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Generalized LFT-Based Representation of Parametric

Uncertain Models

S. Hecker and A. Varga�
German Aerospace Center, DLR – Oberpfaffenhofen, Institute of Robotics and Mechatronics, D-82234 Wessling, Germany

In this paper, we introduce a general descriptor-type
linear fractional transformation (LFT) representation
of rational parametric matrices. This is a generalized
representation of arbitrary rationally dependent multi-
variate functions in LFT-form. As applications, we
develop explicit LFT-realizations of the transfer-
function matrix of a linear descriptor system whose
state-space matrices depend rationally on a set of
uncertain parameters. The resulting descriptor LFT-
based uncertainty models generally have smaller orders
than those obtained by using the standard LFT-based
modelling approach. An example of an uncertain
vehicle model illustrates the capability of the method.

Keywords: Linear Fractional Transformation (LFT);
Descriptor Systems; Robust Control; Parametric
Uncertainties

1. Introduction

Inmodelling parametric uncertainties in linear systems
the linear fractional transformation (LFT) plays an
important role. LFT-based representations are useful
to model real parametric uncertainties entering
rationally in the system matrices. These models are
ready to be used in robust control applications like

the structured singular value (also called �) [19]. LFT-
based models are also useful in representing and
manipulating multidimensional systems [3].
The main aspect of LFT-based uncertainty model-

ling is the generation of low order LFT-representa-
tions. Recall that for a partitioned matrix

M ¼ M11 M12

M21 M22

24 35 2 Rðp1þp2Þ�ðm1þm2Þ

and � � Rm1� p1, the upper LFT is defined as

F uðM,�Þ ¼M22 þM21�ðI	M11�Þ	1M12:

ð1Þ
Given a p2�m2 real matrix G(�) depending

rationally on k parameters grouped into the real
vector � ¼ ð�1, . . . , �k Þ, one wants to representG(�) as

Gð�Þ ¼ F uðM,�Þ, ð2Þ

where M 2 Rðp1þp2Þ�ðp1þm2Þ and

� ¼ diagð�1Ir1 , . . . , �kIrkÞ ð3Þ

with m1 ¼ p1 ¼
Pk

i¼1 ri representing the order of the
LFT-representation (2). The well posedness [19] of the
LFT-representation (1) requires that ðI	M11�Þ is
invertible for all � 2 P, where P is the uncertain
parameter set defined as

P¼ f�:�i 2 ½�i;min,�i;max�, i¼ 1, . . . , kg: ð4Þ
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Representing parameter dependent matrices in an
LFT-form is basically equivalent to amultidimensional
realization problem [3]. There is a basic limitation of
realizing arbitrary rational matrices via upper LFTs.
Consider the simple case of G(�)¼ �, which can be
immediately realized as

Gð�Þ ¼ F u
0 1

1 0

� �
,�

� 	
ð5Þ

with�¼ �. However, the expression G(�)¼ 1/� cannot
be directly represented as an upper LFT with� of the
form (3). One way to represent G(�)¼ 1/� as an upper
LFT is to use in (5) �¼ 1/�. However, G(�)¼ �þ 1/�
does not have an LFT-representation as both � and 1/�
enter the expression.
In practice, to overcome the above difficulties, a

normalization of uncertainties is performed. Assuming,
for example, that � 2 ½�min, �max� and �nom :¼
(�maxþ �min)/2 6¼ 0, then with �sl :¼ (�max 	 �min)/2
one obtains

� ¼ �nom þ �sl�,

where � 2 ½	1, 1�: With this normalization, we can
represent Gð�Þ :¼ 1=� ¼ 1=ð�nom þ �sl�Þ as

Gð�Þ ¼ F u

	�sl�
	1
nom 	�sl�

	1
nom

�	1nom �	1nom

264
375, �

0B@
1CA:

Note that this approach is not recommended to be
used if 0 2 ½�min, �max�. One negative aspect of this
approach is that the normalization must be performed
as a preliminary operation of the LFT-based model
generation and this often leads to an increase of the
overall order of the LFT-realization [4].
For example, the LFT-realization of Gð�Þ ¼ �2 has

order 2, while the LFT-realization of the corresponding

normalized expression Gð�Þ ¼ �2nom þ 2�nom�sl� þ �2sl�
2

obtained with the object-oriented LFT-realization
procedure of [10] has order 3. This procedure generates
an LFT-representation by interconnecting a second-
order LFT-representation for �2sl�

2
with a first-order

LFT-representation for 2�nom�sl� and the constant term
�2nom. The result is a third-order LFT-representation.
This simple example clearly illustrates that it is desir-
able to perform the normalization as the last step in
any LFT-model generation.
In this paper we introduce a generalized LFT-

representation which allows the above difficulties to

be overcome. The generalized upper LFT is defined
with

M ¼ M10 M11 M12

M21 M22

24 35
as

F uðM,�Þ ¼M22 þM21�ðM10 	M11�Þ	1M12,

ð6Þ
where the submatrix M10 is allowed to be generally
singular. We call (6) a descriptor LFT, in analogy to
the generalized state-space realizations via descriptor
systems [5]. For � we assume the more general
structure

� ¼ diagð�0Ir0 , �1Ir1 , . . . , �kIrkÞ, ð7Þ
where �0 is a nonzero constant (usually set to 1). Note
that the standard upper LFT (1) corresponds toM10¼ I
and r0¼ 0.
The generalized LFT-representation is a natural

extension of the standard LFT-representation and
similar representations may also arise in the context of
multidimensional system analysis [7].
With this generalized upper LFT we can represent

G(�)¼ 1/� in a descriptor LFT-form as

Gð�Þ ¼ F u

0 0

0 1

0 1

1 0

1

0

	1 0 0

26664
37775,

1 0

0 �

24 35
0BBB@

1CCCA:

The organization of the paper is as follows. First, we
present the basic algebraic properties of the generalized
LFT-representations and give explicit formulas for
the underlying operations with descriptor LFT-models.
These operations form the basis of a general object-
oriented LFT-realization procedure for arbitrary
rational parametric matrices. We then present results
showing that after suitable normalization, the descriptor
LFT-representations can be converted into standard
LFT-representations. In a separate section we discuss
the relationship between our approach to generate
LFT-based representations and one that is based on
the behavioral setting proposed by D’Andrea in [9]. As
an application of the proposed approach, we develop
explicit LFT-realizations for the transfer-function
matrix of a linear descriptor system whose matrices
depend rationally on a set of uncertain parameters.
Our result extends those reported in [12,18], where a
polynomial parametric dependency of the system
matrices is assumed. Finally, we show the capabilities of
the proposed method by realizing LFT-representations
for a parametric uncertain dynamic vehicle model.
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2. Algebraic Properties

Since LFT-based representations are similar to
transfer-function matrix representation of linear
state-space systems, the basic matrix operations like
addition/subtraction, multiplication, transposition,
inversion as well as column/row concatenation
correspond to similar operations performed on the
transfer-function matrices of linear systems. These are
operations underlying the methods used to generate
LFT-representations of parametric matrices [10]. The
following results for descriptor LFT-representations
(given without proofs) generalize similar results for
standard LFT-representations.

Lemma 2.1. Let M1, M2, and M be partitioned
matrices

M1 ¼
E1 A1 B1

C1 D1

" #
, M2 ¼

E2 A2 B2

C2 D2

" #
,

M ¼ E A B

C D

" #
,

and let�1,�2 and� be the corresponding uncertainty
matrices.

(i) F uðM1, �1Þ � F uðM2, �2Þ ¼ F uðMpar, �parÞ
(parallel connection), with

Mpar ¼

E1 0

0 E2

A1 0

0 A2

B1

�B2

C1 C2 D1 �D2

26666664

37777775,

�par ¼
�1 0

0 �2

" #
:

(ii) F uðM1,�1ÞF uðM2,�2Þ ¼ F uðMser,�serÞ (series
connection), with

Mser ¼

E1 0

0 E2

A1 B1C2

0 A2

B1D2

B2

C1 D1C2 D1D2

26666664

37777775,

�ser ¼
�1 0

0 �2

" #
:

(iii) ½F uðM1,�1ÞF uðM2,�2Þ� ¼ F uðMcc,�ccÞ (col-
umn concatenation), with

Mcc ¼

E1 0

0 E2

A1 0

0 A2

B1 0

0 B2

C1 C2 D1 D2

26666664

37777775,

�cc ¼
�1 0

0 �2

" #
:

(iv) ½F uðM1,�1ÞTF uðM2,�2ÞT�T ¼ F uðMrc,�rcÞ
(row concatenation), with

Mrc ¼

E1 0

0 E2

A1 0

0 A2

B1

B2

C1 0

0 C2

D1

D2

266666664

377777775,

�rc ¼
�1 0

0 �2

" #
:

(v) Suppose F uðM,�Þ is a p� p invertible matrix.
Then

ðF uðM,�ÞÞ	1 ¼ F uðMinv,�invÞ
with

Minv ¼

0 0

0 E

D C

B A

Ip

0

	Ip 0 0

266666664

377777775
,

�inv ¼
Ip 0

0 �

" #
:

IfD is invertible, then we can expressMinv and�inv as

Minv ¼
E A	 BD	1C 	BD	1

D	1C D	1

24 35,
�inv ¼ �:
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(vi) Let Q and Z be invertible matrices such that
Z �¼�Z. Then

F uðM,�Þ ¼ F uð eMM,�Þ,

where

eMM ¼ QEZ QAZ QB

CZ D

24 35:
(vii) Consider

Aðe��Þ Bðe��Þ

Cðe��Þ Dðe��Þ

24 35¼F u

eEE eAA eBB1
eBB2

eCC1eCC2

eDD11
eDD12eDD21
eDD22

266664
377775, e��

0BBBB@
1CCCCA:

Then

F u

E Aðe��Þ Bðe��Þ

Cðe��Þ Dðe��Þ

264
375,�

0B@
1CA ¼ F uðM,�Þ

with

M ¼

eEE 0

0 E

eAA eBB1

eCC1
eDD11

eBB2

eDD12

eCC2
eDD21

eDD22

266666664

377777775
,

� ¼
e�� 0

0 �

24 35:
Note that, by using a descriptor LFT-representa-

tion of a rational parametric matrix, its inverse (see (v)
of Lemma 2.1) can be determined as a descriptor
LFT-representation in terms of the original matrices,
without any explicit matrix inversion.
It is well known that for any rational parametric

matrix M(�), we can find a left (right) polynomial
fractional representation, with Mð�Þ ¼ D	1ð�Þ Nð�Þ
ðMð�Þ ¼ eNNð�Þ eDD	1ð�ÞÞ, where Nð�Þ,Dð�Þ eNNð�Þ, eDDð�ÞÞ
are multivariate polynomial matrices. It is possible to
express such fractional representations in terms of
the underlying LFT-representations of the factors.
The following results are particularly useful when
realizing rational parametric matrices in terms of
polynomial factorizations.

Lemma 2.2. Let ½Nð�Þ Dð�Þ� ¼ F uðM,�Þ be defined
with

M ¼ E A BN BD

C DN DD

24 35 ð8Þ

and assume that D(�) is p� p and invertible. Then

D	1ð�ÞNð�Þ ¼ F uðMlf,�lfÞ ð9Þ

with

Mlf ¼

0 0

0 E

DD C

BD A

DN

BN

	Ip 0 0

266666664

377777775,

�lf ¼
Ip 0

0 �

" #
: ð10Þ

If DD is invertible we have alternatively

Mlf¼
E A	BDD	1

D C BN	BDD	1
D DN

D	1
D C D	1

D DN

24 35,
�lf¼�:

Proof. Using (v) and (ii) of Lemma 2.1, we have

D	1ð�ÞNð�Þ ¼ F uðMM,�MÞ,

where

MM ¼ EM AM CM

CM DM

24 35

:¼

0 0 0 DD C C DN

0 E 0 BD A 0 0

0 0 E 0 0 A BN

	Ip 0 0 0

2666666664

3777777775
,

�M ¼
Ip 0 0

0 � 0

0 0 �

264
375:
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We now apply a similarity transformation to MM,
yielding a transformed matrix eMMM. Consider the
transformation matrices Q and Z given by

Q ¼

Ip 0 0

0 I I

0 0 I

2664
3775, Z ¼

Ip 0 0

0 I 	I

0 0 I

2664
3775

with the identity matrix I of the same size as �. It is
easy to see that Z�M ¼ �MZ, thus applying (vi) of
Lemma 2.1, we obtain

eMMM ¼ QEMZ QAMZ QBM

CMZ DM

24 35

¼

0 0 0 DD C 0 DN

0 E 0 BD A 0 BN

0 0 E 0 0 A BN

	Ip 0 0 0

2666666664

3777777775
:

By evaluating F uð eMMM,�MÞ directly, we see that
this expression reduces to F uðMlf,�lfÞ.
The result for invertible DD can easily be derived

from (10) or it can be proven similarly as done
in [2]. &

The following lemma (given without proof) is the
dual result for a right fractional representation.

