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Abstract 

 

 

Functional magnetic resonance imaging (fMRI) measuring a blood-oxygen-level 

dependent (BOLD) signal is the most commonly used neuroimaging tool to 

understand brain function in humans. As mouse models are one of the most 

commonly used neuroscience experimental models, and with the advent of 

transgenic mouse models of neurodegenerative pathologies, there has been an 

increasing push in recent years to apply fMRI techniques to the mouse brain. This 

thesis focuses on the development and implementation of mouse brain fMRI 

techniques, in particular to describe the mouse visual system. 

Multiple studies in the literature have noted several technical challenges in mouse 

fMRI. In this work I have developed methods which go some way to reducing the 

impact of these issues, and I record robust and reliable haemodynamic-driven 

signal responses to visual stimuli in mouse brain regions specific to visual 

processing. I then developed increasingly complex visual stimuli, approaching the 

level of complexity used in electrophysiology studies of the mouse visual system, 

despite the geometric and magnetic field constraints of using a 9.4T pre-clinical 

MRI scanner. I have also applied a novel technique for measuring high-temporal 

resolution BOLD responses in the mouse superior colliculus, and I used this data to 

improve statistical parametric mapping of mouse brain BOLD responses. I also 

describe the first application of dynamic causal modelling to mouse fMRI data, 

characterising effective connectivity in the mouse brain visual system. 

This thesis makes significant contributions to the reverse translation of fMRI to the 

mouse brain, closing the gap between invasive electrophysiological measurements 

in the mouse brain and non-invasive fMRI measurements in the human brain.  
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1 Introduction 

This chapter introduces the thesis, and gives context and motivation for the 

research described. Section 1.1 gives the motivation for using fMRI to understand 

brain function. Then in section 1.2, the use of animal models for neuroscience 

research is described, with the importance of translation and reverse translation 

covered. Section 1.3 briefly covers alternative techniques for measuring mouse 

brain function, and in section 1.4, a review of task-based BOLD fMRI studies of the 

mouse brain is provided. Sections 1.5 and 1.6 introduce the mouse brain and key 

visual areas, and in section 1.7 the concept of neurovascular coupling in the context 

of BOLD fMRI is described. Finally in section 1.8, an outline of the thesis is given. 

1.1 Motivation for using fMRI 

The human brain is one of the most difficult organs to study [1]. There are 

numerous techniques which attempt to generate knowledge about brain structure 

and function. Unlike other organs such as the heart or lungs, it is often unclear how 

brain function derives from structure, and so surrogate markers for brain function 

are often used instead. More interestingly, it also not obvious how brain function 

generates such complex behaviours in humans, and one task of neuroscience is to 

hypothesise, test and model such mechanisms. 

Consequently, diseases which affect the brain can be extremely difficult to 

understand. Such diseases include Alzheimer’s disease, Parkinson’s disease, 

epilepsy and others. An understanding of healthy brain function allows diseased 

brains to be better defined, and lead to new treatments for these diseases. 

The human brain can be examined in multiple ways, depending on the scope of the 

research question [2]. It is common to study the brain at one of four levels of scale, 

which in increasing scale are: the molecular level, the cellular level, the cell 

population level and the network level. Additionally, neuroscience methods can 

study the brain before death (in vivo) or after (ex vivo), or in terms of brain tissue 

artificially kept alive (in vitro). Many gains in understanding brain structure have 

been achieved using ex vivo human brains. However studying brain function ex vivo 

is somewhat limited, and whilst in vitro studies are useful for answering questions 

on the molecular and cellular level, they can struggle to generalise to the cell 

population or network level. Therefore in vivo studies are critical for understanding 

brain function. 
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However, studying the human brain in vivo is challenging. Historically, case studies 

of individuals surviving accidental brain injuries, such as Phineas Gage suffering 

from a personality disorder [3] after an iron bar was driven through the front of his 

brain, have been used to make direct causal inferences on brain function. More 

recently, minimally invasive methods of studying the human brain have been 

developed and are widely used, such as functional magnetic resonance imaging 

(fMRI) [4, 5], electroencephalography (EEG) [6, 7], or positron emission 

tomography (PET) [8, 9]. The use of non-invasive imaging techniques reduces the 

ethical burden of performing scientific experimentation on humans, and makes it 

more straight-forward for studying patient populations. 

This thesis focuses on the use of fMRI, which typically uses regional changes in 

blood oxygenation (the BOLD signal, using image contrast endogenous to the 

brain) to make inferences on brain function. The discovery of BOLD contrast is 

credited to Seiji Ogawa, who demonstrated BOLD weighted images with highlighted 

vasculature in the rat brain in 1990 [5], and suggested that temporal changes in 

BOLD contrast might reflect neuronal activity. The first description of BOLD fMRI in 

the human brain was given by Brady in 1991 [10], however the first published work 

was completed by Bandettini et al. in 1992 [11] using a motor paradigm. Brady’s 

work was published soon after (Kwong et al. 1992) [12], and was the first work to 

describe BOLD responses in the human brain to blocks of visual stimuli. This was 

followed by work by Blamire et al. [13], which for the first time implemented an 

event-related fMRI paradigm. Since these studies, there has been a continued 

discussion on how to interpret the BOLD signal and make inferences on neuronal 

activity based on neurovascular coupling (see section 1.7) [14-19]. However, it is 

generally accepted that changes in the BOLD signal can be used as a proxy 

variable to represent changes in neuronal activity [20], although the idea of 

neuronal activity is itself difficult to define [21]. 

Inevitably, each technique used to study brain function has certain advantages and 

limitations. It is therefore important for the scientific community to use multiple 

complementary methods. Furthermore, it is important that these techniques can be 

applied across species for two reasons. One, that more invasive techniques can be 

used for validating conclusions made with non-invasive techniques, overall 

strengthening the body of scientific evidence. Two, animal models of disease can 

be investigated with both invasive and non-invasive techniques, where it would be 
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unethical to use human patients, in order to better understand disease progression 

and treatment. 

1.2 The use of mouse models 

Where invasive measurements in humans cannot be performed, animal models are 

often used as a substitute. Animal models used in neuroscience have ranged from 

insects through to monkeys, with varying degrees of complexity and ethical 

considerations. For examining brain function with fMRI, monkey models have been 

the focus of much previous research [22], although cats [23], dogs [24] and rats [25] 

have also been used. Indeed, rodent fMRI is increasingly on the rise, as rodents are 

cheaper, safer and easier to use relative to larger mammals [26]. 

Increasingly, the mouse is becoming an attractive neuroscience model. This is 

because of the possibility of using transgenic mouse models [27] as a way of using 

genetic manipulation to test scientific hypotheses on brain function [28, 29]. This 

makes the reverse translation of current human imaging techniques extremely 

important – transgenic mouse models of disease can be used to make inferences 

on pathology and treatment, with biomarker readouts matching those used in 

human patients. 

The work in this thesis uses the most commonly used mouse strain for animal 

research, the C57BL/6 mouse1, which was the first mouse strain to have its entire 

genome sequenced [30]. The use of this model is advantageous for two reasons. 

First, it is the genetic background for many transgenic mouse models, and therefore 

protocols should be generalisable in studying these models. Second, the 

widespread use of the C57BL/6 mouse means that it is increasingly seen as a 

standard subject for functional neuroscience experiments, allowing better 

comparison in the literature between the work in this thesis and other studies using 

alternative techniques.  

1.3 Alternative techniques for studying mouse brain 

function 

One of the reasons fMRI is commonly used in humans for investigating brain 

function is the non-invasiveness of the technique. However for asking questions 

about mouse brain biology, fMRI has not been used historically used due to its 

many technical challenges, and more invasive techniques have been used to 

                                            
1
 see http://www.criver.com/files/pdfs/rms/c57bl6/rm_rm_d_c57bl6n_mouse.aspx 
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investigate mouse brain function. A summary of the advantages and disadvantages 

of a range of experimental techniques used in mouse functional neuroimaging is 

given in Table 1.1. To the best of my knowledge, functional PET and SPECT 

imaging has never been applied in the mouse brain, and these techniques are 

therefore not considered here. 
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Table 1.1 Overview of functional neuroimaging methods used in the mouse brain (partially 
adapted from Martin et al. 2014 [1])  

Technique Data acquired Advantages Disadvantages 

fMRI - BOLD [31-40] 

 

BOLD signal, weighted 

by ratio of oxy-deoxy-

haemoglobin. 

 

Cross-species, 

whole brain 

acquisition. 

Generally non-

invasive. Can be 

easily combined 

with 3D structural 

MRI data. 

Expensive, 

requires strong 

magnetic field, 

mediocre spatial 

and temporal 

resolution  

(~500 microns in-

plane, 2 seconds) 

Optical imaging 

spectroscopy [41-43] 

Oxy-,  

deoxy-,  

total haemoglobin 

concentration 

Good spatial and 

temporal resolution 

(~150 ms) 

Limited depth 

penetration 

(cortical surface 

only) 

multi-photon microscopy 

[44, 45] 

Blood flow, tissue 

oxygen, 

microcirculation, 

cellular activity 

Excellent spatial 

and temporal 

resolution, can 

measure both 

neuronal and 

vascular variables 

Expensive, 

limited depth 

penetration  

Invasive electrophysiology 

[46-51] 

Single or multi-unit 

activity, local field 

potentials 

Highly localised 

recording, optimal 

temporal resolution 

Risk of tissue 

damage from 

electrodes, 

limited 

compatibility with 

other techniques, 

limited spatial 

coverage 

Electroencephalography 

(EEG) [52] 

Event-related 

potentials, current 

sources/sinks 

High temporal 

resolution, low cost 

in humans, non-

invasive 

Limited spatial 

resolution, poor 

spatial 

localisation of 

signal 

 

As can be seen in Table 1.1, fMRI is limited in terms of spatial and temporal 

resolution relative to all other techniques, and requires a strong magnetic field.  

Additionally, this is balanced against the type of data that is acquired, (in this thesis 
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only BOLD fMRI is considered), which is at best a proxy variable for neuronal 

activity. 

Although this thesis specifically considers the implementation of BOLD fMRI in the 

mouse brain using visual stimuli, it is worth briefly considering how the alternative 

techniques operate and the data they generate. 

Invasive electrophysiology and electroencephalography 

The history of electrophysiology is long and varied, and a detailed account is given 

by Verkhratsky and Parpura [53]. A brief summary of the technique is given here. In 

the case of neuroscience, electrophysiology refers to the measurement of electrical 

activity in neurons, in particular signals derived from action potentials. The 

measurement of these signals in electrophysiology is characterised by the use of 

electrodes, either solid conductors or hollow glass pipettes filled with an electrolyte 

solution. The interpretation of the electrical signals (voltage and current) measured 

depends on the size and positioning of the electrode. Electrodes with the finest tips 

(scale on the order of microns) can be used to perforate or adhere to cells to make 

intra-cellular recordings in single neurons. Larger electrodes may be placed in the 

space next to multiple cells to make extra-cellular recordings. As electrodes 

increase in size their coverage increases, but the specificity of the signal they report 

is reduced. The net activity of many cells is termed a local field potential (LFP). 

Electroencephalography (EEG) builds on invasive electrophysiology by placing 

electrodes on the scalp, and whilst being non-invasive in humans, is limited by poor 

spatial localisation of signal. As shown in Table 1.1, for investigating mouse brain 

function, invasive measures are far more common than the use of EEG.  

Electrophysiology with invasive electrodes directly measures neuronal activity, with 

temporal resolution of the order of milliseconds. However, there is a strict 

compromise between coverage of the brain and spatial localisation of the signal 

acquired. 

Optical imaging spectroscopy 

Optical imaging spectroscopy was first described by Grinvald et al. [54], 

implemented in both rat and cat cortex. As with microscopy techniques, a cranial 

window or thinning of the skull is required for light to reach the surface of the brain. 

Incident light (of wavelength ~590 nm) on the surface is then reflected into a photo-

detector, and changes in reflectance used to infer changes in haemoglobin content, 
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specifically relative changes in oxy – and de-oxy haemoglobin. Under certain 

assumptions this can be used to calculate direct concentrations of these 

haemodynamic variables, and then used to also infer changes in blood flow (CBF), 

blood volume (CBV) and oxygen consumption (CMRO2) [55].  

Multi-photon microscopy 

A detailed review of two-photon microscopy is given by Svoboda and Yasuda [56], 

from which Figure 1.1 is reproduced below. 

 

Figure 1.1. Two-photon excitation microscopy (adapted from Svoboda and Yasuda 2006, Figure 
1 [56]). The original caption reads as follows, “ 
Two-Photon Excitation [2PE] Microscopy 
(A) Simplified Jablonski diagram of the 2PE process.  
(B) Localization of excitation in a scattering medium (black). The excitation beam (red) is 
focused to a diffraction-limited spot by an objective where it excites green fluorescence in a 
dendritic branch, but not in a nearby branch. The paths of two ballistic photons and one 
scattered photon are shown (red lines). Scattered photons are too dilute to cause off-focus 
excitation. The intensity of the beam decreases with depth as an increasing number of 
excitation photons are scattered.  
(C) Fluorescence collection in a scattering medium. Fluorescence photons are emitted 
isotropically from the excitation volume (red lines). Even scattered fluorescence photons 
contribute to the signal if they are collected by the objective. Since the field of view for 
detection is larger than for excitation, the fluorescence light exiting the objective back-aperture 
will diverge substantially (green).  
(D) Schematic of a 2PE microscope with epifluorescence and transfluorescence detection.” 

More traditional microscopy techniques (either fluorescence or reflectance based) 

are limited in depth penetration due to light scattering from tissue above and below 
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the focal plane of the image. In two-photon microscopy, a fluorescent dye molecule 

is used which must absorb two photons (in infrared region, 700 – 1000nm)  before 

emitting a photon at a shorter wavelength than the excitation wavelength [57]. This 

means that the excitation photons can travel further into the tissue without being 

scattered, and with a line scanning mechanism, only excitation in a focal volume 

can occur. Due to nonlinear excitation, excitation photons which are scattered by 

tissue are too dilute to induce fluorescence. 

It is the use of calcium ion specific fluorescent dyes such as Oregon Green BAPTA 

[58] which allow two-photon microscopy to image brain function. This allows the 

calcium ion concentration within cells to be imaged, an important mediator of the 

electrical activation of a neuron. 

Summary 

Of the listed techniques, it is only fMRI that offers concurrent signal measures with 

whole brain coverage and good spatial localisation of signal. Under the assumption 

that the BOLD signal is an accurate reflection of neuronal activity, responses to 

stimuli at multiple locations can be measured near simultaneously in the same 

experiment. In addition to the importance of reverse translation of a commonly used 

neuroimaging technique from human to mouse, it is also reasonable to suggest that 

fMRI is a sensible choice for investigating networks in the mouse brain, and how 

deeper brain structures might communicate and function with respect to the cortex. 

1.4 A review of mouse brain fMRI 

There is an increasingly growing body of literature describing task-based BOLD 

fMRI (i.e. fMRI conducted with the use of external stimuli, with measurement of the 

BOLD signal) applied to the mouse brain [31-40]. However, these studies all note 

that generating robust and reliable data is difficult in the mouse brain. The small 

size of the mouse brain necessitates the use of MRI scanners with strong magnetic 

field (ranging from 7-11.7 Tesla, approximately 200,000 times stronger than the 

Earth’s magnetic field) to ensure adequate signal-to-noise. The difficulties of 

maintaining suitable physiological conditions for mouse fMRI have also been 

described, with a number of different protocols and strategies advocated. 

The first study implementing mouse brain fMRI was conducted by Huang et al. 

1996 [31]. This study used a visual stimulus, and reported extremely atypical data 

relative to current knowledge of mouse brain function [26] and data since acquired 
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in the rat brain using similar paradigms [59, 60]. The next description of a task-

based fMRI study in the mouse was given by Ahrens and Dubowitz in 2001 [34], 

using somatosensory stimuli (electric shocks to the mouse hindpaw), and this is the 

first study to report BOLD responses that correlate with the stimulus paradigm and 

were somewhat specific to somatosensory regions of the mouse brain. The use of 

paw stimulation in mouse fMRI, with BOLD responses in the somatosensory cortex 

as a functional read-out, has since been extensively used by Nair and Duong [32], 

Adamczak et al. [33], the Rudin group in Zurich [35, 36, 38, 40, 61], and Nasrallah 

et al. [37]. The aims of these papers have ranged from trying to better understand 

neurovascular coupling in the mouse brain to investigations of pain. However as 

Schroeter et al. [38] demonstrated in 2014, the use of paw stimulation as a stimulus 

paradigm for mouse fMRI is problematic due to non-specific BOLD responses and 

global changes in physiology directly induced by the stimulus. This means that 

commonly used analysis techniques such as statistical parametric mapping could 

over-report BOLD responses that are not directly due to neuronal activity.  

All of these studies used anaesthetised mice, with isoflurane, medetomidine and 

alpha-chloralose the most commonly used, and based on these studies 

medetomidine was chosen as a suitable anaesthetic agent for the work in this 

thesis. It should be noted that there is a single task-based fMRI study in the awake 

mouse by Harris et al. [39], which uses a visual cue to mediate a fear task. This 

study is discussed with the study conducted by Huang et al. [31] in some detail in 

section 3.3. 

At the beginning of this project, only the study by Huang et al. had described an 

attempt at mouse brain fMRI with visual stimuli, whereas increasingly rich fMRI data 

for visual stimuli in the rat was available [59, 60, 62-64]. Hence the first aim of this 

thesis was to develop a robust protocol for mouse fMRI with visual stimuli, using up-

to-date data processing and analysis commonly used in human fMRI studies. The 

next aim was to better understand the differences between mouse and human fMRI 

signals, and understand connectivity in the mouse brain visual system. In working 

towards these aims, this thesis significantly contributes to knowledge in terms of 

acquiring robust mouse brain fMRI data. The work described in this thesis provides 

a platform for future studies to further understand visual processing in the healthy 

mouse brain and to investigate transgenic mouse models of both disease and of 

impaired brain function. 
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1.5 The mouse brain 

The mouse brain has a mass of 0.42 g on average and consists of approximately 

71 million neurons, occupying a volume of approximately 0.4 cm3 [65]. For context, 

the rat, marmoset and human brain has an average mass of 1.80 g, 7.78 g and 

1400 g respectively [66]. Using typical BOLD fMRI acquisition parameters used in 

human studies, the mouse brain would be covered by approximately 6 ‘volume 

pixels’ or voxels [4]. This is one of the main reasons why fMRI in the mouse brain 

can be extremely challenging, as magnetic field strengths of > 7 T must be used to 

achieve reasonable spatial resolution and signal (for further details on how the fMRI 

signal is acquired, see section 2.1). 

One common tool used by neuroscientists to visualise how the brain is sub-divided 

into either structural or functional units is the brain ‘atlas’. Atlases provide a 

common reference space for describing a particular system. Brain atlases have 

been developed for multiple species using a variety of methods. For this work, 

mouse brain atlases generated using MRI [67, 68] and histological sections [69] are 

considered and evaluated for mouse fMRI applications in section 3.2.2. Visualising 

brain structure can be difficult, and in the bulk of this thesis cross-sectional views of 

mouse brain structural images will be used to provide spatial context to functional 

data, as shown in Figure 1.2.  



26 
 

 

Figure 1.2. Cross section views of the Allen Mouse Brain Atlas [69], viewed using the SPM12 
toolbox (25 micron resolution). Each panel shows the mouse brain from a different viewpoint: 
A) Transverse view B) Sagittal view C) Coronal view. Crosshairs in each panel correspond to 
the same spatial location.  

Figure 1.2 corresponds to a volume (11.4 x 8 x 13.2 mm3) incorporating an entire 

mouse brain. It is necessary to define some terminology with respect to these 

dimensions. In panels A) and B), moving from the bottom of the panel to the top 

corresponds to moving from the cerebellum at the back of the mouse brain to the 

olfactory bulbs at the front (posterior-to-anterior). In panels A) and C), moving from 

left-to-right corresponds to the left-right axis from the point of view of the mouse. In 

panel B), moving from left-to-right corresponds to moving from top-to-bottom in 

panel C) (superior-to-inferior). 

1.6 The mouse visual system 

The human visual system arguably plays one of the largest roles in how we interact 

with our environment [70]. A historical way of interpreting how important sensory 
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systems are relative to each other is through the schematic of the ‘homunculus’, 

first suggested by William Penfield and Edwin Boldrey in 1937 [71].  

 

Figure 1.3. Schematic of the human homunculus, adapted with permission from Penfield et al. 
[71].  

Whilst the size of the eyes in the homunculus appear relatively small with respect to 

somatosensory areas, our understanding of the world immediately out of physical 

reach is almost entirely dominated through passive sensing of light and sound, and 

a much weaker sense of smell. A full review of the human visual system is beyond 

the scope of this thesis. 

In the mouse, vision is generally ranked as less important than somatosensory or 

olfactory inputs. This is illustrated by a mouse homunculus, shown in Figure 1.4. 
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Figure 1.4. Schematic of the mouse homunculus, adapted with permission from Zembrzycki et 
al. (Figure 3g) [72]. The brown and pink blobs correspond to the mouse whiskers.  

Historically, cats and non-human primates have been the primary models for animal 

studies of the visual system, as they have large eyes and high visual acuity. Mice 

have relatively poor spatial resolution [73] and as prey animals, also have low 

binocular overlap [46]. 

Despite this, mice have increasingly been used to understand visual processing in 

general [26], due to their flexibility as a neuroscience model – the ability to label and 

manipulate specific types of cell or circuit in the mouse potentially allow stronger 

inferences to be made on questions of visual processing than might be made with 

other animal models. In particular, the availability of transgenic mouse models [27] 

make mice an attractive target of visual neuroscience research. This has further 

applications to studying diseases which affect the visual system, e.g. Alzheimer’s 

disease [74], which have a genetic component [75]. 

It is necessary to describe the basic visual system anatomy of the mouse, and note 

important differences with other mammalian visual systems that may limit the 

scientific questions that they could be used to answer. The retina is the first visual 

organ that differs sharply from that of the human. The retina is composed of ‘rod’ 

and ‘cone’ photoreceptor cells, which convert optical input into electrical signals. 

Rod cells are specialised for monochrome, low light intensity inputs, whereas cone 

cells detect different colours and are suited for higher light intensities. The human 

and primate retina has the bulk of cone cells concentrated in the fovea, which is 

used for high-contrast tasks. The human retina has approximately 4.6 million cone 

cells and 90 million rod cells [76]. The mouse retina in contrast has approximately 

180,000 cone cells and 6.4 million rod cells [77]. Whilst the relative proportions of 

cone-rod cells may appear similar between humans and mice (5.1% against 2.8%), 

the mouse retina does not have a fovea where cone cells are concentrated, 
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massively reducing their visual acuity. However, this means mice rely almost 

entirely on peripheral vision, and the mouse eye is efficient at detecting large 

objects at a distance, or small objects at close range, or moving objects. This is to 

be expected from a nocturnal prey animal [78]. Another large difference between 

mouse and human vision at the retina level is that mice (like cats) are dichromatic, 

whereas humans and primates are trichromatic. However, a transgenic mouse 

model with trichromatic retinas does exist [79], which means that studies of colour 

interpretation could be conducted on mouse models. 

Photoreceptor cells then propagate (via interneurons) to retinal ganglion cells 

(RGCs). All visual information entering the brain is encoded in neuronal activity of 

RGCs [26], and together with glial cells comprise the optic nerve [80]. There are 

nominally 22 sub-types of RGC noted in the mouse brain, against 20 in the primate 

retina. How they map between each other in terms of function is unclear [26, 81]. 

From the optic nerve, approximately 70% of RGCs project to the superior colliculus, 

with the remainder projecting to the lateral geniculate nuclei (dorsal and ventral) 

[82], part of the thalamus, which then projects onto the primary visual cortex [83] 

(see Figure 1.6 and Figure 1.7 for their locations within the mouse brain). This is 

different to primates and humans, where only a minority of RGCs project to the 

superior colliculus  [81].  

However, before these projections occur, it is necessary to consider the cross-over 

of different visual field inputs at the chiasma. Figure 1.5 shows how inputs from 

both monocular and binocular fields project to the lateral geniculate nuclei and from 

there to the visual cortex. The proportion of the visual field which is binocular is 

dependent on the balance of RGCs that project contralaterally (i.e. to the opposite 

hemisphere) rather than ipsilaterally (i.e. to the same hemisphere). Across 

mammalian species, this balance appears to correspond with the position of the 

eyes on the head: in the mouse, 2-3% of RGCs project ipsilaterally [46], in the 

rabbit this value is approximately 0.6%, whereas in cats the value is in the range of 

25-30% [81]. 
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Figure 1.5. Plate 1 reproduced from Chalupa et al. 2008  [81]. Original caption is as follows, 
“Schematic diagram showing the organization of the ipsilateral and contralateral visual 
pathways in mice. Blue and red indicate fibers and regions representing the left and right eyes, 
respectively. Purple indicates binocular regions. Ipsilateral projections arising from the 
ventrotemporal retina terminate in dorsomedial dLGN. Contralateral retinal projections fill the 
rest of the dLGN. The locations of other retinorecipient nuclei in the dorsal thalamus, the inter-
geniculate leaflet (IGL), and ventral LGN (vLGN) are also shown. The dLGN projects 
topographically to primary visual cortex (area 17). The medial two-thirds of area 17 receives 
monocular input from the contralateral eye (17M). The lateral one-third receives binocular 
inputs (17B). Adjacent to area 17 laterally is area 18a; area 18b is medial…”  

A similar schematic also showing projections to the superior colliculus from the 

retinas is shown in section 3.3.1 [26]. 

Historically, the function of mouse brain visual areas has largely been studied with 

invasive electrophysiological techniques [26, 47, 49, 84], requiring craniotomies and 

injection of micro-electrodes into the brain region of interest. These studies 
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measure electrical signals (spikes and local field potentials) from individual regions 

of the brain, covering a range of approximately 350 microns from the electrodes of 

interest [85]. Whilst these techniques can directly measure neuronal activity, they 

are limited in terms of their field of view and effective spatial resolution. Two-photon 

imaging of calcium ions in neurons in the primary visual cortex has recently been 

conducted [86], but this technique also has a similarly limited field of view (and is 

surface limited). Optical spectroscopic imaging of haemodynamic responses (a 

proxy for neuronal activity, see section 1.7) in the mouse cortex with a larger field of 

view is possible [43, 87], however these methods still have limited depth 

penetration. None of these techniques can be used to image brain function across 

the mouse brain visual system simultaneously, as was done using BOLD fMRI as 

described in this thesis. 

To that end, it is necessary to consider the three key grey matter regions of the 

visual system in the mouse brain described in this section: the dorsal lateral 

geniculate nucleus (LGd), the sensory layers of the superior colliculus (SCs) and 

the primary visual area (VISp), often referred to in the literature as V1. The LGd, 

SCs and VISp as defined by the Allen mouse brain atlas [69] are shown in Figure 

1.6 and Figure 1.7. 

 

Figure 1.6. Cross sectional views of the Allen MBA structural image, with the visual system 
overlaid as contours. The crosshairs are centred on the right LGd, and in the sagittal view the 
LGd and the VISp are labelled.  
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Figure 1.7. Cross sectional views of the Allen MBA structural image, with the visual system 
overlaid as contours. The crosshairs are centred on the SCs.  

Measuring how these regions respond to visual stimuli using MRI is the subject of 

section 3.3, and chapters 4 and 5. Understanding the connections between them 

using fMRI is described in chapter 6. 

1.7 Neurovascular coupling 

Information processing in the brain is conducted by the behaviour of neuronal cells 

(although there is some debate as to whether another cell type called astrocytes 

also play a role in information processing [88]). Neurons combine input signals from 

other neurons, and send output signals to more neurons. Broadly, each neuron is 

made up of a cell body, dendrites and an axon. Dendrites take inputs from other 

neurons, and axons feed outputs to the dendrites of other neurons. Information 

combination and transmission by neurons is performed by the movement of ions 

across cell membranes. This movement of charged particles across voltage-gated 

ion channels create fluctuations in electric and magnetic fields, which travel as 

action potentials along axons. Action potentials are commonly referred to as 

‘spikes’ by the electrophysiological community. Changes in electric and magnetic 

fields due to neuronal action potentials can be invasively measured using 

electrodes, or non-invasively using magnetoencephalography (MEG) and 

electroencephalography (EEG). Electrode measurements are the most direct 

measure available for measuring neuronal electrical behaviour, however they are 

limited due to their invasive nature (which may affect the neuronal behaviour they 
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try to measure), difficulty of placement, and limited spatial coverage. EEG and MEG 

are non-invasive, and so can be readily implemented in human studies, but suffer 

from limited spatial resolution and challenging signal localisation.  

MRI cannot currently measure neuronal activity directly. However, it is possible to 

use MRI to measure regional changes in blood oxygenation, a physiological proxy 

variable for neuronal activity. The link between neuronal activity and the 

downstream vascular responses is called neurovascular coupling.  

Neurovascular coupling is believed to involve a series of events which begin with 

the release of glutamate (an amino acid that is also a neurotransmitter) at synapses 

[89]. The brain has extremely large energy demands relative to the rest of the body, 

mostly due to action potentials (generation and recovery from) and postsynaptic 

effects of glutamate [90]. The brain is also inefficient at storing energy (in the form 

of glycogen), and neurons themselves store no glycogen at all [91]. Therefore the 

brain requires high levels of blood perfusion, in order that oxygen and glucose is 

supplied to neurons as necessary. Neurovascular coupling is the mechanism by 

which brain regions in which neurons are active receive a local increase in blood 

flow. This is also known as functional hyperaemia, which results in increased local 

oxygen delivery by the vascular network. This is distinct from central autoregulation, 

which maintains a roughly constant perfusion of the brain despite variations in 

systemic blood pressure [4].  

In order for the vascular network to generate local increases in blood flow, it is 

necessary for vasodilation (the dilation of blood vessels) to occur. The precise 

mechanisms underlying neurovascular coupling are not fully understood, but it is 

currently believed to be mediated by astrocytes [89, 92], which respond to 

increases in K+ ions and glutamate in the extracellular space (released by active 

neurons). These in turn induce calcium waves throughout the astrocyte, which 

terminate at the astrocytic end-feet located on arterioles. The end-feet release 

vasoactive substances, which induce vasodilation [4]. As the fractional increase in 

blood flow is approximately twice as large as the increase in the metabolic rate of 

oxygen [93], this results in a net decrease in the oxygen extraction fraction. This in 

turn causes an increase in oxygenated blood relative to deoxygenated blood within 

a given voxel, which then induces an increase in the MRI signal relaxation 

constant 𝑇2
∗, which in turn drives BOLD contrast for fMRI as described in section 

2.1.5. This chain of events is summarised by Martin [1] in Figure 1.8. 
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Figure 1.8. Figure 1 adapted from Martin 2014 [1] (Creative Common Attribution ("CC BY") 
licence). The original caption reads as follows, “Schematic illustration of the 
neurophysiological processes underpinning hemodynamic neuroimaging signals. The boxed 
processes linked by thick gray arrows around the outside represent components of interest to 
those focussing on “parametric neurovascular coupling,” whereas the more detailed 
processes illustrated in the center [sic] represent important concepts in for [sic]  investigation 
of “physiological neurovascular coupling.”  

This section has provided a brief overview of neurovascular coupling and for the 

purposes of this thesis neurovascular coupling is assumed to be robust in the 

anaesthetised mouse brain under medetomidine (see also section 3.1.1). For a 

more detailed explanation of neurovascular coupling, see Logothetis et al. [15, 16], 

and Buxton [93]. 

1.8 Thesis outline 

Chapter 2 provides the necessary background theory to understand the 

experiments and results described in this thesis. This includes a detailed 

explanation of the physics behind fMRI, and the theory behind standard fMRI 

analysis. Chapter 3 describes a series of experiments conducted to develop and 

optimise a protocol for mouse fMRI. Chapter 4 describes work developing 

increasingly complex visual stimuli, with select results from both chapters 3 and 4 

published in J. NeuroImage [94]. Chapter 5 then describes efforts to better 

characterise fMRI data, using a technique called line-scanning fMRI to measure the 

BOLD signal at high temporal resolution. Then in chapter 6, the application of 

dynamic causal modelling to mouse brain fMRI data is described, in order to 

characterise mouse brain effective connectivity. Finally, chapter 7 discusses the 

main findings of the thesis.   
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2 Background theory  

In this chapter, the necessary background theory required for the thesis is 

presented. Section 2.1 covers the theory behind magnetic resonance imaging. 

Then in section 2.2, theoretical background for standard fMRI analysis is given. 

More advanced fMRI data analysis is considered separately in chapter 6. Finally, 

the chapter is summarised in section 2.3.  

2.1 Magnetic resonance imaging 

Nuclear Magnetic Resonance (NMR) was first described independently by Bloch 

and Purcell [95, 96] in 1946, and is now an extremely common spectroscopic tool 

for inferring chemical structure and composition. It was in 1973 that Mansfield and 

Lauterbur [97, 98] described methods for inferring physical structure from NMR 

signals. Then in 1983 the idea of acquiring information in ‘k-space’ was described 

by Brown [99]. Since these key developments, MRI has become a key tool for 

progress in fundamental biological science and for diagnostics in clinical settings. 

This section covers the basic theory behind magnetic resonance imaging. 

2.1.1 Magnetic resonance theory 

All sub-atomic particles (protons, neutrons and electrons) have an intrinsic quantum 

mechanical (QM) property known as ‘spin’ angular momentum, and can be 

considered as analogous to classical angular momentum. However, the following 

caveats apply: the particle does not literally spin on its axis, QM spin is a 

fundamental property of the particle, QM spin interacts with electromagnetic fields 

(rather than gravitational fields), and QM spin magnitude can only have discrete 

values. 

The bulk of MRI experimentation is concerned with 1H nuclei, commonly referred to 

as protons, and only 1H MRI is considered in this thesis. The words spin and proton 

are often used interchangeably when discussing magnetic resonance. 

Atomic nuclei act as a single body with a collective nuclear spin 𝑰. A single particle 

can be said to have a magnetic moment 𝝁 linked to 𝑰 by the gyromagnetic ratio 𝛾, 

as shown by equation (2-1).  

𝝁 = 𝛾𝑰 (2-1) 

The value of γ is a property of the atomic species in question. For 1H, 𝛾 takes the 

value of 42.58 MHz/T.    
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It is manipulation of magnetic moment/spin which ultimately gives rise to MRI 

signals. Quantum theory says that for an atomic nucleus with quantum spin 𝐼, there 

are a total of (2𝐼 + 1) spin eigenstates that can be occupied by the nucleus. For 1H, 

𝐼 = ½, giving rise to a total of two possible spin states that could be occupied by a 

single proton. These states are often described as ‘spin-up’ and ‘spin-down’, 

although this is should not be taken literally. This quantised effect was first 

demonstrated in 1922 by Stern and Gerlach [100] with silver atoms (which also 

have 𝐼 = ½).  

On the spatial scales of interest (micron and above) it makes more sense to 

describe spin ensembles, rather than individual spins. This is advantageous for the 

following reason. With a sufficiently large population of spins, the precise quantum 

description of each spin’s behaviour can be disregarded, and the expected 

behaviour of the population can be used instead. This is analogous to using 

temperature as a macroscopic average quantity to summarize the kinetics of large 

numbers of particles in a gas. A population of spins behaving in the same way is 

called a ‘spin isochromat’, and the expected value of the magnetic moment of the 

isochromat can be treated in a classical manner. However, the discrete nature of 

the spin states remains. 

The application of an external magnetic field to a spin isochromat with a non-zero 

magnetic moment (given by equation (2-1)) will induce a torque 𝜏 given by equation 

(2-2). 

𝜏 =  
𝑑𝑰

𝑑𝑡
= 𝝁 × 𝑩 (2-2) 

The application of a torque to the magnetic moment causes the moment to precess 

i.e. rotate around the axis defined by 𝑩. The angular frequency 𝜔 at which the 

magnetic moment precesses is given by the Larmor equation (2-3), and is 

independent of the polar angle and the direction of the magnetic moment. The 

direction of movement of the magnetic moment vector is always perpendicular to 

the direction of the magnetic moment vector itself and the applied 𝑩 field due to the 

nature of the cross product in equation (2-2). 

𝜔 = 𝛾𝐵 (2-3) 

In the absence of external fields, the different quantum spin states are degenerate 

i.e. they have the same energy. By applying external, static magnetic fields to spins, 

the energy levels of spin states can be made to differ. This is the phenomenon 
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known as Zeeman splitting. The size of the energy difference ∆𝐸 as a function of 

the applied static magnetic field 𝑩𝟎, for the two level energy system of 1H is given 

by equation (2-4). For clarity later on in the section, we will assume that 𝑩𝟎 points in 

the positive z-direction, and has no transverse component. 

∆𝐸 = 𝝁𝟏. 𝑩𝟎 −  𝝁𝟐. 𝑩𝟎 =  𝛾ℏ𝐵0 (2-4) 

Planck’s constant ℏ is a constant of proportionality linking the energy of a photon 

and its angular frequency 𝜔, as shown in equation (2-5). 

𝐸 = ℏ𝜔 (2-5) 

A particle moving between energy states will emit or absorb a photon that 

corresponds to the energy gap between the states, which also corresponds to the 

precession frequency. For 1H nuclei, at an applied magnetic field of 9.4T, 𝜔 

corresponds to approximately 400 MHz, in the radiofrequency range of the 

electromagnetic spectrum. 

When a population of particles can occupy a two-level energy system, their 

occupancy numbers at equilibrium obeys a Boltzmann distribution, given by 

equation (2-6). 

𝑁ℎ𝑖𝑔ℎ

𝑁𝑙𝑜𝑤
= 𝑒

∆𝐸
𝑘𝐵𝑇 (2-6) 

In equation (2-6), 𝑁ℎ𝑖𝑔ℎ and 𝑁𝑙𝑜𝑤 are the occupancies of the higher energy and 

lower energy states respectively, 𝑘𝐵 is the Boltzmann constant and 𝑇 is the 

temperature of the system. At normal temperature ranges (for example 300K), and 

at applied magnetic field strengths of 1.5T, this ratio is approximately one part in 

one million. However, this imbalance in population states is enough to create a net 

magnetisation vector 𝑴 (magnitude of μT) in the direction of the applied field 𝑩𝟎 

which can be manipulated and detected. However detecting such a small difference 

against the background of 𝑩𝟎 is inefficient, and it is possible to ‘tip’ 𝑴 into the 

transverse plane, and detect it there with a minimal magnetic background.           

