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YAROSLAV KURYLEV, LAURI OKSANEN, AND GABRIEL P. PATERNAIN

Abstract. We reconstruct a Riemannian manifold and a Hermitian vector bundle
with compatible connection from the hyperbolic Dirichlet-to-Neumann operator as-
sociated with the wave equation of the connection Laplacian. The boundary data
is local and the reconstruction is up to the natural gauge transformations of the
problem. As a corollary we derive an elliptic analogue of the main result which
solves a Calderón problem for connections on a cylinder.

1. Introduction

The purpose of the present paper is to show how to reconstruct a Riemannian metric
and a Hermitian vector bundle with compatible connection from partial boundary
measurements associated with the wave equation of the connection Laplacian (or
rough Laplacian). The recovery is possible up to the natural gauges of the problem,
and the proof uses techniques from the Boundary Control method [1].

There is considerable literature on the topic, and we shall review it in due course,
but the strength of our results lies in the geometric generality involved: there are
no restrictions on the Riemannian manifold, Hermitian vector bundle or connection.
Our methods also include a transparent and direct proof in the case of the trivial
vector bundle that avoids gluing of local reconstructions. The problem is motivated
by the Aharonov-Bohm effect which asserts that different gauge equivalence classes
of electromagnetic potentials have different physical effects that can be detected by
experiments. The solution to the inverse problem presented in this paper shows in
great generality that different gauge equivalence classes of Hermitian connections (e.g.
Yang-Mills potentials) will have different boundary data and therefore are detectable
by boundary measurements.

We proceed to state our results in more detail. Let (M, g) be a smooth, compact,
connected Riemannian manifold of dimension m with non-empty boundary ∂M . Let
E →M be a smooth Hermitian vector bundle of rank n, and let us denote by 〈·, ·〉E
the Hermitian inner product on each fiber. Let ∇ be a connection compatible with
the Hermitian structure, that is, if we think of ∇ as operating on sections

∇ : C∞(M ;E)→ C∞(M ;E ⊗ T ∗M)

then for any pair of sections u, v, we have

d〈u, v〉E = 〈∇u, v〉E + 〈u,∇v〉E.

Date: 8 September 2015.
1

ar
X

iv
:1

50
9.

02
64

5v
1 

 [
m

at
h.

A
P]

  9
 S

ep
 2

01
5

CORE Metadata, citation and similar papers at core.ac.uk

Provided by UCL Discovery

https://core.ac.uk/display/110970652?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Y. KURYLEV, L. OKSANEN, AND G.P. PATERNAIN

Using the Riemannian volume dx of (M, g) we can define a natural L2-inner product
of sections by setting

〈u, v〉L2(M ;E) =

∫
M

〈u, v〉E dx.

Similarly we get a natural L2-inner product in C∞(M ;E ⊗ T ∗M). The elements in
C∞(M ;E ⊗ T ∗M) can be thought of as 1-forms taking values in E. A pointwise
product 〈α, β〉E is a complex-valued 2-tensor on M which can be contracted with g
to obtain a complex-valued function, and then integrated in M . In other words, if
α = αidx

i and β = βidx
i, then

〈α, β〉L2(M ;E⊗T ∗M) =

∫
M

gij〈αi, βj〉E dx.

We denote by ∇∗ the adjoint of ∇ with respect to these L2-inner products, and define
the connection Laplacian as

P = ∇∗∇.
We denote by End(E) the vector bundle whose fiber at x ∈M is the space of linear

maps from the fiber Ex to itself, and say that a section V ∈ C∞(M ; End(E)) is a
potential if it is symmetric in the sense that for any pair of sections u, v of E,

〈u, V v〉E = 〈V u, v〉E.
Let V be a potential and consider the wave equation on sections,

(∂2
t + P + V )u(t, x) = 0, (0,∞)×M,(1)

u|(0,∞)×∂M = f, (0,∞)× ∂M,

u|t=0 = ∂tu|t=0 = 0, in M.

Let T > 0, let S ⊂ ∂M be open, and define the restricted Dirichlet-to-Neumann
operator

Λ2T
S f = ∇νu|(0,2T )×S , f ∈ C∞0 ((0, 2T )× S;E),

where ν is the interior unit normal on ∂M and u is the solution of (1).
Our main result is that, for a sharp time T > 0, the Hermitian vector bundle E|S

and the restricted Dirichlet-to-Neumann operator Λ2T
S determine the Riemannian

manifold (M, g), the Hermitian vector bundle E, the connection ∇ and potential V .
Here E|S is the pullback bundle j∗E given by the inclusion map j : S →M .

Theorem 1.1. Let (Mi, gi, Ei,∇i, Vi), i = 1, 2, be two smooth Hermitian vector bun-
dles that are defined on smooth, compact and connected Riemannian manifolds with
boundary, and that are equipped with smooth Hermitian connections and smooth po-
tentials. Suppose that T > 0 and open Si ⊂ ∂Mi, i = 1, 2, satisfy

T > max
x∈Mi

dgi(x,Si), i = 1, 2,

where dgi is the distance function on (Mi, gi). Suppose, furthermore, that there is a
Hermitian vector bundle isomorphism φ : E1|S1 → E2|S2 intertwining the Dirichlet-to-
Neumann operators Λ2T

S1
and Λ2T

S2
, that is, φ∗Λ2T

S2
= Λ2T

S1
φ∗. Then there is a Hermitian
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vector bundle isomorphism Φ : E1 → E2 that covers an isometry between (Mi, gi),
i = 1, 2, and that satisfies Φ∗∇2 = ∇1, Φ∗V2 = V1 and Φ|E1|S1

= φ.

It is a simple exercise to check that if an isomorphism Φ as in Theorem 1.1 exists,
then the restriction of Φ on E1|S1 intertwines the Dirichlet-to-Neumann operators.
Hence Theorem 1.1 is optimal in terms of the gauge invariances.

We recall that a generalized Laplacian H on E is a differential operator such that
its principal symbol is

|ξ|2 = gij(x)ξiξj, (x, ξ) ∈ T ∗M,

and we say that H is symmetric if

〈u,Hv〉L2(M ;E) = 〈Hu, v〉L2(M ;E) , u, v ∈ C∞0 (M ;E).

A symmetric generalized Laplacian H on E can be written in the form P + V for
some Hermitian connection ∇ and potential V , see e.g. [3, Proposition 2.5], and
wave equations for generalized Laplacians are the most general hyperbolic equations
for which unique continuation is known to hold in the whole domain of influence,
see Theorem 2.3 below. Such time sharp unique continuation, that goes back to the
seminal paper [31], is crucial to our proof. Let us also point out that if the symmetry
assumptions in Theorem 2.3 are weakened, then all the known uniqueness results in
the scalar case require additional assumptions on the global geometry of (M, g), see
[13, 23, 26].

As a corollary of Theorem 1.1, let us consider the case when (M, g) is known, E is
the trivial bundle M × Cn with its usual Hermitian inner product and V = 0. Then
∇ is of the form

dA = d+ A,(2)

where A = Aidx
i and each Ai(x), x ∈ M , is a skew-Hermitian (n × n)-matrix. The

Dirichlet-to-Neumann operator depends on A and we write Λ2T
∂M = Λ2T

∂M ;A.

Corollary 1.2. Let dA and dB be two Hermitian connections on the trivial bundle
M × Cn over a fixed Riemannian manifold (M, g), and suppose that ΛT

∂M ;A = ΛT
∂M ;B

for T > maxx∈M dg(x, ∂M). Then, there exists a smooth U : M → U(n) such that
U |∂M = Id and

B = U−1dU + U−1AU.(3)

Note that if A and B satisfy (3), then U−1dAU = dB and hence PB = U−1PAU ,
where Pi = d∗i di, i = A,B. Thus if u solves the wave equation for PB, then Uu solves
it for PA. Hence the above corollary can not be improved, that is, if U : M → U(n)
satisfies U |∂M = Id and (3) holds, then ΛT

∂M ;A = ΛT
∂M ;B for any T . In the context of

the gauges in Theorem 1.1, we have that φ is the identity and Φ(x, s) = (x, U(x)s),
where (x, s) ∈M × Cn.

The situation of the corollary is the one that appears in the literature. For the
abelian case n = 1, the corollary in essentially proved in [22] via the Boundary
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Control method. The Boundary Control method was pioneered for the isotropic wave
equation on a domain in [1] and developed for manifolds in [2]. Note, however, that
in [22] the boundary spectral data is used, and therefore the result does not give the
sharp time T .

In [16], the corollary is proved under the further assumptions that M is a two di-
mensional domain, g is the Euclidean metric tensor and the connection is small in a
suitable sense. The proof uses geometric optics solutions and reduces the problem to
an injectivity result about the non-abelian Radon transform, which is of independent
interest; see [10] for the case of the Euclidean metric and compactly supported con-
nections. More recently, the injectivity result for the non-abelian Radon transform
was extended to any simply connected surface with strictly convex boundary and no
conjugate points [30] and to higher dimensions and negative curvature [17].

There is a result due to G. Eskin [11] that implies Corollary 1.2 under the assump-
tion that M is a domain in Euclidean space with obstacles. Our proof seems however
simpler. Eskin also proves a related theorem for the case of time-dependent Yang-
Mills potentials in [14]. A survey on these results, including amended statements, is
given in [12].

The proof of Corollary 1.2 follows directly from of our local reconstruction proce-
dure, so the full power of Theorem 1.1 is not needed. As far as we are aware, there
are no previous results for this problem when the bundle is not trivial; perhaps the
closest in spirit is the result in [24] for the hyperbolic Dirac equation. However in
this reference it is assumed that the data is given on the whole boundary for an in-
finite time interval, whereas our main result assumes only partial data and is sharp
in terms of T . One of the main contributions of the present paper is to develop a
new method to glue local reconstructions. The method allows us to reconstruct an
isomorphic copy of the structure (g, E,∇, V ) on the interior of M given the data Λ2T

S
corresponding to a sharp time T .

As a final corollary, let us consider an elliptic analogue of Theorem 1.1. This
application is very much in the spirit of [7, Theorem 1.5] where an elliptic scalar
valued equation was considered.

Let (M0, g0) be a compact Riemannian manifold with boundary, and let C = R×M0

be the infinite cylinder with the product metric g = dt2+g0. Here dt2 is the Euclidean
metric on R. We consider a Hermitian vector bundle E0 → M0 with a Hermitian
connection ∇0, and define the operator P0 = ∇∗0∇0. Moreover, we have an induced
Hermitian bundle E with connection ∇ on C, that is, E = π∗E0 and ∇ = π∗∇0,
where π : C →M0 is the canonical projection.

Let us denote by λ1 ≤ λ2 ≤ . . . the Dirichlet eigenvalues of the operator P0. A point
λ ∈ C \ [λ1,∞) is not in the continuous spectrum of the operator ∇∗∇ = −∂2

t + P0

and, for any f ∈ C∞0 (∂C;E), the equation

(−∂2
t + P0 − λ)u = 0 in C, u|∂C = f,

has a unique bounded solution u ∈ C∞(C;E). We define the elliptic Dirichlet-to-
Neumann map

Λ(λ)f = ∇νu|∂C , Λ(λ) : C∞0 (∂C;E)→ C∞(∂C;E).
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Our application is the following recovery result:

Corollary 1.3. The Hermitian vector bundle E|∂C and the elliptic Dirichlet-to-
Neumann map Λ(λ) for a fixed λ ∈ C\[λ1,∞) determine the structure (M0, g0, E0,∇0).

