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A B S T R A C T

After billions of years of evolution, nature has developed mechanisms
for controlling the growth and assembly of materials right down to
the nanoscale, an achievement that materials scientists hope to mimic.
However, the underlying processes are extremely complex and de-
pend on subtle behaviour at the molecular scale. In contrast to experi-
mental methods, computer simulations can achieve the molecular res-
olution needed to investigate these mechanisms, and can therefore of-
fer unique insight. Indeed, this dissertation employs a variety of state-
of-the-art computational methodologies to investigate the molecular
processes by which calcite, the most abundant biomineral on earth,
grows, in addition to the role played by surfactants in soft templating
technologically important inorganic materials.

Microsecond-long simulations are performed to reveal the behaviour
of individual ions in the vicinity of calcite steps, providing new in-
sight into the mechanisms responsible for kink nucleation.

Rare event methodologies are then used to study the dissolution
process of kink sites in calcite crystals. It is discovered that this par-
ticular mineralisation process is too complex to be tamed by compu-
tational methods, which has far-reaching consequences for the devel-
opment of highly predictive models of mineralisation.

A coarse-grained model for calcite precipitation is presented that
displays the ability to connect molecular processes with both the ki-
netic and morphological characters of a crystal. However, the simu-
lation is found to conflict with experimental observations regarding
the dependence of step velocity on step length. The implication be-
ing that present models are unable to correctly describe step pinning,
which is a major limitation.

Lastly, the role of surfactants in templating crystal growth via two
very different mechanisms is investigated. In the one case, polymorph
and orientation selection by self-assembled monolayers; and in the
other, oriented heterogeneous nucleation of mesoporous organosili-
cas.
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1
I N T R O D U C T I O N

1.1 the material world

Millions of years ago, the early members of the homo genus began to
fashion tools out of materials such as flint, wood, and bone. This pe-
riod of prehistory, spanning up to approximately ten thousand years
ago, is known as the Stone Age. The Copper Age followed with the
discovery that copper is produced, quite miraculousy, when mala-
chite is added to hot embers. Copper, being a malleable metal, was
well-suited for a wide range of applications. For example, it was
crafted by the Egyptians into sickles, weapons, and the chisels used
in constructing the pyramids, thus helping to give rise to the earli-
est civilisations. However, copper is soft, and so the Copper Age was
quickly superseded by the Bronze Age when it was discovered that
copper could be hardened by alloying it with other elements, such
as tin and arsenic, to form bronze. The need for these rarer elements
gave rise to new trade routes, and the spread of culture and technol-
ogy throughout the world. In a similar vein, progress in smelting iron
ores, and alloying the resulting iron with carbon, resulted in steel, the
strongest pre-industrial material, and initiated the Iron Age.

While the Iron Age was the terminus of prehistory, our ensuing
dependence on materials has not diminished. In fact, it is only within
the past century, with the advent of quantum mechanics, that we
have begun to really understand the inner workings of materials and
achieve an entirely new level of material control, actualising the mi-
crocomputer revolution, among various other advances.

The next revolution in materials science will be in the development
of nanomaterials: materials with features tailored to a scale below
100 nanometres in size. Progress has already been made in this di-
rection, for example, with the synthesis of graphene, quantum dots,
and nanowires, seeing early applications ranging from solar cells to
medicine. However, we are a long way from achieving full control
of the size, shape, phase, and orientation of materials to an arbitrary
scale, along with the assembly of such components into larger, more
complex systems. But we know that this ambition is achievable, for
nature has already accomplished it.

1



2 introduction

Figure 1.1: An illustration of Rhabdosphaera clavigera, a species of coccol-
ithophore, which provides a beautiful example of biomineralisa-
tion. Original SEM images can be found in [1].

1.2 biomineralisation

Biological systems display an extraordinary level of control over ma-
terials right down to the nanoscale, with the most tantalising exam-
ples coming in the form of biominerals—biogenic inorganic crystals—
which compose the hard structures in living organisms, such as skele-
tons and shells. As an example, Figure 1.1 depicts Rhabdosphaera
clavigera, a species of coccolithophore, which is coated in plates of
calcium carbonate with protruding spines. To quote Young et al. [1],

“The spine structure is remarkably elegant, consisting of
five interwound spirals of crystals. The component crys-
tals of the spine show regular rhombohedral faces with
perfectly regular alignment spiraling up the structure.”

While the detailed mechanisms responsible for realising such struc-
tures are poorly understood, many of the broad control principles are
well-established, and can be categorised as: spatial, chemical, morpho-
logical, structural, and constructional [9].

Spatial control typically involves growing the crystal within a con-
fined space, such as a vesicle or an organic framework. Spatial con-
finement provides a few advantages: it limits the size and shape of the
precipitating crystal, and it affords careful regulation of the concen-
tration and composition of the internal solution, e.g. through the use
of ion pumps in the membrane. Indeed, chemistry provides another
means of control by adjusting the supersaturation, or by introducing
impurities to modify the solubility of the crystal, as will be modelled
in Chapter 5.
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Crystal morphology can be controlled in various ways. One way
is to grow the crystal in a volume with the desired shape, so that
the boundary functions as a mould. Another method is to introduce
impurities that inhibit growth in specific directions. A third mecha-
nism, known as vectorial regulation, is to promote growth in only
a localised section of the crystal, e.g. by increasing the supersatura-
tion via a single ion pump, thus inducing growth in that one specific
region.

Structural control generally refers to the preferential alignment of
the growing crystal with respect to the organic template. An example
of this will be seen in Chapter 6. And finally, there are the higher-
order processes involved in assembling various crystals and organic
components into a single structure, such as bone. However, we shall
not address these mechanisms here.

The most abundant biomineral on earth is calcium carbonate (CaCO3),
for which calcite is the thermodynamically stable polymorph under
ambient conditions. Calcite is therefore one of the most widely stud-
ied minerals, and we devote three chapters to investigating and mod-
elling its growth and dissolution. Accordingly, we now provide a brief
summary of the calcite crystal and its mode of growth.

1.3 calcite

Calcite (CaCO3) has a hexagonal lattice with the space group R3c. Its
equilibrium morphology in pure solution under ambient conditions
is the rhombohedron, as shown in Figure 1.2(b), with the {1014} faces
exposed. Calcite is usually grown from solution containing calcium
Ca2+ and carbonate CO2−3 ions, and it is useful to quantify the solu-
tion concentration with the so-called supersaturation

σ = log
aCa2+aCO2−3

Ksp
(1.1)

where aCa2+ is the calcium activity (a measure of concentration), and
similarly for aCO2−3

, and Ksp is the solubility product which equals
10−8.48 for calcite [10]. The solubility product is defined to equal the
product aCa2+aCO2−3

when the solution is at equilibrium, and so, when
σ < 0 the solution is undersaturated and the crystal dissolves; σ = 0

denotes saturation; and σ > 0 means the solution is supersaturated
and the crystal will grow. Generally, growth involves the formation
of two-dimensional islands on the facets that then grow to encom-
pass the entire crystal face, increasing the size of the crystal by one
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Figure 1.2: (a) A schematic representation of a 2D growth island on a calcite
facet, showing the symmetry and kink labelling scheme. (b) The
equilibrium rhombohedral morphology of calcite expresses the
family of {1014} faces. (c) The molecular structure of a growth
island and how it relates to the step geometry. Each ion along
a step is labelled with either 1 or 2 as described in the text. (d)
A representation of the terrace-step-kink model of growth, de-
scribed in the text. (e) The profile of the acute and obtuse steps.

layer at a time. However, the precise growth mechanism for calcite
depends on the supersaturation state [10]. At high supersaturations,
σ > 1, the dominant growth mechanism is two-dimensional surface
nucleation, whereas at low supersaturations growth can only proceed
from preexisting steps. These steps are continuously sourced from
screw dislocations which are defects in the lattice that persist with
growth [10, 11].

Step propagation in calcite is known [12] to be well-described by
the terrace-step-kink model [13] which characterises the crystal sur-
face in terms of features known as terraces, steps, and kinks, each of
which is illustrated in Figure 1.2(d). Specifically, the large, featureless
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facets are terraces, the one-dimensional rows that terminate a growth
island are steps, and the sites with half the number of bonds as in the
bulk crystal are kinks. Growth proceeeds by only two key processes:
the nucleation of a pair of kink sites at a step, followed by the prop-
agation of the kink sites along the step length due to the adsorption
of new ions to the kink sites. It should be noted that these events also
occur in reverse, with the continuous dissolution of kinks and kink
nuclei from the steps.

Calcite naturally expresses two distinct step geometries: obtuse and
acute, which are differentiated by the angle they make with the ter-
race, as illustrated in Figure 1.2(e). The obtuse steps grow in the di-
rections [441]+ and [481]+, with the acute steps growing in the oppo-
site directions, as depicted by the solid arrows in Figure 1.2(a). The
low-energy steps consist of alternating units of calcium and carbon-
ate ions, as shown in Figure 1.2(c). Note that the unit cell of calcite
contains two CaCO3 units and that the two carbonate ions have dif-
ferent orientations to each other. Consquently, there are two distinct
carbonate ions exposed at the steps that differ by a rotation about
the c-axis. Each carbonate ion may therefore be labelled with either
1 or 2 to denote its orientation, as depicted in Figure 1.2(c). The cal-
cium ions may also be distinguished from each other based on their
local carbonate configuration. Specifically, we introduce the simple
rule that each calcium ion inherits the same index (1 or 2) from its
neighbouring carbonate ion in accordance with the direction of the
dashed arrows in Figure 1.2(a). Each ion may therefore be referred to
as either Ca(1), Ca(2), CO3(1), and CO3(2).

The dashed line in Figure 1.2(a) represents glide plane symmetry,
meaning that the crystal structures either side of the glide plane are
mirror images of each other (within translation parallel to the plane).
In the case of calcite, the plane is normal to the c-axis of the conven-
tional cell, i.e. [001], and is therefore called the c-glide plane.

As can be seen in Figure 1.2(a), each step has two distinct kink ge-
ometries: for the acute step, we label them Aa and Ao, and for the ob-
tuse step, Oa and Oo. Moreover, each of these kink geometries could
be terminated by one of the four distinct ions listed above. These
permutations sum to a total of 32 unique kink sites, or 16 when the
glide plane symmetry is considered. To identify each, we introduce a
nomenclature that combines the calcite geometry (Aa, Ao, etc) with
the terminal ion (Ca(1), CO3(1), etc). For example, we label the type
(2) carbonate-terminated Ao kink site as Ao/CO3(2). This notation
will be used extensively in Chapter 4.
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It is already well-established that the calcium and carbonate ions
behave differently to each other at the active sites of calcite [4], and
it will be shown in this thesis that the behaviour of the ions also
depend on the precise geometry of each active site (e.g. which type
of kink site) as well as on whether it is a CO3(1) or CO3(2) ion, and
so on. When the atomic units of crystal growth are not identical to
one another, the crystal is said to be non-Kossel [14].

1.4 biomimetic materials chemistry : soft templating

Chemists have already begun to take inspiration from nature in devis-
ing strategies for synthesising inorganic materials, see Mann et al. [15]
for a review. One such approach involves the use of organic matter
to control the reaction field of a solution by serving as a template.
This so-called soft templating approach can operate at two different
levels: either at the molecular scale, bringing about heterogeneous
nucleation, or at the supramolecular scale by serving as a meso-scale
template. An example of the former mechanism observed in nature
is the eggshell protein ovocleidin-17 which induces amorphous cal-
cium carbonate to transition to calcite [16], while an example of a
synthetic equivalent is the precipitation of oriented calcite crystals on
functionalised self-assembled monolayers [17]. And an example of
the latter mechanism in nature is the use of vesicles in templating the
porous structure of the Radiolarian silica micro-skeleton [18], while a
synthetic equivalent may be the use of surfactants to template high
porosity in mesoporous organosilicas [19].

Soft templates are extremely versatile due to the range of two-
and three-dimensional structures and nanopatterns that they exhibit.
They are easily functionalised and, due to their flexibility, don’t suf-
fer from the high symmetry that inorganic templating through epi-
taxy does. Furthermore, once a crystalline phase has formed, soft
templates are easily purged, e.g. through calcination.

A typical choice for a synthetic soft template is an organic
amphiphile that aggregates non-covalently and self-assembles into
supramolecular structures when added to a solvent. When such
structures have long-range order they are called liquid crys-
tals and the constituent amphiphiles are said to be lyotropic.
Surfactants are common choices, notably sodium dodecyl sul-
phate (SDS), CH3(CH2)11[SO4]−Na+, and alkytrimethylammo-
nium halides such as cetyltrimethylammonium chloride (CTAC),
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Figure 1.3: Common structures formed by lyotropic amphiphiles in bulk so-
lution and at solid-aqueous interfaces.

CH3(CH2)15[N(CH3)3]+Cl−. In these two examples, the sodium and
chloride are counter-ions that bind ionically to the functional groups
of the surfactants and serve to balance charge.

Amphiphile aggregation is usually driven by both a decrease in
enthalpy and an increase in entropy (due to the release of water),
with the resulting supramolecular structure depending on both the
temperature and the concentration of the solution. As the concentra-
tion is increased above a critical value, known as the critical micelle
concentration (CMC), a solution of lyotropic amphiphiles becomes
saturated with monomers and spherical micelles form. Increasing the
concentration further, the spherical micelles coalesce to form cylindri-
cal micelles which may then pack together into a hexagonal phase
(space group P6mm), as illustrated in Figure 1.3. Further still, some
systems, including CTAC, transition to three-dimensionally periodic
labyrinths with a cubic space group. These so-called cubic phases
have mathematically well-defined structures that correspond to local
minimal surfaces (e.g. the gyroid), meaning that any small variation
in their structure will increase the surface area and thus the free en-
ergy. Lastly, increasing the concentration beyond the domain of cubic
phases gives rise to bilayers.

Similar structures may form when amphiphiles aggregate at solid-
aqueous interfaces, although the structure is now dependent not only
on the amphiphile-amphiphile and amphiphile-solvent interactions,
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but also on the amphiphile-substrate and solvent-substrate interac-
tions (e.g. how hydrophobic the surface is). For example, under simi-
lar conditions, quaternary ammonium surfactants form semicylindri-
cal micelles on graphite, hemispherical micelles on amorphous silica,
and full cylinders on mica [20]. Figure 1.3 provides a summary of
common structures that form both in bulk solution and at an inter-
face, including hemispherical and semicylindrical micelles which are
truncated so as to maximise coverage of the substrate. When soft tem-
plates are mixed with an inorganic precursor, the precursor may crys-
tallise around the template, giving rise, for instance, to highly porous
single crystals.

1.5 computational materials modelling

At present, computer simulations provide invaluable insight into pro-
cesses that are difficult, if not impossible, to resolve experimentally.
And this thesis will provide examples of that. However, one of the ul-
timate ambitions of computational science is to supplant, rather than
merely augment, lab-based experimentation with computer simula-
tions. Such in silico experiments promise many advantages over real-
world experimentation. In particular, computer simulations offer an
unparalleled resolution, potentially yielding a complete description
of a system at any length- and time-scale required. In silico exper-
iments could be setup, executed, and analysed automatically, only
ever requiring access to relatively cheap and ubiquitous computer
hardware, and not relying on scarce and expensive equipment for
analysis. The types of materials available for investigation would no
longer be limited by affordability or our ability to synthesise them.
And as scientific experimentation becomes more computer-based, it
opens up scientific progress more readily to the growing powers of
artificial intelligence [21].

In the context of crystal growth, the subject of this thesis, the long-
term ambition is to model the growth of crystals from a solution with
a known composition; capturing all of the subtle effects that pH or
the activity of certain impurities may have on the characteristics of
crystal growth, such as morphology, kinetics, and composition. With
such a detailed model, bespoke crystals could be designed on the
computer, whether that be through an automated trial-and-error ap-
proach, e.g. with the aid of a genetic algorithm [22], or by working
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backwards from the detailed mechanistic insight provided by such a
model.

Calcite

In the case of calcite, work by Gray et al. [23, 24] has shown promise
in the use of de novo peptides for bespoke control of calcite morpholo-
gies, and so there is great interest in developing a model of calcite
growth that can accommodate the complex binding of biomolecules,
such as peptides, to various surface sites and capture the growth con-
sequences. However, there has been very little progress hitherto in
developing such functionality.

Analytical models have been developed that can capture the impact
that solution stoichiometry [2, 4] and impurity activities [3] have on
calcite kinetics. These models, however, are extremely limited in their
utility, being unable to describe morphologies. Instead, a model that
includes molecular degrees of freedom is required.

In principle, standard molecular simulation could model the growth
of calcite crystals from a solution. However, calcite growth from solu-
tion at typical supersaturations is an incredibly slow process, taking
on the order of seconds for a step to advance only one nanometre.
And so it cannot be modelled with the resolution of molecular simu-
lation for which even the microsecond time-scale is seldom accessible.

Efforts in the literature to circumvent this problem have included
simulating the growth of calcite directly from the melt, using either
an elevated temperature or metadynamics to accelerate the growth.
This approach has been used to identify the polymorph and orienta-
tion selection of self-assembled monolayer substrates [25, 26]; to mea-
sure the relative velocities of different calcite faces [27]; and identify
the polymorph affinity of magnesium ions [28]. This approach, how-
ever, is obviously unsuited to modelling growth from solution which
proceeds via ion-by-ion deposition.

Another approach to modelling calcite crystallisation is illustrated
in the seminal work of Quigley et al. [29, 16, 30]. Here, metadynam-
ics simulations were employed to generate the phase equilibria of
calcium carbonate nanoparticles of different sizes, finding the amor-
phous phase to be thermodynamically stable below a size of 2 nm [30].
However, when in contact with ovocleidin-17, an eggshell protein, cal-
cite became stable [16], revealing the role that this protein likely plays
in eggshell formation. This approach, however, is restricted to the
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nanometre length-scale and it cannot produce kinetically-determined
morphologies, meaning that it is also unsuited for our purposes.

The most promising approach to modelling micrometre-scale crys-
tallisation is to use a coarse-grained description of the crystal, typi-
cally representing the presence of a molecule at each site of a lattice
with a simple ‘yes’ or a ‘no’, and then stochastically integrate the con-
figuration over time with the kinetic Monte Carlo (KMC) algorithm.
This technique was employed by Piana et al. [31, 32, 33] to simulate
the growth of urea crystals and reproduce the experimental highly-
faceted and elongated equilibrium morphology of urea. They did not
proceed to investigate growth inhibition, however.

KMC algorithms have also been applied to calcite in the past [34, 35,
36, 37]. However, all of these studies were concerned with the dissolu-
tion process, such as etch pit formation, rather than growth. The one
exception to this is a KMC simulation of calcite growth performed
by De Yoreo et al. [38] which claimed to simulate the kinetic effect
of kink-blocking on calcite (this mechanism is elaborate on in Sec-
tion 5.3). However, this study had a number of limitations. Firstly, the
requisite transition rates (discussed further below) were essentially
guessed; the step was only one-dimensional and so the morpholog-
ical impact was not investigated; and their simulated impurity had
an infinite residence time, meaning that it was actually a step-pinner
rather than a kink-blocker. Our research in Chapter 5 will therefore
be the biggest step towards a coarse-grained model of the growth and
inhibition of calcite crystals.

The big challenge in applying KMC to crystal growth is identifying
all of the relevant atomistic processes and then obtaining the rates at
which they occur. For example, at what rate do kink sites dissolve?
And at what rate do the ions adsorb to the different step geome-
tries? Moreover, at what rates do the impurities of interest attach to
and dissolve from each active site of the crystal surface? Measuring
these transition rates is currently beyond experimental capabilities,
and computing them for rare processes is a notoriously difficult task.
To date, virtually all investigations into the molecular processes at cal-
cite surfaces have been limited to computing enthalpies, and in some
cases free energies, of adsorption or incorporation [39, 40]. For exam-
ple, Yang et al. [41] found that galactose binds more strongly to the
acute step than the obtuse step; Freeman et al. [42] found ovocleidin-
17 prefers the obtuse step; Cooke et al. [43] found ethanol to exhibit
no step preference; and Elhadj et al. [6] found that the step preferred
by polyaspartate depended on its chain length. Kinetic and morpho-
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logical effects, when discussed, are then inferred qualitatively in a
handwavy manner.

Nevertheless, with increasing computing power, more accurate force
fields, and advancing methodologies, computing the rates of rare
and complex events has become more accessible. Of particular sig-
nificance to this thesis, Stack et al. [44] recently computed the adsorp-
tion and dissolution rates of barium ions to and from barite steps (in
other words, kink nucleation). Repeating this calculation at different
temperatures, they were able to obtain the activation energy for kink
nucleation which was in excellent agreement with experimental mea-
surements. The success of this study motivated us to apply a similar
methodology to kink dissolution in calcite, which is the subject of
Chapter 4. To my knowledge, the only other study that has applied
rare event methods to kink dissolution is that of Liu et al. [45] where
the dissolution pathway and associated free energy surface were gen-
erated for the kink sites of sodium chloride using ab initio molecular
dynamics. However, their resulting free energy surface was much sim-
pler than the one we report for calcite in Chapter 4, and they stopped
short of computing rates.

In some fortunate instances, the transitions of interest are suffi-
ciently quick that they can be sampled with direct molecular simu-
lation. In other words, a very long trajectory without any form of
biasing, from which the rates can be directly computed. This was the
route taken by Piana et al. [33], discussed above, in their KMC simula-
tion of urea. Urea grows quickly enough that the rates of the requisite
molecular processes can be plucked directly from simulation. A simi-
lar approach was used recently by De La Pierre et al. [46] in obtaining
the residence times of water molecules at the calcite steps. In the same
vein, we analyse microsecond-long trajectories in Chapter 3 to obtain
the transition rates of ions at the two calcite steps.

Soft templating

One of the main bottlenecks in understanding the mechanisms of
soft templated crystal growth is the complex interplay between the
template structure, chemistry, stability, and its interactions with the
growing crystal. For example, it has been shown both experimentally
[47] and theoretically [48] that the structure of organic templates is
not retained during crystal growth. Instead, soft templates adjust to
accommodate the growth of certain crystallographic planes that are
not necessarily commensurate with the original template structure.
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Such dynamical behaviour makes computer simulations particularly
useful for studying soft templating.

The self-organisation of soft matter, such as surfactants, has been
studied with molecular simulation for decades, particularly at liq-
uid/liquid and liquid/air interfaces which are of great industrial im-
portance [49]. And with advances in coarse-graining and computing
power, the self-assembly of large biologically-significant systems has
become accessible [50, 51].

The adsorption of surfactants at solid/liquid interfaces has also
been widely investigated with molecular dynamics and, more recently,
DFT and reactive MD. Most such studies have been concerned with
mineral/aqueous interfaces, such as quartz [52], mica [53], silica [54,
55] and graphite [56, 57, 58, 59], due to their geochemical significance.
These studies are generally concerned with structures, adsorption en-
ergies, surface tensions, frictional properties, and the impact of AFM
tips. However, there have also been investigations into the interaction
of surfactants with technologically important materials. Notably, the
self-assembly of SDS on carbon nanotubes, where the resulting mor-
phology was found to depend on the nanotube diameters [60]; SDS
self-assembly on graphene, inspecting the interactions between the
resultant graphene-surfactant assemblies [61]; and the self-assembly
of alkanethiols on gold nanoparticles [62].

In the first soft templating study of this thesis, Section 6.1, the role
that SDS surfactants may play in selecting polymorphs and orienta-
tions of titania is investigated by computing the adhesion energies of
SDS to several titania faces. This approach was inspired by the work
of Duffy et al. [63, 48] who investigated the selective traits of alka-
nethiols on calcite crystals in the same way. To our knowledge, there
has been only one other simulation study of SDS surfactants at the ti-
tania/aqueous interface [64] which investigated morphologies at low
coverages on only a few faces, and did not quantify the adhesions.

The second soft templating study, Section 6.2, is concerned with the
morphology formed by CTAC surfactants when they self-assemble
at silicon/aqueous interfaces, establishing that the reconstruction of
different faces can dramatically alter the micelle morphology. To my
knowledge, this is the first time that the orientation of a non-polar
substrate has been found to alter the morphology of an adsorbed
micelle. As described in Section 6.2, the motivation for this study
was to rationalise experimental observations relating to the growth
of periodic mesoporous organosilicas (PMOs) on silicon substrates.
While we only infer qualitatively the significance of our findings to
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PMO growth, there has been some recent progress in simulating PMO
growth that is noteworthy.

Early modelling efforts involving lattice Monte Carlo were able
to reproduce the formation of the periodic hexagonal PMO phase,
MCM-41 [65, 66]. However, this method has greatly limited reso-
lution and kinetic insight, and it excludes many molecular interac-
tions that limit its utility. Instead, molecular simulations with explicit
force fields were required for further progress, as has been pioneered
by Jorge et al. [67, 68, 69, 67, 70, 68]. Starting with simulations of
CTAB self-assembly in bulk solution [69, 67], the presence of siliceous
species were found to engender micelle aggregation, producing rod-
like rather than spherical micelles [70], which hinted at a so-called
cooperative templating mechanism whereby the inorganic precursor
plays a role in assembling its own template. This has further been
supported by recent large-scale simulations, involving coarse-grained
potentials and an explicit solvent, which produced the complete for-
mation of the MCM-41 phase from a random starting solution [68].

1.6 thesis outline

To summarise this chapter: future advances in materials science de-
pend on our ability to control crystal growth at the nanoscale, and
biomimicry is a promising way towards this goal. Achieving a de-
tailed understanding of biomineralisation, however, will require an
understanding of processes at a length- and time-scale that are inac-
cessible to experimentation but within the reach of computer simula-
tions. This thesis reports on the application of various state-of-the-art
computational methodologies to investigate two distinct processes of
great significance in biomineralisation: the growth of calcite crystals,
and the mechanisms of soft templating.

Chapter 2 provides an overview of the various computational and
theoretical methods employed in this work. Starting with quantum
mechanics and building up to molecular simulation, rare event method-
ologies, and kinetic Monte Carlo. The remaining chapters are results.

Chapter 3 investigates the behaviour of calcium ions, carbonate
ions, and calcium carbonate ion pairs in the vicinity of the acute and
obtuse calcite steps with an interest in establishing the kink nucle-
ation mechanisms.

Chapter 4 employs a variety of rare event methodologies to com-
pute the dissolution rate of calcite kink sites and provide new insight
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into the dissolution mechanism. A major limitation to the rare event
sampling of such complex transition pathways is established, with
important consequences for future modelling efforts.

Chapter 5 presents a coarse-grained model for the growth and inhi-
bition of calcite crystals, with parameters optimised by combining the
results of Chapters 3 and 4 with experimental data. The impact of im-
purity mechanisms on growth kinetics and step morphology are then
investigated, providing a major step towards predictive modelling of
calcite precipitation.

Chapter 6 presents the study of two different instances of soft tem-
plating. The first, SDS surfactants self-assembling on titania, provides
insight into the role that the surfactants may play in polymorph and
orientation selection. The second study reveals the supramolecular
morphology formed by CTAC surfactants on different orientations
of a silicon substrate, from which we elucidate recent experimental
findings.

Lastly, Chapter 7 provides a summary of the thesis and suggests
future work.



2
T H E O RY A N D M E T H O D O L O G Y

Starting with the equations of quantum mechanics, this chapter de-
rives an arsenal of methodologies that are indispensable to molecular
modelling and which form the basis for the work that follows.

Section 2.1 introduces the Schrödinger equation and then applies
the Born-Oppenheimer approximation to separate the electronic and
nuclear degrees of freedom, giving rise to a pair of coupled nuclear
and electronic Schrödinger equations.

Section 2.2 shows how the electronic Schrödinger equation can be
solved using the method of density functional theory (DFT) which
reformulates the problem in terms of a 3-dimensional density func-
tional. This formalism makes practical the application of quantum
mechanics to hundreds of atoms.

In Section 2.3, the nuclear Schrödinger equation is shown to reduce
to Newton’s second law of motion in the classical limit  h→ 0, mean-
ing that nuclei may be modelled approximately using classical me-
chanics. The electronic charges are then incorporated into the nuclei,
and all residual electronic effects are approximated with a series of
simple functional forms. This classical description of atoms, known
as molecular mechanics, enables us to model tens of thousands of
atoms.

Working within the framework of molecular (rather than quantum)
mechanics, Section 2.4 introduces the key concepts of statistical me-
chanic, such as entropy and free energy, which bridge the theoretical
divide between individual atoms and large collections of atoms.

Section 2.5 introduces molecular dynamics (MD) which integrates
Newton’s equations over time to generate molecular trajectories, mak-
ing time-scales of ∼ 1µs accessible. These trajectories are then cou-
pled with a thermostat and barostat to emulate an environment that
enforces a constant temperature and pressure.

