µm. To generalise the training data, the 

training dataset was augmented (Breiman, 1996) by applying any combination of the 

following operations to the data: 90º rotations, mirroring and brightness modulation by 

multiplication with a random constant between 0.5 and 1.5.  
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Figure 2-5: ResNet architecture 

Simplified diagram of the neural net used in the final cell detection step. The main 

elements of the network are 4 ResNet blocks that use a shortcut (“identity”) connection 

from the previous layer (green path). The shortcut connection is transformed to the correct 

output size by an average pooling operation and concatenation with the output of a 

separate convolutional layer (Conv). This “identity” is then added to the output of the 

ResNet block to recover the desired result. At the end of the ResNet blocks, two fully 

connected layers (with normalisation and ReLu) converge the ouput to the two desired 

values (cell or no cell). Numerical annotations denote the approximate data dimensionality. 

FC: fully connected layer, ReLu: Rectified Linear Unit. 
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2.11.8 Evaluation of FACCT Performance 

FACCT was evaluated on STP scans of the brains of 6 mice, stereotaxically injected 

with rAAV/RV into the primary visual cortex (3 Ntsr1-Cre, 3 GAD2-Cre; see 2.1-2.4).  

2.11.8.1 Qualitative Analysis 

For 3D visualisation of cells detected by FACCT and human raters, the average brain of 

the Allen common coordinate framework (October 2016 release) was first registered to 

the individual datasets using aMAP. The positions of cells detected by human raters and 

FACCT were then displayed on a 3D maximum intensity projection of the registered 

average brain using Vaa3D (Peng et al., 2014). 

2.11.8.2 Count Comparison Using Equal Sampling 

To calculate the correlation between the numbers of cells found by human raters and 

FACCT, the dataset was segmented into overlapping cubes with an edge length of 

400µm, with their centres spaced 200µm apart. The number of cells detected by 

FACCT and the human rater were then counted and plotted for each brain. The 

regression was calculated using Matlab’s fit function with the “bisquare” robust linear 

fitting algorithm. 

2.11.8.3 Count Comparison Using Anatomical Segmentation 

The datasets were segmented using aMAP with the Allen common coordinate 

framework (October 2016 release) and the number of cells detected by FACCT and the 

human rater per anatomical structure were counted and plotted for each brain. 

Regression was calculated as above (2.11.8.2). 

To analyse the differences in relative cell numbers between FACCT and human raters, 

the numbers of cells per anatomical region were converted to percentages by dividing 

the number of cells found in each region by the total number of cells found in that 

particular brain. The difference in relative cell number between FACCT and the human 

rater was then calculated for each anatomical region and the results of all brains and 

regions were plotted grouped by region. 
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2.11.8.4 Count Comparison on Z-Corrected Data 

To evaluate the performance of FACCT on STP data that does not suffer from 

discontinuities along the anterior-posterior axis, the discontinuities in an area of 

1400µm*1200 µm *200 µm including mostly visual cortex were manually corrected. 

The cells in that area were then marked by 6 human raters. For comparison, cells were 

marked by FACCT in a version of the same dataset that was extended by 100µm along 

each axis to allow full extraction of the image cubes needed for deep learning. 

As the ResNet used for the previous analyses was mainly trained on cells from STP 

datasets with strong z-discontinuities, it was retrained on marked cells from a dataset 

containing relatively few z-discontinuities. 
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Chapter 3. aMAP: a Validated Pipeline for 3D 
Segmentation of High Resolution Fluorescence 
Microscopy Images 

3.1 Introduction 

As highlighted in the general introduction, accurate and reliable anatomical 

segmentation of brain images is crucial for any study involving connectivity or function 

of the brain, as the conclusions of these studies are critically dependent on the correct 

assignment of anatomical regions to the neurons observed or manipulated in the 

experiment. With the advent of high-throughput whole-brain imaging, automated 

segmentation based on image registration has become essential to the field of rodent 

systems neuroscience (Kim et al., 2014b; Menegas et al., 2015; Renier et al., 2016; 

Vousden et al., 2015). At this moment however there remains a lack of quantification 

regarding the performance of automated segmentation on 3D fluorescence data. 

3.1.1 Standardising Automated Segmentation 

At this time we are lacking a standardised image registration pipeline for 3D 

fluorescence data of the rodent brain. Past studies either omit details about the software 

and parameters used for registration (Lein et al., 2007; Oh et al., 2014) or rely on 

unpublished in-house pipelines based on open source registration tools without full 

disclosure of the parameters used (Menegas et al., 2015; Vousden et al., 2015). 

Furthermore, while automated image segmentation is widely used in clinical research 

and the performance of many segmentation tools has been validated extensively on MRI 

data by comparison against the performance of human raters (Ou et al., 2014), such 

validation did not exist for 3D fluorescence data. There is hence a need for a fast, open 

and validated pipeline for automated segmentation of 3D fluorescence mouse brain data 

that could be used as a standardised segmentation tool by the community. 

To accomplish this, I developed a package consisting of a precompiled version of 

NiftyReg (Modat et al., 2010), a registration toolkit for fast affine and b-spline-based 

free-form registration of MRI data (see 2.7.3), together with a custom user interface and 

full documentation. The atlas used to evaluate aMAP was by Kim et al. (2014b). It is a  
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Figure 3-1: Illustration of the brain structures segmented by human raters and aMAP 

An illustration of the 3D shape of the nine brain structures used to assess segmentation 

performance (left hemisphere). Red lines in each structure highlight the coronal plane of the 

reference atlas that was presented to human raters. 

manually optimised atlas based on the original Allen atlas (Lein et al., 2007). For its use 

with aMAP, the structures in the Kim et al. atlas were smoothed along the z-axis to 

reduce the high-frequency noise in the segmentations along the z-axis (see 2.7.2). 

aMAP was capable of segmenting a complete STP dataset (downscaled to an isometric 

voxel size of 12.5µm, see 2.7.1) in 40 minutes on a Dell T7500 dual-processor 

workstation. 

To validate aMAP-based segmentations, a cohort of 22 neuroscientists was split into 

two groups and each person was asked to segment 10 structures in 3 brains (Figure 3-1). 

The two groups were shown data from different brains, so a total of 6 brains were 

segmented, each by 11 raters. The segmentation quality of aMAP was then compared to 

that of the manual segmentations performed by human raters. 
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Figure 3-2: Sensitivity of ELD and STAPLE-Dice scoring 

a) Plot showing mean ELD between ten standard landmarks in the reference atlas and its 

corresponding partners in the registered brain for all 6 brains used in this study, plotted against 

BE (grey lines, mean shown in black). b) Plot of Dice scores for the same brains and BE range 

(grey lines, mean shown in black). Error bars show the s.d.. BE: Bending Energy; ELD: 

Euclidean landmark Distance 

3.2 Results 

3.2.1 The Euclidean Landmark Distance Metric Does Not 
Accurately Report Registration Accuracy 

Previous publications have used the Euclidean distance between anatomical landmarks 

(Euclidean landmark distance, ELD) to score registration accuracy, with the assumption 

that high registration accuracy equates to high segmentation accuracy (Kim et al., 

2014b; Ragan et al., 2012). To calculate the ELD, anatomical landmarks are annotated 

in both, the reference brain and the individual STP datasets before registration. The 

Euclidean distances between the landmarks in the reference brain and the individual 

datasets are then measured after registration. 

I evaluated the performance of ELD by generating free-form registrations of the Kim et 

al. reference brain to 6 individual STP brains with 18 different bending energy weights 

(BE) ranging from 0.2 to 1. BE controls the relative influence of the regularisation term 

on the registration score. Since the regularisation term penalises high-frequency 
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transformations of the image during registration, a low BE value will lead to overfitting 

while a too high BE will overly constrain the registration, resulting in global 

misalignment. Substantial changes in BE hence impact the quality of the resulting 

registration and any measure of registration quality should detect these changes. 

However, the ELD failed to report any significant changes in registration quality over a 

wide range of BE values (Figure 3-2 a, 0.2-0.95, repeated ANOVA, F(17,75)=0.45, 

P=0.95). 

 

3.2.2 Validation Using Manual Segmentations 

The main issue when attempting to evaluate the quality of a segmentation is that there is 

no ‘ground truth’ to score against. To overcome this, several methods have been used in 

clinical research to generate a ‘consensus segmentation’ from multiple individual 

segmentations to be used as a ground truth estimate (Jorge Cardoso et al., 2013; 

Rohlfing and Maurer, 2007; Warfield et al., 2004). A commonly used method is 

simultaneous truth and performance level estimation (STAPLE, Warfield et al. (2004)), 

an iterative algorithm that simultaneously estimates the quality of multiple 

segmentations and the quality-weighted consensus segmentation. 

To validate aMAP, the consensus segmentation was generated from the manual 

segmentations and used to assess segmentation quality of both, manual and automated 

segmentations. Segmentation quality was determined using the Dice score metric (Dice, 

1945), which quantifies the overlap of two sets (in this case the consensus segmentation 

and the individual segmentation) and is widely used to score segmentation agreement 

(Jorge Cardoso et al., 2013; Klein et al., 2010; Leung et al., 2010; Modat et al., 2010; 

Nestor et al., 2013). As complimentary measures, consensus segmentations were also 

generated using shape-based averaging (Rohlfing and Maurer, 2007), and 

segmentations were further scored using the Hausdorff distance. However, as the results 

from these metrics were similar to those obtained from the more common STAPLE-

Dice scoring, they are not discussed in detail (see Appendix, 6.1 and Methods). 
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Figure 3-3: Outlines of segmentations performed by human raters  

The segmentation outlines of all structures are shown for a group of 11 raters (grey lines). The 

STAPLE consensus segmentation for the same structures and raters is overlaid as a bold 

coloured line. ACA: anterior cingulate area; SSp: primary somatosensory cortex; RSP: 

retrosplenial cortex; VISp: primary visual cortex; VISam: secondary visual cortex, 

anteriomedial part; SUB: subiculum; AHN: anterior hypothalamic nucleus; VPM: ventral 

posteromedial nucleus of the thalamus; MV: Medial Vestibular Nucleus 

To confirm the sensitivity of the STAPLE-Dice method to changes in segmentation 

quality, it was applied to the same datasets and BE range used to previously test the 

ELD method. While the ELD did not report changes in registration quality over a wide 

range of BE (Figure 3-2a, 0.2-0.95), the STAPLE-Dice method showed a clear increase 

in segmentation quality with rising BE values over the same range (Figure 3-2 b, 

repeated measures ANOVA, F(15,75)=16.8, P<0.001). 
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Figure 3-4: Outlines of aMAP and manual segmentation  

Segmentation outlines of all structures are shown for a group of 11 raters (grey lines) with the 

corresponding aMAP segmentation result shown in orange. ACA: anterior cingulate area; SSp: 

primary somatosensory cortex; RSP: retrosplenial cortex; VISp: primary visual cortex; VISam: 

secondary visual cortex, anteriomedial part; SUB: subiculum; AHN: anterior hypothalamic 

nucleus; VPM: ventral posteromedial nucleus of the thalamus; MV: Medial vestibular nucleus 

3.2.3  Qualitative Analysis of Manual and Automated Segmentations 

While qualitative assessment of the segmentation outlines is arguably the most basic 

analysis of segmentation quality, it can nevertheless provide an informative 

visualisation of the variance between individual segmentations. The overlays clearly 

show that manual segmentations displayed substantial variability in the estimation of 

structure size and location between individual raters (Figure 3-3). This variability was 

especially apparent in structures that lacked easily identifiable anatomical borders, such 
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as the ventral posteromedial nucleus of the thalamus (VPM) or the medial/lateral 

boundaries of cortical structures. In general, there appeared to be higher agreement 

between raters on structures like the retrosplenial cortex (RSP) that could be identified 

using obvious anatomical landmarks. 