Here, the structure is determined up to the natural gauge invariances as in Theorem
1.1. It is possible to prove also a version of the corollary assuming that λ is in the
continuous spectrum of −∂2

t +P0 as long as it avoids the eigenvalues λi. This extension
can be carried out as in [7, Theorem 1.7] but we do not include it here.

This paper is organized as follows. Section 1 is the introduction and states the main
results. In Section 2 we include preliminaries, mostly having to do with the direct
problem, finite speed of propagation, unique continuation and approximate control-
lability. The results here are standard, but some details are provided to ensure the
usual techniques fit our setting. Section 3 contains the local reconstruction procedure
near the boundary. We first reconstruct the metric g and the core of the section is
the reconstruction of the Hermitian bundle and the connection. The main local re-
sult is Theorem 3.10 and Corollary 1.2 is immediately derived from this theorem and
well-known properties of the cut locus. Section 4 contains the global reconstruction
procedure, expains in detail how to build up the structure from local data and finishes
the proof of Theorem 1.1. In the final Section 5 we prove Corollary 1.3.

2. Preliminaries

2.1. Local trivializations. The connection ∇ is of the form (2) on a local trivial-
ization of E. Let us derive local expressions for d∗A and P = d∗AdA. To this end, we
consider a section u : M → E and a E-valued 1-form β = βidx

i supported on a local
trivialization. As A is skew-hermitian,

〈Au, β〉L2(M ;E⊗T ∗M) =

∫
M

gij〈Aiu, βj〉E dx = −
∫
M

〈u, gijAiβj〉E dx.

We define (A, β) = gijAiβj and see that d∗A = d∗ − (A, ·). Thus

Pu = d∗du+ d∗(Au)− (A, du)− (A,Au).

We recall that for a 1-form α in local coordinates

d∗α = −|g|−1/2 ∂

∂xi
(
|g|1/2gijαj

)
,

hence d∗(Au) = (d∗A)u− (A, du), and

(4) Pu = d∗du− 2(A, du) + (d∗A)u− (A,Au).

This exposes the nature of P : the principal part is the usual Laplacian and the first
order term given by −2(A, du).

When working near the boundary ∂M , it is convenient to use boundary normal
coordinates, that is, semigeodesic coordinates adapted to the boundary. Let Γ ⊂ ∂M
be open. Then the semigeodesic coordinates adapted to Γ are given by the map

(s, y) 7→ γ(s; y, ν), y ∈ Γ, s ∈ [0, σΓ(y)),(5)
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where the cut distance σΓ : Γ→ (0,∞) is defined by

σΓ(y) = max{s ∈ (0, τM(y)]; dg(γ(s; y, ν),Γ) = s},(6)

τM(y) = sup{s ∈ (0,∞); γ(s; y, ν) ∈M int}.

Here γ(·;x, ξ) is the geodesic with the initial data (x, ξ) ∈ TM . We recall that ν is
the interior unit normal on ∂M , and define

MΓ = {γ(s; y, ν); y ∈ Γ, s ∈ [0, σΓ(y))}.(7)

Then a point x ∈ MΓ is represented in the coordinates (5) by (s, y), where s is the
distance dg(x,Γ) and y is the unique closest point to x in Γ. Moreover, g has the
form ds2 + hjk(s, y)dyjdyk and the principal part of P is

−∂2
s − hjk(s, y)∂yj∂yk .(8)

2.2. The direct problem. Let us consider the initial-boundary value problem

(∂2
t + P + V )u(t, x) = F, (0, T )×M,(9)

u|(0,∞)×∂M = f, (0, T )× ∂M,

u|t=0 = ψ, ∂tu|t=0 = φ, in M,

where T > 0. When f = 0 we have the energy estimate

‖u(t)‖H1
0 (M ;E) + ‖∂tu(t)‖L2(M ;E)(10)

≤ C(‖ψ‖H1
0 (M ;E) + ‖φ‖L2(M ;E) + ‖F‖L2((0,t)×M ;E)),

for all t ∈ (0, T ). For a proof in the scalar valued case, we refer to [15, Section 7.2].
The proof is analogous in the vector valued case and we omit it. We have also higher
regularity results under suitable compatibility conditions. In what follows, we need
only the following estimate

‖u‖Hm((0,T )×M ;E) ≤ C(‖φ‖Hm−1(M ;E) + ‖F‖Hm−1((0,T )×M ;E)),(11)

where m ≥ 1, f and ψ vanish, F is compactly supported in the time interval (0, T )
(but not necessarily in space), and φ is compactly supported in M int, see e.g. [15]. We
can extend a function f ∈ C∞0 ((0,∞) × ∂M ;E) as a smooth function on the whole
domain (0,∞)×M and substract it from u. By using (11) we see that the solution
of (1) is smooth for such f .

We need a sharp regularity result for the Neumann trace. The result is due to
Lasiecka, Lions and Triggiani in the scalar valued case [25]. The proof in the present
setting is analogous but we give it for the convenience of the reader. We will use the
following identity

〈∇∗u, v〉L2(M ;E) − 〈u,∇v〉L2(M ;E⊗T ∗M)(12)

= 〈d∗u, v〉L2(M ;E) − 〈u, dv〉L2(M ;E⊗T ∗M) =

∫
∂M

〈iνu, v〉E dS,
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where u ∈ C∞(M ;E ⊗ T ∗M), v ∈ C∞(M ;E), and dS is the Riemannian volume of
(∂M, g). This follows from [32, Prop. 2.9.1] since the principal symbol of ∇ coincides
with the principal symbol of d.

Theorem 2.1. Suppose that F , f and ψ vanish and let φ ∈ L2(M ;E). Then the
solution u of (9) satisfies ∇νu ∈ L2((0, T )× ∂M ;E).

Proof. We will first suppose that φ ∈ C∞0 (M ;E). Then u is smooth by (11). We
extend ν as a smooth vector field on the whole domain M , and denote this extension
still by ν. We have

〈Pu,∇νu〉L2((0,T )×M ;E)

= 〈∇u,∇∇νu〉L2((0,T )×M ;E⊗T ∗M) +

∫ T

0

∫
∂M

|∇νu|2E dS.

Here |u|2E = 〈u, u〉E. In local coordinates, the principal part of both

〈∇ju,∇k∇νu〉E g
jk and

1

2
ν(〈∇ju,∇ku〉E g

jk)

is 〈∂ju, νp∂p∂ku〉E g
jk. Thus

〈∇u,∇∇νu〉L2((0,T )×M ;E⊗T ∗M) =
1

2

∫ T

0

∫
M

ν(〈∇ju,∇ku〉E g
jk)dx+R,

where the remainder term R satisfies |R| ≤ C ‖u‖2
H1((0,T )×M ;E). Moreover,∫ T

0

∫
M

ν(〈∇ju,∇ku〉E g
jk)dx = −

∫ T

0

∫
M

(div ν) 〈∇ju,∇ku〉E g
jkdx

−
∫ T

0

∫
∂M

〈∇ju,∇ku〉E g
jkdS.

As u vanishes on the boundary, we have in the boundary normal coordinates (s, y) ∈
[0, ε)× ∂M that

〈∇ju,∇ku〉E g
jk = |∂su|2E = |∇νu|2E.

Hence

〈Pu,∇νu〉L2((0,T )×M ;E) =
1

2
‖∇νu‖2

L2((0,T )×∂M ;E) +R,(13)

where the remainder term R satisfies |R| ≤ C ‖u‖2
H1((0,T )×M ;E).

Analogously〈
∂2
t u,∇νu

〉
L2((0,T )×M ;E)

= −1

2

∫ T

0

∫
M

ν 〈∂tu, ∂tu〉E dx+

[∫
M

〈∂tu,∇νu〉E dx
]t=T
t=0

,
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and ∫ T

0

∫
M

ν 〈∂tu, ∂tu〉E dx = −
∫ T

0

∫
M

(div ν) 〈∂tu, ∂tu〉E dx

−
∫ T

0

∫
∂M

〈∂tu, ∂tu〉E dx,

where the second term on the right-hand side is zero since u = 0 on ∂M . Hence

|
〈
∂2
t u,∇νu

〉
L2((0,T )×M ;E)

|(14)

≤ C ‖u‖2
H1((0,T )×M ;E)) + C max

t=0,T
(‖u(t)‖2

H1
0 (M ;E) + ‖∂tu(t)‖2

L2(M ;E)).

Clearly

| 〈V u,∇νu〉L2((0,T )×M ;E) | ≤ C ‖u‖2
H1((0,T )×M ;E) .(15)

Combining (13)-(15) with the energy estimate (10), we get

‖∇νu‖2
L2((0,T )×∂M ;E) ≤ C ‖φ‖2

L2(M ;E) .

The claim follows since C∞0 (M ;E) is dense in L2(M ;E). �

The estimate (11) implies, via a duality argument, that (9) has a unique solution
u ∈ H−m+1((0, T )×M ;E) when f , ψ and φ vanish and F ∈ H−m((0, T )×M ;E) is
compactly supported in (0, T )×M int. In the estimate (11), the norm on the left-hand
side can be replaced with the norm of C([0, T ];Hm(M ;E)). From this it follows that
(9) has a unique solution u ∈ H−m+1((0, T ) ×M ;E) when F , f and ψ vanish and
φ ∈ H−m(M ;E) is compactly supported in M int.

Suppose that u ∈ H−m+1((0, T ) ×M ;E) and that F vanishes near (0, T ) × ∂M .
As the principal part of P +V is of the form (8) in the boundary normal coordinates
(s, y) ∈ [0, ε)× ∂M , we may repeat the proof of [19, Th. 4.3.1] without any changes
in the present setting. By combining this with [19, Th. 2.5.6], we see that there is
m′ such that that the maps s 7→ u(s) and s 7→ ∇νu(s) are continuous with values in
H−m

′
((0, T )× ∂M ;E). In particular, the traces u|(0,T )×∂M and ∇νu|(0,T )×∂M of such

a solution are well defined.

2.3. Finite speed of propagation, unique continuation and approximate
controllability. The equation (1) has the following finite speed of propagation prop-
erty:

Theorem 2.2. Let T > 0, U ⊂M be open and define the cone

C = {(t, x) ∈ (0, T )×M ; dg(x, U) < T − t}.
Suppose that f ∈ C∞0 ((0, T )× ∂M ;E) vanishes in the intersection

C ∩ ((0, T )× ∂M).

Then the solution u of (1) vanishes in C. In particular, if Γ ⊂ ∂M is open, r ∈ (0, T ),
and supp(f) ⊂ (T−r, T )×Γ, then supp(u(T )) is contained in the domain of influence

M(Γ, r) = {x ∈M ; dg(x,Γ) ≤ r}.
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We refer to [20, Lemma 4.1] for a proof in the scalar valued case. The proof in the
present setting is analogous and we omit it.