The problem of quasi-nonergodicity in molecular dynamics simula-
tions is introduced in Section 2.6, and a variety of rare event method-
ologies (REMs) are presented to address it, providing both a thermo-
dynamic and kinetic treatment of activated processes.

Lastly, Section 2.7 presents the kinetic Monte Carlo (KMC) algo-
rithm for simulating the average behaviour of a large number of acti-

15
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Figure 2.1: A list of the methods employed in this dissertation and the
length- and time-scales to which they are applied.

vated processes. This method will be applied in Chapter 5 to model
millions of atoms and reach time-scales of minutes.

These methods, and the length- and time-scales to which they are
applied in this dissertation, are summarised in Figure 2.1. It can be
seen that as the methods become coarser in their description of nature,
larger length-scales and durations become accessible.

2.1 first principles

The time-dependent Schrödinger equation provides a natural starting
point for this dissertation

i h
∂

∂t
Ψ({ri}, {Ri}; t) = ĤΨ({ri}, {Ri}; t) (2.1)

where  h is the reduced Planck constant, i the imaginary unit, Ψ the
wave function, and the standard non-relativistic Hamiltonian
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for the electronic {ri} and nuclear {Ri} coordinates, and the nuclear
masses {Mi} and atomic numbers {Zi}, where we assume e = 1. me is
the electron mass and ε0 the vacuum permittivity. The first two terms
in Eq. (2.2) represent the kinetic energy of the nuclei and electrons, re-
spectively. These are followed by the electrostatic electron-electron re-
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pulsion, the electron-nucleus attraction, and lastly the nucleus-nucleus
repulsion.

Solving Eq. (2.1) to obtain the many-body wave function Ψ is too
large a task for virtually all systems of interest, even with the aid
of modern supercomputers. Instead, a series of approximations are
needed to make quantum mechanics practicable. An approximation
that the remainder of this dissertation is implicitly built upon is that
of Born and Oppenheimer [71] which assumes that the electronic and
nuclear degrees of freedom can be separated, viz.

Ψ({ri}, {Ri}; t) = Φ({ri}; {Ri})χ({Ri}; t) (2.3)

The rationale behind this separation is that electrons and nuclei
both experience forces, and therefore changes in momenta, that are
of the same order of magnitude. But since nuclei are orders of mag-
nitude heavier than electrons, their velocities must be proportion-
ally smaller. It is, therefore, reasonable to assume that the electrons
relax instantaneously to their ground-state within a static array of
nuclei, and so the electronic wave function must satisfy the time-
independent Schrödinger equation(

−
∑
i

 h2

2me
∇2ri +

1

4πε0

∑
i<j

1

|ri − rj|

−
1

4πε0

∑
i,j

Zi
|Ri − rj|

)
Φ({ri}; {Ri}) = Ee({Ri})Φ({ri}; {Ri}) (2.4)

It can be shown [72] that, if Eq. (2.4) holds, then Eq. (2.3) is an
approximate solution to Eq. (2.1) if the nuclear wave function satisfies(

−
∑
i

 h2

2Mi
∇2Ri + Ee({Ri})

+
1

4πε0

∑
i<j

ZiZj

|Ri − Rj|

)
χ({Ri}; t) = i h

∂

∂t
χ({Ri}; t) (2.5)

In summary, the Schrödinger equation of Eq. (2.1) can be reduced
to a pair of coupled Schrödinger equations expressed in terms of
electronic and nuclear wave functions of greatly reduced dimension.
The next section will present a method for computing the ground-
state properties of the system described by Eq. (2.4) without having to
solve the many-electron wave function Φ. And in Section 2.3, Eq. (2.5)
will be used to derive a classical description of nuclei in the limit  h→
0, upon which the methods of statistical and molecular mechanics
will be built.



18 theory and methodology

2.2 density functional theory

The time-independent Schrödinger equation of Eq. (2.4) describes the
possible states that N electrons may occupy in the presence of a static
array of nuclei {Ri}. However, solving the many-electron wave func-
tion Φ is a highly formidable task due to the complexity of the many-
body problem and the large (3N) dimension of the wave function.
Fortunately, the ground-state properties of the system can be found
without knowing Φ by reformulating the problem in terms of a 3-
dimensional density functional. This section presents only a brief ac-
count of density functional theory (DFT) due to the very brief appli-
cation of it in this work. The reader is referred to [73, 74, 75] for a
more thorough introduction.

2.2.1 The density functional

We begin by defining the electronic Hamiltonian

F̂ = −
∑
i

 h2

2me
∇2ri +

1

4πε0

∑
i<j

1

|ri − rj|
(2.6)

and the external potential

V̂ = −
1

4πε0

∑
i,j

Zi
|Ri − rj|

(2.7)

such that the Hamiltonian of Eq. (2.4) equals F̂ + V̂ . We also define
the ground-state single-electron density in terms of the ground-state
wave function Φ0

n0(r) =
∫
Φ0({ri}; {Ri})

[∑
i

δ(r − ri)

]
Φ0({ri}; {Ri})Πjdrj (2.8)

= N

∫
|Φ0(r, {ri}i>1; {Ri})|2Πj>1drj (2.9)

where the wave function is assumed to be normalised.
Hohenberg and Kohn [76] proved that the external potential V̂ is

uniquely determined, to within an additive constant, by the ground-
state density n0. Note also that the electronic Hamiltonian F̂ is the
same for all systems of N ≡

∫
n0(r)dr electrons. It follows that the

Hamiltonian, and therefore all properties of the system (including the
excited states), are uniquely determined by the ground-state density
n0. This remarkable result is the bedrock of density functional theory.



2.2 density functional theory 19

2.2.2 Kohn-Sham formulation

In order to compute the ground-state density n0, Kohn and Sham
[77] made the ansatz that any interacting system has the same ground-
state density as some auxiliary non-interacting system, specifically(

−
 h2

2me
∇2 −

∑
i

Zi
|r − Ri|

+

∫
n(r′)
|r − r′|

dr′ + Vσxc[n](r)
)
φσi (r) = εiφ

σ
i (r) (2.10)

where σ denotes the spin state (up or down). The functional Vxc[n](r)
is the so-called exchange-correlation potential. It is chosen to repro-
duce the non-classical electron-electron interactions that the auxiliary
system would otherwise lack, and will be described further in the
next section. The electrons fill the N lowest energy eigenfunctions,
and the density is computed from

n(r) =
∑
σ

∑
i

|φσi (r)|
2 (2.11)

The ground-state density may then be obtained iteratively:

1. Guess the density n(r)

2. Diagonalise [78] the Hamiltonian in Eq. (2.10) to obtain the
eigenfunctions φσi

3. Construct a new density n(r) from Eq. (2.11)

4. Repeat from step 2 until self-consistency is achieved. The con-
verged density will be that of the ground-state.

2.2.3 Exchange-correlation potential

The exchange-correlation potential is typically the main source of er-
ror in DFT calculations since its precise functional form is unknown
and must therefore be approximated. The simplest form that is widely
applied is the local density approximation (LDA) which assumes that
the exchange-correlation energy at some point r is the same value it
would have if the whole of space were filled with a homogeneous
electron gas (jellium) with a density n(r), i.e.

Vσxc[n](r) = εxc(n(r)) +n(r)
∂εxc(n(r))
∂n(r)

(2.12)
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where εxc(n(r)) is the exchange-correlation energy of a single elec-
tron in jellium of density n(r), usually obtained from quantum Monte
Carlo simulations.

The LDA is surprisingly accurate at predicting structural proper-
ties but it usually fails at predicting binding energies and modelling
systems with inhomogeneous electron densities, such as surfaces. It
can be improved upon, however, by incorporating non-local correc-
tions that involve the density gradient ∇n, giving rise to a class of
functionals called generalised-gradient approximations (GGA) [73].

2.2.4 Periodicity, the plane wave basis, and k-point sampling

Many systems of interest, such as bulk crystals and surfaces, are ef-
fectively infinite in extent but consist of a periodic repetition of some
finite supercell. By exploiting this periodicity, it is possible to model
an infinite system with a finite calculation. Mathematically, such sys-
tems must satisfy the Born-von Karman boundary condition

|Ψ(r + T)|2 = |Ψ(r)|2 (2.13)

for any lattice translation vector T.
Through the application of Bloch’s theorem and the Fourier series,

a wave function φ in a periodic potential may be written in terms of
a plane wave basis set

φk(r) =
∑

G

ck+Ge
i(k+G)·r (2.14)

for any symmetry point k within the first Brillouin zone, and where
the summation is over the reciprocal lattice vectors G.

At this stage, the summation in Eq. (2.14) consists of an infinite
number of contributions. Furthermore, the wave function must be
integrated over an infinite number of k-points. In order to reduce
the calculation to a finite size, we make two observations. First, each
plane wave contributes  h2

2me
|k + G|2 to the kinetic energy of the sys-

tem, and so all of the plane waves that contribute energies greater
than a sufficiently large cut-off energy may be omitted from the sum-
mation. Second, wave functions vary smoothly over reciprocal space,
and so the integration over k may be approximated with a finite sum
over a sufficiently dense or well-chosen set of k-points. In the case of
large supercells, which have small Brillouin zones, it is often adequate
to sample only the Γ -point, k = 0.
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The above periodic formulation may also be applied to aperiodic
systems by imposing a false periodicity. For example, a single molecule
in a sufficiently large periodic supercell will be almost indistinguish-
able from the same molecule without periodicity. One advantage for
imposing an artificial periodicity and employing a plane wave basis
is that many operations, such as evaluating the Hamiltonian, scale
better in reciprocal space than in real space.

2.2.5 Pseudopotentials

In the Kohn-Sham approach to DFT, the electronic orbitals are orthog-
onal to each other. However, since the core electrons in an atom are
localised near to the nucleus, the valence states must oscillate rapidly
in the core region in order to achieve orthogonality. This increases the
width of the Fourier spectrum which consequently requires a larger
number of plane waves in the basis set. A way of overcoming this
problem, as well as reducing the number of orbitals that need to be
computed, is to replace the core electrons with an effective potential,
known as a pseudopotential, that emulates their effect on the valence
states.

2.3 molecular mechanics

2.3.1 From quantum to classical mechanics

Upon taking the classical limit  h → 0, the Schödinger equation can
be shown [79] to reduce to Newton’s second law of motion

dPi
dt

= −∇RiU({Ri}) (2.15)

where Pi are the conjugate momenta of Ri, and U is the potential
energy component of the Hamiltonian,

U({Ri}) = Ee({Ri}) +
1

4πε0

∑
i<j

ZiZj

|Ri − Rj|
(2.16)

where Ee is the potential energy of the electronic subsystem as de-
fined in Eq. (2.4).

It follows that nuclei can be approximated as classical point parti-
cles moving in a force field described by a potential energy U.

Molecular mechanics makes one further simplification: it incorpo-
rates the electronic charges into the nuclei so that the entire atom
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is treated as a single classical point moving on the potential energy
surface

U({Ri}) = E′e({Ri}) +
1

4πε0

∑
i<j

qiqj

|Ri − Rj|
(2.17)

where {qi} are the partial atomic charges and E′e captures all of the
residual electronic interactions, such as bonding, Pauli repulsion, and
van der Waals attraction.

2.3.2 Force fields

It is possible to evaluate the electronic component Ee (or E′e) of the po-
tential energy U using quantum mechanical methods. Indeed, this is
the approach of ab initio molecular modelling [79]. However, we adopt
the much faster classical molecular mechanics approach in which this
electronic component is approximated with a series of empirically-
optimised functionals

E′e({Ri}) =
∑
i,j

u
ij
2 (Ri, Rj)

+
∑
i,j,k

u
ijk
3 (Ri, Rj, Rk)

+
∑
i,j,k,l

u
ijkl
4 (Ri, Rj, Rk, Rl) (2.18)

where uij2 , uijk3 , and uijkl4 describe two-, three-, and four-body inter-
actions, respectively, and the subscripted indices are used to identify
the type of interaction (if any at all) between the various permutations
of atoms. More complex functional forms than those in Eq. (2.18) are
also in common use, such as Tersoff potentials for modelling covalent
bonding, and the various metal potentials, which employ parameters
unique to each atom that depend on the atom’s local environment.
Such potentials, however, are not used in this dissertation.

All of the atomic interactions can be classified as either intra- or
inter-molecular. In the former case, the electronic structure has the ef-
fect of limiting various conformational properties of a molecule, such
as bond lengths,

Rij ≡ |Rij| = |Ri − Rj| (2.19)

bond angles,

θijk = arccos
(

Rij ·Rkj
RijRkj

)
(2.20)
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Figure 2.2: Electronic structure has the effect of restraining the bond lengths,
angles, and dihedral angles in molecular conformations.

and dihedral angles,

θijkl = arccos
(
(Rij ×Rjk) · (Rjk ×Rkl)
|Rij ×Rjk||Rjk ×Rkl|

)
(2.21)

all of which are depicted in Fig. 2.2. The contributions in Eq. (2.18) are
therefore chosen to add energy penalties when these conformational
properties vary from the desired equilibrium values.

The non-electrostatic inter-molecular forces, on the other hand, pro-
duce just two phenomena: the Pauli repulsion between atoms when
their electronic shells overlap, and van der Waals forces. These are
invariably short-ranged, meaning that they decay more rapidly than
r−3 in the limit r → ∞. The significance of this is that such interac-
tions only need to be evaluated for atoms that fall within some cut-off
distance rc of each other since the contribution to the total potential
energy from beyond rc may be approximated with a well-defined
expression that is proportional to

∫∞
rc
u(r)4πr2 dr.

Once a suitable set of functional forms have been identified, the
various implicit parameters are obtained by optimising them to repro-
duce a set of data obtained either experimentally or through quantum
mechanical (e.g. DFT) calculations, such as lattice parameters, elastic-
ity constants, vibrational spectra, and enthalpies.

2.3.3 Supercells and long-range electrostatics

In Section 2.2.4 it was explained that many systems, such as bulk crys-
tals and surfaces, can be treated as an infinitely periodic (or pseudo-
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Figure 2.3: A two-dimensional illustration of periodic boundary conditions.
The supercell (middle) is repeated infinitely in all directions and
each atom interacts with all atoms within the supercell plus their
periodic images. If an atom exits the supercell it will re-emerge
through the opposite face.

periodic) repetition of a finite supercell. Here we elaborate on this
idea in the context of molecular mechanics.

In a periodic system, the infinite number of atoms can be approx-
imated as a finite motif of atoms, contained within a supercell of
known dimension, that is repeated infinitely in all directions. If a mov-
ing atom exits the supercell then it will instantly reappear through the
opposite face, as illustrated in Fig. 2.3.

The total potential energy of the supercell, cf. Eq. (2.17) and Eq. (2.18),
now takes the form

U({Ri}) =
∑

A

∑
i,j

u
ij
2 (Ri, Rj + A)

+
∑
A,B

∑
i,j,k

u
ijk
3 (Ri, Rj + A, Rk + B)

+
∑

A,B,C

∑
i,j,k,l

u
ijkl
4 (Ri, Rj + A, Rk + B, Rl + C)

+
1

4πε0

∑
A

∑
i,j

′ qiqj

|Ri − Rj − A|
(2.22)
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Figure 2.4: The Ewald method involves rewriting the charge density ρ(r) of a
collection of point charges as a sum of two different distributions:
ρ1(r) is the same as ρ but screened by a collection of oppositely-
charged Gaussians, and ρ2(r) is the negative of the screening
charges.

where A, B, and C are each summed over the infinite number of cell
translation vectors, and the prime on the last summation denotes that
i < j in the case A = 0. Evaluating the first three lots of sums, i.e. the
short-range terms, is straightforward since only bonded groups and
non-bonded groups that fall within a finite cut-off distance need to
be evaluated, as discussed in the previous section. The final (electro-
static) term, however, poses a challenge.

In principle, a finite cut-off could also be applied to the electrostatic
contribution, but the cut-off would have to be prohibitively large in
order to reduce the unphysical boundary effects to an acceptable level.
Instead, the standard solution is to apply the method of Ewald [80]
to evaluate the infinite sum.

The charge density of a set of charges {qi} at positions {Ri} is

ρ(r) =
∑

A

∑
i

qiδ(r − Ri − A) (2.23)

where A is summed over the lattice translation vectors and δ(·) is the
Dirac delta function. This may be rewritten as

ρ(r) = ρ1(r) + ρ2(r) (2.24)

where

ρ1(r) ≡ ρ(r) − ρ2(r) (2.25)

ρ2(r) =
∑

A

∑
i

qiG(r − Ri − A) (2.26)

and G is a normalised Gaussian

G(r) = (α/π)3/2 exp(−αr2) (2.27)
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with a width parametrised by α > 0.
The charge density ρ1(r) consists of the point charges from ρ(r)

screened by a set of opposite charges smeared in the form of Gaus-
sians, and ρ2(r) is the negative of these screening charges. See Fig. 2.4.
The potential energy of the charge configuration ρ1 may be found via
application of the Poisson equation. Similarly for ρ2 except the Pois-
son equation is applied in Fourier space. The potential energy of ρ
may then be written as the sum of the potential energies for ρ1 and
ρ2, minus the artificial interaction energy between the point charges
and Gaussian charges in ρ1. The result is the following identity

1

4πε0

∑
A

∑
i,j

′ qiqj

|Ri − Rj − A|

≡ 1

4πε0

∑
A

∑
i,j

′ qiqj

|Ri − Rj − A|
erfc(|Ri − Rj − A|

√
α)

+
1

2Vε0

∑
k 6=0

exp(−k2/4α)
k2

∣∣∣∣∣∑
i

qi exp(ik ·Ri)

∣∣∣∣∣
2

−
1

4πε0

√
α

π

∑
i

q2i (2.28)

where V is the volume of the supercell, and erfc(x) is the complement
of the error function

erfc(x) = 1−
2√
π

∫x
0

e−t
2

dt (2.29)

The entire purpose of this reformulation is that the first term on
the right-hand side of Eq. (2.28) is now a short-range term which
converges quickly in real space and may therefore be truncated; the
second term converges rapidly in k-space, meaning that it may also
be truncated; and the third term is a finite sum.

In Eq. (2.28), the k-space sum is the most expensive term to com-
pute, taking O(N2) time. In this dissertation, we employ an optimisa-
tion known as PPPM [81] method which divides the supercell into a
discrete grid (a mesh) that approximates the charge density ρ2. The
Poisson equation is then applied via discrete Fourier transforms to
obtain a mesh-based approximation for the potential φ2 which may
then be interpolated. Lastly, a direct sum over the charges allows the
energy to be computed. Through the use of fast Fourier transform
methods, PPPM reduces the k-space sum to O(N logN) time.
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Coarse
graining

Full-atom United-atom

Figure 2.5: In the united-carbon model of propane, the eleven atoms are re-
duced to just three interaction sites.

2.3.4 Coarse graining

In moving from a quantum to a classical model of atoms, the nuclei
and electrons have been united to form a single interaction site, with
the electrons modelled implicitly via the force field. This reduction
in resolution, known as coarse graining, comes at the cost of accu-
racy but makes larger systems more accessible by eliminating certain
degrees of freedom.

It is common to extend this idea to groups of atoms. For example,
when modelling alkane groups we will employ a united-carbon repre-
sentation in which the methyl groups (-CH3) and methylene bridges
(-CH2-) are treated as single particles. This process is illustrated in
Fig. 2.5 for a propane molecule. Notice that the hydrogen atoms are
fused with the carbon atoms and modelled implicitly instead.

Chapter 5 will develop this coarse graining idea further by treating
space as a discrete lattice and using the kinetic Monte Carlo method
(Section 2.7) to model on-lattice transitions.

2.4 statistical mechanics

The previous section introduced molecular mechanics which treats
atoms, and sometimes molecules, as single points moving in a con-
tinuous space under the guidance of Newton’s second law. In this
model, the complete configuration, and all past and future configura-
tions, of a collection of N particles may be uniquely defined by 6N
coordinates: the position and momentum of each particle. In other
words, the state of any particle system is fully described by a sin-
gle point within a 6N-dimensional phase space which we shall call
Γ -space. When considering large numbers of particles and long time-
scales, however, it becomes much more practical and intuitive to de-
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NVT ensemble -space

Figure 2.6: To derive the canonical distribution, we consider an ensemble
of M boxes each of volume V and containing N particles. The
systems are connected diathermally so that only heat may be
exchanged between them. The state of each box is then mapped
into a discretised phase space.

scribe the system in the language of thermodynamics, using concepts
such as temperature and entropy, rather than with Γ -points.

Building on the accounts given in references [82, 83, 84, 85], this
section will present the connection between Γ -space and thermody-
namics, known as statistical mechanics, by considering the system
shown schematically in Figure 2.6. The system consists of M boxes,
each of volume V and containingN particles. The boxes are connected
diathermally so that only heat may be exchanged between them. The
entire system is considered in isolation and so the total energy ME
remains constant over time, where E is the average energy per box.

The state of each box corresponds to some point x in Γ -space, and
we define the function ρ(x) such that ρ(x)dx is the probability of
finding a box within the differential element dx centered on x.

To enable us to count states, we shall discretise Γ -space into a finite
number of cells of volume ∆Γ . The probability of finding a system in
the region ∆Γ centered on Γi may therefore be approximated as

Pi = ρ(Γi)∆Γ (2.30)

It follows that each box is mapped to a discrete state Γi, as illus-
trated in Figure 2.6, with a probability Pi.

2.4.1 Entropy and the second law of thermodynamics

First, consider the case of a single box, M = 1. The box will have a
volume V , contain N particles, and have a constant energy E. Sta-
tistical mechanics makes the postulate that the corresponding 6N-
dimensional Γ -point will visit all regions of Γ -space on the constant
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energy E-hypersurface with equal probability. It follows that the most
likely macrostate for the entire collection of particles to have is that
with the highest number of corresponding Γ -points.

To illustrate this, imagine dividing the box into 2K cells, where
K � N. Now place N non-interacting particles in the cells (without
overlaps). The ratio of the number of possible arrangements where
the particles occupy the entire box (Ω2) versus only half of the box
(Ω1) will be

Ω2/Ω1 =
(2K)!

(2K−N)!N!

/
K!

(K−N)!N!
→ 2N (2.31)

in the limit K → ∞. For a single mole of gas, Ω2/Ω1 ∼ 210
23

. Such
an astronomically large number explains why gases fill their entire
volume and never spontaneously compress.

In general, ordered macrostates correspond to far fewer Γ -points
than disordered states, and so random sampling of phase space will
naturally drive the system into a state of disorder. In other words, the
macrostate will evolve so as to maximise the number of correspond-
ing Γ -points, Ω. It will be convenient to define the so-called entropy

S = kB logΩ (2.32)

where kB is Boltzmann’s constant. Since the logarithm is monotonic
then a maximisation of Ω will correspond to a maximisation of the
entropy. It follows that ∆S > 0 over time, which is the second law of
thermodynamics.

2.4.2 Temperature

Consider just two boxes, M = 2. The second law of thermodynamics
gives the following inequality

∆S =

(
∂S

∂E
(E1) −

∂S

∂E
(E2)

)
∆E1 > 0 (2.33)

from which it follows that
∂S

∂E
(E1) >

∂S

∂E
(E2) ⇒ ∆E1 > 0 (2.34)

∂S

∂E
(E1) <

∂S

∂E
(E2) ⇒ ∆E1 < 0 (2.35)

In other words, energy flows from boxes with small ∂S/∂E to those
with large ∂S/∂E. It is therefore natural to define a statistical temper-
ature T as

(kBT)
−1 =

∂S

∂E
(2.36)
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where kB is introduced for dimensional purposes.
It turns out that when this definition is applied to the ideal gas, it

produces the standard ideal gas law. And so the statistical tempera-
ture T indeed corresponds to the temperature measured by ideal gas
thermometers.

2.4.3 Canonical distribution

Now consider a large number of boxes, M � 1. Each box will corre-
spond to some discrete state in Γ -space, with Mi > 0 boxes mapping
to Γi, where

1 =M−1
∑
i

Mi =
∑
i

Pi (2.37)

and Pi =Mi/M, with a possibility of degeneracy (Mi > 1).
The total number of ways that a particular distribution {Mi} could

arise is given by

Ω =
M!
ΠiMi!

(2.38)

and the most likely distribution will be that which maximises Ω.
Intuitively, in the absence of any energy constraints, the least likely

distribution would be that with all boxes in the same state, i.e. Mi =

M for some i, and the most likely would be that with a uniform
distribution ofMi. However, when the system is subject to the energy
constraint

E =M−1
∑
i

MiEi =
∑
i

PiEi (2.39)

the uniform distribution no longer maximises Ω. To see this, we
switch from maximising Ω to the equivalent task of maximising the
average entropy per box

S =M−1kB log
(

M!
ΠiMi!

)
≈ −kB

∑
i

Pi logPi (2.40)

where Stirling’s formula has been applied.
Maximising Eq. (2.40) subject to the constraints Eq. (2.37) and Eq. (2.39)

can be achieved by introducing the Lagrange multipliers µ and β, and
solving

∇{Pi},µ,β

[
S− µ

(∑
i

Pi − 1

)
−β

(∑
i

PiEi − E

)]
= 0 (2.41)



2.4 statistical mechanics 31

which results in the Boltzmann distribution

Pi = Z
−1e−βEi (2.42)

where Z ≡ e1+µ is a normalisation constant.
Now taking the limits M→∞ and ∆Γ → 0, a continuous probabil-

ity distribution is recovered

ρ(x) = Z−1e−βE(x) (2.43)

where

Z =

∫
Γ

e−βE(x) dx (2.44)

follows from the normalisation of ρ(x). A continuous definition of
entropy is also obtained

S = −kB

∫
Γ

ρ(x) log ρ(x)dx (2.45)

= kB(βE+ logZ) (2.46)

To interpret the multiplier β, note that

dS = kB(βdE+ Edβ+
∂ logZ
∂β

dβ) (2.47)

and

E = −
∂ logZ
∂β

(2.48)

from which it follows that

β =
∂S

∂E
= (kBT)

−1 (2.49)

where the connection to temperature comes from Eq. (2.36).

2.4.4 Ensemble averages

Experimental measurements are typically performed over some finite
time interval, and so a measured quantity Q is effectively averaged
over an ensemble of configurations. Mathematically, such quantities
can be computed as

〈Q〉 ≡
∫
Γ

Q(x)ρ(x)dx (2.50)

=

∫
Γ Q(x)e−βE(x) dx∫
Γ e

−βE(x) dx
(2.51)
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In some cases we may be interested in an average while some con-
dition θ(Γ) = 0 holds true,

〈Q〉θ =

∫
Γ Q(x)δ(θ(x))e−βE(x) dx∫
Γ δ(θ(x))e

−βE(x) dx
(2.52)

=
〈Q(x)δ(θ(x))〉
〈δ(θ(x))〉

(2.53)

2.4.5 Helmholtz free energy and metastability

Let us define the so-called Helmholtz free energy

F ≡ E− TS (2.54)

= −β−1 logZ (2.55)

= −β−1 log
∫
Γ

e−βE(x) dx (2.56)

where the second line follows from Eq. (2.46) and the third line from
the definition of the partition function, Eq. (2.44).

Now consider some function λ : Γ → Rm of the system; it may
project out atomic coordinates, bond angles, or something more ab-
stract. The free energy of the system constrained to the hypersurface
λ(x) = λ0, measured with respect to the unconstrained system, is

F(λ0) = −β−1 log
∫
Γ

e−βE(x)δ(λ(x) − λ0)dx (2.57)

−

(
−β−1 log

∫
Γ

e−βE(x) dx

)
(2.58)

= −β−1 log

∫
Γ e

−βE(x)δ(λ(x) − λ0)dx∫
Γ e

−βE(x) dx
(2.59)

= −β−1 log〈δ(λ(x) − λ0)〉 (2.60)

and the corresponding gradient is

−∇λ0F(λ0) = β
−1∇λ0 log

∫
Γ e

−βE(x)δ(λ(x) − λ0)dx∫
Γ e

−βE(x) dx
(2.61)

= β−1

∫
Γ (∇λ0E)

∂
∂Ee

−βE(x)δ(λ(x) − λ0)dx∫
Γ e

−βE(x)δ(λ(x) − λ0)dx
(2.62)

=

∫
Γ (−∇λ0E) e

−βE(x)δ(λ(x) − λ0)dx∫
Γ e

−βE(x)δ(λ(x) − λ0)dx
(2.63)

= 〈−∇λ0E〉λ0 (2.64)

i.e. the ensemble average of the force constrained at λ0.
This result is of fundamental importance. It reveals that, while the

instantaneous force acting on λ will always attempt to decrease the
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Figure 2.7: A hypothetical free energy curve for a toy system described in
the text. It illustrates the role of entropy and metastability at a
constant temperature.

potential energy of the system, the average force will attempt to min-
imise the free energy F. In other words, when the system is coupled
to a heat bath that fixes the temperature, there is a tendency to min-
imise the potential energy while simultaneously maximising the en-
tropy. The resulting equilibrium state, which corresponds to a free
energy minimum, will therefore result from a balance between these
two competing forces, with the relative proportion determined by the
temperature T .

