
A PERIODIC SYSTEMS TOOLBOX FOR MATLAB

A. Varga

German Aerospace Center, DLR - Oberpfaffenhofen
Institute of Robotics and Mechatronics

D-82234 Wessling, Germany
Andras.Varga@dlr.de

Abstract: The recently developed PERIODIC SYSTEMS Toolbox for MATLAB is de-
scribed. The basic approach to develop this toolbox was to exploit the powerful object ma-
nipulation features of MATLAB via flexible and functionally rich high level m-functions,
while simultaneously enforcing highly efficient and numerically sound computations via
the mex-function technology of MATLAB to solve critical numerical problems. The m-
functions based user interfaces ensure user-friendliness in operating with the functions of
this toolbox via an object oriented approach to handle periodic system descriptions. The
mex-functions are based on FORTRAN implementations of recently developed structure
exploiting and structure preserving numerical algorithms for periodic systems which
completely avoid forming of lifted representations. Copyright c©2005 IFAC

Keywords: Periodic systems, multi-rate systems, linear systems, numerical methods,
computer-aided control systems design.

1. WHY A PERIODIC SYSTEMS TOOLBOX?

Many control applications are formulated as genuine
periodic control problems as for example, satellite at-
titude control, helicopter forward flight control, orbital
stabilization of underactuated systems, etc. Besides
that, periodic systems represent a general framework
to analyze and design multi-rate sampled-data sys-
tems. Solving robust control applications can also ben-
efit of the increased stabilization potential of periodic
control laws, as for example when solving simultane-
ous multi-model output feedback stabilization prob-
lems. This need to solve challenging periodic control
applications led to a sustained effort in the last years to
develop efficient and numerically reliable algorithms
for periodic systems which can serve as basis for ro-
bust numerical software implementations. Developing
object-oriented manipulation based tools relying on
the newly developed algorithms fulfills in this way the
increasing need for an user-friendly computer-aided

control systems design (CACSD) environment dedi-
cated to periodic systems.

The PERIODIC SYSTEMS Toolbox is primarily in-
tended to extend the functionality of the CONTROL
Toolbox of MATLAB by allowing the manipulation
of the special class of periodic time-varying linear
systems. Many functions can be seen to be formally
equivalent to similar ones for standard systems which
are available in the CONTROL Toolbox. The new Tool-
box relies on many new numerically stable algorithms
which fully exploit the underlying problem structure
(so-called fast algorithms) or even preserve the prob-
lem structure (so-called strongly stable algorithms).
This Toolbox is the first one providing comprehensive
facilities for a user-friendly operation with periodic
systems. Most of computational functions allow a con-
venient user-friendly operation to solve challenging
periodic systems analysis problems, as for example,
problems with large (even time-varying) state dimen-
sions or with large periods.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institute of Transport Research:Publications

https://core.ac.uk/display/11097168?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The algorithms for periodic systems belong to three
basic categories. The lifting-based approaches in the
first category either involve forming explicitly matrix
products or lead to very large dimensional standard
problems. Therefore, these approaches are not suit-
able for reliable and, respectively, efficient numeri-
cal computations. In the second category, there are
the so-called ”fast” algorithms representing structure
exploiting numerically stable methods. These meth-
ods are highly efficient, because completely avoid ex-
plicitly forming of lifted representations. Typical al-
gorithms in this category are the algorithm to com-
pute zeros of periodic systems or for solving peri-
odic Riccati equations. The structurally stable algo-
rithms in the third category are structure preserv-
ing numerically stable methods. Most algorithms in
this category are very recent developments. Besides
the traditional computational ingredients like the al-
gorithms to compute periodic Hessenberg and Schur
form (Bojanczyk et al., 1992; Hench and Laub, 1994),
algorithms to compute periodic Kronecker-like forms
have been developed (Varga, 2004c). These algorithms
as well as particularization of them have immedi-
ate applications in computing periodic systems poles
and zeros, minimal realizations, solution of periodic
Lyapunov and Riccati equations. Recently developed
reliable algorithms to compute left/right inverses of
periodic systems (Varga, 2004a) or left/right annihi-
lators (Varga, 2004e) also rely on the computation of
periodic Kronecker-like forms.