Qualitatively, automated segmentations appeared to be similar to manual segmentations 

in location, size and shape. However, artefacts are noticeable in some segmentations 

(Figure 3-4, steps on the border of SSp and VISp, isolated blobs on ACA, RSP, VISam, 

AHN, MV). 

 

3.2.4 Quantitative Comparison of Manual and Automated Segmentations 

3.2.4.1 Median Performance 

Analysis of the Dice scores confirmed the similarity between manual and aMAP 

segmentation. When pooling the scores from all brains and structures, there were no 

significant differences between the median scores of manual and aMAP segmentations 

(Figure 3-5 a, Mann-Whitney-U-test, median Dice of 0.91 vs. 0.92, P=0.52; n=4 brains, 

9 structures, 22 human raters). Similarly, when grouping by anatomical structure there 

were no significant differences between manual and aMAP segmentations in 8 out of 9 

structures, with humans scoring significantly better when segmenting the anterior 

cingulate area (Figure 3-5 b, ACA, Mann-Whitney-U-test, median Dice of 0.95 vs. 0.87, 

P=0.005). When grouping the Dice scores by brain instead of structure, there were no 

significant differences between the scores of automated and manual segmentations 

(Figure 3-5c, Mann-Whitney-U-test, P>0.49). However, while the median scores of 

manual and aMAP segmentations did not significantly differ, the scores of human raters 

displayed a substantial variance, while the performance of aMAP was significantly 

more consistent (Figure 3-5a, Levene’s test on pooled scores of 4 brains, 9 structures 

and 22 human raters; s.d.: 0.16 vs. 0.05, p=0.005) 
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Figure 3-5: Dice scores of manual vs. aMAP segmentation  

a) Cumulative histogram of the Dice scores for segmentations performed by human raters 

(grey, n=22 raters, each segmenting 9 structures in 2 out of 4 potential brains) and aMAP 

(orange, n=4 brains, 9 structures). b) The data from a grouped by structure. c) The data from a 

grouped by brain 
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Figure 3-6: Disagreement in z-choice of human raters 

 a) Box plot showing the anterior-posterior distance between the estimation of the correct 

optical section (z-choice) of any two human raters (n=22 raters, each segmenting three of six 

potential brains). b) Outlines of two sets of 4 DG-sg segmentations from one brain, each set 

only including segmentations performed on the same plane. c) Outlines of all DG-sg 

segmentations performed on the brain used in b. 

3.2.4.2  Sources of Variance in Human Rater Performance 

In addition to the variability in the X-Y outlines, human raters also disagreed in their 

choice of the section that best corresponded to the presented Allen brain atlas images, 

resulting in substantial variations in the z-section chosen for segmentation (z-choice, 

Figure 3-6a). These differences in z-choice had an especially large influence on manual 

segmentations of the DG-sg since this structure changed substantially in shape over the 

presented z-range. As the DG-sg can be readily delineated in the STP datasets (see 

appendix 6.2), manual segmentations performed on the same optical plane showed a 

high degree of overlap (Figure 3-6b) while segmentations taken from different z-

sections showed large x-y disagreement (Figure 3-6c). Since this x-y disagreement is 

unlikely to have been the result of uncertainty about the boundary of the structure, DG-

sg segmentations were excluded from the analysis. To test whether any other structures 

were negatively influenced by the z-choice, all aMAP scores were compared with the 

scores of segmentations performed within 3 and 7 sections of each other. While the 

Dice score in SUB showed a significant increase when limiting the z-window, it did not 

result in a significant improvement compared to the aMAP score. Limiting the z-

window did not lead to significant changes for any of the remaining brain structures 

(Figure 3-7). 
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Figure 3-7: Z-window 

Plot showing Dice scores for manual segmentations performed on all image planes (black), 

within 7 (Z7, dark grey) or 3 (Z3, light grey) optical sections of one another. New STAPLE 

consensus segmentations were calculated when limiting the z-window. 

3.2.5  Reliability of Segmentation 

While aMAP will always produce identical segmentations when applied to the same 

input data, this is not necessarily true for human raters. Hence, the inconsistency of 

human raters may be a substantial source of the observed variance in human Dice scores. 

To investigate the potential influence of rater reliability, all structures of one of the 

three brains were presented twice to each rater. The raters were unaware of this and 

repeat presentations of the same data were spaced at least 20 segmentation tasks apart 

(each rater completed a total of 40 segmentation tasks). The inter-rater Dice score was 

then obtained by calculating the overlap between a rater’s first and second segmentation 

of the same structure (Figure 3-8 a). 
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Figure 3-8: Rater reliability 

a) Schematic highlighting two extreme segmentation reliability scenarios. Bottom left: When 

calculating the overlap with the consensus segmentation of all raters (black square), a rater may 

perform poorly (Dice score: 0.25, grey lines), yet be very reliable in their segmentation, as 

shown by the inter-rater Dice score (0.98, red). Top right: In contrast, a given rater may obtain 

a higher Dice score with the consensus segmentation (0.53 and 0.55, grey lines), but be 

unreliable in their estimate of the location of the structure (intra-rater Dice score: 0.02; red). b) 

Cumulative histogram of the intra-rater (red, n=22 raters, each segmenting 9 structures in 1 

brain twice) and inter-rater (grey, n=22 raters, each segmenting 9 structures in 2 out of 4 

potential brains) Dice scores for segmentations performed by human raters. c) Data from b 

grouped by structure. 

 Comparing the inter-rater Dice scores with the regular (intra-rater) Dice scores revealed 

no significant difference in overall median performance (Figure 3-8b Mann-Whitney-U-

test inter-Dice, vs. intra-Dice: 0.92 vs. 0.91; P=0.32). When grouping by brain 

structures, inter-rater scores were significantly lower on the anterior cingulate area 

(ACA) and primary somatosensory area (SSp) (Figure 3-8c, Mann Whitney U-test, 

inter-Dice vs. intra-Dice: ACA: median 0.95 vs. 0.93, P=0.01; SSp: median 0.95 vs. 

0.92, P=0.001) and not significantly different from intra-rater Dice scores on the 

remaining structures (Figure 3-8c P>0.21). The variance in inter-rater scores was 

reduced by a modest, but significant amount (Levene’s Test, inter vs. intra: s.d.: 0.16 vs. 

0.12, P=0.044). Taken together, the similarity of inter- and intra-rater Dice scores 

suggests that inconsistency in the segmentations of human raters is a major factor in the 

observed variance and disagreement between different raters. 
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3.3 Discussion 

With the advancement of high-throughput 3D imaging methods and large-scale studies 

facilitated by these methods, fast accurate and reliable anatomical segmentation of data 

has become a critical issue. Since manual segmentation of whole brains is not feasible, 

automated segmentation has become a key element in the analysis of high-resolution 3D 

fluorescence data. Despite its widespread use, however, automated segmentation has 

not been validated against the segmentation performance of human raters on 3D 

fluorescence data of the mouse brain. 

Previous publications have either reported qualitatively accurate segmentation without 

further quantification (Menegas et al., 2015; Renier et al., 2016; Vousden et al., 2015) 

or used ELD to quantify registration accuracy (Kim et al., 2014b; Ragan et al., 2012). 

However, the issues with ELD are twofold. Firstly, it is strictly a measure of registration 

accuracy and hence cannot directly report segmentation quality. Secondly, ELD can 

only report local registration accuracy at a set of individual points in the dataset. 

Therefore, its validity is dependent on whether the registration accuracy at these points 

is representative of the global registration accuracy. However, this is likely not true for 

anatomical landmarks, as these landmarks are located at (or close to) easily identifiable 

high-contrast areas. Since free-form image registration is non-linear and most image 

similarity measures are strongly influenced by high contrast areas, anatomical 

landmarks are likely to be correctly registered, even with parameters that cause errors in 

lower contrast areas. This explains why ELD was insensitive to overfitting and reported 

no changes in registration quality until the BE was high enough to cause a global 

registration mismatch. This is in line with the results of a previous study showing that 

ELD with sparse landmarks is unsuitable for free-form registrations of MRI data 

(Rohlfing, 2012). It is worth noting, that this finding does not invalidate the results of 

previous studies that used ELD to validate their automated segmentation pipeline, it 

merely shows that the accuracy of the underlying image registration cannot be judged 

based on the published result. 

The preferred method to evaluate the suitability of automated segmentation tools in the 

clinical field is to directly compare their performance to that of human raters (Ou et al., 

2014) and this study is, to my knowledge, the first to do so on fluorescence data of the 

mouse brain. On average, the quality of aMAP segmentations was on par with manual 
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segmentations of human raters. Interestingly, human raters showed substantial variance 

when performing the same segmentation twice, with the overlap between the first and 

second segmentation being no better (on average) than the overlap between the first 

segmentation and the agreement segmentation of all raters. In contrast, aMAP is purely 

deterministic and performed reliably, with a significantly lower overall variance in 

segmentation scores compared to human raters.  

It is worth noting that ideal conditions were provided for manual segmentation by 

ensuring correct coronal alignment of all STP data (by rigid registration to the STP 

reference brain of the Allen atlas). In addition, the z-plate of the atlas to be used for 

each segmentation was predefined. It is thus possible that disagreement between human 

raters may be even larger in a “real-world” experimental scenario where data might not 

be optimally aligned and differences in perceived z-position may cause raters to base 

their segmentation on different atlas plates. 

Despite its high reliability, automated segmentation using aMAP is inherently 

dependent on similarities between the reference brain and the individual datasets. To 

maximise the similarity, it is recommended to perform registration on the background 

fluorescence channel, as strong staining patterns may negatively influence the 

registration process in a way that is difficult to predict. Similarly, strong artefacts in the 

STP data, such as dissection damage, uneven background illumination or bright patterns, 

as caused by a failed perfusion, can negatively affect the quality of automated 

segmentation. It is thus advisable to perform a manual quality control on all 

segmentations, for example by overlaying the segmentation outlines with the original 

STP data. 

Ultimately, automated segmentation has the potential to greatly extend the usefulness of 

the studies that employ it, since it allows to publish locations of interest, be it cells or 

activity patterns, in the coordinate-space of a reference atlas. By doing so, any future 

updates or improvements of that atlas can immediately be applied to the published data, 

ensuring that the data remains accurate and relevant. To ensure comparability between 

studies, it would be highly desirable to establish a standardised procedure for automated 

segmentation. Due to its accuracy, reliability and high speed, I believe that aMAP is 

ideally suited to become the standard tool for mouse brain segmentation. 
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Chapter 4. Automated Neuron Detection Using the 
Fast Automated Cell Counting Tool (FACCT) 

4.1 Introduction 

While attempts to automate the identification and localisation of individual cells in 

microscopy data are not limited to the field of brain mapping or even neuroscience, the 

recent developments in whole-brain 3D fluorescence imaging methods represent both a 

strong incentive and a unique challenge to automated cell detection. Large whole-brain 

datasets can now be acquired at high speed (~1TB/day, ~2.5TB/brain), which severely 

limits the number of feasible cell detection algorithms and requires a stronger focus on 

computational optimisation. At the same time, the high variability of background 

structures in a dataset encompassing an entire brain presents a unique challenge to 

automated cell detection. 

While a number of 3D cell detection algorithms have been introduced recently, they 

were mostly applied to small high-resolution datasets, on the assumption that all 

structures with a certain morphology and size will be labelled and identified as cells (He 

et al., 2015b; Oberlaender et al., 2009; Toyoshima et al., 2016). This makes them 

unsuited for our STP datasets, which are of comparably low resolution, yet contain 

artefacts that resemble cells morphologically. In addition, the large size of our datasets 

would require several weeks of processing time per brain, even when assuming linear 

scalability of these algorithms, which may not be the case with very large datasets. 