To give an example, consider a system of blue and red particles
(one could imagine water and oil). Suppose that all of the particles
are attracted to each other, but like-coloured particles attract more
strongly than opposite-coloured particles. As the temperature is re-
duced to zero, the system will move to the (assume global) minimum
of E, adopting an ordered structure with the red and blue particles
segregated. As the temperature is increased, the colours will begin to
mix and the system will become less well-ordered, but there will re-
main significant local clustering of like-colours. As the temperature is
increased further, the bonds will break and the particles will move to
a thoroughly-mixed state. These three states are shown in Figure 2.7
along with a hypothetical free energy curve as a function of some
order parameter at one particular temperature.

In Figure 2.7 there exist three free energy minima. The minimum
with the lowest free energy is called the thermodynamically stable
state, whereas the other two are said to be metastable. While the
metastable states are not thermodynamically favourable at this par-
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ticular temperature, the system must overcome a free energy barrier
to transition away from them which can take a long time (see Sec-
tion 2.6 for a discussion of rare events). Changing the temperature
will change the free energy curve and the relative stability of these
three states.

For a more comprehensive discussion of free energies and metasta-
bility, see [84].

2.4.6 Isothermal-isobaric ensemble

In many real-world experiments, the system under study not only
has a constant temperature T but is also free to change its volume
V so as to maintain a constant pressure P. The above equations can
be applied directly to such systems but with one minor alteration:
the product PV must be added to all of the energy terms to account
for the work done by the system on its surroundings. Of particular
importance, the Helmholtz free energy becomes the Gibbs free energy

G = E+ PV − TS (2.65)

where the component E+ PV is called the enthalpy. The minima of
G then determine the (meta)stable states of an isothermal-isobaric
system.

2.5 molecular dynamics

It is possible to numerically integrate the equations of motion, Eq. (2.15),
to generate particle trajectories, thus allowing the dynamics of a sys-
tem to be studied. This involves repeatedly advancing the positions
and velocities by a small time increment, from t to t + ∆t, as will
be described in Section 2.5.1, until a sufficiently long time has been
reached.

One of the properties of any Hamiltonian system is that it conserves
energy over time. As a result, any potential energy changes that occur
as a system evolves will result in kinetic energy being absorbed or re-
leased, thus modifying the temperature. However, many systems of
interest interact with a heat bath which imposes a fixed temperature
on the system. Section 2.5.2 will show how the equations of motion
can be modified to maintain a fixed temperature. Maintaining a con-
stant pressure will also be discussed in Section 2.5.3.
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2.5.1 Symplectic integration

Summing the third-order Taylor expansions for Ri(t+∆t) and Ri(t−
∆t), and rearranging, one obtains

Ri(t+∆t) = 2Ri(t) −Ri(t−∆t) +
1

2

d2Ri
dt2

(t)∆t2 +O(∆t4) (2.66)

which is known as the Verlet scheme of symplectic integration.
The acceleration is computed from Newton’s second law (Eq. (2.15))

d2Ri
dt2

(t) = −m−1
i ∇U({Ri(t)}) (2.67)

where mi is the i-th atomic mass and U is the potential energy given
in Eq. (2.17).

In the form of Eq. (2.66), the Verlet scheme requires a pair of con-
secutive coordinates, i.e. Ri(t − ∆t) and Ri(t), in order to compute
the subsequent coordinates Ri(t+∆t). This makes initiating the algo-
rithm somewhat inelegant. Another shortcoming of Eq. (2.66) is that
a calculation of the velocities at time t

vi(t) ≡
dRi
dt

(t) =
Ri(t+∆t) − Ri(t−∆t)

2∆t
+O(∆t2) (2.68)

requires that the subsequent positions Ri(t + ∆t) be known, which
can greatly complicate the implementation. To address these prob-
lems, variations of the Verlet scheme exist.

In this dissertation we employ the velocity Verlet method which is
implemented in three stages:

1. The velocities are integrated by a half-time-step

vi(t+
1

2
∆t) = vi(t) +

1

2

d2Ri
dt2

(t)∆t2 (2.69)

where the forces are computed at the current position of time t.

2. The positions are integrated

Ri(t+∆t) = Ri(t) + vi(t+
1

2
∆t)∆t (2.70)

3. The velocities are integrated by a second half-time-step

vi(t+∆t) = vi(t+
1

2
∆t) +

1

2
∆t
d2Ri
dt2

(t+∆t) (2.71)
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This method generates an identical trajectory to the original Verlet
scheme of Eq. (2.66) but provides both the positions and velocities
synchronously, and requires only the initial positions and velocities
to commence.

In the limit ∆t → 0, the Verlet method has an important property
of area-preservation [86], meaning that any constant-energy hyper-
surface in Γ -space will be mapped isomorphically back onto itself. If
this were not the case then regions of Γ -space may become inaccessi-
ble, i.e. a failure of ergodicity (see Section 2.5.4 below), or states of a
different energy may become accessible, giving rise to energy drift.

2.5.2 Thermostatting

Consider the kinetic energy of just one particle in one dimension,
Ei = p

2
i /2mi. The ensemble average of Ei is

〈Ei〉 =
1

2
kBT (2.72)

which leads naturally to the following definition for the instantaneous
temperature

T(t) =
1

3NkB

N∑
i=1

p2i
mi

(2.73)

Under isothermal conditions, T(t) will fluctuate about the desired
temperature T0. A naïve way of enforcing the temperature T0 might
then be to simply rescale all of the velocities at regular time intervals

vi(t)← vi(t)

√
T0
T(t)

(2.74)

However, this method fails to produce natural temperature fluctua-
tions which, for instance, help to activate rare processes. Instead, the
most popular method of thermostatting is that of Nosé and Hoover
[87], which is deterministic and correctly samples the canonical en-
semble. It involves introducing an additional degree of freedom to
the system, with an effective mass Q, which represents a surround-
ing heatbath. The temperature is then regulated through the trans-
fer of kinetic energy between the system and the heatbath, with the
strength of coupling determined by Q. The result is a frictional force

d2Ri(t)
dt2

← d2Ri(t)
dt2

− χ(t)v(t) (2.75)

where the coefficient behaves akin to Newton’s law of cooling

dχ(t)

dt
=
3NkB
Q

(T(t) − T0) (2.76)
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2.5.3 Barostatting

To produce isothermal-isobaric conditions, we employ the Melchionna
[88] modification of the Nosé-Hoover method which incorporates a
barostat with the thermostat. The barostat functions in a similar way
to the thermostat, by introducing an additional (tensorial) degree of
freedom that modifies the equations of motion and the cell vectors in
response to pressure deviations about the desired value.

2.5.4 Ergodicity

Ergodicity is a dynamical property that means a trajectory in Γ -space
will eventually visit all regions of the space that belong to the correct
ensemble. Put another way, any property f averaged over an infinitely
long trajectory x(t) will equal the corresponding ensemble average

lim
t→∞ t−1

∫t
0

f(x(t′))dt′ =

∫
Γ

f(x)ρ(x)dx (2.77)

This has two important consequences. The first is that statistically
averaged properties may be obtained from molecular trajectories. The
second is that time-averaged properties of trajectories eventually be-
come independent of their initial conditions.

While there exists no general proof, it is widely believed that virtu-
ally all systems of chemical interest are ergodic, and so ergodicity is
taken as a hypothesis.

2.6 rare event sampling

The dynamics of a complex molecular system may exhibit behaviour
on multiple characteristic time-scales, ranging from petahertz vibra-
tions to rare events such as conformational transitions and phase nu-
cleation. These rare events involve overcoming enthalpic and/or en-
tropic barriers and are activated by improbable thermal fluctuations.
Consequently, they usually fail to occur during the time-scales acces-
sible to molecular simulation, or occur too infrequently for sound sta-
tistical sampling. This practical failure of ergodicity, known as quasi-
nonergodicity, demands the development of new techniques in order
to study activated processes.
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2.6.1 Collective variables

For many systems, activated processes take place in a relatively low-
dimensional space, and it is useful to project the molecular config-
urations x ∈ Γ onto these reduced coordinates λ(x) ∈ Rm known
as collective variables (CVs). Doing so simplifies the description of the
transition and gives rise to a free energy surface F(λ), cf. Eq. (2.59),
which is generally smoother than the potential energy surface.

To provide a couple of exampes of collective variables used in this
thesis: in chapters 3 and 4, the free energy is constructed for the dis-
solution of a single ion from step and kink sites. In these instances, λ
projects out the (x,y, z) coordinates of the dissolving ion only, while
all other coordinates are integrated out. As another example, in chap-
ter 3, we briefly generate the free energy surface for the conforma-
tional space of alanine dipeptide. In this case, we assume that the
conformations can be described entirely by a pair of dihedral angles.

The suitability of a particular set of collective variables will be dis-
cussed in the next section.

2.6.2 Reaction pathways

A reaction involves transitioning from one (meta)stable region of con-
figuration space, the reactant states A ⊂ Γ , to another, the product
states B ⊂ Γ . In λ-space, this involves traversing a path φ : [0, 1]→ Rm

that connects the two regions: φ(0) ∈ λ(A) and φ(1) ∈ λ(B).
The probability that a configuration in λ(A) will evolve to the re-

gion λ(B) along a path no longer than τ (in CV-space) can be written
as a path integral

P(τ) =

∫
φ(0)∈λ(A),φ(1)∈λ(B), `(φ)6τ

P̃[φ]Dφ (2.78)

where `(φ) is the length of the path φ, and φ is integrated over all
possible paths satisfying the constraints.

By applying the Kolmogorov backward equation to P(τ) and lifting
any constraint on the length of the path (τ→∞) it can be shown [89]
that the path integral of Eq. (2.78) is dominated by a single trajectory:
the so-called minimum free energy path (MFEP) which passes along
the direction of steepest descent of F via a saddle point, i.e.

∇F(φ(0)) = ∇F(φ(1)) = 0, and (2.79)

∇F(φ(t)) = |φ ′(t)|−2[∇F(φ(t)) ·φ ′(t)]φ ′(t) ∀t ∈ (0, 1) (2.80)
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Figure 2.8: A number of possible trajectories from λ(A) to λ(B) in CV-space
are shown (grey) along with the MFEP (black).

The MFEP is the most likely transition pathway, see Figure 2.8, and
knowing it facilitates analysis of both the thermodynamics and kinet-
ics of the transition, as detailed below.

It will also be convenient to introduce a single reaction coordinate
ξ : Γ → R that separates the reactant and product states and mea-
sures progress between them. In this thesis we use the length along
the appropriate MFEP as our reaction coordinate. The true reaction
coordinate for any process is (bijective with) the committor function
p(x) which gives the probability that the state x ∈ Γ will evolve to
(say) a product state in B before reaching a reactant state in A [90].
In fact, a particular set of collective variables λ(x) will only be suit-
able for describing a transition if this committor function can be well-
approximated as a function of the CVs alone

p(x) ≈ f(λ(x)) (2.81)

for some function f : Rm → R.
There is no rigorous procedure for selecting CVs. Generally, intu-

ition is relied upon to generate a list of coordinates that are likely to
be relevant to the transition under consideration. However, once a list
has been generated, there are steps one can take to eliminate certain
CVs. Firstly, any CV that fluctuates on a much shorter time-scale than
the mean reaction time can be neglected. Secondly, if a reconstruction
of the free energy curve or of the committor function is sufficiently
unaffected by the omission of certain coordinates, then those coor-
dinates may be discarded. For example, the water-hydrogen coordi-
nation number of the terminal kink ion was found to be irrelevant
in predicting the free energy barrier of kink dissolution for sodium
chloride [45].
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Figure 2.9: Space is divided by the maximum of the free energy curve into
(calligraphic) regions A and B.

In this dissertation, the suitability of the CVs will be taken as self-
evident. As for the reaction coordinate, any function that can map
bijectively with the minimum free energy path, at least in the vicinity
of the transition states, is usually sufficient.

2.6.3 Reactive flux

This section is concerned with computing the flux (or rate) of transi-
tions from region A to region B within a bistable system, where we
define the flux as the probability of the event occurring per unit time.

The first step is to partition space into two sets, denoted calligraph-
ically as A and B, i.e. Γ = A ∪B. These sets must include the (non-
calligraphic) (meta)stable regions A and B, i.e. A ⊂ A and B ⊂ B, as
well as their respective basins. We then define a reaction coordinate ξ
that partitions space into the respective basins:

A = {x ∈ Γ | ξ(x) < ξ∗} (2.82)

B = {x ∈ Γ | ξ(x) > ξ∗} = Ac (2.83)

where ξ∗ corresponds to the (transition) maximum of the free energy
curve F(ξ), as depicted in Figure 2.9. Each element x ∈ Γ can then be
identified with either the set A or B via the indicator functions

hA(x) =

1 x ∈ A

0 x 6∈ A

= θ(ξ∗ − ξ(x)) (2.84)

hB(x) =

1 x ∈ B

0 x 6∈ B

= θ(ξ(x) − ξ∗) (2.85)
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where

θ(x) ≡
∫x
−∞ δ(s)ds (2.86)

is the Heaviside step function.
Now we define the so-called correlation function

c(t) =
〈hA(x(0))hB(x(t))〉

〈hA(x)〉
(2.87)

where the ensemble average 〈·〉 is defined in Eq. (2.50). From the defi-
nition of the indicator functions we see that the term hA(x(0))hB(x(t))

in the numerator is 1 for any state that is in A and, at a time t in the
future, is in B. When averaged over the entire ensemble, the numera-
tor therefore counts the fraction of states from the entire system that
satisfy this condition. The denominator, on the other hand, simply
counts the fraction of states that are in A. The ratio, i. e. the corre-
lation function c(t), therefore equals the probability that any state
chosen from A will be in B a time t in the future.

The flux from A to B is then the time-derivative of c(t)

kA→B(t) = ċ(t) (2.88)

=
∂t〈hA(0)hB(t)〉

〈hA〉
(2.89)

= −
〈ḣA(−t)hB(0)〉

〈hA〉
(2.90)

= −
〈ḣA(0)hB(t)〉
〈hA〉

(2.91)

=
〈δ(ξ∗ − ξ(x(0)))ξ̇(x(0))θ(ξ(x(t)) − ξ∗)〉

〈θ(ξ∗ − ξ(x))〉
(2.92)

where we have used the time-invariance of the ensemble average,
〈hA(x(0))hB(x(t))〉 = 〈hA(x(−t))hB(x(0))〉, and the relation θ̇(ξ∗ −
ξ(x)) = −δ(ξ∗ − ξ(x))ξ̇(x).

The expression of Eq. (2.92) can be rewritten as the product

kA→B(t) = kTST
A→Bκ(t) (2.93)

where

kTST
A→B =

〈δ(ξ∗ − ξ(x(0)))〉
〈θ(ξ∗ − ξ(x))〉

〈ξ̇(x(0))θ(ξ̇(x(0))〉ξ(x(0))=ξ∗ (2.94)

is the rate predicted by transition state theory (TST) [91], and

κ(t) =
〈δ(ξ∗ − ξ(x(0)))ξ̇(x(0))θ(ξ(x(t)) − ξ∗)〉

〈δ(ξ∗ − ξ(x(0)))〉〈ξ̇(x(0))θ(ξ̇(x(0))〉ξ(x(0))=ξ∗
(2.95)

=
〈ξ̇(x(0))θ(ξ(x(t)) − ξ∗)〉ξ(x(0))=ξ∗
〈ξ̇(x(0))θ(ξ̇(x(0))〉ξ(x(0))=ξ∗

(2.96)
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TST: 4
RF: 1

Figure 2.10: Trajectories may cross the transition boundary several times be-
fore reaching the reactant state, or they may return to the prod-
uct state first. In the trajectories shown, the TST method would
count four transitions whereas RF only counts one.

is the time-dependent component.
The rate predicted by TST counts all crossings that the trajectories

make over the boundary from A → B, including reactive trajectories
that diffuse multiple times across the boundary, and non-reactive tra-
jectories that momentarily cross the boundary. The time-dependent
function κ(t) accounts for this over-counting by subtracting any tra-
jectories that pass backward from B → A. This difference in the TST
and reactive flux (RF) counting is illustrated in Figure 2.10.

The time-dependent behaviour of κ(t) (and therefore kA→B(t)) is
shown in Figure 2.11. Over an initial period comparable to the transi-
tion time-scale, κ(t) will vary while the states in A relax to either A
or B, temporarily plateauing to a constant value κ which we call the
transmission coefficient. The corresponding time-independent flux

kA→B = kA→B = kTST
A→Bκ (2.97)

is the reactive flux we wish to compute. Eventually, as time reaches a
scale ∼ k−1A→B, the location of a trajectory becomes decorrelated with
its initial position, and so the flux decreases to zero.

The TST expression, Eq. (2.94), may be rewritten in terms of the
free energy

kTST
A→B = 〈ξ̇(x(0))θ(ξ̇(x(0))〉ξ(x(0))=ξ∗

e−βF(ξ
∗)∫ξ∗

−∞ e−βF(ξ) dξ (2.98)
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decorrelationrelaxation

Figure 2.11: The time-dependent behaviour of κ(t) and thus the transition
rate kA→B(t). The states relax to either A or B which causes a
plateau. Eventually they become decorrelated with their initial
positions and the average flux becomes zero.

where 〈δ(ξ∗ − ξ(x))〉 = e−βF(ξ∗) follows from Eq. (2.60), and

〈θ(ξ∗ − ξ(x))〉 =

〈∫ξ∗−ξ(x)
−∞ δ(s)ds

〉
(2.99)

=

∫ξ∗
−∞〈δ(s− ξ(x))〉ds (2.100)

=

∫ξ∗
−∞ e−βF(ξ) dξ (2.101)

follows from the definition of the Heaviside function, Eq. (2.86).
This provides the standard route for computing the reactive flux of

a transition:

1. construct the MFEP φ

2. compute the free energy curve F(ξ)

3. compute the TST flux, kTST
A→B, from Eq. (2.98)

4. compute the plateau of κ(t), κ, by averaging Eq. (2.96) over a
series of trajectories initiated at the top of the transition barrier,
ξ(x(0)) = ξ∗

5. the flux is kA→B = κkTST
A→B.

The details of steps 1 and 2 will be given in the following sections.
Lastly, we note from the approximation∫ξ∗

−∞ e−βF(ξ) dξ ≈ e−βF(ξA) (2.102)

that the transition rate is proportional to the Boltzmann factor

kTST
A→B ∝ e−β∆F (2.103)

where ∆F = F(ξ∗) − F(ξA) is the free energy barrier associated with
the transition. This is known as the Arrhenius equation.
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2.6.4 Constructing minimum free energy pathways

2.6.5 Mean forces

Some of the methods described in this section will require the mean
force

f(λ0) = −∇λF(λ0) = 〈−∇λE〉λ0 (2.104)

to be evaluated, with the system constrained at λ = λ0.
We achieve this using molecular dynamics by restraining (rather

than constraining) the trajectory x(t) to the point λ = λ0 with a har-
monic potential

Uλ0(x(t)) =
k

2
|λ(x(t)) − λ0|

2 (2.105)

added to the Hamiltonian. The mean force is then obtained from

f(λ0) = − 〈−∇λUλ0〉 ≈ t
−1

∫t
0

∇λUλ0(x(t
′))dt′ (2.106)

where the time-average follows from the ergodic hypothesis (cf. Sec-
tion 2.5.4) and equality is achieved in the limits t,k→∞.

The spring constant k is restricted to a finite value in order to mit-
igate numerical integration errors. However, k must not be too small
since the trajectory will mostly sample a region slightly downhill
from the intended point λ0 in CV-space. One should therefore de-
cide the largest tollerable error in λ0 and then choose an appropriate
spring constant k.

2.6.5.1 String method

The string method of Weinan et al. [92] provides a way of construct-
ing MFEPs in CV-space. It begins with a linear set of points {λi} in
CV-space, called images, that form a string. The mean force −∇λF is
evaluated at each point along the string and the positions integrated
downhill using the forward Euler method

λi ← λi − h∇λF(λi) (2.107)

for some small step size h. The string is then reparametrised so that
the points are uniformly spaced between the two end-points, which
we achieve by fitting a cubic spline to the new points and then inter-
polating. The process is illustrated in Figure 2.12 and is repeated until
the maximum force acting on the string is below some threshold.
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Integrate forces Reparametrise

Figure 2.12: The string method begins with a string of points between the
product and reactant basins. It incrementally integrates the
forces, reparametrising the string after each iteration so as to
maintain uniformity.

A popular and similar method is the nudged elastic band (NEB)
method [93] which uses a harmonic potential between the λi images
to maintain uniformity rather than the spline reparametrisation of the
string method. The string method is the inextensible limit of the NEB
method (i.e. the limit of an infinite spring constant), thus requiring
one less parameter. It is also more stable, supporting a step size that
scales as h ∼ N−1 compared to h ∼ N−2 for NEB, where N is the
number of images [92, 94].

2.6.6 Constructing free energy maps

2.6.6.1 Thermodynamic integration

Once a minimum free energy path {λi} has been constructed, the as-
sociated free energy curve can be obtained by integrating the mean
forces along it

F(λi) − F(λ0) ≈
∑
j<i

∇λF(λj) · (λj+1 − λj) (2.108)

where the evaluation of ∇λF is described in Section 2.6.5.

2.6.6.2 Umbrella sampling

While thermodynamic integration is easy to apply, a much more ef-
ficient and accurate method for reconstructing free energy curves is
umbrella sampling which builds on the identity

exp(−βF(λ0)) = 〈δ(λ− λ0)〉 (2.109)

≡ exp(βV(λ0))〈δ(λ− λ0)〉V
〈exp(βV(λ))〉V

(2.110)
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where the first line follows from Eq. (2.59), and 〈·〉V denotes the ad-
dition of an external potential V(λ) to the system. This identity there-
fore expresses the free energy of a system in terms of ensemble aver-
ages evaluated in the same system but with an auxiliary potential.

The idea of umbrella sampling is to divide the reaction coordinate
into windows and use the auxiliary potential (typically harmonic) to
restrain the system to each window, one at a time, and reconstruct
the free energy there using the above identity.

Actually evaluating the relevant ensemble averages and piecing the
free energy curve together is a complex process for which we use the
weighted histogram analysis method (WHAM) [95] as implemented
by Grossfield [96].

2.6.6.3 Metadynamics

The idea of metadynamics [97] is to modify the dynamics of a system
by depositting small Gaussian-shaped clumps of energy to λ-space at
regular time intervals. Mathematically, this involves augmenting the
Hamiltonian with the time-dependent bias potential

V(λ, t) = w
bt/τc∑
k=0

exp
(
−
|λ− λ(x(kτ))|2

2δλ2

)
(2.111)

where w and δλ are the height and width of the Gaussians, respec-
tively, and τ is the time interval between depositions.

As a trajectory samples λ-space, V leaves a trail of energy along
the way. The result is that if the system becomes kinetically trapped
in some (meta)stable region, the potential will accumulate until it is
large enough to drive the state over the free energy barrier and on to
other regions of λ-space. This provides a solution to the problem of
quasi-nonergodicity.

Furthermore, as the simulation progresses, V will fill up the free
energy basins until the state is uniformly sampling λ-space. At this
stage, V will have converged to the negative of the free energy map

F(λ) = − lim
t→∞V(λ, t) (2.112)

with a resolution determined by the Gaussian parameters. This pro-
cess is illustrated in Figure 2.13.

One of the advantages of the metadynamics method is that it only
requires an initial configuration and a suitable set of collective vari-
ables λ in order to sample the phase space and construct a free energy
map. On the other hand, detecting convergence can be challenging,
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Figure 2.13: Metadynamics deposits energy in the regions of CV-space vis-
ited by a trajectory. If the trajectory becomes kinetically trapped
then the auxiliary energy will accumulate and drive it over
the free energy barrier. This tackles the problem of quasi-
nonergodicity and allows the free energy to be mapped.

and choosing an efficient Gaussian height w requires prior knowl-
edge of the approximate free energy barriers.

The convergence of metadynamics can be improved using well-
temperating [98], whereby the Gaussian heights decrease with sim-
ulation time according to

w(t) = w0 exp
(
−
V(λ(x(t)), t)
kB∆T

)
(2.113)

where w0 is the initial Gaussian height, and ∆T is chosen to regulate
the exploration of space and is typically specified in terms of the bias
factor γ = (T +∆T)/T .

A trivially parallel means of accelerating metadynamics sampling
is by allowing multiple independent simulations, known as multiple
walkers, to contribute to a shared free energy reconstruction [99].

2.6.6.4 Single-sweep sampling

The single-sweep method [100] begins with a discrete set of approximately-
uniform points {λi} in λ-space and computes the mean forces {fi} act-
ing at each point (cf. Section 2.6.5). The free energy surface F(λ) is
then approximated with a radial basis representation

F(λ) ≈ F̃(λ) ≡
∑
i

αiφσ(|λ− λi|) (2.114)



48 theory and methodology

Figure 2.14: The single-sweep method fits a free energy surface, using a
radial basis representation, to a discrete set of force measure-
ments.

where φσ(r) = exp(−r2/2σ2), and the coefficients are optimised to
reproduce the forces fi by minimising the functional

Eσ({αi}) =
∑
j

(
fj +

∑
k

αk∇λφσ(|λj − λk|)

)2
(2.115)

as is illustrated in Figure 2.14. The Gaussian width σ is then chosen
to minimise Eσ.

There are many ways to choose the points {λi}. Maragliano et al. [100]
used an elevated temperature to drive the system to sample the space
of interest, and then selected points from the trajectory that were sep-
arated by a minimum distance. In Chapter 3 we present an alternative
version of the single-sweep method which employs a regular hexago-
nal close-packed lattice.

The single-sweep method is generally more efficient than metady-
namics [100] and is much easier to implement than WHAM. However,
it requires the user to generate, in advance, configurations that corre-
spond to each λi point, which is not always easy to do.

2.7 kinetic monte carlo

Suppose that the important dynamics of a system may be reduced to
a discrete set of random processes that occur at known rates {ri}(t).
After waiting for some time interval ∆t(t), one of the events will occur
in accordance with the probability distribution

Pi(t) =
ri(t)

A(t)
(2.116)



2.7 kinetic monte carlo 49

where

A(t) =
∑
i

ri(t) (2.117)

is the activity of the system. As a consequence of this first event, the
list of all possible events may be altered. A second event will then
occur after some other time interval, and the sequence repeats. This
is the kinetic Monte Carlo (KMC) algorithm [101]. The only remaining
detail is how to compute the time interval ∆t(t) between subsequent
events.

In the following identity

∆t ≡ −A−1 log(e−A∆t) (2.118)

the exponential term e−A∆t is the (Poisson) probability that no event
with a rate A will occur during the interval ∆t. During the actual
evolution of a system, this exponential term will stochastically adopt
specific values in the range (0, 1]. Although the specific values are
unknown to us, the same average dynamics may be obtained with

∆t(t) = −A(t)−1 log(R) (2.119)

where R ∈ (0, 1] is a uniform random variable.
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This will be the first of three chapters concerned with the modelling
of calcite mineralisation. The motivation for studying calcite, as well
as an introduction to the terrace-step-kink model upon which our
work is based, was provided in Chapter 1. To briefly summarise the
relevant points: calcite expresses two types of step, the obtuse and
the acute steps. Growth proceeds by the attachment of units, whether
they be calcium or carbonate ions, calcium carbonate pairs, or pos-
sibly even larger oligomers, to the steps to nucleate kink sites which
then propagate. Modelling the growth of calcite therefore depends on
knowing the attachment and detachment rates of the various species
to these two different types of step.

This chapter begins with the introduction and validation of a new
hybrid method, called dynamic single-sweep sampling, for construct-
ing minimum free energy pathways and their associated free energy
curves. This method is then applied to the two calcite steps to ob-
tain the barriers of attachment and detachment for the individual
Ca2+ and CO2−3 ions. The results reveal that the individual ions ex-
hibit relatively low stability at the two steps, suggesting that the sys-
tem would be amenable to direct molecular simulation and therefore
averting the need for further rare event sampling.