The requirements for satisfactory algorithms for pe-
riodic systems have been formulated in (Varga and
Dooren, 2001). Besides generality (e.g., covering
also problems with time-varying dimensions), a main
requirement is the backward stability in terms of
original system matrices. Structure preserving algo-
rithms fulfilling this requirement are also called struc-
turally backward stable, because they compute results
which are exact for slightly perturbed original sys-
tem data. The main advantage of such algorithms is
that they produce guaranteed accurate results for well-
conditioned problems. The weaker notion of back-
ward stability achieved by structure exploiting (but
without structure preserving) is for many computa-
tions still acceptable, since for many problems no
structurally stable algorithms are presently available.
The key ingredients to promote numerical stability are
using exclusively orthogonal transformations, avoid-
ing completely forming of products of non-orthogonal
matrices, and fully exploiting structure by employing
condensed forms.

A third main requirement is a high computational
efficiency. Satisfactory algorithms from this point of
view avoid excessive storage usage and have a com-
putational complexity of at most O(Nn3), where n is
the maximal state/input/output vector dimension and
N is the discrete-time system period. It is a highly
appealing feature that, according to above require-
ments, most of algorithms employed in the PERIODIC
SYSTEMS Toolbox are completely satisfactory.

2. OBJECT-ORIENTED MANIPULATION

2.1 Periodic system representations

The toolbox can handle continuous-time periodic sys-
tems of the form

ẋ(t) = A(t)x(t) + B(t)u(t)
y(t) = C(t)x(t) + D(t)u(t)

(1)

where A(t) ∈ IRn×n, B(t) ∈ IRn×m, C(t) ∈ IRp×n,
and D(t) ∈ IRp×m are periodic matrices of period T .

Similarly, the toolbox can handle discrete-time peri-
odic systems of the form

xk+1 = Akxk + Bkuk

yk = Ckxk + Dkuk
(2)

where Ak ∈ IRnk+1×nk , Bk ∈ IRnk+1×mk , Ck ∈
IRpk×nk , and Dk ∈ IRpk×mk are N -periodic matrices
(N ≥ 1). N is also called the discrete period.

To specify a system of the form (1), the system matri-
ces can be entered in one of the three supported forms:

1. symbolic matrix: for example,

A(t) =

[

cos t 1
1 1 − sin t

]

can be entered as a symbolic matrix (Extended
Symbolic Toolbox required)
t = sym(’t’);
a = [cos(t) 1; 1 1-sin(t)]

2. harmonic representation: to represent

A(t)=A0+

nh
∑

i=1

(

Aic cos t
2π

T
+Ais sin t

2π

T

)

(3)

a 3-dimensional complex array can be used to
store A0 and Aic + jAis for i = 1, . . . , nh. For
example,

B(t) =

[

cos t + sin t
1 − sin t

]

can be entered as follows
b(:,:,1) = [0; 1]; % B_0
b(:,:,2) = [1+j; -j]; % B_1c+j*B_1s

3. function handle: for example, to represent C(t) =
[sin t+cos 2t 1], the following m-function c.m
can be defined
function ct = c(t)
ct = [sin(t)+cos(2*t) 1];

A continuous-time periodic system with the matrices
A(t), B(t), C(t) above and D(t) = 0 can be defined
with the periodic system object definition command

sys = ps(a,b,@c,0,2*pi);

To define a discrete-time periodic system of the form
(2), the matrices with possibly time-varying dimen-
sions are stored in cell arrays. For example, to store
Ak for k = 1, . . . , N , the kth element Ak is stored in
a{k} of the corresponding cell array a. An example of
building a discrete-time periodic system with period
T = 10 and discrete period N = 2 is

a = { [1 0], [1; 1] };
b = { [1], [1; 1] };
c = { [1 1], [1] };
d = { [1], [1] };
sys = ps(a,b,c,d,10);

2.2 Building periodic system models

The toolbox allows to build periodic system models
starting from various types of system data. For ex-
ample, given the values of a periodic matrix A(t) at
equidistant time moments A(ti) for ti = i T

nt

, i =
0, . . . nt − 1, a harmonic representation of A(t) of the
form (3) can be computed using

ah = ts2hr(a,nh);

where a(:,:,i)must contain A(ti). If a(:,:,i),
b(:,:,i), c(:,:,i) contain A(ti), B(ti), C(ti)
and D(t) = 0, then a periodic system object in
harmonic representation can be generated with

sys = ps(ts2hr(a),ts2hr(b),ts2hr(c),0,T);

Another possibility to build a periodic system is
simply by importing standard linear time-invariant
systems. For example, if SYS = (A,B,C,D) is a
continuous- or discrete-time linear time-invariant sys-
tem, then a periodic system PSYS with period T can
be generated with