The operator P +V is of principally scalar form, and the local unique continuation
result [8] can be applied. The local result implies the following result due to Eller
and Toundykov [9] that is analogous to the semi-global Holmgren theorem.

Theorem 2.3. Let T > 0 and let Γ ⊂ ∂M be open. Let s ∈ R, and suppose that
u ∈ Hs((0, 2T )×M ;E) satisfies (∂2

t + P + V )u = 0 and

u|(0,2T )×Γ = 0, ∇νu|(0,2T )×Γ = 0.

Then u(T, x) = 0 whenever x ∈M(Γ, T )int.

Let us denote Wf = u(T ), where u is the solution of (1). The formal adjoint of W
is φ 7→ ∇νv|(0,T )×∂M , where v is the solution of

(∂2
t + P + V )v(t, x) = 0, (0, T )×M,(16)

v|(0,∞)×∂M = 0, (0, T )× ∂M,

v|t=T = 0, ∂tv|t=T = −φ, in M.

Indeed,

0 =
〈
(∂2
t + P + V )u, v

〉
L2((0,T )×M ;E)

−
〈
u, (∂2

t + P + V )v
〉
L2((0,T )×M ;E)

(17)

=
[
〈∂tu, v〉L2(M ;E) − 〈u, ∂tv〉L2(M ;E)

]t=T
t=0

+ 〈∇νu, v〉L2((0,T )×∂M ;E) − 〈u,∇νv〉L2((0,T )×∂M ;E)

= 〈u(T ), φ〉L2(M ;E) − 〈f,∇νv〉L2((0,T )×∂M ;E) .

For an open set S ⊂M , we consider L2(S;E) as the subspace of L2(M ;E) consist-
ing of the sections that vanish outside the set S. If Γ ⊂ ∂M is open and nonempty
and r > 0, then Theorem 2.3 implies that the map

φ 7→ ∇νv|(0,r)×Γ : L2(M(Γ, r);E)→ L2((0, r)× Γ;E)

is injective. A duality argument implies that the wave equation (1) is approximately
controllable in the sense of the lemma below. Note that to carry out the duality
argument, we need the L2-regularity of the Neumann trace, see Theorem 2.1.

Lemma 2.4. Let Γ ⊂ ∂M be open and r > 0. Then

{Wf ; f ∈ C∞0 ((T − r, T )× Γ;E)}(18)

is dense in L2(M(Γ, r);E).

For a proof in the scalar valued case we refer to [21]. The proof in the present
setting is analogous and we omit it.

We need also a refined version of approximate controllability. In order to formulate
this, let us define the modified domain of influence as follows. Let Γ ⊂ ∂M and
h : Γ→ R. we define

M(Γ, h) = {x ∈M ; inf
y∈Γ

(dg(x, y)− h(y)) ≤ 0},
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and denote for T > 0

B(Γ, h;T ) = {(t, y) ∈ (0, T )× Γ; T − h(y) < t}.
If r > 0 and h(y) = r, y ∈ Γ, then M(Γ, h) coincides with our earlier definition of
M(Γ, r). We denote by 1S the indicator function of a set S ⊂ M , that is, 1S(x) = 1
if x ∈ S and 1S(x) = 0 otherwise.

For the convenience of the reader, we give a proof of the following lemma. An
analogous lemma is stated in [26] without a proof.

Lemma 2.5. Let T > 0 and suppose that Γ ⊂ ∂M is open. Let L ∈ N, let Γ` ⊂ Γ be
open and let h` ∈ C(Γ̄`), ` = 1, . . . , L. We define

h =
L∑
`=1

h`1Γ` ,(19)

and suppose that h ≤ T pointwise. Then

{Wf ; f ∈ C∞0 (B(Γ, h;T );E)}(20)

is dense in L2(M(Γ, h);E).

Proof. Let ε > 0. There is a simple function

hε(y) =
J∑
j=1

Tj1Γj(y),

where J ∈ N, Tj ∈ (0, T ) and Γj ⊂ Γ are open and disjoint, such that h < hε + ε
almost everywhere on Γ and hε < h on Γ̄, see e.g. [27, Lemma 4.2].

We show by induction on J that the density holds when h = hε. The base case
J = 1 follows from Lemma 2.4. We define h̃ε = hε − TJ1ΓJ , and use the shorthand

notation M0 = M(Γ, h̃ε) and M1 = M(ΓJ , TJ). Let ψ ∈ L2(M(Γ, hε);E). Note that
M(Γ, hε) = M0 ∪ M1. By the induction hypothesis there is a sequence of smooth

functions (f 0
k )∞k=1 supported in B(Γ, h̃ε;T )) such that

Wf 0
k → 1M0ψ, k →∞.

Moreover, by Lemma 2.4 there is a sequence of smooth functions (f 1
k )∞k=1 supported

in B(ΓJ , TJ ;T )) such that

Wf 1
k → 1M1(ψ − 1M0ψ), k →∞.

Thus W (f 0
k + f 1

k )→ ψ. This proves that the density holds for hε.
Suppose now that ψ ∈ L2(M(Γ, h);E). We have shown that there is a smooth

function f supported in B(Γ, hε;T ) such that∥∥1M(Γ,hε)ψ −Wf
∥∥2

L2(M ;E)
< ε.

Thus

‖ψ −Wf‖2
L2(M ;E) < ε+

(∫
M(Γ,h)

|ψ|2Edx−
∫
M(Γ,hε)

|ψ|2Edx
)
.
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The Riemannian volumes converge |M(Γ, hε)| → |M(Γ, h)| as ε→ 0, see [27, Lemma
4.3]. Thus the claimed density holds. �

3. Local reconstruction near the boundary

3.1. Inner products. We begin by generalizing an integration by parts technique
due to Blagovestchenskii in the 1 + 1 dimensional scalar case [4]. For a multidi-
mensional scalar case this was first used by Belishev [1]. We recall the notation
Wf = u(T ), where u is the solution of (1).

Lemma 3.1. Let T > 0, let S ⊂ ∂M be open, and let f and h be functions in
C∞0 ((0, 2T )× S;E). Then

〈Wf,Wh〉L2(M ;E) =
〈
f, JΛ2T

S h
〉
L2((0,2T )×S;E)

−
〈
f, (Λ2T

S )∗Jh
〉
L2((0,2T )×S;E)

,

where J is the integral operator in the time variable with the kernel sgn(t−s)1L(t, s)/4.
Here L = {(s, t) ∈ R2 : 0 ≤ t+ s ≤ 2T, t, s > 0}.

Proof. We write uf = u for the solution of (1) and define w(t, s) = 〈uf (t), uh(s)〉L2(M ;E).
We have

(∂2
t − ∂2

s )w(t, s) = 〈∂2
t u

f (t), uh(s)〉L2(M ;E) − 〈uf (t), ∂2
su

h(s)〉L2(M ;E)

= −〈∇∗∇uf (t), uh(s)〉L2(M ;E) + 〈uf (t),∇∗∇uh(s)〉L2(M ;E)

= −
∫
∂M

〈∇νu
f (t), uh(s)〉E dS +

∫
∂M

〈uf (t),∇νu
h(s)〉E dS

=

∫
∂M

〈f(t),Λ2T
S h(s)〉E dS −

∫
∂M

〈Λ2T
S f(t), h(s)〉E dS.

Since w(0, s) = w(t, 0) = ∂tw(0, s) = ∂sw(0, s) = 0 and w solves the above 1 + 1
dimensional wave equation, the result follows by considering w(T, T ). �

Corollary 3.2. Let T > 0, S ⊂ ∂M be open. Then Λ2T
S determines the inner products

〈Wf,Wh〉L2(M ;E) , f, h ∈ C∞0 ((0, 2T )× S;E).(21)

Moreover, Λ2T
S determines, for all (fj)

∞
j=1 ⊂ C∞0 ((0, 2T ) × S;E), if the sequence

(Wfj)
∞
j=1 converges, in the strong or weak sense, in L2(M ;E).

Proof. We allow the metric tensor g to be a priori unknown on S. However, Λ2T
S

determines the distances dg(x, y), x, y ∈ S, see e.g. [6, Section 2.2], and these dis-
tances determine g on S. Thus we can assume without loss of generality that the
Riemannian volume measure dS of (S, g) is known, and Lemma 3.1 implies that Λ2T

S
determines the inner products (21).

For the second claim, we observe that the inner products (21) can be used to de-
termine if (Wfj)

∞
j=1 is a Cauchy sequence in L2(M ;E). This allows us to determine

if (Wfj)
∞
j=1 converges in the strong sense. Moreover, using again (21) we can deter-

mine if (Wfj)
∞
j=1 is bounded in L2(M ;E), and we may test the weak convergence

analogously to [26, Lemma 3]. �
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3.2. Reconstruction of the metric tensor. Our reconstruction of the metric ten-
sor is based on the proof in [26]. The following lemma is a variation of [26, Lemma
6]. We give a short proof for the convenience of the reader.

Lemma 3.3. Let T > 0, s ∈ (0, T ], let Σ,Γ ⊂ ∂M be open and let h : Γ → [0, T ].
Suppose that (20) is dense in L2(M(Γ, h);E). Then the following are equivalent:

(i) M(Σ, s) ⊂M(Γ, h).
(ii) For all f0 ∈ C∞0 (B(Σ, s;T );E) there is a sequence (fj)

∞
j=1 in C∞0 (B(Γ, h;T );E)

such that (W (f0 − fj))∞j=1 tends to zero in L2(M ;E).

Proof. The implication from (i) to (ii) follows from the assumption that (20) is dense
in L2(M(Γ, h);E). We will now show that (ii) implies (i). We denote

M0 = M(Σ, s), M1 = M(Γ, h),

S0 = B(Σ, s;T ), S1 = B(Γ, h;T ).

Let us assume that (i) does not hold. There is a nonempty open set U ⊂ M0 such
that U ∩M1 = ∅, see [26, Lemma 6]. By Lemma 2.4 there is a smooth function f0

supported in S0 such that
∫
U
Wf0dx 6= 0. However, by finite speed of propagation

Wf |U = 0 for any f supported in S1. Thus

〈W (f0 − f), 1U〉L2(M ;E) = 〈Wf0, 1U〉L2(M ;E) 6= 0,

for all f supported in S1 and (ii) does not hold. �

Let Γ ⊂ ∂M be open and let T > 0. We recall that the cut distance σΓ is defined
by (6), and define

σTΓ (y) = min(σΓ(y), T ), y ∈ Γ,(22)

MT
Γ = {γ(s; y, ν); y ∈ Γ, s ∈ [0, σTΓ (y))}.

Theorem 3.4. Let T > 0 and let Γ ⊂ ∂M be open. Then the Riemannian manifold
(Γ, g), the Hermitian vector bundle E|Γ and Λ2T

Γ determine (MT
Γ , g).