The second part of this chapter then employs direct microsecond-
long molecular simulations to study the behaviour of Ca2+ and CO2−3
ions, as well as CaCO03 pairs, in the vicinity of the two steps. Analysis
of the data reveals the metastable states, the relative attachment rates,
and the absolute dissolution rates.

3.1 dynamic single-sweep sampling

Recall from Section 2.6.2 that an MFEP is a curve φ : [ 0 , 1 ] 7 → Rn

in an n-dimensional collective variable space that connects a pair
of free energy minima along the direction of steepest descent via a
saddle point. Starting with an initial guess for φ , the purpose of this
section is to present a method that converges this curve towards the

51
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compute already computed control points

Step I Step II Repeat...
Compute

Figure 3.1: A schematic representation of our method. Step I: a local free
energy map is constructed using single-sweep sampling. Step
II: The string is minimised until it converges or exits the tube.
The process is repeated. The circles and pluses represent con-
trol nodes. Mean forces need to be evaluated at the solid circles;
forces have already been evaluated at the open circles; and the
pluses serve as additional degrees of freedom.

local MFEP. It should be noted that, due to the scaling of this method,
we only consider n = 2 and n = 3 dimensions.

The basic idea of how it works is to combine the string method (Sec-
tion 2.6.5.1) with the single-sweep sampling method (Section 2.6.6.4)
so that a free energy map is generated in the local vicinity of the
string, and the string is converged within that dynamically-updated
map. The advantage of this method over the standard single-sweep
method is that the free energy is only sampled where it is needed.
And the advantage of this method over the standard string method
is that, by dynamically constructing the local free energy map, there
is no need for duplicate force sampling, plus the force interpolation
requires fewer force evaluations. We now proceed to outline the algo-
rithm.

3.1.1 Initialisation

A discrete set of points {zi} ⊂ Rn must be constructed within the vol-
ume of collective variable space that may be explored; it is over these
grid points that the single-sweep sampling will be performed. We
use a hexagonal close-packed (HCP) grid with lattice parameter a for
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these points since it is the most dense packing of spheres in both two
and three dimensions. Close-packing is desirable since it maximises
the coverage and smoothing effect of the single-sweep method. Note,
however, that a regular grid is not essential. A partially random array
of points generated by temperature-accelerated molecular dynamics
[102], as applied in [103], would also be suitable.

The MFEP φ is approximated by a discrete set of points {si} ⊂ Rn

which we refer to as the string. As an initial choice, it is standard to
construct a linear string that connects the basins of the two minima
of interest. It is not necessary for these endpoints to exactly fall on
the minima since their positions will be locally minimised during the
process.

3.1.2 Step I: local free energy map

The first step of the algorithm is to construct the free energy map
within the vicinity of the string. This will involve taking a subset of
the grid within some radius of the string and then using the single-
sweep method to generate a local free energy map.

More rigorously, given a string {si} and grid {zi}, we begin by defin-
ing the following sets for the two indices k = 1, 2:

Ik = {i : min
j

|zi − sj| 6 Rk} (3.1)

The set Ik indexes the grid points that fall within a distance Rk of
the string. We discuss the choice of R1 and R2 below but note for now
that R1 < R2.

The next step is to compute the mean force fi, or load a previously
computed fi, associated with each point in I1. Evaluating the mean
force at some point in collective variable space is described in Sec-
tion 2.6.5

Utilising the single-sweep technique, the true free energy map F

may be approximated within the vicinity of the string with a radial
basis representation, denoted by a tilde

F̃(z) =
∑
i∈I2

λiψσ(|z− zi|) (3.2)

where ψσ(r) = exp(−r2/2σ2). In order to reconstruct F, the λi coeffi-
cients are optimised to reproduce the measured forces fi by minimis-
ing the functional

E({λk}) =
∑
i∈I1

fi + ∑
j∈I2

λj∇ψσ(|zi − zj|)

2 (3.3)
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In principle, the Gaussian width σ should also be optimised, but we
invariably found σ = 1.5a to be suitable for an HCP grid.

Minimising E involves solving an underdetermined (|I1| < |I2|) sys-
tem of linear equations, ∇{λk}E = 0. This is a standard numerical op-
timisation problem for which we employ the quasi-Newton Broyden-
Fletcher-Goldfarb-Shanno [104] algorithm in our implementation.

Note that the inner-sum in Eq. (3.3) is over the I2 index set. The
reason for including the I2 grid points in this part of the analysis
is that the I1 grid points alone provide too few degrees of freedom
to attain an accurate reconstruction of the free energy map within
that volume. The outer radius, for which we recommend R2 = R1 +

σ, is therefore used as a source of unconstrained control points that
improve the reconstruction.

The optimal choice for R1 depends not only on the free energy map
and the initial string but also on the number of processors. However,
we recommend, as a rule of thumb, that the smallest viable value of
R1 = 1.5a be used. And therefore R2 = 3a.

3.1.3 Step II: string minimisation

Having constructed the local free energy map F̃, the string must be
minimised using one of the various string minimisations procedures.
We opt for the string method (SM from here on), described in Sec-
tion 2.6.5.1 and summarised here in the new context.

At the outset, a backup of the string is to be made: s0i = si for all i.
The SM proceeds by repeated application of the following two steps:

1. Each point si is integrated downhill using the forward Euler
method,

si ← si − h∇F̃(si), (3.4)

for a sufficiently small step size h, where ∇F̃ is evaluated using
Eq. (3.2).

2. The string is reparametrised. We do this by fitting a cubic spline
[105] to the new points si and then interpolate them uniformly
along the curve. This eliminates the need for a tangential force
to retain the integrity of the string. Indeed, the redistribution of
the points may reverse the movement of the points tangentially
to the spline but not normally.
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These two steps are repeated until the string either moves by more
than R1

max
i

|si − s
0
i | > R1 (3.5)

or achieves convergence. To detect convergence, we compute the max-
imum gradient acting on the string, maxi |∇F̃(si)|, at each iteration. If
the smallest value obtained for this quantity is not improved upon
within 100 consecutive iterations then convergence is achieved and
we return to Step I. This may seem an uneconomical convergence
criterion, but recall that the forces are calculated directly from our
reconstructed free energy map and are therefore inexpensive.

3.1.4 Termination

Steps I and II are repeated successively until no new mean forces
fi need to be evaluated, i.e. all of the required forces have already
been computed in previous iterations. In this event, the string will
have converged to the MFEP and the algorithm terminates. The free
energy along the MFEP may then be recovered without any further
sampling by evaluating Eq. (3.2) along the MFEP.

3.1.5 Müller-Brown test system

The Müller-Brown potential [106] (MB2 for short) is a two-dimensional
analytic surface that is widely employed to test the accuracy and ef-
ficiency of minimum energy path algorithms. It has the functional
form

V(x,y) =
4∑
k=1

Ak exp[ak(x− x0k)
2+

bk(x− x
0
k)(y− y

0
k)+

ck(y− y
0
k)
2] (3.6)
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Figure 3.2: A contour plot of the Müller-Brown potential (MB2) with our
initial string (dashed) and converged MFEP (solid). The circles
represent the points at which the mean forces are evaluated (for
a = 0.2) and the colour shows the region in which the free energy
map is reconstructed.

where

A = (−200,−100,−170, 15) (3.7)

a = (−1,−1,−6.5, 0.7) (3.8)

b = (0, 0, 11, 0.6) (3.9)

c = (−10,−10,−6.5, 0.7) (3.10)

x0 = (1, 0,−0.5,−1) (3.11)

y0 = (0, 0.5, 1.5, 1) (3.12)

Since we are interested in both n = 2 and n = 3, we have con-
structed a three-dimensional analogue of the the Müller-Brown po-
tential (called MB3) which takes the form

V(x,y, z) =
4∑
k=1

Ak exp[ak(x− x0k)
2+

bk(x− x
0
k)(y− y

0
k)+

ck(y− y
0
k)
2+

dk(z− z
0
k)
2] (3.13)

where

d = (−8,−8,−8, 0.7) (3.14)

z0 = (0, 0.5, 0, 0) (3.15)
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and the other parameters are as above.
To test the accuracy of our method we constructed a linear string

of 50-images from (0,−0.2) to (0, 1.5) and evolved it in MB2 using
our dynamic single-sweep method to obtain the MFEPs, {si(a)}, for
a range of grid densities, 0.2 6 a 6 0.4. To quantify the accuracy of
each string we defined the following dimensionless metric

εs(a) = a
−1max

i
min
t∈[0,1]

|si(a) −φ(t)| (3.16)

which expresses the distance between {si(a)} and the exact MFEP φ.
We also defined

εF(a) =
maxi,j |∆F̃ij(a) −∆Fij(a)

∣∣
maxi,j |∆Fij(a)|

(3.17)

where we use the shorthand

∆F̃ij(a) = (F̃(si(a)) − F̃(sj(a))) (3.18)

and similarly for ∆Fij(a). This metric expresses the largest error in
the free energy differences of the reconstructed free energy curve as a
fraction of the largest free energy difference. To put it another way, εF
will typically provide an upper bound on the fractional error of any
computed free energy barriers. Figure 3.3(a) shows the measured er-
rors, εs and εF, as a function of the grid parameter a. Identical curves
were obtained for n = 3 (MB3). It can be seen that for a sufficiently
dense grid (e.g. a = 0.2), our method is able to construct a highly
accurate MFEP (εs = 4%, εF = 2%).

To gauge the computational efficiency of our method, we have pit-
ted it against the SM. To do this, we first picked a grid parameter
0.2 6 a 6 0.4 and then chose the following three variables so as to
give the SM the best possible chance against it:

• The step size h was invariably set to the largest stable value,
h = 4× 10−4.

• The fewest number of images were used that could match the
accuracy (the εF error) of our method at the present a value.
For example, 30 images were required for a = 0.2 but only 8 for
a = 0.4.

• The string converged as soon as its coordinates were within a
reasonable 10−3 of the exact string. In MB2 (MB3), the strings
typically took 60 (100) iterations to converge. By comparison,
the convergence criterion of the SM employed by [107] required
100 iterations in MB2. Note also that stochastic systems (which
this is not) tend to require even longer to detect convergence.
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Figure 3.3: (a) The two error terms, εs and εF, for a range of grid densities.
These curves apply equally to MB2 and MB3. (b) The speedup
that our method offers over the standard string method for the
two- and three-dimensional Müller-Brown surfaces, MB2 and
MB3. The solid lines show the speedup achieved on a single pro-
cessor and the dashed line on an infinite number of processors.

In order to achieve a fair comparison between the run-times of
the two methods, a relative wall time T(P;a) was assigned to each
method as a function of both the grid parameter a and the (hypothet-
ical) number of processors P available to it. P is relevant since both
methods parallelise differently. This function is given by

T(P) =

M∑
i=1

bmi/Pct(1) + t(bP/mod(mi,P)c) (3.19)

where M is the total number of iterations, mi the number of mean
force evaluations at the i-th iteration, and the second term is only
evaluated if mod(mi,P) 6= 0. The t(p) function is the (relative) time
required to evaluate a single mean force on p processors. To makes
this representative of real molecular dynamics force calculations, we
limit p to between 1 and 8 processors, and assume that the force
evaluations scale as t(p) = 100/(8 + 96p − 4p2) which reproduces
the scaling of the MPI-based DL_POLY Classic molecular dynamics
package.

The speedup of our method over the SM is shown in Figure 3.3(b)
as a function of a, ranging from P = 1 processor (solid line) to P =∞ (dashed line), for both MB2 (blue) and MB3 (red). Evidently our
method is an order of magnitude faster, with the speedup ranging
from 7× to 30×. This equates to the difference between one day and
one-to-four weeks.

On a single processor (P = 1) the relative speed equals the ratio of
the number of mean force evaluations required by the two methods.
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Figure 3.4: The free energy surface constructed for alanine dipeptide in vac-
uum. The circles show the points at which the mean forces were
computed (a = 15◦). The dashed line is the initial string and the
solid line the converged MFEP which connects the two isomers
shown, C7eq and C7aq.

As P increases, the speedup approaches the ratio of the number of
iterations performed by the two methods. These two ratios therefore
determine the relative scaling of the methods and explain why, in the
case of MB2, the speedup for a . 0.3 decreases as the number of
processors increases.

3.1.6 Alanine dipeptide isomerisation validation

Alanine dipeptide (ACE-ALA-NME) is a simple biomolecule of sci-
entific importance since its conformational properties influence pep-
tide and protein secondary structure. Having a relatively large barrier
between its two main metastable states, C7eq and C7aq, it is widely
employed (e.g. [89, 107, 108, 109, 110]) as a model for benchmark-
ing methods that enhance rare event sampling. It is a more realistic
test model than the Müller-Brown model above since the forces must
be evaluated from molecular simulations and are therefore stochas-
tic. We have therefore applied our dynamic single-sweep method to
compute the MFEP between these two isomers in vacuum.

As collective variables we used the two Ramachandran dihedral an-
gles, φ and ψ, which are the dihedral angles depicted in Figure 3.4,
although they are known to provide an inexact transition mechanism
[89]. The simulations were performed with the DL_POLY Classic 1.9
[111] molecular dynamics code and the all-atom parm99 AMBER po-
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Figure 3.5: A schematic of the simulation cell used in the application of the
dynamics single-sweep method to calcium and carbonate ions at
the calcite steps. The calcite slab is shown in grey; water filled
the volume above.

tentials [112]. We used a time-step of 1 fs and a velocity-rescaling
thermostat to maintain a temperature of 300 K. The mean forces were
obtained by imposing a harmonic potential with a force constant
k = 1000 kcal/mol/rad2 to restrain the dihedrals, and then averaging
the restraining force over 250 ps. The initial string was a linear path
connecting (−70, 60) to (60,−40) and the grid parameter was a = 15◦.

The algorithm converged after only 5 iterations and 85 force eval-
uations. By comparison, the string methods implemented in [89, 107,
108] required at least 100 iterations and 2,000 mean force evaluations,
despite starting with very similar initial strings. Our method is there-
fore at least 20× faster, in line with the speedups reported in Fig-
ure 3.3.

To ensure that a = 15◦ produced a sufficiently accurate MFEP, we
repeated the method with a much denser grid (a = 5◦). The coordi-
nates of the resulting MFEP agreed to within 4

◦ and the free energy
barrier to within 4%.

3.2 ca
2+

and co
2−
3 free energies at the steps

Having introduced and validated our dynamic single-sweep method,
the next step is to apply it to the dissolution of calcium and carbonate
ions from the acute and obtuse steps of calcite. More specifically, this
section aims to compute the dissolution pathway and associated free
energy curve for the two ions moving from the fully adsorbed states
along the two steps into the bulk solution.

Each simulation cell consisted of a slab of calcite with the (1014)

faces exposed and two partial layers on either side, each exposing
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Figure 3.6: The solid lines show the number of force evaluations performed
at each iteration of our dynamic single-sweep method, while
the dashed lines show the cumulative number of force evalua-
tions after each iteration. Black circles corresponds to A/Ca, red
squares to A/CO3, green diamonds to O/Ca, and blue triangles
to O/CO3.

the acute and obtuse steps, as depicted in Figure 3.5. The dimensions
of the simulation cell were 2 .55 × 3 .12 × 3 .40 nm, with 112 CaCO3
units in the calcite slab, and 460 water molecules filling the void be-
tween the periodic images. The height of the cell was adjusted to
achieve a pressure of 1 atm at a temperature of 300 K. The force fields
and simulation parameters are detailed in Appendix A.

We began with each ion in a fully adsorbed state, i.e. bound directly
to both the step and the underlying layer, for each type of step, giving
a total of four systems. We denote the system with the Ca2+ ion ad-
sorbed to the acute and obtuse steps as A/Ca and O/Ca, respectively,
and similarly for the carbonate CO2−3 ion, A/CO3 and O/CO3.

Recall that the dynamic single-sweep method samples forces on a
predefined grid. In this case, the grid was HCP with a parameter of
0.2 Å. It filled the entire simulation cell, except any grid points that
were within a distance of 2.5 Å from the calcium carbonate step were
culled to avoid sampling regions that would involve either atomic
overlap or the destruction of the slab.

The initial string in each case was linear and passed from the initial
adsorbed state directly into the bulk solution, aligned normal to the
(1014) surface. Each of the two ends of the string were fixed in place.
This was of particular importance for the string end placed in the bulk
solution where the free energy will have plateaued; without freezing
this end, it would drift randomly under the stochastic mean forces.
The dynamic single-sweep method was then applied to converge the
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Figure 3.7: The free energy curves for the dissolution of the Ca2+ and CO2−3
ions from the acute and obtuse steps, generated using our dy-
namic single-sweep sampling method. The reaction coordinate ξ
is the length along the MFEP.

string towards the local MFEP. For each of the four simulations, the
number of force evaluations performed per iteration are shown in Fig-
ure 3.6 along with the cumulative number of force evaluations. The
number of iterations ranged from 3 to 6, with a total of between 765

and 1,079 force evaluations. We note that most of the force evalua-
tions are performed on the first iteration, which is characteristic of
this method.

The free energy curves along the resulting MFEPs are shown in
Figure 3.7. In each case, three metastable states are obtained. These
three states are similar to one another and can be characterised as
follows:

• Step site (SS): the ion is bound directly to the step as well as to
the layer below. This is the state of maximal adsorption which
corresponds closely to the equilibrium grid site in the bulk cal-
cite.

• Inner-sphere (IS): the ion has broken the direct bond with the
underlying layer but remains directly bound to the step, i.e. the
ion is within the step’s solvation shell.
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Figure 3.8: The SS, IS, and OS states for the Ca and CO3 ions at the acute
(A) and obtuse (O) steps with only the water molecules in the
first solvation shell of the adsorbate shown.

• Outer-sphere (OS): the ion has broken all direct bonds with the
calcite but remains attached to the step via its solvation shell.

All three of these states are shown for each of the four systems in
Figure 3.8.

In the case of the calcium ion, the free energy is at a minimum,
albeit very slightly, when bound indirectly to the step in the outer-
sphere (OS) adsorption state. However, this state exhibits very lim-
ited kinetic stability. The SS and IS adsorption states, on the other
hand, are associated with a substantial increase in free energy and
will seldom be visited. But even when they are, the calcium ion will
not remain for long due to the limited kinetic stability. The reason
that the calcium ion averts direct adsorption to the step is because it
has a high charge density and therefore a strong solvation shell which
makes it naturally favour states of increased hydration.

In contrast to the calcium ion, the carbonate ion minimises the free
energy when bound directly to the step. However, it favours the IS
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Figure 3.9: The simulation cell used for long duration MD simulations, con-
sisting of a pair of calcite surfaces, with steps exposed, separated
by water. The four quadrants shown are symmetrically equiva-
lent.

rather than the SS state, presumably also due to the increased solva-
tion afforded to it in this state. Similar to the calcium ion, however,
the carbonate is presented with considerably large barriers to fully
adsorb to the SS state suggesting that it will be a rare occurrence.
Moreover, even when it does reach SS, the dissolution barrier is little
greater than that in the IS state suggesting that the dissolution rates
from SS and from IS will be the same order of magnitude.

The next step is to establish the actual dissolution rates. Since the
free energy curves computed in this section reveal that the problem
of computing transition rates may be amenable to direct simulation
rather than requiring the application of rare event methodologies, this
is the approach taken in the next section.

3.3 direct microsecond-scale simulations

To gain insight into the behaviour of the calcium carbonate ions at the
calcite steps, we performed molecular dynamics simulations in which
a molecular unit, either a calcium ion Ca2, a carbonate ion CO2−3 , or a
calcium carbonate pair CaCO03, were placed in the centre of the simu-
lation box and then allowed to naturally diffuse through the volume:
diffusing, adsorbing to one of the various sites, desorbing, and re-
peating. In the case of the CaCO03 pair, the distance between the two
ions was monitored and they were found to remain bonded through-
out the simulations without the need for an auxiliary potential to
hold them together. The simulation cell is depicted in Figure 3.9 and
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consisted of an inverted (and translated) version of the previous sim-
ulation cell. The cell could be divided into four quadrants that were
symmetrically identical.

During each simulation, the position of each subject unit was recorded
every picosecond. The simulations involving the individual Ca2+ or
CO2−3 ions were each terminated after 1µs, while the CaCO03 unit
was afforded 4µs due to it diffusing at a lower rate.

A histogram representing the probability distribution for each of
the three units could then be generated from the recorded trajectories.
Recall that in the simulation cell, shown in Figure 3.9, the cell exhibits
four-fold symmetry. As such, the trajectory may be mapped into just
one quadrant of the cell by application of the appropriate symmetry
operation. This provides a smoother and more thoroughly sampled
histogram than would otherwise be produced.

Observing that the probability of the unit being in a position (x,y, z)
is related to its free energy mapG(x,y, z) by P(x,y, z) ∝ exp(−βG(x,y, z)),
an approximate free energy map may be constructed from the his-
togram. To visualise it we project the map onto a two-dimensional
plane by integrating out the third coordinate, e.g.

G(x,y) = −β−1 log
∫

exp(−βG(x,y, z))dz (3.20)

In the case of the projection onto the xz-plane, we actually provide
two projections, one for y < 0,

Gy<0(x, z) = −β−1 log
∫
y<0

exp(−βG(x,y, z))dy (3.21)

and an analogous function for y > 0. The reason for this division is
that the y < 0 volume contained the acute step while y > 0 contained
the obtuse step. To present each projection, we imagine unfolding the
net of the sampled volume as shown in Figure 3.10. These projections
are then presented in Figures 3.11 and 3.12 for the Ca2+ and CO2−3
ions, respectively. To visualise the CaCO03 pair, we rendered the free
energy maps twice, from the point of view of the calcium ion and the
carbonate ion separately, as shown in Figures 3.13 and 3.14, respec-
tively. These plots provided much more structure and clarity than
simply plotting the free energy map as a function of the centre of
mass of the pair.

It is important to note that two coordinates are not enough to cap-
ture the state of the subject units and therefore the actual free energy
differences and barriers cannot be read from these plots. Neverthe-
less, the plots do provide insight into the structure of the free energy
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Figure 3.10: The correspondence between the two-dimensional free energy
projections and the three-dimensional quadrant as utilised in
the images that follow.

maps, as detailed below. It should also be noted that the features vis-
ible in these histograms are also visible if only half of each trajectory
is binned. In other words, they are not merely noise but reflect real
features of the free energy landscape.

The novelty of performing direct simulations is that, in addition
to generating the histograms, the various transition rates may be ob-
tained directly by assigning the subject ion to one of the states of
interest (either acute or obtuse, either SS, IS, OS, or dissolved) at each
point along its trajectory, based on its position, and then measuring
the mean time between each transition. Furthermore, the relative at-
tachment rate for each adsorbate to each of the four sites is given by
the relative probability P that the adsorbate will bind to those sites.
This was straightforwardly computed by simply counting the number
of adsorption events to each site and then normalising. The results are
reported in Table 3.1.

by counting the number of times the adsorbate visits each site, we
can compute the relative attachment rate for the various sites; these
are given by the

In the free energy map shown in Figure 3.11, it can be seen that
the calcium ion is predisposed to avoid the calcite surface, with a
slight reduction in free energy on approach, even several Ångström
away from the calcite, due to the presence of water structure. Upon
reaching the calcite, the calcium ion visits the OS site for both steps
multiple times, and in the case of the acute step also transitions to the
IS state. As predicted in the previous section, however, the barrier to
the IS state at the obtuse step is simply too large, and the ion does not
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Figure 3.11: Two-dimensional projections of the approximate free energy
map for the Ca2+ ion, in the vicinity of the calcite steps. See
Figure 3.10 for an explanation of what each panel corresponds
to. The axes along the perimeter show the scale in nanometres.

visit it once. We computed the transition rates between the adsorbed
states and the dissolved states. In the case of the acute step, we treated
the IS and OS states as a single state. As reported in Table 3.1, the
calcium ion spends on the order of 100 ps adsorbed to either step
before dissolving again, and shows a slight preference for adsorbing
to the acute step over the obtuse.

The carbonate ion results in a vastly different free energy map (Fig-
ure 3.12) to the calcium ion. Firstly, the carbonate ion prefers to be
in the vicinity of the calcite rather than in bulk solution. This makes
sense because, in contrast to the calcium ion, the carbonate has a
lower charge density and therefore weaker solvation shells. It vis-
its both the outer- and inner-sphere adsorption states of both steps,
dozens of times. The stability of the carbonate ion turns out to depend
quite strongly on which site along the step it adsorbs to, characteristic
of a non-Kossel crystal. The consequence is that one of the sites along
the acute step has a highly stable IS state while the other has a much
less stable state. The obtuse step, on the other hand, displays very sim-
ilar stability at both available sites. Regarding the transition rates, we
measure the mean time for the carbonate ion to completely dissolve
from the IS state (in other words, back and forth transitions between
the IS and OS states are discounted). It can be seen in Table 3.1 that
the carbonate ion adsorbs for around 2 ns to the obtuse step while it
remains for an average of around 12 ns when adsorbed to one of the
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Figure 3.12: Two-dimensional projections of the approximate free energy
map for the CO2−3 ion, in the vicinity of the calcite steps. See
Figure 3.10 for an explanation of what each panel corresponds
to. The axes along the perimeter show the scale in nanometres.

acute sites. Interestingly, however, it shows no statistically significant
preference to adsorb to any particular site.

Lastly, we consider the CaCO03 pair, for which the free energy maps
are shown in Figures 3.13 and 3.14, plotted from the point of view of
the calcium ion and carbonate ion, respectively. Interestingly, the free
energy map plotted from the perspective of the carbonate ion in the
pair (Figure 3.14) is almost identical to that for the lone carbonate ion
CO2−3 shown in Figure 3.12, suggesting that the calcium carbonate

Table 3.1: The mean times r−1 for dissolution, and the relative probabilities
P of the molecules adsorbing to each site. The 1 and 2 refer to the
two different sites on each step as labelled in Figures 3.11-3.14.

Obtuse Acute

1 2 1 2

Ca2+
r−1 (ns) 0.17 0.10 0.27 0.07

P (±0.02) 0.21 0.18 0.19 0.42

CO2−3
r−1 (ns) 2.05 2.76 12.46 1.01

P (±0.04) 0.27 0.23 0.24 0.25

CaCO03
r−1 (ns) 2.27 26.14 29.21 3.27

P (±0.03) 0.28 0.18 0.33 0.21
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Figure 3.13: Two-dimensional projections of the approximate free energy
map for the CaCO03 pair, from the perspective of the calcium
ion, in the vicinity of the calcite steps. See Figure 3.10 for an
explanation of what each panel corresponds to. The axes along
the perimeter show the scale in nanometres.

pair behaves much like a lone carbonate ion. However, there are a
few key differences that arise from having the calcium ion attached:

1. The stability is increased for all adsorption sites.

2. While the CO2−3 ion exhibits about the same stability at the
two IS states on the obtuse step, the CaCO03 pair breaks the
symmetry and exhibits a much greater stability at just one of
the sites on the obtuse step.

3. Consequently, the CaCO03 pair displays almost the exact same
stability at the acute and the obtuse steps.

4. However, the relative attachment rates suggest that the pair is
slightly more likely to attach to the highly stable site on the
acute step, while it is more likely to attach to the less stable site
on the obtuse step.

The calcium component of the CaCO03 pair, on the other hand, was
not as disciplined as the carbonate. Even when the carbonate compo-
nent was attached to a step, the calcium component spent consider-
able time pointing away from the step in a solvated state. However,
it did also exhibit metastability attached to both steps in an OS state,
and also in an IS state for the acute step.
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Figure 3.14: Two-dimensional projections of the approximate free energy
map for the CaCO03 pair, from the perspective of the carbon-
ate ion, in the vicinity of the calcite steps. See Figure 3.10 for an
explanation of what each panel corresponds to. The axes along
the perimeter show the scale in nanometres.

In all cases, the ions failed to visit the SS state due to the large
kinetic barriers. This suggests that either the final IS→SS transition
limits the step nucleation rate, or that step nucleation requires mul-
tiple ions to aggregate in the IS state before being able to make the
IS→SS transition.

3.4 summary

This chapter began by introducing a new hybrid method, named dy-
namic single-sweep sampling, for generating minimum free energy
pathways and the associated free energy curves. It involves perform-
ing an exact string minimisation within an approximate free energy
map that is dynamically constructed within the vicinity of the string.
Standard validation tests found it to perform an order of magnitude
faster than the standard string method.