At equilibrium, the spins all precess incoherently (with a random phase distribution), 

and so the net component of 𝑴 in the transverse plane is zero. For clarity, we can 

transform from the laboratory frame 𝑺 (with coordinates (𝑥, 𝑦, 𝑧)) into a frame 𝑺′ 

(with coordinates (𝑥′, 𝑦′, 𝑧)) which rotates around the z-axis at the Larmor 

frequency 𝜔. In this rotating frame, a fictitious (analogous to the centrifugal force 
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described in rotational mechanics) magnetic field given by 
𝝎𝟎

𝛾
 is experienced by the 

spin isochromat, and 𝑴 is now static rather than precessing. 

In the frame 𝑺′, what we call a ‘90° radiofrequency (RF) pulse’ rotates 𝑴 by 90° into 

the transverse plane. The frequency of the pulse must be the same as the Larmor 

frequency (condition for resonance, i.e. photon absorption). In 𝑺′, this appears as a 

static 𝐵1 field, oriented along 𝑥′ in the (𝑥′, 𝑦′) plane. For as long as the pulse is 

applied (𝑡𝑝𝑢𝑙𝑠𝑒), 𝑴 will precess about the 𝑥′ axis at an angular speed of 𝜔1 = 𝛾𝐵1. 

The resultant flip angle 𝛼 is given in equation (2-7). 

𝛼 = 𝛾𝐵1𝑡𝑝𝑢𝑙𝑠𝑒  (2-7) 

Because 𝐵1is much smaller than 𝐵0, the precession around the 𝑥′ axis is much 

slower (of magnitude 100 Hz, rather than 100 MHz for 𝐵0).  

2.1.2 Magnetisation relaxation 

After the application of an RF pulse to manipulate 𝑴, the system is perturbed into a 

higher energy state which drives a return to equilibrium. This relaxation to 

equilibrium occurs by energy exchange within the system and between the system 

and the surrounding environment. The full behaviour of 𝑴 in the presence of a 

constant external 𝐵0 field and an RF pulse characterised by 𝐵1 can be described by 

a set of equations known as the Bloch equations (equation set (2-8)). 

𝑑𝑀𝑥′

𝑑𝑡
= 𝛾𝑀𝑦′ (𝐵0 −

𝜔0

𝛾
) −

𝑀𝑥′

𝑇2
 

𝑑𝑀𝑦′

𝑑𝑡
= 𝛾𝑀𝑧′𝐵1 + 𝛾𝑀𝑥′ (𝐵0 −

𝜔0

𝛾
) −

𝑀𝑦′

𝑇2
 

𝑑𝑀𝑧′

𝑑𝑡
= 𝛾𝑀𝑦′𝐵1 −

(𝑀𝑧′− 𝑀0)

𝑇1
 

(2-8) 

This formulation of the Bloch equations is set in the rotating frame of reference 𝑺′. 

𝑇1 is the ‘spin-lattice’ relaxation constant, and scales the process through which the 

system exchanges energy with the surrounding environment. 𝑇2 is the ‘spin-spin’ 

relaxation constant, scaling the process of spins exchanging energy with each 

other. These relaxation constants are the most common ways of generating image 

contrast in MRI. For water in tissue, 𝑇1 is typically on the order of seconds, whereas 

𝑇2 is on the order of tens of ms. If the 𝑩𝟎 field is not homogenous, the decay due to 

spin-spin exchange will be faster, and characterised by an effective 𝑇2 relaxation 

constant called 𝑇2
∗. It is 𝑇2

∗ contrast that is of particular value to BOLD fMRI and the 

work conducted in this thesis. 
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By using an RF pulse with flip angle 𝛼, we can obtain solutions in time to equation 

set (2-8), immediately after the application of the RF pulse as shown in equation set 

(2-9). 

𝑀𝑥′(𝑡) = 𝑀0 sin(𝛼) sin(𝜔0𝑡) exp (−
𝑡

𝑇2
) 

𝑀𝑦′(𝑡) = 𝑀0 sin(𝛼) cos(𝜔0𝑡) exp (−
𝑡

𝑇2
) 

𝑀𝑧′(𝑡) = 𝑀0 (1 − (1 − cos(𝛼)) exp (−
𝑡

𝑇1
)) 

(2-9) 

Once a 90° RF pulse has increased the transverse magnetisation, an electrical 

signal is induced in the RF receiver coil (transverse to the direction of the 𝐵0 field). 

By using phase sensitive detection a complex signal is generated, given by 

equation (2-10). 

𝑆 =  𝑆0exp (−
𝑡

𝑇2
)[exp(𝑖(𝜔 − 𝜔0)𝑡)]  (2-10) 

The shape of 𝑆 is an exponential decay governed by 𝑇2 (or 𝑇2
∗), and modulated by 

an oscillation at frequency (𝜔 − 𝜔0). This signal is called the Free Induction Decay 

(FID). The Fourier transform of S has the shape of a Lorentzian curve centred 

on (𝜔 − 𝜔0), with width inversely related to 𝑇2. It should be noted that the 

proportionality constant 𝑆0 is dependent on many hardware factors, in addition to 

proton density 𝜌 (a property of the tissue), which will be described in more detail in 

section 2.1.3.  

In summary, the application of external magnetic fields and RF pulses can be used 

to manipulate particle spins into excited energy states, and when they relax back to 

lower energy states they emit photons with predictable frequency and phase. These 

photons can be detected with a RF receiver and coded as an electrical signal. The 

precise application of magnetic fields, their gradients and RF pulse sequences can 

generate a huge number of contrasts and types of image, suitable to very different 

biological and chemical applications. 

2.1.3 Image formation in MRI  

The act of elevating spins to higher energy levels and recording their relaxation to 

equilibrium with a single 𝑩𝟎 field and single RF pulse is not enough to generate an 

image. It is the application of magnetic field gradients or multiple RF pulses that 

allow spatial position to be encoded into the received signal. These will be 

discussed further in this section. 
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From equation (2-3), it is shown that the resonance frequency of a spin isochromat 

is linearly dependent on the magnetic field it experiences. By spatially varying the 

magnetic field, the resonant frequency of the received signal can encode position 𝒓 

– this is known as frequency encoding. Consider the application of a linear 

magnetic field gradient 𝑮 on top of the applied 𝑩𝟎 field, yielding equation (2-11). 

𝜔(𝒓) = 𝛾(𝑩𝟎 +  𝑮(𝒓). 𝒓) (2-11) 

The maximum size of 𝑮 used for most of the work in this thesis is 600 mT/m. At 9.4 

T, and for a field of view of 3 cm, the frequency range of 𝜔 is approximately 

[399.681 400.447] MHz, centred on 400.064 MHz where 𝑮 is zero. 

Given the spatial information included in equation (2-11), it is now convenient to 

recast the FID equation (2-10) in the following way. 

𝑆(𝑡) =  ∭ 𝜌(𝒓)exp (𝒊𝜸(𝑮. 𝒓)𝒕) 𝑑𝒓  (2-12) 

In equation (2-12), the non-spatial component from the 𝑩𝟎 field has been omitted 

for clarity. By defining a reciprocal space vector 𝒌 =  𝜸𝑮𝒕, and substituting into 

equation (2-12) yields equation (2-13). 

𝑆(𝒌) =  ∭ 𝜌(𝒓)exp (𝒊𝒌. 𝒓) 𝑑𝒓  (2-13) 

From equation (2-13) and the definition of 𝒌, we can see that 𝒌 and 𝒓 are inverse 

variables related by Fourier transformation. MRI images are almost always 

reconstructed by acquiring ‘k-space’ information and applying a Fourier transform to 

generate an image in ‘real-space’. By mapping k-space using gradient pulses with 

variable amplitude (and fixed durations), the ‘spin-warp’ method [101] is now the 

most common way of acquiring MRI data. 

2.1.3.1 Slice-selection 

Whilst acquiring k-space data in three dimensions is possible, commonly slices of k-

space are acquired sequentially, particularly for fMRI, and so the idea of slice-

selection will be briefly covered here. Applying an RF pulse at the Larmor frequency 

would in theory excite all spin isochromats that experience the same 𝐵0 field (by 

convention pointing in the positive z-direction). By applying a linear gradient 𝐺𝑠𝑠 in 

the same direction as 𝐵0, but which has a value of 0 at the location of the slice of 

interest, spins experience an effective 𝑩 field based on z-value. As the spin 

distance increases, ∆𝑩 increases and the spin becomes increasingly off-resonance. 

This ensures that only spins within the slice are excited. The slice profile is a 
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Fourier transform of the RF pulse profile, and therefore a sinc function RF pulse 

excites a ‘slab’ of spins in the sample. For a perfect slab, an infinitely long sinc 

pulse would be required, which is impractical. A truncated sinc function is used in 

practise. 

One issue of using a finite RF pulse is that during the application of 𝐺𝑠𝑠 for time 𝑡, a 

phase shift of 𝛾𝐺𝑠𝑠𝑧𝑡/2 is accumulated by spins in the slice. This shift can be 

reversed by applying −𝐺𝑠𝑠 for duration 𝑡/2 seconds, and is called ‘slice-refocusing’. 

2.1.3.2 Phase encoding 

However, for a slice z, if we consider applying frequency encoding in the x and y 

directions, an ambiguity arises – the received signal no longer has a unique position 

in space, as it could either be coming from one position or its reflection across the 

xy-axis. It is for this reason that phase encoding is used as well. Briefly, a phase-

encoding gradient 𝐺𝑃𝐸 is applied in e.g. the y-direction for a finite time. The larger 

the size of 𝐺𝑃𝐸 at position y, the greater the phase shift. When 𝐺𝑃𝐸 is removed, the 

phase shift remains (until either the application of another gradient or the signal 

undergoes complete relaxation), and therefore can be used to determine position. 

2.1.4 Sampling k-space 

At this point, it is often clearer to use a pulse sequence diagram to demonstrate the 

various gradients and RF pulses used in an MRI sequence to generate an image. 

The central aim of the pulse sequence is to sample k-space as efficiently as 

possible, in order to apply the Fourier transform and generate an image. This 

section will show pulse sequence diagrams for two basic pulse sequences which 

feature in this work with some modifications: the gradient echo (GE) and the 

gradient echo – echo planar imaging (GE-EPI) sequences. Both sequences use the 

idea of sampling the ‘echo’ of the signal, rather than the FID itself – as the duration 

of the echo is longer than that of the FID, it is easier to sample. 

2.1.4.1 Gradient Echo 

A schematic of the gradient echo pulse sequence is shown in Figure 2.1. 
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Figure 2.1. Diagram for gradient echo pulse sequence  (adapted from [102]).  

Here we make the simplification that 𝑮 for frequency encoding is only applied in a 

single direction, and can be represented by 𝐺𝐹𝐸. In turn from the top line going 

down:  

1. The RF pulse rotates the net magnetisation into the transverse plane.  

2. The initial positive lobe of 𝐺𝑆𝑆 ensures only the slice of interest is excited by 

the RF pulse, whilst the second, negative lobe refocuses the slice by 

negating the accumulated phase shift. 

3. 𝐺𝑃𝐸 is applied to encode position with phase, with the peak value of the 

gradient looping over values (each value corresponds to a different 𝑘𝑃𝐸 

line). 

4. 𝐺𝐹𝐸 is first applied with an initial negative dephasing gradient, for which the 

effect is to de-phase spins contributing to the FID. Once all other gradients 

have been applied, the positive lobe of 𝐺𝐹𝐸 refocuses the spins, creating a 

gradient echo signal. The positive lobe is left on for a time duration that is 

twice as long as for the negative lobe. This ensures that the peak of the 

echo corresponds to the centre of k-space, and that both the rising and 

trailing parts of the echo are equally sampled, improving signal-to-noise. 

This echo contains information to fill an entire line of k-space in the 

frequency-encoding direction. 
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The time between successive RF pulses in this schematic is the TR or repetition 

time. The time between the initial RF pulse and the echo peak is the TE or echo 

time. The acquisition in k-space for each excitation is represented in Figure 2.2. 

 

Figure 2.2. Acquisition of k-space using a GE sequence.  The finely dotted arrows correspond 
to the 𝑮𝑷𝑬lobe (which changes magnitude on each TR) and the negative 𝑮𝑭𝑬lobe. The coarsely 

dotted arrows correspond to the positive 𝑮𝑭𝑬lobe, acquiring the gradient echo signal. The 

sequence is stepped through as many lines of 𝒌𝑷𝑬 are required.  

Nominally, with a 90° flip angle, it would be necessary to wait for full 𝑇1relaxation 

before starting the next acquisition. However, with 𝑇1 having values on the order of 

seconds, this would make scan times extremely long. A more efficient way of 

proceeding is to use a small flip angle in conjunction with TR < 𝑇1. The flip angle 

that maximises signal for a particular TR in tissue with a given 𝑇1 is known as the 

Ernst angle [103], and meets the condition shown in equation (2-14). 

cos(𝛼) = exp (−
𝑇𝑅

𝑇1
) (2-14) 

The behaviour of the Ernst angle as a function of TR for a range of 𝑇1 values is 

shown in Figure 2.3. 
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Figure 2.3. Plot showing Ernst angle as a function of TR. Shorter TRs require smaller flip 
angles  

It can be shown that the amount of magnetisation available to sample in the 

transverse plane follows a similar pattern, as in Figure 2.4. 

 

Figure 2.4. Plot of the maximum signal available to sample in the transverse plane following the 
Ernst angle RF pulse as a function of TR. 

As can be seen from Figure 2.4, choice of TR and flip angle can have a large effect 

on recovered signal.          

2.1.4.2 Gradient Echo – Echo Planar Imaging (GE-EPI) 

For fMRI purposes, it is desirable to acquire multiple slices in a short time period 

(<5 seconds) repeatedly, in order to sample the signal magnitude rapidly through 

time. With the gradient echo sequence described earlier, using one RF pulse/FID 
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per line of k-space limits how rapidly successive GE images can be acquired. With 

GE-EPI, the entirety of k-space can be acquired from a single FID. A schematic 

pulse sequence representing ‘single shot’ GE-EPI, the most common sequence 

used for fMRI, is shown below in Figure 2.5. 

 

Figure 2.5. Diagram for GE-EPI pulse sequence (reproduced from [102]).  

Much of the mechanics remains the same, with the exception of the 𝐺𝑷𝐸 ‘blips’ and 

the additional large, fast-switching 𝐺𝐹𝐸 lobes. Their significance is explained by 

considering k-space sampling, as shown in Figure 2.6. 

 

Figure 2.6. Acquisition of k-space using a GE-EPI sequence. The diagonal dotted arrow 

corresponds to the initial 𝑮𝑷𝑬 lobe and initial negative 𝑮𝑭𝑬 lobe. The short, vertical dotted 
arrows correspond to the 𝑮𝑷𝑬 ‘blips’. The coarsely dotted arrows correspond to the switched 

𝑮𝑭𝑬lobes, acquiring each gradient echo corresponding to a line of k-space.  

As evident in Figure 2.5, the readout gradient must be switched fast enough in 

order to sample the entirety of k-space before signal decay by 𝑇2
∗ mechanisms is 

too great. The basic theory of GE-EPI has been covered here, and details of GE-

EPI artefacts and strategies for overcoming these are described in later chapters. 
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2.1.5 Defining the BOLD signal for fMRI 

Using blood behaviour as a proxy for neuronal activity has been of interest since 

the late 1800s, and the history of this approach is summarised well by Raichle 

[104]. In classical fMRI, the standard approach is to use the GE-EPI sequence with 

𝑇2
∗ contrast to measure what is known as the BOLD (Blood Oxygenation Level 

Dependent) signal, first described by Ogawa et al. [5, 105]. Spin echo EPI (SE-EPI) 

has been applied to the mouse brain for fMRI [32, 39], however this comes at a 

price of reduced sensitivity and BOLD contrast [106], (due to 𝑇2 weighting instead 

of 𝑇2
∗) and is not commonly used in human fMRI studies. Rather, SE-EPI is more 

commonly used in conjunction with contrast agents (such as super paramagnetic 

iron oxide particles) for measuring changes in cerebral blood volume [107]. 

Blood contains haemoglobin, a protein containing iron which acts as an O2 carrier. 

The presence of oxygen within the haemoglobin compound (oxyhaemoglobin, 

which has no unpaired electrons) renders it weakly diamagnetic, whereas in oxygen 

deficient haemoglobin (deoxyhaemoglobin, which has four unpaired electrons) the 

compound is highly paramagnetic [108]. The effect of paramagnetic substances on 

surrounding protons is to reduce 𝑇2
∗, and in turn reduce the signal intensity for a 

given TE. Deoxyhaemoglobin is naturally present in large enough concentrations 

for its effect on protons to be detected by MRI, and so an externally administered 

contrast agent is unnecessary, making such measurements completely non-

invasive. 

It would be reasonable to expect that as neurons in a brain region fire at a higher 

rate, they would consume more oxygen, deoxyhaemoglobin concentration would 

increase, and therefore signal intensity should be lower in a more ‘active’ brain 

region. However, it was shown by Fox and Raichle, using 15O PET imaging that 

regional cerebral blood flow (CBF) strongly increases upon regional activation 

(defined as local increases in neuronal firing), but the increase in cerebral metabolic 

rate of oxygen consumption (CMRO2) is relatively modest [109]. The consequence 

of this is that upon an increase in brain activity, the BOLD signal increases with the 

increase in oxyhaemoglobin relative to deoxyhaemoglobin, and correspondingly 

increases  𝑇2
∗. A greater value of  𝑇2

∗  corresponds to less decay of the acquired 

signal, and therefore the signal is increased relative to the signal before activation. 

 



47 
 

2.2 fMRI data – preprocessing and analysis 

In this section, sources of unwanted variance and the practicalities of processing 

fMRI data to improve the quality of the measured BOLD signal are covered, and 

two standard techniques for interpreting the BOLD signal across the brain – 

statistical parametric mapping and region-of-interest analysis – are introduced. 

2.2.1 The nature of fMRI data 

fMRI conducted with BOLD imaging generates data which is multi-level and 

multidimensional.  First, the hierarchical levels of data that might be used in an fMRI 

experiment are given, depending on the experimental design.  

Individual subjects are scanned in sessions (defined as a continuous single time 

period when the subject is imaged without leaving the scanner). Each subject may 

undergo multiple sessions, in the case of a longitudinal study. Each session is 

composed of a number of runs, where each run is a series of functional images 

acquired continuously. Breaking a session into runs is more common for human 

fMRI studies to allow subjects to take short breaks within a session, in order to 

increase task compliance and avoid fatigue, but this is less important for 

anaesthetised rodent imaging. However, runs are a useful functional unit to 

consider, and in between runs the physiological status of the subject and the 

performance of the scanner can also be checked.  

Within each run, a volume image is acquired during each TR period, and 

concatenated to make up a time series of volumes. For a 2 s TR and a total 

imaging time of 5 minutes, a total of 150 volumes (also referred to as timepoints in 

this thesis) would be acquired. However each point in the volume image is not 

acquired simultaneously, instead each volume is acquired as a series of 2D slices 

equally within the TR period. Therefore for sequential slice imaging, the BOLD 

signal from a point in the first slice can appear to be phase-shifted by almost one 

TR relative to the same point in the last slice. Within each slice, rows of k-space are 

acquired on the order of milliseconds, and later Fourier transformed to reconstruct a 

slice consisting of voxels (volume pixels). The number of voxels in a slice is 

dependent on the matrix size used for acquisition (commonly square, and a power 

of 2 to enable a more efficient discrete Fourier transform in the reconstruction, e.g. 

64x64), and therefore the brain is covered by thousands of voxels. Therefore for 

each run, an fMRI dataset has three spatial dimensions (2 in-plane, slice), and time, 

making a 4D dataset. 
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Within each run, and depending on the experimental design, multiple blocks of 

stimuli or stimulus events may be presented to the subject. This thesis only uses 

block-related design as blocked effects are easier to detect, and in this case each 

block is referred to as a ‘trial’. A stimulus block may be of the order of 10-30 

seconds, relative to a baseline block of the same order of magnitude. This allows 

the assumption to be made of linear behaviour of the BOLD signal with respect to 

neuronal activity, and the use of a canonical haemodynamic response function 

convolved with a boxcar function representing stimulus presentation for BOLD 

signal modelling with a general linear model.  

2.2.2 fMRI data preprocessing 

2.2.2.1 Defining preprocessing 

There are different ways of preprocessing fMRI data, but it is generally accepted to 

account for both spatial and temporal sources of non-neuronally driven variance in 

the BOLD signal before attempting to make statistical descriptions of or inferences 

from the data. This is because the measured BOLD signal change in response to a 

stimulus is often a small proportion of the total signal (approximately 1 part in one 

hundred for most of the results in this thesis). In addition, BOLD signal changes of 

interest are often smaller than those due to unwanted sources of variance in both 

the spatial and temporal domain. Preprocessing in fMRI is defined as a series of 

actions to be performed on data that reduce unwanted sources of BOLD signal 

variance, and is generally applied to fMRI experiments independently of the 

experimental manipulation. 

2.2.2.2 Evaluating the quality of fMRI data 

Typically in MRI, image signal-to-noise ratio (SNR) is often used as a measure of 

the quality of data. The average signal intensity within a sample is divided by the 

standard deviation of the signal outside the sample. Another common metric is the 

image contrast-to-noise ratio (CNR), where the difference in intensities between two 

tissue types is divided by an estimate of the noise.   

However, these image quality metrics are not entirely useful in fMRI, as they make 

no account for the temporal domain. More useful for the purposes of detecting 

BOLD signal changes is the temporal contrast-to-noise ratio (tCNR). This is 

calculated by the contrast of the BOLD signal in the temporal domain (the BOLD 

signal during activation minus the BOLD signal at rest) divided by the standard 
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deviation of the BOLD signal at baseline or rest. A greater tCNR means that 

detection of BOLD responses to a given experimental manipulation is more likely.  

2.2.2.3 Sources of noise in fMRI data 

Noise in fMRI data can be broadly split into two categories – system noise and 

physiological noise. System noise includes intrinsic thermal noise within the sample 

and the electronics used to acquire the signal, and imperfections in the MRI 

hardware. Physiological noise includes BOLD signal artefacts resulting from 

sources determined by the biological sample e.g. head motion, respiration, cardiac 

rate, anaesthesia, or variability in the neuronal response to the external stimulus. A 

physiological noise source for higher order mammals, but unlikely to be an issue in 

anaesthetised rodents, is differing behavioural strategies/cognitive processes for 

the same stimulus. 

Both system noise and physiological noise are commented on extensively in this 

thesis. Correcting for system noise is generally easier, as phantom experiments 

using tubes of agarose allow scanner parameters to be optimised in order to 

minimise the effects of system noise. However preprocessing is also important for 

reducing system noise. One of the largest contributions to variation in the measured 

BOLD signal is scanner drift [110]. This is the term given to drifts in the BOLD 

signal, caused by gradual shifts in the main resonant frequency of the 

superconducting magnet, and potentially temperature variations in the gradient 

systems used in the MRI scanner [111]. These are of low frequency relative to 

BOLD signal fluctuations driven by neuronal activity, and can be corrected for in 

preprocessing using high-pass temporal filters.  

Another source of noise is thermal noise, which for mouse fMRI has been 

suggested as an important source [36]. Currently, the only way of minimising this at 

acquisition is through the use of cryogenically used surface coils; however these 

are significantly more expensive than standard coils, were not available for the MRI 

scanner used in CABI, and therefore were not considered for this thesis. 

Regarding physiological noise; motion artefacts; cardiac and respiration rates can 

often have a marked detrimental effect on BOLD signal measures. In particular for 

mouse brain fMRI with the use of electric shock stimuli, physiological noise can 

easily correlate with stimuli, reducing the specificity BOLD signal responses and 

spatial inferences that can be made from statistical parametric maps [38]. The use 

of anaesthesia can reduce motion artefacts, but can itself interfere with 



50 
 

neurovascular coupling [112, 113]. One mouse fMRI study has attempted awake 

mouse fMRI to investigate learned responses to fear, avoiding this potential 

confound [39], and used training regimes to minimise motion artefacts. However, 

this strategy removes the potential confounder of anaesthesia and replaces it with 

the confounder of animal stress, which is arguably more difficult to reproduce 

across subjects. 

There are currently two schools of thought for maintaining the physiology of the 

anaesthetised mouse for fMRI. One uses invasive mechanical ventilation to 

maintain the mouse respiration rate at a constant level (Bosshard et al. and others 

[35, 36, 38]). This method as suggested requires endotracheal intubation, and use 

of a neuromuscular blocking agent (pancuronium bromide in this case). Whilst 

neuromuscular blockers additionally remove the effects of head motion, the use of 

these agents makes each experiment non-recoverable, removing one of the main 

potential benefits of fMRI. The second school of thought allows the subject to 

maintain its own physiology, aided by oxygen-enriched air [33, 34, 37]. It is likely 

that the first option, whilst significantly technically challenging, does reduce 

physiological noise more than the second. 

2.2.2.4 Image Preprocessing 

The fMRI data set for a given run is 4-dimensional, covering space and time. In this 

thesis, this data was stored using the NifTi file format [114], as a series of 3D image 

volumes. Most data-analysis assumes that each voxel in a dataset corresponds to 

the same spatial location in the brain for all subjects, and that temporal sampling of 

the BOLD signal is at a constant, known rate. Preprocessing generally tries to 

remove sources of noise that violate these assumptions, and the implementation of 

these techniques is covered in section 3.2. 

Spatial normalisation 

Spatial normalisation accounts for the fact that subject brains can vary in size and 

shape. Techniques like voxel-based morphometry [115] are based on using image 

registration to map subtle changes in brains across subjects. However for the 

purposes of fMRI, it is desirable that subject data are spatially normalised to a 

template image, in order that the same voxel corresponds to the same functional 

region. Implementation of this using image registration for mouse fMRI is covered 

extensively in section 3.2.2. 
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Motion correction 

Image registration is also used for motion correction of fMRI data. It is generally 

better to minimise head motion at the point of acquisition, using anaesthesia and 

head restraints (which for mice often consist of ear bars and a bite bar, see Figure 

3.32), but preprocessing fMRI data sets by registering functional runs to an initial 

image or mean image reduces the effect of the BOLD signal ‘leaking’ across voxels 

[4]. Estimates of motion from this registration procedure can also be propagated 

through to the statistical analysis as nuisance regressors. 

Slice-timing correction 

In the temporal domain, slice-timing correction [116] can be applied to account for 

the differences in temporal sampling used by 2D slice based MRI pulse sequences. 

In this thesis, this is done by temporal sinc-interpolation, using information from 

neighbouring timepoints to phase-shift the BOLD signal to a reference time 

common to all slices. There is some criticism of this technique when used for 

analyses requiring accurate temporal information in the BOLD signal [117], however 

this is more pertinent to event-related fMRI designs, which are not considered in 

this thesis. 

Spatial smoothing 

The application of a spatial low-pass filter data is common in fMRI, although 

somewhat controversially [118]. This is often implemented using a Gaussian kernel, 

and effectively averages the BOLD signal across several neighbouring voxels, 

depending on the shape of the kernel used. One line of reasoning suggests that by 

using a spatial filter on the order of magnitude of the spatial functional response 

expected to be measured, tCNR is optimised. This is not the equivalent of simply 

increasing voxel dimensions at the point of acquisition to the equivalent size of the 

smoothing kernel, because each voxel will experience noise differently (although 

this is unlikely to be completely independent), and so collecting multiple voxels in 

the same functional region and then smoothing over all voxels is preferable to using 

larger voxels [4]. Furthermore, a larger voxel will experience greater signal 

dephasing due to magnetic field inhomogeneities (see section 2.1), and therefore 

may actually have lower tCNR than smaller voxels covering the same space. 

As well as increasing tCNR, the spatial smoothing is also used to make 

assumptions used by common statistical analyses (covered in the following section) 
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more valid [119]. In particular, the use of statistical parametric mapping conducts a 

statistical test at every voxel and either accepts or rejects the null hypothesis that 

the BOLD signal is explained by a model signal based on timings of the 

experimental stimuli. If each test is treated as independent, then the Bonferroni 

correction for multiple comparisons should be used, and the significance threshold 

divided by the number of statistical tests conducted. However, voxel timecourses 

are not independent (multiple voxels sample the same functional region), as they 

are spatially correlated, and this allows the use of random field theory to determine 

how many effective independent tests are actually applied. In general, the smoother 

the data, the fewer independent tests, and lower the significance threshold used to 

constrain the false positive rate. 

2.2.3 Standard fMRI analysis 

Given that the changes in the BOLD signal relative to stimuli can be easily masked 

by unwanted sources of variance, statistical analysis is often used to describe fMRI 

data and make inferences. This thesis uses two common approaches for analysis, 

statistical parametric mapping and region-of-interest analysis, which are briefly 

summarised here. 

2.2.3.1 Statistical parametric mapping 

Null hypothesis testing 

This thesis commonly uses statistical parametric mapping (using the SPM toolbox 

[120]) for indicating the specificity and effect size of the BOLD response to stimuli. 

The entire theoretical underpinnings of this toolbox are beyond the scope of this 

thesis, however the salient points of its operation are provided. 

Although logically problematic, null hypothesis testing is used extensively in science 

to decide if effects are real, or unlikely to occur by chance [121]. The formal 

statement of the logic is as follows: 

 H0: condition 1 = condition 2 (null hypothesis) 

 H0: condition 1 ≠ condition 2 (model tested by the experimenter) 

Then data, which is assumed to independent and unbiased, is used to calculate a 

test-statistic. The test-statistic is compared to a known theoretical probability 

distribution that it should obey under H0. By integrating this distribution a p-value 

can be calculated, which has the formal definition: the probability of observing data 



53 
 

as (or more) extreme than that actually observed assuming the null hypothesis is 

true. A common approach that is used is to state a significance threshold 𝛼 below 

which the null hypothesis is rejected. Commonly 𝛼 = 0.05 is used for such decision 

making. 

The simplest application of hypothesis testing to fMRI images in a blocked design 

as used in this thesis would be (for each voxel) to perform a Student’s t-test under 

the null hypothesis that the mean BOLD signal during a stimulus block is different 

than during a baseline block (assuming that the neuronal activity in a responsive 

voxel is perfectly correlated with the stimulus pattern). The t-statistic would be 

calculated by dividing the difference in the means by the shared standard error.  

However, this does not account for the shape of the haemodynamic response 

function that links neuronal activity to the measured BOLD signal (as covered in 

chapter 5). One way of accounting for this, under the assumption of linearity of the 

BOLD response, is to use the general linear model (GLM) approach, of which the 

above simple method is an instance of the GLM. 

The general linear model 

The GLM is a generalised example of linear regression, represented by the matrix 

equation (2-15). 

𝑦 = 𝑋𝛽 +  𝜀 (2-15) 

In equation (2-15), the measured BOLD data for a given voxel is represented by 

vector 𝑦, regressor variables (either of interest or nuisance regressors) by the 

design matrix 𝑋, weighting parameters for each regressor by the column vector 𝛽, 

and a residual error term by the column vector 𝜀. Each column of the design matrix 

corresponds to a specific regressor, and the linear combination of the regressors 

(weighted by 𝛽) represents the modelled signal variance. Any variance which is 

unexplained by the regressors chosen then determines 𝜀. Linear regression 

optimises the parameter values in order to minimise the sum of square errors, 

which is reasonable under Gaussian assumptions on the error term. Using this 

cost-function allows the optimal parameter values to be estimated through matrix 

operations, by the normal equation shown in (2-16).  

𝛽̂ = (𝑋𝑇𝑋)−1𝑋𝑇𝑦  (2-16) 
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The variance of the error is necessary for the calculation of the test statistic. The 

residual of the model (i.e. the error term) is given by rearranging equation (2-15). 

Then the variance of the error term is given in equation (2-17). 

𝜎̂2 =
𝜀𝑇𝜀

𝑇 − (𝑝 + 1)
 (2-17) 

In equation (2-17), 𝑇 is the number of timepoints and 𝑝 the number of parameters in 

the model (i.e. columns in the design matrix).  

More complicated and computationally intensive cost-functions may necessitate 

using gradient descent. Given the case of typical fMRI experiments where 

thousands of voxels are covering the brain, and a GLM must be estimated for each 

one, it is prudent to use the least-squares error cost-function. 

An example design matrix for a fixed effects (FFX) analysis is given in Figure 2.7. 

 

Figure 2.7. Example design matrix for a GLM for a single functional run. Dark values are low 
and bright values are high (arbitrary units). Time runs down the columns, and each column is a 
separate regressor (see main text for details).  

This design matrix has three blocks of stimulus relative to 4 blocks of baseline, and 

this convolved with the SPM canonical haemodynamic response function [122] is 
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the stimulus regressor, visualised in column 1. This is done under the assumption 

that neuronal activity in a voxel covering a brain region associated with the stimulus 

is perfectly correlated with the stimulus block. Columns 2-7 correspond to nuisance 

regressors – in this case estimates of motion from image registration. Column 8 is a 

constant session regressor which accounts for linear trends. 

In order to decide whether to reject the null hypothesis that the BOLD signal in this 

voxel is not explained by stimulus regressor, a contrast row vector 𝑐 must be used 

when constructing the t-statistic, which is derived from a linear combination of 

regression coefficients using 𝑐𝛽.  Contrast in this case means ‘experimental 

contrast’, rather than image contrast as commonly referred to in MRI. For the 

design matrix used in Figure 2.7, the contrast vector required is [1 0 0 0 0 0 0 0], 

and this will create a test statistic given by equation (2-18). 

𝑡 =  
 𝑐𝛽

√𝑐(𝑋𝑇𝑋)−1𝑐𝑇𝜎̂2
 (2-18) 

The theoretical derivation of equation (2-18) is beyond the scope of this thesis. It is 

however important to note, that by including nuisance regressors in the design 

matrix, the size of the residuals is decreased, and this increases the detection 

power for the contrast of interest i.e. the stimulus regressor. However, if regressors 

are correlated, then the matrix inversion in (2-16) can fail, and parameters may not 

be uniquely determined. This is where the issue of physiological confounding 

variables can reduce the interpretability of results described by Schroeter et al [38] 

for mouse fMRI using electrical shocks. 

For a random effects (RFX) analysis in SPM, FFX statistics at the 1st-level (single-

subject) are treated as independent samples from a population, and the RFX 

statistic at a given voxel is calculated from the population mean 𝜇 (calculated as the 

average of the sample t-statistics) and the standard error of the mean (Equation 

(2-19)). 

𝑡 =  
 𝜇

𝑆. 𝐸. 𝑀
 (2-19) 

Whether a FFX or RFX analysis is used, by constructing a suitable design matrix, 

nuisance regressors and contrast vector, a t-statistic can be generated at each 

voxel. Under parametric assumptions and the null hypothesis, the probability of 

acquiring an extreme t-statistic or greater is given by the area of the tail of the 

Student’s T-distribution defined by the statistic. Based on random field theory, a 

critical value of the t-statistic corresponding to a p < 𝛼 threshold can be derived, and 
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used as a bar below which the null hypothesis is accepted i.e. the BOLD signal at 

this voxel could reasonably be generated under the null hypothesis. One limitation 

of this approach is that the haemodynamic response function is assumed to be 

identical across brain regions. For block designs however, the convolution with the 

boxcar neuronal stimulus model reduces the effect of variability in the 

haemodynamic response. The compromise here is that it is more difficult to 

estimate parameters defining the haemodynamic response from block-design 

experiments – event-related fMRI is more suitable for this task [4]. 

Because the GLM is used to apply a statistical test at every voxel, some correction 

for the multiple comparisons problem must be made. The Bonferroni correction 

simply divides the p-value threshold by the number of voxels, although this 

assumes independent voxels (which they are not, as mentioned in section 2.2.2.4). 

The SPM toolbox approach uses Gaussian random field theory to estimate how 

many equivalent independent tests accounting for smoothness of the data, and thus 

determines a suitable threshold for null hypothesis rejection.  

Descriptive vs Inferential GLM approaches 

This thesis uses both descriptive and inferential GLM approaches for group 

analysis statistical parametric maps. The difference between the two can be 

simplified to different definitions and assumptions made on the data. A descriptive 

GLM (often referred to as a fixed effects (FFX) analysis) assumes that the sample 

provided is the entire population, and an inferential GLM (referred to as a random 

effects (RFX) analysis) assumes that the data is a random sample from a 

population. For group analyses either is valid [120, 123, 124], however care must 

be taken at the inferences that can be made from each. Group RFX analyses can 

suffer from low power, as the number of degrees of freedom (defining the Students’ 

T-distribution for the null hypothesis against which the statistic is compared) are 

typically lower than for FFX analyses. Combined with the correction for multiple 

comparisons problem, the statistical thresholds required to reject the null 

hypothesis can be unreasonably high, risking Type II errors. Generally in this thesis, 

FFX analysis is used for mapping unless otherwise stated; accurately describing 

the data acquired in each study, but cannot strictly be used for formal inference for 

future studies.  
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2.2.3.2 Region-of-interest analysis 

Current voxel-wise approaches are suitable for broad hypotheses about where 

BOLD responses will occur to a given stimulus, and indicate the specificity of the 

BOLD response relative to an uninformative spatial prior. However, they do not 

account for a priori knowledge of which regions are expected to show BOLD 

responses to a particular stimulus. Region-of-interest (ROI) analysis is used to ask 

questions of how the BOLD signal responds in a particular region, ignoring other 

parts of the brain.  

It is extremely important to not follow up statistical parametric mapping with ROI 

analysis using ROIs chosen using maps of the same data, as this is circular logic 

[125]. Instead, anatomical ROIs or functional localisers should be used. For 

example, in this thesis three structural ROIs are commonly used, the LGd, the SCs 

and VISp in relation to visual stimuli, given that they are key regions of the mouse 

visual system. A benefit of ROI analysis is that the signal over multiple voxels is 

averaged, and as long as all voxels within a defined ROI are functionally 

responsive, tCNR is increased. However, if too coarse a ROI is chosen, then non-

functional voxels will be included in the average, reducing tCNR.  