Proof. By combining Corollary 3.2 and Lemmas 2.5 and 3.3 we can determine the
relation

{(Σ, s, h); M(Σ, s) ⊂M(Γ, h)}
for any open Σ ⊂ Γ, s ∈ (0, T ] and a function h of form (19). This relation determines
σTΓ and the Riemannian manifold (MT

Γ , g) by using the purely geometric method of
[26]. �

3.3. Reconstruction of the connection. Our reconstruction method is based on
a use of sequences of sources (fj)

∞
j=1 such that supp(Wfj) converges to a point.

Lemma 3.5. Let Γ1,Γ2 ⊂ ∂M be open and r1, r2 > 0. Suppose that for a sequence
(fj)

∞
j=1 ⊂ C∞0 ((T − r1, T )×Γ1;E) the sequence (Wfj)

∞
j=1 converges weakly to a func-

tion φ ∈ L2(M ;E), and that

〈Wfj,Wh〉L2(M ;E) → 0, h ∈ C∞0 ((T − r2, T )× Γ2;E).

Then supp(φ) ⊂M(Γ1, r1) \M(Γ2, r2)int.



INVERSE PROBLEMS FOR THE CONNECTION LAPLACIAN 13

Proof. The lemma follows immediately from the density of the set (18). �

Lemma 3.6. Let T > 0, Γ ⊂ ∂M be open, and let x ∈ Γ∪M int satisfy dg(x,Γ) < T .
Then there are functions h` ∈ C∞0 ((0, 2T ) × Γ;E) such that Wh`(x), ` = 1, . . . , n,
form an orthonormal basis of the fiber Ex of E at x.

Proof. If x ∈ Γ, then Wh(x) = h(T, x) and the claim clearly holds in this case.
Suppose now that x ∈M int. It is enough to show that the fiber Ex is spanned by the
vectors

Wh(x), h ∈ C∞0 ((0, T )× Γ;E).

In order to show this it is enough to show that if e ∈ Ex and

〈e,Wh(x)〉E = 0, h ∈ C∞0 ((0, T )× Γ;E),(23)

then e = 0.
We recall that the adjoint of W is given by φ 7→ ∇νv|(0,T )×∂M where v is the solution

of (16). We choose φ = eδx. Then the traces v|(0,T )×Γ and ∇νv|(0,T )×Γ are well defined
as explained at the end of Section 2.2. Moreover, the former trace vanishes by the
boundary condition in (16) and the latter by (23) and (17). We extend v on the time
interval (0, 2T ) by the odd reflection with respect to t = T , and denote the extension
still by v. The extension satisfies (∂2

t + P + V )v = 0 on (0, 2T ) ×M . Theorem 2.3
implies that e = 0. �

Lemma 3.7. Let Γ ⊂ ∂M be open, let T > 0, and let e : M → E be a section of E.
Let U ⊂M int∪Γ be open in M and suppose that U ⊂M(Γ, T ). Suppose, furthermore,
that x 7→ 〈e(x),Wh(x)〉E is smooth on U for all h ∈ C∞0 ((0, 2T ) × Γ;E). Then e is
smooth on U .

Proof. Let x ∈ U , and let us choose h`, ` = 1, . . . , n, as in Lemma 3.6. Then the
functions Wh` form a smooth frame near x, and the representation of e in this frame
is smooth. �

We recall that |X| denotes the Riemannian volume of a measurable set X ⊂ M ,
and that the set MΓ is defined by (7).

Lemma 3.8. Let Γ ⊂ ∂M be open. Let x = γ(s; y, ν) ∈MΓ, and define sk = s+1/k,

Yk = {ỹ ∈ Γ; dg(ỹ, y) < 1/k}, Xk = M(Yk, sk) \M(Γ, s).

Suppose that a double sequence Φ = (fjk)
∞
j,k=1 of functions in C∞0 ((T −sk, T )×Yk;E)

satisfies the following

(i) For each k = 1, 2, . . . , the sequence (Wfjk)
∞
j=1 converges weakly in L2(M ;E)

to a function supported in Xk.
(ii) There is C > 0 such that

‖Wfjk‖L2(M ;E) ≤ C|Xk|−1/2, j, k = 1, 2, . . . .

(iii) The limit limk→∞ limj→∞ 〈Wfjk,Wh〉L2(M ;E) exists for any function h in the

space C∞0 ((0, 2T )× Γ;E).
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Then there is a vector e(x; Φ) ∈ Ex that depends on x and Φ such that

lim
k→∞

lim
j→∞
〈Wfjk, φ〉L2(M ;E) = 〈e(x; Φ), φ(x)〉E , φ ∈ C∞(M ;E).(24)

Note that we allow here the case x ∈ Γ, i.e. s = 0.

Proof. By Lemma 3.6 there are h` such that Wh`(x), ` = 1, . . . , n, form an orthonor-
mal basis of Ex. Let write b` = Wh` and denote weak limit of (Wfjk)

∞
j=1 by uk. We

choose local coordinates x̃ in a neighborhood U ⊂ M of x, and suppose that k is
large enough so that Xk ⊂ U and that the sections b`(x̃) form a basis in Ex̃ for all
x̃ ∈ Xk. Let φ ∈ C∞(M ;E) and write φ(x̃) = c`b`(x̃) + (xp − x̃p)ψp(x̃), where c` ∈ C
and ψp ∈ C∞(U ;E), p = 1, . . . ,m. Then

〈uk, φ〉L2(M ;E) = c` 〈uk, b`〉L2(M ;E) +Rk,(25)

where the remainder term satisfies

|Rk| ≤ m max
p=1,...,m

‖ψp‖C(U) diam(Xk)

∫
Xk

|uk(x̃)|Edx̃

≤ m max
p=1,...,m

‖ψp‖C(U) diam(Xk) ‖uk‖L2(M ;E) |Xk|1/2.

Note that diam(Xk)→ 0 since Xk ⊃ Xk+1 and Xk → x as k →∞. Thus (ii) implies
that Rk → 0. By (iii) the limits

a` = lim
k→∞
〈uk, b`〉L2(M ;E) , ` = 1, . . . , n,

exist. We set e = a`b`(x). Then

lim
k→∞
〈uk, φ〉L2(M ;E) = c` lim

k→∞
〈uk, b`〉L2(M ;E) =

n∑
`=1

a`c` = 〈e, φ(x)〉E .

�

Lemma 3.9. Let Γ ⊂ ∂M be open. Let x ∈MΓ and let e ∈ Ex. Then there is a double
sequence Φ = (fjk)

∞
j,k=1 that satisfy the conditions of Lemma 3.8, and furthermore,

e(x; Φ) = e where e(x; Φ) is as in (24).

Proof. Let ẽ ∈ C∞(M ;E) satisfy ẽ(x) = e. By Lemma 2.4 there is a double sequence
Φ = (fjk)

∞
j,k=1 of functions in C∞0 ((T − sk, T )× Yk;E) such that (Wfjk)

∞
j=1 converges

to the function uk = |Xk|−11Xk ẽ. We recall that 1Xk is the indicator function of the set
Xk and |Xk| is its volume. Moreover, uk satisfies ‖uk‖L2(M ;E) ≤ |Xk|−1/2 ‖ẽ‖L∞(M ;E)

and, for a function φ ∈ C∞(M ;E),

〈uk, φ〉L2(M ;E) =
1

|Xk|

∫
Xk

〈ẽ(x̃), φ(x̃)〉E dx̃→ 〈e, φ(x)〉E ,

where x̃ are local coordinates on Xk. �

Theorem 3.10. Let T > 0, let Γ ⊂ ∂M be open and suppose that the vector bundle
E|Γ is trivial. Then the Riemannian manifold (MT

Γ , g), where MT
Γ is defined in (22),

the Hermitian vector bundle E|Γ and the restricted Dirichlet-to-Neumann map Λ2T
Γ
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determine the Hermitian vector bundle E|MT
Γ

, the connection ∇ and the potential V

on E|MT
Γ

.

Proof. We choose for each x ∈ MT
Γ a double sequence Φx = (fxjk)

∞
j,k=1 satifying con-

ditions (i)–(iii) of Lemma 3.8. Observe that, by combining Corollary 3.2 and Lemma
3.5, we can determine if condition (i) of Lemma 3.8 is valid, while conditions (ii) and
(iii) can be verified by using Lemma 3.1 alone. We use Lemma 3.1 once again to
compute the inner products 〈e(x; Φx),Wh(x)〉E for h ∈ C∞0 ((0, 2T )×Γ;E). Next we
will impose some further conditions on the choice of the sequences Φx.

First, we choose the sequences Φx, x ∈MT
Γ so that the functions

x 7→ 〈e(x; Φx),Wh(x)〉E , h ∈ C∞0 ((0, 2T )× Γ;E),(26)

are smooth in MT
Γ . Then Lemma 3.7 implies that e(x) = e(x; Φx) is a smooth section

of the vector bundle E|MT
Γ

.

Second, we pick an orthonormal frame B = (b`)
n
`=1 of E|Γ and choose double se-

quences Φx
` = (fxjk,`)

∞
j,k=1, ` = 1, . . . , n, so that the corresponding smooth sections

e`(x) = e(x; Φx
` ) satisfy,

〈e`(x),Wh(x)〉E = 〈b`(x), h(T, x)〉E , x ∈ Γ, h ∈ C∞0 ((0, 2T )× Γ;E).

This condition implies that e` = b` on Γ.
Our next goal is to choose Φx

` so that the corresponding sections e` form an or-
thonormal frame also on the set M0 = MT

Γ ∩M int. To this end, we observe that the
vector bundle E|MT

Γ
is trivial. This follows from [18, Th. 4.2.4], since the identity

map on MT
Γ is smoothly homotopic with the map (s, y) 7→ (0, y) in coordinates (5).

Let x ∈ M0, and choose a cut off function χ ∈ C∞0 (M0) such that χ(x) = 1. As
the functions (26) and the geometry (MT

Γ , g) are known, we can compute the limits

lim
k→∞

lim
j→∞

〈
χeκ,Wfxjk,`

〉
L2(M ;E)

= 〈eκ(x), e`(x)〉E , κ, ` = 1, . . . , n,(27)

where the equality follows from Lemma 3.8. Hence, by modifying Φx
` , we can enforce

E = (e`)
n
`=1 to form an orthonormal frame on M0.

Now (x, a) 7→ a`e`(x), where a = (a`)n`=1 ∈ Cn and x ∈ MT
Γ , is a trivialization of

E|MT
Γ

, and the Hermitian inner product is given by

〈
a`e`(x), cκeκ(x)

〉
E

=
n∑
`=1

a`c`, a, c ∈ Cn, x ∈MT
Γ ,

on this trivialization.
Let us write uh = u for the solution of (1) with f = h. The functions (26) determine

the representation of

Wh(x) = uh(t, x), t = T, x ∈M0, h ∈ C∞0 ((0, 2T )× Γ;E),(28)

in the frame E . To avoid cumbersome notation, we will not make explicit distinction
between the functions (28) and their representation until Section 4.2.
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As the wave equation (1) is translation invariant in time, the functions (28) are
determined also for t ∈ (0, T ). We differentiate twice in time and obtain the functions

(P + V )uh(t, x), t ∈ (0, T ), x ∈M0, h ∈ C∞0 ((0, 2T )× Γ;E).