PSYS = ps(SYS,T);

Discrete-time periodic systems can be generated by
the discretization of a continuous-time periodic sys-
tem. For example, if PSYSC = (A(t), B(t), C(t), D(t))
is a continuous-time linear time-varying periodic sys-
tem (1) of period T , then the corresponding discrete-
time system PSYSD of the form (2) for a sampling-
time Ts := T/N can be obtained with

PSYSD = psc2d(PSYSC,PSYSC.Period/N);

Periodic systems originate frequently from multi-
rate discretization of standard linear time-invariant
systems. Let SYS = (A,B,C,D) be a continuous-
or discrete-time linear time-invariant system with p-
outputs and m-inputs and let Ts be the basic sampling
period. It is assumed that the jth input component
is sampled with sampling period kjTs and the ith
output component is sampled with sampling period
liTs, where kj and li are integers. A periodic system
describing this multirate sampled-data system can be
obtained with

PSYS = psmrc2d(SYS,Ts,ks,ls);

where ks and ls are vectors containing kj , j =
1, . . . ,m and li, i = 1, . . . , p, respectively.

2.3 Basic operations

The object-oriented framework allows to easily ma-
nipulate periodic models. Parallel and series cou-
plings can be performed by ”adding”/”subtracting”
and ”multiplying” two systems via the commands

ppar = ps1 + ps2; % parallel coupling
pdif = ps1 - ps2; % difference
pser = ps1 * ps2; % series coupling

Furthermore, building an inverse system, a kind of
dual system or performing time-shifting is extremely
simple using commands like

psysinv = psinv(psys); % inverse
dpsys = psdual(psys); % dual system
spsys = psshift(psys,k); % time-shifting

Part of these operations are available only for discrete-
time systems. For these type of systems, recall that
the system data are stored in cell arrays which can
be easily associated with block diagonal matrices.
Thus, many operations with block-diagonal matrices
(e.g., sums, products, norms, etc.) can be implicitly
performed via equivalent operations on cell arrays.
The toolbox provides a rich collection of such tools for
handling cell arrays with one-to-one correspondence
to manipulating block diagonal matrices.

3. LIFTED REPRESENTATIONS

Lifted representations of discrete-time periodic sys-
tems play an important role in extending many the-
oretical results for standard systems to the periodic
setting (Bittanti and Colaneri, 1996; Bittanti and
Colaneri, 2000). They are also used to define con-
cepts which corresponds to those for standard systems
(e.g., transfer-function, poles, zeros, etc.). Although
not well-suited for solving computational problems,
lifted representations can still be used for algorithm
development and testing in conjunction with appro-
priate tools able to manipulate large order standard
or descriptor system representations (Varga, 2000b).
This is why, a set of functions have been implemented
to generate and handle several lifted representations.

3.1 Standard lifted representation

For the periodic system (2) the associated lifted time-
invariant representation introduced in (Meyer and Bur-
rus, 1975) uses the input-output behavior of the system
over time intervals of length N , rather than 1. Let
M =

∑N
i=1

mi and P =
∑N

i=1
pi be the sums of

dimensions of input and output vectors over one pe-
riod. For a given sampling time k, the corresponding
M -dimensional input, P -dimensional output, and nk-
dimensional state vectors are

uL
k (h) = [uT (k + hN) · · ·uT (k + hN + N − 1)]T ,

yL
k (h) = [yT (k + hN) · · · yT (k + hN + N − 1)]T ,

xL
k (h) = x(k + hN)

Denote the transition matrix between time moments i
and j by ΦA(j, i) := Aj−1 · · ·Ai+1Ai, ΦA(i, i) :=
Ini

. The standard lifted system has the form

xL
k (h + 1) = F L

k xL
k (h) + GL

k uL
k (h)

yL
k (h) = HL

k xL
k (h) + LL

k uL
k (h)

(4)

where

FL
k = ΦA(k + N, k)

GL
k = [ΦA(k + N, k + 1)Bk · · ·Bk+N−1]

HL
k =

Ck

...
Ck+N−1ΦA(k + N − 1, k)

LL
k =

Dk 0 · · · 0
Lk,2,1 Dk+1 · · · 0

...
...

. . .
...

Lk,N,1 Lk,N,2 · · · Dk+N−1

with Lk,i,j = Ck+i−1ΦA(k + i − 1, k + j)Bk+j−1,
for i = 2, ..., N , j = 1, 2, . . . N−1, and i > j.