So far, whole-brain cell detection has been mostly performed with in-house pipelines, 

making a direct comparison of their performance difficult (Kim et al., 2014b; Menegas 

et al., 2015; Vousden et al., 2015). This issue is further compounded by the fact that 

quantification of the performance is either completely lacking (Menegas et al., 2015; 

Vousden et al., 2015) or has only been carried out on small subsets of a whole-brain 

dataset (Kim et al., 2014b; Renier et al., 2016). 
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Figure 4-1: Tile classifier 

Illustration of the areas marked by the tile classifier for further analysis (highlighted in red). 

Coronal view of the brain of an adult Ntsr1-Cre mouse injected with rabies virus into the 

primary visual cortex and imaged using STP. Scale bar: 1mm  

 This chapter therefore focuses on the development of a fast automated cell counting 

tool (FACCT), designed to rapidly and accurately detect fluorescently labelled cells in 

whole-brain STP datasets. It uses a combination of custom filters to find centroid 

structures within a certain size window as potential cell locations, which are then 

classified by a deep learning module to remove false positives. To ensure high 

processing speed, the initial filters are realised using a highly optimised custom image 

processing framework that integrates with ImageJ (Schneider et al., 2012) and allows 

easy development of fast, multithreaded image analysis routines. 
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4.2 Results 

4.2.1 Tile Classifier 

To cope with uneven illumination, FACCT splits the dataset into small overlapping 

square tiles, with an edge length of twice the soma diameter of the average expected cell 

(2x15µm). The tile classifier is the first step in cell detection and marks the areas of the 

dataset that contain relevant levels of signal by calculating the difference in brightness 

between the noise floor and the brightest elements for each tile. This difference is then 

compared to a threshold that is either set by the user or calculated automatically (see 

2.11.6.1). Any tile where the brightness difference is smaller than the threshold is 

discarded from further analysis. 

The advantages of this pre-classification are twofold: firstly, the process is relatively 

fast (under 5 hours per STP dataset) and reduces the amount of data that needs to be 

processed by the remaining filters by at least an order of magnitude. Secondly, it allows 

to design the remaining filters under the assumption that all input data could potentially 

contain cells (Figure 4-1). 

4.2.2 Thresholding 

The goal of the thresholding step is to separate the signal from the background in the 

image. This is particularly challenging as brightness levels can change significantly, 

both between and within an STP dataset. A thresholding algorithm for such data must 

therefore calculate thresholds on a local level and be capable of processing both very 

dark and bright areas, ideally without relying on external correction factors that may 

need to be “tuned” for each image. Unfortunately, in a qualitative visual evaluation, no 

tested pre-existing local thresholding paradigm was capable of performing reliably in 

both, high and low signal-to-noise scenarios (Figure 4-2). Hence, a custom thresholding 

algorithm was developed that combines the histogram-based analysis of the Otsu 

thresholding algorithm (Otsu, 1975) with an analysis of the resulting structures (see 

2.11.6.2). Briefly, Otsu’s algorithm finds the threshold that minimizes the intra-class 

(brightness) variance for both, thresholded and non-thresholded areas. In STP data, this 

generally leads to good results on areas with cells, but can result in under-estimation of 

the threshold in areas containing neurites or large background artefacts. To solve this  
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Figure 4-2: Comparison of thresholding methods 

a) Panels showing the results of various local thresholding algorithms in a high-contrast 

example. Thresholded areas are marked in red. The grey area in the histogram shows the data 

on a logarithmic scale, the values indicate the min/max brightness levels. b) Panels showing 

the performance of the same thresholding algorithms in a low-contrast example. All images 

show views of the cortex of adult Ntsr1-Cre mice injected with rabies virus into the primary 

visual cortex and imaged using STP. Scale bars: 50µm  

 issue, the structures resulting from the Otsu thresholding are analysed. If the largest 

structure is too big to be a cell, Otsu’s threshold is recalculated from the sub-histogram 

above the previously determined threshold. This process is repeated until the 

thresholding results in a structure that falls within the size expected for a cell. This 

“size-checked” local Otsu variant, in combination with the tile classifier, performed 

well in qualitative checks and was hence used for the thresholding module (Figure 4-2). 
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FACCT
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4.2.3 3D Soma Filter 

While the cells in the images are marked as a result of thresholding, these thresholded 

areas also contain a large number of non-somatic structures, such as dendrites and noise 

(Figure 4-3b, blue areas). In a next step, the data is hence filtered using a “virtual 

nucleus” to determine the location of the somata and remove any remaining small 

structures. To achieve this, a spheroid is moved through the thresholded parts of the 

data. All locations where the spheroid overlaps with the thresholded areas by more than 

a certain percentage (default: 90%) are marked (Figure 4-3b, red areas). The marked 

areas are then size-filtered (default: 10 voxels), counted and their centres of mass are 

stored as potential cell positions (Figure 4-3c, red dots). The 3D soma filter not only 

removes small structures, but also separates clustered cells with touching perimeters 

(e.g. neurites) that would otherwise be considered as a single structure. 

Finally, the brain is segmented using aMAP (see Chapter 3) and all marked locations 

outside of the brain are discarded. 

4.2.4 Qualitative Analysis 

To evaluate the performance of the filter pipeline, it was applied to STP data of the 

brain of an adult transgenic mouse expressing Cre under the control of the Ntsr1 

promoter. Cells were labelled by injection of Cre-dependent rAAV expressing TVA and 

RG, followed by injection of RV expressing mCherry into the primary visual cortex. 

The fluorescent cells in the STP dataset were then marked by an expert human rater. 

Qualitative assessment of the locations marked by FACCT revealed that the software 

appeared to accurately detect the cells in the dataset, however the data also contained a 

large number of false positives, especially in bright and noisy areas around the olfactory 

bulb and the surface of the brain (Figure 4-4). In total, the human rater marked 19507 

cells, while FACCT marked 58494 locations, of which 17520 had no human marked 

cell within a radius of 100µm (~30%). 
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Figure 4-3: Result of thresholding and nucleus detection 

a) Coronal view of the cortex of an adult Ntsr1-Cre mouse injected with rabies virus into the 

primary visual cortex and imaged using STP. b) Overlay of the result of thresholding and 

3D soma filtering in the area shown in a. Thresholded areas are shown in blue, areas marked 

by the soma filter are highlighted in red. c) Areas marked by the soma filter highlighted in 

red. Scale bar: 100µm 

a

b

c
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4.2.5 Classification Using Deep Learning 

These results show that a more detailed analysis of the STP data is required to 

accurately separate neuronal somata from spheroid non-cellular elements. Deep learning 

methods have recently matured and are now considered the state-of-the art in automated 

image analysis, outperforming all other approaches in image classification and object 

detection tasks to date (Russakovsky et al., 2015).  

While deep learning is most widely used in 2D image classification tasks, some toolkits 

now allow processing of multidimensional data, making it possible to apply deep 

artificial neuronal networks directly to STP data. FACCT was hence complemented by 

an artificial neuronal network with a residual network architecture (ResNet) 

implemented in the deep learning framework Caffe (Jia et al., 2014) (see 2.11.7). The 

ResNet was chosen due to its high classification performance and good trainability (He 

et al., 2015a). Cuboids of 50x50x20 voxels centred on the locations labelled as potential 

cells by the previous filters were used as input. The network was given all three colour 

channels as input and trained to identify cells in the red channel, which contained the 

signal of the RV. The full data of three brains (Figure 4-7 & Figure 4-8, brains 4-6) and 

partial data of further three brains (Figure 4-7 & Figure 4-8, brains 1-3) were used for 

training (see 2.11.7). 

Comparing the results before (Figure 4-4) and after the addition of the deep learning 

module (Figure 4-5) clearly showed the reduction of false positives. After filtering with 

the ResNet, 39829 (out of 58494) locations remained, of which now 827  had no human 

marked cell in a radius of 100µm (~2% vs. ~30%). However, the number of cells 

marked by FACCT was still roughly twice as high as that of a human rater. 
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Figure 4-4: Thresholding and nucleus detection in a complete brain 

Visualisation of the cells detected by a human rater (cyan) and FACCT (red) in a full STP 

dataset. The cells are shown on a maximum intensity projection of the Allen average brain, 

transformed to match the original STP dataset to provide a spatial reference. Top: sagittal view; 

Inset: coronal view; Bottom: horizontal view. Scale bar: 1mm  
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Figure 4-5: Whole-brain cell detection with added deep learning module 

Visualisation of the cells detected by FACCT after complementation with a deep learning 

module (red) on the same STP dataset used in Figure 4-4. Cells marked by a human rater are 

shown in cyan. The cells are shown on a maximum intensity projection of the Allen average 

brain transformed to match the original STP dataset to provide a spatial reference. Top: 

sagittal view; Inset: coronal view; Bottom: horizontal view. Scale bar: 1mm 
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Figure 4-6: Example of z-discontinuity 

Overlay of two consecutive STP images at the border from one physical section (cyan) to the 

next (red), showing a pronounced shift in z. Scale bar: 100µm 

4.2.6 Multi-Labelling of Cells 

The main reason for the overestimation of cell numbers by FACCT was an issue with 

the data from the STP microscope. To cover the complete surface of the brain, the 

microscope scans multiple overlapping tiles in a mosaic pattern. Unfortunately, the x/y 

coordinates reported for the individual tiles are inaccurate, resulting in a mismatch at 

the border region of individual tiles. The software that assembles the full images from 

the tiles attempts to correct the tile position in x and y, but does not ensure consistency 

between individual physical sections (along the z-axis). As a result, there are noticeable 

shifts in the images between individual physical sections (Figure 4-6). These shifts can 

occur every 50µm along the z-axis and as a result, the majority of cells were detected 

more than once. Because each of these multiple detections was located on a soma, the 

ResNet accurately recognised them as a cell and hence did not remove them from the 

dataset.  
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4.2.7 Quantitative Analysis 

4.2.7.1 Count Comparison Using Equal Sampling 

To quantify differences between the cells marked by FACCT and those of a human rater, 

the brains were segmented into equal cubes of 400µm edge length at 200µm intervals 

and the numbers of cells per region detected by FACCT were compared to the numbers 

of cells marked by the rater. As there are differences in the specified location of a 

detected cell between a human rater and FACCT, further compounded by the z-

discontinuities in the data (as mentioned above), the cube size was chosen to be large 

enough to limit the influence of errors at the border of the cube.  

The quantification of FACCTs performance was carried out on the data from the brain 

shown in Figure 4-4 and Figure 4-5 (Figure 4-7, brain 1) and 5 further brains, all 

injected with rAAV/RV into the primary visual cortex (Figure 4-7, brains 2-6). Without 

the ResNet, FACCT detected a large number of false positive cells (Figure 4-7 a; large 

sum of squared errors (SSE), high number of cubes with no human counts and high 

FACCT counts). Furthermore, while the overall correlation between human counts and 

FACCT counts was high (0.82-0.95), the slope was greater than one, showing that 

FACCT routinely overestimated the number of cells (Figure 4-7 a, slope 1.26-1.97). 

When analysing the performance of FACCT after the addition of the ResNet, it became 

apparent that the ResNet reduced the large number of false positives, leading to a 

significant reduction of the sum of squared errors (64807->15842, 40281->9517, 

54224->11180; one-tailed paired t-test, p=0.008) and a lower number of areas 

containing only FACCT counts. Despite that, the slopes of the regression line remained 

extremely similar (1.97 -> 1.91, 1.78 -> 1.74, 1.26-> 1.24), suggesting that the deep 

learning did not have a significant influence on the multiple-detection events. 