Let φ ∈ C∞0 (M0;E). We can compute the inner products〈
(P + V )uh(T ), φ

〉
L2(M ;E)

= 〈Wh, (P + V )φ〉L2(M ;E) , h ∈ C
∞
0 ((0, 2T )× Γ;E).

As the functions (28) are known and dense in L2(M0;E), we can determine (P +V )φ
on M0.

Let x ∈ M0, ` = 1, . . . , n and k = 1, . . . ,m. We choose φ = φk` such that φ(x) = 0
and ∂jφ(x) = δkj e` for j = 1, . . . ,m. As the metric tensor is known near x, we can
compute d∗dφ at x. Thus we can recover the first order term in (P + V )φ at x. By
(4), this is

−2(A, dφ)(x) = −2gik(x)Aie`(x),

and therefore A can be determined. Finally, A and g determine P , and we can
determine V by V = P + V − P . �

3.4. Reconstruction of ∇ when (M, g) is known and E is trivial. We will show
next that Corollary 1.2 follows from the above local reconstruction step, that is, from
the proof of Theorem 3.10.

Corollary 3.11. Suppose that (M, g) is known, E is the trivial bundle M ×Cn, and
that T > maxx∈M dg(x, ∂M). Let dA be a Hermitian connection on E. Then the
Dirichlet-to-Neumann map Λ2T

∂M ;A determines the orbit

O(A) = {U−1AU + U−1dU ; U : M → U(n), U |∂M = Id}.

Proof. Let b1, . . . , bn be the standard basis of Cn and let B be the corresponding
constant frame of E. Let E be the orthonormal frame of E|M∂M

chosen in the proof
of Theorem 3.10. We recall that E can be enforced to satisfy E = B on ∂M .

We have M∂M = M \N where the cut locus N is of measure zero, see e.g. [5]. In
particular, M∂M is dense in M . We know the representation of the functions Wh,
h ∈ C∞0 ((0, 2T )× ∂M ;E), in the frame E , see (28) above. Let us impose the further
condition on the choice of Φx

` in the proof of Theorem 3.10 that the representation
of Wh(x) in the frame E is smooth in M = M∂M for all h ∈ C∞0 ((0, 2T ) × ∂M ;E).
Then Lemma 3.7 implies that E gives a smooth frame for the whole vector bundle E.

There is a smooth transition function U : M → U(n) between the two frames E
and B, and U = Id on ∂M . Moreover, we can reconstruct the representation of dA
in the frame E . Let us denote the representation by dÃ. Then

Ã = U−1AU + U−1dU,

and hence we can determine the orbit O(Ã) = O(A). �

Suppose now that dA and dB are two Hermitian connections on E, and that the
assumptions of Corollary 1.2 are satisfied. Then the above corollary implies that
O(A) = O(B), and we have shown Corollary 1.2.
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t
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2T − t0

x

Figure 1. A schematic of the unique continuation argument in the
proof of Lemma 4.1. The origin represents the set Γ, and the gray area
is the cylinder (0, 2T − t0)×B. In order to recover u on {2T − t0}×B,
data (u,∇νu) is needed on the cylinder I×Γ where I = (2T −2t0, 2T ).
We may translate the interval I to cover the whole gray cylinder.

4. Global reconstruction

In this section we show how to iterate the local reconstruction step. The iteration
is based on continuation of the data Λ2T

S inside the region that we have already
reconstructed.

4.1. Continuation of the data. For T > 0 and open sets B ⊂M and Γ ⊂ ∂M , we
define the map

LTΓ,Bf = u|(0,T )×B, f ∈ C∞0 ((0, T )× Γ;E),

where u is the solution of (1). Moreover, for open B ⊂M int, we define the map

LTBF = u|(0,T )×B, F ∈ C∞0 ((0, T )×B;E),

where u is the solution of

(∂2
t + P + V )u(t, x) = F, (0,∞)×M,(29)

u|(0,∞)×∂M = 0,

u|t=0 = ∂tu|t=0 = 0.

We write B(x, ε) = {y ∈M ; dg(y, x) < ε} for x ∈M and ε > 0.

Lemma 4.1. Let T > 0, Γ ⊂ ∂M be open and let x ∈ MT
Γ . Define s = dg(x,Γ), let

ε ∈ (0, T − s) and define
B = B(x, ε), t0 = s+ ε.

Then Λ2T
Γ and the structure (g, E,∇, V ) on MT

Γ determine the map L2T−t0
Γ,B∩MT

Γ
. Fur-

thermore, if B ⊂MT
Γ ∩M int then they determine also the map L

2(T−t0)
B .
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Proof. Let f ∈ C∞0 ((0, 2T ) × Γ;E). As P + V is known on MT
Γ , we can use unique

continuation Λ2T
Γ f to determine L2T−t0

Γ,B∩MT
Γ
f . Indeed, let us first extend the solution u

of (1) by 0 to (−∞, 0) ×M . We denote the distance function of (MT
Γ , g) by d̃g and

observe that

d̃g(x,Γ) = dg(x,Γ), x ∈MT
Γ ,

by the definition of MΓ, see (7). Let ũ be a solution of

(∂2
t + P + V )ũ = 0, (0,∞)×MT

Γ ,

satisfying the boundary conditions ũ = f and ∇ν ũ = Λ2T
Γ f on (−∞, 2T ) × Γ. As

P + V is known on MT
Γ , we can determine all such functions ũ. We apply Theorem

2.3 on the function w = ũ−u with M replaced by MT
Γ and with suitable translations

in the time variable, see Figure 1. This implies that ũ = u on (0, 2T − t0)× (B∩MT
Γ ),

and we have shown the first claim.
Let us now assume that B ⊂ MT

Γ ∩M int. We will reconstruct the map L
2(T−t0)
B

in two steps that we outline before giving a detailed proof. Note that L2T−t0
Γ,B can

be interpreted as data with sources on Γ and receivers on B. We will first transpose
L2T−t0

Γ,B and obtain data with sources on B and receivers on Γ. Then we will use unique
continuation to obtain data with both sources and receivers on B, that is, the map

L
2(T−t0)
B .
By taking the adjoint of L2T−t0

Γ,B and conjugating it with the operator reversing the
time on the interval (0, 2T − t0), we get the map

F 7→ ∇νu : C∞0 ((0, 2T − t0)×B;E)→ C∞((0, 2T − t0)× Γ;E),(30)

where u is the solution of (29). We extend u by 0 to (−∞, 0) ×M , and let ũ be a
solution of

(∂2
t + P + V )ũ = F, (0,∞)×MT

Γ ,

satisfying the boundary conditions ũ = 0 and ∇ν ũ = ∇νu on (−∞, 2T − t0) × Γ.
Then w = ũ − u satisfies conditions of Theorem 2.3 with M again replaced by MT

Γ ,
and therefore ũ = u on (0, 2T − t0 − t0)×B. This implies the second claim. �

We denote by SM the unit sphere bundle of M . Similarly to σΓ and σTΓ , see (6)
and (22), we define for x ∈M int, ξ ∈ SxM and T > 0,

σx(ξ) = sup{t ∈ (0, τx(ξ)]; dg(γ(t;x, ξ), x) = t},
τx(ξ) = sup{t ∈ (0,∞); γ(t;x, ξ) ∈M int},

and σTx (ξ) = min(σx(ξ), T ). Moreover, we define

MT
x = {γ(t;x, ξ); ξ ∈ SxM, t ∈ [0, σTx (ξ))}.

Note that the injectivity radius injx at a point x ∈M int satisfies

injx = min
ξ∈SxM

σx(ξ).
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Lemma 4.2. Let T > 0, x ∈ M int, ε ∈ (0, injx), and define B = B(x, ε). Then L2T
B

and the structure (g, E,∇, V ) on B determine the structure (g, E,∇, V ) on MT+ε
x .

Proof. We define M̃ = M \B and consider the wave equation

(∂2
t + P + V )ũ = 0, (0,∞)× M̃,(31)

ũ|(0,∞)×∂B = f, ũ|(0,∞)×∂M = 0,

ũ|t=0 = ∂tũ|t=0 = 0.

We will show that L2T
B determines the restricted Dirichlet-to-Neumann map Λ2T

∂B of

M̃ , that is, the map

Λ2T
∂Bf = ∇ν ũ|(0,2T )×∂B, f ∈ C∞0 ((0, 2T )× ∂B;E),

where ũ is the solution of (31). Let f ∈ C∞0 ((0, 2T )×∂B;E) and extend the solution
of (31) smoothly into (0,∞) × B keeping the notation ũ for the extension. Then ũ
satisfies (29) with F̃ = (∂2

t + P + V )ũ, and F̃ belongs to

Ċ∞((0,∞)×B;E) = {F ∈ C∞((0,∞)×M ;E); supp(F̃ ) ⊂ (0,∞]×B}.(32)

By closing L2T
B in L2((0, 2T ) × B;E), we can compute L2T

B F for F in (32), and

therefore we can find all F ∈ Ċ∞((0,∞)×B;E) such that the corresponding solution
u of (29) satisfies u|(0,2T )×∂B = f . Using again L2T

B F we can determine ∇νu|(0,2T )×∂B.
Since the solution of (31) is unique, we have

∇νu|(0,2T )×∂B = ∇ν ũ|(0,2T )×∂B.

We shown that the map L2T
B determines the map Λ2T

∂B.

We denote by σ∂B the cut distance on the manifold M̃ defined analogously to (6)
and define σT∂B(y) = max(σ∂B(y), T ), y ∈ ∂B. Note that the vector bundle E|∂B is
trivial, in fact, E is trivial over MT

x due to its contractibility via the radial geodesics
emanating from x. We apply Theorems 3.4 and 3.10 with M = M̃ and Γ = ∂B. This
gives us the structure (g, E,∇, V ) on

M̃T
∂B = {γ(s; y, ν); y ∈ ∂B, s ∈ [0, σT∂B(y))}.

Note that σx(ξ) = σ∂B(y)+ε, where y = γ(ε;x, ξ), and thereforeMT+ε
x = B∪M̃T

∂B. �

Lemma 4.3. Let T0, ε0 > 0, x0 ∈ M int, and define B0 = B(x0, ε0) and M0 = MT0
x0

.
Let x ∈M0 \B0 and define s = dg(x, x0). Let T > 0 and let ε ∈ (0, injx) satisfy

ε < dg(x, ∂M0), ε < T − s+ ε0.

Define B1 = B(x, ε) and t1 = s + ε − ε0. Then L2T
B0

and the structure (g, E,∇, V )

on M0 determine the map L
2(T−t1)
B1

. Furthermore, for open Γ ⊂ ∂M , L2T
Γ,B0

and the

structure (g, E,∇, V ) on M0 determine the map L2T−t1
Γ,B1

.

Proof. By the proof of Lemma 4.2, L2T
B0

determines Λ2T
∂B0

. As dg(x, ∂B0) = s − ε0,

Lemma 4.1 shows that Λ2T
∂B and the structure (g, E,∇, V ) on M0 determine L

2(T−t1)
B1

.