Care must be taken in the definition of structural ROIs, whether by registration or 

manual segmentation. It is sensible to define ROIs on structural images with high 

image contrast (e.g. 𝑇2 weighted) rather than BOLD weighted functional images. 

Even with anatomical images, image contrast between different functional regions 

(e.g. visual cortex as opposed to somatosensory cortex) may be poor. For this 

reason, image registration using a previously labelled structural image or atlas can 

reduce bias and provide useful anatomical ROIs that can be compared across 

subjects and studies. 

2.3 Chapter summary 

In this chapter, the theoretical background to the thesis was provided. Section 2.1 

covered the theory behind magnetic resonance imaging, including measurement of 

the T2
∗ weighted BOLD signal. Then in section 2.2, basic theory behind the fMRI 

data processing and statistical analyses used in this thesis to map BOLD responses 

was provided. In the next chapter, development of a mouse fMRI protocol using 

visual stimulation is described.     
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3 Establishing a mouse fMRI 

protocol 

Before starting this project, mouse brain fMRI had not been performed at CABI, and 

to my knowledge there were no prior publications from any UK universities. The aim 

of this chapter was therefore to develop a protocol for robust mouse brain fMRI at 

CABI.  

Mouse brain fMRI is known to be challenging for several reasons: 

1. The small size of the mouse brain relative to other mammals requires the 

use of high-field (> 7T) MRI to acquire sufficient signal, as well as large 

magnetic field gradients to achieve sufficient spatial resolution. 

2. When operating at high field strengths with a small, anatomically 

heterogeneous sample (such as the mouse brain), field inhomogeneities 

caused by bulk magnetic susceptibility discontinuities at tissue boundaries 

can cause severe image distortion and signal loss. These effects become 

more severe as the sample reduces in size, as the volume/surface area 

ratio decreases. 

3. fMRI requires the preservation of neurovascular coupling in order to make 

inferences about neuronal population activity from the BOLD signal. 

Neurovascular coupling can be disrupted by anaesthesia, blood gas levels, 

and abnormal respiration and temperature values. Furthermore, correlation 

of these confounds with a stimulus used for task-based fMRI (e.g. electric 

shocks to the paw inducing an increase in respiration) can induce non-

specific BOLD signal changes, masking BOLD responses functionally 

specific to the stimulus [38]. 

Section 3.1 covers experimental protocol development work (section 3.1.1 

describes a bench experiment using a medetomidine anaesthetic protocol, whilst 

section 3.1.2, 3.1.3 and section 3.1.4 use agarose phantoms to examine GE-EPI 

temporal stability and evaluate the use of an interleaved snapshot GE-EPI pulse 

sequence). In section 3.2, work on mouse fMRI data processing is covered, with a 

particular focus on spatial normalisation and image registration. Then in section 3.3, 

the first mouse brain task-based fMRI study conducted at CABI is described, 
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showing consistent BOLD responses and also demonstrating the benefits of using 

interleaved snapshot GE-EPI in vivo. The chapter is then summarised in section 

3.4.  

3.1 Protocol development for mouse fMRI 

In this section, I aimed to develop a protocol for mouse fMRI at CABI, investigating 

mouse physiology and MRI pulse sequence parameters. The following subsections 

consist of separate minor experiments conducted to better inform an in vivo mouse 

fMRI protocol. 

3.1.1 Mouse pulse oximetry 

A previous study [33] had shown that medetomidine anaesthesia can yield robust 

BOLD responses to paw stimulation in the mouse brain. Given medetomidine had 

not previously been used at CABI, I aimed in this pilot study to implement a 

medetomidine anaesthesia protocol in the C57BL/6 mouse. Specifically, to test 

whether a previously described dosing strategy can provide stable anaesthesia 

(evaluated with hindpaw reflex testing) and yield stable physiology (assessed using 

arterial oxygen saturation).  

3.1.1.1 Introduction 

The bulk of the mouse brain fMRI (both resting state and task-based BOLD 

imaging) literature [31-38, 126-128], with a few exceptions [39, 129], use some sort 

of anaesthetic agent during the course of a mouse fMRI experiment. The main 

advantages of using anaesthesia are; the ease with which a mouse can be handled 

without time-consuming training, reduction of stress suffered by the animal, and the 

reduction in head motion which can introduce severe artefacts in the acquired fMRI 

data. The main disadvantage is that the anaesthetic agent is a potential 

confounding factor in the interpretation of all experimental results. Furthermore, 

some anaesthesia regimes such as 𝛼-chloralose have considerable side-effects 

[130], meaning experiments are often non-recoverable.  

The most common anaesthetic agent used in mouse brain MRI is isoflurane, as it is 

recoverable, fast acting, and can be administered in gaseous form. However, the 

vasodilatory effect of isoflurane has been documented multiple times [112, 113, 

131], and so presents as a confounder for the neurovascular coupling between 

neuronal activity and measured BOLD signal responses [112, 113].  
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Previous studies in the literature show that robust BOLD responses can be elicited 

in response to sensory stimulation in the mouse brain using the 𝛼2-adrenergic 

agonist medetomidine, [33, 37]. However, it must be delivered in liquid form as an 

injectable, and before the work described in this thesis, had never been used in 

CABI.  

Previous studies of neurovascular coupling in the rat have demonstrated the 

importance of maintaining blood gases (partial pressure of oxygen and carbon 

dioxide, arterial oxygen saturation) within a physiologically relevant range [132]. 

These parameters are most accurately measured from extracted blood samples. 

Repeated blood sampling in the mouse is invasive and extremely difficult, as the 

mouse has such a small volume of blood (~1.5 ml), and so instead I used a pulse 

oximeter to measure arterial oxygen saturation continuously and non-invasively. 

In order to assess the suitability of a medetomidine anaesthetic protocol, it was 

deemed necessary to carry out physiological monitoring in a ‘bench’ experiment, 

ensure arterial oxygen saturation did not leave standard ranges, and assess depth 

of anaesthesia through examination of the hindpaw reflex, in order to fulfil the 

criteria of the relevant UK Home Office project licence. 

3.1.1.2 Methods 

All experiments were performed in accordance with the European Commission 

Directive 86/609/EEC (European Convention for the Protection of Vertebrate 

Animals used for Experimental and Other Scientific Purposes) and the United 

Kingdom Home Office (Scientific Procedures) Act (1986) with project approval from 

the Institutional Animal Care and Use Committee. 

A single female C57BL6/J mouse weighing 20.2 g was used. Anaesthesia was 

induced with isoflurane (2%) and reduced to 1.5% for preparation. At anaesthesia 

induction, the subject was supplied with a mix of 0.1 L/min O2 and 0.4 L/min 

medical air. This mix of oxygen-enriched air was chosen based on a previous rat 

fMRI protocol used at CABI [133, 134], and a mouse fMRI study [37] which reports 

cortical BOLD responses to paw stimulation on the order of 2% relative to baseline 

signals.  

Animal preparation included shaving a square patch of fur across the stomach for 

the injection of the subcutaneous infusion line, and shaving the hind leg for the 

placement of the oximeter. Removing non-white fur was required for maximising 

optical transmission and thereby increasing SNR. The mouse was then transferred 
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to the mouse imaging cradle (Agilent), but kept on the bench. Physiological 

monitoring was conducted using a MouseOx pulse oximeter (Starr Life Sciences). A 

mouse thigh clip to hold the transmitter/receiver cables in place was applied to the 

shaved mouse thigh.  

The subcutaneous bolus of medetomidine was delivered via a programmable 

infusion pump (Harvard Instruments). Isoflurane was slowly discontinued over the 

course of the next 10 minutes, by approximately 0.2% every 1 minute starting 3 

minutes after bolus administration, as following a previously developed protocol 

[33]. The medetomidine dosage was dependent on the mass of the mouse, set at 

0.4 mg/kg for the initial bolus, and 0.8 mg/kg/hr for the constant infusion. The 

animal was free breathing throughout, and did not respond to hind-paw reflex test 

multiple times during the experiment. 

Once the animal was stable at 1.5% isoflurane (ISO) and ready for the initial bolus 

of medetomidine, SaO2 was measured using the pulse oximeter at a sampling 

frequency of 15 Hz. One initial 10 minute run was conducted on 1.5% isoflurane 

alone. Then the subject was switched to medetomidine, and three 10 minute runs 

were conducted in succession, the approximate expected imaging time window for 

future fMRI studies. 

Then, as a positive control to demonstrate the dynamic range of the pulse oximetry 

measurements, two 5 minute runs were conducted with gas challenges: first with 

the 0.1 L/min O2 removed, and the second with a mix of 0.1 L/min O2 and 0.2 L/min 

medical air. Prior to the challenges, the mixture was 0.1 L/min O2 and 0.4 L/min 

medical air. This was done to examine the sensitivity of the measurements of SaO2 

on the inhaled gas mixture. 

3.1.1.3 Results 

SaO2 results for the four anaesthesia runs are shown in Figure 3.1. 
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Figure 3.1. Arterial oxygen saturation under isoflurane and medetomidine anaesthesia. 

Switching from 1.5% isoflurane to injectable medetomidine did not appear to have 

an effect on SaO2. The mean SaO2 values over each 10 minute period are provided 

in Table 3.1. 

Table 3.1 Mean values of arterial oxygen saturation SaO2 under anaesthesia 

Anaesthesia/run Mean Arterial Oxygen Saturation ± standard deviation [%] 

1.5% Isoflurane / 01 97.6 ± 0.1 

Medetomidine / 01 97.6 ± 0.3 

Medetomidine / 02 97.9 ± 0.2 

Medetomidine / 03 98.05 ± 0.05 

 

These results show that using medetomidine anaesthesia does not have an 

appreciative effect on SaO2 relative to 1.5% isoflurane. The mean value of all 

measurements under medetomidine is (97.8 ± 0.3) %, which appears to be 

physiologically stable and close to values measured in the awake mouse [135]. 

The results from the two gas challenge runs are shown in Figure 3.2. 
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Figure 3.2. Arterial oxygen saturation under medetomidine anaesthesia with gas challenges. 
Removing pure O2 from the gas mixture has a marked effect on SaO2.  

Figure 3.2 clearly shows the decay in SaO2 to the removal of 0.1 L/min O2 (red line, 

0.4 L/min medical air). This decay is not suitably represented by a mean value. For 

the 0.2 L/min medical air + 0.1 L/min O2 run, the mean SaO2 in the period of 

stabilisation (50-300 seconds) is (98.3 ± 0.07) %. This run was conducted 

immediately after the 0.4 L/min medical air run, which is why the initial SaO2 value 

is approximately 85%. This also shows how that arterial oxygen saturation can 

recover to a hypoxic gas challenge in less than a minute, but that additional oxygen 

is required to be added to medical air for physiologically normal arterial oxygen 

saturation. 

3.1.1.4 Discussion 

Despite SaO2 remaining close to constant throughout separate runs under both 

isoflurane and medetomidine anaesthetic, there was still some variation present. 

The mean values of SaO2 without gas challenges agree with results in the literature 

[37, 135, 136]. It was noticed during the experiment that the ‘type’ of breathing 

changed on switching from 1.5% isoflurane to medetomidine. Under high levels of 

isoflurane (> 1.5%), breathing was gasping, erratic and less frequent. Under 

medetomidine, the style of breath was similar to normal physiological conditions 
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(smoother, shallower and faster). Measuring the respiration rate using the oximeter 

proved difficult, and for significant periods the respiration rate was severely under-

reported. When the oximeter produced low breathing rate values, the animal was 

watched in detail and could clearly be seen to be breathing at a rate greater than 

the calculated rate (data not shown). 

A limitation of this experiment is that only SaO2 was measured as a physiological 

variable of interest. Other parameters of interest that could affect BOLD responses 

include acidity (pH), and the partial pressure of oxygen and carbon dioxide. These 

are all contributing factors to neurovascular coupling (for a thorough review, see 

Buxton 2013 [93]). However, directly measuring these in the mouse is extremely 

challenging. This is primarily due to their small blood volume (~1.5 ml) and the 

blood volume requirement of many blood-gas analyser systems could directly affect 

the physiology [135]. Only one animal was used, and therefore no information on 

animal variability under this protocol can be gained from this experiment. However,  

published work conducted by Schroeter et al. [38]  and Nasrallah et al. [37] show 

similar results. 

3.1.1.5 Conclusion 

This experiment was conducted to investigate the stability of mouse physiology 

under medetomidine anaesthesia. Measurements of arterial oxygen saturation 

levels were taken in one wild-type mouse using a MouseOx pulse oximeter (Starr 

Life Sciences), under isoflurane and then a medetomidine anaesthesia protocol. 

Using medetomidine did not alter arterial oxygen saturation levels relative to using 

isoflurane ((97.8 ± 0.3) % against (97.6 ± 0.1) %). All baseline values remained 

stable throughout within physiologically relevant boundaries [37, 38] whilst using 

oxygen-enriched air in a ratio of 4:1 (medical air : oxygen). Following this result, this 

medetomidine dosing strategy and inhaled gas mixture was carried forward for 

subsequent fMRI experiments. Robust BOLD responses in the mouse brain under 

this protocol are described in section 3.3. 

3.1.2 GE-EPI temporal instability: phantom study 

In this early study, I aimed to evaluate the GE-EPI pulse sequence available at 

CABI on the Agilent 9.4T pre-clinical MRI scanner in terms of temporal stability, 

using an agarose phantom. 
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3.1.2.1 Introduction 

Good temporal signal stability is required for fMRI, in order to reduce the risk of 

false negatives. Temporal instability was found in previous in vivo mouse resting 

state fMRI pilot studies that I conducted (data not shown). In order to optimise the in 

vivo fMRI protocol, experiments were first conducted on an agarose phantom in 

order to reach a compromise between spatial resolution, temporal resolution and 

temporal stability. This experiment aimed to test the dependence of temporal 

stability on the fMRI imaging field of view (FOV) in an agar phantom. This 

hypothesis is based on the reduced gradient amplitude (and hence reduced ‘strain’ 

on the hardware) required for a larger FOV at a given matrix size. 

3.1.2.2 Methods 

A cylindrical tube of agar (approx. 3 cm tall, radius approx. 0.5 cm) was imaged on 

an Agilent 9.4T MRI scanner, with a shielded gradient (SGRAD 205/120/HD) set 

with a maximum strength of 400 mT m-1. A 4-channel surface coil (Rapid) was used 

in conjunction with a 72 mm diameter birdcage volume coil (Rapid). Conventional 

single shot GE-EPI was used with a repetition time (TR) of 2000 ms and an echo 

time (TE) of 18.5 ms. 12 axial slices of thickness 0.5 mm with a slice gap of 0.1 mm 

were acquired at every time point. 300 volume images were taken for a given scan 

(total running time of 10 minutes). Two square FOVs were investigated - 30 mm 

and 25 mm, at a matrix size of 96 x 96. ROIs were drawn and signals extracted 

using a custom graphical user interface (GUI) written in MATLAB (see section 

3.2.2.1). 

3.1.2.3 Results 

At a FOV of 30 mm, the mean signal across the region of interest (ROI) was stable, 

with a temporal SNR (tSNR) of 192. For a FOV of 25 mm, the mean signal suffered 

severe intensity drop out across the ROI, and the tSNR dropped to 2.4. Mean 

timecourses for a single slice are shown in Figure 3.3. 
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Figure 3.3. Plot of mean GE-EPI intensity from an ROI in the phantom against time for two 
different FOVs. 

Representative images from stable and unstable sections of the timecourses in 

Figure 3.3 are shown in Figure 3.4. 
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Figure 3.4. GE-EPI images of an agar phantom. Images A) and B) were taken from t = 0 and 300 
s respectively, at a FOV of 30 mm. Images C) and D) were taken at the same timepoints but at a 
FOV of 25 mm. The loss of signal quality is clear in D).  

3.1.2.4 Discussion 

The fact that image artefacts are apparent at smaller FOVs suggests that the 

source of signal instability is the magnetic field gradient set. By reducing the 

gradient duty cycle, the artefacts are suppressed. 

3.1.2.5 Conclusion 

With a FOV of 25 x 25 mm2 (taken from a previous mouse brain resting state fMRI 

study [126]), GE-EPI signal stability was poor. Physiological noise and motion 

artefacts were eliminated as causes by using an agar phantom. At a smaller FOV, 

image degradation beyond typical Nyquist ghosting was seen. The cause was 

believed to be the failure of the magnetic gradient hardware to cope with a heavy 

duty cycle. Future experiments should use GE-EPI with sequence parameters that 

require a lower duty cycle e.g. longer TR, larger FOV, smaller matrix size, etc. 
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Exhaustively exploring the GE-EPI parameter space in a phantom may not prove 

particularly relevant for future in vivo experiments, instead parameters should be 

chosen that provide adequate temporal stability, suitable spatial and temporal 

resolution, slice coverage and sensitivity to BOLD signal changes. For more details 

on GE-EPI parameters used in vivo, see section 3.3.2. 

3.1.3 GE-EPI parameter optimisation: phantom study 

In this experiment, I aimed to optimise the single-shot GE-EPI pulse sequence with 

respect to tSNR in an agarose phantom. 

3.1.3.1 Introduction 

An attempt to implement similar GE-EPI parameters used in a mouse brain resting 

state study [126], resulted in intolerable temporal signal instability. It was suggested 

that one potential cause was a failure of the magnetic gradient hardware to cope 

with heavier duty cycles. To that end, an experiment was conducted in an agar 

phantom to attempt to partially optimise GE-EPI parameter space for future in vivo 

experiments. 

3.1.3.2 Methods 

A cylindrical 15 ml Falcon tube of agarose was imaged on an Agilent 9.4T MRI 

scanner, with a shielded gradient (SGRAD 205/120/HD) set with a maximum 

strength of 400 mT m-1. A 2-channel surface coil (Rapid) was used in conjunction 

with a 72 mm diameter birdcage volume coil (Rapid). Conventional single shot GE-

EPI was used with a square FOV of width 35 mm and an echo time (TE) of 19 ms. 

Slices of thickness 0.5 mm with a slice gap of 0.1 mm were acquired at every time 

point. The parameters varied were TR, matrix size and number of slices. TR was 

set to 1.5, 2.0 or 2.5 seconds, matrix size either 64 x 64 or 96 x 96, and number of 

slices to either 12 or 24. Each scan was set to a total imaging time of approximately 

10 minutes. Shimming was done manually, and a linewidth of 13 Hz (FWHM) was 

achieved.  

Signals were extracted using a 0.5 mm diameter spherical ROI (approximately the 

same volume of the mouse LGd) placed at the centre of the phantom, and signals 

were extracted using the MarsBaR toolbox [137], and a 128 s high-pass temporal 

filter applied to each voxel timecourse before averaging. Temporal signal-to-noise 

ratio (tSNR) was calculated by dividing the mean signal value by the standard 

deviation. 
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3.1.3.3 Results 

For each timecourse, extracted, no signal instabilities or Nyquist ghosting was seen 

in any GE-EPI images. Temporal SNR measurements are shown in Table 3.2. 

Table 3.2. Temporal SNR measurements for a varied GE-EPI parameter space. 

TR [s] Matrix 

size 

Number of slices Temporal SNR 

1.5 64x64 12 290 

2.0 64x64 12 293 

2.5 64x64 12 289 

1.5 96x96 12 420 

2.0 96x96 12 416 

2.5 96x96 12 432 

1.5 64x64 24 279 

2.0 64x64 24 289 

2.5 64x64 24 270 

1.5 96x96 24 390 

2.0 96x96 24 403 

2.5 96x96 24 371 

 

From Table 3.2, the combination with the greatest temporal SNR is the use of a TR 

= 2.5 seconds, matrix size 96 x 96 and acquisition of 12 slices. 

3.1.3.4 Discussion 

As no parameter combination elicited the large signal instabilities seen in section 

3.1.2, little information can be offered by this data set on the causes of those 

previously observed instabilities. However, temporal SNR did vary depending on 

the parameter choice. Matrix size affected temporal SNR most strongly (as would 

be expected), as the 0.5 mm diameter sphere was sampled by more voxels for a 

greater matrix size at a fixed FOV, and therefore signal averaging has a greater 

effect on increasing tSNR. Acquiring more slices within a given TR period also 

reduced tSNR as expected, although this effect was small. For a given matrix size 

and number of slices, changing TR did not appear to make any systematic changes 

to tSNR. For experiments using single-shot GE-EPI, it would be reasonable to use 

up to 24 slices. However, when considering that the all of the mouse visual grey 

matter regions in the mouse brain can be successfully covered with 12 slices, this 
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could be considered unnecessary, and would require a larger volume to be 

shimmed, potentially reducing signal quality in the regions of interest. 

Echo time was not varied in this study, despite it being an important parameter for 

fMRI sensitivity [138]. It is expected that choosing an echo time of approximately 

the same value as the baseline 𝑇2
∗ should maximise sensitivity to changes in  𝑇2

∗ and 

therefore the BOLD signal. Based on a summary of the literature of mouse [35-38] 

and rat [59, 63, 133] studies using GE-EPI at 9.4T, an echo time of 19 ms was 

chosen, as a compromise between signal decay at longer TEs, and reduced BOLD 

sensitivity at shorter TEs.  

3.1.3.5 Conclusion 

In this phantom study, the dependence of temporal signal-to-noise ratio and stability 

on the TR, spatial resolution and number of slices used in the GE-EPI sequence, 

for scan duration of 10 minutes. Based on these phantom results, it would be 

reasonable to use a TR of 2.5 seconds, and matrix size of 96x96 with a FOV of 35 

mm2 for future GE-EPI applications. The long TR also has the benefit of reducing 

the gradient duty cycle relative to shorter TR, which may be beneficial given the 

signal instability observed in section 3.1.2 that appeared to be associated with high 

gradient duty cycle.  

3.1.4 Interleaved snapshot GE-EPI: phantom study 

Following sequence parameter optimisation on an agarose phantom, I proceeded to 

apply the single shot sequence in vivo. Figure 3.5 shows a representative EPI 

image where marked spatial distortions can be observed. In this study, I aimed to 

investigate the effect of using interleaved snapshot GE-EPI [139, 140] to reduce 

image artefacts in a phantom. The effect on temporal SNR was also considered. 

 

Figure 3.5. Image distortion in the mouse brain. Coronal slice demonstrating a ‘smearing’ of 
signal across the field of view.  

3.1.4.1 Introduction 

A single-shot GE-EPI pulse sequence is the standard method of acquiring fMRI 

data. However single-shot GE-EPI is vulnerable to local magnetic field gradients 
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caused by bulk magnetic susceptibility discontinuities, resulting in signal loss and 

image distortion. This is particularly apparent in the mouse brain, due to the low 

volume/surface area ratio [33]. Interleaved snapshot GE-EPI has been suggested 

by Guilfoyle and Hrabe [140] as an alternative acquisition protocol for mouse fMRI 

that can reduce susceptibility induced artefacts without compromising temporal 

resolution. Briefly, the conventional EPI sequence is separated into a series of 

excitation/acquisition snapshots conducted in succession at varied flip angles within 

one TR period. Each snapshot partially fills k-space and the entirety of k-space is 

composed of the interleaved snapshots. Each slice is acquired in turn with 𝑛 

snapshots, reducing vulnerability to respiration artefacts faced by conventional 

segmented EPI sequences. To further explain this, figures 1 and 2 from Guilfoyle 

and Hrabe’s paper are reproduced in Figure 3.6 and Figure 3.7 respectively, for the 

case where 𝑛 = 3 interleaved snapshots. 

 

Figure 3.6. Schematic of interleaved snapshot GE-EPI pulse sequence reproduced from 
Guilfoyle and Hrabe [140], illustrating the pulse sequence required for interleaved snapshot 
GE-EPI, 𝒏 = 𝟑. The original caption reads as follows, “Diagram of an interleaved snapshot EPI 

sequence consisting of three excitation-acquisition blocks, each lasting 𝑻𝜶. The segments 
follow in immediate succession with increasing flip angles, thus preserving the snapshot 
nature of conventional EPI. The second acquisition is delayed by 𝑻𝑹𝑳/𝟑 and the third by 𝟐𝑻𝑹𝑳/𝟑, 

where  𝑻𝑹𝑳 is the duration of a single gradient lobe. This ensures a smooth 𝑻𝟐
∗  decay in the 

combined data set…”         
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The pulse sequence shown in Figure 3.6 is similar to that shown in Figure 2.5 for 

the single-shot GE-EPI, except that in this case, one excitation does not cover the 

entirety of k-space. This coverage is described in Figure 3.7. 

 

Figure 3.7. Schematic of k-space acquisition for interleaved snapshot GE-EPI, reproduced from 
Guilfoyle and Hrabe [140], illustrating the coverage of k-space with each snapshot, and how the 
data is interleaved to resemble conventional single-shot GE-EPI. The original caption reads as 
follows, “The k-space coverage of an interleaved snapshot EPI compared with a conventional 
EPI. The three segments in the top row are combined into a complete interleaved kspace data 
set (bottom left), providing coverage identical with that of a conventional EPI data set (bottom 
right)”.  

Each snapshot of k-space for the slice in question is acquired using a different flip 

angle, specified in equation (3-1) (for a full derivation and proof by induction, see 

the methods section of Guilfoyle and Hrabe [140]). 

sin(𝛼𝑖) =  
1

√𝑛 − 𝑖
 (3-1) 

In equation (3-1), 𝛼𝑖 is the flip angle for the 𝑖𝑡ℎ interleaved snapshot. This definition 

of  𝛼𝑖 ensures each snapshot samples the same transverse magnetisation. With 

multiple snapshots acquired at the same flip angle and then interleaved, adjacent 

lines in k-space would be modulated by step increases – leading to artefacts in the 

Fourier transformed reconstruction. 

Spatial distortion is reduced by this method because the average sampling interval 

between excitation and acquisition is reduced for each line of k-space. The longer 

sampling interval used in conventional EPI gives off-resonance (𝐵0 

inhomogeneities) effects longer to corrupt an image during acquisition [139]. The 
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equivalent way of reducing distortion with conventional EPI would be to increase 

the spectral bandwidth, however this in turn increases the duty cycle placed on the 

magnetic gradient hardware, and consequently may require further compromises in 

either temporal or spatial resolution. Conventional multi-slice segmented EPI 

sequences are more susceptible to motion artefacts than interleaved snapshot EPI, 

as there is a longer time between segment acquisitions [140]. 

However, there is a decrease in imaging efficiency (SNR per square root of imaging 

time [141]) when using interleaved snapshot EPI, which in turn theoretically predicts 

a reduction in image signal-to-noise ratio (SNR) by a factor of √𝑛 (for a full 

derivation, see Guilfoyle and Hrabe [140]). For mouse fMRI, this reduction is only 

problematic if it in turn reduces the temporal quality of the BOLD signal. In a simple 

phantom with no way of modulating 𝑇2
∗, the most appropriate measure of temporal 

signal quality is the temporal signal-to-noise ratio (tSNR), whereas for in vivo task-

based fMRI the temporal contrast-to-noise (tCNR) is more appropriate. 

The relation between image SNR and tSNR is not trivial, and dependent on many 

external factors [142]. The broad expectation before conducting this experiment 

was that with increasing 𝑛, image SNR would decrease by √𝑛, and tSNR would also 

decrease. 

3.1.4.2 Methods 

A cylindrical 15 ml Falcon tube of agarose was imaged on an Agilent 9.4T MRI 

scanner, with a shielded gradient (SGRAD 205/120/HD) set with a maximum 

strength of 400 mT m-1. A 72 mm inner diameter volume coil for RF transmission 

(Rapid Biomedical), and a room-temperature 2 channel array surface coil (Rapid 

Biomedical) for signal reception. VNMRJ 3.1 software was used for image 

acquisition and reconstruction. 

GE-EPI was used with a repetition time (TR) of 2500 ms and an echo time (TE) of 

19 ms, and a FOV of 35 mm2. 12 axial slices of thickness 0.5 mm with a slice gap of 

0.1 mm were acquired at every time point and 100 volume images were acquired 

for a given run. Interleaved snapshots were used in the range 𝑛 = 1: 4 . After 

manual shimming, a linewidth of 18.33 Hz was achieved. 

Signals were extracted using a 2.5 mm diameter spherical ROI placed at the centre 

of the phantom, and signals were extracted using the MarsBaR toolbox [137], and a 

128 s high-pass temporal filter applied to each voxel timecourse before averaging. 

Temporal signal-to-noise ratio (tSNR) was calculated by dividing the mean signal 
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value by the standard deviation. Image SNR was calculated by the mean signal in 

the same ROI of the first image divided by the standard deviation of the signal in an 

equivalent size ROI placed outside the phantom. 

3.1.4.3 Results 

The effects of using multiple snapshots on GE-EPI image quality of a cylindrical 

phantom are shown in Figure 3.8. On visual inspection, increasing the number of 

snapshots reduces the distortion in the acquired images. 

 

Figure 3.8. Distortion reduction using multiple interleaved snapshots with FOV = 35 x 35 mm
2
. 

 

SNR results were calculated using a 2.5 mm diameter spherical voxel ROI and are 

included in Table 3.3.  

Table 3.3. Dependence of temporal SNR on number of interleaved snapshots.  

 𝒏 interleaved snapshots Image SNR Temporal SNR 

1 189 1369 

2 173 1330 

3 182 1200 

4 162 873 

These results indicate that indeed, image and temporal SNR generally fall with the 

use of interleaved snapshots. 
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3.1.4.4 Discussion 

Increasing the number of interleaved snapshots used during acquisition reduced 

the amount of spatial distortion, assessed using visual inspection. Both image and 

temporal SNR reduced with increasing snapshot number.  

Up to this point, physiological noise has not been considered, and this is likely to 

strongly affect tSNR, in addition to hardware effects. 

The current shimming strategy is to use a GE 3D shim protocol [143, 144]; with 

both 1st and 2nd order shims optimised in a user defined cubic shim voxel 

(approximately 5 x 8 x 9 mm3) with voxel corners set at the sample edges. As 

mentioned in section 3.3, typical line-width (FWHM) within this shim voxel for in vivo 

data is approximately 60 Hz, which is reasonable when compared with other values 

in the literature [37].   

There are alternative methods that could be tried to better improve spatial 

localisation of the BOLD signal in single-shot GE-EPI. For example, the method of 

acquiring a magnetic field map and using it to unwarp the GE-EPI images is well 

documented for human fMRI [145, 146]. I had previously tried this method at CABI 

for mouse GE-EPI images, however problems with phase-wrapping and low signal-

to-noise were not overcome (data not shown).  

3.1.4.5 Conclusion 

For a range of GE-EPI sequence parameters, image quality was assessed using 

visual inspection, and tSNR calculated with an ROI analysis. The use of interleaved 

snapshot EPI improved spatial localisation of  𝑇2
∗ weighted images, with an overall 

reduction in tSNR with increasing 𝑛. However, it should be noted that phantom 

tSNR only gives information on baseline stability. Therefore it was decided that 

interleaved snapshot GE-EPI should be tried in vivo and the tCNR of the BOLD 

signal investigated as well (see section 3.3). 

3.1.5 Protocol development – conclusion 

In this section, a series of experiments were conducted to better inform a mouse 

fMRI experimental protocol. Four experiments were conducted, which addressed 

the following issues: anaesthesia strategy, GE-EPI temporal stability and image 

distortion in GE-EPI data. The next section covers methods development of fMRI 

data processing. 
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3.2 fMRI data processing 

In this section, I describe computational work I completed to prepare mouse brain 

task-based fMRI data for further analysis, and the automatic data processing 

pipeline I constructed utilising routines from the SPM12 toolbox [120] and others. 

3.2.1 Introduction 

The size of the signal of interest in BOLD fMRI data relative to the numerous noise 

sources is extremely low relative to many other scientific disciplines [147], and 

therefore data processing/pre-processing is often required to reduce bias and non-

interesting variance from measured BOLD data, in both the spatial and temporal 

domains. There is an enormous body of literature on best practises for fMRI 

processing, and also a number of free, open source toolboxes for researchers to 

use, such as the SPM [120], the FSL [148] and AFNI [149] toolboxes. 

This work predominantly uses code and routines from the SPM toolbox, 

predominantly SPM12, version spm_r6767, although SPM8 was used initially for 

some of the development. MATLAB 2013a was used throughout this thesis unless 

otherwise stated. 

A general approach to fMRI data processing and analysis in humans is summarised 

in Figure 3.9. 
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Figure 3.9. Schematic for human fMRI data processing, reproduced from the SPM8 manual 
(http://www.fil.ion.ucl.ac.uk/spm/)  

The four steps of fMRI data processing mentioned in Figure 3.9 that are considered 

in this section are: Spatial normalisation (coregistration), realignment (motion 

correction, slice timing correction, and smoothing. 

As the SPM toolbox was designed for human data, some of these steps were not 

possible without some modification or adaptation of this pipeline. In particular, the 

spatial normalisation step for mouse fMRI data required significant work, as the 

default human priors in SPM were simply not suitable. The other three steps are 

considered, but only briefly as they worked consistently with mouse brain fMRI data 

without significant intervention.   
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3.2.2 Spatial normalisation 

This part of the pipeline underwent the largest improvements throughout the course 

of the project. Spatial normalisation in some form is required for comparing data 

across multiple subjects; however the complexity of the normalisation process can 

vary widely depending on the approach taken. 

3.2.2.1 MATLAB GUI for data extraction 

The initial attempt to compare BOLD timecourses from the same region across 

multiple subjects required manual definition of an ROI directly from the GE-EPI 

images. In order to do this, a graphical user interface (GUI) was developed in 

MATLAB, and took as an input the 4D image matrix of intensity values. An example 

GE-EPI dataset viewed in the GUI is shown in Figure 3.10. The GUI allowed 

multiple slices to be viewed, the timepoints to be scrolled through, and a timecourse 

of the raw intensity values corresponding to the mouse location to be displayed. 

The GUI also enabled visual inspection of all the acquired GE-EPI images for visual 

assessment of temporal stability and image distortion. Clicking the ‘Select ROI’ 

button would allow a polygon to be drawn in a single slice and the mean signal 

extracted. 
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Figure 3.10. Custom GUI for viewing GE-EPI data. The timecourse on the right corresponds to 
the bright region (ventricle) in the GE-EPI image on the left.  

Using this GUI was time-consuming for a human operator, and difficult due to low 

spatial contrast in the GE-EPI images. In addition, later versions of the SPM toolbox 

included similar/enhanced functionality whilst incorporating header information from 

The Neuroimaging Informatics Technology Initiative (NifTi) file format [114], rather 

than just the image matrix. For these reasons, after this update to the SPM toolbox 

in late 2014, the in-house developed GUI was no longer used. 

3.2.2.2 Initial image registration 

An improved method for spatial normalisation that was investigated was to use 

image registration. Briefly, image registration works by deforming an image in some 

way with respect to another. This can be seen as a machine learning problem 

where an algorithm ‘learns’ the optimal deformation to be applied by the 

minimisation of a cost-function. Image registration is an extremely large field of 

research, and for brevity only a few methods will be described here. 
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Directly registering GE-EPI data (which has inherently low spatial contrast and only 

partial brain coverage) across subjects was expected to be extremely difficult. In 

addition, the presence of structural data already assumed to be in the same space 

as the GE-EPI was already being acquired in order that functional results could be 

overlaid (for single subject analysis). The structural scan used was a T2 - weighted 

Fast Spin Echo Multi Slice (FSEMS) sequence, with the same slice thickness as the 

functional data, same field of view, but higher resolution and full head coverage. 

By making the assumption of zero head motion in between the acquisition of a 

structural (also referred to as an anatomical reference) scan and the acquisition of 

functional data, it was possible to perform affine registration of the structural data 

and propagate the affine transformation through to the functional data. 

The simplest way of deforming a 3D image (called the ‘floating’ image) to match 

another (called the ‘target’ image) is a 3x1 vector representing a translation in 3D 

space. A logical extension to this is to include rotations about three different axes, 

which could be represented with a 3x3 matrix (although the rotation matrix is 

symmetric, so in total there are only three rotational degrees of freedom). The use 

of only translations and rotations for registration is called a ‘rigid registration’. Rigid 

registration is useful in the case where the floating and target images can be 

assumed to be the same size and shape – and is therefore often used for motion 

correction (see section 3.2.3). 

However, if the floating and target images are of different shapes (say for example, 

different subject brains) then rigid registration is insufficient for accounting for these 

differences. By including shears and scaling, an affine transformation is the most 

complicated transformation that can be applied to map one space to another whilst 

preserving points, planes, straight lines and sets of parallel lines. The advantage of 

using affine registration over more complicated (often non-linear registration) is that 

the affine transformation matrix generated by the registration process is general to 

the image space. This means that the affine transformation generated from 

registering structural data can be applied to lower resolution, partial coverage 

functional data – under the assumption that the functional and structural data are in 

the same space. 

A second advantage of using affine registration is that all affine transformations can 

be represented by an ‘augmented’ matrix 𝑻 – a 4x4 matrix shown below in equation 

(3-2), with the 𝑨 matrix representing all affine transformations except for 
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translations, and the 𝑡 vector representing translations. In total an affine 

transformation has 12 degrees of freedom. 

𝑻 [

𝑥
𝑦
𝑧
1

] = [

𝐴11 𝐴12 𝐴13

𝐴21 𝐴22 𝐴23

𝐴31 𝐴32 𝐴33

0     0    0

𝑡𝑥

𝑡𝑦

𝑡𝑧

1

] [

𝑥
𝑦
𝑧
1

] (3-2) 

Once generated, the transformation matrix 𝑻 can be applied to other images of 

different resolution, field of view, contrast etc. In the initial application of this 

registration technique, the target image was the structural image of a subject from 

the experiment described in section 3.3. This subject was chosen because it was 

judged by visual inspection to be the most level (minimal rotations around the 

scanner bore z-axis. The original images are shown in cross-sectional views in 

Figure 3.11.  
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Figure 3.11. Cross section views of two different subjects anatomical reference scans. The 
mouse at the top is more level and was chosen to be the target image for registration, whereas 
the mouse at the bottom was chosen to be the floating image. Each image was acquired with 
the same sequence parameters, but because the mice were positioned differently, their brains 
are in different spaces, as evidenced by the crosshair positions. The width of the bottom most 
coronal view corresponds to 16 mm in real space (zoomed from 35 mm).  

