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ABSTRACT 
Computational techniques allow a very efficient and inexpensive analysis of the running behaviour of railway 
vehicles. In this paper enhancements related to multibody simulation for three fundamental topics are briefly 
presented: A software environment for the bifurcation analysis of complex simulation models of arbitrary 
railway vehicles; consideration of wheelsets’ and rails’ structural elasticity within the analysis of the running 
behaviour; crosswind stability analysis under consideration of parametric variability and uncertainty by 
reliability analysis. 

Keywords: bifurcation analysis, hunting motion, nonlinear dynamics, vehicle-track interaction, flexible 
wheelsets, flexible rails, crosswind stability, reliability analysis. 

1. INTRODUCTION 
The dramatic improvement of railway vehicle performances in the last years has 

been made possible among others by the availability of very efficient computational 
methods for the analysis of their running behaviour. Even if a very high standard 
seems to have been already reached in this field, the continuous improvement and 
enhancement of existing tools and simulation models together with new developments 
are necessary to increase computational efficiency and accuracy, to cope with 
unresolved questions, to manage new safety questions. This paper addresses some 
current topics of such developments. 

2. BIFURCATION ANALYSIS 

2.1 Bifurcation analysis and railway vehicle dynamics 
A prominent feature of nonlinear dynamical systems – like e.g. railway vehicles, for 

which the contact between wheel and rail is an important source of nonlinearity – is 
the possible dependence of their long-time behaviour on the initial state. This means 
that one and the same system may show a multiplicity of quantitatively and 
qualitatively totally different behaviour patterns of its steady state, i.e. for system time 

∞→t , even though all the system’s parameters remain unchanged. If possible 
transient processes are neglected, stationary, periodic, quasi–periodic and/or chaotic 
behaviour has to be expected. A computer aided method for the examination of 
nonlinear dynamical systems with respect to the influence of one or more system 
parameters on existence and shape of these potential behaviour patterns is numerical 
bifurcation analysis, see e.g. [1] for an extensive description. This kind of analysis can 
be performed either by means of a simple parameter variation over time integrations or 
by means of the more sophisticated direct method of path–following or continuation. 
The principle of path-following combines algorithms for the direct computation of a 
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system’s steady state (up to now, robust ones exist only for stationary and periodic 
solutions) with the continuation of one-dimensional curves in higher dimensional 
state-parameter spaces.  

A crucial aspect within the comprehensive computational design of a railway 
vehicle’s running dynamics concerns its long-time behaviour while running on an 
ideally straight track. Starting from an (initial) disturbance, the vehicle’s motion 
relative to the track is evaluated after all transient activity has died away, i.e. only its 
steady state is regarded. Of particular interest is the influence of certain system 
parameters like the vehicle’s velocity or the coefficient(s) of a suspension element on 
this steady state. 

Varying, for example, the vehicle’s velocity v, a typical scenario given as 
bifurcation diagram in Fig. 1 is as follows: As long as the velocities are small or 
moderate every initial disturbance dies away rapidly until a stationary equilibrium is 
attained. But, as soon as the “critical velocity” is reached, the vehicle’s long-time 
behaviour changes abruptly and radically and an initial disturbance may result in the 
so-called hunting or limit cycle motion, a periodically oscillating motion of the 
complete vehicle relative to the track that has to be avoided in everyday operations. 
Detailed analyses have shown, see e.g. [2], that there even exists a velocity range 

linnlin vvv ≤≤ , where the final steady state depends qualitatively on the initial 
disturbance. Thus, for one and the same velocity of this range just as a stationary 
steady state a periodic steady state (hunting) has to be expected as well.  

 

Fig. 1 Typical bifurcation diagram of a railway vehicle. The bifurcation parameter is 
the velocity v along the track, ymax is the maximum lateral displacement of a wheelset. 