Finally, L2T
Γ,B0

determines L2T−t1
Γ,B1

by a unique continuation argument similar to that
in the proof of Lemma 4.1. �
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4.2. Gluing local reconstructions in the interior. In this section we show the
following theorem:

Theorem 4.4. Let S ⊂ ∂M be open and suppose that

T > max
x∈M

dg(x,S).(33)

Then the Hermitian vector bundle E|S and the restricted Dirichlet-to-Neumann oper-
ator Λ2T

S determine the smooth manifold M int and the structure (g, E,∇, V ) on M int.

Up to this point we have avoided writing all the isomorphisms explicitly, but in
this section the distinction between different representations is crucial. Let us choose
an open cover GS of S consisting of small enough sets Γ ⊂ S so that each Γ is a
coordinate neighborhood in ∂M and that the vector bundle E|Γ is trivial. Then we
may choose an open set YΓ ⊂ Rm−1 and a unitary trivialization

E
φΓ//

��

YΓ × Cn

��
Γ

ψΓ

// YΓ

(34)

By a unitary trivialization we mean that the diagram (34) commutes, φΓ is a smooth
bijection that is linear in fibers, and that the Hermitian structure is preserved, that
is, φ∗Γ 〈·, ·〉Cn = 〈·, ·〉E.

Starting from the representation of Λ2T
Γ on the trivialization (34), the local recon-

struction method in Section 3 gives the function σTΓ : Γ → (0, T ), a metric tensor
gΓ on XT

Γ , and a connection ∇Γ and potential VΓ on XT
Γ × Cn, such that there is a

unitary trivialization

E
Φ̃Γ //

��

XT
Γ × Cn

��
MT

Γ
Ψ̃Γ

// XT
Γ

(35)

satisfying g = Ψ̃∗ΓgΓ, ∇ = Φ̃∗Γ∇Γ and V = Φ̃∗ΓVΓ. Here

XT
Γ = {(s, y) ∈ Rm; s ∈ [0, σTΓ ◦ ψ−1

Γ (y)), y ∈ YΓ}
is the representation of MT

Γ in boundary normal coordinates, and the restriction of

Φ̃Γ on the vector bundle E|Γ coincides with φΓ.
We will next iterate the procedure in Section 4.1. The initial step is the following:

1. Given Λ2T
Γ and a representation of the structure (g, E,∇, V ) on MT

Γ , that is,
gΓ, XT

Γ × Cn, ∇Γ and VΓ, we choose (s0, y0) ∈ XT
Γ and ε0 > 0 such that

B0 = B(z0, ε0) ⊂MT
Γ ∩M int,(36)

where z0 = Ψ̃−1
Γ (s0, y0) ∈MT

Γ .
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We invoke Lemma 4.1 to reconstruct the representations of L2T−t0
Γ,B0

and L
2(T−t0)
B0

on
the trivialization (35). Here

t0 = s0 + ε0,(37)

and we emphasize that we do not know the point z0 ∈ M , only its representation
(s0, y0) in the boundary normal coordinates.

We iterate Lemmas 4.2 and 4.3 as follows:

2. Given a representation of L
2(T−tj)
Bj

, where Bj = B(zj, εj), we reconstruct a

representation of the structure (g, E,∇, V ) on Mj = M
T−tj+εj
zj .

3. We choose sj+1 > 0, ξj+1 ∈ SzjM and εj+1 > 0 such that

Bj+1 = B(zj+1, εj+1) ⊂Mj,

where zj+1 = γ(sj+1; zj, ξj+1). Again, we do not know zj+1, only its repre-
sentation (sj+1, ξj+1) in normal coordinates at zj. Given representations of

L
2(T−tj)
Bj

and L
2T−tj
Γ,Bj

, we reconstruct representations of L
2(T−tj+1)
Bj+1

and L
2T−tj+1

Γ,Bj
,

where

tj+1 = tj + sj+1 + εj+1 − εj.(38)

We terminate the iteration after repeating the steps 2 and 3 a finite number of times
denoted by N = 0, 1, 2, . . . . Note that we must satisfy the condition tj < T in each
step of the iteration.

If N = 0 then we do not need to satisfy the constraint (36). That is, we can
use Lemma 4.1 to reconstruct a representation of L2T−t0

Γ,B0∩MT
Γ

where B0 = B(z0, ε0),

z0 ∈ MT
Γ and ε0 ∈ (0, T − s0). In particular, for y0 ∈ Γ and for small enough ε0 > 0

we can reconstruct a representation of L2T−ε0
Γ,C0

where C0 is the cylinder

C0 = {γ(s; y, ν); s ∈ (0, ε0), y ∈ B∂(y0, ε0)},(39)

and B∂(y0, ε0) = {y ∈ ∂M ; dg(y, y0) < ε0}.
There are is a lot freedom in our iteration process. Namely, we can choose N , the

points zj and the radii εj freely within the constraints of the iteration. Let AΓ denote
the set of all choices that are allowed within the constraints of iteration when starting
from Γ ∈ GS . We define also the disjoint union A =

⊔
Γ∈GS AΓ.

We denote by Bα = BN(α) the set chosen in the last invocation of step 3 in the
iteration process α ∈ AΓ, and use analogous notation for other chosen quantities.
The iteration gives us a metric tensor gα, a connection ∇α and a potential Vα such
that there is a unitary trivialization

E
Φ̃α//

��

Xα × Cn

��
Bα

Ψ̃α

// Xα

(40)
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satisfying g = Ψ̃∗αgα, ∇ = Φ̃∗α∇α and V = Φ̃∗αVα. Here Xα is the open ball of radius
εN(α) in Rm with center at the origin, and Ψ̃α gives normal coordinates at zN(α). The

iteration gives also the representation Lα of L
2T−tN(α)

Γ,Bα
on the trivialization (40).

If the iteration is terminated immediately after the initial step (that is, N(α) = 0)
we allow Bα to be also of the form (39).

Let us show that the balls Bα, α ∈ AΓ, cover M(Γ, T )int and that they separate
points:

(G1) For all distinct z, z′ ∈ M(Γ, T )int there are α, β ∈ AΓ such that z ∈ Bα,
z′ ∈ Bβ and Bα ∩Bβ = ∅.

Proof. Let z ∈M(Γ, T )int. Then there is a shortest path γ from Γ̄ to z having length
strictly less than T . The path γ can be perturbed to get a broken geodesic γ̃ from
y ∈ Γ to z having length strictly less than T . Moreover, γ̃ can be chosen so that it
intersects ∂M only at its starting point y. Then the points zj, j = 1, . . . , N , can be
chosen along γ̃. Moreover, when z0 is close to Γ and the radius εN is chosen small
enough, we have tN < T . Indeed, by (37) and (38),

tN = εN + s0 +
N∑
j=1

sj,

where s0 = dg(z0,Γ) and sj = dg(zj, zj−1). In particular, the balls Bα, α ∈ A, form
an open cover of M(Γ, T )int.

Let z′ ∈ M(Γ, T )int and suppose that z′ 6= z. We may choose the radius εN small
enough so that εN < dg(z, z

′)/2, and perform an analogous construction for z′. This
gives us disjoint balls as claimed. �

Let us point out that the assumption (33) does not imply that M(Γ, T ) = M since
Γ might be smaller than S. However, it implies that the sets M(Γ, T )int, Γ ∈ GS ,
form an open cover of M int, and therefore the sets Bα, α ∈ A, form an open cover of
M int by (G1). We will show next how to glue together the local representations of
(g, E,∇, V ) on the sets Bα, α ∈ A.

Lemma 4.5. Let T > 0, Γ ⊂ ∂M be open, and suppose that B ⊂ M int is open and
satisfies B ⊂ M(Γ, T ). Let h ∈ C∞0 (B;E) and s ∈ (0, T ). Then the maps Λ2T

Γ and
L2T−s

Γ,B together with the structure (g, E) on B determine the non-empty set

{(fj)∞j=1 ⊂ C∞0 ((0, 2T )× Γ;E); lim
j→∞

Wfj = h in L2(M ;E)}.(41)

Proof. We expand the squared norm

‖Wfj − h‖2
L2(M ;E) = 〈Wfj,Wfj〉L2(M ;E) − 2Re 〈Wfj, h〉L2(M ;E) + 〈h, h〉L2(M ;E) ,

and observe that Λ2T
Γ determines the first term on the right-hand side by Corollary

3.2, L2T−s
Γ,B and (g, E) on B determine the second term, and (g, E) on B determines

the third term. To conclude we observe that Lemma 2.4 implies that the set (41) is
non-empty. �
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Lemma 4.6. Suppose that open S ⊂ ∂M and T > 0 satisfy (33). Let x1, x2 ∈
M int. We have x1 = x2 if and only if for all sufficiently small ε > 0 and any
h1 ∈ C∞0 (B(x1, ε);E) there is h2 ∈ C∞0 (B(x2, ε);E) such that

〈h1 − h2,Wf〉L2(M ;E) = 0, f ∈ C∞0 ((0, 2T )× S;E).(42)

Proof. Let us suppose that x1 6= x2. We choose small enough ε > 0 so that the balls
B(xj, ε), j = 1, 2, are disjoint. We choose non-zero h1 ∈ C∞0 (B(x1, ε);E) and let
h2 ∈ C∞0 (B(x2, ε);E) be arbitrary. Then h1 6= h2 and Lemma 2.4 implies that there
is f ∈ C∞0 ((0, 2T )× S;E) satisfying

〈h1 − h2,Wf〉L2(M ;E) 6= 0.

The other implication is trivial. �

Lemmas 4.5 and 4.6 allow us to determine if two points xi ∈ Xαi , αi ∈ AΓi , Γi ∈ GS ,
i = 1, 2, satisfy

Ψ̃−1
α1

(x1) = Ψ̃−1
α2

(x2).(43)

Indeed, let ε > 0 be small, let B̃i, i = 1, 2, be the geodesic ball in (Xαi , gαi) with

center xi and radius ε, and let h̃i ∈ C∞0 (B̃i;E). Then using Lemma 4.5, we can
find sequences (f ij)

∞
j=1 ⊂ C∞0 ((0, 2T ) × Γi;E) such that limj→∞Wf ij = hi where

hi = Φ∗αih̃i. Note that in order to apply Lemma 4.5 it is enough to know Λ2T
Γ and the

representations Lαi and gαi , i = 1, 2. By Corollary 3.2, we can compute

lim
j→∞
〈Wf 1

j −Wf 2
j ,Wf〉L2(M ;E) = 〈h1 − h2,Wf〉L2(M ;E),(44)

for all f ∈ C∞0 ((0, 2T )× S;E). Hence we can use (42) to determine if (43) holds.
The equation (43) gives an equivalence relation on the disjoint union X̃ =

⊔
α∈AXα

and we denote by X and q : X̃ → X the corresponding quotient space and the
canonical map. Moreover, we define Uα = q(Xα) ⊂ X and qα = q|Xα , α ∈ A. We will
show that X is a smooth manifold:

(G2) The maps qα : Xα → Uα are bijective, and there is a unique Hausdorff topology
and a complete atlas on X such that each q−1

α is a coordinate system.