This new method was then employed to model the dissolution of
calcium Ca2+ and carbonate CO2−3 ions from the fully-adsorbed sites
at the acute and obtuse steps. In all four systems, three metastable
states were observed, corresponding to the fully-adsorbed step site
(SS), inner-sphere (IS) adsorption to the step, and outer-sphere (OS)
adsorption to the step. The free energy curves revealed large barri-
ers going from IS to SS suggesting that the ions will seldom reach
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the SS sites. Moreover, in the case of the calcium ion, the OS state
was found to be thermodynamically preferred, while the IS state was
thermodynamically prefered for the carbonate ion.

We then turned our attention to performing direct, microsecond-
long simulations of each ion moving in the vicinity of the two steps. In
fact, in addition to the Ca2+ and CO2−3 ions, we also simulated the be-
haviour of the CaCO03 pair. The resulting probability histograms and
measured transition rates were in accord with the predictions made
from the dynamic single-sweep study. Specifically, none of the ions
visited the SS sites at any point. The calcium ions mostly attached
via outer-sphere adsorption and dissolved after very short intervals,
on the order of 100 ps. The carbonate ions were most stable in the
IS states, exhibiting greater stability at the acute step than the obtuse.
They were found to dissolve from the steps with mean times on the
order of 1-2 ns except for one particular site on the acute step where
they would remain for an average of 12 ns.

In the case of the neutral CaCO03 pair, the resulting probability his-
tograms revealed it to behave a great deal like a single carbonate ion.
The main effect of the attached calcium ion was to increase the sta-
bility of the various metastable states. But in doing so, it equalised
the acute and obtuse steps such that, while the lone carbonate ion is
much more stable at the acute step, the ion pair shows equal stability
at the two steps.

Based on these results, it will be argued in Chapter 5 that kink
nucleation during calcite growth will be dominated by the adsorption
of the CaCO03 pairs to the steps, and that the activity of the individual
calcium and carbonate ions may be neglected from models of kink
nucleation.





4
C A L C I T E K I N K D I S S O L U T I O N

Chapter 1 provided an account of calcite growth in terms of kink
nucleation and kink propagation. The previous chapter, Chapter 3,
investigated kink nucleation, while kink propagation will be the sub-
ject of this chapter. More specifically, the rate at which the calcite kink
sites dissolve and the underlying mechanisms.

However, since it would not be practical to apply the requisite
methodologies to all 16 kink sites, the first step will be to compute
the dissolution enthalpies instead, and then identify just two kink
sites that will likely limit the dissolution process. An assortment of
rare event methods will then be applied to those two ostensibly rate-
limiting kink sites to obtain their dissolution rates.

Each kink site in this chapter was modelled with a periodic slab
of calcite that was oriented with respect to the unit cell such that an
incomplete top layer, with a pair of steps exposed, necessarily formed
a zigzag pattern in order to achieve periodicity. Kink sites were there-
fore naturally exposed and separated from each other by the width
of the unit cell. This setup can be seen in Figure 4.1, and a total of
8 such models were constructed, exposing all 16 unique kink sites.
In our simulations, each slab consisted of 143 CaCO3 units. The unit
cells had dimensions of 2.19×2.91×3.54 nm, with the remaining non-
calcite volume filled with 480 water molecules. The total momentum
of the slab was fixed to zero to prevent it from drifting. The cell height
had been adjusted to achieve an average pressure of 1 atm at a tem-
perature of 300 K. This was achieved by applying a barostat (see Sec-
tion 2.5.3) with a time-constant of 1 ps but to the cell height only and
averaging the cell height. The configurations were then equilibrated
for 10 ns. The force fields and simulation parameters are detailed in
Appendix A.

4.1 dissolution enthalpies

In order to compute the change in enthalpy during dissolution of the
target kink site, two configurations were modelled. The first involved
the terminal ion in the adsorbed kink state, and the second with the
ion dissolved. This second configuration was created by freezing the

73



74 calcite kink dissolution

Frozen ions

Subject ion

Configuration 1 Configuration 2

Figure 4.1: The two configurations used to compute dissolution enthalpies.
In both configurations, the two ions that form the kink opposite
the subject kink are frozen. The two configurations are distin-
guished by the position of the subject ion: either in an adsorbed
kink state, or dissolved in solution.

first configuration, slowly dragging the subject ion normal to the sur-
face and fixing it in the centre of the solution, unfreezing the slab
(but keeping the subject ion fixed), and then equilibrating for 10 ns. In
both configurations, the two ions that terminate the opposite kink site
had their centres of mass fixed in their average location. This was be-
cause, while those sites were unlikely to dissolve during the timescale
of our simulations, it was likely that some of them would transition
to different states, for example, breaking a bond with the terrace be-
low. Such random conformational changes would have affected the
potential energy calculations. The setup is depicted in Figure 4.1.

After equilibration, the potential energy of each configuration was
averaged over a period of 10 ns. The dissolution enthalpy is then sim-
ply the change in potential energy between the two configurations.
Note that we monitored the displacement of the calcite slab to en-
sure that there were no substantial conformational changes during
the averaging process that could have affected the potential energy
calculations. The change in enthalpy during the dissolution of a sin-
gle terminal ion is presented in Table 4.1 for all 16 kink sites.

Surprisingly, the dissolution enthalpies vary wildly amongst the
various kink sites, ranging from −19.1 kJ/mol to +40.5 kJ/mol. And
this difference is not just between the calcium and carbonate species,
but also between the different lattice sites. Note that a negative dis-
solution enthalpy favours dissolution, whereas a positive enthalpy
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Table 4.1: The dissolution enthalpies (kJ/mol) of all 16 kink sites of calcite,
for the dissolution of the single terminal ion. The labelling is ex-
plained in Section 1.3. The standard errors are approximately 2

kJ/mol.

Ca(1) CO3(1) Ca(2) CO3(2)

Aa 4.2 −7.0 −19.1 34.4

Ao 25.2 −6.5 0.5 21.2

Oa 28.9 36.4 −14.2 −11.1

Oo −18.1 40.5 6.2 7.0

favours adsorption. The large variation in the dissolution enthalpies
can be attributed to the many different orientations that the carbon-
ate ions exhibit in calcite. When a carbonate ion terminates a kink
site, the direction of the carbonate, as well as the number of oxygen
atoms exposed to the solvent, depends on which kink site it is (Aa,
Oa, etc). Not ony does this variation in geometry affect the solvation
energy of that CO3-terminate kink site, but it also affects the bonding
character of the subsequent calcium ion in a Ca-terminated kink site.

While the dissolution rate of each kink will depend on the relevant
free energy landscape, and not merely on the dissolution enthalpy,
one would expect a close relationship between the two. For example,
a large positive enthalpy implies that the terminal ion will either have
to overcome one large barrier, or a large succession of smaller barriers.
In either case, dissolution will be inhibited. On the other hand, a
negative enthalpy does not demand the existence of any barrier to
dissolution whatsoever (although one will certainly exist for other
reasons). In summary, one would reasonably expect larger enthalpies
of dissolution to correspond to slower dissolution rates.

In Table 4.1, it can be seen that for the acute step, the slowest kink to
dissolve will likely be Aa/CO3(2) since it has the largest dissolution
enthalpy, and we would expect this kink to dissolve via the termi-
nal ion rather than the terminal pair. For the obtuse step, we would
predict Oo/CO3(1) to be the slowest to dissolve.

4.2 dissolution mechanisms

Having identified two kink sites that are likely to limit the rate of dis-
solution, the next task was to establish whether they actually dissolve
via the single terminal ion or via the terminal pair functioning as a
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Figure 4.2: For the Aa/CO3(2) kink site, the red curve shows the dis-
tance moved by the terminal carbonate ion from its initial kink-
adsorbed position, and the blue for the neighbouring calcium
ion, during a metadynamics-accelerated simulation of dissolu-
tion. The carbonate ion was found to dissolve on its own, leaving
the calcium ion behind. See the text for discussion.

single unit. In reality, both mechanisms, and possibly some complex
intermediate processes, will occur, albeit with one likely dominating
over the others. However, it would not be possible to know the rela-
tive probabilities of these various pathways without first computing
the rate of every possible dissolution pathway – an obviously imprac-
tical calculation.

Instead, in an attempt to establish the most likely dissolution mech-
anism, we ran a series of molecular simulations of the dissolution
process, but accelerated by metadynamics (see Section 2.6.6.3 for a
summary of this method). The acceleration was, of course, needed
because a direct simulation would take prohibitively long.

The centre of mass of the calcium ion, and the centre of mass of the
carbonate ion, were taken as the collective variables for the metady-
namics, giving a total of six collective variables. Note that driving just
the centre of mass of the calcium carbonate pair would have likely bi-
ased the pair to stick together and therefore the additional degrees of
freedom were necessary.

Since the purpose of these simulations was to accelerate the trajec-
tory rather than construct a free energy map, and also since we were
sampling a large six-dimensional phase space, the Hamiltonian could
be augmented with unusually large Gaussians. The Gaussian deposi-
tions had a width of 0.2 Å and were deposited at a rate of 2.0kT/ps
(for T = 300 K). The temperature distribution was computed both
with and without the metadynamics acceleration to ensure that the
high deposition rate was not breaking adiabacity. Once either one of
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Figure 4.3: The description for this plot is the same as for Figure 4.2 except
that, during this particular simulation, the calcium and carbon-
ate pair were found to dissolve as a single unit. See the text for
discussion.

the two terminal ions of the kink site had moved 1.2 nm from their
initial positions, dissolution was assumed to have occurred and the
simulation would terminate. This was repeated twenty times for each
of the two kink sites.

The simplest way to analyse the mechanism in each simulation was
to plot the distance that each of the two terminal ions had moved dur-
ing the course of the simulation. The plot in Figure 4.2, obtained for
the Aa/CO3(2) kink site, was typical of virtually all of the simulations
and for both kink sites. The terminal carbonate ion was the most ani-
mated, with the neighbouring calcium ion occasionally jumping to a
new position, but quickly (∼ 10 ps) returning to its previous position,
as can be seen around 3.2 ns into the simulation. Eventually the ter-
minal carbonate ion breaks away and dissolves, leaving the calcium
ion in its equilibrium position. The acute kink took an average of 8.5
ns to dissolve compared to 12.9 for the obtuse kink. However, it is
important to note that these numbers do not correspond to real time
due to the metadynamics augmentation.

In a couple of the simulations, the terminal pair did in fact dissolve
as a single unit, as shown in Figure 4.3. However, this only ever oc-
curred after close but failed attempts by the carbonate ion to break
away on its own, as occurred around 8 ns, and it is not until around 20

ns that the pair dissolve. This suggests that pair dissolution only ever
occurred as a consequence of a heavily oversaturated bias potential.

From these simulations, therefore, it seems reasonable to conclude
that both of the kink sites, Aa/CO3(2) and Oo/CO3(1), dissolve via
the terminal ion only, with the neighbouring ion remaining in place.
This is presumably because dissolving as a pair would require a more



78 calcite kink dissolution

Frozen

Subject ion

Frozen

Figure 4.4: The description for this plot is the same as for Figure 4.2 except
that, during this particular simulation, the calcium and carbon-
ate pair were found to dissolve as a single unit. See the text for
discussion.

complicated and therefore rarer sequence of events, such as the termi-
nal carbonate breaking one or two bonds, followed by the calcium ion
breaking a bond but without the carbonate ion first reforming those
previous bonds. The ions would have to ‘collaborate’ to dissolve as a
pair.

4.3 dissolution pathways

Having established that the two kink sites dissolve via the single ter-
minal ion, the next task is to establish the precise pathway taken. For
example, does the carbonate ion break away directly into the bulk
solution, or diffuse away from the site along the step or terrace?
Does it have to overcome a single activation barrier, or a complex
sequence of barriers? To address these questions, we generated the
three-dimensional free energy map for the terminal carbonate ion.
From this, the minimum free energy pathway could be approximated
and then converged using the string method, as detailed next.

4.3.1 Free energy maps

As the terminal carbonate ion breaks away from its kink site and ex-
plores the local volume, there will be an associated change of free
energy. An accurate measure of this free energy difference depends
on a suitable choice of collective variables which may include: the cen-
tre of mass of the carbonate ion, the orientation of the carbonate ion,
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the local water structure (e.g. the density of the first hydration shell),
as well as the configuration of the local calcite slab. However, con-
structing such a high-dimensional free energy map is unrealistic, so
we make the ansatz that the free energy can be adequately described
by only three numbers: the (x,y, z) coordinates of the centre of mass
of the terminal carbonate ion. The hope is that the other coordinates
are either redundant or present only very small barriers that do little
to impede ergodicity.

Having selected the collective variables, we employed well-tempered
metadynamics with multiple walkers to generate the free energy map.
During the sampling, the carbonate ion was confined to a cube of
length 1.2 nm, as shown in Figure 4.4, which was aligned such that
the kink site was centered in the xy-plane, and the underlying calcite
layer was aligned with the base of the cube. The neighbouring cal-
cium ion was frozen in its equilibrium position by omitting it from
the integration sequence, as justified in the previous section. All other
atoms were unconstrained, except for the total momentum of the slab
being fixed to zero to prevent drift. Note, however, that this calcium
ion will be unfrozen during the string minimisation in the next sec-
tion. The Gaussians had a height of 0.5 kJ/mol and were deposited
every 500 steps into a bias potential shared by eight simultaneous
walkers, each of which was initiated with the carbonate ion in a ran-
domly selected position within the sampling volume. To enhance con-
vergence, the well-tempered scheme was employed with a bias factor
of 25.

For each kink, the metadynamics accrued 3× 106 Gaussians, the
equivalent of 1.5µs, during which it fully explored the sampling vol-
umes. To visualise the resulting free energy maps, we project them
onto the two-dimensional yz-plane of the centre of mass of the car-
bonate ion by integrating out the x coordinate:

F(y, z) = −β−1 log
∫
e−βF(x,y,z) dx (4.1)

The resulting plots are shown in Figure 4.5. It should be noted that,
while the contour lines in the figures correspond to differences of
1 kBT , the actual free energy barriers cannot be accurately read di-
rectly from these plots for at least two reasons: all three degrees of
freedom may be needed to correctly characterise the transitions, and
the integration process may mix distinct free energy minima into one.
Nevertheless, the general structure of each free energy map is dis-
cernible. In particular, it is apparent that there are multiple metastable
states for the carbonate ion within the immediate vicinity of the kink
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(b) Obtuse kink: Oo/CO3(1)

(a) Acute kink: Aa/CO3(2)

Figure 4.5: Two-dimensional projections of the three-dimensional free en-
ergy maps constructed for the terminal carbonate ion in the vicin-
ity of the (a) Aa/CO3(2) kink and the (b) Oo/CO3(1) kink. Each
contour line is separated by 1kBT . The dashed lines represent the
approximate minimum free energy pathways for dissolution.

site, and so dissolution will involve a complex pathway of multiple
transitions. The next step is to identify the location of these minima
and construct the minimum free energy pathway that connects them.
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Figure 4.6: The root-mean-square displacement of the images in a string for
successive iterations of the string method.

4.3.2 Locating the minima

Once the three-dimensional free energy maps have been generated,
it is necessary to identify the locations of the various local minima.
These minima, where the free energy derivatives are zero, ∇F = 0,
correspond to the metastable states of the carbonate ion, and the dis-
solution process will involve a sequence of transitions between them.

To identify the minima, we divided the space into a regular grid
with cells spanning 0.1 Å in each dimension. A toy particle that expe-
rienced the free energy map was placed in the centre of each cell and
then integrated downhill using the steepest descent algorithm [105].
All of the particles were thus moved to the minimum of whichever
basin they were initially in.

In a few instances the particles would become trapped in minima
that were the product of statistical noise. These particles could be
identified and removed by computing the smallest barrier needed
to be overcome in order to move to another cell with a lower free
energy. This was computed by moving outward in concentric cubes
until a cell with a lower free energy was found, and then recording
the largest increase in free energy within that cube. A barrier smaller
than a threshold of 1.0 kJ/mol would be registered as noise.

All points that ended up in the same cell after the minimisation
step would be clustered into a single point and outputted. The re-
sult was a set of vectors corresponding to the various local minima
(intermediate states).
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4.3.3 Constructing the pathways

For the carbonate ion to transition from the initial kink site to the
dissolved state in bulk solution, it must hop between the various in-
termediate metastable states. The MFEP of dissolution may therefore
be approximated by the piecewise linear curve that connects the min-
ima obtained from the metadynamics calculations into a chain, as
depicted by the dashed lines in Figure 4.5.

The true MFEP, however, would not be piecewise linear. Instead,
it would be curved so that there are no forces acting normally to it
(by definition). To converge the piecewise linear curve to this true
MFEP, we employed the standard string method as described in Sec-
tion 2.6.5.1. In principle, the string could be converged within the
metadynamics-generated free energy map; the requisite forces would
simply be computed directly from the free energy map which would
have the advantage of not requiring any further simulations. How-
ever, we instead opted to run molecular simulations to evaluate the
mean forces for each image in the string at each iteration. In other
words, to find the approximate MFEP in the exact free energy land-
scape rather than the exact MFEP in an approximate free energy land-
scape. There were two reasons for this:

1. The minor statistical noise present in the metadynamics-generated
free energy maps was too difficult to control for and could en-
gender quite substantial deformations in the strings.

2. During the metadynamics, the calcium ion neighbouring the
carbonate ion was frozen (for pragmatic reasons described above).
By evaluating the mean forces from scratch, the calcium ion
could be released which would potentially introduce a small
correction to the MFEP.

Regarding the string method, each path connecting a pair of minima
was converged independently from the others. Each string was com-
posed of images uniformly separated by around 0.25 Å, and the step
size was

h = min

(
1,

0.1Å
maxi |fi|

)
(4.2)

where fi is the mean force evaluated for the i-th image. The forces
were averaged for 250 ps and the images tethered with a spring con-
stant of k = 100 eV/Å. The effect of the step size, Eq (4.2), was to cap
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the largest displacement of any individual image to 0.1 Å. Conver-
gence was manually detected, with the average string taking around
10-20 iterations to converge, as exemplified by Figure 4.6 which shows
the root-mean-square (RMS) displacement of the images in one of the
strings as a function of the number of iterations.

A snapshot from each converged metastable state is shown in Fig-
ure 4.7 for both of the kink sites. The dissolution pathway for Aa/CO3(2)
involves the carbonate ion moving vertically upward, breaking the
bond with the underlying layer (B); reorienting itself and making
room for a water molecule to wedge itself below (C); breaking the
bond with one of the calcium ions, leaving it directly attached to
only one and attached only indirectly to the other through the shared
solvent (D); breaking the bond with the final calcium ion and mov-
ing into an outer-sphere adsorption state where it is bound to the
kink through the shared solvent (E). From here the carbonate ion
may break away into solution, completing the dissolution process.

The process is similar for the obtuse kink site except the carbonate
doesn’t have the reorientation step (acute B): the carbonate ion breaks
the bond with the lower layer (B); it breaks the bond with the now-
terminal calcium ion, sharing the solvent with it (C); it breaks the
final calcium bond but remaining attached via the shared solvation
shell (D). The final event is complete dissolution.

4.4 dissolution rates and free energies

The strings produced so far for each dissolution pathway had a den-
sity of roughly one image per 0.25 Å. However, for the analysis that
follows, denser strings were required. This was straightforwardly achieved
by fitting a cubic spline to each string and then inserting additional
points along the curve and reparametrising to make them uniformly
spaced again. The updated strings had a density of one image every
0.05 Å, a five-fold increase in density. What follows is the construc-
tion of the free energy curves and transition rates associated with
each dissolution pathway.

4.4.1 Free energy curves

Taking the length along the string, ξ, as our reaction coordinate, the
associated free energy change, ∆G(ξ), was computed using umbrella
sampling. Specifically, the carbonate ion in each image along the



84 calcite kink dissolution

A B

A B C

D E

C D

Acute: Aa/CO3(2)

Obtuse: Oo/CO3(1)

Figure 4.7: Starting with the kink state (A), these are snapshots of the vari-
ous intermediate metastable states visited prior to dissolution for
both the acute (Aa/CO3(2)) and obtuse (Oo/CO3(1)) kinks. Oxy-
gen atoms are red, carbon teal, calcium green, hydrogen grey.
The calcium carbonate is rendered as van der Waals surfaces
while the water in the hydration shell of the terminal carbon-
ate ion is shown in stick form. See the text for a description of
each snapshot.
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Figure 4.8: The alternating red-and-blue histograms are the probability dis-
tributions for the carbonate ion along the reaction coordinate ξ
when tethered to each of the sampling windows. From these his-
tograms, WHAM reconstructs the underlying free energy curve
which is shown in black. This particular interval corresponds to
the A↔ B transition for the acute Aa/CO3(2) kink.

string would be tethered to its window using a harmonic potential
with a spring constant of 15 eV/Å. This would force the system to
explore only that local region of the reaction coordinate. For each
window, a histogram would be compiled by recording the reaction
coordinate of the carbonate ion every 100 fs for a total of 500 ps. The
various sampling windows are shown in Figure 4.8 for one of the tran-
sitions (the A ↔ B transition of the Aa/CO3(2) kink) along with the
corresponding free energy curve that was then reconstructed from
the histograms using the weighted histogram analysis method (see
Section 2.6.6.2).

Repeating the above analysis for all of the transitions along each
pathway, and assembling them together, resulted in the complete free
energy curve for each dissolution pathway, as shown in Figure 4.9.
Included are the 68% (give or take one standard deviation) and 95%
(give or take two standard deviations) confidence intervals which
were computed using bootstrap resampling with 103 Monte Carlo
trials. Each metastable state is labelled with a letter that corresponds
to a snapshot in Figure 4.7.

Note that the final barrier to dissolution is shown with a dashed
line. This is because the final barrier was computed by dragging the
carbonate ion vertically upwards into the solution, which is not nec-
essarily the pathway taken. Therefore the barrier itself should not be
interpreted physically, although the total free energy change will be
accurate.
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(a) Acute kink: Aa/CO3(2)

A
B

C

D

E

0

10

20

30

40

50

60

70

80

90

0 2 4 6 8 10 12

95%68%

/ 
kJ

 m
o
l-1

/ Ångström

(b) Obtuse kink: Oo/CO3(1)
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Figure 4.9: The free energy curves for the dissolution of the (a) Aa/CO3(2)
and (b) Oo/CO3(1) kink sites. The 68% and 95% confidence inter-
vals are shown for the free energy differences with respect to the
initial kink states ξ = 0. Each metastable state is labelled with a
letter that corresponds to a snapshot in Figure 4.7. The enthalpic
∆H and entropic −T∆S contributions to the total dissolution free
energy is shown.

Also shown in Figure 4.9 are the enthalpic ∆H and entropic −T∆S

contributions to the total dissolution free energies. These were ob-
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Figure 4.10: The transmission coefficient κ(t) defined in Eq. (2.96) and sam-
pled across the A↔ B transition barrier of the obtuse kink.

tained directly from the dissolution enthalpies computed previously
in Section 4.1. It is interesting to see that the entropic contribution,
−T∆S, which specifically measures the solvation entropy, makes al-
most as large a contribution as the enthalpy does, approximately 30

kJ/mol in both cases. To see why the solvation entropy decreases
(−T∆S > 0 implies ∆S < 0), consider the water structure before and
after dissolution: Before dissolution, there will be water structure in
the vicinity of the kink site. After dissolution, there will still be water
structure in the vicinity of the (new) kink site but also water struc-
ture surrounding the desorbed carbonate ion. This overall increase in
water structure comes at the cost of a reduced entropy.

The free energy curves will be discussed further below, in the con-
text of the overall dissolution rates.

4.4.2 Individual transition rates

The penultimate step in our analysis was to employ the reactive flux
method of Section 2.6.3 to compute the transition rates for all of the
individual transitions. To briefly summarise the method: through the
application of Eq. (2.98), transition state theory (TST) provides an es-
timate for the transition rate, kTST, based solely on the free energy
curve. The true transition rate is then k = κkTST where κ is the trans-
mission coefficient which accounts for the diffusive nature of the bar-
rier crossings.
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To compute κ for a particular transition, a configuration would be
produced for the transition state which is the image along the string,
between the two minima of interest, where the free energy is a max-
imum. The carbonate ion was then restrained in this state using a
harmonic potential with a spring constant of 100 eV/Å, and the con-
figuration equilibrated for 1 ns after which a simulation of 10 ns was
performed, with the positions and velocities of the atoms harvested
every 5 ps. For each one of these 2,000 harvested configurations, the
carbonate ion had the restraint removed and the trajectory was sim-
ulated both forward and backward (reversing the signs of the veloc-
ities) for 2.5 ps each, meanwhile recording which side of the transi-
tion barrier the carbonate ion was on as a function of time. Applying
Eq. (2.96) to this data gives the function κ(t).

We plot κ(t) in Figure 4.10 for the A ↔ B barrier of the obtuse
kink. The transmission coefficient, κ, is whatever value this function
plateaus to; 0.07 in this particular example. Repeating the above anal-
ysis for all of the transition barriers, the results are listed in Table 4.2.
Also included are the free energy barriers ∆G‡ associated with each
of the transitions, along with their standard errors. Since the transi-
tion rates obey the relation k ∝ exp(−β∆G‡), the uncertainty in each
free energy barrier translates to be the primary source of error in the
corresponding transition rate. It follows that the standard errors for
the free energy barriers (multiplied by β) also serve as the standard
errors for logk.

The very final step in the dissolution sequence was studied differ-
ently to the other transitions. This was because, during the metady-
namics simulations in Section 4.2, it was observed that the carbonate
ions did not necessarily break away directly into the bulk solution
but may have briefly diffused along the terrace or step before break-
ing away into the bulk. A more appropriate method for studying this
final transition would therefore be a large series of direct molecular
simulations starting from the final state and observing where the car-
bonate ends up going and how long it takes. Indeed, for each of the
final metastable states (acute E and obtuse D), a series of 1,000 sim-
ulations were performed. If the carbonate ion moved more than 5 Å
away from its starting position then it was registered as a dissolu-
tion event (i.e. the carbonate has moved sufficiently far from the kink
site that it’s unlikely to return). Note that the original kink site was
well within the 5 A radius. On the other hand, if the z coordinate
dropped below that of the preceding metastable state then it would
be registered as a retreat to that previous state. Once either of these
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Table 4.2: A list of all transitions. The ∞ state represents diffusion away from
the kink site (whether that be along a step/terrace or via bulk dif-
fusion). The activation barrier for each transition ∆G‡ with the
standard error is given, along with the mean time for the transi-
tion k−1TST predicted by TST, the transmission coefficient κ, and the
true mean transition time k−1.

Transition ∆G‡ (kJ/mol) k−1TST (ns) κ k−1 (ns)

Acute kink: Aa/CO3(2)

A→B 25.4± 0.9 9.1 0.08 113.8

B→A 19.7± 0.9 1.3 0.08 16.4

B→C 9.0± 1.1 0.02 0.06 0.33

C→B 4.3± 0.8 0.004 0.06 0.07

C→D 18.6± 1.1 1.1 0.04 27.5

D→C 1.8± 1.2 0.003 0.04 0.075

D→E 27.2± 1.9 92.1 0.06 1, 535.0

E→D - - - 0.22

E→∞ - - - 0.67

Obtuse kink: Oo/CO3(1)

A→B 28.7± 1.1 29.3 0.07 418.6

B→A 7.8± 0.9 0.012 0.07 0.17

B→C 26.9± 1.6 29.4 0.08 367.5

C→B 3.7± 0.9 0.004 0.08 0.05

C→D 13.7± 1.8 0.19 0.04 4.75

D→C - - - 0.57

D→∞ - - - 1.7

two events occured, the time taken was recorded and the simulation
terminated.

4.4.3 Overall dissolution rates

The final task is to compute the overall dissolution rate, viz. the rate
at which the carbonate ion transitions from the kink site (A) to the
fully dissolved state (∞). It is clear from the above analysis that the
entire process will involve multiple transitions between successive
states until the dissolved state is finally reached. To find the average
time taken for dissolution, we first consider a more general problem.
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Suppose there exist n states, labelled 1, 2 ..., n. A random walk,
starting at state 1, will make random transitions between consecutive
states until eventually reaching state n. Let Pi→i+1 be the probability
that the state i will transition to state i+ 1, and thus Pi→i−1 = 1−

Pi→i+1, where we have the boundary condition P1→2 = 1. Suppose
also that the mean time spent in state i before making a transition
is ti. Now let τi be the mean time taken for state i to reach state n,
in other words, τi is the time averaged over every possible pathway
from i to the final n-th state. Then the mean times obey the difference
equations

τi = ti + Pi→i+1τi+1 + Pi→i−1τi−1 (4.3)

which is just a linear system of equations that can be solved simulta-
neously to obtain the τi values. The mean time (rate) to get from state
1 to state n is then τ1 (τ−11 ).