Lemma 2.3.Let ½NTð�ÞDTð�Þ�T ¼ F uðM,�Þ be defined
with

M ¼

E A B

CN DN

CD DD

26666664

37777775,
and assume that D (�) is p� p and invertible. Then

Nð�ÞD	1ð�Þ ¼ F uðMrf,�rfÞ

with

Mrf ¼

0 0

0 E

DD CD

B A

	Ip

0

DN CN 0

266666664

377777775
,

�rf ¼
Ip 0

0 �

" #
:

If DD is invertible we have alternatively

Mrf ¼
E A	BD	1

D CD BD	1
D

CN 	DND	1
D CD DND

	1
D

24 35,
�rf ¼�:

Using the results of this section, we can readily
build LFT-representations of an arbitrary rational
parametric matrix G(�) along the lines of the LFT-
realization procedure suggested in [10]. This procedure
decomposes the realization problem in elementary
steps, and starts with the definition of elementary
LFT-objects of the form (5) for all distinct parameters
�i, i¼ 1, . . . , k. Then an LFT-realization of each
rational matrix element gij (�) is constructed from the
LFT-realizations of its numerator and denominator
polynomials (by applying Lemma 2.2). These realiza-
tions are constructed using object-oriented realization
techniques relying on multivariate polynomial eva-
luation schemes. The construction of the realization
of G(�) is obtained from the concatenation of the
realizations of all its columns, which in their turn
follow from the row concatenation of realizations of
the elements in each column. Additional symbolic
manipulations can contribute significantly in obtain-
ing lower order LFT-realizations. For example, by
using Horner or optimal evaluation schemes of
polynomials [15], important reduction of orders can
be occasionally achieved.
An alternative realization approach of a rational

parametric matrix has been proposed in [2]. The LFT-
representation of G(�) is built by starting with the
calculation of a left (or right) fractional representation
G(�)¼D	1(�)N(�) with D(�) and N(�) multivariate
polynomial matrices. After obtaining [N(�) D(�)] as a
standard LFT-representation using the above LFT-
realization procedure (possibly jointly with the tree-
decomposition technique of [4]), the realization ofG(�)
follows by employing Lemma 2.2 (or Lemma 2.3). A
potential weakness of this approach is the lack of an
efficient factorization algorithm with guaranteed
minimal degree of denominator factors. Since the
degrees of denominators for problems with many
parameters and large matrix dimensions tend to be
high, the orders of realizations are frequently higher
than those resulting from employing the simple
approach above.

3. Normalization

To obtain at the end a standard LFT-representation
ready to be used in standard analysis tools (e.g. in

330 S. Hecker and A. Varga



�-analysis), a normalization of the parameters must
be usually performed. The main advantage of using
generalized LFT-representations is that the obligatory
normalization of parameters can be performed at
the end of the realization, thus the order of the
LFT-representation is not artificially increased by a
preliminary normalization of the parameters of the
rational parametric matrices. Note that the pre-
liminary normalization can also be avoided when
employing the approach of [2]. Here the normalization
can be performed after determining the LFT-realiz-
ation of the factors.
The normalization of parameters amounts to re-

place each �i by �i, nom þ �i, sl�i, where �i,nom and �i,sl
are such that j�ij � 1, for i¼ 1, . . . , k. To per-
form the normalization, we have to replace � by
�nom þ�sl� in the final LFT-representation, where
�nom, �sl and � are diagonal matrices with the same
structure as� having on the diagonal instead of the �i,
the values of �i,nom, �i,sl, and �i, respectively. Let us
denote the normalized parameter vector by
� ¼ ð�1, . . . , �kÞ. The following result provides
formulas to express Gð�Þ in terms of the LFT-
representation of G(�).

Lemma 3.1. Let Gð�Þ ¼ F uðM,�Þ with

M ¼ E A B

C D

24 35:
If (E	A�nom) is invertible, then

Gð�Þ ¼ F uðM,�nom þ�sl�Þ ¼ F uðM,�Þ,

where

M ¼ I A B

C D

24 35
with

A ¼ ðE	 A�nomÞ	1A�sl,

B ¼ ðE	 A�nomÞ	1B,
C ¼ Cð�nomðE	 A�nomÞ	1Aþ IÞ�sl,

D ¼ C�nomðE	 A�nomÞ	1BþD:

The order of the resulting normalized standard
LFT-representation is the same as the order of the
original descriptor LFT-representation. When apply-
ing the LFT-realization procedure sketched in the

previous section, the resulting LFT-representation
(M,�) has the following particular form:

M ¼ E A B

C D

24 35

¼
0r0 0 A11 A12 B1

0 I A21 A22 B2

C1 C2 D

2666664

3777775, ð11Þ

� ¼ diagðIr0 , �1Ir1, . . . , �kIrkÞ ð12Þ

and the corresponding�nom and�sl will also have the
particular forms

�nom ¼ diagðIr0 , �1, nomIr1, . . . , �k, nomIrkÞ, ð13Þ

�sl ¼ diagð0r0 , �1, slIr1, . . . , �k, slIrkÞ: ð14Þ

For this particular realization, we have the following
specialization of Lemma 3.1, which shows that nor-
malization can lead to a lower order LFT-realization.