As we can determine if x and x′ are equivalent given the data Λ2T
Γ , we see that the

smooth structure of X is determined. Let us show (G2) simultaneously with the
following:

(G3) Let us define a map Ψ : M int → X by Ψ(z) = q ◦ Ψ̃α(z) when z ∈ Bα. Then
Ψ is a well-defined diffeomorphism.

Proof of (G2) and (G3). Let z ∈ M int. Then (G1) implies that there is α ∈ A such
that z ∈ Bα. If z ∈ Bβ also for β ∈ A, then q(x) = q(x′) where x = Ψ̃α(z) and

x′ = Ψ̃β(z). Thus Ψ is well-defined.

Note that the sets Uα cover X since the sets Xα = Ψ̃α(Bα) cover X̃ . This implies
that Ψ is surjective. Suppose that Ψ(z) = Ψ(z′) for some z ∈ Bα and z′ ∈ Bβ. Then

q(x) = q(x′) where x = Ψ̃α(z) and x′ = Ψ̃β(z). Thus z = z′ by the definition of q,
and we have shown that Ψ is injective.
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We define Ψα : Bα → Uα as the restiction Ψα = Ψ|Bα . It is clearly bijective. Now
Ψα = qα ◦ Ψ̃α implies that qα = Ψα ◦ Ψ̃−1

α . Hence the maps qα are bijective. Moreover,
if U = Uα ∩ Uβ 6= ∅ then we have on q−1

α (U) that

q−1
β ◦ qα = Ψ̃β ◦Ψ−1 ◦Ψ ◦ Ψ̃−1

α = Ψ̃β ◦ Ψ̃−1
α ,

and we see that q−1
β ◦ qα is smooth on the open set q−1

α (U) = Ψ̃α(Bα ∩Bβ). We have
shown that the conditions (1) and (2) of [28, Prop. 1.42] hold. To finish the proof of
(G2) we need only to verify the separation condition (3) in [28, Prop. 1.42].

Let p, p′ ∈ X be distinct. Then z 6= z′ where z = Ψ−1(p) and z′ = Ψ−1(p′).
Let α, β ∈ A be as in (G1). Then Uα and Uβ are disjoint sets containing p and p′

respectively, since Uα = Ψ(Bα) and Uβ = Ψ(Bβ). Now (G2) follows from [28, Prop.
1.42].

To show that Ψ is smooth, it is enough to show that each q−1
α ◦Ψ ◦ Ψ̃−1

α is smooth.
But this is simply the identity map on Xα. �

Let us show that the metric tensors gα can be glued together:

(G4) We have (q−1
α )∗gα = (Ψ−1)∗g on each Uα.

Proof. We recall that g = Ψ̃∗αgα on Bα. Thus we have on Uα that

(Ψ−1)∗g = (Ψ̃α ◦Ψ−1)∗gα = (Ψ̃α ◦Ψ−1
α )∗gα = (q−1

α )∗gα.

�

Let us now turn to gluing of the vector bundles Xα ×Cn. Let Eα = (eα` )n`=1 be the
constant frame on Xα×Cn corresponding to the standard basis of Cn. Suppose that
Uα and Uβ intersect for some α, β ∈ A, and write

Xαβ = q−1
α (Uα ∩ Uβ), Xβα = q−1

β (Uα ∩ Uβ).

We define functions h1 = Φ∗αh̃1 and h2 = Φ∗βh̃2, where

h̃1 = 1Xαβe
α
` ∈ L2(Xα;Cn), h̃2 = 1Xβαa

κ
` e
β
κ ∈ L2(Xβ;Cn).

Here `, κ = 1, . . . , n and aκ` ∈ C∞(Xβα). Analogously to the considerations preceeding
(44), we can choose two sequences of sources (f ij)

∞
j=1, i = 1, 2, such that (Wf ij)

∞
j=1

converges to hi, and determine if (42) holds. Suppose now that we have chosen
aκ` ∈ C∞(Xβα), κ = 1, . . . , n, so that (42) holds. We define Uβα = (aκ` )

n
κ,`=1 on Xβα.

Moreover, we define an equivalence relation on X̃ × Cn by

q(x) = q(x′), ξ′ = Uβα(x′)ξ,(45)

where x ∈ Xα, x′ ∈ Xβ and ξ, ξ′ ∈ Cn. We have:

(G5) The equations (45) hold if and only if Φ̃−1
α (x, ξ) = Φ̃−1

β (x′, ξ′).

Proof. Note that x ∈ Xα, x′ ∈ Xβ and q(x) = q(x′) imply that x′ ∈ Xβα. Therefore,
the second equation in (45) is well-defined whenever the first one holds.

We write B = Bα ∩ Bβ. Let Z ∈ π−1
E (B) where πE : E|M int → M int is the bundle

projection, and take z = πE(Z). Moreover, denote by Zp = (Z`
p)
n
`=1 the representation
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of Z in the frame Φ̃∗pe
p
` , p = α, β. Then, since h1 and h2 are smooth in B and satisfy

(42), Lemma 2.4 implies that

Z = Z`
αΦ̃∗αe

α
` |z = Z`

αΦ̃∗β(aκ` e
β
κ)|z = Z`

αa
κ
` (Ψ̃β(z))Φ̃∗βe

β
κ|z.

Hence Zβ = Uβα(Ψ̃β(z))Zα.

Suppose that (45) holds, and define Z = Φ̃−1
α (x, ξ). Then Z ∈ π−1

E (B) and we have,

using the above notation z = πE(Z) and Zp = (Z`
p)
n
`=1, p = α, β, that Ψ̃α(z) = x and

Zα = ξ. Moreover, Φ̃β(Z) = (Ψ̃β(z), Zβ) where Ψ̃β(z) = x′ as q(x) = q(x′), and

Zβ = Uβα(Ψ̃β(z))Zα = Uβα(x′)ξ = ξ′.

On the other hand, if Z = Φ̃−1
α (x, ξ) = Φ̃−1

β (x′, ξ′), then q(x) = q(x′) and

ξ′ = Zβ = Uβα(Ψ̃β(z))Zα = Uβα(x′)ξ.

�

We denote by F the quotient space with respect to the equivalence (45) and by
Q : X̃ × Cn → F the corresponding canonical map. Moreover, we define

πF : F → X : πF (Q(x, ξ)) = q(x), (x, ξ) ∈ X̃ × Cn,(46)

and Qα as the restriction of Q on Xα × Cn, α ∈ A. These maps define a smooth
vector bundle structure:

(G6) The map πF is a well-defined surjection and the maps Qα : Xα×Cn → π−1
F (Uα)

are bijective. There is a unique Hausdorff topology and a complete atlas on
F such that each Q−1

α is a coordinate system. The maps ξ 7→ Qα(x, ξ) are
bijective from Cn to π−1

F ({q(x)}) for x ∈ Xα and α ∈ A, and, if the fibers
π−1
F ({p}), p ∈ X , are equipped with the vector space structure that is pulled

back from Cn via the inverses of these maps, then πF : F → X is a smooth
vector bundle that is trivial on each Uα.

Let us show (G6) simultaneously with the following:

(G7) Let us define a map Φ : E|M int → F by Φ(Z) = Q◦ Φ̃α(Z) when Z ∈ π−1
E (Bα).

Here πE is the bundle projection E|M int → M int. Then Φ is a well-defined
vector bundle isomorphism that covers Ψ.

Proof of (G6) and (G7). Clearly πF is a well-defined surjection. A proof that Φ is a
well-defined bijection is essentially identical with the above proof that Ψ is a well-
defined bijection, and we omit it.

Let α ∈ A, x ∈ Xα, and consider the map Qx
α(ξ) = Qα(x, ξ). The definition of

πF implies that Qx
α : Cn → F x where F x = π−1

F ({q(x)}). Let us show that Qx
α is

surjective. Let β ∈ A and x′ ∈ Xβ satisfy q(x′) = q(x) and let ξ′ ∈ Cn. Then, if we
choose ξ = Uβα(x′)−1ξ′, we have Qx′

β (ξ′) = Qx
α(ξ) due to (45). Thus Qx

α is surjective.
The surjectivity implies that

Q(Xα × Cn) =
⋃
x∈Xα

Qx
α(Cn) = π−1

F (q(Xα)) = π−1
F (Uα).
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We write Eα = π−1
E (Bα), Fα = π−1

F (Uα), and define Φα = Φ|Eα . The sets

Φ(Eα) = Q(Xα × Cn) = Fα, α ∈ A,

cover F , and Φα : Eα → Fα is bijective. The factorization Φα = Qα ◦ Φ̃α implies that
Qα is bijective, and Q−1

β ◦Qα = Φ̃β ◦ Φ̃−1
α is smooth on the open set Q−1

α (Fα ∩ Fβ) =

Φ̃α(Eα ∩ Eβ).
Let p, p′ ∈ F , and define z = πE ◦ Φ−1(p) and z′ = πE ◦ Φ−1(p′). If z 6= z′ then we

may choose α, β ∈ A as in (G1). Then Eα and Eβ are disjoint, whence Fα and Fβ
are disjoint sets containing p and p′ respectively. On the other hand, if z = z′ then
there is α ∈ A such that p, p′ ∈ Fα. Now [28, Prop. 1.42] implies that F has a unique
smooth manifold structure.

To show that πF is smooth, it is enough to show that each q−1
α ◦πF ◦Qα is smooth.

But this is simply the map πα : Xα × Cn → Xα, πα(x, ξ) = x. A proof that Φ is
smooth is essentially identical with the above proof that Ψ is smooth, and we omit
it.

We define a vector space structure on F x by pulling back the addition and scalar
multiplication via (Qx

α)−1 : F x → Cn. That is,

Qx
α(ξ) + cQx

α(η) = Qx
α(ξ + cη), ξ, η ∈ Cn c ∈ C.

Let us show that this does not depend on the choice of x′ ∈ q−1({x}). Suppose
that F x = F x′ for some β ∈ A and x′ ∈ Xβ, and let ξ′, η′ ∈ Cn. We choose
ξ = Uβα(x′)−1ξ′ and η = Uβα(x′)−1η′. Then Qx′

β (ξ′) = Qx
α(ξ), Qx′

β (η′) = Qx
α(η) and

Qx′

β (ξ′ + cη′) = Qx
α(ξ + cη) for all c ∈ C.