Computational bifurcation analysis is an ideal software tool for examining this kind 
of dynamic behaviour – with a root locus analysis as a well-known method of linear 
system analysis only vlin can be computed as critical velocity! The following section 
outlines very shortly a software environment for the continuation based bifurcation 
analysis of arbitrary mechanical systems, a more detailed description can be found in 
[3, 4]. There, a special emphasis is placed on the application on realistic and therefore 
necessarily complex simulation models of arbitrary railway vehicles. Algorithms and 
analyses are restricted to stationary and periodic behaviour. 

2.2 A software tool for bifurcation analysis of mechanical systems 
Regarding a software environment for the robust bifurcation analysis of arbitrary, 

complex mechanical systems, like e.g. railway vehicles, three major aspects are of 
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primary interest: Firstly, the integration of bifurcation analysis as an additional 
analysis tool into appropriate simulation software enables its efficient application on 
sophisticated simulation models of arbitrary mechanical systems. For this purpose, a 
reengineered and substantially enhanced version of PATH and the simulation package 
SIMPACK have been coupled. PATH is a software tool for the continuation based 
bifurcation analysis of general dynamical systems and has been created originally at 
DTU, the Technical University of Denmark, see [5] for a description. SIMPACK is a 
software package for the simulation of general mechanical systems that is 
commercially distributed, maintained, and designed by Intec GmbH, Wessling, 
Germany. It is based on a multibody system (MBS) approach and provides a 
sophisticated and highly specific module for the simulation of arbitrary railway 
vehicles meeting arbitrary running scenarios. 

Secondly, starting from equations of motion given as system of ordinary differential 
equations (ODEs), the direct calculation of periodic solutions or limit cycles is 
performed by an adapted kind of shooting method, the Poincaré Map Method. Here, 
one of the main features with respect to an efficient and robust algorithm is the 
integrated and synchronous evaluation of the variational (differential) equations, i.e. 
the derivative of the equations of motion with respect to the initial states. 

And, finally, the equations of motion of a multibody system are frequently given as 
a system of differential algebraic equations (DAE) of differential index 3. The basic 
concept to handle this kind of mathematical description is the local parameterisation of 
the constraint manifold defined by the algebraic constraint equations. This approach 
yields a local state space form of the equations of motion, i.e. a minimum ODE system 
being equivalent to the original DAE system. 

Of course, the bifurcation analysis tool’s potential range of application is not 
restricted to the specific case of multibody system dynamics. Decoupled from the 
MBS-code, PATH’s enhanced bifurcation algorithms can be applied on general 
dynamical systems just as well. 

2.3 Application on a passenger car 

Fig. 2 Simulation model of an Avmz passenger car with Fiat 0270 bogies. 

The shortly outlined software environment has been applied on a couple of 
simulation models of railway vehicles showing different degrees of complexity. In 
what follows, some results of the analyses performed for a 1st class Avmz coach's 
model given in Fig. 2 are presented. The modelling is according to the benchmark 

                       



description [6]. The complexity of this model is typical for models used within 
industry for the extensive computational analysis and design of a railway vehicle's 
running behaviour.  

The mechanical model of the passenger car consists of altogether 15 rigid bodies. 
The suspension system comprises flexicoil springs with nearly parallel dampers, yaw 
and lateral dampers, as well as stiff lateral bump stops. All the springs are modelled 
with constant stiffness while each damper shows an only piecewise linear (thus 
nonlinear) force-velocity characteristic with a serial stiffness superimposed; hence, the 
eigendynamics of these damper elements have to be considered, too. The state space of 
the vehicle model is described by altogether 114 position, velocity, and algebraic 
coordinates. Hence, a total of 9576 equations has to be integrated for limit cycle 
calculations (i.e. the nominal system and the variational equations). 

Some results of the bifurcation analysis are displayed in Fig. 3. The dynamic long-
time behaviour of the vehicle depending on the velocity v as varied system parameter 
is represented in these bifurcation diagrams by the maximum lateral deviation of the 
leading wheelset (yWS1, left) and of the carbody  (ybody, right), each with respect to the 
track.  