Furthermore, the slopes varied between individual experiments, meaning that the 

severity of the z-discontinuities differed between individual brains. 
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Figure 4-7: Comparison of FACCT and human cell counts 

2D scatter plot showing the number of cells found by FACCT plotted against the number of 

cells found by a human rater. Cells were counted in STP data of mice injected into the primary 

visual cortex with RV. Each point represents a cube with an edge length of 400µm. Cubes were 

evenly spaced at 200µm intervals. Each histogram represents data from one brain. a) FACCT 

vs. human counts before deep learning b) FACCT vs. human counts after complementation with 

a deep learning module. Brains marked with an asterisk were used as training data for the 

ResNet. SSE: sum of squared errors; r: correlation 
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4.2.7.2 Count Comparison Using Anatomical Structures 

4.2.7.2.1 Grouped by Brain 

As the ultimate goal of the data analysis pipeline is to detect and anatomically map the 

individual cells, the STP data was segmented using aMAP with the Allen Common 

Coordinate Framework atlas (CCF, October 2016 release) to investigate whether 

segmentation by anatomical regions rather than regularly spaced cubes had any 

significant influence on the results. Plotting the number of cells detected by FACCT 

versus those marked by a human per brain region further confirmed the results from the 

cube segmentations (Figure 4-8). Slope and correlation were similar to the data from 

cube segmentations and the addition of the ResNet also significantly reduced the SSE 

(166724 -> 14928, 157464 -> 5631, 135246 -> 8860; p=0.002). Interestingly, while the 

results before filtering with the ResNet showed a lower correlation and higher SSE 

(Figure 4-7 a, Figure 4-8 a), the opposite is true after addition of the ResNet (Figure 4-7, 

Figure 4-8). This further supports the hypothesis that the increased number of cells 

reported by FACCT was due to multiple detection of existing cells rather than 

stochastic noise. 

4.2.7.2.2 Grouped by Anatomical Region 

To investigate whether FACCT’s performance depended on the brain region, the data 

was next grouped by anatomical structure in a top-down approach. To account for the 

systematic overestimation of cells by FACCT, the cell counts were not analysed in 

terms of absolute cell numbers, but rather as a percentage of the total number of cells 

for each brain. The percentages reported by FACCT and human raters were then 

compared for each brain region. 

When using a high-level segmentation (Figure 4-9), the regions that displayed high 

variability in their errors were (from lowest to highest) hippocampal formation, fiber 

tracts, brain stem and isocortex. The data from these regions were hence further 

analysed to identify the sources of variability.  
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Figure 4-8: FACCT vs. human cell counts by region 

Scatter plots showing the number of cells found by FACCT in a particular brain region plotted 

against the number of cells marked by a human rater. Each plot represents a brain and each 

dot represents a brain region. Brains are numbered in accordance with Figure 4-7. a) FACCT 

vs. human counts before deep learning b) FACCT vs. human counts after complementation 

with a deep learning module. Brains marked with an asterisk were used as training data for the 

ResNet. SSE: sum of squared errors; r: correlation 
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The hippocampal formation showed generally low disparity between human and 

automated counts, except for one outlier per region. Indeed, all positive outliers 

occurred in one STP dataset and all negative outliers in another. Both datasets exhibited 

numerous artefacts, such as shadows (most likely caused by pieces of floating dura) and 

bright specks of autofluorescence around the hippocampal regions that negatively 

impacted FACCT’s performance in that area. 

The high number of counting errors in the fiber tracts is surprising, as these areas should, 

by definition, not contain a large number of neurons. However, the neurons detected 

here are mostly the result of slight inaccuracies in the automated segmentation, causing 

the boundary of these tracts to be extended. In line with that, the area with significant 

errors was the corpus callosum, which was due to a slight dorsal shift of its boundary 

into the bottom of layer 6 of the cortical areas near the viral injection site (VISp). The 

cause underlying variability in cell detection was hence the same as in the cortical areas 

(see below). 

The areas in the brainstem containing a noticeable variance in counting error were the 

dorsal part of the lateral geniculate complex (LGd), thalamus (TH) and lateral dorsal 

nucleus of the thalamus (LD). For the LGd and LD, this can at least be partly attributed 

to bright specks in some of the datasets that can be difficult to distinguish from cells by 

both, FACCT and human raters.  

When evaluating the performance in cortical areas, the first notable result is a single 

dataset with severe underestimation of cell numbers in the retrosplenial area. This is due 

to a strong imaging artefact, most likely caused by a piece of uncut dura partially 

obstructing the objective at the retrosplenial cortex of that particular brain. As a result, 

FACCT was unable to accurately detect cells in that part of the STP dataset. The second 

prominent result is the high variance in the visual areas. 
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Figure 4-9: Performance of FACCT grouped per brain structure 

Scatter plots showing the difference between human and FACCT cell detection grouped by brain 

region for the 6 brains shown in Figure 4-8. To correct for the systematic overestimation of cells 

by FACCT, data are compared as percentage of total cells. Plotted regions are sorted by the range 

of their values. BS: brain stem; ftr: fiber tracts; HPF: hippocampal formation; CNU: cerebral 

nuclei; VS: ventricular systems; CB: cerebellum; OLF: olfactory areas; CTXsp: cortical subplate; 

HPF(ns): hippocampal formation, no substructure; CA1: cornu ammonis, area 1; ENTm: 

entorhinal area, medial part, dorsal zone; PAR: parasubiculum; SUB: subiculum; POST: 

postsubiculum; ENTl: entorhinal area, lateral part; PRE: presubiculum; cc: corpus callosum; int: 

internal capsule; alv: alveus; cing: cingulum bundle; RSP: retrosplenial area; VIS: visual areas; 

PTLp: posterior parietal association areas; SS: somatosensory areas; ACA: anterior cingulate area; 

MO: somatomotor areas; AUD: auditory areas; VISp: primary visual area, layer 5; VISp4: primary 

visual area, layer 4; VISp2/3: primary visual area, layer 2/3; VISp6a: primary visual area, layer 6a; 

VISli5: laterointermediate area, layer 5; VISam5: anteromedial visual area, layer 5; VISl5: lateral 

visual area, layer 5; LGd: dorsal part of the lateral geniculate complex; TH: thalamus; LD: lateral 

dorsal nucleus of the thalamus; LP: lateral posterior nucleus of the thalamus; LHA: lateral 

hypothalamic area; LPO: lateral preoptic area; ZI: zona inerta 
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Figure 4-10: Thresholding errors and false positives 

a) Example of thresholding errors in tiles containing cells at different brightness levels. Some 

cells with a low brightness are not accurately thresholded (cyan arrows, left tile). A 

modification of the thresholding algorithm to perform more detailed analysis of dark areas 

solves this problem (cyan arrows, right tile). b) Examples of false positives, caused, from left 

to right, by bright autofluorescent particles (2x), background fluorescence in the cerebellum 

and bright imaging artifact of unknown origin. All images show STP data from adult Ntsr1-

Cre mice injected with rabies virus into the primary visual cortex. Scale bar: 50µm 

Detailed analysis of the visual areas revealed, that the disparity between FACCT and 

human raters was most strongly present in the primary visual area, proximal to the viral 

injection site. This can in part be attributed to the high density of cells. However, in 

addition to that, a number of cells in these areas were not detected by FACCT. Further 

investigation revealed that the threshold algorithm can under some circumstances fail to 

detect dark cells in the direct vicinity of very bright cells, which appears to be the most 

likely cause for the majority of the missed cells (Figure 4-10). Interestingly, the number 

of cells in layer 4 of the primary visual cortex was consistently reported lower than 

expected, which is likely due to the smaller size of the cells in this layer making them 

less likely to be detected multiple times, even when there are z-discontinuities in the 

data. 

4.2.8 Z-Discontinuity 

All STP datasets examined here exhibited pronounced z-discontinuities (Figure 4-6), 

leading to cells being detected multiple times. To test how the cell counter performs 

without these discontinuities, the tile placement was manually corrected in a small 

region from brain 1. Six human raters were asked to count the cells in a 1400µm*1200 

µm *200 µm area to compare the result with the cells marked by FACCT on this dataset. 

baa
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As expected, the cell numbers reported by human raters and FACCT are similar when 

the images do not exhibit discontinuities in z (humans: 233, 283, 283, 286, 288, 295; 

FACCT: 285). 

4.3 Discussion 

The performance of existing automated cell counting algorithms for 3D whole-brain 

analysis is difficult to determine as they were either not quantified (Menegas et al., 

2015; Vousden et al., 2015) or quantified on a small region in low resolution data 

(203x203x65 voxels with a voxel size of 4µm (Renier et al., 2016)), potentially limiting 

the ability of the human rater to accurately identify cells. As a result, the most 

promising whole-brain cell counting solution has been 2D-based, counting cells on 

individual images spaced 50µm apart and using a constant correction factor to estimate 

the true number of cells (Kim et al., 2014b). While this counter also employs deep 

learning, it uses a relatively simple network architecture with only 3 hidden 

convolutional layers as opposed to FACCTs ResNet, which uses 9 convolutional layers 

on its main processing path and 4 to handle the “identity” paths (Figure 2-5). As a result, 

the cell detection method by Kim et al. was unable to analyse data from the cerebellum 

and required separate neuronal networks for the olfactory bulb and the rest of the brain, 

suggesting that it may be challenging to generalise this method for multiple staining or 

imaging modalities. 

An interesting approach based on mean-shift clustering and semantic deconvolution 

using artificial neuronal networks has recently been described by Silvestri et al. (2015). 

However, its performance has only been evaluated for a single light-sheet dataset of a 

mouse cerebellum, for which it employed prior knowledge about the cerebellar anatomy 

(modelling of cerebellar folds) to reduce the number of false positives. Hence the 

method’s applicability to (noisier) whole-brain STP data remains unknown. 

A unique feature of FACCT is its heavy use of data reduction via a cascade of fast 

image filters. A full-image segmentation approach, as employed by Kim et al. (2014b) 

would require the deep learning module to analyse ~351,000,000,000 locations in our 

STP datasets. While it is possible to employ a more aggressive design that classifies a 

larger space on each run (Silvestri et al., 2015), this would only reduce the number of 

required runs by 2-3 orders of magnitude. The approach used by FACCT, on the other 
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hand only requires its deep learning module to check ~60,000 potential locations for a 

connectivity tracing experiment with ~20,000 labelled cells. As a result FACCT can 

employ a much more complex artificial neuronal network for cell classification while 

maintaining a high processing speed. While the filtering and data extraction leading up 

to the deep learning module take roughly a day, the deep learning module itself can 

classify 60,000 cell candidates in less than an hour on a 2x6core Xeon workstation with 

a Nvidia Titan X GPU.  

While the ResNet is very capable at removing false positives, its performance is still not 

perfect, resulting in 0.2-3.6% of detected cells being clear false positives (no human 

count in a radius of 100µm). This appears to depend mostly on the quality of the dataset 

(e.g. perfusion quality, particles). Going forward, the high speed and the extendibility of 

the ResNet architecture would allow to add further hidden layers to reduce the false 

positive rate, especially when combined with “dropout learning”, a method where parts 

of the network are randomly disabled during training to reduce overfitting (Hinton et al., 

2012). Currently FACCT uses 9 hidden layers on the main path, while the original 

ResNet publication successfully tested up to 1202 hidden layers and reported 

improvements for increased layer number with up to 110 hidden layers (He et al., 

2015a). 