To perform affine registration of this combination of floating and target image, the 

NiftyReg Toolbox [150, 151] was used with a MATLAB wrapper function shown in 

Appendix A. 

The results of this registration are shown in Figure 3.12. 
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Figure 3.12. Cross section views (after affine registration) of two different subjects anatomical 
reference scans. The mouse at the top is the target image and remains unchanged. The mouse 
at the bottom is the floating image transformed into the space of the target image. The width of 
the bottom most coronal view corresponds to 16 mm in real space (zoomed from 35 mm).  

The affine transformation matrix for this registration is given in equation (3-3). 

𝑻 = [

0.997 0.159 0.052
−0.177 0.981 −0.034
−0.055 0.036 0.997

0           0             0

−5.300
9.360
4.845

1

] (3-3) 

It should be noted that when reconstructing image data into the nifti file format, all 

voxel size information in the image header were increased by a scale factor of 10, 

in order that they could be read by the SPM12 toolbox. Therefore a translation in 

the x-direction of -5.3 corresponds to a translation of -0.53 mm, which in this 

example is approximately 3 voxels. Further improvements to the spatial 

normalisation will be discussed, but first the motivations for this will be covered. 

3.2.2.3 Defining regions of interest 

With the ability to register multiple subjects into the same space, more advanced 

group analysis became possible, as described later in this chapter and later ones. 

Drawing an ROI on the target image should correspond to the same region in all 
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other subjects, reducing the burden on a manual operator. However, the existence 

of brain atlases where brain regions have already been drawn gave rise to the 

following option: register a mouse brain atlas into the space of the already 

registered group data, and use the atlas labels as ROIs. Two mouse brain MRI 

atlases were initially available during the course of this work, the Toronto mouse 

brain atlas (TMBA) [67] and the National University of Singapore mouse brain Atlas 

(SMBA) [152]. Cross sectional views are shown in Figure 3.13. 

 

Figure 3.13. Cross sectional views of two atlases, the Toronto mouse brain atlas (TMBA) (left) 
and the National University of Singapore mouse brain atlas (SMBA) (right). The images at the 
top are of the MRI template images, and images on the bottom are of the brain region labels.  

The TMBA is the average of a set of nine registered age and sex matched 

129SV/S1 mouse brains, scanned ex-vivo. The SMBA used here is the first subject 

of a multi-subject atlas, with five C576BL/6 mice scanned in vivo. Both atlas 

template images are T2 weighted, and so similar tissues have similar contrasts (e.g. 

cerebral spinal fluid has higher intensity values than grey matter, making the 

ventricles easily distinguished).  

In general, the more different the target and floating images are, the more difficult 

the registration process. This line of reasoning suggested that these atlases might 

prove straight-forward to register. In a similar way to registering subjects’ structural 
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data and propagating the affine transform to the functional data, the atlas template 

images could be registered to the target subject structural data, and the affine 

transform propagated to the atlas labels. Then each ROI could be created by 

looking up the corresponding atlas label value. The results from registering the 

atlases to a target subject structural scan are shown in Figure 3.14. 

 

Figure 3.14. Cross sectional views (after registration) of the target subject structural scan (top 
row, repeated), Toronto mouse brain atlas (TMBA) (lower left) and the National University of 
Singapore mouse brain atlas (SMBA) (lower right).Both atlas templates were registered into the 
subject space with an affine transformation. The width of the coronal view corresponds to 16 
mm in real space (zoomed from 35 mm).  

One limitation of these MRI atlases is the labelling resolution. Although the spatial 

resolution of the atlas templates is much greater than target images, the labels of 

both atlases were coarse relative to the needs of mouse brain functional imaging 

with visual stimuli. For example, neither atlas subdivide the thalamus, only the 
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TMBA had a specific label for the superior colliculus, and the only the SMBA had a 

visual cortex label. For signal extraction, this would mean that signals from 

functionally delineated regions which respond to a stimulus, e.g. the lateral 

geniculate nuclei, would be averaged with surrounding structures unrelated to the 

stimulus, with the likely consequence of reduced temporal contrast-to-noise ratio. 

3.2.2.4 The Allen Mouse Brain Atlas 

The next approach considered the use of a histology atlas, the Allen mouse brain 

atlas (AMBA) [69]. This atlas was created to provide genome-wide image data for 

approximately 20,000 genes in the adult mouse brain. The template image for this 

atlas was created by reconstructing 2D histology sections, using high frequency 

section-to-section registration combined with low frequency histology-to-MRI 

registration.  

The main advantage of using this atlas is that the labelling resolution is much richer 

than the MRI atlases mentioned previously – for example, the lateral geniculate 

nuclei is delineated, the superior colliculus is sub-divided and the cortex is divided 

into multiple visual regions and also layers. Furthermore, the labels have 

hierarchical parent-child metadata, allowing the labels to be viewed at different 

functional ‘depths’. Concretely, this means that upon development of functional 

imaging approaches with different spatial resolutions and levels of coverage, more 

appropriate labels can be chosen for timecourse extraction.  

There were significant challenges to using this atlas, mostly concerned with 

visualisation and registration. These are discussed in the following subsections. To 

my knowledge, this was the first time that MRI data from the mouse brain had been 

successfully registered to the Allen Brain atlas. 

Visualisation  

The first issue arose with visualisation of the AMBA labels. Although not essential 

for signal extraction or registration, visual inspection of the labels was desired for 

comparing with other atlases. After an initial reconstruction, the following images 

were obtained, shown in Figure 3.15. 
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Figure 3.15. Cross sectional view of the AMBA template and the label image. Only two of the 
atlas labels appear to exist when viewing the intensity images.  

The reason for this is that the label numbers (IDs) are counter-intuitively distributed, 

with the bright regions in the label image having intensity values of approximately 

300,000,000, when a maximum of 1235 structures have identification numbers. 

Figure 3.15 shows a display of the atlas labels with these extremely large label 

values, which then precludes viewing of contrast orders of magnitude lower (which 

can be understood as a ‘windowing’ effect). A plot of label IDs against labels after 

sorting into ascending ID order is shown in Figure 3.16. 
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Figure 3.16. Raw Allen mouse brain atlas label IDs. The presence of label IDs at extremely large 
values (~3x10

8
) makes viewing the label image difficult due to poor windowing.  

To allow better visualisation of the atlas labels, they were recalibrated to 

approximately linearly increase, as shown in Figure 3.17. 

 

Figure 3.17. Recalibrated Allen Mouse Brain Atlas label IDs. The range of IDs is approximately 
the same as the number of regions included in the atlas.  

Visualisation of the recalibrated label IDs is shown in Figure 3.18. 
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Figure 3.18. Cross sectional view of the AMBA template and the recalibrated label. With 
recalibrated label IDs, the windowing problem is solved and the labelling resolution can be 
visualised much more clearly.  

3.2.2.5 Refined image registration 

As can be seen from Figure 3.18, the natural contrast of the AMBA template image 

is very different from the T2 weighted structural images acquired previously. It 

should be remembered that both the TMBA and SMBA atlases both had 

accompanying T2 weighted structural images. One possible option was for 

subsequent experiments, to acquire T1 weighted structural images which would 

have more similar image contrast (e.g. CSF having darker signal than grey matter). 

However, at the time the AMBA was being considered, multiple experiments had 

been conducted with only T2 weighted structural images. For ease of comparing 

past data with future work, it was decided to attempt to register the AMBA to the T2 

weighted structural images. 

The initial attempt at affine registration using NiftyReg with the default parameters 

previously used failed in this case. An example of the failed registration is shown in 

Figure 3.19. 
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Figure 3.19. Example of failed affine registration of the AMBA to a T2 weighted structural scan. 
The width of the bottom most coronal view corresponds to 35 mm).  

In order to improve the registration, it is necessary to consider in more detail the 

algorithm used by NiftyReg and the hyper-parameter space of the algorithm. 

In order to generate the affine transformation matrix 𝑻, the NiftyReg routine 

‘reg_aladin’ was used, which uses the Aladin block-matching algorithm with a least-

trimmed squares cost minimisation approach. Briefly, the block-matching algorithm 

works by establishing dividing the floating and target images into blocks of uniform 

size. Each block in the target is compared with blocks in corresponding 

neighbourhood of the floating image. The matching floating image block is chosen 

as the one with the highest maximum normalised cross correlation [151]. The affine 

transformation which maps the block in the floating to the block in the target is 

computed using linear regression, but with a least-trimmed squares cost function for 

more robust outlier rejection. The two steps of block matching and transformation 

optimisation are computed over many iterations, where the blocks begin at a coarse 

level and become progressively finer. 
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The hyper-parameters of interest that were investigated to improve the registration 

are the number of levels and iterations. The default settings for the reg_aladin 

routine are three levels and 5 iterations. An ad-hoc optimisation approach to 

explore the hyper-parameter space was conducted, by performing the registration 

over a finite hyper-parameter space (number of levels ln = 1:5, maximum number of 

iterations maxit = 1:10), and evaluating the registration by visual inspection. The 

code snippet used to perform this optimisation is shown in Appendix A. 

After execution, it was found that the algorithm failed to produce an output for the 

following hyper-parameter values: ln = 4, maxit = 10; ln = 5, maxit = 5, 6 and 7. 

From the remaining 46 output images, the optimal hyper-parameter set was 

decided to be ln = 1, maxit = 6 by visual inspection. 

For brevity, a subset of the outputs is included here, shown in Figure 3.20 and 

Figure 3.21.  
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Figure 3.20. Cross sectional views of outputs from reg_aladin with maxit = 4, nl = 1:5 (left-to-
right, top-to-bottom). As the number of levels increases, the algorithm appears to worsen in 
performance. The width of the coronal view is 35 mm).  
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Figure 3.21. Cross sectional views of outputs from reg_aladin with nl = 1, maxit = 1:10 (left-to-
right, top-to-bottom, three views per volume). As the maximum number of iterations increases, 
the algorithm does not appear to improve in performance after maxit = 6, and there appear to 
be minor distortions in maxit = 8. The width of the bottom most coronal view corresponds to 16 
mm in real space (zoomed from 35 mm).  

The comparison of the optimal registration output with the target structural image is 

shown in Figure 3.22 and Figure 3.23. 
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Figure 3.22. Final output for registration of AMBA template image to a T2 weighted structural 
image. Anatomical landmarks appear to correspond in both images, despite the markedly 
different contrasts in both images. The width of the bottom most coronal view corresponds to 
16 mm in real space (zoomed from 35 mm).  
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Figure 3.23. Evaluation of the registration of the Allen mouse brain atlas (right column) to a T2 
weighted structural image (left column). Four coronal views are shown, moving from the back 
of the brain (just in front of the cerebellum, top two rows) towards the front (olfactory bulb, 
bottom row). The width of each coronal view corresponds to 16 mm in real space (zoomed from 
35 mm).  

Future improvements to this registration process would include the use of a 

quantitative measure of registration performance, such as the DICE score [153] 

after manual segmentation of both images, and the investigation of non-linear 

registration. For the purposes of group analysis of fMRI data however, the quality of 

this registration was deemed sufficient. 
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3.2.2.6 Standard space 

At this point, it was reasonable to assume that labels from the AMBA could be 

propagated through to the functional GE-EPI for timecourse extraction. However, 

the spatial normalisation process at this point had the following disadvantages: 

 A template subject had to be chosen to register all other subjects to it, 

requiring manual intervention. 

 For every group experiment, the AMBA would need to be registered to this 

template subject, and the relevant ROIs extracted. 

 Each group experiment is in a different space, making comparisons across 

studies and meta-analyses difficult. 

Ideally, every subject from every experiment would be registered into the AMBA 

space, and then the same ROIs could be propagated throughout. 

One method would be to directly register each subject’s structural scan (now the 

floating image) to the AMBA template image (now the target image). However, this 

was found to be unstable, and the opposite registration (floating and target image 

swapped, all other hyper-parameters kept the same) to that shown in Figure 3.22 is 

shown in Figure 3.24. 
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Figure 3.24. Cross sectional views of registration of T2 weighted structural scan (floating 
image, bottom) to the AMBA (target image, top) using the Aladin algorithm.Reversing the 
floating and target images caused the registration to fail.  

Despite the direct registration of the T2 weighted image to the AMBA template 

image failing, the use of affine registration provided a solution. The original 

registration procedure (Figure 3.22) outputs the transformation 𝑻 with the affine 

transform to map the floating image space to the target image space. By inverting 𝑻 

to find 𝑻−𝟏, the mapping of the target image space to the floating image space is 

also found. Applying  𝑻−𝟏 to the T2 weighted image maps it into the AMBA space 

and this is shown in Figure 3.25.  
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Figure 3.25. Cross sectional views of registration of T2 weighted structural scan (floating 
image, bottom) to the AMBA (target image, top), by performing the opposite registration, 
inverting the transformation matrix and applying to the floating image. The width of the bottom 
most coronal view corresponds to 16 mm in real space (zoomed from 35 mm).  

Now the T2 weighted image is registered into the AMBA space, and has much more 

similar image contrast to all other subject structural scans. It can therefore be used 

as a template for registering other subjects from different experiments into the 

AMBA space. This procedure for spatial normalisation is represented by the 

schematic in Figure 3.26, where 𝑻𝒂  is the affine transformation mapping the AMBA 

template image to the example MRI structural scan, and 𝑻𝒊 is the affine 

transformation mapping an individual subject structural scan to the MRI template.  
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Figure 3.26. Schematic illustrating spatial normalisation procedure. 

This is the most advanced spatial normalisation procedure used during the course 

of this work, and makes the following extra assumptions: 

1. There is zero head motion between the acquisition of the structural image 

and the functional data. 

2. Any spatial distortions in the acquisition of both the subject structural scan 

and functional data are equal.  

Assumption 1 can be qualitatively examined by examining example functional data 

– it is acquired as a time series, and upon the application of motion correction (see 

section 3.2.3) using the SPM toolbox, an estimate of motion parameters is 

generated. With proper application of anaesthesia, and a suitable head restraint, 

this assumption is reasonable. 

Assumption 2 is more difficult, especially given the nature of the MRI pulse 

sequences used to acquire the structural and functional images. The majority of the 

functional data acquired in this work uses the GE-EPI pulse sequence, which can 

markedly suffer from spatial distortions due to magnetic field inhomogeneities (in 

turn caused by discontinuities in magnetic susceptibility at material boundaries e.g. 

air-skin-bone-brain). The FSEMS sequence used to acquire the structural scan is 

markedly less susceptible to these spatial distortions, which means that assumption 

2 may sometimes be unreasonable. Work to minimise the spatial distortions in the 

functional data at the acquisition stage is covered in sections 3.1.4 and 3.3. 
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An example subject with transformed structural and functional data using this 

spatial normalisation procedure is shown in Figure 3.27. 

 

Figure 3.27. Spatial normalisation of fMRI data into AMBA space. Cross sectional views of: the 
MRI template (top-left), ROI of the mouse visual system extracted from the AMBA (top-right), 
the registered structural scan of an example subject (bottom-left), and the transformed 
example subject functional data (bottom-right). Contours extracted from the ROIs have been 
overlaid on all four image sets, illustrating the quality of the registration and localisation of the 
functional data. The width of the bottom most coronal view corresponds to 16 mm in real space 
(zoomed from 35 mm).  
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3.2.3 Motion correction 

Throughout the duration of an fMRI scan, it is possible for the subject’s head to 

move. This will cause the BOLD signal from one or more voxels to “leak” into one 

another. This motion could be systematic or random, depending on the type of 

subject, anaesthesia and head restraint used. Motion is a source of bias from the 

spatial domain, but the effect is measured in the temporal domain – the timecourse 

from a specific voxel no longer corresponds to the brain region within that voxel at 

the beginning of the scan. Bulk motion is the global movement of the head, and will 

cause image volumes taken at different points in time to be misaligned. It is 

possible to partially correct for this by rigidly registering the fMRI images to a 

reference image.  

However, this assumes that the shape of the brain in the MRI image does not 

change from timepoint to timepoint. For a 2D sequence, where slices are acquired 

sequentially, this is unlikely to be the case in the presence of motion. Concretely, 

the effect of motion during a slice acquisition may change the appearance of the 

brain in that slice. A more complex issue is that motion (head or from respiration) 

may affect the quality of the shim, and therefore affect the spatial localisation of the 

signal that way. 

Image realignment will reduce the effect of bulk motion, but it may not completely 

remove the extra variance introduced in the temporal domain by the motion. 

Through the realignment process, estimates of motion parameters can be made, 

and included in statistical analysis as nuisance regressors to further remove bias. In 

this work, motion correction was done using the spm_realign/reslice functions in the 

SPM toolbox. 

An example of the motion parameters for in vivo data (from the first scan of the first 

subject included in the experiment described later in section 3.3) estimated by 

spm_realign is shown in Figure 3.28. 
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Figure 3.28. Estimates of motion parameters using spm_realign.m . It should be noted that the 
units here are ten times larger than reality for use with the SPM toolbox, and so the translation 
estimate of the x-translation of up to 1 mm is actually 0.1 mm, at the sub-voxel level. The x-
direction in this case corresponds to the phase-encoding direction, and is likely to be a 
reflection of the actual motion of the mouse brain.  

 

3.2.4 Slice timing correction 

When using a 2D pulse sequence, image slices are acquired sequentially and 

stacked together within one TR period. This causes systematic lags to be 

introduced in the temporal domain, which are predicted by slice number. The slice 

timing correction strategy used by SPM is to select a reference slice and use sinc 

interpolation in the temporal domain to estimate the signal in an arbitrary slice 

which would have been measured had it been acquired at the same time as the 

reference slice. Concretely, this is done by a phase shift in the sinusoids which 

compose the signal. In this work, slice timing correction was done using the 

spm_slice_timing routine without further development. 
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3.2.5 Spatial smoothing 

The process of spatial smoothing is controversial and can be seen as counter-

intuitive in fMRI analysis [119], and can be thought of as a spatial averaging 

operation. After spatial smoothing, the effective spatial resolution of the fMRI data is 

reduced. However it does increase signal-to-noise ratio for signals on larger length 

scales, and generally fMRI signals are expected to concur with brain regions 

covered by more than a single voxel. In the case that brain regions are covered by 

multiple voxels, the loss in signal-to-noise due to averaging over boundaries of 

functionally distinct regions is expected to be less than the gain of averaging within 

the functional region of interest to reduce random noise [118].  

However the most controversial issue with smoothing is due to later use with 

statistical thresholds. Statistical inference methods in SPM use gaussian Random 

Field Theory (RFT) [120], and assume that voxel length scales are smaller than the 

smoothness. Generally as the fMRI data becomes smoother, the less harsh 

multiple comparison corrections (e.g. through the family-wise error rate (FWER)) 

become, and the lower the risk of a Type II error i.e. incorrectly accepting the null 

hypothesis.  

Typically, smoothing is completed using a gaussian filter, with a full-width half-

maximum length at approximately the size of two voxels [118], and a final 

smoothness measurement of the data (the size of a  ‘RESEL’, or resolution 

element) to be at least three times the size of one voxel. All results presented in this 

thesis using the SPM FWER correction were checked to ensure that data matched 

this heuristic value for smoothness. 

3.2.6 Conclusion 

The current implementation of the data processing pipeline has the following form 

(Figure 3.29). 
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Figure 3.29. Flowchart for processing mouse brain fMRI data. 

Further analysis of the fMRI data beyond the ‘Processed Functional Data’ point is 

dependent on the nature of the experimental design. Further analysis often includes 

motion parameter estimates which are outputted by the motion correction step – 

these are often included as nuisance regressors in a general linear model analysis. 

It should be noted that the precise final implementation of this pipeline (in particular 

the spatial normalisation step as described in section 3.2.2.6), was only 

implemented towards the later stages of this work. Therefore experimental data 

collected early on may only be processed with earlier iterations of the pipeline, and 

this will be stated in the relevant methods sections. 

To conclude, an automatic mouse fMRI data processing pipeline using a 

combination of NiftyReg and SPM tools was created, in a similar fashion to how 

human fMRI data is often analysed. This included registration of MRI data to the 

Allen mouse brain atlas to allow automated and non-biased extraction of fMRI data 

from specific atlas labels corresponding to the mouse brain visual system.  
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3.3 Interleaved snapshot fMRI: in vivo  

This experiment aimed to measure BOLD responses in the mouse visual system, 

and investigates the effect of using interleaved snapshots on temporal contrast-to-

noise. The results from this experiment are the first documented mapping of robust 

BOLD responses in the mouse brain to a visual stimulus, and are included as part 

of a journal article titled “fMRI mapping of the visual system in the mouse brain with 

interleaved snapshot GE-EPI” (Niranjan et al. [94]). The design of the visual 

stimulus and set-up of the laser was completed by Dr. Jack Wells; I designed and 

performed all other aspects of the study. 

3.3.1 Introduction 

Following on from section 3.1.4, task-based fMRI in the mouse brain was 

attempted. The majority of task-based fMRI studies in the mouse [32-36, 38] had 

focused on electrical shocks to the mouse paw as the stimulus of choice. Work by 

Schroeter et al. [38] clearly demonstrated the difficulty with this stimulus, as the 

correlation of heart rate with the stimulus can induce global BOLD signal changes – 

therefore obscuring activation specific to neuronal activity related to the stimulus.  

The stimulus chosen for this experiment is binocular photic stimulation, of which 

there has only been one previous study by Huang et al. attempting to use a visual 

task to evoke BOLD fMRI responses in the mouse brain [31] (at the time this 

experiment was conducted, the paper by Harris et al. [39] had not been published ). 

This study reported highly atypical BOLD responses when considered against 

similar data acquired in the rat brain [59, 60, 62-64]. To evaluate this, it is useful to 

reiterate the important features of the mouse brain visual system which we would 

expect to measure BOLD responses upon presentation of a visual stimulus: the 

lateral geniculate nuclei (LGd), the superior colliculus (SCs) and the visual cortex 

(VC) of which the primary area (VISp) would be the most prominent. This system is 

summarised in Figure 3.30, adapted with permission from figure 1(b) from 

Huberman and Neill [26].     
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Figure 3.30. Schematic representing the mouse visual system, adapted from Huberman and 
Neill [26], with permission. For binocular stimulation, the three brain regions of interest are the 
dorsal lateral geniculate nuclei (LGd), the superior colliculus (SCs) and the primary visual 
cortex (VISp). Labels are the corresponding regions from the Allen Mouse Brain Atlas [69].  

It is worth considering the quality of mouse visual fMRI data from the single 

previous study by Huang et al. [31]. In the twenty years since they conducted their 

study, fMRI methods and their reporting have improved considerably. Figure 3.31 

shows a reproduction of figure 4 from this study, in which the spatial pattern of the 

BOLD responses does not appear to correspond to the known anatomy of the 

mouse visual system. The paper describes the BOLD clusters (thresholded at 

±7%), as being in the occipital lobe, which is not particularly specific. In addition, the 

study does not display raw functional images, and the timecourses displayed are 

averaged over ROIs directly defined as voxels with maximal % change – suffering 

from circularity as described by Kriegeskorte et al. [125]. 

Given these considerations, it was deemed suitable to attempt task-based fMRI in 

the mouse using photic stimuli, as it was believed unlikely that photic stimulation 

would induce cardiac changes of the sort measured by Schroeter et al. [38] when 

applying electric shocks to the paw. 
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Figure 3.31. Figure 4 adapted from Huang et al. [31] (Copyright (1996) National Academy of 
Sciences). The original caption reads as follows, “FIG 4…. A 256 x 256 image obtained before 
stimulation is seen in a. In the other panels, color-coded fMRI difference images are 
superimposed on the gray-scale scout image. The color scales are given on either side of 
these images. b-f show the images obtained 1, 3.6, 8.1, 10.7, and 17.1 s after the light was 
switched on, respectively. Thus, b, d, and f show the responses to the switching on, the 
decrease in intensity, and the switching off of the light, respectively. On the other hand, c and e 
show the “accommodation” of the mouse brain to the continued stimulation.”  

As previously described, interleaved snapshot GE-EPI provides a method for 

acquiring less spatially distorted  𝑇2
∗ weighted images than the traditional single shot 

GE-EPI, but is in theory accompanied by a reduction in image SNR. However, it 

was unclear how this might affect the temporal contrast-to-noise ratio (tCNR), which 

is the most useful quality assurance metric in fMRI. Whilst interleaved snapshot 

GE-EPI had been applied in the mouse brain to investigate resting state 

connectivity [154], there had been no attempt to evaluate its use with task-based 

fMRI. 

The initial hypothesis for this experiment was that by increasing the number of 

interleaved snapshots 𝑛, marked improvements in the spatial localisation of the 

BOLD signal would be observed, but at a cost to image SNR, temporal SNR (tSNR) 

and tCNR (but that these may be an acceptable penalty for future applications 

given marked image distortion previously reported [33]). 
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3.3.2 Methods 

Animals 

All experiments were performed in mice in accordance with the European 

Commission Directive 86/609/EEC (European Convention for the Protection of 

Vertebrate Animals used for Experimental and Other Scientific Purposes) and the 

United Kingdom Home Office (Scientific Procedures) Act (1986) with project 

approval from the Institutional Animal Care and Use Committee. For reports on 

physiological measurements, all values are given as mean ± standard deviation. All 

mice were acclimatised two weeks prior to data acquisition in an animal house 

maintained at a temperature of 21 ± 2 °C and a relative humidity of 55 ± 10 %, on a 

12 hours light/12 hours dark cycle with a 30 minute twilight switch. 

6 female C57BL6/J mice weighing 19.3 ± 0.6 g were used to investigate the use of 

interleaved snapshot GE-EPI for acquiring task-based fMRI data in the mouse 

brain. From anaesthesia induction to the experiment end, each subject was given a 

gas mixture of 0.1L/min of O2 and 0.4 L/min of medical air (BOC Healthcare (Linde 

AG), Munich, 20.9 ± 0.5% O2 with balance composed of N2).  Anaesthesia was 

induced using 2% isoflurane gas and reduced to 1.5% for animal preparation. 

Subjects were transferred to medetomidine anaesthesia for functional imaging (0.4 

mg/kg bolus, 0.8 mg/kg/hr infusion initiated 10 mins after bolus), administered 

subcutaneously via the flank using a butterfly needle [33]. The dosage was 

controlled using a programmable syringe pump (Harvard Instruments). Following 

administration of the medetomidine bolus, isoflurane was gradually discontinued at 

a rate of 0.2% per minute. 

Respiratory rate was measured using a pressure sensitive pad, and core body 

temperature was measured using a rectal thermometer (SA Instruments). Core 

body temperature was maintained using a warm water circuit and hot air fan 

feedback system (SA Instruments). During functional imaging, this protocol 

produced a stable respiratory rate of 170 ± 16 breaths per minute. Core body 

temperature was maintained at 37.3 ± 0.3 °C. Other physiological measurements 

for this anaesthesia and gas mixture protocol are described in section 3.1. 

MRI methods 

All MRI experiments were performed on a 9.4T VNMRS horizontal bore MRI 

scanner (Agilent Inc., Palo Alto, CA) with an Agilent 205/120HD gradient set, in 

conjunction with a 72 mm inner diameter volume coil for RF transmission (Rapid 
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Biomedical), and a room-temperature 2 channel array surface coil (Rapid 

Biomedical) for signal reception. VNMRJ 3.1 software was used for image 

acquisition and reconstruction. 

An anatomical reference scan was taken using a Fast Spin Echo sequence 

(TR/TEeff = 4000/48 ms, ETL = 8, matrix size = 192 x 192, FOV = 35 x 35 mm2, 35 

coronal slices each 0.6 mm thick). fMRI data were acquired using GE-EPI (FOV = 

35 x 35 mm2, matrix size = 96 x 96, 12 coronal slices each 0.5 mm thick, slice gap 

0.1 mm, spectral width = 178.6 kHz, TR = 2.5 s, TE = 19 ms, one EPI triple 

reference image). These parameters were chosen based partially on values from 

the literature [34, 35, 126] and the experiment described in section 3.1.2. The 

acquisition time per snapshot, 𝑇𝛼, was kept at the VNMRJ suggested value of 50.18 

ms for all sequences. 84 volumes were acquired for each run, including the triple 

reference. The anatomical reference scan ensured whole brain coverage, and the 

fMRI slices were positioned anterior to the anterior aspect of the cerebellum [31].  

Shimming was conducted using a GE 3D protocol [143, 144], with both 1st and 2nd 

order shims optimised in a user defined cubic shim voxel (approximately 5 x 8 x 9 

mm3) with voxel edges set at the brain edge. Typical line-width (FWHM) within this 

shim voxel was approximately 60 Hz. 

fMRI data were collected using a number of GE-EPI snapshots  𝑛 ranging from one 

to four. At each  𝑛, the required flip-angle for each shot was calculated according to 

equation (3-1). Two fMRI runs were completed for each value of  𝑛 for each subject, 

in a pseudo-random order.   

Visual stimulation 

Stimulation timings were triggered from the beginning of the EPI sequence using a 

POWER1401 control system (CED Ltd., UK) with Spike2 software. The stimulus 

consisted of blue laser light (445 nm, Omicron) transmitted into the scanner bore 

using a fibre optic cable. The cable was placed dorsal to the mouse head, secured 

to the top of the surface coil and aimed into the bore; in order that light reflected off 

the surface of the coil interior. This way, the eyes could be stimulated bilaterally 

with diffuse light without risk of retinal damage. The laser was pulsed at a frequency 

of 10 Hz, with pulse duration of 10 ms, and a laser current of 10 mA. The output 

power was measured to be 0.72 mW at the end of the fibre optic cable, and was not 

uncomfortably bright to the human eye. During baseline periods the laser power 

output was zero. The stimulus was delivered using a block design paradigm of 40 
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seconds rest, 20 seconds activation alternately repeated three times. This resulted 

in six activation periods per condition per subject. This visual stimulation paradigm 

is similar to that used by Pawela et al. in a rat visual fMRI experiment [62]. 

A schematic showing the mouse fMRI set-up is shown in Figure 3.32. 

 

Figure 3.32. Schematic showing experimental set-up for mouse fMRI with visual stimulus.The 
fibre optic cable sits between the head and the underside of the surface coil, allowing light to 
be reflected off the surface coil and into the eyes.  

Data analysis 

All data analysis was conducted using ITK-SNAP [155], NiftyReg [150, 151], the 

SPM toolbox [120], the MarsBaR toolbox [137], in-house MATLAB 2014b scripts 

and GraphPad Prism 6. All voxel size header information was increased in size by a 

factor of ten to facilitate the use of human neuroimaging analysis software, however 

all distances and locations are reported in real space. Anatomical reference scans 

were registered to the reference scan (manually skull-stripped using ITK-SNAP) of 

the final subject using an affine registration with NiftiReg, and the affine 

transformation matrix generated was then applied to the fMRI data, as previously 

described in section 3.2.2. To generate structural ROIs, the Allen histology mouse 

brain atlas [69] was directly registered to the data in the same way, and atlas labels 

transformed accordingly. The registration was evaluated by visual inspection with 

respect to the anatomical reference scan using the spm_check_registration routine 

and the Paxinos Mouse Brain Atlas [156]. After registration the fMRI data were 

realigned (to correct for motion), corrected for differences in slice timing and 

smoothed (Gaussian FWHM of two voxels). The triple-reference image was 

discarded before slice timing correction. 

Region-of-interest (ROI) analysis was conducted by using atlas labels to extract 

timecourses using MarsBaR, to avoid circularity [125]. The labels chosen for 

timecourse extraction were the LGd, SCs and VISp, which correspond to the dorsal 
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lateral geniculate nucleus, the sensory areas of the superior colliculus and the 

primary visual area, commonly referred to V1. As the stimulus was binocular, ROIs 

included both brain hemispheres. The MarsBaR source code was altered in order 

that individual voxel timecourses were filtered and normalised before averaging, 

and the code modifications are shown in Appendix A. Timecourses were 

normalised to percentage signal change by dividing each value by the mean value 

of the whole timecourse.  

BOLD contrast was then calculated by subtracting the mean preceding baseline 

value from the mean BOLD value from each stimulus epoch. Temporal CNR was 

calculated for the LGd, SCs and VISp, by dividing the relevant mean BOLD contrast 

by the standard deviation of the BOLD signal in the baseline period [157]. For the 

SCs only (as it is the only fully contiguous region), image SNR was calculated by 

dividing the mean intensity of the first timepoint in the SCs by the standard 

deviation of an equivalent sized ROI centred outside the brain. Temporal SNR was 

calculated slightly differently – because it requires the mean signal at baseline, 

percentage change normalised timecourses cannot be used (this would mean 

division by zero). To avoid this, temporal SNR was calculated with filtered 

timecourses only and by dividing the standard deviation of the initial baseline signal 

by its mean value. 

Linear regression was performed on BOLD temporal CNR values and temporal 

SNR in the SCs to test for trends with respect to 𝑛, and on image SNR with respect 

to √𝑛. 

For statistical parametric mapping, 1st-level general linear model (GLM) analysis 

was conducted for each subject under each condition, with both fMRI scans 

included in the GLM with estimated motion parameters as nuisance regressors 

(single subject fixed effects model). Voxels were only analysed if they were 

included in a brain mask manually generated from the anatomical reference scan of 

the last subject. The SPM canonical HRF (double-gamma function) was convolved 

with the stimulus profile as the explanatory model. The default SPM options of 

grand mean scaling and auto-correlation noise modelling were used, with a high-

pass filter of 128 seconds. A two-tailed t-test was then performed on a voxel by 

voxel basis to test the null hypothesis that the BOLD signal is not explained by the 

explanatory model. All statistical parametric maps shown were corrected for 

multiple comparisons using a FWER (p < 0.05) threshold determined by random 

field theory using SPM12 unless otherwise stated. No cluster thresholding was 
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used. To understand group level activations, fixed (FFX) effects analysis was 

conducted. The fixed effects group analysis included all subject scans for each 

condition in the same GLM (with appropriate nuisance regressors). 

3.3.3 Results 

Identification of BOLD responses 

Bilateral BOLD responses to a flashing light visual stimulus were identified in the 

LGd, SCs and VISp regions through fixed effects SPM analysis. Results from the 

10 Hz flashing stimulus measured with GE-EPI using  𝑛 = 4 are shown in Figure 

3.33. 

 

Figure 3.33. Fixed effects analysis (two-tailed t-test, FWE p < 0.05, N = 6) statistical parametric 
map generated from snapshot GE-EPI (𝒏 = 𝟒), overlaid on anatomical reference image in A) 
transverse view and B) three coronal slices (with distance relative to Bregma).  

These regions show close spatial affinity to the mouse visual system as described 

by Figure 3.30. The spreading of the BOLD response beyond these regions in a 

‘halo’ effect is likely due to the combination of the statistical threshold level chosen 

combined with the 2-voxel FWHM smoothing kernel applied in the pre-processing 

step, as recommended by [118]. An alternative explanation is the presence of 

draining veins surrounding the thalamus, which has been noted previously in 

gradient echo BOLD imaging [158]. 

Somewhat surprisingly, negative BOLD responses can be seen in VISp, whilst the 

expected positive BOLD responses were seen in LGd and SCs. 
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Effect of varying the number of snapshots on tCNR and image distortion   

To examine CNR when using interleaved snapshots, the peak BOLD timecourse 

intensity in each stimulation epoch was divided by the standard deviation of BOLD 

signal during 15 seconds of the baseline period directly preceding it. Mean BOLD 

responses to the visual stimulus and temporal CNR measurements in the SCs are 

shown in Figure 3.34. 

 

Figure 3.34. BOLD responses and temporal CNR (mean ± S.E.M) for different number 𝒏 of 
interleaved snapshots, in the three regions of the mouse visual system. The negative CNR in 
VISp reflects the negative BOLD response.  

No significant loss in temporal CNR with increasing snapshot number was 

observed. Linear regression showed no trend in BOLD CNR values across 

snapshots (p = 0.3405, 0.9259 and 0.3355 for LGd, SCs and VISp respectively). 

Temporal SNR in the baseline period of the SCs also exhibited no trend with n was 

seen (p = 0.9044). A representative subject GE-EPI data illustrating the reduction in 

image distortion is shown in Figure 3.35. 
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Figure 3.35. Representative GE-EPI from single subject showing reduction in distortion (white 
arrow) with increasing snapshot number, with anatomical reference image (Ref). Single subject 
fixed effects statistical map (FWE p > 0.05) is overlaid for each snapshot number, showing 
activation patterns in the LGd.  

Importantly, image distortion was markedly reduced, and the symmetry of BOLD 

activation was noted to increase with increasing snapshot number (Figure 3.35). 

Signal dropout towards the base of the brain did not appear to be affected by 

snapshot number. As expected, a decrease in image SNR in the SCs with √𝑛  was 

seen [140] (p = 0.0065, Figure 3.36). 
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Figure 3.36. Plot of image SNR against  √𝒏 for signals in the superior colliculus (mean ± S.E.M)  

A summary of the quality assurance measures for the superior colliculus is shown 

in Table 3.4. 

Table 3.4. Linear regression results testing for dependence of fMRI quality metrics on number 
of EPI snapshots (data from superior colliculus). 

Metric Model 𝒎  95% Confidence 

Interval for 𝒎 

F (DFn = 1,  
DFd = 22) 

p-value 

Image SNR 𝑦 = 𝑚√𝑛 + 𝑐 -51.26  
[ΔSNR n

-0.5
]
 

[-86.63 -15.90] 9.037 0.0065 

tSNR 𝑦 = 𝑚𝑛 + 𝑐  3.072  
[ΔSNR n

-1
] 

[-49.36 55.50] 0.01476 0.9044 

tCNR 𝑦 = 𝑚𝑛 + 𝑐 -0.123  
[ΔSNR n

-1
] 

[-2.834 2.588] 0.00859 0.9259 

  

These results suggest we can be confident in a negative trend in image SNR 

with √𝑛, but not for tSNR or tCNR with 𝑛. 

3.3.4 Discussion 

This experiment aimed to investigate the use of GE-EPI with interleaved snapshots 

for mouse brain fMRI and characterise the BOLD functional response of the mouse 

brain to a visual stimulus. For the first time, the mouse brain visual system was 

successfully mapped with fMRI. An improvement in fMRI images with increasing 

number of interleaved snapshots was shown, without a reduction in temporal CNR. 