Fig. 3 Numerically computed bifurcation diagram of the Avmz passenger car. Left: 
Lateral shift of the leading wheelset. Right: Lateral shift of the car body. 

The stationary solutions are continued from nearly zero velocity up to the first Hopf 
bifurcation A, characterised by the velocity vlin = vA = 101.62 m/s, and beyond, where 
a second Hopf bifurcation B is detected. Up to now, it is not possible to continue the 
unstable limit cycle solutions branching off from Hopf bifurcation A. Therefore, the 
first step to continue limit cycles is to generate an initial estimation of one with the 
help of a conventional, external time integration. Here, this was done for a velocity v = 
130.0 m/s. For decreasing velocities, the path of stable periodic solutions ends in the 
saddle-node bifurcation C at vnlin = vC = 95.62 m/s. Since below this limiting velocity 
no limit cycle oscillations occur, it also represents the critical velocity for this type of 
vehicle. For increasing velocities, the amplitude of the limit cycle oscillations grows 
rather slowly due to the nonlinear geometry of wheel and rail profiles and the 
increasing intensity of the contact between the flanges of the wheels and the rails. 
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3. ELASTIC WHEELSETS AND RAILS 

3.1 Motivation 
As mentioned before, the wheel-rail contact is a highly nonlinear system which can 

be very sensitive even to small relative motions between the wheel rim and the rail 
head. Therefore, the question arises whether small relative motions resulting from 
elastic deformations of the wheelsets and the rails can have an influence on the wheel-
rail contact and, thereby, on the running behaviour of the entire vehicle. In the 
following, a refined vehicle-track model is presented which takes into account the 
structural elasticities and dynamics of the wheelsets and the rails, because these are the 
components next to the wheel-rail contact. 

3.2 Modelling 
The multibody model of the vehicle represents a passenger coach with two bogies. 

Here, the car body, the bogie frames and the bolsters are considered as rigid bodies. 
All bodies are connected by linear spring/damper elements; the only nonlinear force 
element within the vehicle is the nonlinear yaw damping by dry friction acting 
between the bolsters and the car body. 

The deformations of the wheelsets and the rails are described by a modal synthesis. 
The required shape functions are obtained by a Finite Element calculation. In both 
cases, the eigenmodes of the free wheelset and rail, respectively, are applied, because 
there are no geometrical boundary conditions. For the wheelsets, the eigenmodes of 
the non-rotating wheelset are used; effects resulting from the rolling motion of the 
wheelset are taken into account by additional gyroscopic and centrifugal terms, see [7] 
and [8]. As an example for the deformation of the wheelset, Fig. 4 shows two bending 
eigenmodes, which correspond to the lowest structural eigenfrequencies. Further 
informations about the different types of eigenmodes of a wheelset can be found in [9]. 

 

Fig. 4 Bending eigenmodes of the wheelset (Left: 84.2 Hz, Right: 147.2 Hz) 

The rails are connected to the sleepers at the foot, the lateral wheel-rail forces are 
acting at the rail head. Furthermore, the web of the rail is thin compared to the rail 
head. Thus, deformations of the rail’s cross section can be expected, so that the usual 
beam theories assuming an invariant shape of the cross section are not sufficient. 
Therefore, a Finite Element model using prismatic elements for the discretisation is 
developed. Fig. 5 shows two eigenmodes with distinct deformations of the cross 
section. The inclination of the rail head can have an impact on the contact geometry. 

 



Fig. 5 Eigenmodes of the rail (wavelength: 2.4 m, left: 1532.9 Hz, right: 4240.9 Hz) 

At the ends of the rails, identical boundary conditions are applied, so the track can 
be considered as a circle, however with neglected curvature. This enables the 
simulation to be performed without the vehicle reaching an end of the track. This idea 
of a closed circular structure was already used by Ripke [10]. 