In the case of our transition pathways, the probabilities can be com-
puted from the relevant transition rates as

Pi→i+1 =
ki→i+1

ki→i+1 + ki→i−1
(4.4)

and the mean time spent in state i is

ti =
1

ki→i+1 + ki→i−1
(4.5)

Solving Eqs. (4.3) then provides us with the overall dissolution rate,
ν ≡ τ−11 , for each pathway. Going a step further, errors can be straight-
forwardly incorporated into this analysis. Recall from the previous
section that the primary source of error in the transition rates is the
uncertainty in the free energy barriers; one may therefore replace each
of the individual transition rates ki with numbers from the distribu-
tions

logki ∼ N(logki,β2σ2i ) (4.6)

where σi is the uncertainty in the i-th free energy barrier height, re-
ported in Table 4.2. Repeating this random generation of rates 106

times and recording the overall dissolution rate ν for each set pro-
vides a histogram for ν that represents our confidence interval for it.
This histogram is plotted in Figure 4.11(a) for each of the two kink
sites. The peak of each plot represents our best guess for the dissolu-
tion rate with the width corresponding to the uncertainty. It must be
stressed that the errors shown are purely those that arise from the um-
brella sampling, specifically from the fact that only a finite number of
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Figure 4.11: (a) The confidence interval computed for the dissolution rate of
the Aa/CO3(2) and Oo/CO3(1) kink sites For comparison, es-
timates for the same numbers are provided from the literature:
[I] Wolthers et al. [2], [II] Nielsen et al. [3], and [III] Stack et
al. [4]. (b) The confidence interval for the mean number of tran-
sitions prior to dissolution. The huge number of transitions are
the source for the vast errors

windows are sampled and for a finite period of time. In reality there
will be other sources of error, most of which are entirely unquantifi-
able. For example, errors from the classical treatment of the system:
the approximate functional forms and semiempirical parameters, the
neglect of quantum and charge effects; errors from a coarse choice
of collective variables; errors from the string not being perfectly con-
verged; errors from the integration and the use of a thermostat. Note
that each overall dissolution rate may be written in terms of a single
activation barrier, k0 exp(−∆Eβ), where ∆E is the total range covered
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by the free energy curve. The error in ∆E is much smaller than the re-
ported error in the overall rate. The errors may therefore be attributed
to our inability to accurately gauge the kinetic prefactor for such com-
plex free energy landscapes.

But even with our underestimation of the errors, each of the con-
fidence intervals span an enormous three orders of magnitude. The
relatively small errors in our individual transition rates have there-
fore been propagated in such a way that has greatly magnified them.
To see why this is, we computed the average number of individual
transitions that would occur prior to dissolution, for each kink. Using
the same logic as that for deriving Eqs. (4.3), one obtains the follow-
ing difference equations that describe the mean number of transitions
Ni from state i to the final dissolved state,

Ni = 1+ Pi→i+1Ni+1 + (1− Pi→i−1)Ni−1 (4.7)

The resulting confidence interval for N1 is shown in Figure 4.11(b)
for both kinks. The conclusion is that each kink undergoes millions
of transitions before successfully dissolving. The huge errors result
from the fact that the (RMS average) error for the individual rates
will scale as

√
N1 and so this is the source of magnification.

A question that remains is why so many transitions are required for
dissolution to occur. Or put another way, if the slowest transition bar-
rier is only 1.5µs (0.4µs) for the acute (obtuse) kink, then why does
it take tens or even hundreds of milliseconds for dissolution? This
is best explained by revisiting the free energy curves in Figure 4.9.
While none of the individual barriers are especially large, there are
multiple metastable states that are of very low stability, presented
with the option of either overcoming a large barrier and advancing
forward, or overcoming a very small barrier and retreating backward.
This asymmetry in the stability of the intermediate states is respon-
sible for the huge number of failed dissolution attempts that must
occur before success. And such an asymmetry seems inevitable for
any complex pathway that exhibits a large change in free energy be-
tween the initial and final states.

Having addressed the issue of precision, we finally consider the
question of accuracy. For comparison, the average kink dissolution
rate has been estimated in previous studies by fitting simple analyti-
cal models to experimental data. More specifically, the analytical mod-
els describe calcite growth as consisting of just two events: kink nucle-
ation and kink propagation (which is assumed rate-limiting). The step
velocity may then be expressed in terms of the individual attachment
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rates of the calcium and carbonate ions which are a function of the
solution stoichiometry. The attachment rates my then be optimised by
fitting to the experimental step velocities as a function of solution sto-
ichiometry. The dissolution rates are then obtained straightforwardly
from the attachment rates, knowing the solubility product of calcite.
The estimated values are shown in Figure 4.11(a) with arrows that
refer to the papers [I] Wolthers et al. [2], [II] Nielsen et al. [3], and
[III] Stack et al. [4]. Our best estimates are one-to-two orders of mag-
nitude larger than the rest, and therefore seem likely to be an over-
estimation of the true dissolution rates. It is worth noting, however,
that while the cited papers measure the average rate at which the var-
ious kink sites dissolve, we have measured the rate of the ostensibly
rate-limiting kink sites only, and therefore we expect it to be larger. A
fairer comparison might therefore be to divide our dissolution rates
by four (the number of ions in the primitive calcite unit cell). Doing
so shifts the histograms towards the arrows such that our estimate
for the acute dissolution rate is only a factor of 2 larger than the es-
timate from reference [III]. The obtuse, however, remains an order of
magnitude too large.

4.5 summary and discussion

This chapter began by presenting the dissolution enthalpies for all 16

of the unique kink sites for calcite crystals, mediated by the single ter-
minal ion dissolving, and also the terminal pair dissolving as a single
unit. The results revealed an enormous variability, not just between
the calcium and carbonate species, but also between the same species
that occupy different lattice sites. This variability points strongly to-
wards calcite being a highly non-Kossel crystal.

From the dissolution enthalpies, an educated guess could be made
as to which kink site for the acute and obtuse steps would likely be
rate-limiting. Using metadynamics to drive the dissolution of these
two kink sites revealed a preference for dissolving via the terminal
ion only, rather than the terminal pair.

A three-dimensional free energy map was then generated for the
terminal ion of each kink site, revealing the presence of multiple tran-
sition states between the adsorbed kink site and the solution. Connect-
ing these intermediate metastable states with a string, and converging
the string with the string method, resulted in the dissolution pathway
for each kink.
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Umbrella and reactive flux sampling of each pathway provided us
with the free energies and rates for all of the transitions along the
pathways. These individual rates, along with their errors, were then
combined to find the overall dissolution rate for each kink. The confi-
dence intervals for our dissolution rates were found to span three or-
ders of magnitude each, an enormous error, and this was based only
on the readily quantifiable sampling errors. Regarding accuracy, we
estimated mean dissolution times of 80 ms and 344 ms for the acute
and obtuse kink sites, respectively. These numbers are one-to-two or-
ders of magnitude larger than existing estimates in the literature.

The poor precision and accuracy reported in this chapter has poten-
tially far reaching consequences. One of the ongoing projects of the
computational sciences is to compute the rates of rare molecular pro-
cesses that can then be plugged into coarse grained models of some
large-scale molecular system, as in the next chapter. But if any of the
requisite transitions are complex, like those studied in this chapter,
then they will necessarily be susceptible to poor sampling precision,
which calls into question the utility of this bottom-up approach to
anything other than trivial systems. While it is certainly true that
force fields will only get more accurate, computers more powerful,
and methodologies more adept, it would appear that these ab initio
ambitions are many years away from being realised.

Despite these inadequacies, molecular simulations remain able to
provide unique insight into these complex processes. For example,
we can draw the following conclusions with reasonable confidence:

• Calcite kink dissolution involves a complex pathway of multiple
transitions.

• Dissolution takes orders of magnitude longer than any of the in-
dividual transitions, due to the asymmetrical instability of some
of the intermediate states.

• The barriers to adsorption are very small, suggesting that the
adsorption of carbonate ions, at least to these particular kink
sites, will be diffusion-limited. This is in agreement with the
conclusions of Sand et al. [113].

• The cost of water structure is roughly half of the driving force
that inhibits dissolution in these kink sites. One of the mecha-
nisms by which impurities affect calcite solubility may therefore
be by modifying the water structure in the vicinity of the kinks.
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A C O A R S E - G R A I N E D M O D E L O F C A L C I T E
G R O W T H A N D I N H I B I T I O N

Chapter 1 described how calcite crystals grow via step propagation,
where the steps are sourced from screw dislocations at low supersatu-
rations. As the steps propagate across the crystal face, they eventually
reach the edges of the crystal, meaning that whatever morphology the
steps exhibit while growing, the same morphology will be adopted
by the entire crystal face [12]. It follows that both the kinetics and
morphologies of entire calcite crystals can be understood in terms of
the kinetics and morphologies of just these propagating steps.

In this chapter, we combine the insight obtained in the previous two
chapters with experimental data to construct a coarse-grained model
of calcite growth. The model will then be employed to investigate the
effects that impurities have on growth.

5.1 model and implementation overview

Since we are interested in modelling the propagation of steps across
a two-dimensional surface, the crystal may be described by a two-
dimensional grid. We use a square grid of size n× n, where n is a
power of two, for reasons described below. In all simulations the grid
will have periodic boundary conditions.

Each grid cell corresponds to a single ion within the growing (or
dissolving) top layer of the crystal, and may therefore store either
a calcium ion, a carbonate ion, an impurity, or, by default, the sol-
vent. We shall refer to the value of each cell as its state; the surround-
ing eight cells as the neighbourhood; and the combination of state and
neighbourhood, i.e. the local 3× 3 grid, as the configuration of the cell.
Based on the configuration of each cell, a list of possible events may
be generated. For example, if a particular cell is in the solvent state
with a kink neighbourhood, it may have the option of transitioning
to (say) a calcium ion or to an impurity. A list should therefore be
generated to store every possible event that may occur, along with
the corresponding transition rate for each event (details below). In
addition to having a particular state, each cell may be frozen, meaning
that its state is fixed in time by omitting its events from the event list.

95
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The system is then integrated over time using the kinetic Monte
Carlo (KMC) method described in Section 2.7. Specifically, the algo-
rithm proceeds by randomly selecting an event from the even list in
accordance with the probability distribution given in Eq. 2.116, and
then executing said event. Once the state of the corresponding cell
has been changed, the event list of that cell as well as its eight nearest
neighbours must be updated. Lastly, the time is incremented by the
stochastic variable given in Eq. 2.119, and the whole process repeats.

With regards to implementation, we store the event list in a 4-ary
tree structure, where the entire grid (the root) is spatially divided
into four quadrants (nodes), each of which is further divided into
four quadrants (nodes), and so on until the smallest event domain
(leaf) spans a single cell. Each leaf then contains the event list for the
corresponding cell. There are a few advantages to storing the data in
such a structure. Firstly, all of the key calculations, such as adding
and removing events from the list can be performed in O(logn) time,
where n is the cell size, compared to O(N) for a linear list, where N is
the total number of possible events. Furthermore, dividing the events
into spatial domains allows the algorithm to be straightforwardly par-
allelised (although we do not do this). It should now be clear why the
grid must be a square and the size n a power of two.

In the case of a pure system (i.e. no impurities), each cell has up to
512 possible configurations. However, during the evolution of the sys-
tem, depending on the event table, only a subset of these configura-
tions will actually be accessible. Moreover, of those that are accessible,
most will be related to several other configurations via an appropri-
ate symmetry operation, thus greatly reducing the representation of
our event table. In the end, for our calcite model, we found that all of
the available configurations could be generated by applying the D8
dihedral group to the configurations shown in Figure 5.1. Note that
the configurations in the top row are the intended, operative configu-
rations that can be characterised as kinks, steps, corners, and gaps. To
clarify: corners are similar to kink sites but they typically form at the
corners of a growing layer where two steps meet each other; and the
gaps typically form when either a pair of kinks propagate towards
each other, shortly before annihilating, or when a step dissolves to
form a pair of kinks. The bottom row, on the other hand, shows the
undesired artefacts that may occasionally be generated by particular
sequences of the operative events. Our code explicitly searches for
these configurations and rectifies them without any time increment,
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Figure 5.1: Every local cell configuration accessible in our model may be gen-
erated by applying the D8 symmetry group to one of these con-
figurations. The black cells denote calcium or carbonate ions, the
grey denotes solvent, and the two-tone squares denote either a
calcium ion, a carbonate ion, or solvent. The intended, canonical
configurations are displayed in the top row, and the unwanted
artefacts that must be explicitly forbidden in the bottom row.

viz. by adsorbing an ion in the case of (e) and dissolving the central
unit for (f)-(h).

Whether each cell corresponds to, say, an Oo kink, or an Oa kink,
depends on the orientation of the operative configuration. For exam-
ple, Figure 5.1(a), as shown, corresponds to the Oo kink site. Whereas,
if it were flipped horizontally, it would correspond to the Oa kink site.
In order to build the event list, the appropriate site must be identified,
along with the state of the central cell. But a third piece of informa-
tion is also needed: what we refer to as the basis index. Recall from
Chapter 3 that calcite is non-Kossel, meaning that the transition rates
for a cell will depend not only on whether the cell houses a calcium
or a carbonate ion, but which calcium or carbonate ion in the basis
it corresponds to. We resolve the basis type by mapping each cell to
a basis index, (i, j) 7→ mod(i+ j, 4), where 4 is the number of ions in
the primitive unit cell for calcite.

In total, all of the possible configurations give rise to 160 possible
events, each of which must be assigned a transition rate. Needless
to say, we make a series of approximations to greatly reduce this
number, as detailed in Section 5.2 below where a scheme is outlined
for optimising the parameters.
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Figure 5.2: The measured step velocity in our KMC simulations as a function
of the grid size n.

5.1.1 Measuring step velocities and morphologies

This chapter is concerned entirely with the kinetics and morphologies
of calcite crystals under various conditions, and so it was necessary
to have a means for measuring both.

In the case of step velocities, within a square grid of dimension
n× n, half of the grid was initially occupied with a calcite crystal,
exposing two opposing steps that were infinitely long due to the pe-
riodicity of the grid. One of the steps would be frozen to prevent it
from propagating, and the unfrozen step would then be integrated
over time. In each case, an initial equilibration was performed to al-
low the step to achieve its natural kink density, and involved perform-
ing a maximum of 106 iterations and terminating if the unfrozen step
advanced, in either direction, by more than five layers (1.6 nm). A pro-
duction period was then performed until the step either reached one
end of the grid or the maximum of 107 iterations had been reached.
The net number of ions added to the crystal during the production,
divided by the number of ions per layer n, multiplied by the length
of each layer 0.32 nm, and divided by the simulation time gave the
step velocity. Of course, the accuracy of the measured step velocity de-
pends on the size of the grid n, and we show in Figure 5.2 the average
and standard deviation for the step velocity of the obtuse calcite step
(with the optimised parameters below) for various grid sizes. It can
be seen that by n = 29 the average step velocity measurements are
converged with respect to n and the standard errors are acceptable,
and so this was the choice of n employed in this work.

To investigate step morphologies, we would begin with a 210× 210

grid with a small 21× 21 square of calcite in the centre. The system
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Figure 5.3: Crystal morphology is computed by allowing a small layer to
grow into a larger one and then mapping the edges to a radial
plot which may be averaged over many repeated runs.

would then be integrated through time so that the square grew to
become a much larger crystal. The simulation would terminate once
either 107 iterations had been performed, or the crystal reached the
edge of the grid. In principle, the resulting crystal could then sim-
ply be rendered to produce an image. However, the crystals would
typically exhibit small random variations about some true, underly-
ing morphology, due to the stochastic nature of growth. We therefore

Single snapshot Smoothed

Figure 5.4: A snapshot of a simulated island after it has grown to approxi-
mately 300 nm in width, and the same island but smoothed as
described in the text. The smoothing has a purely local effect.
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Figure 5.5: The orientation shared with all of the step morphologies that fol-
low. Also shown are a few morphology metrics that measure the
distances and angles between the origin and the various corners
of the morphology.

sought to generate an average morphology to mitigate these fluctu-
ations. To this end, we would repeat the previous simulations ten
times and construct a polar plot r(θ) for the morphology of each,
as illustrated in Figure 5.3. Each polar plot would then be normalised
such that the average of r(θ) was unity, and then all of the radial plots
could be straightforwardly averaged. The resulting, average morphol-
ogy could then be produced by rendering the averaged polar plot.
The smoothing effect is illustrated in Figure ?? where a single snap-
shot and its smoothed equivalent of a grown island are shown (the
simulation parameters are those described in Section [? ] below). The
smoothing can seen to have a purely local effect, preserving the over-
all morphology. All of the morphologies will be rendered with the
orientation shown in Figure 5.5, with the obtuse steps pointing north
and east. We also define the metrics shown: rAA being the distance
between the origin and the corner where the acute steps meet, and
similarly for rAO and rOO, and θ is the angle between the AO and OA
segments, as shown.

It should be noted that our renderings of the morphology treat the
calcite geomtry as orthogonal, whereas it is actually skewed. So a
square morphology in our simulations would correspond to a non-
square rhombus in an experimental image. Therefore, in order to
compare our morphologies to those observed experimentally, we will
trace the experimental morphologies and apply the appropriate affine
transformation to make the underlying geometry orthorgonal.



5.2 parameter optimisation 101

5.2 parameter optimisation

At this stage, we have 160 transition rates that must be specified, con-
sisting of the adsorption and dissolution of each species to and from
each site. First, we shall consider the nature of these transitions, then
impose a series of approximations to greatly reduce this number, and
finally optimise the remaining parameters.

Our model of growth proceeds by the nucleation of kink sites fol-
lowed by their propagation. In the case of the nucleation, molecules
must adsorb to the step, as modelled in Chapter 3. These molecules
may be individual calcium or carbonate ions, or oligomers such as the
ion pair CaCO03. Now suppose one of the single ions were to adsorb
to a step. In order to nucleate growth, the next event would be for
an ion of the other species to adsorb next to it, thus forming an ion
pair on the step. However, in the vast majority of cases, the first ion
will dissolve before the second ion arrives. On the other hand, pre-
formed ion pairs are already abundant in the solution. Specifically,
the equilibrium constant for the reaction

Ca2+ + CO2−3 
 CaCO03 (5.1)

is KCaCO03
= 103.22 [114], from which it follows that at a typical ex-

perimental supersaturation given by the chemical activities aCa2+ =

aCO2−3
= 10−4 M, the activity of the ion pair will be aCaCO03

= 2× 10−5

M, i.e. the same order of magnitude as the individual ions. It follows
that the adsorption of preformed ion pairs to the steps will dominate
the kink nucleation process.

In the case of kink propagation, it has been experimentally estab-
lished that step velocities significantly decline for highly non-stoichiometric
solutions at fixed supersaturation (more on this below). In other words,
when the ratio of calcium to carbonate ions is far from unity, the step
velocities become very small even if the product of the calcium and
carbonate concentrations are kept fixed. This would not be the case if
kink propagation were dominated by ion pairs because the ion pair
concentration depends only on the product of the calcium and carbon-
ate concentrations and should therefore remain unchanged. We may
therefore assume that kinks propagate via the attachment of individ-
ual ions. This assumption is also supported by our work in Chapter 4,
where it was concluded that the adsorption of carbonate ions to kink
sites is diffusion-limited, and therefore the attachment of carbonate
ions should be no slower than that of ion pairs. We further assume
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0 1 2 3

Figure 5.6: All of the unique parameters in our model for step growth, as
described in the text.

that the kink sites dissolve one ion at a time, as is supported by the
results of Chapter 4.

Now we turn our attention to reducing the number of parameters.
Firstly, calcite has c-glide symmetry which immediately halves the
number of parameters. Secondly, for each step type, the calcium and
carbonate ions each have four unique kink sites that they can adsorb
to. We make the assumption that the ions adsorb to, and desorb from,
these four kink types at the same rate. In other words, that the crystal
is only non-Kossel with respect to the different species. We further as-
sume that the calcium- and carbonate-terminated kink sites dissolve
at the same rate, ν. The difference in the abundance of calcium- and
carbonate-terminated kink sites is therefore modelled by allowing the
species to attach at different rates, i.e the relative attachment rates are
constrained by kCa2+/kCO2−3

= f. We also assume that all of the kink
sites have identical solubilities, so that for each step the kink attach-
ment rates can be expressed in terms of the kink dissolution rates

kCa2+ =
ν√
Ksp

√
faCa2+ (5.2)

kCO2−3
=

ν√
Ksp

1√
f
aCO2−3

(5.3)

where Ksp = 10−8.48 is the experimental solubility product. To see
where these equations come from, consider first the case of f = 1. At
equilibrium the chemical activities would be aCa2+ = aCO2−3

=
√
Ksp,

by definition of Ksp, and we would have kCa2+ = kCO2−3
= ν. Then,

away from equilibrium, we have kCa2+ = νaCa2+/
√
Ksp and similarly

for CO2−3 . Finally, the f factors are the only terms that satisfy the
constraint kCa2+/kCO2−3

= f while preserving the solubility product
kCa2+kCO2−3

/ν2.
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We identified above that the kink nucleation is mediated by ion
pairs, CaCO03. However, our KMC code only supported the modi-
fication of single cells, and so we treated the nucleating pairs as
single units in the simulation. We express their adsorption rates as
snknPiaCaCO03

, where sn is a constant that we shall set to unity for
now (and may therefore be ignored, until later). To explain Pi, re-
call from Chapter 3 that the ion pairs do not adsorb to both steps,
nor to each step site, with an equal probability. Rather, the free en-
ergy landscape makes adsorption to certain sites more likely to occur.
The Pi terms are therefore the probabilities reported in Table 3.1 that
we obtained from molecular simulation. The ion pair activity, aCaCO03

,
was defined above. And the remaining kn term is the free parameter
which measures the rate at which the pairs attach to one of the four
sites, in other words, kn/4 is the mean attachment rate (per molarity)
of ion pairs to the step sites. The nuclei are assumed to dissolve at the
rates νn,0 and νn,1 obtained from our earlier molecular simulations
and also reported in Table 3.1.

In Figure 5.1, two other surface features were identified: corners
and gaps. In our model we treat the corner sites like ordinary kink
sites. We also attach ions to the gap sites at the same rate as ordinary
kink sites, but we dissolve them at a different (lower) rate νs.

In summary, each step has three free parameters which we label
with A or O superscripts for the acute or obtuse step, respectively,
plus kn which is shared between the steps:

νA, fA, νAs , (5.4)

νO, fO, νOs ,

kn

In other words, there is a total of fifteen parameters for the model,
eight of which were determined by our molecular simulations in
Chapter 3, leaving seven free parameters to optimise. We now outline
a procedure for optimising them with respect to experimental data.
The experimental data is the dependence of step velocity on solution
stoichiometry (the ratio of calcium to carbonate ions in the solution)
at a fixed supersaturation of σ = 0.9 as reported in Hong et al. [5].
These data points are shown in Figure 5.7(a), and the optimisation
procedure is as follows:

1. Pick νA.

2. Pick fA and fO.
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Figure 5.7: (a) The step velocity as a function of solution stoichiometry as
computed by our simulations for the acute (solid line) and obtuse
(dashed line) steps. The experimental points from Hong et al. [5]
are also shown for acute (square) and obtuse (circle). (b) During
the fitting procedure, the acute dissolution rate νA is optimised
to maximise agreement with the experimental points in (a). εA
is the RMS error between our simulations and the experimental
points, and similarly for εO.

3. Optimise kn and νAs to simultaneously give the experimental
acute step velocity under stoichiometric conditions, and zero
velocity at saturation (σ = 0, where σ was defined in Eq. (1.1)).

4. The nucleation rate is then imposed on the obtuse step by kn,
leaving νO and νOs to be optimised to reproduce the experimen-
tal obtuse step velocity and zero velocity at saturation.

5. Modify fA and fO and repeat from step 3 so as to optimise
agreement with the experimental data points.

6. Modify νA and repeat from step 2, also until agreement with
the experimental data is maximised.

The variation of the RMS error between our simulations and the
experimental data as a function of the choice of the first parameter
νA is shown in Figure 5.7(b). The velocity profiles that result from
the optimal fit are shown in Figure 5.7(a). Note that the f parameters
shift the velocity profiles along the abscissa, while the ν parameters
modify the widths.

We note in passing that, if the four kink sites are given different
dissolution rates, ν0, ...,ν3, then this has no observable effect on the
velocity profile of Figure 5.7 as long as the mean dissolution rate,(
1
4

∑
i ν

−1
i

)−1
, is preserved.
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Table 5.1: The optimised growth parameters for our KMC model of calcite
growth. See Figure 5.6 for the relation of each to the growth.

ν f νs P0 P1 νn,0 νn,1 kn

Acute 102.87 1.5 3.2 0.33 0.21 107.53 108.49
1010.8

Obtuse 103.04 0.2 2.7 0.28 0.18 108.64 107.58

The final optimised parameters are all listed in Table 5.1. The kink
sites are found to dissolve on the order of 103 s−1, the same order
of magnitude as predicted in previous work [4, 3, 2]. Note that our
parametrisation suggests that ion pairs attach to the step sites on the
order of 1010 s−1M−1. By comparison, the individual ions attach to
the kink sites on the order of ν/

√
Ksp ≈ 107 s−1M−1. Putting aside

errors in our model, this discrepancy could be attributed to the kink
sites presenting larger adsorption barriers, coupled with the ion pairs
being able to diffuse further across the calcite terraces, thus increasing
the delivery rate.

Such a high attachment rate is needed due to the very rapid dissolu-
tion rate of the pairs from the steps. Indeed, the vast majority of the
attaching ion pairs will dissolve before any subsequent ions attach.
This actually proves to be a source of great inefficiency in the KMC
simulations. For this reason, we adjust the sn parameter introduced
earlier to a value other than unity. Specifically, we set

sn =
104 s−1

min(νn,0,νn,1)
(5.5)

for each step. This means that the kink nuclei dissolve no quicker
than 104 s−1, and the attachment rates are scaled proportionately to
maintain step velocities. Note that if a numerator much smaller than
104 s−1 is used then the attachment rate no longer scales linearly due
to the morphological impact of having long-lasting nuclei.

We finally consider the morphology of our simulated crystal layer
and compare it to the experimental morphologies traced from the
AFM images of Stack et al. [4] and shown in Figure 5.8. Recall that
the morphology has undergone a smoothing process described in
Section 5.1.1. Under conditions of supersaturation and stoichiomet-
ric solution, the calcite step morphology is square (highly polygonal
with a low kink density) with respect to the calcite lattice, in agree-
ment with the experimental morphology. When the solution is made
highly non-stoichiometric, with a much higher concentration of car-
bonate ions than calcium ions, the corner where the two obtuse steps
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Figure 5.8: The morphology of our simulation, and a trace of the experimen-
tal morphology [4] under both stoichiometric and highly non-
stoichiometric conditions. The widths of the simulated islands
are approximately 300 nm.

meet becomes highly curved, as is also observed experimentally. This
is a consequence of the obtuse step having a higher abundance of
carbonate-terminated kink sites; the scarcity of calcium ions inhibits
the propagation of kink sites to a greater extent than it does the acute
step. This causes the kink sites to bunch up where the two steps meet,
leading to the observed curvature. This demonstrates that the KMC
model can provide insight into morphological processes in pure sys-
tems. We now turn our attention to impure systems.

5.3 kink blocking

Some impurities will bind to the surface features of a growing crystal
for long enough to disrupt the growth process, but not long enough
to become incorporated into the bulk. Aspartic acid is a well-known
example of such an impurity [12, 115, 116]. If the impurity binds
transiently to a kink site and completely halts the propagation of the
kink, it is said to have a kink blocking effect, and this is the mechanism
studied in this section.

Within a KMC simulation, kink blocking may be straightforwardly
modelled by allowing a new species, the impurity, to attach to the
kink and corner sites identified in Figure 5.1. By not introducing any



5.3 kink blocking 107

0

0.2

0.4

0.6

0.8

1

1.2

−2 −1 0 1 2 3

50%

80%
N

o
rm

al
is

ed
st

ep
 v

el
o

ci
ty

0 2 4 6 8

0.4
0.6
0.8
1

0

0.5

1
(a) (b)

Figure 5.9: (a)A typical velocity profile for the calcite steps grown in the
presence of a kink blocking impurity at various concentrations.
(b) The precise offset and gradient of the profile displays a subtle
dependence on the absolute rates.

further events into the event table, the impurity will automatically
block any further growth in its vicinity. In this section we only model
the attachment of impurities to calcium-terminated kink sites and,
for now, we shall assume that the impurity attaches to these kink and
corner sites at the same rate kimp, with dimension per unit time, and
dissolves at a rate νimp.