While the enhanced Otsu thresholding paradigm generally worked well, there were 

instances where the algorithm failed to correctly threshold a low-brightness cell in the 

same tile as a high-brightness cell (Figure 4-10 a, upper panel). This error can lead to 

under-reporting of cells in areas with dense clusters of cells at different brightness 

levels, as is the case at the injection site of the RV. A modified version of the 

thresholder solves this problem (Figure 4-10 b, lower panel) by re-calculating the Otsu 

threshold in the darker areas of tiles where the first pass of Otsu thresholding resulted in 

a valid cell structure. However, the overall performance of this modification has not yet 

been evaluated. If necessary, FACCT’s extremely modular design allows for the use of 

multiple thresholding designs to, for example, employ different algorithms depending 

on the brightness or number of structures in a particular area. 

The biggest remaining issue however is not directly related to the cell detection 

algorithm, but caused by incorrect stage coordinates from the TissueVision STP 

microscope, which is exacerbated by the fact that the pipeline assembling the images 
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attempts to correct the positions of individual tiles without checking for continuity in z. 

Unfortunately, this introduces significant noise into the data, as whole regions can be 

shifted by several tens of microns, which leads to repeated detections of the same cell. 

In dense regions, a single tile shift can lead to over 100 additional cells being detected. 

Unfortunately, the severity of this issue is not consistent between datasets and even 

within a dataset there is no apparent way to predict the direction and severity of shifts. 

Attempts to filter multiple detections of the same cells using their position and image 

similarity were unsuccessful; hence the most immediate goal will be to implement a 

stitching pipeline for STP data that does not suffer from discontinuities in z. 

Despite these issues, the data on FACCT’s cell counting performance is extremely 

promising. There is a strong correlation between the number of cells found by FACCT 

and human raters for both, anatomical and cuboid segmentations and its high speed 

permits further optimisation of the ResNet which could further improve its performance. 
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Chapter 5. Discussion 

The aim of this project was to develop and validate a pipeline for automated detection 

of fluorescently labelled cells in whole-brain STP scans. To accomplish this goal, two 

tools were developed and tested. 

1. aMAP automates full anatomical segmentation of whole-brain STP datasets. It 

can segment a brain in 40 minutes at a performance that is comparable to expert 

human raters (Niedworok et al., 2016). 

2. FACCT automates detection of cells in whole-brain STP datasets. It can detect 

cells in one channel of an STP dataset acquired at 1µm x/y resolution in less 

than 2 days. While z-discontinuities in the STP data led to overestimation of the 

cell number, quantification of the result showed very high correlation between 

the number of cells detected by FACCT and human raters. 

5.1 Automation of Brain Segmentation 

Any functional mapping experiment requires assignment of anatomical location, as it is 

vital to know which area of the brain is being investigated. To directly compare 

experiments both within and across laboratories, it is thus crucial to ensure unbiased 

accurate and reliable anatomical segmentation of the underlying image data. Classically, 

this would be done manually by human experts using reference atlases, either in printed 

or digital form (Paxinos and Franklin, 2004). While this form of segmentation is 

adequate for small-scale studies or individual tissue sections, it is a subjective and time-

consuming task, which makes it infeasible for high-throughput whole-brain imaging 

studies. 

This problem has been addressed in the field of human MRI studies by combining 

image registration with predefined segmented datasets (brain atlases, (Collins et al., 

1995)). The tools and methods developed for human MRI datasets have been used on 

both STP (Oh et al., 2014) and LSFM data (Menegas et al., 2015), however so far there 

has been a lack of standardisation and validation regarding their use on these datasets. 

To address this issue aMAP was developed and released as an open platform 

(Niedworok et al., 2016). It provides a fully documented, simple, fast and most 

importantly validated option for anatomical segmentation of STP datasets. Although 
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quantification of segmentation performance on LSFM datasets is yet to be carried out, 

the very similar nature of the background fluorescence signal suggests that the results 

should be comparable. 

As automated segmentation depends on anatomical atlases, the availability of high-

quality atlas data is crucial. Fortunately, excellent progress has been made in this area 

over the past years. In the initial phase of aMAP’s development, the only atlas available 

was the original Allen brain Atlas (Lein et al., 2007). This atlas is based on manually 

segmented serial histology sections that were aligned to an MRI reference brain using 

only affine registration (Ng et al., 2007). As affine registration, by design, is not able to 

correct (non-affine) slicing and handling artefacts, the 3D version of the Allen atlas 

suffered from misalignments between the segmentation and the reference brain in 

several brain regions, in addition to inconsistencies of anatomical borders along the 

anterior-posterior axis. In a first step, Kim et al. (2014b) addressed the misalignments 

by generating their own average brain and manually correcting the anatomical 

segmentations of the Allen brain atlas. As a result, the fit of the segmentation to the 

average brain was noticeably improved, while the structure outlines remained 

comparable to the original Allen brain atlas. For this reason, the Kim et al. (2014b) atlas 

was used in this thesis to evaluate the performance of aMAP against human raters (who 

used the original Allen brain atlas for segmentation). However, due to its reliance on the 

original Allen segmentation, the Kim et al. (2014b) atlas still suffers from 

inconsistencies along the anterior-posterior axis (Figure 2-1). In addition, the 

anatomical segmentation underlying both atlases is based on a single specimen (Ng et 

al., 2007). To address these issues, the Allen institute has released a new common 

coordinate framework (CCF) on the 27th of October 2016. It is an updated atlas that 

introduces 3D segmentations based on data from multiple experiments using transgenic 

reporter mice and rAAV connectivity mapping to determine the location of anatomical 

structures5. While the atlas does not yet contain updated 3D versions of all structures 

present in the original Allen atlas, it is an important step forward and has hence been 

used to provide the segmentation for the validation of FACCT. 

                                                
5 !https://www.alleninstitute.org/whatLweLdo/brainLscience/newsLpress/pressLreleases/allenL
instituteLbrainLscienceLannouncesLmappingLmouseLcortexL3d!
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However, the continuous improvement of brain atlases can impact comparability 

between studies because the location of anatomical boundaries in the brain are re-

evaluated and partially altered between different atlas versions. This highlights another 

important aspect of automated segmentation: If segmentation is performed manually, 

applying an updated atlas to the data would require to redo the manual segmentation on 

the original images. In contrast, automated segmentation maps every point in the 

original dataset to its corresponding position within the atlas. This permits publication 

of the locations of points of interest (e.g. labelled neurons), using the atlas coordinate 

system. If data is published this way, any updates to the atlas can immediately be 

applied to it, even after publication, ensuring comparability with newer studies.  

5.2 Automation of Cell Counting 

Manually counting labelled cells in 3D whole-brains scans is a laborious and time-

consuming task that represents a major bottleneck for high-throughput connectivity 

studies. While many tools have been developed for cell detection in 2D or high 

resolution 3D datasets (Abbas et al., 2014; Oberlaender et al., 2009; Toyoshima et al., 

2016), the large size of STP datasets (~2.5TB per brain) combined with lower resolution 

(1µm/voxel in x/y, 5µm/voxel in z) and bright cell-like imaging artefacts prevents the 

use of most pre-existing algorithms. 

The adoption of GPUs, originally designed for 3D video games, as general purpose 

processing devices led to a rapid increase in available processing power in recent years. 

This has enabled the development of deep convolutional (artificial) neuronal networks 

that are able to detect objects in images with high accuracy (Krizhevsky et al., 2012; 

Russakovsky et al., 2015). These ANNs have successfully been used for cell detection 

in both 2D (Kim et al., 2014b) and 3D datasets (Silvestri et al., 2015), making them 

promising candidates to automate cell-detection in whole-brain STP datasets. However, 

as of today the large size of a whole-brain STP scan prohibits the use of more complex 

ANN architectures on full datasets. To overcome this, Kim et al. (2014b) used a simple 

ANN architecture with 3 hidden layers and only analysed 2D images spaced 50µm apart, 

whereas Silvestri et al. (2015) used a network with 2 hidden layers to enhance the signal 

in images of the cerebellum (“semantic deconvolution”), before detecting labelled cells 

using a classic mean-shift approach that detects clusters of bright signal. 
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As it is time-consuming to train and apply ANNs to very large datasets, I take the 

opposite approach to Silvestri et al. (2015). Images are pre-processed using a series of 

fast filters that detect the location of potential cells, which are then classified using an 

ANN. On the data presented here, pre-processing took less than two days and reduced 

the amount of data that needed to be processed by the ANN by at least 2 orders of 

magnitude. This data reduction enabled the use of a more complex ResNet with 9 

hidden layers and allows for further extension if required.  

The results presented here demonstrate a strong correlation between manual and 

automated counts, resulting in a correlation of r > 0.99 with the exception of a single 

dataset (r = 0.98) that contained shadow artefacts in parts of the brain. Unfortunately, 

the presence of strong z-discontinuities in the STP data resulted in multiple detections 

of individual cells and prevented a conclusive analysis of counting performance in a 

whole-brain dataset. However, FACCTs result was in line with that of human raters on 

a small subvolume with manually corrected z-discontinuities.  

Going forward, the first step will hence be to implement a stitching pipeline for STP 

data that corrects misplaced tiles while ensuring consistency in tile placement along the 

anterior-posterior axis. This will allow a conclusive cell-by-cell comparison between 

FACCT and human raters. 

Next, it would be desirable to quantify FACCT’s performance on LSFM and confocal 

microscopy data. The centroid-detection paradigm of FACCT’s initial filters should be 

applicable to other fluorescence imaging methods. In combination with the general 

capability of ANNs to detect a multitude of objects using a single network, it should be 

possible to accurately detect cells in multiple imaging modalities. 

The final aim is to release FACCT to the community as an open tool, complete with a 

pre-trained ANN to enable the immediate cell detection on a variety of 3D fluorescence 

datasets. 
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5.3 Applications 

Generally, the use of transsynaptic RV tracing in combination with mouse lines 

expressing Cre recombinase permits labelling of monosynaptic input to genetically 

defined cellular types. This presents the unique opportunity to characterise neuronal 

connectivity at the level of individual microcircuits and has already been used to 

improve our understanding of the connectivity and function of a variety of brain areas 

such as the cortex (Fu et al., 2014), or midbrain areas (Lammel et al., 2012). However, 

in an analogue to how automated fast high-throughput sequencing has revolutionised 

the field of genetics (1000 Genomes Project Consortium, 2012), automated high-

throughput analysis of whole-brain connectivity has the potential to greatly advance our 

understanding of the function of the brain. 

Automated high-throughput connectivity analysis will help uncover the changes in brain 

wiring in mouse models of neuropathological diseases. Such models exist for a variety 

of conditions such, as Down’s syndrome (Li et al., 2007), autism (Peça et al., 2011) and 

schizophrenia (Sigurdsson et al., 2010), that affect the function of the brain, but the 

changes in connectivity in these models remain largely unknown. Human functional 

connectivity data acquired using resting state fMRI (rfMRI) is available (Broyd et al., 

2009) and could be used to identify potential targets for further investigation in the 

respective mouse models. Furthermore, recent advances in rodent MRI methods have 

enabled mouse rfMRI at high resolution (Desai et al., 2011). Combining RV tracing 

with rfMRI in mouse models of disease would allow to directly compare the changes 

seen in human rfMRI with those in the mouse model and analyse the anatomical 

connectivity changes in the same animal using RV combined STP. This could provide 

three key insights: Firstly, it would advance our understanding of the relationship 

between functional connectivity, as reported by rfMRI, and anatomical connectivity. 

Secondly, it could give valuable information on how well changes in functional 

connectivity in human patients are replicated in the mouse model, and finally it could 

provide insight into how anatomical connectivity is changed in neuropathological 

diseases. 
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On a more fundamental level, the possibility to rapidly map connectivity in large 

numbers of animals would also allow us to investigate the role and extent of subject-to-

subject variability in neuronal connectivity. 