Robust BOLD responses were recorded, including negative BOLD responses 

(NBRs) in the VISp region at 10 Hz stimulus frequency. 

The data from this experiment confirms a reduction in image SNR with √𝑛, as 

previously described by Guilfoyle and Hrabe [140], but shows no appreciable 
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detriment to temporal CNR (in range 𝑛 ∈ [1,4]). The link between image SNR and 

temporal CNR of the BOLD signal is non-trivial, as both hardware and physiology 

contribute to the noise. A more advanced analysis of this data might consider the 

use of direct models linking image and temporal SNR such as those described by 

Kruger et al. [159]  Under the current experimental conditions, the results from this 

experiment suggest that physiological noise dominates over hardware noise in the 

temporal domain, in line with two fMRI tSNR experiments completed in humans 

[159, 160]. Equally, this suggests that interleaved snapshot GE-EPI represents an 

advantageous approach to reduce image distortion in GE-EPI data with no fMRI 

sensitivity cost, and is used in later experiments described in chapter 4. 

There are alternatives to interleaved snapshot EPI for mouse brain fMRI, such as 

conventional segmented EPI or parallel imaging using multiple coils. Conventional 

segmented EPI sequences are more susceptible to motion artefacts [140], as there 

is a longer time between segment acquisitions in the same slice. Parallel imaging is 

commonly used in human MRI, as it collects all data segments simultaneously, 

using methods such as GRAPPA [161] or SENSE [162]. However this is highly 

dependent on coil geometry and parallel imaging benefits most from arrays with 

large numbers of coils. The small size of the mouse brain makes large coil arrays 

problematic, and this combined with the more complex image reconstruction 

techniques required for parallel imaging, make it less suitable than interleaved 

snapshot GE-EPI for mouse brain fMRI. 

Animal Physiology 

There are two general strategies to obtaining fMRI measurements from 

anaesthetised mice. One option is to use neuromuscular blocking agents with 

mechanical ventilation, which allows control of respiratory rate/volume and blood 

gas levels, and minimises head motion [35, 36, 38, 127].  However, mechanical 

ventilation via cannulation of the trachea is invasive, whilst endotracheal intubation 

is technically challenging in the mouse. The second option, as done here, is to use 

a free breathing protocol [33, 37]. This enables recovery, and thus longitudinal 

studies, but is likely to increase the between-subject variability. 

Anaesthesia effects on mouse fMRI responses are well documented for paw 

electrical stimulation at innocuous intensity levels, and a previous study recorded a 

10 second lag between stimulus onset and BOLD response in the somatosensory 

cortex under medetomidine and urethane anaesthesia [38]. We saw no such lag 
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using a medetomidine only protocol, with a larger bolus and infusion concentration 

delivered subcutaneously as opposed to a tail vein injection. The lag effects are 

also not described in other paw stimulation studies [33, 37] in the mouse that used 

medetomidine, at an intermediate dose (0.3 mg/kg bolus, 0.6 mg/kg/hr infusion). 

It should be noted that the possibility of performing awake mouse fMRI has been 

demonstrated with opto-genetic stimuli [129] and a fear conditioned task [39]. The 

obvious advantage is that anaesthesia is removed as a confounding variable. 

However, as noted by both sets of authors, awake mouse fMRI is technically 

challenging. Motion artefacts are more severe, and substantial training of the 

animals is required. In particular, EPI sequences used for fMRI are particularly 

susceptible to motion. It is also worth considering whether stress levels are 

comparable across subjects, and reproducible across studies. Whilst anaesthesia 

may introduce bias in results, it is likely that not using anaesthesia increases 

variance. 

This can be considered further in the case of the awake mouse fMRI paper by 

Harris et al. [39], which uses flashing lights in conjunction with electric shocks to 

image fear circuitry. The main result of this study is activation in the amygdala in 

response to a fear conditioning task; however for the purposes of this work it is the 

use of the flashing light to induce fear which is important. In the supplementary 

materials of this paper, figure S2 shows unthresholded activation maps from pooled 

data, reproduced in Figure 3.37. 
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Figure 3.37. Figure S2 from Harris et al. 2015 [39] (Creative Commons Licence). The original 
caption reads as follows, “Figure S2. Unthresholded activation maps showing activation 
pooled across the paired and unpaired group mice (n = 14), specifically to investigate visual 
activation in response to the CS [conditioned stimulus]. Activation is overlaid on the average 
structural template. The primary visual cortex (V1) is activated in response to the CS.  Scale 
bar represents the raw effect size (increase/decrease) in arbitrary units, the numbers represent 
approximate distance in mm from Bregma for each coronal slice based on the Franklin and 
Paxinos mouse brain atlas…”  

It is difficult to directly compare activation maps such as those in Figure 3.37 with 

those reported in Figure 3.33 and Figure 3.35, as a different statistical procedure 

has been used (and indeed, the functional data were acquired with a Fast Spin 

Echo sequence, and a temporal resolution of 10s per volume, rather than GE-EPI); 

however the specificity can be evaluated qualitatively. What is particularly 

interesting here is that although positive BOLD responses are reported in V1 

(equivalent to VISp), the pattern of activity does not correspond strongly to the 

visual system, with many other areas of cortex etc. showing similar effect sizes as 

V1. Additionally, the lateral geniculate nuclei and superior colliculus do not stand 

out from the rest of the brain. Based on a qualitative comparison of this work and 

the data presented in this section, it appears that medetomidine anaesthetised mice 

generate more specific BOLD signal responses in response to visual stimuli than 

awake mice do. 

Visual stimulation and the nature of the BOLD response 

Visually evoked BOLD responses were measured in response to a flashing light 

visible to both eyes. Only one previous study has used fMRI to study the mouse 
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visual system [31], and the experiment described in this section significantly builds 

on this by using GLM analysis to map BOLD responses, using unbiased structural 

ROIs to extract BOLD time series data, and implementing GE-EPI for BOLD signal 

acquisition.  

The negative BOLD response measured was unexpected, and robust 

measurements of NBRs had not been reported in mouse visual cortex before 

(although they have been suggested to occur from simulations derived from optical 

imaging spectroscopy data [43]). NBRs in general could reflect either reduced 

neuronal population activity or a breakdown in neurovascular coupling. Without 

invasive electrophysiology experiments, neither of these hypotheses can be 

definitively ruled out. However, the fact that positive BOLD responses were 

measured in the LGd and SCs suggest that if neurovascular coupling were 

disrupted (say, by the use of anaesthesia), then this is specific to the cortex. 

Furthermore, designing an experiment which can modulate the negative BOLD 

response by some stimulus characteristic in a within subject design would provide 

some evidence that anaesthesia is not a contributory factor to the NBR. An 

experiment of this type is described in more detail in section 4.1. 

3.3.5 Conclusion 

Mouse brain fMRI has been demonstrated using a bilateral visual stimulus to 

simultaneously map the LGd, SCs and VISp regions of the visual pathway. BOLD 

responses in the lateral geniculate nuclei and the superior colliculus were 

comparable to rat data in earlier studies [59, 60, 62-64], however a surprising 

negative BOLD response was measured in the VISp region. Future experiments will 

focus on attempts to modulate the BOLD response through increasingly complex 

stimuli. This experiment considerably improves upon the previous mouse visual 

fMRI study reported in the literature [31]. Using GE-EPI with up to four interleaved 

snapshots showed no reduction in temporal CNR, whilst reducing susceptibility 

induced image distortions and thus may represent a useful strategy for future 

mouse fMRI studies. 

3.4 Chapter summary 

In this chapter, development of a protocol for imaging BOLD signal responses to 

visual stimuli was described. Section 3.1.1 described a bench experiment 

examining mouse physiology. In sections 3.1.2 and 3.1.3, quality assurance work 

on the GE-EPI sequence through phantom imaging was described, and in section 
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3.1.4 the use of interleaved snapshot GE-EPI was first considered in a phantom as 

well.  

Section 3.2 covered development of the mouse fMRI data pre-processing pipeline, 

and in particular highlighted some of the difficulties faced in spatial normalisation of 

mouse brain functional data. This methods development and optimisation work 

culminated in a novel and refined methodological protocol for robust fMRI of the 

mouse brain visual pathway.  

In section 3.3, the first in vivo application of interleaved snapshot GE-EPI for task-

based fMRI in the mouse was described, with the experiment conducted using a 

binocular visual stimulus.  

The main result of this chapter is that although image SNR is reduced by using up 

to four interleaved snapshots in the GE-EPI sequence, temporal CNR is not, and 

therefore the increase in spatial localisation of the BOLD signal through using 

interleaved snapshot GE-EPI is effectively achieved without a cost to fMRI 

sensitivity, (at least within the regions of interest within the visual pathway 

examined in this study). The secondary result from this section is that negative 

BOLD responses can be detected in the mouse primary visual cortex 

simultaneously to positive BOLD responses in the lateral geniculate nuclei and the 

superior colliculus. In the next chapter, mouse fMRI experiments with increasingly 

complex visual stimuli will be described.      
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4 Visual stimuli for mouse fMRI 

This chapter builds on chapter 3 in terms of visual stimuli development for mouse 

brain fMRI. There were three general aims to using more complex visual stimuli:  

1. To examine whether different stimuli could evoke larger BOLD responses. 

This would increase detection sensitivity of the method, which may be useful 

for future studies applying this technique to transgenic mouse models of 

disease.  

2. To develop greater understanding of the fundamental biology of the mouse 

brain.  

3. To increase the translational relevance of the method to human fMRI 

studies.  

All of the stimuli developments described in this chapter are entirely novel for 

mouse fMRI. 

Having established a novel methodology for mapping the mouse brain visual 

system, I set out to characterise the system in more detail, and induce reliable 

positive BOLD responses in the visual cortex. Section 4.1 describes an experiment 

that reproduces the negative BOLD response in the visual cortex with a 10 Hz 

flashing light stimulus, and modulates the magnitude of the BOLD response with 

stimulus temporal frequency. Section 4.2 pools two datasets and applies non-

parametric statistics to make formal population inferences. Section 4.3 introduces 

the use of a single-loop surface coil and a custom eye-piece for monocular 

stimulation. This result is then built upon in section 4.4, and differential BOLD 

responses to bright and dark flashes are demonstrated. Then in section 4.5, the use 

of an array of LEDs with the potential for spatially varying visual stimuli was 

described. Finally, the chapter is summarised in section 4.6.    

4.1 Frequency modulation 

Positive BOLD responses have not previously been reported in the mouse visual 

cortex, but have in rat [64], cat [23] and human [12] studies. Generating reliable 

positive BOLD responses with increased magnitude in the mouse visual cortex 

could be useful for future studies, with regards to detection sensitivity and for 

comparing cortical responses across species.  
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This section describes an experiment I conducted, aiming to modulate BOLD 

responses measured in the mouse visual system evoked by a flashing light 

stimulus, by varying the flashing frequency. By doing so, it was anticipated that 

positive BOLD responses in the primary area of the mouse visual cortex might be 

induced. This is included as part of a journal article titled “fMRI mapping of the 

visual system in the mouse brain with interleaved snapshot GE-EPI”, by Niranjan et 

al. [94].  

4.1.1 Introduction 

In chapter 3, a novel protocol for task-based fMRI in the mouse brain using a visual 

stimulus was developed. Statistical parametric mapping of BOLD responses 

specifically highlighted three key regions of the mouse visual system: the lateral 

geniculate nucleus (LGd), the superior colliculus (SCs) and the primary area of the 

visual cortex (VISp). In response to a blue light flashing at 10 Hz, positive BOLD 

responses were recorded in LGd and SCs, and negative BOLD responses (NBRs) 

recorded in VISp. The NBRs were unexpected and previously unseen in previous 

fMRI studies of the mouse brain using paw and whisker stimulation [32-38].  

Based on visual fMRI experiments conducted on rats reported in the literature [59, 

60, 62-64], it was hypothesised that BOLD responses could be modulated by 

varying the temporal flashing frequency. Given that the initial stimulus used in 

section 3.3  was a binocular flashing light source, varying the temporal frequency 

was decided to be the most straight-forward way of modulating the stimulus, and 

provided an opportunity to reproduce the initial negative BOLD response. 

In this study, the flashing frequency 𝑓 was set to 1, 3, 5 or 10 Hz, and based on 

results in the rat fMRI literature [59, 60, 62-64], hypothesised that the amplitude of 

BOLD responses would have positive trends with 𝑓 in the LGd and SCs, and a 

negative trend in the VISp. Based on the results of section 3.3, interleaved 

snapshot GE-EPI with four snapshots was used for fMRI data acquisition. 

4.1.2 Methods 

Animals 

8 female C57BL6/J mice weighing 20.7 ± 0.7g were used to characterise the BOLD 

signal response of the visual system to stimulus flashing frequency 𝑓. Subjects 

were anaesthetised and monitored using the same protocol described in section 

3.3.2. During functional imaging, this protocol produced a stable respiratory rate of 
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171 ± 22 breaths per minute. Core body temperature was maintained at 37.0 ± 0.1 

°C.  

MRI methods 

All MRI experiments were performed using identical hardware to section 3.3.2, and 

the same parameters for the anatomical reference scan and GE-EPI were used, 

with  𝑛 = 4 interleaved snapshots. Shimming was performed as described 

previously, and typical line-width (FWHM) was approximately 60 Hz. 

Visual stimulation 

Stimulation timings were triggered from the beginning of the EPI sequence using a 

POWER1401 control system (CED Ltd., UK) with Spike2 software. The stimulus 

consisted of blue laser light (445 nm, Omicron) transmitted into the scanner bore 

using a fibre optic cable. The cable was placed dorsal to the mouse head, secured 

to the top of the surface coil and aimed into the bore; in order that light reflected off 

the surface of the coil interior. This way, the eyes could be stimulated bilaterally 

with diffuse light without risk of retinal damage. The laser was pulsed at a frequency 

of 𝑓 Hz (1, 3, 5 or 10), with pulse duration of 10 ms, and a laser current of 10 mA. 

The output power was measured to be 0.72 mW at the end of the fibre optic cable. 

During baseline periods the laser power output was zero. The stimulus was 

delivered using a block design paradigm of 40 seconds rest, 20 seconds activation 

alternately repeated three times. This resulted in six activation periods per condition 

per subject. Two fMRI runs were completed for each value of  𝑓 for each subject, in 

a pseudo-random order. 

Data analysis 

Data processing was conducted in a similar fashion to that described in section 

3.3.2. 

BOLD contrast was calculated by subtracting the mean preceding baseline value 

from the mean BOLD value from each stimulus epoch. Linear regression was then 

performed on BOLD contrast values in LGd, SCs and VISp to test for trends with 

respect to 𝑓. 

Statistical parametric mapping was conducted in the same way as section 3.3.2. As 

an exploratory analysis, random effects analysis (RFX) was also conducted at the 

2nd level on a pooled data set (see section 4.2).         
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4.1.3 Results 

BOLD response maps to visual stimulation at different flashing frequencies 

Bilateral BOLD responses to the flashing light stimulus with varying frequency are 

mapped using FFX analysis in Figure 4.1. 

 

Figure 4.1. Fixed effects analysis (two-tailed t-test, FWE p < 0.05, N = 8) statistical parametric 
map generated for each frequency, overlaid on cross sectional views of anatomical reference 
image (MRI template described in section 3.2.2. The negative BOLD responses at 10 Hz 
measured in section 3.3 have been reproduced (bottom right), although there is also some non-
specific positive BOLD response in the mid-brain.  
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BOLD response dependence on stimulus flashing frequency 

After observing negative BOLD responses in VISp at 10 Hz in the experiment 

described in section 3.3, fMRI was performed in eight mice with variable stimulus 

flashing frequency (1, 3 5 and 10 Hz). Mean BOLD responses to the visual stimulus 

at different frequencies and corresponding mean peak BOLD contrasts for the LGd, 

SCs and VISp are shown in Figure 4.2. 

 

Figure 4.2. BOLD responses and contrasts in the LGd, SCs and VISp regions. BOLD 
timecourses (top) are plotted as means ± S.E.M. (N = 8). Trends in mean BOLD contrast 
(bottom) are plotted with 95% confidence intervals.  

Positive trends in BOLD contrast with frequency were seen in both the LGd and 

SCs, and a negative trend found in VISp. The negative BOLD response for a 

flashing frequency of 10 Hz in VISp described in section 3.3 was reproduced here. 

A summary of the linear regression statistics is shown in Table 4.1. 

Table 4.1. Linear regression results, testing for association of BOLD contrast on 𝒇. 

ROI 𝒎 [Δ% Hz-1] 95% Confidence  

Interval for 𝒎 

F (DFn = 1,  
DFd = 30) 

p-value 

LGd  0.0489 [ 0.00152 0.0963] 4.44 0.0436 
SCs  0.0200 [-0.0188   0.0588] 1.11 0.3010 
VISp -0.0532 [-0.0754  -0.0312] 24.3 0.0000287 

 

Over the range of frequencies used, it appears that VISp BOLD responses have a 

stronger frequency association than sub-cortical regions.  
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4.1.4 Discussion 

The aim of this experiment was to reproduce the negative BOLD responses (NBRs) 

found in VISp when using a visual stimulus with a 10 Hz flashing frequency, and to 

investigate the potential for temporal frequency modulations of mouse visual 

system BOLD responses. The NBRs were reproduced in VISp at 10 Hz, and 

positive BOLD responses (PBRs) were recorded at lower flashing frequencies. The 

frequency-dependence of PBRs in the mid-brain concurs with similar studies 

conducted in the rat brain [60, 62, 64]. Whilst NBRs had not been reported 

previously, a trend for a reduced amplitude of evoked potentials with increasing 

stimulus frequency had been previously observed in rat visual cortex [62], which is 

in concordance with the observed trend in VISp BOLD contrast with frequency 

described in this section. 

One limitation with using the GLM approach for statistical parametric mapping is the 

potential mismatch between the SPM canonical haemodynamic response function 

for humans and mouse brain haemodynamics. This issue is addressed in chapter 5. 

As was discussed in section 3.3.4, NBRs have not been reported in the mouse 

before, although they were predicted as an anaesthesia effect by Sharp et al. [43] 

from simulations based on 2D-OIS data. However, given the association between 

stimulus temporal frequency and BOLD contrast, it is unlikely that the NBRs are 

themselves an artefact resulting from the medetomidine anaesthesia interfering with 

neurovascular coupling. The presence of PBRs in the mid-brain for all frequencies 

tested, and PBRs in VISp for frequencies below 5 Hz, suggest that if anaesthesia is 

responsible for the NBRs in VISp, then it is an anaesthesia-cortical-frequency 

interaction, which sounds implausible. A more likely explanation is that at higher 

frequencies, neuronal activity in the visual cortex is suppressed, and that this 

reduction drives the negative BOLD response. However, full validation of this effect 

would require invasive electrophysiology techniques, and could be an interesting 

extension of this work for future studies. 

4.1.5 Conclusion 

Mouse brain fMRI was conducted with a binocular visual stimulus of flashing 

frequency 𝑓 (1, 3, 5 and 10) Hz, and BOLD responses recorded, showing 

modulation of BOLD signal responses with 𝑓. BOLD responses in the LGD and SCs 

were comparable to rat data available in the literature [59, 62-64]. The negative 

BOLD response in the VISp region (described in section 3.3) was reproduced, and 
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found to become positive for lower frequencies (< 5 Hz). The results from this 

experiment suggest that the negative BOLD response is not an artefact of 

anaesthesia, but instead reflects neuronal population responses to stimuli with 

certain characteristics. Based on this experiment, future experiments use a flashing 

frequency below 3 Hz for inducing positive BOLD responses in the primary visual 

cortex. 

4.2 Generalising statistical maps to populations 

In this section, data from section 3.3 and section 4.1 are pooled in order to make 

statistical parametric maps which can be used for making formal inferences on 

populations.  

4.2.1 Introduction and methods 

The use of random effects (RFX) GLM analysis is required to make formal 

statistical inferences describing the population from which the subjects are derived. 

A fixed effects (FFX) analysis assumes that the population is entirely defined by the 

subjects included, and is therefore descriptive. A detailed explanation of RFX and 

FFX analyses is given in section 2.2.3.1, but briefly, FFX analyses are more 

powerful than RFX analyses, however FFX analyses cannot be used to make 

formal statistical inferences about future data, without assuming an equal effect size 

in every subject. For group sizes of 6 (section 3.3) and 8 (this section), BOLD 

responses were undetectable using RFX analysis at conventional statistical 

thresholds (FWER p < 0.05, |t| > 10.69, 5 and 7 degrees of freedom). However, 

both groups included subjects scanned with a 10 Hz frequency using GE-EPI with 

four interleaved snapshots. It was therefore possible to pool these two experiments, 

and perform RFX analysis (FWER p < 0.05, two-tailed t-test) on this combined 

group (N = 14). This is done in SPM by using the contrast images outputted for 

each subject from the 1st-level analysis (FFX on a per subject basis) as inputs for a 

2nd-level GLM analysis. 

4.2.2 Results 

Initially, the standard fixed effects GLM analysis using SPM12 was used on the 

pooled data, and this map is shown in Figure 4.3. 
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Figure 4.3. FFX analysis (two-tailed t-test, FWE p < 0.05, N = 14) statistical parametric map 
generated for the pooled 10 Hz data. The spatial extent of voxels above the t-statistic threshold 
are larger than for each experiment separately.  

It should be noted that as N increases, the number of degrees of freedom of the t-

distribution from which the statistic is compared to increases, and therefore the 

threshold defining activation decreases as well. The RFX effects GLM parametric 

analysis is shown in Figure 4.4. 
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Figure 4.4. RFX analysis (two-tailed t-test, FWE p < 0.05, N = 14) statistical parametric map 
generated for the pooled 10 Hz data. The negative BOLD responses in the VISp are below the 
statistical threshold.  

As the number of subjects was still relatively low, it was also possible to use 

permutation methods to generate maximum t-statistic distributions for choosing 

appropriate thresholds, using the SnPM13 toolbox [163] for RFX analysis. Whilst 

less common, this method makes fewer assumptions about the data, and performs 

a non-parametric permutation test at each and every voxel – and in general is more 

suitable to studies with few subjects. The permutation test itself assumes under the 

null hypothesis that subject effect size at each voxel is exchangeable and 

symmetrically distributed (exchangeability follows from independent sampling). 

There is therefore no longer a one-to-one mapping from t-statistic to p-value. The 

permutation testing was conducted using the results of the 1st level statistical 

parametric mapping analysis as inputs, using a variance smoothing kernel of twice 

the voxel size and the maximum possible permutations (16384). One criticism of 
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permutation testing approaches is that they are computationally expensive. In this 

case the testing process took less than 4 minutes (2 minutes each for searching for 

both positive and negative effects, the equivalent of a two-tailed t-test). The 

distributions of the maximum t-statistic for both positive and negative effects are 

shown in Figure 4.5 and Figure 4.6 respectively. 

 

Figure 4.5. Permutation testing for positive BOLD effects – the distribution of the test statistic 
generated through over 16,000 permutations. The maximum statistic for the observed data is 
shown in red, and the threshold for a two-tailed test (p < 0.05) is shown in blue.  

 

Figure 4.6. Permutation testing for negative BOLD effects – the distribution of the test statistic 
generated through over 16,000 permutations. The maximum statistic for the observed data is 
shown in red, and the threshold for a two-tailed test (p < 0.05) is shown in blue.  



131 
 

It is worth noting that usually when performing two-tailed tests, symmetry 

arguments are used when ‘splitting the alpha’ i.e. a two-tailed test at p < 0.05 is 

equivalent to two, one-tailed tests at p < 0.025. However, it follows from Boole’s 

inequality that this is still the case even when the distributions are not symmetric, as 

shown in equation (4-1): 

𝑃(𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑜𝑛 𝑡𝑒𝑠𝑡 1 ∪ 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑜𝑛 𝑡𝑒𝑠𝑡 2)
≤ 𝑃(𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑜𝑛 𝑡𝑒𝑠𝑡 1)
+ 𝑃(𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑜𝑛 𝑡𝑒𝑠𝑡 2) 

(4-1) 

 

This is the same logic used for the Bonferroni correction for multiple comparisons. 

Therefore by setting the false positive rate for each test at 0.025 (for positive and 

negative effects respectively), the combined error rate must be the same or less 

than 0.05. 

The resultant non-parametric map is shown in Figure 4.7. 
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Figure 4.7. RFX effects analysis (two-tailed t-test, FWE p < 0.05, N = 14) statistical non-
parametric map generated for the pooled 10 Hz data.  

This map is thresholded at FWER p < 0.05 for a two-tailed test, and shows a few 

voxels above this threshold for both the positive and negative effects. This gives an 

idea of how stringent the FWER multiple comparisons correction is, particularly in 

relation to RFX analyses, and when looking for both positive and negative BOLD 

responses. 

4.2.3 Discussion 

As can be seen from the results, making formal population inferences from 

statistical parametric maps is extremely difficult given the issue of harsh correction 

for multiple comparisons. However, for simply mapping visual responses 

descriptively, FFX analyses are suitable, and can informally provide information (i.e. 

case study form) on the specificity of the BOLD response, as done by Wan et al. 

[123] and Rosa et al. [124].  
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4.3 Monocular stimulation 

In this section, I aimed to implement a monocular stimulation paradigm for mouse 

fMRI, by using a custom-built single-loop RF surface coil in conjunction with an eye-

piece for light delivery. The custom coil was originally built by Dr. Aaron Oliver-

Taylor (UCL) for rat brain optogenetic experiments conducted at CABI, and the eye-

piece was developed by both Dr. Sam Solomon (UCL) and myself. The use of this 

coil was tested in order to introduce more advanced visual stimuli into the scanner 

bore.  

4.3.1 Introduction 

As can be seen in Figure 3.32, the use of the two channel surface coil only allowed 

the use of a very simplistic visual stimulus – flashing light passed through a fibre 

optic cable, reflecting off the plastic underside of the surface coil. On the basis of 

the results achieved in section 3.3 and section 4.1, I decided to attempt to reduce 

the geometrical constraints of the problem, and attempt to use more complex 

stimuli. To this end, a different RF coil was tried – a custom built single-loop surface 

coil originally designed for optogenetic experiments in the rat brain conducted at 

CABI by Dr. Isabel Christie and Dr. Jack Wells [133]. This coil is shown in Figure 

4.8. 

 

Figure 4.8. Single-loop RF surface coil, originally designed by Aaron Oliver-Taylor for rat brain 
optogenetic-fMRI experiments at CABI. The 2 cm diameter of the loop is an ideal size for mouse 
brain fMRI.  

However, the use of this coil precluded reflection of a light source from a close 

surface as described in section 3.3. In order to deliver light directly to the eye, an 

eye-piece was designed using a clear plastic hemisphere, a rubber O-ring, plastic 
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tubing, correction fluid and optical tape. One of these eye-pieces is shown in Figure 

4.9. 

 

Figure 4.9. Eye-piece for monocular stimulation. The plastic hemisphere is filled with eye-gel, 
and the optical tape covers a plastic tube that will take a stripped fibre optic cable as input.  

This experiment had two aims: to investigate the use of the single-loop coil for fMRI 

data acquisition, and to attempt to record a reliable BOLD response to monocular 

visual stimulation. Given that the retinas have stronger contralateral projections (i.e. 

the right visual field, mostly sampled with the right eye, mostly projects to the left 

hemisphere), it was expected that the spatial pattern of the BOLD responses would 

be asymmetric, and stronger on the contralateral side. This experiment also aimed 

to provide a stepping stone to delivering more complicated stimuli which could be 

more relevant to human fMRI studies and invasive measurements of mouse brain 

function. 

4.3.2 Methods 

These methods are broadly similar to those used in section 4.1.2. 

Animals 

A single female C57BL/6 mouse weighing 20.5g was used in this experiment, and 

the same anaesthesia protocol described in section 3.3.2 was used. This protocol 

produced a stable respiratory rate of 147 ± 12 breaths per minute. Eye gel was 

used to prevent drying of the corneas, and ear bars were used with analgesic 

cream to minimise head motion. Core body temperature was maintained at 37.1 ± 

0.3 °C. 
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MRI methods 

All MRI experiments were performed on a 9.4T VNMRS horizontal bore MRI 

scanner (Agilent Inc., Palo Alto, CA) with an Agilent 205/120HD gradient set. As 

described in section 4.3, a custom-built single loop surface coil was used for both 

RF transmission and reception. VNMRJ 3.1 software was used for image 

acquisition and reconstruction. 

An anatomical reference scan was taken using a Fast Spin Echo sequence, and 

functional data acquired using GE-EPI, with the same parameters as detailed in 

section 3.3.2 (four interleaved snapshots). Shimming was completed as previously 

described, and the line-width (FWHM) within this shim voxel was 44 Hz.  

 

Visual stimulation 

Stimulation timings were triggered from the beginning of the EPI sequence using a 

POWER1401 control system (CED Ltd., UK) with Spike2 software. The stimulus 

consisted of a cold white LED light (Thor Labs) transmitted into the scanner bore 

using a fibre optic cable, and flashed at a frequency of 2 Hz during activation. The 

use of the LED over the laser used in section 4.1 was decided to be preferable as it 

could be used with analogue inputs, allowing graded intensities to be used. Two 

eye-pieces as described in section 4.3.1 were used for monocular stimulation – 

each with their own labelled fibre optic cable reaching from the eye to outside the 

scan room. The LED was connected to the required cable for stimulating either the 

left or right eye only for a given run. Seven fMRI runs were conducted for each 

condition (left eye stimulation or right eye stimulation) for a total of 14 runs, with 

three activation periods per run. 

Data analysis 

Data processing and analysis was conducted in a similar fashion to sections 3.3.2 

and 4.1. 

Region-of-interest (ROI) analysis was conducted by using atlas labels to extract 

timecourses using MarsBaR, to avoid circularity [125]. The labels chosen for 

timecourse extraction were the LGd, SCs and VISp, which correspond to the dorsal 

lateral geniculate nucleus, the sensory areas of the superior colliculus and the 

primary visual area. As monocular stimulation was used, it was necessary to divide 



136 
 

the ROIs into left and right hemispheres. This was done in the matrix space of the 

Allen MBA, and verified by visual inspection. As described in section 3.3, voxel 

timecourses were normalised and high-pass filtered before averaging. BOLD 

contrast was calculated by subtracting the mean preceding baseline value from the 

mean BOLD value from each stimulus epoch.  

For statistical parametric mapping, a 1st level FFX GLM analysis was conducted for 

the single subject. Voxels were only analysed if they were included in a brain mask 

manually generated from the MRI template image. The SPM canonical HRF 

(double-gamma function) was convolved with the stimulus profile as the explanatory 

model. The default SPM options of grand mean scaling and auto-correlation 

modelling were used, with a high-pass filter of 128 seconds. A one-tailed t-test was 

then performed on a voxel by voxel basis to test the null hypothesis that the BOLD 

signal is not explained by the explanatory model. All statistical parametric maps 

shown were corrected for multiple comparisons using a FWER (p < 0.05) threshold 

determined by random field theory using SPM12 unless otherwise stated. No 

cluster thresholding was used. Motion parameter estimates for each run were used 

as nuisance regressors in the GLM. 

4.3.3 Results 

Given the use of a different RF coil for both signal transmission and reception in this 

experiment, there was a concern that in vivo image acquisition would be adversely 

affected. Representative images are shown below in Figure 4.10, showing the 

quality of the structural image, the mouse visual system ROIs, GE-EPI data and the 

registration into the Allen MBA space. 
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Figure 4.10. Cross-sectional views evaluating registration quality and showing the mouse 
visual regions. Clockwise from top-left: The MRI template (in AMBA space) used as the 
registration target, the visual system ROIs (bilateral), the registered structural image, and the 
spatially normalised (and processed) GE-EPI data. Contours of the visual system ROIs are 
overlaid on all the images to aid visual inspection.  

Some signal drop-out can be seen in the anatomical reference image, particularly in 

the brain stem. It does not appear to have affected the registration however. 

Mean BOLD responses from each fMRI run and their average signal is plotted for 

each of the three regions in Figure 4.11. 
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Figure 4.11. BOLD responses to monocular stimulation of the left and right eyes with cold 
white light at 2Hz flashing frequency in a single animal. Each column of panels matches the 
corresponding brain hemisphere. The mean timecourse for each run is plotted in the colour 
corresponding to which eye was stimulated (red for left eye, black for right eye), with the grand 
mean timecourse ± standard deviation plotted in bold.  

The magnitude of the BOLD response in each of visual system ROIs does not 

appear to be markedly different across hemispheres. The lateral geniculate nuclei 

signal does not appear to show a correlation with the stimulus. 
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FFX single animal analysis maps are shown in Figure 4.12.

 

Figure 4.12. FFX statistical parametric maps (one-tailed t-test, FWE p < 0.05) overlaid on 
anatomical reference scan, for seven coronal slices (top-left slice is towards the mouse brain 
posterior). The BOLD response statistical map shows greater spatial extent of activation in the 
contralateral hemisphere.  

The BOLD response statistical map shows a greater spatial extent of activation in 

the contralateral hemisphere. The statistically mapped BOLD responses in the 

lateral geniculate nuclei also appear to be weak in this subject relative to the 

superior colliculus, although there is some correlation with the stimulus profile. 

4.3.4 Discussion 

The quality of the GE-EPI acquired using the single-loop coil appears to be similar 

to that acquired with the two-channel surface coil used in sections 3.3 and 4.1. One 

concern before this experiment had been that coil sensitivity would decrease rapidly 

with distance. The average image SNR in the GE-EPI data for each region across 

all runs is given in Table 4.2, and is compared with corresponding image SNR 

measurements from the interleaved snapshot data described in section 3.3.  

Table 4.2. Image SNR in GE-EPI data for each brain region  (mean ± standard deviation, N 
subjects with n runs).Image SNR results are broadly comparable for the two coils. 

Region of interest Single-loop surface coil 

Image SNR (N = 1, n = 14) 

Two-channel surface coil 

Image SNR (N = 6, n = 2) 

LGd 108 ± 18 88 ± 17 

SCs 107 ± 7 103 ± 19 

VISp 79 ± 4 88 ± 36 
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There appears to be little difference in the magnitude of the ROI extracted BOLD 

responses between hemispheres of the brain measured in this subject, despite the 

appearance of asymmetry in the statistical map. Furthermore, the extracted LGd 

signal does not reliably correspond to either a positive or a negative haemodynamic 

response to the visual stimulus, with little correspondence to those measured in 

work described in sections 3.3 and 4.1. 

4.3.5 Conclusion 

This experiment aimed to implement monocular visual stimulation using a custom 

eye-piece and a single-loop surface coil in a single animal. Similar image SNR 

measurements were found using the single-loop coil despite the lack of a dedicated 

volume coil for RF signal transmission. Clear positive BOLD responses to the 

stimuli were measured in the VISp and SCs, however the extracted signal from the 

lateral geniculate nuclei signal in this animal did not bear a resemblance with the 

expected haemodynamic response. Statistical maps of the BOLD response showed 

preference for the contralateral side, as hypothesised, although this was not evident 

in the ROI analysis. Based on the results of this experiment, the single-loop coil can 

be used in conjunction with the eye-piece for monocular stimulation, although with 

this 2 Hz white light stimulus it may be that LGd responses are smaller. 

4.4 Flash context experiment 

In this section, I aimed to investigate the modulation of BOLD responses in the 

superior colliculus, as it is extremely important to mouse brain visual processing 

[84], and might prove a useful target for future studies using transgenic mice.  

I describe a study I conducted using monocular stimulation and two different types 

of visual stimuli. This section is also included as part of a journal article titled “fMRI 

mapping of the visual system in the mouse brain with interleaved snapshot GE-EPI” 

(Niranjan et al. [94]).  

4.4.1 Introduction 

The superior colliculus plays a large part in mouse visual processing [84], and has 

been associated with heightened visual responses in a rat model of Parkinson’s 

Disease [164]. Approximately 70% of retinal ganglion cells project to the superficial 

layers of the SCs. Existing work suggests that most cells in the SCs respond to 

both ‘on’ or ‘off’ stimuli [84]. What is not clear is the relative strength of responses to 

large ‘on’ or ‘off’ stimuli across the neuronal population in the SCs, a question 



141 
 

exploring the fundamental biology of how the superior colliculus operates. Indeed, 

the most numerous cell-type of the mouse retina, shows stronger ‘off’ than ‘on’ 

responses [165], and ‘off’ stimuli are thought to be particularly effective in both 

driving innate behavioural responses in mice [166] and driving neurons in the 

mouse superior colliculus [167]. It was therefore hypothesised that the SCs region 

is preferentially responsive to dark flashes against a bright background as opposed 

to light flashes against a dark background, and that dark flashes would therefore 

elicit stronger BOLD responses in the SCs. Building on section 4.3, monocular 

stimulation was used, and it was hypothesised that there would be stronger BOLD 

responses in the contralateral hemisphere for the LGd, SCs and VISp, in 

accordance with the dominance of contralateral retinal projections. Another aim of 

this study was to optimise visual stimulus design in order to maximise BOLD 

responses (and therefore sensitivity) in the superior colliculus for future studies. 

4.4.2 Methods 

These methods are broadly similar to those used in section 4.1.2. 

Animals 

12 female C57BL6/J mice weighing 21.0 ± 0.9 g were used to study the effect of 

flash context (a bright background with dark flashes vs a dark background with 

bright flashes). The same anaesthesia protocol as described in section 3.3.2 was 

used. This protocol produced a stable respiratory rate of 147 ± 23 breaths per 

minute. Eye gel was used to prevent drying of the corneas (applied to both the eyes 

and the eye-piece), and ear bars were used with analgesic cream to minimise head 

motion. Core body temperature was maintained at 37.0 ± 0.2 °C. 

MRI methods 

All MRI equipment and sequence parameters used are identical to section 4.3.2, 

with the exception of acquiring 130 volumes per run instead of 83. Typical line-width 

(FWHM) within the shim voxel after shimming was approximately 60 Hz. 

Visual stimulation 

Building on section 4.3, a cold white LED (Thor Labs) was used in conjunction with 

a custom-built eye-piece attached to the fibre optic cable for monocular stimulation. 