The transfer function matrix (TFM) of the periodic
system (2) at sampling time k is defined as the TFM
of the lifted system (4)

WL
k (z) = HL

k (zInk
− FL

k)−1GL
k + LL

k (5)

The standard lifted representation sys of a periodic
system psys can be computed with the command

sys = ps2ls(psys);

and the converse transformation is also possible via
the command (N is the discrete period)

psys = ls2ps(sys,N);

The TFM ltf of a periodic system psys can be
computed without explicitly forming the lifted repre-
sentation (4) using the command

ltf = ps2tm(psys);

The underlying algorithm for this computation has
been proposed in (Varga, 2003). Conversely, with the
command

psys = tm2ps(ltf);

a minimal periodic realization psys of a lifted TFM
ltf can be computed using the algorithm proposed in
(Varga, 2004d).

3.2 Cyclic lifted representation

For notational convenience, a script notation will be
used which associates to an N -periodic matrix Xk a
block-diagonal matrix

Xk := diag (Xk, Xk+1, . . . , Xk+N−1)

The time-shifting of the periodic Xk is denoted by

σXk := diag (Xk+1, . . . , Xk+N−1, Xk)

With

Zk =

0 · · · 0 Ink+N−1

Ink
· · · 0 0

...
. . .

...
...

0 · · · Ink+N−2
0

the cyclic lifted system introduced in (Park and Ver-
riest, 1989) has state-space dimension ν =

∑N

i=1
ni

and is defined by

xC
k (h + 1) = F C

k xC
k (h) + GC

k uC
k (h)

yC
k (h) = HC

k xC
k (h) + LC

k uC
k (h)

where

(FC
k , GC

k , HC
k , LC

k) = (ZkAk, ZkBk, Ck,Dk)

The cyclic lifted representation csys of a periodic
system psys can be computed with the command

csys = ps2ls(psys,’C’);

3.3 Stacked lifted representation

The so-called stacked lifted representation introduced
in (Grasselli and Longhi, 1991) uses

xL
k (h) = [xT (k + hN) · · ·xT (k + hN + N − 1)]T

as lifted state variable and is a time-invariant descrip-
tor system representation of the form

ES
k xL

k (h + 1) = F S
k xL

k (h) + GS
k uL

k (h)

yL
k (h) = HS

k xL
k (h) + LS

k uL
k (h)

(6)

where GS
k = ZkBk, HS

k = Ck, LS
k = Dk, and

FS
k −zES

k =

−zInk
O · · · O Ak+N−1

Ak −Ink+1
· · · O O

...
...

. . .
...

...
O O · · ·−Ink+N−2

O
O O · · · Ak+N−2 −Ink+N−1

The TFM of the stacked lifted system is

WS
k (z) = HS

k (zES
k − FS

k)−1GS
k + LS

k

and it is easy to show that W S
k (z) = WL

k (z), that is,
the TFMs of the stacked and standard lifted systems
are the same.

The stacked lifted representation ssys of a periodic
system psys can be computed with the command

cssys = ps2ls(psys,’S’);

4. PERIODIC SYSTEM ANALYSIS

The poles and zeros of a discrete-time periodic sys-
tems can be defined in terms of the associated lifted
TFM WL

k (z). For a minimal realization, the poles can
be computed as the eigenvalues of the monodromy
matrix ΦA(N + 1, 1) (also called characteristic mul-
tipliers) and for this purpose the periodic Hessen-
berg/Schur based reduction of the periodic matrix Ak

is the appropriate method (Bojanczyk et al., 1992;
Hench and Laub, 1994). The basic reduction has been

implemented in Fortran 95 routines called from MAT-
LAB via the mex-function pschur. For zeros com-
putation, the ”fast” structure exploiting algorithm of
(Varga and Van Dooren, 2003) is able to compute both
finite zeros and infinite zeros structure. These algo-
rithms are implemented in the functions pspole and
pszero, respectively. The characteristic exponents of
a periodic matrix A(t) or the characteristic multipliers
of a periodic sequence Ak can be computed by using
the functions psceig and pseig, respectively.