Corollary 3.1. Let Gð�Þ ¼ F uðM,�Þ with M and �
given in (11) and (12), respectively, and then let
� ¼ �nom þ�sl�, where�nom and�sl have the forms
in (13) and (14), respectively. Then Gð�Þ ¼ F uðM,�Þ
with

M ¼ I A22 B2

C2 D

24 35, ð15Þ

� ¼ diagð�1Ir1, . . . , �kIrkÞ, ð16Þ

where A22,B2, and C2 are submatrices of the resulting
normalized model

M ¼ I A B

C D

24 35

¼
Ir0 0 A11 A12 B1

0 I A21 A22 B2

C1 C2 D

2666664

3777775, ð17Þ

��� ¼ diagðIr0 , �1Ir1, . . . , �kIrkÞ: ð18Þ

Proof. It follows easily by observing that, as a
consequence of the particular structure of �sl in (14),
the submatrices A11,A21,C1 in (17) are null. &
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4. Relation to the Behavioral

Representation

A behavioral representation for systems with struc-
tured uncertainty has been introduced in [9], having
the form

z ¼ A�zþ Bw, 0 ¼ C�zþDw: ð19Þ

This description will be referred to as output nulling
representation (ONR). In this representation, the
vector z is the state and w includes all system variables
like inputs, outputs or some so-called latent variables.
When manipulating such models there is no need
for an a priori choice of input and output variables.
In contrast, the explicit descriptor LFT-based
representations are input–output type representa-
tions. Since conversions between the two representa-
tions are straightforward (see below), both
representations are suitable to represent arbitrary
expressions with rational dependency on uncertain
parameters. However, as we will see later, the cap-
abilities of these representations to obtain low order
LFT-representations (e.g. suitable for �-analysis) are
quite different.
For the input–output dependence y¼M(�)u, where

�¼ (�1, . . . , �k) is a parameter vector, consider the
following ONR:

z ¼ A�zþ B1yþ B2u, 0 ¼ C�zþD1yþD2u,

where B¼ [B1 B2] and D¼ [D1 D2] are partitioned
assuming w¼ [ yT uT ]T. Assuming that D1 is square,
an explicit descriptor LFT-representation of M(�) is
the following one:

y ¼ F u

0 0 D1 C D2

0 I B1 A B2

	I 0 0

26664
37775, I 0

0 �

" #0BBB@
1CCCAu:
ð20Þ

If D1 is invertible, a standard LFT-representation is
given by

y¼F u
I A	B1D

	1
1 C B2	B1D

	1
1 D2

	D	1
1 C 	D	1

1 D2

24 35,�
0@ 1Au:

ð21Þ

Conversely, assume that we have for M(�) an
explicit descriptor LFT-representation (e.g. obtained

as described in Section 5.1) of the form

y¼F u

0 0 A11 A12 B1

0 I A21 A22 B2

C1 C2 D

26664
37775, I 0

0 �

" #0BBB@
1CCCAu:
ð22Þ

This form can always be achieved by appropriate
coordinate transformations. (Note. Due to possible
ill-conditioning of these transformations, they are
generally not recommended from a numerical point
of view to be performed.) An ONR is given by

z¼
A11 þ I A12

A21 A22

" #
I 0

0 �

" #
zþ

0 B1

0 B2

" #
y

u

" #
,

0¼
h
C1 C2

i I 0

0 �

" #
zþ

h
	I D

i y

u

" #
: ð23Þ

From the above relations it follows that the general-
ized LFT-description introduced in this paper and
the ONR are mathematically equivalent formalisms to
represent rational parametric matrices.
The basic aspect of generating LFT-based uncer-

tainty descriptions is the efficient representation of
interconnected systems. When interconnecting two
ONRs, a basic requirement is (see [17]) that the two
representations have the same signal space. To ensure
this condition, the resulting interconnected system
typically contains latent variables and it may be
necessary to introduce additional variables to describe
the interconnection constraints. The presence of a
large number of latent variables (very common for
complex ONRs) makes the behavioral approach less
suitable for an efficient LFT-based model building.
In contrast, standard object-oriented approaches like
that described in this paper, produce explicit LFT-
representations with a ‘‘minimal’’ amount of data. The
following simple example will make this aspect clear.