Stimulation timings were triggered from the beginning of the EPI sequence using a 

POWER1401 control system (CED Ltd., UK) with Spike2 software. For this 
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experiment, only the right eye of each subject was stimulated, the other eye was 

kept closed. Two conditions were tested. Condition 1 used a dim but non-zero 

baseline intensity (20 mA) with bright flashes (1000 mA) with dark intervals (0 mA). 

Condition 2 used a bright baseline (980 mA) with dark flashes (0 mA) with bright 

intervals (1000 mA). The output power at the end of the fibre optic cable with the 

eye-piece for input current of 1000 mA was measured to be 0.15 mW. Pulse 

duration was 10 ms, and a 2 Hz pulse flashing frequency used during periods of 

activation. Both conditions used a block design of 40 seconds rest, 20 seconds 

activation alternately repeated five times. Each fMRI scan was conducted twice for 

each condition (in the order condition 1, condition 2, condition 1, condition 2), 

resulting in 10 activation periods per condition per subject. 

Data analysis 

Data analysis was conducted in a similar fashion to sections 4.1 and 4.3. 

A two-way ANOVA was performed on BOLD contrast values in the LGd, SCs and 

VISp to test for differences between the two conditions, with ipsi/contra-lateral 

hemisphere and stimulus condition set as independent factors. Where interactions 

were not significant at the 5% level, main effects were reported. Post-hoc two-tailed 

paired t-tests were then performed where factor interactions were significant at the 

5% level, in order to report simple main effects [168].   

4.4.3 Results 

The BOLD response to monocular stimulation was measured, and the BOLD 

responses to bright flashes against a dark background (condition 1) relative to dark 

flashes against a bright background (condition 2) were investigated in a cohort of 12 

subjects using a cold white LED light source and a custom-built eye-piece. Mean 

BOLD responses in both hemispheres for the LGd, SCs and VISp are shown in 

Figure 4.13. 
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Figure 4.13. BOLD responses to monocular stimulation of the right eye with white light at 2Hz 
flashing frequency using bright flashes (condition 1) and dark flashes (condition 2). A) FFX 
statistical parametric maps overlaid on an anatomical reference scan (one-tailed t-test, FWE p 
< 0.05), for three coronal slices (distances measured from bregma). BOLD responses appear 
stronger in the contralateral hemisphere. B) BOLD percentage change against time for left and 
right VISp, SCs and LGd. Bright flashes against a dark background elicit stronger BOLD 
responses than dark flashes against a bright background.  

The measurements of mean BOLD contrast for the LGd, SCs and VISp regions for 

each hemisphere and condition are plotted in Figure 4.14. 

 

Figure 4.14. Mean BOLD contrasts for LGd, SCs and VISp regions for both stimulus conditions 
and brain hemispheres. 

A two-way ANOVA was performed on BOLD contrasts for the LGd, SCs and VISp 

regions, with condition and hemisphere as factors (both repeated measures). These 

results are summarised in Table 4.3. 
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Table 4.3. Summary of two-way repeated measures ANOVA on BOLD contrasts in LGd, SCs 
and VISp regions, with stimulus condition and hemisphere as repeated factors. 

ROI Source of Variation F (DFn = 1, DFd = 11) p-value 

LGd 

Hemisphere Factor 1.404 0.2611 

Condition Factor 28.43 0.0002 

Interaction Hemisphere x Condition 1.722 0.2161 

SCs 

Hemisphere Factor 5.470 0.0393 

Condition Factor 33.88 0.0001 

Interaction Hemisphere x Condition 5.130 0.0447 

VISp 

Hemisphere Factor 10.72 0.0074 

Condition Factor 3.441 0.0906 

Interaction Hemisphere x Condition 11.43 0.0061 

 

The interaction between hemisphere and condition is significant at the 5% level in 

both the SCs and VISp regions. In the LGd this interaction is not significant, and 

therefore it is reasonable to directly report a significant main effect of condition on 

BOLD contrast, but not hemisphere. As the interaction term was found to be 

significant in both the SCs and VISp, simple main effects for condition and 

hemisphere are reported in Table 4.4. 
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Table 4.4. Simple main effects in the SCs and VISp, examined using post-hoc two-tailed paired 
t-tests (df = 11, no correction for multiple comparisons). 

ROI Factor Post-
hoc 

paired t-
test 

Mean 
Difference C 
[Δ% BOLD 
Contrast] 

95% 
Confidence 
Interval for 

C 

t-
statistic 

p-value 

SCs Contra Con 1 - 
Con 2 

0.4493 [0.2898 
0.6088] 

6.201 0.00007 

Ipsi Con 1 - 
Con 2 

0.3648 [0.2057 
0.5239] 

5.046 0.00037 

Con 1 Contra - 
Ipsi 

0.0941 [0.0088 
0.1794] 

2.428 0.03353 

Con 2 Contra - 
Ipsi 

0.0095 [-0.0198 
0.0388] 

0.717 0.48832 

VISp Contra Con 1 - 
Con 2 

0.2266 [0.0726 
0.3806] 

3.238 0.00790 

Ipsi Con 1 - 
Con 2 

-0.0360 [-0.1643 
0.0923] 

0.618 0.54922 

Con 1 Contra - 
Ipsi 

0.2678 [0.1205 
0.4152] 

4.000 0.00209 

Con 2 Contra - 
Ipsi 

0.0053 [-0.0934 
0.1040] 

0.117 0.90881 

 

By thresholding at α = 0.05, the results in Table 4.4 suggest there are significant 

differences in the following pairwise comparisons:  between hemispheres during 

condition 1 in both the SCs and VISp; between conditions in the SCs and VISp in 

the contralateral hemisphere; between conditions in the ipsilateral SCs. 

4.4.4 Discussion 

This study aimed to elicit differential BOLD responses with a more complex 

stimulus paradigm than described in sections 4.1 and 4.3, in particular targeting the 

superior colliculus, a key brain region within the visual system. Monocular 

stimulation using the eye-piece and single-loop surface coil was conducted, and 

positive BOLD responses clearly measured in all three visual system ROIs for 

condition 1, the use of bright flashes against a dark background. A contralateral 

preference of the BOLD response was seen in terms of both the spatial pattern of 

the BOLD signal and BOLD contrast in SCs and VISp. For condition two, where 

dark flashes were presented against a bright background, BOLD responses were 

only detected in VISp. 

The initial biological hypothesis was that SCs would respond preferentially to dark 

flashes against a bright background (condition 2) relative to light flashes against a 
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dark background (condition 1), based on existing electrophysiological work in the 

literature [84, 165, 167]. The data from this fMRI experiment suggests the opposite 

– with condition 1 eliciting similar BOLD responses seen in data from experiments 1 

and 2 (albeit with contralateral bias due to monocular stimulation), and condition 2 

only inducing appreciable BOLD responses in VISp. The difference in BOLD 

responses across conditions is marked, and statistically significant effects at the 5% 

level were seen for both hemisphere and condition factors across the visual 

pathway. Monocular stimulation using condition 1 produced hemispheric differences 

in the BOLD response in VISp and SCs, but not in LGd. This appears consistent 

with the topography of these regions: in VISp and SCs, contra- and ipsilateral inputs 

are generally segregated with limited binocular overlap, whereas in LGd 

contralateral inputs approximately encase ipsilateral ones, in both hemispheres. At 

the spatial resolution used here, voxel size would not be small enough to resolve 

topography of LGd, and may mean that hemispheric difference in neuronal activity 

in LGd are unable to be detected by changes in BOLD signal. The greater overall 

responses to light flashes on a dim background, than dark flashes on a bright 

background, may reflect differences in the adaptation state of the retina. That BOLD 

responses to dark flashes are stronger in visual cortex may suggest that the visual 

cortex is more closely associated with the interpretation of dark temporal edges, 

relative to subcortical regions.  

4.4.5 Conclusion 

A monocular visual stimulus for mouse task-based fMRI was successfully used in a 

cohort of twelve subjects. The within-subject design provided strong evidence for 

the stimulus acting as the modulator of the BOLD responses. BOLD data acquired 

suggests the superior colliculus shows a preference for bright temporal edges over 

dark temporal edges, whereas the primary visual area does not. The use of a 

single-loop surface coil allowed reliable detection of BOLD responses across the 

visual system at the group level, and raised the possibility of using a more complex 

stimulus delivery system in future experiments, described in section 4.5.  

4.5 Spatially varying stimuli 

This section investigated the feasibility of delivering spatially varying visual stimuli 

for mouse fMRI, which in turn would allow greater comparison with visual studies of 

the mouse brain using alternative techniques, and with human fMRI studies using 

visual stimuli. The board with a controlling Arduino device was kindly provided by 

Dr. Sam Solomon (UCL).  
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4.5.1 Introduction 

One of the long-standing goals of implementing visual task-based fMRI for mice is 

to be able to match stimuli presentation to work done in the fields of mouse 

electrophysiology and human fMRI, to enable superior validation and increased 

translational relevance. For example, stimuli used to investigate neuronal 

population responses with invasive measurements in the visual cortex [49], superior 

colliculus [84] and LGd [47] of the mouse brain mostly consist of drifting sinusoidal 

gratings, displayed on LCD/cathode ray tube monitors of dimensions approximately 

40 cm by 40 cm placed approximately 20-40 cm away from the subject. This is 

simply not possible for pre-clinical fMRI, especially when using a 72 mm diameter 

volume coil for RF transmission as in section 4.1. The use of the single-loop coil for 

signal transmission and reception both increases the available volume inside the 

scanner bore for stimuli and allows greater flexibility in the positioning of said 

stimuli, although this does not overcome the greater technical challenge of 

introducing more complex visual displays into an MRI scanner with baseline field 

strength of 9.4T. 

Previous rat visual fMRI studies [59, 63] used arrays of fibre optic cables to 

simulate moving edges and more advanced visual stimuli. This approach would be 

guaranteed to deliver visual stimuli that could vary in space, without interfering with 

the MRI acquisition. However, each cable would either require optical splitters or 

separate LED drivers, proving prohibitively expensive. In addition, the increase in 

spatial resolution of the stimuli would still be fairly limited. 

The alternative attempted in the experiment described in this section is the use of 

an array of light emitting diodes (NeoPixel) (from now referred to as an LED board), 

operated by an Arduino Duo control unit. Further details of the set-up are discussed 

in section 4.5.2. 

This experiment aimed to investigate the use of this LED board with the single-loop 

surface coil – to evaluate the quality of the recorded GE-EPI images, and see if 

visual BOLD responses similar to those recorded in previous sections were 

reproducible. The biggest concern was that electrical communication between the 

Arduino and the LED board would introduce RF interference within the faraday 

cage containing the MRI scanner, which in turn would introduce image artefacts. 
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Initially a phantom was used to test basic feasibility of using the LED board inside 

the bore at 9.4T. Based on the results of this phantom work, a cohort of animals 

was used for recording BOLD visual responses.  

4.5.2 Methods 

These methods are broadly similar to those used in section 4.4.2. 

Phantom work 

An agarose phantom (as used in section 3.1.4) was first used to investigate the use 

of the LED board in the MRI scanner, examining tSNR and image quality. Based on 

the results from the phantom, an in vivo experiment was conducted. 

MRI methods 

All MRI hardware and sequence parameters used were identical to section 4.4.2 

Shimming was conducted using a GE 3D protocol [143, 144], with 1st order shims 

only (due to a hardware failure) optimised in a user defined shim voxel 

(approximately 5 x 8 x 9 mm3) with voxel edges set at the brain edge. Typical line-

width (FWHM) within this shim voxel was approximately 90 Hz. 

Animals 

14 female C57BL6/J mice weighing 20.0 ± 1.2 g were used. The same anaesthesia 

protocol described in section 3.3.2 was used. This protocol produced a stable 

respiratory rate of 146 ± 23 breaths per minute. Eye gel was used to prevent drying 

of the corneas, and ear bars were used with analgesic cream to minimise head 

motion. Core body temperature was maintained at 36.9 ± 0.3 °C. 

Visual Stimulation with an LED array 

A NeoPixel LED array (8 x 32 pixels, 320 mm x 80 mm x 2 mm) was used for visual 

stimulation, and is shown in Figure 4.15.  
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Figure 4.15. NeoPixel LED array. Each pixel contains a red, blue and green LED. Based on 
recommendations from the manufacturer, a maximum of 1/3 of the total number of LEDS were 
used at any one time, to keep the current flow below 5A.  

In Figure 4.15, the board is pictured connected to a blue circuit breadboard, which 

in turn allowed wires (approximately 3 m long) to connect the LED board to a circuit 

breadboard and Arduino control unit outside the Faraday cage, shown in Figure 

4.16. 

 

Figure 4.16. Arduino Duo control unit, with circuit breadboard attached. The control unit is 
placed outside the Faraday cage, and wires pass through the waveguide in order to power and 
control the LED board for visual stimulation.  
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The board has its own circuitry for processing inputs from the Arduino. The Arduino 

was paced outside the scan room and wires connecting the Arduino to the LED 

board passed through a waveguide in the faraday cage. 

Once the mouse/phantom was placed in the cradle and ready to be loaded into the 

scanner, the board was curved over the cradle and held in place with tape, as 

shown in Figure 4.17. 

 

Figure 4.17. Placement of LED board over the mouse cradle, for visual stimulation. 

The Arduino Duo control unit was programmed to take a TTL input to initiate the 

stimulus protocol. However, upon testing, a TTL pulse was not detectable by the 

control unit. Therefore the POWER1401 control system (CED Ltd., UK) with Spike2 

software used in previous experiments was used to output a 5V analogue signal for 

duration of 0.5 seconds in order to trigger the Arduino program. The Spike 

configuration file was designed to trigger from the TTL pulse outputted from the MRI 

scanner upon a RF pulse. This achieved the desired effect of allowing the LED 

stimulus to be timed to the GE-EPI sequence. Full code for operating the LED 

board with the Arduino Duo unit is included in Appendix B. A block of LEDs 

(dimensions 5 rows x 8 columns) positioned approximately in front of each subject 

(corresponding to rows 5-10 from the edge of the board closest to the scanner in 

Figure 4.17) were flashed (with white light) at 2 Hz for five activation periods during 

each fMRI run. Two runs were conducted per animal.  
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Data analysis 

Data processing was conducted in to the same way as described in sections 4.1, 

4.3, and 4.4. 

Region-of-interest (ROI) analysis was conducted by using atlas labels to extract 

timecourses using MarsBaR, to avoid circularity [125]. The labels chosen for 

timecourse extraction were the LGd, SCs and VISp (all bilateral), which correspond 

to the dorsal lateral geniculate nucleus, the sensory areas of the superior colliculus 

and the primary visual area. As described in section 3.3, voxel timecourses were 

normalised and high-pass filtered before averaging. 

Statistical parametric mapping was conducted in the same way as section 4.3.2. 

4.5.3 Results 

Phantom pilot study 

Results from the phantom experiment are included here. A comparison of GE-EPI 

images taken without the board, with the board but without power, and with the 

board with power are shown in Figure 4.18. 
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Figure 4.18. Cross sectional views of GE-EPI images of an agarose phantom. Clockwise from 
top-left: GE-EPI without LED board present; GE-EPI with LED board present but without power 
or flashing LEDs; GE-EPI with LED board whilst flashing.  

As can be seen qualitatively from Figure 4.18, the introduction of the board to the 

scanner bore does not noticeably reduce the quality of the GE-EPI image. 

However, image quality drastically falls when the board is turned on and LEDs set 

to flash.  

Temporal SNR measurements for the mean signal after typical preprocessing from 

a 0.5 mm diameter voxel placed at the crosshairs shown in Figure 4.18 are 467, 

283 and 125 respectively. As was hypothesised, the introduction of the board 

reduces tSNR somewhat, but it is the use of the board circuitry during the GE-EPI 

acquisition that particularly corrupts the signal. However, at this level of tSNR, 

percentage signal changes of approximately 1% should be visible (although this 
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does not take into account physiological noise, which was previously shown to 

dominate at 9.4T (section 3.3)). Based on this, I decided to progress with the in vivo 

study and to only plug the board power supply at the Arduino side of the Faraday 

cage after shimming and acquisition of the structural anatomical reference image. 

In vivo GE-EPI 

Subject 5 was excluded due to an artefact in the anatomical reference image. A 

representative subject’s normalised GE-EPI data is shown in Figure 4.19. 

 

Figure 4.19. Cross-sectional views evaluating registration quality and spatial normalisation of 
the GE-EPI data in a single subject.Clockwise from top-left: The MRI template (in AMBA space) 
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used as the registration target, the visual system ROIs (bilateral), the registered structural 
image, and the spatially normalised (and processed) GE-EPI data. Contours of the visual 
system ROIs are overlaid on all the images to aid visual inspection.  

Mean BOLD responses extracted from the three mouse visual system a priori 

structural ROIs are included in Figure 4.20. 

 

Figure 4.20. BOLD responses for LGd, SCs and VISp  to the 2 Hz flashing stimulus from the 
LED Board.Some BOLD contrast in response to the stimulus, but overall the effect is small 

(~0.3% over baseline). On the assumption of correct spatial localisation, these BOLD 

responses suggest that this stimulus is inducing BOLD responses predominantly in 

LGd and VISp, but only weakly in superior colliculus. 

The FFX statistical map is overlaid on the MRI template in Figure 4.21. 
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Figure 4.21. Fixed effects analysis (one-tailed t-test, FWE p < 0.05, N = 13, subject 5 excluded 
due to artefacts in structural image) statistical parametric map, overlaid on cross-sectional 
views of an MRI template image. Contours of the visual system ROIs are also overlaid.  

4.5.4 Discussion 

This experiment aimed to investigate the use of an LED array for visual stimulation 

task-based fMRI in the mouse brain. The reduction in tSNR in an agarose phantom 

was first considered, and from this it was decided to proceed to testing the LED 

array in vivo in a cohort of mice. The LED board whilst powered did introduce RF 

noise within the scanner bore, interfering with the acquired GE-EPI both in the 

phantom and in vivo. Whilst some BOLD signal responses to the stimulus could be 

seen using FFX GLM analysis on a voxel-by-voxel basis, attributing the BOLD 

responses to specific visual system ROIs proved difficult. 

Interference from the visual stimuli source could be reduced by switching to an 

array of fibre optic cables, each with an independent LED source, which has been 

demonstrated previously in the rat [63]. By generating the light outside the Faraday 

cage and transmitting it via fibre optics, RF noise levels should be similar to those 

seen in previous visual stimulation experiments described in this thesis. Achieving a 
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similar spatial stimulus resolution is in theory possible given the current geometrical 

constraints, but would be technically challenging to assemble and maintain. 

Whilst the statistical map in Figure 4.21 has a similar form to previous results (e.g. 

see section 4.4), it appears to be distorted beyond the visual system ROIs, and the 

FFX t-scores are much lower than those seen in sections 4.1 and 4.4, indicating 

much poorer modelling of the BOLD signal. The strongest responding cluster is 

centred on the retrosplenial cortex (based on comparison with the Allen mouse 

brain atlas), which is predominantly associated with memory and navigation [169], 

rather than visual processing. It is more likely that this signal is actually from the 

neighbouring superior colliculus. The relatively low t-scores suggest low temporal 

contrast-to-noise ratio, which given results from the phantom study, is likely to be a 

combination of both physiological and hardware (the LED array). Combined, this 

noise is enough to have a severe impact on GLM results. 

Upon visual inspection of the unregistered anatomical reference scans, it could be 

seen that many subjects had insufficient signal acquired in the brain stem region. 

This is concerning as the MRI template (acquired using the two-channel surface coil 

described in section 4.1) has significant signal in the brain stem, and could cause 

the spatial normalisation procedure to perform poorly. It is also therefore likely that 

BOLD timecourses extracted using AMBA labels are biased, and should be treated 

with caution. 

As this was an initial experiment to investigate the use of the LED board, a simple 

flashing block stimulus was used, rather than sinusoidal gratings or moving edges. 

Based on this experiment, it is questionable that inferences could be made from 

BOLD responses to these more complex stimuli, as confounding factors mentioned 

above are likely to mask the effects of spatial tuning on the BOLD response. 

Further efforts to reduce noise from the LED board, optimise spatial normalisation 

are required, along with the use of 2nd order shimming, before future experiments 

using the LED array in conjunction with the single-loop surface coil.  

4.5.5 Conclusion 

In a bid to introduce spatially varying visual stimuli for mouse fMRI, an array of 

LEDs mounted on a flexible board was used to deliver a flashing light stimulus and 

tested both in an agarose phantom and in vivo. Whilst initial phantom results 

appeared reasonable, in vivo results from a cohort of 14 mice did not show BOLD 

responses reliably localised to the visual system. Further sequence development 
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and noise reduction procedures would be prudent before attempting more complex 

visual stimuli with the LED array. 

4.6 Chapter summary 

In this chapter, the development of increasingly complex visual stimuli for mouse 

fMRI was discussed. Section 4.1 built heavily on chapter 3 and modulated the 

temporal frequency of a binocular stimulus, reproducing a negative BOLD response 

in the primary visual cortex at a 10 Hz flashing frequency, and successfully inducing 

positive BOLD responses in the visual cortex at lower frequencies. Section 4.3 

introduced the use of a single-loop surface coil, which allowed the use of a custom 

eye-piece for monocular stimulation in a single animal, and statistical parametric 

maps showed asymmetric patterns of BOLD responses. Section 4.4 used this 

protocol for monocular stimulation and explored the effect of flash context on BOLD 

responses in the mouse visual system, showing differential responses in the mid-

brain but conserved BOLD responses in primary visual cortex, suggesting 

differential processing of different visual stimuli. Finally, section 4.5 investigated the 

use of an LED array for visual stimulation, and noted the increased image noise, 

reduced tSNR and reduced BOLD contrast sensitivity from operating the LED board 

inside the MRI scanner bore. In the next chapter, the implementation of high-

temporal resolution BOLD imaging in the mouse brain is described, with additional 

work on improved modelling of the haemodynamic response to visual stimuli.  
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5 Haemodynamic modelling 

This chapter aims to better describe the haemodynamic response to visual stimuli 

in the mouse brain, in order to improve detection sensitivity. The recently described 

technique of line-scanning fMRI [170] was applied to the mouse brain for the first 

time, measuring the highest temporal resolution BOLD signals ever recorded in the 

mouse superior colliculus. 

It was noted from previous studies that there was some mismatch between stimulus 

regressors using the canonical SPM haemodynamic response function and 

extracted BOLD signals from ROI analyses. However using structurally extracted 

timecourses to inform statistical mapping on the same dataset suffers from circular 

logic and was not done. Instead, to better estimate the HRF in a region known to 

exhibit strong BOLD responses, new data were acquired at 0.2s temporal resolution 

(relative to 2.5s in all other data described in this thesis). BOLD responses in the 

mouse superior colliculus were recorded using the technique of line-scanning fMRI, 

and are described in section 5.1. Then in section 5.2, the default parameters of the 

double-gamma SPM canonical haemodynamic response function are optimised 

relative to the BOLD responses measured in section 5.1. In section 5.3, a previous 

data set from section 4.2, is revisited with updated haemodynamic model 

parameters. Finally, the chapter is summarised in section 5.4. Work covered in this 

chapter is currently in preparation for publication. 

5.1 Line scanning fMRI 

In this section, I describe the development of line-scanning fMRI for high-temporal 

resolution BOLD recording in the mouse brain, and for the first time show results 

from the mouse superior colliculus. High-temporal resolution BOLD was deemed 

desirable to better characterise the mouse haemodynamic response to stimuli, and 

could be used in future work to match optical imaging spectroscopy data [43], or 

investigate layer specific responses in the cortex [170].  

5.1.1 Introduction 

As discussed in section 2.2.1, typical fMRI data from a GE-EPI sequence has three 

spatial dimensions and one temporal dimension, and is most easily thought of as a 

BOLD signal timecourse located at each point on a 3D grid. In sections 3.1.3 and 

3.3, work was done to optimise this sequence for use with mouse fMRI, achieving a 

spatial resolution of (0.364 x 0.364 x 0.5) mm3, with 12 slices covering the mouse 
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visual system acquired every 2.5 seconds, BOLD contrast of approximately 1% 

relative to baseline, and temporal contrast-to-noise ratio of approximately 10. 

One drawback to making inferences from this type of data is the relatively low 

temporal resolution compared to other neuroimaging modalities, such as optical 

imaging. Higher temporal resolution means improved characterisation of 

haemodynamic response functions, as the increased sampling rate allows higher 

frequency changes to be measured. In addition, higher temporal resolution would 

make event-related fMRI designs in the mouse brain statistically feasible. 

One way to achieve higher temporal resolution is to consider sacrificing the 

generation of an image altogether, using a technique called line-scanning [170, 

171]. Briefly, this method uses a modified gradient echo sequence (see section 

2.1.4.1) without phase-encoding, but with saturation bands applied in order that a 

line of spins is excited. This allows a single line of k-space to be acquired, which 

can be done using sub-second TRs. The form of the output data has a one spatial 

and one temporal dimension – a BOLD timecourse located at each pixel along a 

line. With suitable placing of the line to intersect a brain region of interest, the BOLD 

signal there could be heavily temporally sampled relative to using a GE-EPI 

sequence. 

This method has only been demonstrated in the published literature once before 

[170] in order to characterise BOLD responses in the barrel cortex of the rat due to 

opto-genetic stimulation, and has never been applied to the mouse brain. Some of 

the difficulties faced when conducting traditional fMRI with GE-EPI in mouse as 

opposed to rat are still applicable here, such as achieving suitable spatial resolution 

relative to the size of the mouse head, achieving good signal-to-noise, and 

maintaining suitable physiology. However, with the removal of phase encoding in 

image generation, spatial distortions do not need to be considered. 

The superior colliculus was used for the implementation of this line-scanning 

technique, as it is close to the brain surface, and has natural contrast and is easily 

identified even in 𝑇2
∗ weighted images. The visual cortex, whilst also being at the 

brain surface, is difficult to manually differentiate from surrounding cortical areas, 

and therefore it was believed that accurate spatial localisation would be difficult. 

This section describes the attempt to implement the acquisition sequence on an 

Agilent 9.4T MRI scanner, and the demonstration of high temporal resolution BOLD 
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timecourses in the mouse superior colliculus in response to a visual stimulus block 

design experiment. 

5.1.2 Methods 

Animals 

A single female C57BL6/J mouse weighing 21.6 g was used. Anaesthesia was 

induced with isoflurane (2%) and maintained with medetomidine (0.4 mg/kg bolus, 

0.8 mg/kg/hr infusion) through a subcutaneous injection to the flank. A gas mixture 

of 0.1 L/min of O2 and 0.4 L/min of medical air (BOC Healthcare (Linde AG)) was 

continuously supplied during imaging. Respiratory rate was measured using a 

pressure sensitive pad, and core body temperature was measured using a rectal 

thermometer (SA Instruments). Core body temperature was maintained using a 

warm water pipe system. For the duration of imaging, respiration rate was in the 

range 130-160 breaths per minute, and temperature in the range 36.6-37.0 °C. 

Visual stimulation 

A white light LED (Thor Labs) was used for a block design paradigm, with non-zero 

constant baseline (10 seconds, 20 mA), 2Hz flashing as the stimulus period (20 

seconds, 1000 mA), and a further 30 seconds of non-zero baseline, with 10 

stimulus periods per line scan run. The pulse width during the flashing period was 

0.25 s. The stimulus was delivered using a fibre optic cable as described in section 

3.3. 

MRI methods 

For this work, the Agilent 9.4T MRI scanner was used in conjunction with the 

Agilent 205/120HD gradient set, the 72 mm volume coil for RF transmission and the 

2 channel array surface coil (Rapid Biomedical) for signal reception. This set-up 

was chosen due to the requirement of saturation bands. For good signal saturation, 

𝑩1 field homogeneity is extremely important. The use of the custom single-loop 

surface coil (as described in section 4.3) for both RF transmission and reception 

would likely not perform as well here due to poorer 𝑩1 field homogeneity. 

The typical gradient echo sequence has been previously described in section 

2.1.4.1, and will be referred to as a GEMS (Gradient Echo Multi Slice) sequence. In 

order to plan the line to be scanned, standard 2D GEMs data were acquired and 

shown later in this section. The following parameters were used: TR/TE = 200/18 
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ms, 1 average, matrix size 128x128, FOV = 35 mm x 35 mm, 1 slice (1 mm thick). 

For a 𝑇1 in mouse brain of approximately 2000 ms at 9.4T [172], and a TR of 200 

ms, the Ernst angle [103] (see section 2.1) was calculated to be approximately 25°, 

and so this was used as the flip angle. 

Without the application of phase encoding, the acquired signal would have been 

integrated across what would have been the phase encoding direction.  

However, by applying saturation bands in a particular geometric configuration, it 

was possible to ensure spatial localisation of the measured BOLD signal along a 

single line. The particular angle of rotation was chosen here to make the line of 

interest approximately perpendicular to the edge of the brain. The orientation of 

saturation bands in this way (with phase-encoding applied) is shown in Figure 5.1, 

with the result of their application in Figure 5.2. The rotation of the FOV to ensure 

that the frequency encoding-direction runs parallel to the line of interest is then 

shown in Figure 5.3. In addition the length of the FOV in the read-direction was 

reduced to 10 mm to increase spatial resolution, as shown in Figure 5.4. 

 

Figure 5.1. Example orientation of saturation bands for line scanning fMRI in mouse brain 
(visualised with single slice GEMS sequence, without saturation bands applied.) Nyquist 
ghosting is apparent in the image. The thickness of the line data to be acquired is given by the 
saturation band separation (2mm). The line of interest passes through the mouse superior 
colliculus.  
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Figure 5.2. Single slice GEMS data (with phase-encoding) with saturation bands applied. 

 

Figure 5.3. Single slice GEMS data (with phase-encoding) with saturation bands applied and 
rotated so that frequency-encoding direction runs parallel to line-of-interest.  
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Figure 5.4. Single slice GEMS data (with phase-encoding) without saturation bands applied. 
The white boxes indicate the saturation band locations, and the blue box indicates the FOV for 
the line-scan, (10 mm in read-direction, 35 mm in phase-encode direction). However as phase-
encoding is turned off for line-scanning, phase-encoding FOV has no meaning. The true FOV is 
the intersection of the blue box and the gap between the white saturation bands.  

After the spatial localisation of the saturation bands and the FOV, phase encoding 

was turned off for the GEMS sequence. This was done by creating a copy of the 

GEMS pulse sequence code file, and setting the phase encoding gradient 

increment to zero for both the phase encode step and the rewind spoiler step. 

Doing so allowed the matrix size in the phase-encode direction to be set to 1 

(without changing the phase encoding gradient increment, this is not possible on 

VNMRJ 3.1 software). 

For this this implementation, the following parameters were used for the line 

scanning protocol: FOV read = 10 mm, matrix size = 128x1, TR/TE = 200/18 ms, 

flip angle = 25°, 1 average, 1 slice (1 mm thick). A total scan time of 600 seconds 

was chosen, with an initial 5 second burn-in period for magnetisation equilibrium to 

be reached (which was then discarded). For the single animal that was scanned in 

this experiment, it was possible to perform 8 runs of line scanning, yielding a total of 

N = 80 measurements of the BOLD response to the stimulus. 

Image reconstruction 

The acquired data is a matrix of k-space data, with dimensions given by 

(𝑛𝑥 , 𝑛𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠, 𝑛𝑡𝑖𝑚𝑒𝑝𝑜𝑖𝑛𝑡𝑠) i.e. the number of pixels in the read-direction, the number 

of channels and the number of timepoints respectively. This data was appropriately 

Fourier transformed in MATLAB using code shown in Appendix C. The magnitude 
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data from each coil was averaged to result in a matrix of dimensions given 

by (𝑛𝑥 , 𝑛𝑡𝑖𝑚𝑒𝑝𝑜𝑖𝑛𝑡𝑠). 

An alternative way of reconstructing data from multiple coils where the coil spatial 

sensitivity profiles are unknown, is to use the square root of the sum of squares 

[173]. This has been shown to asymptotically reach the theoretical maximum image 

SNR achievable where coil sensitivity profiles are known. This method is more 

robust to scenarios where coil sensitivity differs greatly at locations of interest in the 

image (although is vulnerable to increasing bias as the noise tends to zero). 

However, in this case, the line of interest that is sampled is approximately 

equidistant from each coil, and therefore using a simple averaging method for 

reconstruction is reasonable.   

5.1.3 Analysis and results 

The resultant line profile from the Fourier transform average over both coils and the 

first timepoint is plotted in Figure 5.5. 

 

Figure 5.5. Line profile plot from first timepoint of first line scan data acquisition. FOV in read 
direction is 10 mm, and the superior colliculus is approximately covered by pixels 24-28.  

It can be seen from that the upper most layer of the brain can be detected by the 

sharp intensity gradient that starts at pixel 20. Moving away from the surface coil 
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(increasing x-coordinate after ~pixel 40) there is a gradual fall in intensity due to 𝑩1 

field inhomogeneity. However, from the Allen Mouse Brain Atlas (MBA) [69], we can 

measure the thickness of the sensory layer of the superior colliculus (SCs) to be 

approximately 0.4 mm thick. For a pixel width of 0.078125 mm, this corresponds to 

a pixel region of interest of approximately five pixels. Based on the positioning of 

the FOV and with reference to the 2D GEMS localiser scans, it can reasonably be 

inferred that pixels 24-28 correspond to the region of interest.2 The average SCs 

signal for a single line scan is plotted in Figure 5.6. 

 

Figure 5.6. Plot of raw BOLD timecourse (TR = 200 ms) from superior colliculus against time 
(single run, averaged over 5 voxels). Grey regions indicate stimulus delivery periods.  

Whilst there might appear to be some structure in the signal, the noise level 

appears to be high. As in previous sections, it would appear reasonable to filter and 

normalise the BOLD signal. A model signal generated using the SPM canonical 

haemodynamic response function is shown in Figure 5.7. The Fourier transform of 

the model signal in the temporal domain is then shown in Figure 5.8. 

                                            
2
 It is in theory possible to use the 2D localiser scan to identify the superior colliculus, and 

apply the necessary geometric transform to identify the superior colliculus in the 1D data. 
However for simplicity (avoiding registration and resampling) the method described in the 
main text was used. 
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Figure 5.7. Simulated BOLD signal calculated using stimulus timings (duty cycle) convolved 
with the canonical SPM haemodynamic response function.This would be the standard stimulus 
regressor used in a single-subject FFX GLM analysis in SPM.  
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Figure 5.8. Power spectrum of model BOLD signal. Almost all of the signal information is 
stored in the frequency range 0.005-0.5 Hz.  

Assuming the model BOLD signal is a reasonable approximation to the true BOLD 

signal, it is therefore sensible to high-pass filter the raw BOLD signal above 0.005 

Hz. This can be done using a discrete cosine transform [120], and then normalising 

by the mean signal in the first baseline period (10 seconds, or 50 timepoints). Doing 

so on a per-voxel basis and then averaging over the region of interest, the SCs 

processed BOLD is plotted in Figure 5.9.  
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Figure 5.9. High-pass filtered and normalised BOLD timecourse for superior colliculus (single 
run). BOLD signal changes on the order of 4% can be seen, although the standard deviation of 
the baseline signal is approximately 3%.  

Given the poor signal-to-noise ratio evident from a single run, the average across 

all eight runs is plotted in Figure 5.10. 

 

Figure 5.10. High-pass filtered and normalised BOLD timecourse for superior colliculus 
(averaged over eight runs). BOLD signal changes on the order of 4% can be seen, and the 
standard deviation of the baseline signal is approximately 1%.  

It is possible to achieve further gains in signal-to-noise ratio by averaging over 

trials. In this case, it is sensible to normalise each trial BOLD response to each 
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baseline period separately. The mean BOLD response for each run and the grand 

mean BOLD response in the superior colliculus are plotted in Figure 5.11.  

 

Figure 5.11. Mean superior colliculus BOLD response for each run (thin lines, 10 trials per run), 
and the grand mean BOLD response (thick black line, 8 runs). The grand mean BOLD response 
shows a temporal peak contrast-to-noise ratio of approximately 10. 

The measured mean timecourse has a very similar shape to the superior colliculus 

BOLD response to flashing light reported in section 3.3 and chapter 4, which 

provides some confidence that this measurement is representative. For 

comparison, the equivalent data for a grey matter ROI of the same size and 

approximately same mean baseline intensity (voxels 64:68) is shown in Figure 5.12  
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Figure 5.12. Mean control region BOLD response for each run (thin lines, 10 trials per run), and 
the grand mean BOLD response (thick black line, 8 runs). In this equivalent 5 voxel ROI placed 
in the grey matter (voxels 64-68), no functional response can be seen. 

 

Once the data has been averaged over the 80 trials, the form of the haemodynamic 

response to the 2 Hz visual stimulus can clearly be seen in the superior colliculus 

(and not in the control region), at 0.2 ms temporal resolution. Examining the grand 

mean BOLD response, the peak BOLD contrast is approximately 3%, and the 

standard deviation of the baseline signal is approximately 0.3%, yielding a temporal 

contrast-to-noise ratio of approximately 10. 

One way the averaged, normalised data set can be visualised across the field of 

view is through a voxel time plot, as shown in Figure 5.13. 
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Figure 5.13. Voxel-time plot (line profiles averaged over activation periods and runs). The top 
panel is the raw magnitude data, and the bottom panel shows filtered and normalised data. The 
time range is 0-60 seconds, and the voxel depth range is 10 mm. The first column in panel one 
is the same line plot shown in Figure 5.5.  

As was discussed earlier in section 5.1.3, the BOLD contrast due to the stimulus 

can be seen in the voxels corresponding to the superior colliculus. However, this 

type of plot should not be used to define the region of interest because of the risk of 

circular inference [125].  

5.1.4 Discussion 

This is the first application of line-scanning fMRI to the mouse brain, yielding the 

highest temporal resolution measurement of the BOLD response in the mouse 

superior colliculus ever recorded. 

There are a number of limitations to this data. Due to time constraints, it was only 

possible to scan one animal with this protocol, and it would be useful to measure 

the variability of the grand mean BOLD response on an inter-animal basis. 

However, visual inspection of the basic shape show agreement with BOLD 

responses measured in superior colliculus in previous experiments (see sections 

3.3 and 4.1). Furthermore, low-pass filtering or modelling of the auto-correlated 

noise has not been done, and doing this in a suitable way would likely increase the 
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temporal contrast-to-noise ratio, at the cost of reducing the effective temporal 

resolution. Another issue is that the effects of motion are difficult to quantify, as 

without at least 2D data, image registration is not possible. All results reported here 

are dependent on the assumption of zero motion. 