To study the kinetic effect of kink blocking, we computed the step
velocity of both the acute and obtuse steps for the range 10 < νimp <

109 s−1 and 10−2 < kimp/νimp < 103. The ratio kimp/νimp gave
rise to a similar (but subtly different) velocity profile irrespective of
the absolute rate constants, and is shown in Figure 5.9(a). This pro-
file reveals that kink blocking has no effect until the ratio reaches
kimp/νimp ≈ 10−1 after which there is a rapid decline in step veloc-
ity with an increased attachment rate (i.e. increased impurity concen-
tration). This same curve was previously predicted by the analytical
model of Nielsen et al. [3]. However, there is a nuance that arises in
our KMC model that cannot be reproduced with such analytical mod-
elling, and that is the precise dependence of the curve on the absolute
transition rates. To characterise this dependence, we define two num-
bers: x1 and x2, which correspond to the values of log10 kimp/νimp

when the velocity is reduced by 80% and 50%, respectively, as illus-
trated in Figure 5.9(a). The value of x1 therefore captures the offset
of the curve along the abscissa, while the difference x2 − x1 captures
the gradient of the curve. We plot in Figure 5.9(b) the variation of
these two numbers, for the acute (solid) and obtuse (dashed) steps,
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Figure 5.10: (a) The experimental [6] step velocities (squares) for the acute
step of calcite grown in the presence of aspartic acid, compared
with our optimised kink blocking profile from the simulations.
(b) The experimental [7] step morphology at [Asp]=0.01 M.

with respect to the absolute dissolution rate νimp. Note that the cal-
cite kink sites dissolve at a rate ∼ 103 s−1, and so we grey out the
interval νimp < 10

3 s−1 because here the impurities will reside at the
kink sites for long enough to affect the growth via a step pinning
mechanism (Section 5.4 below) and is therefore of minor relevance
here.

It was previously mentioned that aspartic acid is believed to have
a kink blocking effect on calcite. Fortunately, there exist experimen-
tal measurements of the calcite acute step velocities as a function of
the aspartic acid concentration [Asp] for comparison [6]. These are
reproduced in Figure 5.10(a) along with the simulated profile corre-
sponding to the optimised rates:

kAsp = (108.1 s−1M−1)[Asp M] (5.6)

νAsp = 105.8 s−1

Clearly there is excellent agreement between the experiment and sim-
ulation. The optimised rates are also entirely plausible. For example,
we predict the aspartic acid to attach to the kink sites approximately
10× quicker than the calcium and carbonate ions do, per molarity.
This is likely since aspartic will have a lower dehydration frequency
than either ion. Aspartic acid was also found in molecular simula-
tions by Nada et al. [117, 118] to exhibit strong indirect binding to
the calcite terrace, suggesting that it will likely have a larger surface
diffusion coefficient and thus be delivered to the kink sites at an in-
creased rate. We now turn our attention to the morphological impact
of kink blocking, returning to the case of aspartic acid afterward.



5.3 kink blocking 109

60

80

100

120

140

160

180

0

0.2

0.4

0.6

0.8

1

1.2

−1 0 1 2

0

0.2

0.4

0.6

0.8

1

1.2

−1 0 1 2
150

160

170

180

190

200

100

110
120

130

140

150

160
170

180

0

0.2

0.4

0.6

0.8

1

1.2

−1 0 1 2

N
o

rm
al

is
ed

 le
n

g
th

s

/ 
d

eg
re

es

Morphology metricsMorphologyActive site

N
o

rm
al

is
ed

 le
n

g
th

s

/ 
d

eg
re

es

N
o

rm
al

is
ed

 le
n

g
th

s

/ 
d

eg
re

es

Figure 5.11: The relationship between the calcite site at which a kink block-
ing impurity is active and its morphological impact. The im-
purity will occupy the white squares in the active sites shown.
The renderings, going from white to dark grey, correspond to
kimp/νimp = −1, 0, 1, 2.

To investigate the morphological effect of kink blocking, we con-
sidered the case of a kink blocking impurity attaching preferentially
to individual surface features. Specifically, to the Aa, Ao, Oa, and Oo
kink sites, as well as the OO and AA corner sites, each in turn. Note
that we treat the impurity as achiral, so it actually binds to two sites
(the mirror image sites). These mirror image sites are depicted in Fig-
ures 5.11 and 5.12. We choose the same dissolution rate predicted for
aspartic acid, νimp = νAsp = 105.8 s−1, and compute the morphologi-
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Figure 5.12: The relationship between the calcite site at which a kink block-
ing impurity is active and its morphological impact. The render-
ings, going from white to dark grey, correspond to kimp/νimp =

−1, 0, 1, 2.

cal impact for attachment rates in the range 10−1 6 kimp/νimp 6 102.
For each morphology, we also compute the morphology metrics de-
fined in Figure 5.5. The results are shown in Figure 5.11 for sites active
at the acute steps, and Figure 5.12 for the obtuse steps.

There are a few observations to make. Firstly, when the impurities
stabilise a particular kink direction, the steps maintain linearity but
become angled in a predictable way. Surprisingly, however, once the
steps have achieved a particular incline (the maximum being around
10◦), an increased attachment rate does not further increase the gra-
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(a) (b)

Figure 5.13: Schematic rationale for why the (a) corner- and (b) kink-
blocking impurities (black circles) have the morphological ef-
fects reported in the previous two figures. (a) Kinks propagate
until they reach a pinned corner which causes them to also
become pinned corners, inviting the attachment of additional
corner-blocking impurities which stabilise the diagonal step. (b)
When kinks are only pinned in one direction, the opposing
kinks grow out, resulting in an inclined step.

dient but simply reduces the step velocity. In the case of the corner
sites being active, they have the effect of stabilising and expressing
the polar faces that run perpendicular to the c-glide plane. One fi-
nal observation is that the morphological effects on the obtuse step
begin at a higher impurity attachment rate, with a more abrupt on-
set, as a consequence of the acute step having a higher abundance of
calcium-terminated kink sites to which the impurity binds.

A rationalisation for the above morphological effects is provided
schematically in Figure 5.13. In the instance of corner-blocking impu-
rities, Figure 5.13(a), kink sites propagate until they reach a pinned
corner, resulting in them also becoming transiently-pinned corners.
These kink sites have now become active corner sites to which ad-
ditional impurities may adsorb, thus stabilising the diagonal step. In
the case of kink-blocking impurities, Figure 5.13(b), the kinks are only
pinned in one direction. As a result, when the opposing kinks prop-
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Figure 5.14: By stabilising kink blockers at particular sites (shown) the step
morphology can be modified to match that observed experimen-
tally (Figure 5.10(b)).

agate, the step transitions from a rough step to a slightly inclined
step.

Returning to the case of aspartic acid. A trace of the calcite step
morphology in the presence of [Asp]=0.01 M as observed under AFM
imaging by Orme et al. [7] is shown in Figure 5.10(b). More accurately,
the AFM images revealed a slight asymmetry about the c-glide plane
due to the chiral nature of aspartic acid, but for our purposes we
enforce the symmetry and consider just one half of the morphology.
Notice that the obtuse steps remain flat and seemingly unaffected by
the aspartic acid, while the acute steps exhibit a dramatic inhibition
in the AA direction and a substantial curvature that is not seen in any
one of our morphology snapshots in Figures 5.11 and 5.12. However,
as will be shown next, it is possible to generate the same effect by
activating the right combination of sites.

To reproduce the morphological effect of aspartic acid, we began by
adsorbing the impurity to all calcium-terminated kink sites with the
same rate, equivalent to the experimental concentration. The dissolu-
tion rates from all of the sites were also initially equal, and matched
our predicted dissolution rate for aspartic acid. We then increased the
dissolution rate (reduced the stability) of the aspartic acid at the Ao
sites by a factor of 7; this number was chosen through trial-and-error,
comparing by eye the resulting morphology to the experimental con-
tour. This had the effect of tucking in the AA corner, reducing rAA.
The stability of the aspartic acid at the AA and AO (OA) corner sites
was then increased by reducing the dissolution rate by a factor of 5.
This gave rise to the stabilisation of the corners and a smooth curva-
ture, as depicted in Figure 5.14, in accord with the experimental find-
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ings (Figure 5.10). It should be noted, however, that this parametri-
sation is not unique. Each parameter could be adjusted in various
ways to produce a similar morphology. Moreover, we cannot deduce
whether the dissolution rates are responsible for the various stabili-
sations or the attachment rates. In fact, the molecular simulations of
Nada et al. [117, 118] suggest that aspartic acid shows a strong reluc-
tance to bind to particular sites in the first place due to the local water
structure.

5.4 step pinning and gibbs-thomson violation

Another mechanism by which impurities may inhibit growth is by
attaching to the surface (whether that be the kinks, steps, or terraces)
with a high density and for a relatively long duration, thus forcing
the calcite to grow in the space between the impurities. If the impu-
rities are spaced closely together then the calcite can only propagate
if it can achieve a sufficiently high kink density which increases its
solubility and thus effectively reduces its local supersaturation. As
a result, if the impurity spacing is below some critical length Lc(σ),
which is a function of the supersaturation, the calcite cannot grow
between them. The impurities are said to pin the growth.

We demonstrate this effect in Figure 5.15 where a calcite step is
confronted with a spread of permanently fixed impurities. If the step
is grown at a low supersaturation of σ = 0.3 then it is unable to pro-
ceed and the impurities completely pin the growth. However, at an
increased supersaturation of σ = 0.9 the calcite is able to penetrate.
In doing so, the step becomes highly roughened with the same fea-
tures observed when calcite is grown in the presence of abalone shell
proteins that are believed to function as step pinners [119].

Despite this apparent success, there is a fundamental discrepancy
between our simulations and the experiments. To correctly capture
the kinetic and morphological impact of step pinning impurities, the
calcite step segment that grows between a pair of impurities sepa-
rated by a distance L must exhibit the correct speed dependence on
L. Theoretically, one would expect it to obey the Gibbs-Thomson rela-
tion [120]

v(L)

v(∞)
= 1−

exp(σLc(σ)/L) − 1
exp(σ) − 1

(5.7)

and indeed, this relation agrees precisely with our KMC measure-
ments, as shown in Figure 5.16(a) for the obtuse step at a supersatu-
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Figure 5.15: Two-dimensional projections of the growth of calcite at high
and low supersaturations in the presence of step pinning impu-
rities. The cell heights are 82 nm.

ration of σ = 0.668. However, this is not what is found experimentally.
Instead, the step velocity achieves maximum velocity by L ≈ 2Lc, and
even more strangely, this same surge in growth is observed for all
supersaturations, in contrast to the prediction of Eq. (5.7). Moreover,
the experimental critical lengths are approximately 10× greater than
those produced in our simulations. It should be noted that this same
phenomenon has been observed in other low kink-density crystals
and has been identified by Chernov [121] as one of the major unre-
solved problems in crystal growth kinetics.

The conventional wisdom has been that this effect is something
that naturally arises when a crystal has a sufficiently low kink den-
sity, due to the diffusion and annihilation of kinks generated at the
corners [122]. However, such a mechanism should arise in our KMC
simulations if it were in fact responsible, and yet it does not. We have
also investigated and ruled out two other possible mechanisms, as
described next.

In all of the experiments from which the velocity profiles v(L) are
obtained, the L-sized step segments are generated at screw disloca-
tions. Such defects naturally generate strain fields that presumably
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Figure 5.16: (a) Step velocity dependence on step length. Our KMC simu-
lation matches the theoretical Gibbs-Thomson relation but not
the experiments. (b) The dependence of critical length on super-
saturation found experimentally and in our simulations. The
former are approximately 10× larger than the latter.

increase the local solubility of the crystal. This led us to propose that
only once the step segment has grown large enough to escape the un-
dersaturation imposed by the strain field is it able to nucleate growth.
Once these nuclei become established far away from the dislocation
centre, the kinks may then diffuse along the step and into the under-
saturated region, giving rise to growth. We modelled this by increas-
ing the dissolution rate of the kink sites by a factor exp(A/r), where
r is the distance between the kink and the edge of the step segment
(the centre of the screw dislocation), and A is a parameter chosen
to reproduce the experimental critical lengths. This mechanism was
able to give rise to the large critical lengths as well as the sudden on-
set of step velocity. However, the crystal was unable to grow into the
inner, undersaturated region, resulting in a hole with a radius com-
parable to the critical length. Needless to say, this is not what is seen
experimentally.

A second idea was to recognise that it is highly unlikely that the
kink sites that propagate in opposite directions along a step (i.e. Aa
and Ao, or Oa and Oo) have the exact same solubilities as each other.
As a consequence, the saturation state for a step will actually corre-
spond to, say, the Aa kink site growing at the same rate that the Ao
kink site is dissolving. This means that the features of the steps must
slowly diffuse across the step length. Now, when a nucleus forms on
a step, it must reach a certain critical size before it is likely to be-
come established as a permanent part of the crystal, which will take
time. However, if the surface features are drifting to the edge of the
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segment, whereupon they are annihilated, then this places a length-
dependent limit on how long the nuclei have to become established.
We modelled this process by adding a constant to the growth rate
of the Aa kink site, and subtracting the same constant from the Ao
kink site, which preserves the solubility of the step but gives rise to
drift. By increasing this constant, we could indeed increase the critical
length, also giving rise to a more abrupt surge in step propagation.
However, doing so came at a cost. Firstly, it broke the linear depen-
dence of Lc on σ−1 seen in Figure 5.16(b), and secondly, it caused
the step to become angled to an extent that would be easily resolved
under AFM. So we can also rule out this mechanism.

Unfortunately, until this problem has been resolved, step pinning,
and possibly other inhibitory mechanisms, will remain beyond the
reach of accurate, predictive modelling.

5.5 summary

We have developed a coarse-grained model for the growth of calcite
crystals, whereby the underlying processes and relevant rates have
been obtained through a combination of computational and experi-
mental data.

This chapter proves that even a fairly rudimentary description of
calcite growth has great potential for capturing both the kinetic and
morphological processes. Both in the case of a pure system, as il-
lustrated by the agreement between our simulations and the experi-
ments for non-stoichiometric solutions, but also for impure systems.
For example, our systematic study of kink blocking revealed the re-
lation between individual molecular mechanisms and their broader
morphological consequences. Also of interest is that our model cap-
tures kinetic nuances that analytical modelling cannot, due to the
effect that absolute transition rates have on morphology. By account-
ing for these nuances, we were able to provide an estimate for the
dissolution rate of aspartic acid from the calcite kink sites.

Lastly, we reveal that while our model can exhibit the step pinning
phenomenon, it is incapable of providing an accurate account of the
kinetic and morphological effects of real impurities. This is because
our measured dependence of the velocity of a step segment on the
length of the segment conforms with the theoretical Gibbs-Thomson
relation, whereas the experimental crystals violate it. And until the
responsible mechanism has been identified and incorporated into our
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model, step pinning will remain beyond predictive modelling. This is
a major setback that must be resolved.





6
S O F T T E M P L AT I N G

This chapter presents two separate simulation studies of surfactant
self-assembly at solid-aqueous interfaces, with the aim of better un-
derstanding the role that the surfactants play in soft templating at two
very different scales. In the first section we study the self-assembly
of sodium dodecyl sulphate (SDS), CH3(CH2)11[SO4]−Na+, mono-
layers at the titania-water interface for various polymorphs and ori-
entations of the substrate, and quantify the titania-monolayer adhe-
sion. This allows one to predict and rationalise the influence that the
monolayers may have on polymorph and orientation selection during
the nucleation and growth of titania. The second section identifies
the structures formed by cetyltrimethylammonium chloride (CTAC),
CH3(CH2)15[N(CH3)3]+Cl−, aggregates on two different orientations
of silicon, the results of which provide insight into recent experimen-
tal findings that periodic mesoporous organosilicates may be grown
on only a specific orientation of silicon. The atomistic structure of
each surfactant can be seen in Figure 6.1.

6.1 sds self-assembly on titania substrates

6.1.1 Introduction

Titania (TiO2) is a technologically important material with a wide
range of applications, notably in solar cells [123, 124], photocatalysis
[125, 126], biomaterials [127], pigments [128], and sunscreens [129].
It has two primary polymorphs, the equilibrium rutile phase and
the metastable anatase. The soft-templating approach to synthesising
meso-structured titania usually involves a co-assembly process of a

N Cl-
+

O
S

O O- Na+

O
SDS

CTAC

Figure 6.1: The atomistic structures of the SDS and CTAC surfactants.
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titania precursor with a surfactant template, a common choice being
SDS. For example, Mitra et al. [130] used SDS micelles self-assembled
in an oil/water microemulsion as a template to produce titania with
high surface area mesoporosity. Similarly, Wang et al. [131, 132] pro-
duced highly crystalline mesoporous metal oxides by using SDS, in
the form of a functional surfactant matrix, as an organic template.
Chen et al. [133] adsorbed SDS on anatase nanocrystalline building
blocks which served to direct the assembly of the blocks into a three-
dimensional mesoporous material.

The properties of nanoparticles, e.g. their photocatalytic properties,
are sensitive to the size and morphology of the nanoparticle, and both
of these attributes can be controlled with surfactants. For instance,
Liao et al. [134, 135] have grown titania nanoparticles in the presence
of various surfactants, generating a range of morphologies. Notably,
when grown in the presence of SDS, the particles were found to take
on cubic morphologies, irrespective of the precursor used.

The SDS surfactants have also been used to functionalise graphene
sheets and facilitate the self-assembly of nanocrystalline titania, re-
sulting in titania-graphene hybrid materials with the potential of be-
ing used as electrodes in Li-ion batteries [136].

To provide insight into the SDS-titania interactions, we simulate
the self-assembly of SDS monolayers at both the titania-vacuum and
titania-water interfaces for two different polymorphs, four different
orientations, and eleven different monolayer densities, totalling 176

simulations, and compute the relevant adhesion energies. Both the
nucleation and morphological effect that surfactants have on a pre-
cipitating crystal may be understood by the energy with which they
bind to the various faces; those to which the surfactants bind most
strongly are more likely to be expressed in the growing crystal. The
surfactant structure that forms at the interface, which is responsible
for titania mesoporosity, will also be influenced by the strength of
binding.

6.1.2 Methodology

We have employed molecular dynamics to simulate the adsorption of
SDS monolayers on the (100), (110), (011), and (001) faces for both the
anatase and rutile polymorphs, see Figure 6.2. The notation A(hkl)
and R(hkl) shall be used to refer to the (hkl) surface of anatase and
rutile, respectively. For each surface the simulations were repeated
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Figure 6.2: A top-down view of the eight titania surfaces upon which the
SDS monolayers are adsorbed. Each atom is represented by its
van der Waals surface; oxygen in red and titanium in grey.

for eleven surfactant densities in the range ∼ 2.2 nm−2 to ∼ 4.4 nm−2.
For a density much below this range the surfactants are too sparse,
leading to behaviour uncharacteristic of monolayers, such as local
aggregation of surfactants and tails interacting with the surface. A
density above this range is too high and results in the ejection of
surfactants from the surface. All stable monolayer configurations are
therefore expected to fall within this range.

Each titania surface had dimensions as close as possible to 3 nm ×
3 nm × 1.5 nm, with periodic boundary conditions. A vacuum slab
of 7 nm was added to attenuate self-interaction between the images
in the z-dimension. In the initial configuration of each simulation,
the surfactants were placed 0.4 nm clear of the surface in all-trans
configuration with their tails aligned normal to the surface and each
sodium cation positioned between the sulphate and the surface. They
were randomly distributed across the surface (using a Poisson disc
sampling algorithm to prevent overlap).

In addition to the above, two further interfaces were constructed,
each with an initially stable coverage rather than a random configu-
ration. These were a hollow c(2x2) coverage on an A(001) surface and
a bridged (2x1) coverage on a R(110) surface. The relaxed configura-
tion of the latter is illustrated in Figure 6.3. These stable coverages
enabled us to determine the effect, if any, that the initial monolayer
configuration had on the final adhesion.

In the present work we are interested in computing the adhesion
energies between the various monolayers and the various surfaces.
The adhesion energy between a titania surface and some component
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Figure 6.3: A monolayer with a bridged (2x1) coverage relaxed on the ru-
tile (110) surface at 300 K. Oxygen in red, titanium in light
grey, sodium in purple, sulphur in yellow, and the united car-
bon chains in dark grey.

X of the monolayer (e.g. a particular atomic species), at one particular
time-point t, is computed as follows

β(X, t) = A−1[E(X + TiO2, t) − (E(X, t) + E(TiO2, t))], (6.1)

where E(TiO2, t) and E(X, t) are the configurational energies of the
titania surface and the X component at time t, each in isolation, and
E(X + TiO2, t) is that when they are combined. A is the surface area.
The adhesion energies β(X) reported below were obtained by equili-
brating the system for 60 ps and then averaging β(X, t) over a pro-
duction period of 40 ps.

With this method the adhesion energy between the surface and the
individual components of the monolayer, e.g. β(Na), were computed.
The total adhesion energy between the surface and the monolayer,
denoted β, must equal the sum over all components of the monolayer

β =
∑

X

β(X) (6.2)

In contrast to the above simulations, an experimental setting would
include water. A more relevant energy would therefore be the differ-
ence between the monolayer-crystal and water-crystal adhesion en-
ergies, which quantifies the preference for each surface to bind to a
monolayer rather than water. To this end, a second batch of simula-
tions was carried out, analogous to those performed in a previous
study of carboxylic acids on calcite surfaces [63]. For each surface,
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I.

II.

Monolayer Water Crystal Water

Monolayer WaterCrystal Water

Figure 6.4: Schematic representation of the two simulations performed to
account for the displacement of water during nucleation.

and for each monolayer density, the two simulations depicted in Fig-
ure 6.4 were performed. Simulation I consisted of a slab of water
sandwiched between the surface and monolayer in both directions.
In Simulation II the monolayer was adsorbed directly onto the crys-
tal while the water was repositioned on the other side of the crystal.
Since both simulations had an equal number of ions, the difference in
configurational energies, EI and EII, gives

β′ = A−1(EII − EI) = βcm −βmw −βcw (6.3)

where βcm, βmw, and βcw are the crystal-monolayer, monolayer-water,
and crystal-water adhesion energies respectively, and A is the surface
area. Note that βcm ≡ β as defined in Eq. (6.2). This modified adhe-
sion energy, β′, accounts for the displacement of water during nucle-
ation and was averaged over a 40 ps production period having been
equilibrated for 100 ps.

6.1.2.1 Simulation details

The SDS molecules and their interaction with the titania surfaces were
described using the force field of Domínguez et al. [137, 64]. This
model consists of 12 united carbon atoms attached to an explicitly
modelled sulphate headgroup, plus the sodium counterion. The bond
lengths and the angles are constrained by harmonic potentials while
the torsional angles in the tail and the headgroup are described by the
Ryckeart and Bellemans potential and the cosine-form potential, re-
spectively. The SDS and titania interact via a Lennard-Jones potential.
The water interactions were also taken from the work of Domínguez
et al. and consist of SPC-water with Lennard-Jones potentials acting
between the water and all other ions in the system.

To model the titania we diverge from the work of Domínguez and
use the force field of Matsui and Akaogi [138] which reproduces sur-
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face energies, lattice energies, and polymorphic structures more ac-
curately than any alternative force field [139, 140, 141]. The electric
charges assigned to the titanium and oxygen ions in this force field,
however, are 1.91 times larger than in the model of Domínguez. In
order to retain the correct interatomic spacing, the ε-LJ parameters
assigned to the titanium and oxygen ions in Ref [64] had to be scaled
by 1.91

2.
The molecular dynamics simulations were carried out using the

DL_POLY Classic 1.9 [142] software package in the canonical ensem-
ble (for the vacuum simulations) and isobaric-isothermal ensemble
(simulations containing water). The smooth particle mesh Ewald sum-
mation method was employed to handle long-range electrostatics with
a precision of 10−5. The Nosé-Hoover algorithm maintained the de-
sired temperature (pressure) with a relaxation constant of 0.5 ps (2.0
ps). The Verlet algorithm with a time-step of 1 fs was used to integrate
the equations of motion.

6.1.3 Results and discussion

The crystal-monolayer adhesion energies in vacuum, β, were com-
puted as previously described and are presented in Figure 6.5(a). It
can be seen that they range from -0.7 to -1.6 Jm−2. The three main
contributions to β were found to come from the interaction between
the titania and the sodium cations, the sulphur cations, and the three
peripheral oxygen anions in the OSO3 functional group of the surfac-
tants. These three contributions are also plotted in Figures 6.5(c)-(e).

The adhesion energies for the two systems that were initially
constructed to have stable configurations, viz. R(110)/(2x1) and
A(001)/c(2x2), are also shown in Figure 6.5(a), denoted by squares.
Both data points correspond to an increased adhesion energy of ap-
proximately 0.05 Jm−2 over the corresponding initially-random struc-
tures. We conclude that the starting monolayer configurations in our
simulations have had a negligible effect on the final energies.

The components of the adhesion energies reveal that the sodium
cations, which bind to the undercoordinated oxygen anions on the
surfaces, invariably dominate the adhesion. It follows that the stronger
the sodium cations bind to a surface, the stronger the entire mono-
layer binds. This role of the cations in binding indicates that the ti-
tania surfaces are mostly anionic in character, in agreement with the
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Figure 6.5: Various adhesion energies as a function of monolayer density: (a)
the monolayer-crystal adhesion energies in vacuum, where the
squares correspond to the labelled coverages (see text), (b) the
energetic preference for binding to the monolayer rather than
water, (c) (d) (e) the adhesion energies between components of
the monolayer and the titania substrate.

experimentally observed linear uptake in SDS adsorption on titania
films when the pH is decreased below 7 [143].

The monolayers bind more strongly to the surfaces A(100) and
R(110) than to the others by a significant amount, approximately 0.4
Jm−2 and 0.2 Jm−2, respectively, for all densities. The components
of the adhesion energies reveal the features that make these two sur-
faces distinct from the rest. The first point to note is that the sodium
cations bind more strongly to these two surfaces than to the rest; this
is especially true for A(100). The second point is that the O3 anions
bind to these two surfaces more strongly than the sulphur cations
do, which is not the case for any of the other surfaces. It follows
that there are both anionic- and cationic-friendly regions on these
two surfaces, in contrast to the predominantly cationic-friendly na-
ture of the other surfaces. This lateral polarity of A(100) and R(110)
is evident in the x-density plots of the sodium and sulphur ions for
each surface, as shown in Figure 6.6. It can be seen in each case that
the sodium cations are concentrated around the undercoordinated
oxygen anions while the sulphur ions (sulphate groups) bestride the
undercoordinated titanium cations. In summary, the monolayers or-
ganise themselves to achieve electrostatic complementarity with the
surfaces. Moreover, they are able to match the charge periodicity of
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(a) (b)

Na
S

Figure 6.6: The normalised x-density of the sodium (solid) and sulphur
(dashed) ions on the (a) A(100) and (b) R(110) surfaces with re-
spect to the surface features shown. Compare to Figure 6.2. These
distributions were computed for a surfactant density of ∼ 3.3
nm−2.

these two surfaces. The matching of charge periodicity is known to
maximise adhesion [144].

On the A(100) surface, two rows of sulphates are forced next to
each other with negligibly few sodium cations between them to act
as an adhesive. This is an undesirable configuration and reveals that
the driving force for electrostatic complementarity with the substrate
dominates over the intra-monolayer interactions in directing the as-
sembly.

The modified adhesion energies β′, which account for water dis-
placement, are presented in Figure 6.5(b). Comparing them to Fig-
ure 6.5(a) reveals that the process of displacing water has little quali-
tative effect on the conclusions: A(100) remains the strongest-binding
surface (-0.2 to -0.5 Jm−2) with R(110) mostly second (-0.1 to -0.3
Jm−2) and A(001) the weakest (0 to -0.2 Jm−2). The water does, how-
ever, reduce the difference between the adhesion energies of all of the
surfaces quite significantly. This is presumably because the strength
with which the water and the monolayers bind to each surface are
roughly proportional. The fact that all of the adhesion energies β′ are
negative suggests that the monolayers will indeed enhance nucleation
irrespective of the surface that forms.

The findings of this section help to rationalise those of Núñez-Rojas
and Domínguez [64]. In their simulations, it was found that when
SDS was adsorbed at the titania/water interface, it formed micelles
on R(001) and hemi-micelles on R(100); in each case the SDS was
bound to the surface mainly through the hydrophobic tails that were
shielded from the water. However, on R(110), they found that the
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Figure removed due to
third party copyright restriction

Figure 6.7: SEM images of pyramidal sodium silicate cubic mesophases
grown on the Si(100) substrate. Shown after two hours, and then
a further two hours in fresh solution. Taken from [8].

headgroups bound predominantly to the surface while the hydropho-
bic tails were exposed to the water. The favourable binding of SDS to
R(110) found here explains this result and we would predict similar
behaviour for A(100) while the other anatase surfaces will likely give
rise to (hemi)micelles.