For non-minimal systems, the input- and output-
decoupling zeros can be computed with the functions
psidzero and psodzero, respectively. To com-
pute minimal realizations, the function psminreal
can be employed. This function is based on comput-
ing the periodic reachability and observability Kalman
forms via the algorithm proposed in (Varga, 2004b).
For efficiency purposes, the structure preserving re-
duction used in this algorithm has been implemented
in Fortran 95 and called from MATLAB via the mex-
function psystr. For order reduction of stable pe-
riodic systems the functions psbtabal and ps-
bta implementing the square-root and balancing-free
square-root balanced truncation approximation tech-
nique of (Varga, 2000a) can be employed. The func-
tion psminrealbal can be employed to compute
minimal realizations for periodic systems using the
balanced truncation approach.

5. PERIODIC MATRIX EQUATION SOLVERS

Solvers for both the reverse-time periodic Lyapunov
equation

X = AT σXA + C

as well as for the forward-time periodic Lyapunov
equation

σX = AXAT + C

are provided via the functions prlyap and pflyap,
implementing the algorithms of (Varga, 1997) ex-
tended to time-varying dimensions. These equations
appear when solving periodic state-feedback stabiliza-
tion problems, computing gradients for periodic out-
put feedback optimization, or computing special co-
prime factorizations. These functions rely on Fortran
95 implementations of the solution algorithms called
via the mex-funtion pslinmeq.

For the non-negative periodic Lyapunov equations in
reverse-time

RTR = AT σ(RTR)A + CT C

and in forward-time

σ(SST) = A(SST)AT + BBT

iterative solvers, proposed in (Varga, 1997), have been
implemented to compute the Cholesky-factors of the
reachability and observability grammians. The corre-
sponding function psgram underlies the computa-
tion of periodic gramians used for internal balancing
and balancing based model reduction in the functions
psminrealbal, psbtabal and psbta.

Solvers for the periodic Riccati equations in reverse-
time

X = AT [σX − σXB(R + BT σXB)−1BT σX]A + Q

or in forward-time

σX = A[X − XCT (R + CXCT)−1CX]AT + BBT

are implemented as the functions prdare and pf-
dare, respectively. The basic solvers use a structure
exploiting ”fast” algorithm proposed in (Varga, 2005)
to compute orthogonal bases of the stable deflating
subspace of a large lifted pencil without forming ex-
plicitly this pencil. These functions are useful to solve
periodic LQ-design and filtering problems.

6. LINEAR-QUADRATIC STABILIZATION

Minimizing a linear-quadratic criterion of the form

J =

∞
∑

k=0

[xT
k Qkxk + uT

k Rkuk] (7)

where Qk ≥ 0, Rk > 0 are N -periodic symmetric
matrices, represents an attractive method to determine
stabilizing periodic feedback controllers. The optimal
periodic state-feedback matrix Fk in the control law

u∗

k = Fkxk

which minimizes the performance index (7) can be
determined using the functions plqr and plqry,
where the latter uses output-weighting yT

k Qkyk in (7)
instead of state-weighting xT

k Qkxk.

The available parametric freedom when designing pe-
riodic controllers can be conveniently exploited by
designing output feedback controllers. The optimal
periodic output-feedback gain Fk in the control law

u∗

k = Fkyk

which minimizes the performance index (7) can be
computed using the function plqofc. This function
is based on a gradient-based function minimization
technique for large scale problems (limited memory
BFGS with simple bounds), where the function and
gradient evaluations are implemented as a Fortran
95 mex-function based on the formulas derived in
(Varga and Pieters, 1998). A variant of this function,
plqocfc, allows to compute optimal constant output
feedback gain matrices for a periodic system.

7. PLANNED NEW DEVELOPMENTS

The primary goal for developing the PERIODIC SYS-
TEMS Toolbox for MATLAB was to provide tools for
manipulating linear periodic systems which arise in
several important application areas. The toolbox pro-
vides a basic functionality for discrete-time periodic
systems which can be seen as a direct extension of
functions provided in the MATLAB Control Toolbox.
By relying on structure exploiting and structure pre-
serving numerically stable algorithms (many of them
developed in the last few years), this toolbox is the first
CACSD tool able to handle realistic problems where
the system order and/or the period are large. A first
application of this toolbox is the solution of a chal-
lenging attitude control problem (period N = 500) for
a magnetically actuated satellite using periodic output
feedback control (Lovera and Varga, 2005).