Example 4.1. For the input–output dependence
y¼ (�1þ �2)u we build an ONR to obtain via (21) an
LFT-based representation suitable for �-analysis.
ONRs to represent yi¼ �iui for i¼ 1, 2 are given by

zi ¼ ui, 0 ¼ �izi 	 yi:

To represent y¼ (�1þ �2)u, the interconnection
constraints

u1 ¼ u2ð¼ uÞ, y ¼ y1 þ y2

332 S. Hecker and A. Varga



must be fulfilled. To obtain the final ONR, we collect
all states in z¼ [z1 z2]

T and all variables in w¼ [y y1 u1
y2 u]

T and write down the above equations in the
standard ONR form

z ¼
0 0

0 0

" #
�1 0

0 �2

" #
zþ

0 0 1 0 0

0 0 0 0 1

" #
w,

0 ¼

1 0

0 1

0 0

0 0

26666664

37777775
�1 0

0 �2

" #
zþ

0 	1 0 0 0

0 0 0 	1 0

0 0 1 0 	1

	1 1 0 1 0

26666664

37777775w

with eyy ¼ ½y y1 u1 y2�T as output variable and u as
input variable, we apply now (21) to obtain the
explicit LFT-representation

y

y1

u1

y2

26664
37775¼F u

1 0 0 0 1

0 1 0 0 1

1 1 0

1 0 0

0 0 1

0 1 0

266666666666664

377777777777775
,
�1 0

0 �2

" #
0BBBBBBBBBBBBB@

1CCCCCCCCCCCCCA
u:

To obtain the LFT-representation of the input–
output dependence y¼ (�1þ �2)u we simply omit the
output equations corresponding to the latent variables
y1, u1, y2. Note that the resulting LFT-representation
is just that one which is obtained by using standard
inverse-free LFT-manipulations as those described in
this paper.
This simple example shows that because of the pre-

sence of latent variables, the ONRs have a certain data
redundancy, which is not present in the standard or
descriptor type LFT-representations. The direct elim-
ination of latent variables in ONRs is quite involved
even for 1D systems (see [6]) and we believe to be an
open problem in the general multidimensional case.

5. LFT-Realization of Parametric

Descriptor Systems

In this section, we illustrate the applicability of the
proposed approach to solve complex uncertainty
modelling problems. We consider the linear

parametric system in descriptor form

Eð�Þ _xxðtÞ ¼ Að�ÞxðtÞ þ Bð�ÞuðtÞ,
yðtÞ ¼ Cð�ÞxðtÞ þDð�ÞuðtÞ

ð24Þ

with u(t)2Rm, x(t)2Rn, y(t)2Rp for t� 0. We
assume that E(�), A(�), B(�), C(�), D(�) depend ratio-
nally on the components of the parameter vector �.
E(�) and A(�) are square matrices and E(�) may be
singular, but we assume it has constant rank for all
�2P.
The transfer function matrix G(s,�) of the descriptor

system (24) is given by

Gðs, �Þ ¼ Cð�ÞðsEð�Þ 	 Að�ÞÞ	1Bð�Þ þDð�Þ,
ð25Þ

where the pencil jsE(�)	A(�)j is assumed to be regular
for all values of �2P.
We develop a general method to determine an LFT

representation (M,�) such that

Gðs, �Þ ¼ F uðM,�Þ

with

M ¼ EM AM BM

CM DM

24 35,
� ¼ diagð1=sIr1 , �2Ir2, � � � , �kIrkÞ: ð26Þ

In this LFT-representation the integration operator
1/s (with s as the Laplace variable) is also included
in � by defining �1 :¼ 1/s.
The above realization problem has been addressed

in [18,12] for the particular case when all system
matrices depend polynomially on the components
of the parameter vector �. Moreover, in [12] it was
assumed, that E(�) is invertible. In the following,
we show that an LFT-realization of Gðs, �Þ can be
constructed in the most general case of rational
parametric matrices, and without assuming the
invertibility of E(�).
For the efficient realization of Gðs, �Þ as an LFT-

representation, we can distinguish between two cases:
(1) E(�) general (possibly non-invertible); (2) E(�)
invertible.

5.1. E(�) general

The LFT-realization of Gðs, �Þ can be built using the
following steps:

(1) Use the LFT-realization procedure of Section 2
and apply the normalization to determine
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normalized standard LFT-representations for
each system matrix of (24), that is, realize

Að�Þ ¼ F u
Ina AA BA

CA DA

24 35,�A

0@ 1A,

Bð�Þ ¼ F u
Inb AB BB

CB DB

24 35,�B

0@ 1A
and the same for Cð�Þ,Dð�Þ,Eð�Þ. Since these
matrices do not depend on s, the size of Ir1 within
�A, . . . ,�E is zero.