With the current data, the temporal contrast-to-noise ratio is about 10. This allows 

the following characteristics to be seen:  

1. Baseline BOLD fluctuations 

2. A steep rise in response to stimulus (< 1 second) 

3. A levelling off but sustained signal greater than baseline for the duration of 

the stimulus block 

4. A fall off in the BOLD response at the end of the stimulus block 

5. A post-stimulus undershoot 

6. Recovery to baseline. 

Within this single subject, a total of 80 activation blocks were required to achieve a 

temporal contrast-to-noise ratio approximately equivalent to that achieved using 

GE-EPI (as described in section 3.3).  It is probable that both physiological and 

hardware contribute to the noise in this experiment, and it may be possible for 

further optimisation of the line-scanning sequence to improve tCNR enough for 

event-related BOLD responses to be detected. Adaptation effects were not 

considered, and this would be an interesting area to investigate for future work. 

Additional experiments could also use event-related designs – short duration stimuli 

(<2 seconds) which do not make assumptions on the convolution of the BOLD 

response with the stimulus train. Whilst detection in event-related designs is more 

difficult, estimating the shape of the HRF is likely to be more precise [4, 174]. 

There is currently no published data on mouse superior colliculus haemodynamic 

responses to stimuli. Much intrinsic optical imaging has focussed on the cortex [43, 

87], due to poor depth penetration. The use of this technique in the visual cortex 

would be valuable, particularly to validate the work conducted by Sharp et al [43].  
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5.1.5 Conclusion 

In a single animal and with approximately 80 minutes of functional imaging, the 

BOLD response in the superior colliculus was measured at high temporal resolution 

(200 ms) for a block design experiment using visual stimuli. In the next section, an 

improvement to the SPM canonical HRF is discussed. 

5.2 Haemodynamic modelling 

In this section, the default parameters of the SPM canonical haemodynamic 

response function used in previous sections for statistical parametric mapping are 

updated using non-linear optimisation, in order to better describe the measured 

BOLD response.  

5.2.1 Introduction 

In section 5.1, a high temporal resolution grand mean BOLD response to visual 

stimulus in the superior colliculus was measured using line scanning fMRI. This 

BOLD response can be compared to a model BOLD signal generated by convolving 

the stimulus duty cycle (a simplistic neuronal model, i.e. neuronal activity is directly 

correlated with stimulus delivery) with the SPM12 canonical haemodynamic 

response (double gamma function, default parameter values [175], shown in Figure 

5.14. 
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Figure 5.14. Measured and model BOLD signal in mouse superior colliculus generated by 
convolving the default SPM canonical haemodynamic response function with a boxcar signal 
representing the stimulus block – as previously used for statistical mapping in chapters 3 and 
4. 

It can be seen from Figure 5.14 that many of the features of the measured BOLD 

response are not suitably captured by the SPM12 canonical haemodynamic 

response function with the default parameter values. Parameter optimisation was 

therefore considered in a bid to better explain the mouse superior colliculus 

haemodynamic response with the double-gamma function. 

5.2.2 Methods 

Double-gamma function optimisation 

A non-linear constrained optimisation was performed, using a non-regularised OLS 

cost-function, in order to optimise the HRF. This was done using the Sequential 

Quadratic Programming (SQP) algorithm [176] with eight free parameters and a 

maximum of 1000 iterations. The least squares cost function and the optimisation 

implementation in MATLAB using the ‘fmincon’ routine is provided in Appendix C. 

All parameters were constrained to be greater than or equal to zero. The default 

and optimised parameters are shown in Table 5.1 and the plot of the optimised 

model BOLD response is shown in Figure 5.15. 
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Table 5.1. Parameters for double-gamma function haemodynamic response function before 
and after constrained non-linear optimisation. 

Parameter Description Initial Value Optimised Value 

B Effect size 1 1.33 

p(1) Response delay relative to 

onset [s] 

6 0.14 

p(2) Undershoot delay relative 

to onset [s] 

16 10.36 

p(3) Dispersion of response 1 0.63 

p(4) Dispersion of undershoot 1 15.19 

p(5) Ratio of response to 

undershoot 

6 7.44 

p(6) Onset [s] 0 1.2 

p(7) Length of kernel [s] 32 32 

 

 

Figure 5.15. Measured and model BOLD signal in mouse superior colliculus generated by 
convolving an optimised SPM haemodynamic response function with a boxcar signal 
representing the stimulus block. 

By comparing Figure 5.14 and Figure 5.15, it can be seen by visual inspection that 

the updated HRF better models the measured BOLD signal. 
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5.2.3 Discussion 

The approach of parameter optimisation used in this section is extremely common. 

The SQP algorithm was chosen here for ease of implementation as it is one of the 

default algorithms offered by the MATLAB 2014 ‘fmincon’ routine. The OLS cost 

function without regularisation is also a straight-forward cost function to implement. 

Extensions to this work could investigate the use of regularisation of the cost 

function, or a Bayesian approach with suitable prior distributions placed on the input 

parameters.  

It is evident from Figure 5.15 that the double-gamma function with optimised 

parameters explains more variance in the measured BOLD signal than with the 

default parameters. The parameters that have been optimised show faster 

haemodynamic responses in the mouse superior colliculus, relative to the default 

haemodynamic response function used for standard fMRI statistical parametric 

mapping used by the SPM toolbox for human fMRI data analysis. The knowledge of 

optimal parameter values could inform future mouse brain mapping applications 

and increase sensitivity.  

However, it is also evident that the model BOLD signal discussed is incapable of 

capturing the sharp peak of the BOLD response after stimulus onset, and return to 

a mid-level signal for the stimulus block. One inference that could be made is that 

the mouse does not interpret the stimulus as one constant block as described 

previously. Future work could use two alternative models of the neural model 

convolved with the HRF. First, a neural model with an exponential decay throughout 

the length of the stimulus block could be considered, the time constant for which 

would represent adaptation to the stimuli during the stimulus block. Second, a 

neural model which treats the stimulus as the sum of two different stimuli could be 

used, stimulus ‘onset’ and stimulus ‘block’. 

A principal limitation of the double-gamma function for modelling haemodynamic 

responses is that many of the parameters control the shape of the HRF but do not 

relate to plausible biological properties. This makes the model optimised here a 

descriptive model, rather than an explanatory one. An extension of this work might 

consider the use of the initial Buxton model [177] or its variations [178, 179] as an 

explanatory model to make inferences on biophysical properties underpinning 

mouse haemodynamics. However, using these complex, sometimes non-linear 

models would be computationally expensive for statistical mapping on a voxel-by-
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voxel basis. Therefore for the purposes of BOLD response detection, using an 

updated double-gamma HRF is sensible for future GLM analyses. 

5.2.4 Conclusions 

The double gamma canonical haemodynamic response function used by the SPM 

toolbox with default parameters was optimised to fit the high temporal resolution 

BOLD response measured in section 5.1, which should in principle give rise to 

greater sensitivity when used for statistical parametric mapping. This is tested in the 

next section. 

5.3 Statistical parametric mapping with an updated 

HRF 

In this section, the pooled data set of 14 subjects with BOLD responses to a 10 Hz 

flashing light stimulus (described in section 4.2) is revisited using an updated 

double-gamma haemodynamic response function for statistical parametric 

mapping.  

5.3.1 Introduction 

Throughout this thesis, statistical parametric mapping of BOLD responses on a 

voxel-by-voxel basis was used to map the visual pathway. The use of the canonical 

SPM double-gamma haemodynamic response function convolved with the stimulus 

duty cycle successfully identified key regions of the mouse brain visual system. 

However, with the optimisation of the double-gamma HRF for the mouse brain 

superior colliculus, it is possible that these statistical maps may become more 

specific and sensitive to mouse BOLD responses to visual stimuli. 

5.3.2 Methods and results 

A total of 14 subjects’ BOLD responses to a binocular visual stimulus flashing at 10 

Hz were used, and full acquisition details are described in sections 3.3 and 4.1, with 

an initial analysis of the pooled data from both experiments considered in section 

4.2, using the canonical SPM HRF with default parameters. The analysis is 

repeated here but with updated HRF parameter values, changed simply by 

modifying the ‘spm_defaults.m’ file in the SPM12 toolbox, and setting the 

‘defaults.stats.fmri.hrf’ variable to the relevant updated parameter values obtained 

in section 5.2. 
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To establish generalisability to multiple animals, 2nd level RFX analysis was 

considered, using both parametric and non-parametric approaches (see section 

4.2). The t-statistics extracted here explicitly account for animal variability. The RFX 

parametric analysis is shown in Figure 5.16. 

 

Figure 5.16. RFX analysis (two-tailed t-test, FWE p < 0.05, N = 14) statistical parametric map 
generated for the pooled 10 Hz data. The maximum t-statistics are 14.6 and 8.9 for positive and 
negative BOLD responses respectively (minimum threshold |t| > 6.54). 

 

Statistical non-parametric mapping was also conducted. The distributions of 

maximum t-statistic for positive and negative effects are shown in Figure 5.17 and 

Figure 5.18 respectively. 
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Figure 5.17. Permutation testing for positive BOLD effects – the distribution of the test statistic 
generated through over 16,000 permutations. The maximum statistic for the observed data is 
shown in red, and the threshold for a two-tailed test (p < 0.05) is shown in blue. 

 

Figure 5.18. Permutation testing for negative BOLD effects – the distribution of the test statistic 
generated through over 16,000 permutations. The maximum statistic for the observed data is 
shown in red, and the threshold for a two-tailed test (p < 0.05) is shown in blue. 

The resultant non-parametric map is shown in Figure 5.19. 
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Figure 5.19. Mixed effects analysis (two-tailed t-test, FWE p < 0.05, N = 14) statistical non-
parametric map generated for the pooled 10 Hz data. The maximum t-statistics are 13 and 7.9 
for positive and negative BOLD responses respectively. 

A summary of the maximum t-statistics for each approach using both the default 

modelling parameters and the optimised set is included in Table 5.2. 

Table 5.2. Maximum t-statistics for the different analyses using both the canonical HRF and the 
optimised HRF, modelling both positive and negative BOLD responses. The use of an 
optimised HRF increases the maximum t-statistic, suggesting greater sensitivity. 

RFX 

Analysis 

Canonical HRF 

(maximum t-statistic) 

Optimised HRF 

(maximum t-statistic) 

 +ve BOLD -ve BOLD +ve BOLD -ve BOLD 

SPM  12.7 6.4 14.6 8.9 

SnPM  11.8 6.1 13 7.9 
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5.3.3 Discussion 

The use of haemodynamic response functions for statistical mapping is relatively 

rare in historical mouse fMRI, with previous studies using simple difference images 

[31], correlation with a trapezoidal function [34], correlation with an unspecified 

function [32, 33, 36], or correlation with the stimulus boxcar only [35, 37]. One study 

has used a rat haemodynamic response function [38], and one study [39] has used 

the canonical human HRF included in the SPM toolbox. It is likely that common 

software toolboxes (such as SPM, FSL and AFNI) will be increasingly used for 

analysing future pre-clinical data, in order to make results more comparable with 

other mouse fMRI studies and with human studies. However, care must be taken 

when using analysis packages designed for human physiology, and translating 

assumptions across to a pre-clinical setting. The results in this section suggest that 

there are differences between human and mouse haemodynamic response 

functions.   

When visually comparing Figure 5.16 and Figure 5.19 (statistical maps using the 

optimised HRF) with their corresponding figures in section 4.2.2), it generally seems 

that the optimised HRF is more specific to the visual system, and generates greater 

maximum t-statistics for RFX analyses that generalise to different data. One 

alternative method that could be used for modelling the BOLD response within the 

GLM approach is the use of a finite impulse response (FIR) model [4, 120]. The FIR 

models each timepoint with a separate basis function, and can in principle identify 

BOLD responses to stimuli regardless of the shape or timing of the haemodynamic 

response. However, the use of FIR or a different set of basis functions can severely 

increase the complexity of the design matrix, reducing the number of degrees of 

freedom and in turn reducing detection power (whilst also making interpretation of 

above-threshold voxels difficult). The necessary combination contrast (therefore 

requiring an F-test, rather than a t-test) would also not be able to distinguish 

between positive and negative BOLD responses, further reducing sensitivity to 

interesting fMRI phenomena in the mouse brain. 

There are some limitations with the current approach to understanding the 

haemodynamic response to visual stimuli. fMRI experimental design is usually a 

balance between detection and estimation [4]. Whilst block designs are generally 

useful for detection of effects, the convolution of the HRF with the stimulus block 

timing function necessarily makes parameter estimation more difficult. In an ideal 

case with sufficiently low noise, an event-related design would be used, avoiding 
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the convolution step altogether. Another disadvantage of the block design is the 

assumption of the linearity of the BOLD response (upon which the convolution is 

performed). As previously suggested in section 5.2.3, it is possible that this 

assumption is violated here, given the shape of the BOLD response to the block 

visual stimulus. Although somewhat obvious, it should also be noted that the 

greatest limitation of line-scanning fMRI data relative to using GE-EPI is the 

reduction in the number of spatial dimensions. A critical assumption made by using 

the line-scanning fMRI BOLD response is that the superior colliculus HRF is 

generalisable to the LGd and SCs. In the use of block designs the convolution 

means that this is not so problematic, but for event-related designs assumption may 

be violated. In which case, future work may wish to apply this approach to each 

region separately, define region specific HRFs, and an average HRF for GLM 

analysis. However the use of three separate stimulus regressors in the same GLM 

would be difficult as they would all be highly correlated, and an HRF averaged over 

regions might be more suitable. 

5.3.4 Conclusion 

In this section, select data (sections 3.3 and 4.2) previously analysed using 

statistical parametric mapping with the canonical haemodynamic response function 

(HRF) were reanalysed using the optimised HRF generated in section 5.2. An 

increase in detection power was seen, evidenced by greater t-scores in visual 

regions of the brain. 

5.4 Chapter summary 

In this chapter, improvements to the description of the haemodynamic response 

function were described. In section 5.1, the use of line-scanning fMRI to acquire 

high temporal resolution BOLD signals in the mouse superior colliculus was 

described. In section 5.2, this BOLD signal was used to optimise the default 

parameters of the double-gamma haemodynamic response function used by the 

SPM toolbox, with various extensions and limitations discussed. Then in section 

5.3, this optimised HRF was used to reanalyse a previously described pooled data 

set, showing increased sensitivity and specificity in statistical maps of the BOLD 

response to visual stimuli. In the following chapter, the use of modelling BOLD 

responses to make inferences on visual network connectivity will be discussed.  
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6 Mouse brain connectivity 

This chapter builds on chapters 3, 4 and 5, by asking more advanced questions 

about brain function. Instead of asking questions of whether particular brain regions 

exhibit BOLD responses to visual stimuli, this chapter examines the possibility of 

inferring how brain regions influence each other, using the technique of dynamic 

causal modelling (DCM). Previous analysis using the general linear model assumed 

a simplistic model of neuronal activity i.e. that in each region neuronal activity is a 

box-car function perfectly correlated with the stimulus paradigm. The analysis 

present here loosens this assumption, and tests hypotheses on how the neuronal 

activity in one region might modulate others. 

Section 6.1 introduces this technically challenging approach to understanding brain 

connectivity, and takes the reader through the theoretical background behind DCM. 

In section 6.2, a DCM analysis is presented, using data previously described in 

sections 3.3 and 4.1, working through the GLM analysis and signal extraction 

required, and the subsequent use of Bayesian model selection and Bayesian 

parameter averaging for making inferences on mouse brain visual system effective 

connectivity. To my knowledge, this is the first ever description of effective 

connectivity in the mouse brain, and demonstrates the possibility of using DCM for 

mouse fMRI data. 

6.1 Introduction 

This section provides motivation for applying dynamic causal modelling to 

understanding the mouse visual system and briefly covers the theoretical 

background for DCM used in this chapter, as first proposed in 2003 by Friston et al. 

[180]. Two introductory/review articles are particularly recommended for readers 

unfamiliar with DCM – one by Stephan et al. [181] and another by Kahan and 

Foltynie [182].  

6.1.1 Motivation 

Previous analysis of fMRI data in this thesis has focused on asking the question of 

where BOLD responses to visual stimuli occur, and examining the shape of those 

BOLD responses. This uses the concept of functional segregation, in that neuronal 

population activity (inferred from BOLD responses and neurovascular coupling) is 

spatially distributed and specialised for particular functions. The GLM mapping 
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analysis working on a voxel-by-voxel approach tests each voxel to decide if it is 

associated with a particular stimulus or not. 

However, the field of human neuroimaging is increasingly investigating the way 

spatially segregated brain regions communicate and pass information [183] i.e. the 

concept of functional integration. 

This chapter describes work attempting to understand how brain regions are 

effectively connected. This initially requires definitions of connectivity as commonly 

used in the neuroimaging literature: 

1. Structural (or anatomical) connectivity. This refers to physical structures 

connecting different brain regions, such as white matter tracts, axons and 

synaptic connections. This can be measured invasively using tracer 

methods [184], or non-invasively using diffusion MRI [185, 186]. Anatomical 

connectivity data alone provides no information about how the connections 

are used in practise. 

2. Functional connectivity. In the context of BOLD fMRI, functional connectivity 

is defined as correlation of responses in different brain regions without 

external stimuli, and is therefore synonymous with resting-state fMRI. There 

are a number of mouse brain functional connectivity studies [37, 126, 127, 

154] already published, although this technique is much more difficult than 

task-based fMRI, due to the lack of an experimental intervention and the 

difficulty of defining signal and noise. Functional connectivity is quantified by 

the statistical dependencies between time series, and is purely correlational 

– no underlying model of communication between brain regions is offered.  

3. Effective connectivity. In common usage, effective connectivity attempts to 

infer causal influences that neuronal systems may exert on other systems. 

This definition of connectivity is the closest to that of functional integration. 

In the context of BOLD fMRI, this corresponds to neuronal populations 

within brain regions. 

Dynamic causal modelling (DCM) is one way (along with methods such as Granger 

causality) of investigating effective connectivity, i.e. answering the question of how 

regions in the brain interact and influence each other. Other methods for 

understanding connectivity beyond structural information, such as structural 

equation modelling [187] and Granger causality [188] have not been considered 
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here, and a review of these methods in comparison to DCM is given by Friston et 

al. [189] and Penny et al. [190].  

DCM has been used in human fMRI studies to answer questions about effective 

connectivity in healthy subjects (e.g. cortical visual processing [191], memory [192, 

193]), and has also been used to investigate functional integration changes in brain 

disorders/diseases such as autism [194] schizophrenia [195], Parkinson’s’ [196], 

Alzheimer’s [197, 198], and stroke [199, 200]. However, there are only two animal 

fMRI studies currently published that explicitly attempt to infer causal links between 

brain regions. One uses DCM in a rat model of epilepsy (David et al. [201]), and 

another uses rat optogenetic fMRI in conjunction with multivariate systems 

modelling [202]. Therefore there is a real need to further examine the assumptions 

made by DCM across species. Demonstrating DCM for mouse fMRI data also 

provides a platform for using transgenic mouse models in experiments where 

hypotheses of genetic modulation of networks can be formally tested, and may 

provide a more translational biomarker for brain pathology beyond BOLD signal 

amplitude. 

The validation of effective connectivity is difficult to define, as it inherently models 

neuronal activity as an abstract hidden variable to be inferred from observable 

BOLD data. Current experimental technique that could most closely validate DCM 

is the use of invasive electrophysiology recordings at multiple distinct regions in the 

presence of stimuli, or alternatively the use of opto-genetics as described by Ryali 

et al. [202]. There is currently a large scale effort to understand thalamo-cortical 

connectivity in the mouse brain visual system using tracer studies [203], which 

could potentially be used for future validation of DCM fMRI as applied in this work.  

However, before the work described in this chapter, it remained to be seen if DCM 

could be applied to mouse fMRI data at all. 

6.1.2 Framework behind dynamic causal modelling 

DCM allows inferences to be made about neuronal population activity (hidden 

variables) from directly observable data (the BOLD signal). DCM uses a forward-

model approach i.e. the parameters of a realistic neuronal system model are 

estimated in order that model neural dynamics generate haemodynamic responses 

which then match observed data.  

As previously discussed in section 1.7, the BOLD signal is a proxy variable for 

neuronal activity, under the assumption of normal neurovascular coupling. A 
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dynamic causal model operates on two levels: the hidden level, which cannot be 

directly observed experimentally, is a model of neural dynamics in a system of 

coupled brain regions. The hidden state of the system is represented by a state 

variable vector 𝑧, and the temporal evolution of the hidden state by 𝑧̇. The hidden 

state variables do not correspond directly to invasively measureable neuronal 

properties such as firing rates or local field potentials, but instead are an abstract 

description of neural population activity. The temporal evolution 𝑧̇ is (in deterministic 

DCM) given by a function 𝐹 the current state 𝑧, input stimuli 𝑢 (for which there are 𝑚 

distinct types), and a set of neural system coupling parameters given by 

matrices 𝐴, 𝐵 and 𝐶. The bilinear implementation of DCM (the non-linear extension 

has not been considered here) is given by equation (2). 

𝑧̇ = 𝐹(𝑧, 𝑢, 𝐴, 𝐵, 𝐶) =  𝐴𝑧 + ∑ 𝑢𝑗𝐵𝑗𝑧

𝑚

𝑗=1

+ 𝐶𝑢 (2) 

The parameters in matrices 𝐴, 𝐵 and 𝐶 are themselves partial derivatives of 𝐹 and 

are shown in equation (3). 

𝐴 =  
𝜕𝐹

𝜕𝑧

𝐵𝑗 =  
𝜕2𝐹

𝜕𝑧𝜕𝑢𝑗

𝐶 =  
𝜕𝐹

𝜕𝑢

 (3) 

In this formulation of DCM, the parameters in 𝐴 (which for 𝑘 regions is of size 𝑘 × 𝑘) 

describe anatomical connections between brain regions, which are context 

independent. Connectivity mediated by the context of the 𝑗𝑡ℎ input is described 

by 𝐵𝑗, (𝑚 matrices of size 𝑘 × 𝑘). Direct inputs to the system are accounted for by 

parameters in 𝐶 (matrix of size 𝑘 × 𝑚). 

6.1.3 Forward mapping from neuronal states to BOLD 

responses 

DCM uses the hidden state equation described in equation (2) to generate BOLD 

responses (the observable variable) by using a variation [180, 204, 205] of the 

original Buxton ‘balloon’ model [177, 178] for haemodynamic responses. The 

balloon model uses a set of differential equations to link neuronal activity to 

haemodynamic (hidden) state variables 𝑧ℎ, which then non-linearly map to a BOLD 

signal response that is directly measurable. A schematic for the extended Balloon 

model from Friston et al. [205] is included in Figure 6.1. 
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Figure 6.1. Schematic of Balloon haemodynamic model used for DCM (reproduced with 
permission). The original caption reads as follows, “Schematic illustrating the organization of 
the hemodynamic model. This is a fully nonlinear single input u(t), single output y(t) state 
model with four state variables s, fin, v, and q…” which correspond to a ‘flow-inducing signal’, 
‘the rate of change of flow’, normalised venous volume and normalised total 
deoxyhaemoglobin content respectively.   

The balloon model of the vascular response was first proposed by Buxton et al. in 

1998 [177], with various amendments [178] and extensions [205] made. The 

underlying aim of the balloon model is to non-linearly map from neuronal activity to 

the BOLD responses measured with fMRI. To briefly summarise, Buxton et al. 

assume no capillary recruitment, and so blood volume changes occur primarily in 

the venous compartment. This means that when arterioles expand to increase 

blood flow, the vascular bed within a voxel can be modelled as an ‘expandable 

venous compartment’ (i.e. a balloon). The increased blood flow into the balloon 

causes the balloon to swell, and the consequent increase in pressure causes the 

flow out of the balloon to match the inflow. The rate of change of volume of the 

balloon is given by the difference in flow rates in and out of the balloon.  

All state variables in this model are used in a normalised form relative to values at 

rest. The extended Buxton model also contains corresponding haemodynamic 

parameters 𝜃ℎ which can be measured directly from alternative experimental data, 

in practise these are estimated directly from the BOLD signal with reasonable 

biophysical priors. When estimating the parameters of a dynamic causal model, 

both neural and haemodynamic parameters can be estimated simultaneously. The 

combination of both neuronal and haemodynamic state spaces is shown in the joint 

state equation (4). 
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𝑥 = [𝑧 , 𝑧ℎ] 

𝜃 = [𝐴, 𝐵, 𝐶, 𝜃ℎ] 

𝑥̇ =  𝐹(𝑥, 𝑢, 𝜃) 

𝑦 =  𝜆(𝑥)  

(4) 

Under the condition of 𝜃 and 𝑢 being time-invariant, for a particular instance of 𝜃 

and 𝑢, the joint state equation can be integrated with respect to time and non-

linearly mapped by 𝜆 to a theoretical output BOLD signal ℎ(𝑢, 𝜃). However, it is 

reasonable to extend this and allow for nuisance regressor signals 𝑋𝛽 (e.g. motion, 

scanner drift) and an observation error 𝑒, given by equation (5).       

𝑦 = ℎ(𝑢, 𝜃) + 𝑋𝛽 + 𝑒 (5) 

In equation (5), 𝑦 is the measured BOLD signal, and ℎ(𝑢, 𝜃) can be estimated using 

the GLM approach already successfully used in chapters 3 and 4. For a given 𝑢 

(fixed for each fMRI experiment), 𝜃 can then be estimated in order to fit 𝑦, in this 

case using a Bayesian approach. Using the SPM12 toolbox 

(http://www.fil.ion.ucl.ac.uk/spm) implementation of DCM, 𝜃ℎ parameters are 

estimated using empirical priors and neuronal system parameters 𝐴 and 𝐵 are 

estimated using conservative shrinkage priors, whereas 𝐶 has a prior distribution 

with a more relaxed variance3.  

The estimation procedure (known as model inversion) is completed using an 

expectation maximisation algorithm, fully described in [180]. The algorithm 

optimises 𝜃 in order that the model evidence is maximised, under the neuronal and 

haemodynamic parameter priors.  

6.1.4 Model evidence 

The evidence for a model 𝑚 is given by the probability of observing data 𝑦 under 

that model. This is obtained by integrating over dependencies on model 

parameters 𝜃, as shown in equation (6). 

𝑝(𝑦|𝑚) =  ∫ 𝑝(𝑦|𝜃, 𝑚)𝑝(𝜃|𝑚)𝑑𝜃           (6) 

This integral is intractable to solve analytically for anything other than linear 

Gaussian models and challenging to solve computationally [206]. Therefore 

approximations to the model evidence are often used. Often these approximations 

calculate lower bounds for model evidence (in order to be conservative), such as 

                                            
3
 For a full description of the priors used in this analysis, see the script files spm_fx_fmri.m, 

spm_gx_fmri.m and spm_dcm_fmri_priors.m in the SPM12 toolbox. 
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the Akaike Information Criteria (AIC) [207] or the Bayesian Information Criteria 

(BIC) [208]. These approximations decompose model evidence into an accuracy 

term and a complexity term. AIC and BIC both penalise complexity (by the principle 

of Occam’s Razor [209]) with a function of the number of parameters (with BIC also 

accounting for the number of observations). However, these methods do not 

account for prior beliefs on the behaviour of the parameters, or their 

interdependencies [206, 210].  

A concrete example of this is a thought experiment considering two models, the first 

with a single parameter and the second with a hundred parameters, all with well-

behaved prior distributions (for simplicity, these could all be Gaussian). For a given 

data set, let us suppose that both models are equally accurate (i.e. explain equal 

amounts of variance in the data). Both AIC and BIC would select the first model 

over the second, penalising the second model for being overly complex. However, 

let us now suppose that in order to explain the same variance, the 1st model’s single 

parameter occupied an unlikely value within its prior distribution, whereas for the 2nd 

model, 98 parameters did not move from their mean prior values at all, and two 

moved slightly within their distributions but were well within normal ranges. It would 

now seem that the 2nd model is simpler than the first, and explains the data just as 

well, but AIC and BIC fail to account for this situation. Additionally, AIC and BIC do 

not account for interdependencies or covariance between parameters. 

It is for this reason that within the DCM framework, the quantity called the 

(negative) variational free energy is used as an approximation for the lower bound 

for model evidence. The free energy is defined as the subtraction from an accuracy 

term (the expectation of the log of the probability of the data given the 

parameters/model) of a complexity term, given by the Kullback-Leibler divergence 

between the approximate posterior and prior distributions. This allows complexity to 

be captured as the difference between prior and posterior beliefs, rather than 

penalising unused parameters like AIC and BIC. Therefore maximising the free 

energy (or minimising the negative free energy) maximises model evidence.  

The free energy can be calculated by using a modified restricted maximum 

likelihood cost-function within the EM algorithm [211], although the mathematical 

derivations required for this are beyond the scope of this thesis. Within the DCM 

framework offered by the SPM12 toolbox, a model is said to be inverted or 

estimated when the free energy has converged after the application of the EM 

algorithm. Models are defined by their prior parameter distributions, accounting for 
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both haemodynamic and neural network parameters. Assuming convergence, 

models with different priors can be compared, and a model or family of models can 

be chosen based on maximised model evidence.  

6.1.5 Model priors 

When setting up models for estimation and comparison in DCM, is necessary to 

make the distinction between prior and posterior beliefs about parameters. Before 

estimation, models are defined by their prior beliefs about parameters, represented 

by probability distributions. As this is the first ever attempt to use DCM for mouse 

fMRI data, for simplicity the same haemodynamic priors for human DCMs have 

been used in all analysis presented in this chapter. Where appropriate, priors on 

connection, modulatory and driving input parameters are described in the methods. 

6.2 DCM analysis 

6.2.1 Introduction 

Initially, subset of the interleaved snapshot GE-EPI data set described in section 

3.3 was used, with four interleaved snapshots at a binocular visual stimulus of 10 

Hz flashing frequency (experiment 1). The results from this data set were 

propagated through to in order to analyse the data set described in section 4.1, 

where frequency was used to modulate BOLD responses (experiment 2). The use 

of these data sets for this novel application of DCM have the advantage that both 

used identical data acquisition protocols, and reliable, large effect sizes relative to 

later experiments described in chapter 4. 

Data was pre-processed according to section 3.3, with the exception of the spatial 

normalisation step, where the more advanced method described in section 3.2.2 

was used, to put each subjects’ functional data into the space of the Allen MBA. 

6.2.2 Methods and results 

Due to the developmental nature and technical detail required for this analysis, 

methods and results are presented in the same section, and described in 

chronological order. First BOLD signal extraction is described for experiment 1. 

Then, a plausible model space is defined examining potential connections and 

driving input combinations. A Bayesian model selection procedure is then used to 

select a model that best explains the connections and driving inputs in the mouse 

brain visual system, given the observed BOLD data and input priors. Bayesian 
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parameter averaging is then used to estimate the strength of the connections and 

inputs. 

Following this, data from experiment 2 was used to infer how flashing frequency 

modulates effective connectivity in the mouse brain. BOLD signals were extracted 

in a similar fashion to experiment 1. The model structure resulting from experiment 

1 was used to inform the model space for experiment 2, massively reducing the 

potential model space. Bayesian model selection was used again to infer where 

flashing frequency might modulate connections, and Bayesian parameter averaging 

used once again to estimate the strength of the modulatory effect.  

6.2.2.1 Experiment 1- Inferences on model structure 

BOLD Signal Extraction 

In order to extract BOLD signal data for use with DCM, the recommended 

procedure for a DCM GLM was used [120, 180]. The pre-processed data was 

concatenated (in time, i.e. data from each run was stacked sequentially) for a FFX 

GLM analysis per subject, as were the relevant motion parameters for nuisance 

regressors. An updated double-gamma haemodynamic response function (using 

parameters derived in section 5.2) was used. An example design matrix for a single 

subject is shown in Figure 6.2, and the effect of the 128s high-pass filter shown in 

Figure 6.3. 
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Figure 6.2. FFX GLM design matrix for (temporally) concatenated fMRI runs. Columns are as 
follows: 1. model haemodynamic response; 2-7. Concatenated motion parameter estimates; 8-
9. Run-specific regressors, indicating which data belongs to which run. Low-frequency 
regressors used in the discrete cosine transform for high-pass filtering are hidden by default 
by SPM. 
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Figure 6.3. Effect of high-pass filter on experimental design. Left panel – modelled BOLD 
response using convolution of updated double-gamma function with stimulus block design. 
Right panel – effect of filter on the experimental design. The bulk of the frequencies of interest 
are not included in the range of the filter (grey bar). 

 

For data extraction, an F-test contrast was used for the effect of interest, as the F-

test is invariant to the sign of the effect. This was extracted with a GLM contrast 

vector of [1 0 0 0 0 0 0 0 0]. For each subject, the F-statistic map was thresholded 

at p < 0.05 (uncorrected for multiple comparisons) (Figure 6.4), and the cluster peak 

closest to each visual ROI location recorded. As the question being asked relates to 

interactions and causal links between effects, thresholding without multiple 

comparisons is reasonable. Furthermore, because this question does not relate 

directly to effect size, but rather causes and links between effects, it is reasonable 

to use the maps for guiding signal extraction, without the issue of circularity raised 

by Kriegeskorte et al. [125]. 
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Figure 6.4. FFX map for a single subject, F-test for BOLD activation (regardless of sign), 
thresholded at p < 0.05 without correction for multiple comparisons, with contours of visual 
region ROIs overlaid. The F-statistic threshold is 3.9, and for this design matrix is the 
equivalent of a t-statistic threshold of 1.98. The maximum F-statistic corresponds to a t-
statistic of approximately 12.4. 

The central location of the SCs was used, and for the LGd and VISp, right and left 

hemisphere locations were noted. At each location, above-threshold voxels 

included within a 0.6 mm sphere (6 mm specified in SPM12, given that voxel 

dimensions are scaled up by a factor of 10) were used for signal extraction. Their 

locations in the space of the Allen Mouse Brain Atlas with standard deviations are 

provided in Table 6.1. 

Table 6.1. ROI locations for signal extraction (mean with standard deviation). Real voxel 
dimensions are [0.36 0.36 0.6] mm for reference. 

ROI 𝑥 ±  𝜎𝑥 / mm 𝑦 ±  𝜎𝑦 / mm 𝑧 ±  𝜎𝑧 / mm 

LGd – left 3.61 ± 0.30 4.92 ± 0.20 5.90 ± 0.11 

LGd – right 7.85 ± 0.24 4.72 ± 0.24 5.82 ± 0.23 

SCs 5.80 ± 0.11 6.74 ± 0.24 4.43 ± 0.13 

VISp – left 3.19 ± 0.26 6.89 ± 0.19 4.48 ± 0.37 

VISp – right 8.45 ± 0.24 6.64 ± 0.14 4.41 ± 0.26 
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This method is superior to using the structural ROIs only because it implicitly allows 

the manual operator to account for image distortion and minor failures in image 

registration [181]. 

For signal extraction, rather than extracting the mean BOLD signal, the 1st 

eigenvariate (or principal component) [120] of the concatenated BOLD signal, 

adjusted for effects of interest, was extracted. By adjusting for effects of interest, 

voxels which more closely match the modelled signal contribute more strongly to 

the 1st eigenvariate. In the case of all voxels having an equal contribution, the 1st 

eigenvariate is equivalent to the mean signal. This provides two advantages over 

simply using the mean signal: 

1. The 1st eigenvariate of the signal is more robust to response heterogeneity 

within the cluster. 

2. Effects not included in the effects of interest contrast e.g. motion estimates, 

are removed from the data before extraction. 

Based on the statistical threshold of p < 0.05, (uncorrected), all subjects contained 

significant voxels for all regions. Therefore all 6 subjects were used for DCM. 

Plots of the extracted 1st eigenvariate signals for each subject and ROI are included 

in Figure 6.5. 

 

Figure 6.5. Eigenvariate signals extracted from 6 subjects concatenated fMRI data (10 Hz 
binocular visual stimulation). Signal units are normalised to the global brain mean signal 
multiplied by 100 [120], and periods of stimulation are shown in grey. Red timecourses are 
from individual subjects, and the mean timecourse is plotted in black. 

The timecourses extracted and shown in Figure 6.5 clearly show effects related to 

the stimulus, and therefore it was deemed reasonable to attempt to investigate 

networks that might generate these observable signals. 
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Model space definition 

The data shown in Figure 6.5 indicates that the LGd and SCs show much stronger 

responses than VISp. From this observation and considering the feed-forward 

model described by Huberman and Neill [26] shown in Figure 3.30, it was 

hypothesised that a hierarchical model with driving inputs to LGd and SCs, and a 

connection between LGd and VISp would best explain the observed BOLD signals. 

This connection model is represented in Figure 6.6. 

 

Figure 6.6. Initial hypothesis for effective connectivity in the mouse brain, based on a summary 
of the literature (see Figure 3.30, adapted from Huberman and Neill [26]. An input stimulus S 
from the optic nerve feeds separately to the SCs and LGd. The LGd then relays information to 
VISp in a hierarchical manner. 

The first use of DCM for mouse fMRI data tested whether this model performed 

significantly better in explaining the measured BOLD signals against other models, 

in an attempt to answer questions on connections and driving inputs. To constrain 

the model space, only bidirectional connections were considered to be possible, 

which strictly means that the model shown in Figure 6.6 was not directly tested – as 

both backward and forward directions for each connection were considered 

plausible.  

By considering all permutations of bi-directional connections between three regions, 

eight variations of the 𝐴 matrix representing connections are possible (coded as A1-

A8). All possible permutations of the driving input were considered, leading to 

seven variations of the 𝐶 vector representing the driving input (coded as C1-C7). As 

all trials were assumed to induce identical responses, no modulatory influences 

were modelled, and therefore the 𝐵 matrix representing modulatory influences was 

set to zero. This gave rise to a total model space of 56 models per subject to be 

estimated. Each model was considered under a ‘flat’ prior i.e. no model a priori was 

more likely than any other. The codes for these models are shown in Table 6.2. 
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Table 6.2. Plausible model variations on connections and driving input locations for the mouse 
visual system. When a model has an allowed connection parameter, the default prior value of 
that parameter is zero, but is allowed to change under a shrinkage prior distribution. When a 
parameter is not allowed, its value is fixed at zero. For driving parameters, the prior has mean 
zero and variance one. 