The wheelsets and the rails are coupled by the nonlinear force element “wheel-rail 
contact”. The inputs of this force element are the kinematics, i.e. positions and 
velocities, of the wheel rim and the rail head; the outputs are the forces and torques 
acting between the wheel and the rail. More details about the coupling between the 
wheelset and the wheel-rail contact element can be found in [7] and [8]. 

3.3 Calculation Results 
To investigate the influence of the structural elasticities, the results obtained with 

the refined model are compared with those calculated with the “usual” modelling 
(rigid wheelsets, rigid track elements), see Fig. 6. 

 

Fig. 6 Phase portraits of the lateral motions of the first wheelset. 
Left: Rigid wheelsets, rigid rails; right: Elastic wheelsets, elastic rails 

The comparison shows three distinct differences: 
? The amplitudes of the wheelset’s motion are larger for the elastic modelling; this 

results from deformations of the wheelsets and the rails. 
? The curves for the elastic wheelset on elastic rails are smoother, while the curves for 

the rigid wheelset on rigid track elements show distinct kinks at about +/-7 mm. 
This kink results from the flange hitting the rail head. Because the wheelsets and the 
rails themselves are softer than the comparatively stiff wheel-rail contact, the 
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impact of the flange is cushioned by the structural elasticities, so the kink vanishes. 
Furthermore, the generalised masses which have to be accelerated by the impact of 
the flange are reduced. 

? The curves for v0=280 km/h, v0=290 km/h and v0=300 km/h are missing in the left 
diagram, because no limit cycle oscillations occur for the rigid wheelsets and rigid 
track elements at these travelling speeds. This indicates that the structural 
elasticities cause a drop of the critical speed. 

 
To investigate the influences of the structural elasticities of the wheels on one hand 

and of the rails on the other hand, the results calculated for the four possible 
combinations are compared in Fig. 7. 

 

Fig. 7 Phase portraits (left) and amplitudes (right) of the lateral motion of the first 
wheelset. Thin/thick line: Rigid/elastic wheelsets, broken/full line: rigid/elastic rails. 

The comparison shows that the differences in the running behaviour are mainly 
caused by the structural elasticities of the wheelset. This elasticity causes the larger 
drop of the critical speed and the larger increasing of the motion amplitudes. 
Nevertheless, the influence of the rails’ deformations cannot be neglected, even if it is 
weaker than the impact of the wheelsets’ deformations. 

4. CROSSWIND STABILITY 

4.1 General remarks 
Aerodynamic drag reduction has been a topic since the early years of railway 

transportation but the analysis of the effects of aerodynamic loads induced by cross 
winds on the running behaviour of railway vehicles is a relatively new issue. This fact 
is mainly due to the recent diffusion of lightweight leading cars – as a consequence of 
EMU solutions – and to the increasing driving velocities. As a matter of fact 
experience shows that strong cross winds can be a source of critical loads on rolling 
stock, leading to wheel unloading and finally to vehicle overturn. The originated risk 
must be accurately evaluated to ensure safety without setting unnecessarily severe 
design or operational limitations [11]. 
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At present national and international norms for the crosswind stability are being 
jointly defined or revised in Europe by railway industries, companies and authorities. 
The safety proof always results from a risk analysis procedure which operates on the 
outputs of computations describing the driving behaviour of the vehicles: static 
equilibrium of simplified car models for lower driving velocities, multibody 
simulation of the transient behaviour of complete car models for higher ones.  

In the following sections two important issues of the safety proof are discussed: the 
role of the wheel-rail contact and the uncertainties in the aerodynamic parameters. 

4.2 The wheel-rail contact 
The most restrictive safety limit for rolling stock in cross winds is due to 

overturning, for which unloading of the wind side wheel of the leading wheelset is 
taken as an index. The question arises, whether the complete description of the wheel-
rail contact is necessary for the safety proof or simplified models are sufficient. The 
underlying interest for simple models originates from the aim at small computational 
effort as well as practicability of the norms.  