(2) Construct a standard LFT-representation
Gðs, �Þ ¼ F uðMðsÞ, e��Þ with

MðsÞ ¼ I M11ðsÞ M12ðsÞ

M21ðsÞ M22ðsÞ

24 35,
e�� ¼ diagð�E,�A,�B,�C,�DÞ,

and

eMMðsÞ¼ M11ðsÞ M12ðsÞ

M21ðsÞ M22ðsÞ

24 35

¼

AE 0 0 0 0 0

0 AA 0 0 0 0

0 0 AB 0 0 BB

0 0 0 AC 0 0

0 0 0 0 AD BB

0 0 0 CC CD DD

26666666666666664

37777777777777775
	

sBE

	BA

0

BC

0

DC

26666666666664

37777777777775
� ðsDE	DAÞ	1

�
CE CA 	CB 0 0 	DB

�
:

(3) Compute a minimal order descriptor realization
for the rational matrix eMMðsÞ (e.g. using the
methods of [13], followed by the elimination of
non-dynamic modes [16]), as

eMMðsÞ ¼ C 0ðsE 0 	 A0Þ	1B 0 þD 0,

and build the corresponding descriptor LFT-
representation, that is,

eMMðsÞ ¼ F uðM0,�0Þ
¼ C0�0ðE0 	 A0�0Þ	1B0 þD0

with

M0 ¼ E0 A0 B 0

C0 D0

24 35, �0 ¼ Ir1=s:

ð27Þ
(4) Apply (vii ) of Lemma 2.1 to obtain

Gðs, �Þ ¼ F uðM,�Þ ð28Þ

with

� ¼ diagð�0, e��Þ:

(5) Reorder (M,�) such that � is of the form given
in (26).

5.2. E(�) invertible

In the case of an invertible E(�) we can derive a simpler
procedure:

(1) Construct a descriptor LFT-representation, such
that

Að�Þ Bð�Þ Eð�Þ 0

Cð�Þ Dð�Þ 0 Ip

24 35 ¼
h
Nð�Þ

��� Dð�Þ i

¼ F u

~EE ~AA ~BBN ~BBD

~CC ~DDN ~DDD

24 35,�
0@ 1A:

(2) Apply (9) and the normalization to obtain the
standard LFT-representation

F u

I A0 B0
1 B0

2

C0
1 D0

11 D0
12

C0
2 D0

21 D0
22

26666664

37777775,�
0BBBBBB@

1CCCCCCA

¼
Eð���ÞÞ	1Að���Þ ðEð���ÞÞ	1Bð���Þ

Cð���Þ Dð���Þ

264
375:

(3) Construct Gðs, �Þ as

Gðs,�Þ¼F uðM,�Þ

¼F u

In 0 D0
11 C

0
1 D0

12

0 I B0
1 A0 B0

2

D0
21 C

0
2 D0

22

2666664

3777775,
In=s 0

0 �

" #0BBBBB@

1CCCCCA:
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(4) Reorder (M, �) such that � is of the form given
in (26).

The main advantage of this simpler LFT-realization
procedure is that we can apply the symbolic pre-
processing techniques of [4,15] to the concatenated
symbolic matrix [N(�)jD(�)] (see step 1), which con-
tains all matrices of the system. Hence, it is expected
that the resulting LFT-realization is of lower order
than an LFT-representation, which is realized using
the more general procedure of Section 5.1, where each
system matrix is realized separately.

6. Vehicle Model Example

The proposed LFT-realization method of Section 5.2
is used to compute an LFT-representation of a
parametric automotive model presented in [1]. This
model describes the lateral motion of a vehicle
with an elevated center of gravity for which a robust
controller has been designed in [1] to avoid rollover
of the vehicle for the whole range of parameter
variations. The linearized single-track model is a
linear parametric state-space system in descriptor
form (24), with

Eð�Þ ¼

1 0 0 0

0 m1 þm2 0 	m2h

0 0 38571 0

0 	m2h 0 24201þm2h
2

2666664

3777775,

Að�Þ

¼

0 0 0 1

0 	1365000�v 70920
�
v	ðm1þm2Þv 0

0 70920�v 	4070017:8�v 0

	457000þ9:81m2h 0 m2hv 	100267:6

26666664

37777775,

Bð�Þ ¼ 0 582000� 1134900� 0½ �T,
C ¼ I4, D ¼ 0:

The vehicle consists of a chassis with mass m1 and a
roll body with mass m2, which is mounted above the
chassis (see Fig. 1). The center of gravity CG1 of the
chassis is assumed to be in the road plane. The
system state vector is x ¼ � vy r _��

� �T
, where � is

the angle of the roll body, vy¼ �v the approximated
lateral speed and r the yaw rate. The steering angle �f is
taken as input. The uncertain parameters are m1, m2,
h, v, �, where h is the height of the center of gravity

of the roll body CG2 above the roll axis, v is the vehicle
velocity and � is the road adhesion coefficient.
We assume that the uncertain parameters can be
expressed as

m1 ¼ 1813ð1þ 0:05�2Þ,

m2 ¼ 12487ð1þ 0:2�3Þ,

h ¼ 1:15 1þ 1

3
�4

� 	
,

	 ¼ 60

3:6
þ 40

3:6
�5,

� ¼ 0:55þ 0:45�6

with j�ij � 1, i ¼ 2, . . . , 6, being the normalized
uncertainties.
We generated two LFT-representations for the

transfer-function matrix Gðs, �Þ of the vehicle model
by using two different realization approaches. To
determine the first realization we reduced the
descriptor system to a standard system by inverting
explicitly E(�). The resulting equivalent parametric
standard state-space model is described by the quad-
ruple of matrices ð eAAð�Þ, eBBð�Þ,C,DÞ, where

eAAð�Þ :¼ E	1ð�ÞAð�Þ,eBBð�Þ :¼ E	1ð�ÞBð�Þ:

After performing the normalization of eAAð�Þ andeBBð�Þ we computed an LFT-representation of the
parametric system matrix

eAAð�Þ eBBð�Þ
C D

24 35
along the lines of the LFT-realization procedure of
[10]. Finally, we performed step 3 in Section 5.2 to
determine the LFT-realization of Gðs, �Þ. The second

Fig. 1. Single-track vehicle model with roll body.
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LFT-representation of Gðs, �Þ was calculated by
simply performing all realization steps described in
Section 5.2.
In addition, for both LFT-representations we

repeatedly applied the exact 1-d order reduction of
[14] and finally one exact n-d order reduction [8].
Table 1 presents the resulting block structure of
the uncertainty matrix � ¼ diagð1s Ir1, �2Ir2, . . . , �6Ir6Þ
and the total order r ¼

P6
i¼1 ri of � for the resulting

LFT-representations.
It can be observed in Table 1 that the orders of the

initial LFT-realizations for the two realization
approaches differ substantially (compare 134 and 31)
and a significant difference remains even after apply-
ing multidimensional order reduction techniques
(compare 75 with 14). The main causes for these huge
differences are the explicit symbolic inversion per-
formed to reduce the descriptor system to a standard
one and the performed normalization in the initial
phase. The elements of the resulting state and input
matrices have very complex expressions (e.g. quotients
of multivariate polynomials up to orders 23), which
led to a resulting LFT-realization of considerably
higher order. Therefore, besides avoiding the pre-
liminary normalization of uncertain parameters, a
second ‘‘good practice’’ for constructing low order
LFT-realizations is to also avoid, if possible, explicit
symbolic inversions.
Interestingly, the resulting LFT-model of order 14

computed with the proposed approach, appears to be
of the least possible order. This can be easily checked
by computing the least order partial LFT-realizations
with respect to each uncertain parameter. For this
particular model, the resulting orders appears to be
just the achieved multiplicities in the corresponding
blocks of �. For inspection purposes the resulting
LFT-representations together with the symbolic
vehicle model can be downloaded in MATLAB
format.1

7. Conclusion

We proposed a general descriptor system representa-
tion based LFT-realization technique for rational

parametric matrices. With this approach, we can
completely avoid the normalization of the parameters
as a preliminary step of the LFT-realization. There-
fore, it is generally expected that the resulting LFT-
representations are of lower order than equivalent
representations generated with standard system based
LFT-realization methods. Since the proposed method
is based on elementary LFT-manipulations it can
easily be automated.
In addition, the descriptor system based LFT-

realization approach allows to directly derive LFT-
representations from linear parametric state space
systems in descriptor form, which is a usual repre-
sentation for physical systems. In the proposed pro-
cedure, no preliminary symbolic matrix manipulation,
like explicit inversion of E(�) is necessary and even
systems with non-invertible E(�) can be easily handled.
The existing MATLAB LFR-toolbox [11] for the

realization of standard LFT-representations has
been extended to also handle descriptor LFT-
representations. Together with reliable numerical
tools for handling descriptor systems available in the
MATLAB descriptor system toolbox [14] and with
symbolic preprocessing techniques for parametric
system matrices of [4,15], we have a very promising
approach to efficiently generate low order LFT-
representations of uncertain physical systems.
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