There are many planned developments of this tool-
box, which are conditioned by the progress in de-
veloping new algorithms. One direction is to extend
the algorithmic basis for discrete-time periodic sys-
tems by implementing algorithms for reordering pe-
riodic Schur forms, periodic QZ, computing peri-
odic Kronecker-like forms, solving periodic Sylvester
equations, as well as developing reliable algorithms
for solving stabilization, factorizations, norms com-
putation problems. A major effort will be to im-
plement recently developed numerical algorithms for
continuous-time periodic systems (e.g., solving differ-
ential periodic Lyapunov, Sylvester and Riccati equa-
tions (Varga, 2005b)). It is envisaged to extend the
support for object-oriented manipulation of models
based on harmonic representations (e.g., couplings) as
well as improving the algorithm for harmonic approx-
imation of time series. Besides adding time simula-
tions tools (step-response, impulse-response, etc.), de-
veloping efficient algorithms and tools for frequency-
domain techniques will be a new research focus. The
increasing importance of multi-rate control systems
requires an extended support for various sample and
hold devices and dedicated synthesis methodologies
which completely avoid the building of lifted repre-
sentations.

REFERENCES

Bittanti, S. and P. Colaneri (1996). Analysis of
discrete-time linear periodic systems. In Control
and Dynamics Systems. (C. T. Leondes, Ed.).
Vol. 78, pp. 313–339. Academic Press.

Bittanti, S. and P. Colaneri (2000). Invariant represen-
tations of discrete-time periodic systems. Auto-
matica 36, 1777–1793.

Bojanczyk, A. W., G. Golub and P. Van Dooren
(1992). The periodic Schur decomposition. Algo-
rithms and applications. Proceedings SPIE Con-
ference (F. T. Luk, Ed.). Vol. 1770. pp. 31–42.

Grasselli, O. M. and S. Longhi (1991). Pole-placement
for nonreachable periodic discrete-time systems.
Math. Control Signals Syst. 4, 439–455.

Hench, J. J. and A. J. Laub (1994). Numerical solution
of the discrete-time periodic Riccati equation.
IEEE Trans. Automat. Control 39, 1197–1210.

Lovera, M. and A. Varga (2005). Optimal discrete-
time magnetic attitude control of satellites. Prepr.
IFAC 2005 World Congress, Prague, Czech Re-
public.

Meyer, R. A. and C. S. Burrus (1975). A unified anal-
ysis of multirate and periodically time-varying
digital filters. IEEE Trans. Circuits Syst. 22, 162–
168.

Park, B. and E. I. Verriest (1989). Canonical forms
for discrete-time periodically time varying sys-
tems and a control application. Proc. of CDC’89,
Tampa, Florida, pp. 1220–1225.

Varga, A. (1997). Periodic Lyapunov equations: some
applications and new algorithms. Int. J. Control
67, 69–87.

Varga, A. (2000a). Balanced truncation model reduc-
tion of periodic systems. Proc. of CDC’2000,
Sydney, Australia. pp. 2379–2384.

Varga, A. (2000b). A DESCRIPTOR SYSTEMS Tool-
box for MATLAB. Proc. of CACSD’2000 Sympo-
sium, Anchorage, Alaska.

Varga, A. (2003). Computation of transfer functions
matrices of periodic systems. Int. J. Control
76, 1712–1723.

Varga, A. (2004a). Computation of generalized in-
verses of periodic systems. Proc. of CDC’04,
Paradise Island, Bahamas.

Varga, A. (2004b). Computation of Kalman decompo-
sitions of periodic systems. European Journal of
Control 10, 1–8.

Varga, A. (2004c). Computation of Kronecker-
like forms of periodic matrix pairs. Proc. of
MTNS’04, Leuven, Belgium.

Varga, A. (2004d). Computation of minimal periodic
realizations of transfer-function matrices. IEEE
Trans. Automat. Control 46, 146–149.

Varga, A. (2004e). Design of fault detection filters
for periodic systems. Proc. of CDC’04, Paradise
Island, Bahamas.

Varga, A. (2005). On solving discrete-time periodic
Riccati equations. Prepr. of IFAC 2005 World
Congress, Prague, Czech Republic.

Varga, A. (2005b). On solving periodic differen-
tial matrix equations. (submitted to CDC 2005,
Seville, Spain).

Varga, A. and P. Van Dooren (2001). Computational
methods for periodic systems - an overview.
Proc. of IFAC Workshop on Periodic Control Sys-
tems, Como, Italy, pp. 171–176.

Varga, A. and P. Van Dooren (2003). Computing the
zeros of periodic descriptor systems. Systems &
Control Lett. 50, 371381.

Varga, A. and S. Pieters (1998). Gradient-based ap-
proach to solve optimal periodic output feedback
control problems. Automatica 34, 477–481.