As the most critical scenario for crosswind stability occurs when the wind acts on 
the vehicle driving on or into a curve, the corresponding non-uniform distribution of 
lateral and thus vertical forces between the wheelsets of each car can be only 
reproduced taking into account the radial adjustment of the wheelsets, [12]. Thus, the 
phenomena at the wheel-rail contact can not be neglected, at least as long as wheel 
unloading is used to check overturning safety. 

For a generic, crosswind stability oriented multibody simulation the wheel-rail 
contact requires on average about 50% of the CPU-time. Thus, the time saving which 
can be achieved eliminating the wheel-rail contact is large but not dramatic, because of 
the very efficient implementation of the wheel-rail module in modern simulation codes 
like SIMPACK. Furthermore, the mere CPU-time is only a part of the overall effort. 

It should be also noted that the use of simplified models for the crosswind stability 
analysis would require such models to be provided, i.e. derived form the full models. 
This causes additional effort and increases the complexity of the procedure and of the 
data management. 

4.3 Parametric Uncertainty 
Each of the six aerodynamic loads L acting on the vehicle (drag, lift, side forces and 

roll, yaw, pitch moments) is given by the corresponding static aerodynamic coefficient 
C, a characteristic dimension D, air density ρ, relative resultant flow velocity Vres and 
yaw angle φ using the common formula: 

 D)(CVL res ϕρ 2

2
1

=  (1) 

The aerodynamic coefficients are always handled as fixed deterministic functions of 
the yaw angle φ but they are actually affected by large uncertainty. In reality they 
strongly depend on unpredictable environmental conditions (wind turbulence intensity, 
ground boundary layer, …) which the vehicle is faced to during real operation. 
Furthermore they are obtained by static wind tunnel tests on reduced scale models or 
CFD computations: in both cases systematic errors can not be avoided [13]. 



 Moreover, it is usual to examine the crosswind stability in the very important 
situation of gusty wind. In this case, on the one hand unsteady aerodynamic 
phenomena should be taken into account through the aerodynamic admittance 
function. On the other hand, even if only an ideal gust (e.g. step or ramp) is 
considered, the gust parameters (amplitude, slope, etc.) can not be reasonably 
modelled as deterministic, as real wind is a random process. 

A way to describe such uncertainties is modelling the affected parameters 
(aerodynamic coefficients and gust parameters) as stochastic variables. For the 
resulting problem, namely the risk analysis in presence of uncertainties, many efficient 
methods can be employed, which are generally denoted as reliability analysis methods 
[14]. Many of these methods were designed already in the second half of the last 
century for structural reliability analysis; then, in more recent years, new techniques 
were developed in the fields of robust design. At the moment, the interest on 
parametric uncertainties is rising again because of the growing use of reliability based 
optimisation. Such methods enhance not only the accuracy of the risk assessment but 
also offer a deeper insight in the system behaviour to discover improvement margins 
in the design [15]. 

A key point is that the description of the parameters as stochastic variables requires 
large probabilistic information about them, which is not yet available in the case of 
crosswind stability. Therefore the reliability analysis must be accompanied by a 
probabilistic sensitivity analysis with respect to the stochastic parameters (distribution 
type, variance, …), by which the sensitivity of the system response as well as the 
sensitivity of the system reliability can be checked [16]. An extreme case, which can 
also be managed, occurs when only a variability interval is available for a parameter 
and no assumption about any probabilistic distribution can be met.  

5. CONCLUSIONS 
The computer aided analysis of three fundamental topics related to the running 

behaviour of railway vehicles – bifurcation analysis for running behaviour, wheelsets’ 
and rails’ elasticity, crosswind stability – has been briefly presented. By the use of 
such computational techniques precious improvements in the efficiency of the design 
process, in the performances of the final product and in the reliability of operations can 
be achieved. 
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