 

5.4 Outlook 

The last few years have seen a rapid growth in the field of automated whole-brain 

scanning. A new open STP design has been developed and released (Economo et al., 

2016), and the introduction of a multitude of new clearing methods (Chung et al., 2013; 

Lee et al., 2016; Renier et al., 2016; Schwarz et al., 2015) are likely to lead to more 

widespread adoption of LSFM in the rodent neuroscience community. This process 

could result in a marked shift, enabling small research groups to carry out high-

throughput studies that have previously been reserved to dedicated highly funded 

research centres such as the Allen Brain Institute.  

To facilitate this process, the development of analysis software tailored to large 3D 

datasets is of utmost importance. While this thesis introduces tools for automated 

analysis of STP data that can hopefully be adapted to other whole-brain imaging 

modalities, handling and visualisation of these datasets remains a challenge. Due to 

their size, it is not possible to fully load a whole-brain STP scan into memory, and 

opening a partial dataset can take tens of minutes. In line with that, the processing time 

of FACCT is dominated by loading and saving of files. Iterating over the images of a 

single channel without performing any other operations currently requires ~3 hours of 

processing time, even when the data is loaded from a fast solid-state disk. This is 

exacerbated by the fact that our current data structure (one tiff file per coronal image) 

does not permit partial loading within an individual image. As a result, it is necessary to 

load a complete coronal image, even if only a small fraction of that image needs to be 

analysed. 

Currently, there are two possible candidates to solve this problem. BigDataViewer is an 

extension to ImageJ that stores images in the HDF5 file format and enables quick 2D 

visualisation at arbitrary viewing angles (Pietzsch et al., 2015). It stores images at 

multiple resolutions and allows to quickly open and view terabyte-sized datasets on 

regular desktop computers. The downside is that it requires data to be converted to 
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HDF5, and manipulation of the files after conversion is difficult, as ImageJ does not 

provide direct write access to the format. As a result it currently offers only basic 

viewing functionality. 

The other candidate is Vaa3D, an open source toolkit to view and visualise microscopy 

data (Peng et al., 2014). Vaa3D is maintained by Janelia Research Campus and the 

Allen Brain Institute and seems to be aimed specifically at large datasets. It is under 

active development and has recently been extended to allow stitching and viewing of 

terabyte-sized datasets using a custom format based on tiled tiff images at multiple 

resolutions (Peng et al., 2015). While we have experienced a number of stability issues 

with the software, it has made huge process in the past years and is likely to soon 

become a valuable platform for visualisation and analysis of large 3D datasets. 

In the field of viral tracers, research on different RV strains and glycoproteins have led 

to more efficient and less neurotoxic variants of the virus that label a higher proportion 

of the presynaptic input and allow functional investigation of the connected network by 

expression of optogenetic tools or calcium indicators (Kim et al., 2016; Reardon et al., 

2016; Yamawaki et al., 2016). 

In summary, recent advances in automated microscopy, combined with powerful 

genetic tools have given us the ability to map the connectome with unprecedented speed 

and detail. The software developed for this thesis aims to help in that endeavour by 

automating the most laborious and time-consuming parts of the analysis. Given the 

recent advances in the technology, I am confident that we will see a broader adoption of 

high-throughput connectivity analysis. The result will hopefully be a critical mass of 

connectivity data that, combined with further functional investigation, would greatly 

advance our understanding of the brain. 
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Chapter 6. Appendix 

6.1 Additional Accuracy Measures 
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6.2 Exemplary Segmentations of the Dentate Gyrus, Granule 
Cell Layer (DG-sg) 

 

Image'series'showing'the'area'around'the'hippocampus'from'the'DGBsg'segmentation'

task'in'one'brain,'ordered'from'anterior'to'posterior.'Raters’'outlines'are'highlighted'in'

red.'Note'the'distinct'change'in'the'shape'of'the'clearly'identifiable'DGBsg'outline'from'

anterior'to'posterior.'Scale'bar'='500µm.'
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Brain-wide mapping of neuronal gene expression1,
connectivity2–4 and function5 is required if we are to
obtain a complete understanding of the physiological

processes underlying cognition and behaviour. Recent advances
in tissue clearing and high-resolution light microscopy6–11

combined with modern transgenic and neuronal tracing
methods12,13 now make mapping of the mammalian brain with
cellular resolution a feasible prospect1–3,14–17. However, any
mapping effort requires the implementation of an objective,
accurate and reliable means of defining the anatomical
boundaries of underlying brain structures. The accuracy of this
segmentation process is dependent on image registration
and is critical since it defines the identity of cells or neuronal
connections in terms of their anatomical position, a process that
underpins interpretation and comparison across experiments.

Recently, automated high-resolution microscopy instruments
have dramatically increased the throughput of data acquisition8,11

rendering manual segmentation an unfeasible prospect and
necessitating the development of automated analytical pipelines.
The most common approach for automating anatomical
segmentation is called atlas propagation and involves performing
registration of an image data set onto a standardized, fully
segmented reference space to provide an anatomical segmentation
of the original images1,2,14. One critical aspect regarding the
implementation of such pipelines is ensuring that the quality of the
resulting segmentation—previously achieved by expert
neuroanatomists relying on their experience and detailed visual
inspection of the data—is not compromised.

Such high-throughput microscopy instrumentation produces
large volumes of high-resolution three-dimensional (3D) data and
relies on the accuracy of automated segmentation, yet to date
there has been only indirect assessment of segmentation quality
and no agreement on a standard method of implementation,
with individual labs using unpublished in-house tools2,14,16 or an
open source clinical image registration tool (Elastix18) with
unpublished parameters1,17. While these tools may perform
adequately in their respective labs, only a validated, open source
and fully automated method can enable the direct comparison of
emerging data sets and cross-laboratory agreement.

Here we present aMAP, a tool that internally uses and provides
a graphical front-end to NiftyReg (a rapid image registration
toolkit, originally developed for human MRI data19), that we
modified to enable rapid processing of high-resolution 3D light
microscopy data. aMAP permits propagation of a 3D mouse atlas
of the entire adult mouse brain in 40 min and its accuracy and
reliability is shown to be on par with expert human raters.

Results
Assessing segmentation quality. To assess the performance of
human raters on manual segmentation, twenty-two neuroscien-
tists were randomly assigned to one of two groups and asked to
segment the same ten target structures (of which 9 were analysed;
see Methods; Fig. 1a) from three brain datasets. Target structures
were presented within six serial two-photon (STP) image stacks
(40 coronal planes per stack containing tissue background
fluorescence (n¼ 5 brains) or sparse red fluorescent protein
(RFP) labelling (n¼ 1 brain)) obtained from adult C57BL/6 mice.
These structures were chosen to encompass a broad range of sizes
and anticipated difficulty based on their degree of border defi-
nition according to local anatomical landmarks. Raters were
required to identify one image plane from the STP stack that best
matched the target section presented from the two-dimensional
(2D) anatomical reference atlas of the Allen Brain Institute14 and
then asked to manually outline the perimeter of the target
structure on the STP image (see Methods).

Qualitatively, human raters showed substantial inter-rater
variability in their positioning of the borders and estimation of
the size of target structures (Fig. 1b). In general, there was
stronger agreement—that is low inter-rater variability—where the
structure could be identified using high-contrast landmarks, such
as structure borders at the ventral and dorsal surfaces of the
neocortex. However, we observed weak agreement (high
inter-rater variability) at borders that were less well delineated,
such as the cortico-cortical boundaries of cortical target regions
(for example, primary visual cortex (VISp), Fig. 1b). Disagree-
ment between raters was particularly significant for target
structures that lacked any distinct anatomical landmarks, such
as the ventral posteromedial nucleus of the thalamus (VPM), the
segmentations of which, showed very little overlap in boundary
definition (Fig. 1b).

Recent approaches to validating mouse-brain segmentation
have relied on comparing the Euclidean distance between
manually chosen anatomical landmarks in an image data set
before and after its registration (step 1; Supplementary Fig. 1)
to an average brain image1,9. While this method is easily
implemented, it can only report registration accuracy proximal
to the chosen landmarks and is not indicative of the quality of
segmentation (step 2; Supplementary Fig. 1).

On the other hand, direct assessment of segmentation quality is
hindered by the fact that there is no ‘ground truth’ regarding the
precise location of an anatomical structure in any data set. Thus,
it is not possible to assess the quality of either automated or
human segmentations without first establishing a ‘ground truth’
segmentation of the image data sets. To achieve this essential
initial step we therefore determined the consensus segmentation
of all human raters for each target structure in each brain data
set using STAPLE20, an iterative algorithm that—when given
multiple segmentations—simultaneously estimates the quality of
each segmentation and derives the quality-weighted consensus
(see Methods). Using the STAPLE consensus segmentation as a
‘ground truth’ we could now directly evaluate segmentation
performance of both human raters and aMAP using the Dice
score metric21 that quantifies the overlap between two structures
and is commonly used to assess automated segmentation quality22.

Consistent with the idea that the STAPLE–Dice method is
directly reporting the quality of segmentation, we first determined
that imposing a goodness of fit on the registration of STP images
to an average brain data set1,9 (that is, by constraining the
bending energy) exerted a significant influence on Dice scores
that improved with increasing bending energy weight (repeated
measures ANOVA, F(15,75)¼ 16.8, Po0,001; Supplementary
Fig. 2a (range 0.2–0.95)). In contrast, the Euclidian distance
between landmarks was insensitive to changes in the goodness
of fit of the registration imposed by the same range of bending
energy weight (repeated ANOVA, F(15,75)¼ 0.45, P¼ 0.95
Supplementary Fig. 2b).

To score segmentation quality of both human raters and
aMAP, we next compared each segmentation with the appro-
priate STAPLE consensus using the Dice score. As a compli-
mentary measure, we also used shape-based averaging (SBA)23 to
generate an average segmentation of human raters
and the Hausdorff metric as a second segmentation quality
metric (see Methods, Supplementary Fig. 3a,b). Although these
different methods for determining the ground truth segmentation
and segmentation quality produced very similar results
(Supplementary Fig. 3a,b), we adopted the STAPLE–Dice
metric, as it is the most widely accepted analytical tool used in
other imaging fields22.

aMAP was implemented using the open-source NiftyReg
toolkit19 to register the average brain of the Kim et al.1 3D
atlas to downsampled versions of our STP data sets (12.5mm
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isotropic) using affine and free-form registration. The resulting
transformations were then applied to the 3D Kim et al.1 brain
atlas, which is based on the Allen Institute Brain Atlas that was
used here by human raters. Computation time for aMAP-based
segmentation was 40 min per downscaled brain on a dual-6-core
Xeon workstation. To find the appropriate parameters for the
image registration, we used two of the six STP brains as training
sets. Unless noted, these brains were excluded from the analysis of
aMAP’s performance.

Human raters versus aMAP. The outlines obtained from aMAP
(Fig. 2a, orange lines) were qualitatively similar to those per-
formed by human raters (Fig. 2a, grey lines), which was con-
firmed by Dice score analysis (Fig. 2b–d). When pooling the
scores of all structures, the median score achieved by aMAP was

not significantly different from human performance levels
(Mann–Whitney U-test, score of 0.92 versus 0.91, P¼ 0.52; n¼ 4
brains, 9 structures, 22 human raters). When grouping these
scores by structure, there were no significant differences between
the scores for human raters and aMAP in eight out of nine
structures. Humans scored significantly better in segmenting the
anterior cingulate area (ACA, Mann–Whitney U-test, median
Dice score of 0.952 versus 0.870, P¼ 0.005; Fig. 2b). When
grouping the scores by brain rather than structure, there were
no significant differences observed between human raters and
aMAP for any individual brain (Mann–Whitney U-test, P40.49,
Fig. 2c).