6.2 ctac self-assembly on silicon substrates

6.2.1 Introduction

Periodic mesoporous organosilicates are glasses that exhibit a peri-
odic network of mesopores, with applications in catalysis, sensing,
and drug delivery [19]. They are typically synthesised from an aque-
ous solution of structure-directing surfactants and a silicate precursor,
and have been grown on substrates such as graphite [145], mica [146],
and glass [147]. In these cases, the surfactants are believed to self-
assemble upon the substrate to form a mesostructured template that
subsequently aids nucleation and may control the orientation of the
overgrowing crystal.

The present study is motivated by recent experimental findings [8]
involving a solution of 1,2-Bis(trimethoxysilyl)ethane (BTME) precur-
sor, CTAC surfactants, sodium hydroxide, and water, in the molar
ratio of 1:0.6-0.9:2.10:353, respectively. The solution underwent vigor-
ous stirring at room temperature and was aged overnight. The aged
solution was then transferred to a Teflon container and a small sili-
con wafer suspended vertically in it. The solution was subsequently
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heated to, and maintained at, a temperature of 100
◦C. This was

carried out for two different silicon wafers, one with Si(100) faces
and the other with Si(111). Within two hours, the Si(100) wafer was
found to be covered with cubic-phased (Pm3n) mesoporous amor-
phous sodium silicate pyramids, whereas Si(111) gave rise to no dis-
cernible growth. The pyramids grew from myriad nucleation sites
and were all oriented in the same direction. As they encountered each
other they would merge, resulting in a single crystal (crystal, in this
context, refers to the periodic mesoporous structure). These pyramids
on Si(100) are shown in Figure 6.7 after 2 hours in the oven, and after
the resulting silicon wafer underwent a further 2 hours but in a fresh
solution.

In this section we aim to explain (i) why the crystals grow on
Si(100) but not Si(111), and (ii) why the crystals are unidirectional.
Since oligomerisation occurs on a much longer time-scale than micel-
lisation [148], it is expected that the silicon surface will be in direct
contact with a surfactant layer. Furthermore, it is difficult to imagine
that the amorphous sodium silicate itself should have any preference
regarding the substrate orientation, and so it seems likely that the
structures formed by the surfactants on the two different surfaces
will be responsible for the experimental findings. We therefore simu-
late the aggregation of CTAC surfactants at the silicon-aqueous inter-
face for the non-oxidised, reconstructed Si(100) and Si(111) surfaces.
The drivers for adsorption on these two surfaces will differ substan-
tially from those previously discussed. For instance, while adsorption
on metal oxides are governed predominantly by ionic bonding, hy-
drogen bonding, and hydrophobic interactions [149], adsorption on
silicon will be directed by soft epitaxial forces: van der Waals and
induced image charges. Modelling image charges [150], however, is
very challenging and we expect it to play a negligible role in our sys-
tem due to the mostly-localised covalent bonding in silicon and the
predominance of the neutral alkane group in the surfactants.

6.2.2 Methodology

Two simulations were performed. The initial configuration of each
consisted of a silicon surface, Si(100) or Si(111), above which a layer
of CTA+ surfactants were aligned normal to the surface in all-trans
configuration with the hydrophilic headgroups pointing towards the
surface. The chloride counterions were placed between the surface
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Figure 6.8: A schematic representation of our initial simulation configura-
tions. The surfactants are randomly scattered within the water
with their hydrophilic headgroups (blue circles) facing the sili-
con substrate.

and the headgroups. The structure was then surrounded by a lattice
of water molecules, with any overlapping molecules removed. The
amount of water was chosen such that the thickness of the water
layer, upon relaxation, was approximately 5 nm. A vacuum slab of
5 nm was then added above the water; in addition to segregating
the periodic images, the vacuum slab enabled the system to maintain
zero pressure while sampling the canonical ensemble. The water does
not fill the vacuum due to the energy cost associated with the water
vaporising or with the surface becoming too non-planar. The purpose
of aligning the surfactants in such an unfavourable initial configura-
tion was to be sure that we did not bias the final configurations by
trapping the monolayer in a local free energy minimum. The initial
simulation configuration is summarised schematically in Figure 6.8.

The concentration of surfactants at an interface is known to vary
non-linearly with the bulk concentration, as described by the adsorp-
tion isotherm. However, while the bulk concentration of CTAC used
in the experiments is known to be 2.0 mM, we are unaware of any
published CTAC/silicon isotherms. We instead used the CTAC/silica
isotherms [151] as an approximate guide which gave an adsorption
density of 1.9 nm−2 for the desired bulk concentration.

6.2.2.1 Silicon surfaces

Both Si(100) and Si(111) are known to undergo significant reconstruc-
tion, as depicted in Figure 6.9. In the case of Si(100) we constructed
the c(4 × 2) buckled configuration using density functional theory
(DFT), details of which can be found in the next section. We note
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Figure 6.9: Structure of the reconstructed (a) Si(100)-c(4×2) and (b) Si(111)-
p(7×7) surfaces with the conventional unit cells outlined.

that while there remains some debate regarding whether or not the
surface dimers buckle experimentally [73, p. 268], the buckling ap-
pears to be irrelevant to our findings. In the case of Si(111), the sur-
face undergoes a very elaborate reconstruction that requires a large
p(7 × 7) unit cell, making it impractical to build this surface with
DFT as we did for Si(100). Instead, the configuration was constructed
by reproducing the geometry determined from low-energy electron
diffraction analysis [152].

In our simulations, surfaces larger than a single unit cell were used.
For Si(100), the slab was composed of 4× 8 unit cells which had di-
mensions of approximately 6.2× 6.2 nm. The Si(111) slab consisted of
2× 2 unit cells and had cell vectors of length 8.1 nm and at an angle
of 54.7◦ to each other. These slabs were specifically chosen to be large
enough to support both semicylindrical and hemispherical micelles
so as not to bias the final micelle structure.

6.2.2.2 Interatomic potentials

The CTA+ surfactants and the chloride ions were described using
the GROMOS96 G45a3 [153, 154] force field which is a united carbon
atom model. These potentials have been employed in several recent
studies of alkytrimethylammonium halide micellisation [69, 70, 155,
156, 157, 67]. The water was described by the rigid SPC/E model
[158], and the silicon surfaces were frozen so no Si-Si interactions
were required. Freezing the silicon surfaces is likely to be a safe ap-
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Figure 6.10: (a) A schematic representation of the atomic model used to val-
idate the silicon potentials. A methane molecule is positioned
above a silicon atom on the top layer of Si(100) and the energy-
distance curve is computed. (b) The resulting adsorption curve
for the DFT-D (squares) and the classical G45a3 (line) calcula-
tions.

proximation because the reconstruction of the Si(111) and Si(100) sur-
faces involve large reductions in surface energy of 51 and 70 meV/Å2,
respectively [159], and so they are unlikely to further reconstruct dur-
ing the experiments.

The interactions between the surface Si atoms and all other atoms
were modelled using the Lennard-Jones potential parameters also
provided by G45a3. However, it was not clear from the outset whether
these potentials would be suitable for modelling silicon surfaces. The
next section describes our attempt to validate them.

6.2.2.3 Force field validation

In order to confirm that the G45a3 potentials were suitable for the
current study we compared the adsorption energy curves for a CH4
molecule on a Si surface calculated using the classical potentials with
those computed using DFT. The CH4 molecule is assumed to be repre-
sentative of the -CH2- methylene bridges within the surfactant alkane
chains. This is because the two additional hydrogen atoms saturate
the bonds that would otherwise be formed with the carbon atoms,
resulting in a molecule with the same tetrahedral configuration.

The DFT calculations were performed using a five layer slab
of Si(100) composed of 2x1 lateral unit cells, with dimensions of
15.47×15.47 Å, constructed using the procedure in Ref [160]. Each sili-
con atom in the bottom layer was passivated with a pair of hydrogen
atoms. The slab was periodic in three dimensions with a vacuum
slab of 20 Å added to attenuate self-interaction between the images
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in the z-dimension. A methane (CH4) molecule was then positioned
directly atop an uppermost silicon atom and the carbon-silicon dis-
tance varied, as illustrated in Figure 6.10(a). The difference in en-
ergy with respect to an isolated surface and methane molecule was
then recorded. The calculations were performed using DFT as im-
plemented in Quantum Espresso 4.1 [161]. The generalised gradient
approximation based Perdew, Burke, and Ernzerhof (PBE) exchange-
correlation functional was employed. The core electrons were mod-
elled with Troullier-Martins [162] norm-conserving pseudopotentials
with the configurations [1s2] 2s2 2p2 and [Ne] 3s2 3p2 for carbon and
silicon, respectively. Only the Γ -point was sampled and a kinetic en-
ergy cutoff of 30 Ry was used. Due to the locality of the exchange-
correlation functional, intermolecular dispersion effects are not di-
rectly reproduced. To account for this we used the DFT-D dispersion
correction of Grimme et al. [163] which consists of a parametrised
pairwise r−6 energy contribution. The computed adsorption energies
are plotted in Figure 6.10(b).

The adsorption energy was computed in an analogous way atom-
istically for the same silicon surface (minus the hydrogen atoms) and
for the G45a3 model of the CH2 molecule which is a constituent of
the alkane tails. The resulting energy curve is also plotted in Fig-
ure 6.10(b). There is very good agreement between the two sets of
data. Both give the same energy minimum and equilibrium spacing
to within 0.01 kJ/mol and 0.2 Å, respectively. We conclude that the
G45a3 silicon parameters are suitable for modelling silicon surfaces.

6.2.2.4 Simulation details

This work employed the same simulation setup as the previous sec-
tion, see Section 6.1.2.1, except only the canonical ensemble was sam-
pled and a larger integration time-step of 2 fs was used.

6.2.3 Results

In the initial configurations, the hydrophobic tails were exposed to
the water above. Within the first 200 ps many of the surfactants had
inverted and aggregated in an attempt to shield their tails from the
water. In the case of Si(100), this resulted in an elongated micelle that
was partially attached to the surface and which increased its contact
over the subsequent 300 ps, as shown in Figure 6.11. This process of
aggregation, followed by a gradually increasing surface contact, also
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Figure 6.11: Time-evolution of the surfactants at the Si(100)/water interface.
A rudimentary semicylindrical micelle is formed. The silicon
surface is shown in grey, the alkane tail in green, and the ni-
trogen atom from the headgroup in blue. All other atoms are
hidden for clarity.

unfolded at the Si(111) interface except that, due to the larger unit
cell and therefore the larger number of surfactants, three separate
micelles were created (composed of 13, 35, and 58 surfactants).

The aggregation of the surfactants and their subsequent adsorption
to the surfaces would have been driven partly, if not mostly, by en-
tropy. This is because both processes are accompanied by the release
of confined water molecules. Such a discharge increases the degrees
of freedom of the system and therefore the entropy. In fact, in bulk
CTAC micellisation, over 65% of the free energy change is due to an
increase in solvation entropy [164].

A crucial difference between the micellisation at the Si(100) and
Si(111) interfaces was the organisation of the surfactants as they came
into contact with the surfaces. On Si(100) the surfactants successively
aligned in parallel, driven partly by their interaction with the preced-
ing surfactants, resulting in a linear array that naturally gave rise to
a semicylindrical structure. This final structure, shown in Figure 6.12,
is slightly incomplete suggesting that our (tentative) choice of surfac-
tant concentration was indeed too low.

By contrast, the surfactants on Si(111) exhibited no such linear or-
ganisation and instead dispersed radially outward as they increased
their coverage of the surface. This resulted in a pair of hemispher-
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Si(111)Si(100)

Figure 6.12: Side-views of the semicylindrical micelle formed on Si(100), and
an overhead view of the hemispherical micelles (highlighted for
clarity) formed on Si(111). These are the final configurations
after 5 ns of simulation. See Figure 6.11 for the colour scheme.
Density in the xy-plane of the vector between the headgroup
and tail of each surfactant on the two substrates, Si(100) and
Si(111), also shown. The respective densities are characteristic
of semicylindrical and hemispherical micelles.

ical micelles (the smallest of the three micelles remained detached
from the surface) as shown in Figure 6.12. The densities in the xy-
plane of the vector between the headgroup and tail of each surfac-
tant on the two substrates, Si(100) and Si(111), are also shown in Fig-
ure 6.12. The respective densities are characteristic of semicylindrical
and hemispherical micelles.



6.2 ctac self-assembly on silicon substrates 135

+60°+60°

-60°-60°

0°0°0°0°

-90 -60 -30 0 906030

P
ro

b
a
b

ili
ty

Orientation (degrees)

Si(100)

Si(111)

(a) Si(100) (b) Si(111) (c)

Figure 6.13: The topography of (a) Si(100) and (b) Si(111) from the perspec-
tive of a -CH2- unit in the surfactant tail. The long surface
crevices are highlighted in green. (c) The angle distribution of
the surfactants that fall within 1 nm of each surface.

6.2.3.1 Role of surface topography

To explain the different micelle structures that form on Si(100) and
Si(111) we have analysed the topographies of the two surfaces. Fig-
ures 6.13(a) and (b) show the variation in adhesion energy between
each silicon surface and a single methylene bridge (-CH2-) from the
alkane tails, where dark regions correspond to strong adhesion. This
was computed by sweeping the -CH2- probe across a two-dimensional
grid and then, for each (x,y) coordinate, minimising the energy in the
z direction. We have also computed the orientation of the surfactants
near to the surfaces. More specifically, for each unit xi of the hydro-
carbons within 1 nm of the surface, we projected xi+1− xi−1 onto the
xy-plane and computed the angle with respect to the +x axis. The
time-averaged distribution of these angles is shown in Figure 6.13(c)
for both surfaces.

Si(100) displays a distinct corrugation with rows of crevices. The
surfactants evidently align themselves with these features and thus
adopt a commensurate structure. A similar attempt is made by the
surfactants on Si(111) to match the long crevices, as evidenced by the
peaks at -60

◦, 0
◦, and +60

◦ in Figure 6.13(c). By attempting to match
the topography and symmetry of the surfaces, the hemispherical and
semicylindrical structures naturally ensue.

When a semicylindrical micelle forms at the graphite-aqueous in-
terface, it aligns with one of the three equivalent symmetry axes of
the crystal plane. This alignment is believed to result from the for-
tuitous match between the distance of the centres of the hexagons
(2.46 Å) and the distance between alternate units of the hydrocar-
bon chains (2.51 Å) giving rise to efficient chain packing and strong
adhesion [165]. We have discovered a similar fortuity regarding hy-
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Figure 6.14: The structure of the surfactants adsorbed to Si(100). (a) Two
distinct layers visible in the z-density of the surfactants. (b) The
geometry of the surfactants (green, aligned normal to the page)
with respect to the Si(100) surface. (c) A histogram showing
the intermolecular distance between each CH2 and its nearest
counterpart. The arrow indicates the average spacing between
neighbouring surfactants adsorbed on Si(100), as shown in (b).

drocarbons on Si(100), albeit inter- rather than intra-molecular in na-
ture. Figure 6.14(a) shows the z-density of the hydrocarbons at the
Si(100)-water interface. The peaks reveal two distinct layers on the sur-
face, vertically separated by 0.77 Å. By measuring the features of the
Si(100) surface, we find that the hydrocarbons must be horizontally
separated by an average of 3.86 Å. This arrangement is illustrated in
Figure 6.14(b) and it follows that the average distance between the
hydrocarbons in contact with the surface is 3.94 Å. This is less than
0.1 Å short of the mode separation of all of the hydrocarbons in the
micelle, as shown in Figure 6.14(c). The hydrocarbons are therefore
able to achieve registry with the substrate without straining.

The applicability of our findings to an experimental setting will,
of course, depend on how the silicon surfaces are prepared. When
silanol groups form on the surfaces they prevent direct interaction be-
tween the silicon and the surfactants. This can reduce the anisotropy
and thus eliminate any influence from the surface topography on the
micelle structure [166].

6.2.4 Discussion

The above results reveal that CTAC surfactants form hemispherical
micelles on Si(111) but semicylindrical micelles on Si(100). To the
best of our knowledge, this is the first reported instance of micelle
morphology being determined by the topography of a non-polar sub-
strate, and it leads straightforwardly to a plausible account for the
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Si(100) Si(111)

Figure 6.15: On Si(100), we propose the micelles align with the semicylin-
drical micelles that pattern the surface. This provides strong
binding and thus begets heterogeneous nucleation. Sub-critical
homogeneous nuclei may also adsorb to the substrate, becom-
ing stabilised before dissolving. On Si(111), however, there is no
unidirectional alignment and no congruence with the substrate,
resulting in no heterogeneous nucleation.

growth of mesoporous silicates on Si(100) substrates, which we now
expound.

The concentration of CTAC in the experimental solution was 2.0
mM, slightly above the (pure) CMC of 1.3 mM [164]. Computer simu-
lations [167] and experiment [168] have revealed that spherical CTAC
micelles transition to cylinders in the presence of siliceous species
and anionic salts, such as sodium salicylate, and so the bulk solu-
tion will likely contain cylindrical micelles. These micelles, which
will be coated in sodium ions and siliceous species, may then meet
the surfactant-coated Si(100) substrate. By aligning with the rows of
hemicylinders, the adsorbing micelle will achieve a stable configura-
tion. It may also be the case that cylindrical micelles aggregate in
bulk solution but, unable to reach the critical nucleus size, will dis-
solve unless they adsorb to the substrate. The surface therefore begets
heterogeneous nucleation, and all nuclei will necessarily be aligned
with the same axis. These two mechanisms, heterogeneous nucleation
and sub-critical homogeneous nucleation with oriented attachment,
are shown in Figure 6.15. Note that the sodium and siliceous species,
which would serve as an adhesive between the micelles, are not de-
picted in the figure.

So far it is easy to see how cylindrical mesophases may form on
Si(100). To explain the experimentally-observed cubic phases, how-
ever, we suggest that the cylindrical mesophase undergoes a transi-
tion to the cubic phase. Such a phase transition has been observed
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[169] to occur and is initiated by branching between the cylinders,
leading to a perforated lamellar phase and then to the cubic phase.
We note that this transition has only been observed to the Ia3d space
group and, moreover, that CTAC liquid crystals in pure solution only
form Ia3d, not the observed Pm3n space group. While it is possi-
ble that the Ia3d crystal undergoes a further transition to Pm3d, it
seems more likely that the hexagonal mesophase transitions directly
to Pm3n, and that this space group has become stabilised by the
sodium silicate which has demonstrably had a dramatic effect on the
phase equilibrium.

This account agrees with the prevailing concesus that PMOs form
via cooperative templating, in which the silicate precursor alters the
phase stability and therefore plays a role in constructing its own tem-
plate, as opposed to precipitating within a pre-formed liquid crystal
(although examples of this latter mechanism are known).

In contrast to the above narrative, cylindrical micelles that adsorb
on the hemispherical-decorated Si(111) substrate will not be able to
achieve congruence with the structure and will therefore not bind
strongly. There is also no unique direction to the pattern and therefore
no driving force for long-range ordering.

6.3 chapter summary

The flexibility of soft templates, the multitude of structures that they
can adopt at various scales, and their dynamical co-assembly with
other components of a system, pose a theoretical challenge in predict-
ing and rationalising their effect on inorganic crystallisation. With ad-
vances in computing power and methodologies, however, these prob-
lems will ultimately yield to simulation.

In Section 6.1, monolayers of the anionic SDS surfactant have been
adsorbed on the (100), (110), (011), and (001) surfaces for both the ru-
tile and anatase polymorphs, and for densities ranging from about 2.2
to 4.4 nm−2. The adhesion energies have been computed in each case,
revealing that these monolayers bind most strongly to anatase (100),
with an adhesion energy of up to -1.56 Jm−2, while rutile (110) is in
second place with an adhesion energy of up to -1.27 Jm−2. These find-
ings were rationalised based on the lateral charge polarity exhibited
by these particular surfaces. The monolayer configurations formed on
the A(100) and R(110) surfaces would suggest that surface-monolayer
electrostatic complementarity primarily directs the assembly.
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In Section 6.2, CTAC surfactants at the silicon-water interface self-
assembled to produce two different morphologies depending on the
silicon orientation: hemispherical micelles on Si(111) and semicylin-
drical micelles on Si(100). Comparing the structure and orientations
of the adsorbed surfactants to the surface topographies revealed that
the surfactants adopted their respective morphologies in an attempt
to match the symmetry of the substrates. We also observed that, in the
case of Si(100), the surfactants were fortuitously able to achieve per-
fect registry with the surface features without straining, suggesting a
strong driving force for organisation.

These results demonstrate that epitaxy can play a crucial role in
determining micelle structure even in the case of non-polar surfaces
with which the surfactants interact weakly via van der Waals forces.
Moreover, they allowed us to explain experimental observations that
cubic mesophases form on the Si(100) surface but not Si(111).





7
C O N C L U S I O N S

7.1 thesis summary

Chapter 1 outlined the major ambition of materials science: to achieve
nanoscale control of the size, shape, phase, morphology, and assem-
bly of materials. Nature sets a precedent for what can be achieved,
along with clues as to the requisite machinary. However, the mech-
anisms require a molecular-scale resolution that cannot be achieved
experimentally. But this is where computer simulations prevail. This
thesis has showcased some state-of-the-art computational methodolo-
gies and applied them to investigate the molecular processes responsi-
ble for controlling inorganic crystal growth, revealing both the utility
and present limitations of the computational sciences.

In Chapter 3, microsecond-long simulations were performed to re-
veal the behaviour of Ca2+, CO2−3 , and CaCO03 adions in the vicinity
of the two calcite steps. The calcium ions were found to display lim-
ited metastability in the vicinity of the steps, instead favouring bulk
solution, while the carbonate ions were stable when adsorbed to the
steps, but exhibited a preference for the acute step over the obtuse.
The CaCO03 ion pair was found to behave much like a lone carbonate
ion, producing a very similar free energy map. However, the presence
of the calcium ion increased the stability of the pair at the obtuse step,
resulting in the ion pair spending almost equal amounts of time at the
two steps. This would suggest that kink nucleation occurs at a similar
rate at the two step geometries.

Chapter 4 focused on kinks, the other active feature of calcite sur-
faces, employing a variety of rare event methodologies to compute
the dissolution rate at the two step geometries. The primary finding
of this chapter was that calcite kink dissolution is a long, complex
process involving millions of sub-transitions. As a result, the errors
in the individual transitions are magnified to such an extent that the
predicted transition rate for the entire dissolution process spans a
few orders of magnitude. Such precision can be matched with much
simpler analysis, revealing that even the most advanced rare event
methodologies have little utility in studying certain rare events of
great importance in mineralisation. This will have far reaching conse-
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quences in how molecular simulation is applied in the future. Never-
theless, this research also revealed some interesting features of calcite
kinks: that the adsorption of carbonate ions appears to be diffusion-
limited, and that water structure is responsible for approximately half
of the driving force that inhibits dissolution.

Chapter 5 combined the results of Chapters 3 and 4, along with
experimental data, to construct and optimise a coarse-grained model
of calcite precipitation. This model is integrated through time using
kinetic Monte Carlo and supports the introduction of impurities. It
displayed great potential in capturing both the kinetic and morpho-
logical attributes of calcite. This was illustrated both by the behaviour
of the crystal under stoichiometric and non-stoichiometric conditions,
but also in the presence of impurities. Specifically, the kink blocking
impurity mechanism was systematically studied, with the individual
molecular mechanisms linked directly to their morphological impact.
Interestingly, our KMC model captured kinetic nuances that analyt-
ical kinetic models fail to. Aspartic acid was confirmed to exhibit
behaviour characteristic of a kink blocker with regards to both its
kinetic and morphological effects, and we were able to predict that
aspartic acid dissolves at a rate on the order of microseconds. Finally,
we considered step pinning and, in particular, the dependence of the
velocity of a step segment on its length. The simulation was found to
perfectly match the theoretical Gibbs-Thomson predictions, but this
is in stark contrast to the experimental findings which we regard as a
major obstacle that must be resolved.

Moving away from calcite, Chapter 6 investigated two forms of soft
templating. The first was concerned with molecular-scale templating
whereby monolayers of SDS surfactants were allowed to self-assemble
on various titania faces. The aim of this section was to characterise
the binding to help rationalise polymorph and orientation selection.
The second study computed the preferred micelle morphologies of
CTAC surfactants when adsorbed on two different orientations of sil-
icon. We predicted that CTAC should form hemispherical micelles
on Si(111) without long-range order, but linear rows of semicylindri-
cal micelles on Si(100), with long-range order. These predictions have
since been confirmed experimentally and are responsible for the se-
lective growth of oriented mesoporous organosilicas on the Si(100)
substrate.



7.2 outlook 143

7.2 outlook

A major legacy of this thesis will likely be the conflict between Chap-
ters 4 and 5. On the one hand, our coarse-grained model of calcite
growth (Chapter 5) provides a major step towards predictive simu-
lation of mineralisation processes; showcasing both the capacity and
limitations of such a model to capture the kinetic and morphological
characters of growth. On the other hand, this progress is undermined
by the conclusion of Chapter 4, that certain important mineralisation
processes are currently beyond the reach of rare event methodologies,
and will remain so for the foreseeable future. This raises the question
of how the requisite rates of a KMC model will be obtained if not
through rare event sampling.

To give a specific example of where this presents a problem, con-
sider the growth of calcite in the presence of magnesium ions, which
is of huge importance in geology and biomineralisation. Small quan-
tities of the magnesium ions are incorporated into bulk calcite which
increases the solubility of the resulting crystal. However, the precise
mechanisms by which magnesium affects the solubility are unknown.
For instance, is the solubility affected by the lattice strain that results
from magnesium ions being much smaller than calcium ions? Or is
solubility primarily affected by the impact of the magnesium ions in
the immediate vicinity of an active site, such as a kink? If the latter,
then which active sites are most susceptible? Just kink propagation
or also kink nucleation? All kink sites, or only specific kink sites? Is
it the attachment or the detachment rates, or both, that are affected?
Clearly there are a huge number of unknown variables, each of vary-
ing significance. In an ideal world, we would analyse the calcite kink
dissolution rates for various configurations of incorporated magne-
sium, but we now know that this not tenable. Instead, progress may
require a more oblique approach. For example, the following infor-
mation is obtainable from molecular simulation:

• The local stress and enthalpy costs associated with magnesium
incorporation.

• The attachment rates of calcium, carbonate, and magnesium
ions to the active sites for various magnesium-bearing config-
urations.

Information gleaned from such data may provide clues as to the rele-
vant mechanisms, with the prospect of greatly reducing the number
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of unknown parameters. After which, unique kinetic or morpholog-
ical effects may be mapped to the parameter space, potentially al-
lowing the parameters to be uniquely optimised. This would likely
require a close collaboration between computational and experimen-
tal researchers, where the computational scientists would identify the
required experimental data points.

Finally, we reiterate the problem presented by the experimental ob-
servations that calcite step velocities violate the Gibbs-Thomson re-
lation, whereas our simulations comply with it (see Section 5.4). The
consequence is that our model is unable to correctly describe step pin-
ning, a very important inhibitory mechanism. While the significance
of this Gibbs-Thomson violation has been discussed before, no no-
table progress has been made in resolving it. We therefore emphasise
the need for a directed effort to resolve it. A first step in this direc-
tion may be for a computational/theoretical group to explicitly link
every plausible molecular process with the step velocity profile as a
function of step length.

Once this problem has been resolved and accounted for in a KMC
simulation, future work of importance would be to incorporate surfac-
tant effects into the model, whereby large molecules, such as peptides,
bind preferentially to particular local kink configurations.



A
C A L C I T E S I M U L AT I O N D E TA I L S

Unless stated otherwise, the reader may assume that all of the calcite
simulations used the following setup.

The calcium carbonate was described by the force field of Raiteri
et al. [170] which was parametrised by fitting against experimental
thermodynamic and structural data. The water was SPC/Fw [171].

The simulations were performed using LAMMPS (7 Dec 2015 re-
lease). The integration time-step was 1 fs. The canonical ensemble
was sampled using the Nosé-Hoover thermostat to maintain a tem-
perature of 300 K with a damping parameter of 100 fs. Long-range
electrostatics were handled with the PPPM method and an accuracy
of 10−4 (which means the force errors will be less than 10−4 times
the force magnitude between a pair of monovalent charges separated
by 1 Å).
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