Model code Allowed parameters that define the model 

A1 No connections 

A2 One connection between LGd and SCs 

A3 One connection between LGd and VISp 

A4 One connection between SCs and VISp 

A5 Two connections: LGd-SCs  and LGd-VISp 

A6 Two connections: LGd-VISp and SCs-VISp 

A7 Two connections: LGd-SCs  and SCs-VISp 

A8 Three connections: LGd-SCs, LGd-VISp and SCs-VISp 

C1 Stimulus drives LGd only 

C2 Stimulus drives SCs only 

C3 Stimulus drives VISp only 

C4 Stimulus drives LGd and SCs 

C5 Stimulus drives LGd and VISp 

C6 Stimulus drives SCS and VISp 

C7 Stimulus drives LGd, SCs and VISp 

 

For example, the equivalent model in Figure 6.6 would correspond to model A3C4. 

Bayesian model selection  

All 56 models (per subject) were estimated using the default priors used in the 

SPM12 toolbox4 (deterministic, bilinear, non-mean-centred, one state per region), 

and initially compared using both RFX and FFX Bayesian model selection (BMS) 

approaches. Depending on whether FFX or RFX analyses were used, group results 

were combined according to Stephan et al. [212].  

One could argue that a FFX approach is more suitable based on the reasonable 

assumption that each subject should be operating under the same model (which for 

primary visual stimuli processing is probably true, bar variable effects of 

physiology). However, a limitation of using FFX BMS in this way can lead to ‘brittle’ 

                                            
4
 An error was found in the r6767 version of SPM12, where although the user had the 

flexibility to specify the custom echo time used, this was overridden by the default echo time 
of 40 ms (which is common for human fMRI studies). This error was corrected for all DCM 
analysis presented in this chapter. 
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model results, where one model for a particular subject completely dominates the 

group result [213]. On the other hand RFX BMS ignores the assumption of 

consistent connectivity across subjects. For completeness both types of BMS are 

presented here. 

BMS compares models by their free energy (as an approximation for model 

evidence), where a model with the minimum negative free energy is the one which 

‘best’ explains the data. Probabilities of models explaining data better than other 

models is calculated by the difference in free energies between models, and then 

normalised by the number of models tested in the comparison. However, for large 

model spaces, this leads to the issue of dilution of evidence, or model dilution. To 

account for this problem, family comparisons were used to make inferences on 

model structure [213]. Families of models were defined based on connection and 

driving combinations e.g. a family of models which all contain a connection between 

LGd and VISp, or a family of models which only have a driving input to SCs). Family 

comparisons were conducted over combinations in the 𝐴 matrix (structural) and 

the 𝐶 vector (drivers).  

The family exceedance probability or posterior probability (i.e. the probability of one 

family outperforming all others) for each family of structural models are shown in 

Figure 6.7 and Figure 6.8, and for each family of driver models shown in Figure 6.9 

and Figure 6.10. 

 

Figure 6.7. RFX Bayesian model selection (A) for 8 families of models of bi-directional 
connections between LGd, SCs and VISp. Model families are scored on the exceedance 
probability, with family A6 outperforming all other families. 
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Figure 6.8. FFX Bayesian model selection (A) for 8 families of models of bi-directional 
connections between LGd, SCs and VISp. 

 

 

 

Figure 6.9. RFX Bayesian model selection (C) for 7 families of models of driving input to LGd, 
SCs and VISp. Models are scored on the exceedance probability, with family C7 outperforming 
all other families. 
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Figure 6.10. FFX Bayesian model selection (C) for 7 families of models of driving input to LGd, 
SCs and VISp. 

In order to formally accept a winning model, an exceedance probability of over 0.9 

(corresponding to ‘strong evidence’ i.e. a Bayes factor > 3 [214]) would be required 

(similar to using a p < 0.05 threshold for statistical significance from the frequentist 

approach). It should be remembered here that probability is a measure of the 

degree of certainty, rather than a frequency over the long run as in the frequentist 

view. Although models were grouped into families before comparison, the issue of 

model dilution remains under the assumptions for RFX BMS.  

From the FFX Bayesian model selection procedure, we can select a model that 

includes features for which we have strong evidence (probability of > 0.9) of 

existing. This corresponds to a model which belongs to both families A6 and C7 

(see Table 6.2). This corresponds to the network structure shown in Figure 6.11. 

 

Figure 6.11. Winning model structure describing effective connectivity for the interleaved 
snapshot (n=4) GE-EPI mouse fMRI data set. This model suggests that all three regions are 
driven by stimulus S, and that VISp is bi-directionally connected to both LGd and SCs, but that 
LGd is not connected to SCs. All regions have a self-connection (represented by a small 
looping arrow). 
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The model described in Figure 6.11 captures some of what would be expected from 

Huberman and Neill’s review [26] of the biology of the mouse brain visual system – 

that LGd and SCs are on different visual pathways (i.e. do not communicate 

directly), but also that VISp and SCs communicate, and that VISp also receives 

direct stimulus input. There is more recent evidence suggesting that there are 

indeed structural connections between VISp and SCs [215] in the mouse brain. 

However, the current finding that the stimulus directly drives VISp is surprising and 

does not appear to match the underlying biology.  

Model Accuracy 

As a basic check of the performance of the model fitting, the variance of the BOLD 

signal explained by this model (a proxy for model accuracy) was examined, and 

shown in Figure 6.12. 

 

Figure 6.12. Spread of % variances explained (a proxy for model accuracy) by the winning 
model in Figure 6.11. Given different noise levels across subjects, some variation of model 
accuracy is to be expected. A heuristic minimum of 10% variance explained is used within the 
SPM12 toolbox for rejecting a model as inaccurate. 

The percentage of BOLD signal variance (± standard deviation) explained by this 

model is 51 ± 12 %. The predicted output BOLD responses and the target data for 

the lowest and highest variance explained subjects (i.e. the subjects with the lowest 

and highest proportion of their BOLD signals explained by the model) are shown in 

Figure 6.13 and Figure 6.14 respectively.  
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Figure 6.13. Observed and predicted BOLD responses for the subject for which this model 
explains 36% of the variance of the observed signal, for LGd, SCs and VISp regions (outputted 
from the SPM12 DCM toolbox). Note the different axis limits in each plot. 
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Figure 6.14. Observed and predicted BOLD responses for the subject for which this model 
explains 72% of the variance of the observed signal, for LGd, SCs and VISp regions (outputted 
from the SPM12 DCM toolbox). Note the different axis limits in each plot. 
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These figures qualitatively indicate the robustness of the model fitting to noise in the 

BOLD signal, which itself is a parameter optimised during the free energy 

maximisation. This is the first time this has been done for mouse fMRI data. The full 

results of model accuracy across the 6 subjects and 56 models are shown in Figure 

6.15. 

 

Figure 6.15. Model accuracy matrix, showing that families of more complex models are more 
accurate than simpler models. Each row corresponds to a different subject, and each column 
to a different model. Models are grouped by connection families, and within each family the i

th
 

column corresponds to family Ci, i.e. the 3
rd

 column of family A1 is model A1-C3. 

As can be seen from Figure 6.15, there is some structure to the model accuracy 

matrix – more complicated connection models (moving from family A1-A3 through 

to A8) explain a greater proportion of the observed data, and that models with a 

greater number of driving inputs (C4-C6,C7) are also more accurate. 

Bayesian Parameter Averaging 

Given the model described in Figure 6.11, Bayesian parameter averaging (BPA) 

was used to define the coupling parameters for each connection and input across 

subjects. These can be used for qualitative interpretation of effective connectivity in 

terms of strengths of connections between neuronal populations. As described in 

section 6.1.2, the coupling parameters that form the 𝐴, 𝐵, 𝐶 matrices/vectors used in 

equation (2) should strictly be understood as rate constants of neuronal population 

responses that exponentially decay with time. Therefore coupling parameters in 

DCM are inversely proportional to the half-life of modelled neuronal responses, and 

are measured in units of Hz.             

The output 𝐴 matrix and 𝐶 vector are shown in equation (7). 

𝐴 =  (
−0.11 0.00 0.06

0.00 −0.18 0.24
0.14 0.13 −0.05

) , 𝐶 =  (
0.50
0.98

−0.55
) (7) 

In matrix 𝐴, the set of connection parameters, each column contains connections 

from the LGd, SCs and VISp respectively, and each row contains connections to 
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the LGd, SCs and VISp. In vector 𝐶, the set of driving input parameters, the regions 

are ordered LGd, SCs and VISp moving down the rows. Parameter plots with 90% 

confidence intervals are shown in Figure 6.16. 

 

Figure 6.16. Parameter estimates with confidence intervals for connections (A matrix) and 
driving inputs (C matrix). 

From Figure 6.16, we can be confident that all of the connection parameters and 

driving input parameters are of interest (90% confidence that they are non-zero) 

except for the VISp→LGd and the self-connection on the VISp. 

The values of all connection and driving parameters are visualised in Figure 6.17. 

 

Figure 6.17. Estimates of connection strengths and driving inputs calculated using Bayesian 
parameter averaging.Self-connections (gain control parameters) are shown in brackets. 

Interpreting these parameter values directly is difficult, as they correspond to an 

abstract representation of communication between neuronal populations. However, 

a qualitative assessment of the strengths of this network suggest that VISp and 

LGd are driven at approximately equal strength (but with opposite signs), and the 

SCs receiving the bulk of the positive stimulus input. In addition, LGd and SCs 

appear to influence VISp almost equally, but SCs receives a stronger top-down 

influence from VISp than LGd does. One encouraging result is that the negative 



206 
 

self-connections indicate negative feedback in each region, avoiding exponentially 

increasing neural activity – which is not enforced by the model fitting procedure. 

6.2.2.2 Experiment 2- Frequency modulation of connections 

Using the information gained from section 6.2.2.1, the effect of frequency 

modulation on effective connectivity in the mouse visual system was considered. 

Therefore the dataset acquired in section 4.1 was used, and signal extraction 

completed in a similar fashion to the previous section. However, because of the 

inclusion of a parametric modulator (temporal flashing frequency 𝑓), a different 

design matrix was required and the contrasts used for BOLD signal extraction were 

modified. An example design matrix for a single subject is provided in Figure 6.18. 

 

Figure 6.18. FFX GLM design matrix for concatenated fMRI runs. Data is concatenated through 
time. Columns are as follows: 1. model haemodynamic response; 2. Parametric modulation of 
haemodynamic response by flashing frequency) 3-8. Concatenated motion parameter 
estimates; 9-16. Run-specific regressors. Low-frequency regressors used in the discrete 
cosine transform for high-pass filtering are hidden by default by SPM12. 
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The 1st eigenvariate signal was extracted with a GLM F-contrast vector of [1 0; 0 1] 

padded with zeros to define the effects of interest (the stimulus driver 𝑆 and the 

flashing frequency 𝑓). For each subject, the F-statistic map was thresholded at p < 

0.05 (uncorrected for multiple comparisons), and the cluster peak closest to each 

visual ROI location recorded. All subjects had significant voxels within the LGd, SCs 

and VISp regions, and were therefore all included. 

As the question of interest now concerned how the parameter 𝑓 modulates effective 

connectivity, the structural model arrived at in section 6.2.2.1 was used, and 

variations on the 𝐵 matrix investigated with Bayesian model selection. Four 

variations were considered: 

1. The null model, insofar that 𝑓 has no modulatory effect 

2.  𝑓 modulates the bi-directional connection between LGd and VISp 

3.  𝑓 modulates the bi-directional connection between LGd and SCs 

4.  𝑓 modulates the self-connection within VISp 

As only four plausible models were considered here, the issue of model dilution was 

not deemed relevant, and therefore the basic RFX BMS approach was used. The 

result of this comparison is shown in Figure 6.19. 
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Figure 6.19. RFX Bayesian model selection (B) on variations of the modulatory effect of 𝒇.  

From this comparison, we can be over 90% confident that there is frequency 

modulation of the LGd-VISp connection relative to the rest of the model space. The 

variances explained by this model for each subject are plotted in Figure 6.20. 

 

Figure 6.20. Spread of % variances explained by the winning model across subjects. This is a 
good validation of the generalisability of the model defined by the A and C matrices selected 
by experiment 1. 
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Bayesian parameter averaging was then performed to define the coupling 

parameters for each connection and input across subjects, with results shown in 

equation (8). 

𝐴 =  (
−0.43 0.00 −0.04

0.00 −0.36 0.01
0.06 0.05 −0.73

)  

𝐵 =  (
0.00 0.00 0.24
0.00 0.00 0.00

−0.05 0.00 0.00
)   

 𝐶 =  (
0.10
0.20
0.06

) 

(8) 

 

The parameter values are plotted with 90% confidence intervals in Figure 6.21. 

 

Figure 6.21. Parameter values with 90% confidence intervals for 𝑨, 𝑩, and 𝑪 matric parameters. 

The parameters for the 𝑨 matrix have markedly different values relative to those of the same 
model structure for the previous dataset.  

A summary of this network model, in relation to Figure 6.11, is shown in Figure 

6.22. 
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Figure 6.22. Bayesian Parameter Averaging (experiment 2). Estimates of connection strengths, 
and driving inputs are shown in black, and modulation effects are shown in red. 

The parameter values for this model are markedly different from the parameters 

estimated and shown in Figure 6.16, in particular the connections within the 𝐴 

matrix. Whilst the self-connections remain strongly negative, the values of 

parameters representing the connections between regions are much lower. 

Furthermore, relative to the parameters shown in Figure 6.17, the input to the VISp 

is now weakly positive rather than negative. This can be explained by the negative 

frequency modulation parameter for the LGd→VISp connection, suggesting that as 

frequency increases, it is the LGd which inhibits neuronal activity in the VISp, 

generating the observed negative BOLD responses. 

6.2.3 Discussion 

There are multiple ways of defining brain connectivity, including anatomical, 

functional and effective connectivity, as described in section 6.2.1. In this work, 

previously described task-based fMRI data (see section 3.3) were analysed using 

dynamic causal modelling, to make inferences on effective network connectivity in 

the mouse visual system. This initial in vivo interleaved snapshot (𝑛 = 4 snapshots)  

GE-EPI dataset (experiment 1) which included six mice was used to make 

inferences on model structure and driving input, which were broadly compatible with 

invasive electrophysiological and tracer studies [26, 84], suggesting a functional 

segregation between the LGd and SCs. This model was then propagated through to 

make inferences on the modulatory effects of the temporal flashing frequency, 

using the dataset described in section 4.1 (experiment 2, eight mice), and strong 

evidence was found that the flashing frequency modulated the LGd-VISp 

connection. However, model parameters common to both data sets (the 

connections and strengths of the driving inputs) proved to be markedly different. 

This could be due to strong covariance or interdependence between certain 

parameters, as previously noted in a DCM fMRI study reproducibility study [196]. 

However the difference in experimental designs means that experiment 2 is much 
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richer in data than experiment 1, in particular the possibility for VISp to show both 

positive and negative BOLD responses. Therefore it is not necessarily surprising 

that the parameter set take different values to accommodate this, as the same 

connection strength and driving input priors for the parameters were used for both 

experiments. 

There are certain limitations to the analysis used here. Firstly, default priors for 

haemodynamic parameters were assumed. The characteristic haemodynamic 

parameters for the extended balloon model used in the current implementation of 

the SPM12 toolbox are shown in Table 6.3. 

Table 6.3. Haemodynamic parameter priors for use in dynamic causal modelling in SPM12. Of 
these, only signal decay and transit time are free to vary across brain regions. 

Parameter name  Prior mean Units 

Signal decay 0.64 Hz 

Autoregulation 0.32 s 

Transit time 2.00 s 

Grubb’s exponent 0.32 n/a 

Resting oxygen extraction fraction 0.4 n/a 

Ratio of intra- to extra-vascular signal 1 n/a 

Resting venous blood volume fraction 0.04 % 

 

To the best of my knowledge the extended balloon model has never been applied 

to mouse fMRI data, and future work investigating these parameters that 

characterise the extended balloon model in the mouse brain is warranted. It is likely 

that the haemodynamic priors will vary between humans and mice, given the results 

of chapter 5, and therefore models which use mouse specific haemodynamic priors 

are likely to outperform ones which don’t. This could be directly evaluated using 

FFX BMS as described in this section, and work investigating the resting venous 

blood volume fraction in human DCM fMRI has recently been completed [216]. 

Furthermore, only the bilinear, one-state DCM implementation was considered 

here. A non-linear version of equation (2) uses an additional term  𝐷 in order to 

allow brain regions to directly modulate responses in other brain regions [217], 

whereas two-state DCMs model separate excitatory and inhibitory neuronal 

populations in each region [191]. In particular, when considering the negative BOLD 

response, it is plausible that a non-linear, two-state model may better explain 

neuronal inhibition in VISp than the models shown in Figure 6.11 and Figure 6.22. 
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The neuronal parameter prior values and covariances also require scrutiny. Given a 

summary of the literature provided by Huberman and Neill [26] and a later study by 

Wang et al. [215], we would not expect the system to have a driving input direct to 

the visual cortex, rather this signal to be relayed to the visual cortex predominantly 

by LGd. The default neural parameter priors use different priors for connections as 

opposed to drivers: whilst both are assumed to have a mean of zero, driver 

parameter priors are more relaxed (i.e. have greater variance)  and therefore 

models with more driving inputs are penalised for complexity less harshly than 

models with fewer inputs but stronger connection parameters to relay inputs 

instead. Whilst these priors are commonly used for human DCM fMRI studies, no 

DCM fMRI studies so far have examined the primary visual system in the way 

described here; rather, more complex networks have been investigated using a 

driving input to a higher-level region to represent an entire sensory sub-network 

[218]. For understanding a primary sensory system as in this case, it would be 

interesting to relax the connection prior covariances and tighten the driver prior 

covariances. Alternatively, Bayesian model selection could be applied to the subset 

of models which do not have a direct input to VISp, given the description of the 

mouse biology in the available literature. Although DCM is suggested as a method 

for testing hypotheses on model structures that use varying numbers of driving 

inputs, the results from this section suggest that the complexity penalty for driving 

inputs under the default priors is potentially too low. 

Another limitation is that anatomical information was not incorporated at the 

parameter prior level. Future mouse DCM fMRI work might use data from the 

mesoscale mouse brain connectome [184] to inform prior distributions on the 

connection parameters. This could be done either by modifying the prior mean, 

covariance, or both – although mapping from normalised connectivity values 

determined from tracer studies to the abstract parameter space of DCM may prove 

difficult. 

There are some common criticisms of the Bayesian approach used in the DCM 

framework, raised by Lohmann et al. [219]. Most commonly raised is the relative 

nature of Bayesian model selection, in that the evidence of a single model is 

meaningless, it is only the difference in free energy between two models that 

provides information as to whether one model is more useful than another. As such, 

identifying a ‘true model’ has no meaning [220]. The variance of the BOLD signal 

explained by a model across subjects was shown in Figure 6.12, and is useful as a 
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heuristic check that the temporal contrast to noise ratio is large enough to ensure 

that DCM is worth using, but does not account for model complexity or prior 

knowledge – the reason for using a Bayesian approach. The frequentist approach 

to model fitting commonly uses 𝑅2 to evaluate the goodness-of-fit of a model, but 

rather than an absolute measure, it is computed relative to an implicit null model 

[221], and therefore can only be as informative if not worse than the BMS approach 

used here.  

However the issue of reproducibility is more challenging – as data is considered 

fixed and models selected on their performance for a particular dataset, whilst one 

would hope that two separate experiments would yield the same winning model, 

this may not be the case, and it may prove that pooling the data yields a different 

model altogether. This is partially addressed by the use of RFX BMS, but this loses 

the perfectly reasonable assumption that all subjects are using the same model. 

Alternatively one could use the posterior estimates from one experiment as priors 

for a second (this was informally done by propagating the model structure from 

experiment 1 to experiment 2). Future work might also use group information at the 

model inversion stage, using an implementation of a parametric empirical Bayes 

scheme [222]. Driving input priors also require further scrutiny. 

Establishing the validity of dynamic causal modelling is critical for future work. 

There is currently only one published animal study using DCM for fMRI [201], which 

successfully used DCM with a modified haemodynamic model to describe effective 

connectivity in a rat model of epilepsy, with invasive EEG recordings used to 

validate results from DCM. The work described in this section provides a platform 

for further validation of DCM, in particular with respect to primary sensory systems. 

Future efforts should focus on the ability of DCM to infer haemodynamic signal 

behaviour that could be validated with more direct, invasive techniques such as 

optical imaging spectroscopy.  

6.2.4 Conclusion 

Dynamic causal modelling was applied in its simplest form (bilinear, one neuronal 

state per region) to understand visual system connectivity in the mouse brain using 

previously acquired fMRI data. Bayesian model selection yielded a winning model 

of connectivity that broadly agreed with current understanding of the mouse brain 

visual system, although evidence for a driving input to VISp is unlikely to reflect the 

underlying biology. Propagation of this model structure to a separate dataset 
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allowed inferences to be made on temporal visual processing, with strong evidence 

that flashing frequency modulates the LGd→VISp connection. 

6.3 Chapter summary 

In this chapter, the first application of dynamic causal modelling (DCM) to mouse 

brain fMRI data was described. Section 6.1 introduced the theory and motivation 

behind DCM. In section 6.2, the processes of appropriate region definition, signal 

extraction and model estimation were described, and the application of Bayesian 

model selection and Bayesian parameter averaging used to make inferences on 

model structure and connection strengths from previously acquired data. The 

results from this DCM analysis are broadly consistent with the literature on 

structural connectivity in the mouse brain. In the following chapter, a critical 

discussion of this thesis will be presented. 
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7 Discussion 

This chapter provides a final discussion of the thesis, and suggests ideas for future 

research. An overview of the thesis is provided in section 7.1, a discussion of the 

work and its limitations is presented in section 7.2, directions for future research 

suggested in section 7.3  and a final conclusion in section 7.4.   

7.1 Thesis overview 

In chapters 1 and 2, an introduction and background context to this thesis was 

provided. The case for reverse translation of common non-invasive human 

neuroimaging techniques for use in animal models was made. The importance of 

the mouse model as a neuroscience tool, and its potential for systematic genetic 

manipulation, was also emphasised. The application of fMRI to the mouse brain, 

whilst extremely technically challenging, can bridge the gap between invasive 

electrophysiological experiments in mice and non-invasive fMRI studies in humans. 

A review of BOLD fMRI applied in the mouse brain was given, and the lack of 

studies using visual stimuli was noted. 

Chapter 3 detailed systematic work for developing a mouse fMRI protocol using 

visual stimuli. The majority of human fMRI studies use a visual input, however only 

one mouse fMRI study [31] explicitly attempted to measure BOLD responses to 

visual stimuli. This paper did not report physiologically realistic BOLD signal 

responses in the mouse brain visual system as it is commonly understood; an 

important justification for the work reported in this thesis. In chapter 4, 

implementations of increasingly complex visual stimuli for mouse fMRI were 

described, overcoming the geometric and field strength constraints of using a pre-

clinical MRI scanner. 

Chapter 5 described the implementation of a novel fMRI technique for measuring 

high-temporal resolution BOLD responses in the mouse superior colliculus. This 

data was used for the optimisation of the SPM12 canonical haemodynamic 

response function, which was shown to improve sensitivity in statistical parametric 

mapping of BOLD responses to visual stimuli in previously acquired data. High-

temporal resolution BOLD fMRI in the mouse will also be useful to complement 

optical imaging spectroscopy studies, which measure haemodynamic responses on 

similar timescales [43, 223]. 
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Finally in Chapter 6, the application of dynamic causal modelling to ‘standard’ 

mouse brain fMRI data was described. Generative models with varying structural 

connections and driving inputs were successfully estimated using mouse fMRI data, 

and used to formally test hypotheses on effective connectivity in the mouse visual 

system. The modulatory effect of stimulus flashing frequency was successfully 

localised to the connection between the lateral geniculate nuclei and primary visual 

cortex, potentially accounting for the negative BOLD responses observed in the 

visual cortex at high flashing frequency.  

7.2 Extended discussion and limitations 

There are numerous difficulties associated with mouse fMRI. The largest driver of 

technical difficulties in mouse fMRI is the small size of the head, approximately 0.4 

cubic centimetres. This necessitates the use of high-field MRI (greater than 7T) to 

ensure even adequate signal-to-noise. The use of strong magnetic fields, in 

combination with a sample occupying a small volume, means that assumptions of 

field homogeneity that are reasonable in human studies at 1.5 or 3T may be 

unsound in the mouse brain at 9.4T. Strong magnetic field gradients are necessary 

to ensure adequate spatial resolution to cover brain regions of interest with a 

sufficient number of voxels. 

Beyond the size of the mouse brain, maintaining relevant mouse brain physiology 

for fMRI is also a challenge. In this thesis, a recoverable medetomidine anaesthesia 

protocol was used as a compromise between minimising head motion artefacts and 

preserving neurovascular coupling. A recently tested GABAergic anaesthetic agent 

called etomidate has shown promising results for mouse fMRI [61], with the 

potential for greater cross-strain applicability. 

Whilst mouse brain fMRI with visual stimuli has been successfully implemented in 

this thesis, possibly one of the largest barriers to using it to answer questions on 

mouse brain biology is the complex interplay between physiologically relevant 

parameters that determine the measured BOLD response, such as cerebral blood 

flow, cerebral metabolic rate of oxygen consumption and oxygen extraction fraction 

[93]. This issue could be addressed in future work with the application of optical 

techniques to measure haemoglobin concentration directly, and validation using 

invasive electrophysiology experiments. Further advances in combining BOLD fMRI 

with arterial spin labelling (ASL) may also allow the implementation of calibrated 
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BOLD fMRI [224, 225] for use in mice, allowing the cerebral metabolic rate of 

oxygen consumption to be estimated using MRI alone. 

Numerous difficulties of BOLD fMRI analysis associated with human studies are 

also applicable to the mouse. The growing literature on issues with fMRI data 

analysis is worth discussing. Whilst the work in this thesis has aimed to implement 

current fMRI techniques in the mouse brain, there are still limitations common to 

human fMRI data analysis which also reverse-translate to the mouse. For example, 

the use of statistical null-hypothesis testing with thresholding can under certain 

parameter choices have unacceptably large false positive rates [226], the number 

of researcher degrees of freedom [227] and the difficulties faced in reverse-

inference [4, 228, 229] are all issues which the field of fMRI currently faces. 

In the context of what is currently known about mouse brain biology, the work in this 

thesis has consistently generated concordant results, demonstrating the 

applicability of fMRI in the mouse brain using visual stimuli.  

7.3 Directions for future research 

There are a number of new questions which naturally arise from the work presented 

in this thesis. First of all, the question of whether these protocols can be used in 

conjunction with transgenic mouse models has not directly been addressed here. 

All mice used in this work are of the C57BL/6 strain, and it is plausible that the 

medetomidine protocol used may not be compatible with transgenic mice of 

different strains [61, 230]. Alternative anaesthesia agents should be considered for 

future experiments. Further improvements to the methodology could also focus on 

the implementation of multi-band EPI [231] as used in the human connectome 

project5, or a slice-to-volume reconstruction approach as used for functional 

connectivity measurements of the human foetal brain [232]. This method in 

particular may be of relevance to awake mouse fMRI experiments, although without 

dedicated multi-coil arrays this may prove challenging to implement.  

Second, the use of spatially varying stimuli requires further development to match 

stimuli commonly used in the mouse electrophysiology literature. The use of these 

more advanced stimuli will allow direct comparison of BOLD fMRI data with 

electrophysiology measurements, with the potential for paired studies using both 

the complementary techniques. Also from a translation point of view, moving from 

block-design experiments to event-related design experiments will increase the 

                                            
5
 http://www.humanconnectome.org/documentation/Q1/imaging-protocols.html 
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relevance to human fMRI studies, and will likely improve haemodynamic parameter 

estimation as described in chapter 5. 

Third, a better understanding of mouse haemodynamics using BOLD fMRI is 

possible. A natural extension of chapter 5 would be to use the haemodynamic 

modelling aspect of the dynamic causal modelling approach, and directly fit the 

extended balloon model of neurovascular coupling to the high-temporal resolution 

data acquired with line-scanning fMRI. As the model fitting could be completed 

using the same algorithms as dynamic causal modelling, models with different 

parameter priors could be estimated and compared using a Bayesian model 

selection approach. The posterior parameter estimates from this result could then 

be used to inform dynamic causal model estimation of neural and haemodynamic 

parameters. In addition, combination of haemodynamic parameter inferences with 

external validation from optical imaging techniques would be useful. 

Fourth, greater application of DCM to mouse fMRI with visual tasks is warranted. 

The work described in this thesis is the first application of DCM to mouse fMRI data, 

and could be built upon to ask questions of inter-hemispheric connectivity and 

connection modulation by stimuli characteristics. The issue with driving input 

parameter priors raised in chapter 6 may also be problematic for human studies, 

and requires addressing. The use of a hierarchical model inversion scheme should 

allow the issue of model structure reproducibility to be formally addressed, and a 

robust application to understanding within- and between-group differences of 

effective connectivity will be extremely important to fulfil the potential of using fMRI 

with transgenic mouse models. 

7.4 Conclusion 

In this chapter, the work presented in this thesis was summarised, critically 

discussed and placed in the wider context of the scientific literature, with 

recommendations for future directions of research. The novel contributions to 

knowledge from this thesis are as follows: 

1. The use of interleaved snapshot GE-EPI for task-based fMRI in the mouse 

brain improved spatial localisation of the BOLD signal without reducing 

temporal contrast-to-noise. 

2. Reliable and network specific BOLD signal responses were induced in the 

mouse visual system with a flashing light stimulus. Both the sign and 
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magnitude of the BOLD response in the primary visual cortex were strongly 

modulated by the flashing frequency used. The use of dark flashes relative 

to light flashes suppressed BOLD responses in the superior colliculus, whilst 

a reduced BOLD response was seen in the primary visual cortex. 

3. Line-scanning fMRI was used in the mouse brain to acquire high-temporal 

resolution BOLD responses in the superior colliculus. This data was then 

used to inform the shape of the haemodynamic response function, and used 

for more sensitive statistical parametric mapping analyses. 

4. Dynamic causal modelling was used to describe effective connectivity in the 

mouse brain, allowing inferences on causal links between brain regions in 

the visual system to be made.  

From the work described in this thesis, it can be concluded that mouse BOLD fMRI 

using visual stimuli is robust, and could be used for future studies investigating 

mouse brain biology, linking human fMRI measurements to invasive mouse brain 

measurements, or directly examining genetic effects on brain function using 

transgenic mouse models. Furthermore, although questions remain regarding the 

precise relationship between the measured BOLD signal and underlying neuronal 

activity, this implementation of mouse fMRI may provide a platform for future 

studies to improve our understanding of neurovascular coupling and functional 

neuroscience across humans and mice. 
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Appendix 

Appendix A 

Code snippets showing the implementation of image registration as described in 

section 3.2 are shown. 

 

Code snippet for running the NiftyReg toolbox implementation of affine registration. The 
registration uses a manually defined brain mask of the target image, and therefore requires the 
non-symmetric (‘-noSym’) option. The resulting affine transformation matrix is saved as a text 

file at the address specified by the MATLAB function input ‘transform_Path’. 

 

Code snippet to optimise Aladin hyper-parameters for registration of the AMBA to a T2 
weighted structural scan. The default values for ln and maxit are 3 and 5 respectively. 
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Here, modifications to the MarsBaR toolbox code used in section 3.3 are shown.  

 

Code snippet - edits to the get_marsy.m routine in the MarsBaR toolbox for signal extraction 
from an ROI. The an_marsbar_ROI_filter_normalise_fcn routine filters and normalises the 

signals before averaging. 

 

Code snippet of the an_marsbar_ROI_filter_normalise_fcn routine. This function uses the SPM 
toolbox discrete cosine transform high pass filter, and filters and normalises each voxel 

timecourse. 

Appendix B 

From section 4.5, code to operate an Arduino to deliver a visual stimulus from an 

LED array using the NeoPixel library is included here: 

// Flashing Block (condition 1) visual stimulus using NeoPixel 
// Written by Arun Niranjan 2016-03-14 
 
// Libraries and Pin Definitions 
//======================================================================== 
#include <Adafruit_GFX.h> 
#include <Adafruit_NeoMatrix.h> 



222 
 

#include <Adafruit_NeoPixel.h> 
#ifndef PSTR 
#define PSTR 
#endif 
 
#define PIN 6 // output to matrix on pin 6 
#define TTL 12  // input TTL on pin 12 
//======================================================================== 
 
// Previous code from the NeoPixel example code, left in for posterity 
// MATRIX DECLARATION: 
// Parameter 1 = width of NeoPixel matrix 
// Parameter 2 = height of matrix 
// Parameter 3 = pin number (most are valid) 
// Parameter 4 = matrix layout flags, add together as needed: 
//   NEO_MATRIX_TOP, NEO_MATRIX_BOTTOM, NEO_MATRIX_LEFT, NEO_MATRIX_RIGHT: 
//     Position of the FIRST LED in the matrix; pick two, e.g. 
//     NEO_MATRIX_TOP + NEO_MATRIX_LEFT for the top-left corner. 
//   NEO_MATRIX_ROWS, NEO_MATRIX_COLUMNS: LEDs are arranged in horizontal 
//     rows or in vertical columns, respectively; pick one or the other. 
//   NEO_MATRIX_PROGRESSIVE, NEO_MATRIX_ZIGZAG: all rows/columns proceed 
//     in the same order, or alternate lines reverse direction; pick one. 
//   See example below for these values in action. 
// Parameter 5 = pixel type flags, add together as needed: 
//   NEO_KHZ800  800 KHz bitstream (most NeoPixel products w/WS2812 LEDs) 
//   NEO_KHZ400  400 KHz  
//   (classic 'v1' (not v2) FLORA pixels, WS2811 drivers) 
//   NEO_GRB Pixels are wired for GRB bitstream (most NeoPixel products) 
//   NEO_RGB Pixels are wired for RGB bitstream (v1 FLORA pixels, not v2) 
 
 
// Example for NeoPixel Shield.  In this application we'd like to use it 
// as a 5x8 tall matrix, with the USB port positioned at the top of the 
// Arduino.  When held that way, the first pixel is at the top right, and 
// lines are arranged in columns, progressive order.  The shield uses 
// 800 KHz (v2) pixels that expect GRB color data. 
 
Adafruit_NeoMatrix matrix = Adafruit_NeoMatrix(32, 8, PIN, 
                            NEO_MATRIX_BOTTOM     + NEO_MATRIX_RIGHT + 
                            NEO_MATRIX_COLUMNS + NEO_MATRIX_ZIGZAG, 
                            NEO_GRB            + NEO_KHZ800); 
//======================================================================== 
 
/* 
   For the way we will position the board in the Agilent 9.4T MRI Scanner, 
   pixel 1 corresponds to the bottom left corner of the board, rasterising 

   across the board from left to right, bottom to top. Each row is 8        
pixels long, and there are 32 rows in total. 

*/ 
 
// Define pixels per row 
int nPixelsPerRow = 8; 
 
// Define Starting row of the board 
int startRow = 5; 
 
// Define how many rows the block will use 
int nRowsPerBlock = 5; 
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// Define the number of activation periods 
int nActivations = 5; 
 
//s Delaying by 40s doesn't work, so set to 20s and delay twice. 
int baselineDelay = 20; 
 
int referenceDelay = 0; // ms 
int maxBrightness = 20;  
 
//int blockStimDuration = 2; //s 
int nCycles = 40; 
//nCyclesPerBlock = blockStimDuration*2;  // 2 Hz 
 
// State pixels per block 
int nPixelsPerBlock = nPixelsPerRow*nRowsPerBlock; 
 
int width   = matrix.width(); 
int pass    = 0; 
int val     = 0; 
 
void setup() { 
  pinMode(TTL, INPUT);      // sets the digital pin 7 as input 
  matrix.begin(); 
  matrix.setBrightness(maxBrightness); 
} 
 
// Clear the board 
//matrix.fillScreen(0); 
//matrix.show(); 
 
//======================================================================== 
void loop() { 
 
  // First make blank 
  matrix.fillScreen(0); 
  matrix.show(); 
   
  // Here wait for ttl trigger on pin TTL 
  val = digitalRead(TTL);   // read the input pin 
   
  //val = 1; // Uncomment to fake a trigger from the TTL pin 
   
  // Increment position counter here depending on whether TTL received  
  if (val > 0) { 
    // Trigger detected 
    // First make blank 
    matrix.fillScreen(0); 
    matrix.show(); 
 
    // Wait for the reference image to be acquired 
    delay(referenceDelay); // in ms 
 
    // Loop over baseline and activation periods 
    for (int iActivation = 1; iActivation<=nActivations; iActivation++) { 
     
      // Wait for the baseline time 
      delay(baselineDelay * 1000); // in ms 
      delay(baselineDelay * 1000); // in ms 
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      // Loop over passes 
      for (int iCycle = 1; iCycle <= nCycles; iCycle++) { 
       
        // Light up the block for each cycle 
        for (int iPixel = 0; iPixel < nPixelsPerBlock; iPixel++) { 
          matrix.setPixelColor((startRow *nPixelsPerRow) +  
                                    iPixel, matrix.Color(255, 255, 255)); 
        } 
         
        matrix.show(); 
        delay(250); 
        matrix.fillScreen(0); 
        matrix.show(); 
        delay(250); 
      } 
    } 
    exit(0); 
  } 
} 
//======================================================================== 

 

Appendix C 

Here, code used in sections 5.1 and 5.2 are included. 

 

MATLAB code snippet for line-scanning reconstruction. The vload2 function was provided by 
Varian Inc. and extracts the real and imaginary signals from the VNMRJ .fid file. 



225 
 

 

Code snippet showing non-regularised cost function for HRF optimisation. The function inputs 
are the measured BOLD signal (HRF), the temporal resolution (RT), the microtime resolution 

(T), and the parameters to be optimised (contained in theta). 
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Code snippet showing non-linear optimisation of the double-gamma HRF using the ‘sqp’ 
algorithm. 
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