However, despite there being no significant difference in the
overall median scores between human raters and aMAP, human
raters exhibited substantial variance, while the Dice scores
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Figure 1 | Anatomical structures used to assess segmentation performance. (a) An illustration showing the 3D shape of the nine brain structures in the
left hemisphere used to assess segmentation performance. Red lines within each structure highlight the coronal plane in the reference atlas that was
presented to human raters. (b) For each structure, the segmentation outlines are shown for a given group of 11 raters (grey lines). The consensus outline for
the same structure and 11 raters as determined by STAPLE is overlaid (bold coloured line). According to The Allen Brain Atlas nomenclature, the nine
structures shown are: anterior cingulate area (ACA); anterior hypothalamic nucleus (AHN); medial vestibular nucleus (MV); retrosplenial cortex (RSP);
primary somatosensory area (SSp); subiculum (SUB); primary visual cortex (VISp), secondary visual cortex, anteriomedial part (VISam); ventral
posteromedial nucleus of the thalamus (VPM) (D: dorsal; V: ventral; M: medial; L: lateral).
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Figure 2 | Segmentation performance of human raters and aMAP. (a) Segmentation outlines of human raters (grey) with the aMAP segmentation result
of the same structure and brain overlaid (orange). (b) Dice scores for manual (n¼ 22 raters, each segmenting two of four potential brains, grey) versus
aMAP (n¼4 brains, orange) segmentations grouped by target structures (n¼ 9). (c) Box plots showing Dice scores of human (grey) versus aMAP
(orange) segmentations grouped by brain. Brains used in the registration parameter search (training data) are marked with an asterisk. (d) Cumulative
histogram of the Dice scores for manual (grey) and aMAP (orange) segmentations for all structures and brains as shown in b. Vertical lines indicate the
median scores.
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obtained by aMAP were significantly more consistent (Levene’s
test on pooled scores; n¼ 4 brains, 9 structures,
22 human raters; s.d.: 0.16 versus 0.05, P¼ 0.005, Fig. 2d). In
addition to the variance observed for x–y border definitions,
human raters strongly disagreed as to which optical section of the
STP data sets best corresponded to the Allen Brain Atlas plates,
leading to substantial variation in the identity of the section
chosen for segmentation (z-choice, Fig. 3a; median anterior–
posterior distance between two raters on the same brain and
structure (n¼ 6 brains)—ACA: 15 mm, primary somatosensory
area (SSp): 120 mm, retrosplenial cortex (RSP): 45 mm, VISp:
75 mm, secondary visual cortex, anteriomedial part (VISam):
60 mm, subiculum (SUB): 75 mm, anterior hypothalamic nucleus
(AHN): 105 mm, medial vestibular nucleus (MV): 112.5 mm,
ventral posteromedial nucleus of the thalamus (VPM): 105mm,
dentate gyrus, granular cell layer (DG-sg): 90mm). Such
differences in z-choice had a particularly strong influence on
segmentations of DG-sg that resulted in substantial discrepancies
in x–y border definitions (Fig. 3b), despite the fact that the
structure could be clearly delineated in the STP data set
(Supplementary Fig. 4). Thus while manual segmentations
performed on the same optical plane of the dentate gyrus
generally showed good agreement (Fig. 3c), the overall x–y
boundary of the DG-sg changed substantially according to the

choice of z-section (Supplementary Fig. 4). We therefore excluded
this structure from the segmentation analysis, since the
discrepancies in segmentations were substantially negatively
influenced by differences in z-choice rather than a rater’s
uncertainty about the x–y boundary of the structure. We found
no significant influence of the z-choice range on the median
Dice scores of human raters for the remaining structures
(P40.05, Supplementary Fig. 5).

Intra-rater reliability. By design, aMAP will always produce an
identical segmentation when applied to the same data set.
In contrast, one major source of the significant inter-rater dis-
agreement on manual segmentations could be a rater’s degree of
reliability. Although an individual may score poorly compared
with the STAPLE consensus, they may nevertheless be extremely
reliable in their estimate of the location and shape of the target
structure (Fig. 3d). On the other hand, the trial-to-trial reliability
of a rater could significantly contribute to the broad range of
(inter-rater) Dice scores. Reliability could therefore be considered
to be one major source of variability inherent in the segmentation
process and distinct from inter-rater disagreement.

To investigate the extent to which inter-rater disagreement in
the segmentation stemmed from an individual’s uncertainty or
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raters, each segmenting three of six potential brains) in their estimation of the correct optical section (z-choice) for manual segmentation for each brain
structure. Structures: anterior cingulate area (ACA); anterior hypthalamic nucleus (AHN); dentate gyrus, granule cell layer (DG-sg); medial vestibular
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by 11 human raters taken from a single test brain and its repeated presentation. (c) Example manual segmentations of the DG-sg, taken from two z-sections
from within the data set shown in b. These two z-sections were chosen based on their having multiple segmentation attempts (n¼4 outlines shown in
each image, left image: anterior, right image: posterior). (d) Schematic highlighting two extreme segmentation reliability scenarios. Bottom left: a given
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attempt versus STAPLE consensus for 22 raters per structure, black) and intra-rater (n¼ 22 segmentations, that is, second attempt versus first attempt for
22 raters per structure) Dice scores for each target structure. (f) Plot showing the cumulative histogram of intra- and inter-rater Dice scores for all data
presented in e.
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from a reliable difference in opinion between raters, each user was
unknowingly also presented with repeats of all target structures
from one of their three previously presented brains. This
permitted calculation of a Dice score between a rater’s first
segmentation and the repeat segmentation of the same structure
in the same data set (intra-rater Dice, Fig. 3d). Comparison of the
intra-rater Dice score with the previously determined inter-rater
scores from the same brains and structures (Fig. 3d) showed
significantly worse intra-rater performance on the ACA and SSp,
(Mann–Whitney U-test, inter versus intra: ACA: median 0.953
versus 0.933, P¼ 0.01; SSp: median 0.950 versus 0.923, P¼ 0.001;
Fig. 3e, n¼ 2 brains" 9 structures" 11 raters per brain) and
no significant difference on the remaining structures (Mann–
Whitney U-test, P40.21). There was no significant difference in
the overall median of inter- versus intra-rater scores (Mann–
Whitney U-test, inter versus intra: 0.916 versus 0.912; P¼ 0.32)
and only a modest but significant reduction in variance (Levene’s
Test, inter versus intra: s.d.; 0.16 versus 0.12, P¼ 0.044, Fig. 3f).
This indicates that for a given rater, there exists substantial
variability in repeated segmentation of the same structure. Thus,
human inconsistency is a significant source underlying segmenta-
tion disagreement between individual raters.

Discussion
Any attempt to map the brain with cellular resolution depends
critically on an objective, accurate and reliable means of defining
its underlying architecture. In this study, we have directly
compared the performance of an algorithm for automated
segmentation of high-resolution 3D fluorescence data sets with
the segmentation performance of human raters. We show that
manual segmentation is a process that, on average, is of high
quality but with modest reliability. While human raters—as a
group—generally achieved high median scores, they displayed
significant variability, particularly for structures that did not
follow obvious anatomical landmarks. The fact that this
variability was at least as large for intra-rater comparisons as it
was between raters highlights that both the accuracy and
reproducibility of manual segmentation is inherently limited.
On the other hand, aMAP performed just as accurately as human
raters, but with significantly less variability and, by design, is
entirely reproducible.

We have designed aMAP based on NiftyReg because of the
high speed of its free-form registration and the possibility to
adapt it to large data sets. There are however several other
applicable MRI registration tools in use in the clinical field24 that
may be equally suitable for 3D fluorescence data. Previous rodent
brain microscopy studies have used pipelines based on such
tools (for example Elastix1,17 and MNI AutoReg16) or
unpublished in-house tools2,14, but did either not publish
validation data of their image analysis pipeline16,17, or validated
their segmentation by relying on a landmark distance-based
measure that determines the Euclidian distance between a limited
number of point markers in the registered data set1,2,14. Here we
show that the landmark distance metric does not capture changes
in registration quality over a wide range of deformations imposed
on the image data set that, by its very nature, impacts the quality
of the segmentation process. It is worth noting, that results from
previous studies relying on the distance between point markers
may nevertheless be accurate. However, our data mirrors previous
findings showing that such scoring metrics do not capture the
quality of free-form registration of MRI data sets25. To encourage
community-wide implementation and validation of automated
segmentation tools, we have made our manual segmentation data
and validation pipeline freely available (see Methods).

In our study, we have ensured parallelity of the optical sections
to the coronal plane of the atlas by rigidly registering all images to

the Allen average brain. Furthermore, we specified to the human
rater the atlas sections that contain the target structure. Never-
theless, differences in the z-plane chosen by the raters from the
optical stack could remain a significant source of inter-rater
variability in segmentation performance. However, at least for the
structures analysed here, we found that Dice scores were not
significantly improved when our segmentation analysis was
confined to optical planes within seven or three sections of one
another. It is of course also conceivable that in the real-world
scenario both image misalignment and lack of agreement on the
correct atlas section could further increase inter-rater variability.

Agreement can be achieved by using several experts to cross-
validate segmentations, a practice that is widely used on MRI data
in the clinic20. However, since high-resolution whole-brain
fluorescence data sets are typically several orders of magnitude
larger than MRI data sets, this approach is extremely difficult to
implement without substantially down-sampling and thereby
compromising accuracy. Also, manually agreeing on brain-wide
segmentation of high-resolution images is a very laborious
and time-consuming process. Particularly for high-throughput
pipelines, validation using a limited number of agreed expert
raters is impractical and would slow what is already a major
analytical bottleneck.

The success of registration depends on the similarity of the
images being registered to one another. As such, the location and
integrity of key anatomical landmarks (such as the cortical
surface) are critical to accurate brain registration. To maximize
similarity between our data and the atlas average brain data set
(which was generated using tissue autofluorescence) we have used
either the background fluorescence or a sparsely labelled RFP
channel. In contrast to using fluorescence images exhibiting for
example, a very specific anatomical pattern of GFP, this ensures
that most pixel values in the image reflect anatomical structures.
While aMAP can theoretically be used on image data containing
fluorescent signals, it is not possible to reliably predict the impact
of such signal patterns on the registration process. We therefore
recommend manual quality assessment of the images and their
segmentation, especially in cases where specimens have suffered
dissection-related damage or that contain excessive imaging
artefacts, such as high non-specific background fluorescence (e.g.
due to a failed perfusion). We found that overlaying the original
image data with the registered average brain and the segmenta-
tion outlines provides a reasonable way to qualitatively assess
image registration and segmentation.

One shortcoming of all current atlas-based automated
segmentation approaches arises from the fact that existing 3D
atlases either have (i) adequate 3D segmentation but contain a
limited number of annotated structures, as is the case for mouse
MRI atlases26–28 or (ii) have a reasonable number of annotated
structures but are based on reconstructions of serial 2D sections
rather than genuine 3D segmentations1,14. This latter scenario
unfortunately leads to discontinuity in structure borders in the
plane orthogonal to the atlas’s cutting plane29 that will propagate
into any automated segmentation based on such an atlas (Fig. 2a;
Supplementary Fig. 6). Despite this limitation, aMAP nevertheless
performs on par with human raters and its implementation
provides a means of establishing an agreed standard for
automated segmentation. Fortunately, in its most recent release,
the Allen Brain Institute has begun to move towards a higher
resolution 3D-segmented atlas. Although this recent version
contains a mixture of 2D and 3D annotations, the goal is to
eventually generate an atlas that is fully annotated in 3D. This
represents a crucial step forward that will further improve the
quality of automated segmentation.