Next let us construct local trivializations for F . We define ρ : X̃ ×Cn → X ×Cn by
ρ = q⊗ id, that is, ρ(x, ξ) = (q(x), ξ), and set ρα = ρ ◦Q−1

α . Then ρα : Fα → Uα×Cn

is a smooth bijection since (q−1
α ⊗ id) ◦ ρα ◦Qα is the identity on Xα×Cn. Moreover,

πF ◦ρ−1
α is the identity on Uα, and, for x ∈ Xα, the map ξ 7→ ρ−1

α (q(x), ξ) is Qx
α. Thus

the maps ρ−1
α , α ∈ A, give local trivializations for F , and πF : F → X is a smooth

vector bundle.
Let us show that Φ is a vector bundle homomorphism. We recall that qα = Ψ◦Ψ̃−1

α ,

q−1
α ◦ πF ◦ Qα = πα and Qα = Φα ◦ Φ̃−1

α , where πα is the projection on right in (40).
thus, we have

q−1
α ◦ πF ◦ Φ ◦ Φ̃−1

α = q−1
α ◦ πF ◦Qα = πα,(47)

and, as the diagram (40) commutes, we have also

q−1
α ◦Ψ ◦ πE ◦ Φ̃−1

α = q−1
α ◦Ψ ◦ Ψ̃−1

α ◦ πα = πα.(48)

Thus πF ◦ Φ = Ψ ◦ πE. Let α ∈ A, z ∈ Bα. Then Φ is linear from the fiber π−1
E ({z})

to the fiber π−1
F ({Ψ(z)}), since (Qx

α)−1, Θ(ξ)x = Φ̃−1
α (x, ξ) and (Qx

α)−1 ◦ Φ ◦ Θ =

id are linear where x = Ψ̃α(z) and the last equation follows from (47) and (48).
Hence Φ is a vector bundle homomorphism. As it is bijective, it is a vector bundle
isomorphism. �



INVERSE PROBLEMS FOR THE CONNECTION LAPLACIAN 27

The connections ∇α, potentials Vα and the Hermitian structures can be glued
together:

(G8) (Q−1
α )∗∇α = (Φ−1)∗∇, (Q−1

α )∗Vα = (Φ−1)∗V and (Q−1
α )∗ 〈·, ·〉Cn = (Φ−1)∗ 〈·, ·〉E

on each π−1
F (Uα).

A proof is essentially identical with the proof of (G4) and we omit it.
To summarize, we have shown that the following diagram

E
Φ //

��

F

��
M int

Ψ
// X

gives an isomorphism of the structure (g, E,∇, V ) on M int when X is equipped with
the metric tensor given by the gluing (G4) and F is equipped with the connection,
the potential and the Hermitian structure given by the gluing (G8). This concludes
the proof of Theorem 4.4.

Let us show that Φ extends to the accessible part S of the boundary. If α ∈ AΓ,
Γ ∈ GS , corresponds to an iteration that is terminated immediately after the initial
step, then we can use Bα = C0, where C0 is of the form (39) and Φ̃α = Φ̃Γ|C0 . Thus
Q−1
α ◦ Φ|Bα = Φ̃Γ|C0 extends to C0 ∪B∂(y0, ε0) and

Q−1
α ◦ Φ = φΓ, on B∂(y0, ε0).(49)

4.3. Extension to the inaccessible part of boundary. We will give a non-
constructive proof that the structure (g, E,∇, V ) is determined up to the boundary,
and this will conclude the proof of Theorem 1.1. To this end, let (Mi, gi, Ei,∇i, Vi),
i = 1, 2, be two structures as in Theorem 1.1. Let Si ⊂ ∂Mi be open and nonempty,
and suppose that there is an isomorphism between the induced Hermitian vector
bundles on Si, i = 1, 2,

E1
φ //

��

E2

��
S1

ψ
// S2

Note that we do not assume a priori that ψ is an isometry.
Let us choose an open cover GS1 of S1 as in the proof of Theorem 4.4. Then for

each Γ1 ∈ GS1 there is a unitary trivialization

E1

φΓ1//

��

YΓ1 × Cn

��
Γ1

ψΓ1

// YΓ1
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We define Γ2 = ψ(Γ1) and φΓ2 = φΓ1 ◦ φ−1. Then φΓ2 : E2|Γ2 → YΓ1 ×Cn is a unitary
trivialization, and, if φ intertwines the maps Λ2T

S1
and Λ2T

S2
, then their representations

on the respective trivializations coincide.
Theorem 4.4 implies that there is a Hermitian vector bundle F → X , that is

equipped with a Hermitian connection ∇̃ and a potential Ṽ , and whose base manifold
X is equipped with a Riemannian metric g̃, such that, for both i = 1, 2, there is
an Hermitian vector bundle isomorphism Φi : Ei|M int

i
→ F , covering an isometry

Ψi : M int
i → X , such that ∇i = Φ∗i ∇̃ and Vi = Φ∗i Ṽ . Hence Φ−1

2 ◦ Φ1 gives an
isomorphims between the structures (gi, Ei,∇i, Vi) on M int

i , i = 1, 2.
It follows from [29] that Ψ = Ψ−1

2 ◦ Ψ1 extends smoothly to the boundary ∂M1

and (Mi, gi), i = 1, 2, are isometric via the extended Ψ. By considering the pullback
bundle Ψ∗E2, we can assume without loss of generality that M1 = M2. Thus the
following proposition implies that also the bundle isomorphism Φ = Φ−1

2 ◦Φ1 extends
smoothly to the boundary.

Proposition 4.7. Let Ei → M , i = 1, 2, be two Hermitian vector bundles over a
smooth manifold with boundary ∂M , and let ∇i be a Hermitian connection on Ei,
i = 1, 2. Suppose that the exists a Hermitian vector bundle isomorphism Φ between
E1|M int and E2|M int such that it covers the identity and that Φ∗∇2 = ∇1 on M int.
Then Φ extends smoothly to ∂E1 and the bundles and connections are isomorphic on
M via the extended Φ.

Proof. Fix a point x ∈ ∂M and introduce coordinates

(x1, . . . , xm) ∈ W := [0, ε)× (−ε, ε)m−1

around x such that the boundary of M is given by x1 = 0. Without loss of generality
we may assume that the bundles E1 and E2 are trivial over these coordinates and
that ∇1 = d + A, ∇2 = d + B. The bundle isomorphism Φ can be represented by a
smooth U(n)-valued function u(x1, . . . , xm) defined for x1 > 0 and such that

B = u−1du+ u−1Au.

Consider the smooth map uA : W → U(n) uniquely defined by solving the following
parallel transport equation along the curves x1 7→ (x1, . . . , xm):

duA
dx1

+ A(x1,...,xm)(∂x1)uA = 0,

uA(0, x2, . . . , xm) = Id.

Consider a similar map uB : W → U(n) associated to B. These two maps are
convenient because, if we set

Ã = u−1
A duA + u−1

A AuA, B̃ = u−1
B duB + u−1

B BuB,

then Ã(∂x1) = B̃(∂x1) = 0. For x1 > 0 define v = u−1
A uuB. Then, a simple calculation

shows that
B̃ = v−1dv + v−1Ãv, x1 > 0.
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This implies dv(∂x1) = 0 and the map v is independent of x1. Hence v smoothly
extends to x1 = 0 and, since u = uAvu

−1
B , u is also smooth up to the boundary

x1 = 0. �

In order to finish the proof of Theorem 1.1 we still need to show that Φ|S1 = φ.
Using the coordinate systems Q−1

α on F corresponding to choices α as in (49), we see
that Φi = φΓi on Γi. Thus

Φ = Φ−1
2 ◦ Φ1 = φ−1

Γ2
◦ φΓ1 = φ

on each Γi ∈ GS1 . This concludes the proof of Theorem 1.1.

5. Calderón problem for connections on a cylinder

The proof of Corollary 1.3 is based on a simple relation between the Dirichlet-to-
Neumann map Λ(λ) of the operator −∂2

t +P0−λ and that of the transversal operator
P0 defined analogously to Λ(λ). That is, if λ ∈ C \ [λ1,∞) then we define

Λ0(λ)h = (∇0)νu|∂M0 , h ∈ C∞(∂M0;E0),

where u is the solution of the equation

(P0 − λ)u = 0 in C, u|∂C = f.

We consider an L2-space with a weight in the Euclidean direction,

L2
δ(C;E) = {f ∈ L2

loc(C;E); (1 + t2)δ/2f ∈ L2(C;E)}, δ ∈ R,
and define the corresponding Sobolev spaces Hs

δ analogously to [7, Section 5]. Now
we can formulate a relation between Λ(λ) and Λ0(λ).

Proposition 5.1. Let λ ∈ C \ [λ1,∞) and δ ∈ R. Then Λ(λ) extends as a bounded

linear map Λ(λ) : H
3/2
δ (∂C;E)→ H

1/2
δ (∂C;E). Moreover, if k ∈ R, then

Λ0(λ− k2)h = e−kitΛ(λ)(eikth).

Note that if h ∈ H3/2(∂M0;E0), then eikth ∈ H3/2
δ (∂C;E) for any δ < −1/2.

Proof. The proof that Λ(λ) extends as claimed is analogous to the scalar case [7,
Proposition 5.1] and we omit it. Let h ∈ H3/2(∂M0;E0) and let vh ∈ H2(M0;E0)
solve

(P0 − (λ− k2))vh = 0 in M0, vh|∂M0 = h.

Since λ /∈ [λ1,∞), the number λ− k2 is not a Dirichlet eigenvalue of P0 and there is
a unique solution vh. Set f(t, x) = eikth(x) and u(t, x) = eiktvh(x). The function u is
in H2

δ (C;E) for any δ < −1/2, and solves

(−∂2
t + P0 − λ)u = 0 in C, u|∂C = f.

Note that −∂2
t + P0 = ∇∗∇, where ∇ = π∗∇0 and π : C → M0 is the canonical

projection. It follows that

Λ(λ)f = ∇νu|∂C = eikt(∇0)νvh|∂M0 = eiktΛ0(λ− k2)h,

and the proposition is proved. �
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Proof of Corollary 1.3. Using that C∞0 (∂C;E) is dense in H
3/2
δ (∂C;E) for all δ to-

gether with Proposition 5.1, we can determine the map

Λ0(λ− k2) : H3/2(∂M0;E0)→ H1/2(∂M0;E0)

for all k ∈ R. Since µ 7→ Λ0(µ) is a meromorphic map whose poles are contanied
in {λ1, λ2, . . . }, see e.g. [21, Lemma 4.5], we can recover Λ0(µ) for all µ ∈ C. This
is equivalent to knowing the Dirichlet-to-Neumann map ΛT

∂M0
for the wave operator

∂2
t +P0 for any T > 0 [21, Chapter 4]. Thus Theorem 1.1 implies that we can recover

the structure (M0, g0, E0,∇0) as claimed. �
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Birkhäuser Boston, Boston, MA, 2006.

[13] G. Eskin. Inverse hyperbolic problems with time-dependent coefficients. Comm. Partial Differ-
ential Equations, 32(10-12):1737–1758, 2007.



INVERSE PROBLEMS FOR THE CONNECTION LAPLACIAN 31

[14] G. Eskin. Inverse problems for the Schrödinger equations with time-dependent electromagnetic
potentials and the Aharonov-Bohm effect. J. Math. Phys., 49(2):022105, 18, 2008.

[15] L. C. Evans. Partial differential equations, volume 19 of Graduate Studies in Mathematics.
American Mathematical Society, Providence, RI, 1998.

[16] D. Finch and G. Uhlmann. The x-ray transform for a non-abelian connection in two dimensions.
Inverse Problems, 17(4):695–701, 2001.

[17] C. Guillarmou, G. P. Paternain, M. Salo, and G. Uhlmann. The X-ray transform for connections
in negative curvature. Preprint arXiv:1502.04720.

[18] M. W. Hirsch. Differential topology, volume 33 of Graduate Texts in Mathematics. Springer-
Verlag, New York, 1994.
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