A recent development in the field of MRI imaging has been the
introduction of multi-atlas registration to increase the robustness
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of automated segmentation30–33. There, multiple atlases are
registered to the data set of interest and the final segmentation
is generated using the consensus segmentations from all
individual atlases. While this method increases the robustness
of the automated segmentation, the high-resolution multi-atlas
datasets necessary to implement this method on 3D light
microscopy data do not yet exist.

The fact that automated segmentation will, by design, adapt
to future atlas releases highlights another important aspect:
Automated segmentation generally works by mapping all points
of interest in the experimental data (for example, neuronal and
glial somata) to a common reference space. As refinements are
made in the segmentation of this common space or new areas
are functionally delineated, tools such as aMAP can be used to
systematically apply these changes to existing and previously
published data sets (assuming points of interest are published
using reference space coordinates). In this way, pipelines such as
aMAP will enable the data of previous and future studies to be
directly compared as 3D mouse atlases evolve.

In summary, we have for the first time validated a tool for
segmenting high-resolution 3D imaging data that will rapidly
register and segment a complete adult mouse brain data set.
aMAP performs as well as human raters but with substantially
less variability and thus enables direct comparison of anatomical
data sets independent of the level of experience and knowledge
base of the user. aMAP can therefore be used to standardize
the segmentation process and enable comparability of data from
one individual and lab to another. Furthermore aMAP will, by
design, inherently adapt to any future refinements in digital
segmentation atlases, the precise application of which is currently
a significant factor limiting the accuracy of brain-wide mapping
approaches.

Methods
Imaging. Male adult C57BL/6 mice were trans-cardially perfused with cold 4%
PFA-solution under general anaesthesia. Brains were then removed and post-fixed
in 4% PFA for at least 24 h. All procedures were in accordance with UK Home
Office regulations (Animal Welfare Act 2006) and the local animal ethics com-
mittee. Brains were imaged coronally at a voxel size of 1 mm (x)! 1 mm (y)! 5 mm
(z) under a STP microscope9 using an Olympus ! 10 water immersion objective
(numerical aperture 0.6). The STP image files for all target brains were rigidly
aligned to the 3D average brain of the Allen Mouse Brain Atlas14 to ensure optical
sectioning in the coronal plane of all datasets. The transformation matrices were
determined on z-smoothed (Gaussian, 5 voxel s.d.) and then downscaled versions
of background fluorescence (n¼ 5) or sparsely labelled RFP (n¼ 1) images using
NiftyReg (reg_aladin34, voxel size 12.5 mm isotropic, https://sourceforge.net/
projects/niftyreg). The resulting transformation matrices were then applied
to the full-resolution images using MATLAB (MathWorks).

Segmentation task. Manual segmentation data was obtained from a group of
22 neuroscientists that included postgraduate students, research assistants,
postdoctoral fellows and principal investigators. This cohort was randomly split
into two groups (n¼ 11 raters per group) whereby every rater from within a group
performed 10 segmentations on each of three brains (three different brains per
group). In addition, all 10 structures from one of the three brains were re-presented
blindly as a fourth data set to assess intra-rater reliability. For inter-rater analyses,
only the first segmentation of the repeated brain was used.

Raters were asked to segment the following structures on one hemisphere of
the brain: ACA; AHN; MV; RSP; SSp; SUB; VISp; VISam VPM and DG-sg. During
the analysis, we found strong influence of the z-choice on the human DG-sg
segmentations. We therefore excluded this structure from segmentation analysis
(see Results). For each target structure, the task proceeded as follows: an STP stack
consisting of 40 images (step size: 15 mm) was presented to the rater on a digitizer-
pen-enabled monitor (Wacom Cintiq 22HD). The rater was also presented with a
single plate from the online version of the Allen Mouse Brain Atlas on a second
monitor and asked to outline the target structure in the STP data set. The raters
were free to browse all Allen atlas plates to orient themselves along the anterior–
posterior axis if necessary. The image stacks were presented using a custom Fiji/
ImageJ35,36 plugin that handled loading of images and logging of results. The order
in which the brain structures were presented was random but identical for each
participant within a group. Each set (n¼ 4) of 10 different structures was sampled
from multiple brains.

Scoring and analysis. Manual segmentations were first manually cleaned by
removing, for example, isolated touches that may appear when a rater accidentally
clicks on an unrelated part of the data set in draw mode. From a total of 880
segmentations, we found five cases where the rater segmented the wrong structure
or hemisphere. These cases were not included in the analyses. The remaining
outlines of the segmented target structures were converted to filled binary images
and downscaled to a pixel size of 4 mm in x–y. Due to the lack of a ground truth,
all segmentations for a given target structure were compared to an ‘consensus
segmentation’ derived from all manual segmentations of that structure using
STAPLE. STAPLE is an iterative algorithm, designed to simultaneously assess the
‘quality’ of each segmentation and the average of all segmentations weighted by
their quality. Quality is derived from the overlap of each segmentation with the
agreement structure and is initialized to equal levels for all segmentations20.

As an additional measure, we also calculated the inter-rater agreement using
SBA23, which gives the geometric mean of all segmentations. Both averaging methods
yielded similar results (Supplementary Fig. 3a,b). Both the STAPLE
and SBA consensus structure for each target were calculated using NiftySeg
(seg_maths37, https://sourceforge.net/projects/niftyseg). To score the quality of
manual and automated segmentations, individual segmentations were compared to
the consensus segmentation using the Dice score21. The Dice score is generally
defined as the area of the intersection of two sets (that is, segmentations) divided by
half the sum of the sets’ areas and thus provides a measure of relative overlap between
two segmentations. The Hausdorff metric was used as a supplementary scoring
method (Supplementary Fig. 3b) and is generally defined as the longest distance
between any point on one set and its closest neighbour in the other set and thus
provides a good measure for the maximum distance between two segmentations.

Non-parametric tests were used to determine statistical significance, since data
were found to be not normally distributed. Based on the observed effect sizes and
number of repeats used for both manual and automated segmentations, such tests
were performed with 100% power when the confidence interval was set to 99%.

Automated segmentation. The average brain data set from 3D mouse brain atlas
by Kim et al. was aligned to the z-smoothed (Gaussian, 5 voxel s.d.) and then
downsampled (12.5 mm per voxel isotropic) versions of the six brain data sets that
had been used for manual segmentation. For registration, we used either the
background fluorescence channel (n¼ 5) or a sparsely labelled RFP staining
(n¼ 1). The first alignment step was an affine registration (NiftyReg, reg_aladin34,
six levels coarse-to-fine pyramidal approach of which the first five steps were
computed) using a symmetric block-matching approach34.

This was followed by a second free-form registration step, which places a regular
grid of control points onto the reference image (NiftyReg, reg_f3d19).
These control points are moved during registration, causing the surrounding
image data to be moved, allowing for a local, non-linear alignment of the
image data38. A parameter search was performed on two of the six brains to find
suitable parameters for the free-form registration. Since image registration is a
step-wise process that relies on assessing a cost function that embeds a measure of
similarity between two data sets, we tested two similarity measures that both compare
relative intensity differences in the atlas and the brain to be segmented: locally
normalized cross-correlation and normalized mutual information19. Normalized
mutual information, using 128 bins discretization achieved the highest overlap score
and was hence used for aMAP. The remaining parameters achieving the highest
overlap score were an initial Gaussian smoothing of the input images (with a 1 voxel
s.d.), a control point grid spacing of 10 voxels isotropic, a bending energy weight of
0.95 and a six levels coarse-to-fine pyramidal approach of which only the first four
steps were computed. For a more detailed description of the parameters, see the
software manual distributed with aMAP. Unless specifically noted, the two brains on
which the parameter search was performed were excluded from the analytical
comparison of the manual versus automated segmentation.

The transformations obtained from registering the Kim et al. average brain to
the individual image data sets were then applied to the 3D atlas from Kim et al.
(Supplementary Fig. 1). Since this atlas is based on the original Allen brain atlas
(generated from individual 2D segmentations of nissl-stained coronal plates29),
structures show high-frequency fluctuations in border definition along the axis
orthogonal to the atlas plane of section (Supplementary Fig. 6). To minimize their
impact, the 3D atlas was smoothed twice using a Gaussian kernel with a s.d. of 0.5
voxels prior to being transformed (NiftySeg, seg_maths). Since the aMAP
segmentations are 3D volumes, they cannot be directly compared with the 2D
segmentations of human raters. Hence, the 3D volumes were converted to 2D
outlines by making coronal sections through the part of the aMAP-generated
3D segmentation that corresponded to the stack given to human raters. The 2D
outline with the highest Dice score was chosen as the result of the automated
segmentation.

z-distance scoring. To find the median distance between the sections chosen
from the 40 optical sections in the STP data sets, each rater’s z-choice was first
determined and compared with the z-choice of all other raters segmenting the same
STP data set. The absolute difference in section number for any two raters was then
converted to distance by multiplying with the z-distance between two optical
sections (15 mm). We calculated the absolute distance in z between two raters on
the same brain and structure for all possible non-ordered combinations of raters.
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Comparison of Dice- and landmark distance scoring. The following anatomical
landmarks, as defined by the Waxholm space27, (http://scalablebrainatlas.incf.org/
main/coronal3d.php?template=WHS11&) and used in ref. 1, were placed in the
average brain of the Kim et al. atlas and the downscaled version of each STP brain
before registration: frontal middle 1; frontal right 2; frontal left 2; anterior
commissure right; anterior commissure left; corpus callosum middle; hippocampus
middle; interpeduncular nucleus right; interpeduncular nucleus middle;
interpeduncular nucleus left. In one STP brain, hippocampus middle was omitted
due to an imaging artefact in that region. The free-form registration was then rerun
for each of the 6 brains using 18 different imposed bending energy (BE) weights
(range: 0.2–0.99). The BE is used to penalize high-frequency transformation and
acts as a regularization term in the optimization process. The optimization aims to
find the best transformation parameters by maximizing the image similarity while
minimizing the transformation BE. A BE weight that is set too low will lead to a
mismatch of the segmentation due to artefacts caused by over-fitting the images.
Setting the BE weight too high, on the other hand, will overly constrain the
registration resulting in a more global mismatch between the segmentation outlines
and the target brain. For the analysis of the suitability of the Dice score metric, the
mean Dice score of all target structures in each brain (10 structures per brain) were
plotted against the BE weight. Likewise, for the landmark distance analysis the
mean distance between the landmarks in the brain data sets and the registered atlas
were plotted against the BE weight.

Influence of z-range on Dice scores of human raters. To test whether the range
of z-sections chosen by the human raters had a significant influence on the Dice
scores of raters, we reanalysed a subset of the manual segmentations, choosing a
window of three and seven consecutive z-sections for each structure in each brain.
All segmentations that were not performed in this window were then discarded for
this analysis. The position of the window was chosen on each brain and structure to
contain the maximum possible number of human segmentations. New STAPLE
consensus segmentations were generated for the z-limited analysis.

Brain structure schematic. To illustrate the position of the analysed structures
and sections, 3D models were generated from the Allen Mouse Brain 3D voxel data
using Fiji/ImageJ35,36 to generate mesh models and blender (www.blender.org) to
remesh, smooth and render them.

Data availability. Detailed instructions for setting up and using aMAP, including
all necessary data and software, are openly available at http://www.swc.ucl.ac.uk/
aMAP. This url also provides the published manual segmentations and validation
pipeline and instructions on how to adapt the validation pipeline for other seg-
mentation software.
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