
MEAN VALUES OF MULTIPLICATIVE FUNCTIONS OVER FUNCTION
FIELDS

ANDREW GRANVILLE, ADAM J HARPER, AND KANNAN SOUNDARARAJAN

Abstract. We discuss the mean values of multiplicative functions over function fields. In
particular, we adapt the authors’ new proof of Halász’s theorem on mean values to this
simpler setting. Several of the technical difficulties that arise over the integers disappear in
the function field setting, which helps bring out more clearly the main ideas of the proofs
over number fields. We also obtain Lipschitz estimates showing the slow variation of mean
values of multiplicative functions over function fields, which display some features that are
not present in the integer situation.

1. Introduction

We begin by introducing multiplicative functions over the polynomial ring Fq[x], highlight-
ing the analogy with multiplicative functions over the integers. In the subsequent sections
of the introduction we will discuss the new results in this paper.

1.1. An introduction to multiplicative functions over function fields. In the poly-
nomial ring Fq[x], where q is a prime power, letM denote the set of monic polynomials and
let Mn denote the set of monic polynomials of degree n, so that |Mn| = qn. Upper case
letters like F , G shall denote monic polynomials. Let P denote the set of irreducible monic
polynomials, and Pn those of degree n, and we reserve the letter P to denote irreducible
monic polynomials. We denote the degree of a polynomial F by deg(F ).

We are interested in multiplicative functions f : M → C; that is, functions f satisfying
f(FG) = f(F )f(G) for all coprime monic polynomials F and G. The analogous functions
over the integers, namely multiplicative functions f : N → C (that is, functions f with
f(mn) = f(m)f(n) for all coprime integers m and n), have been extensively investigated. A
useful tool in studying multiplicative functions over the integers is the Dirichlet series

F (s) =
∞∑
n=1

f(n)

ns
=
∏
p

(
1 +

f(p)

ps
+
f(p2)

p2s
+ . . .

)
,

where the product is over all primes p, and one usually restricts attention to those multi-
plicative functions for which the series and product are absolutely convergent in Re(s) > 1.
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Correspondingly, to study multiplicative functions over function fields, we put

(1.1) F(z) =
∑
F∈M

f(F )zdeg(F ) =
∏
P

(
1 + f(P )zdeg(P ) + f(P 2)z2deg(P ) + . . .

)
,

where we assume that the series and product converge absolutely in |z| < 1/q.
In Section 2 we give several examples of interesting multiplicative functions over Fq[x],

and for a general introduction to number theory over function fields we refer to [6]. For the
moment, it may be helpful to consider the most basic example, the multiplicative function
taking the value 1 on all monic polynomials in Fq[x]. Here, in the domain |z| < 1/q we have

F(z) =
∞∑
n=0

|Mn|zn = (1− qz)−1 =
∏
P

(1− zdeg(P ))−1,

which corresponds to the Riemann zeta-function

ζ(s) =
∞∑
n=1

1

ns
=
∏
p

(
1− 1

ps

)−1
.

Taking logarithms above yields that
∞∑
m=1

(qz)m

m
=
∑
P

∞∑
k=1

zk deg(P )

k
=
∑
P

∞∑
k=1

Λ(P k) · z
deg(Pk)

deg(P k)
=
∞∑
n=1

zn

n
·
∑
F∈Mn

Λ(F ),

where Λ(F ), in analogy with the von Mangoldt function of prime number theory, is defined
to be zero unless F = P k is the power of an irreducible in which case Λ(F ) = deg(P ).
Equating coefficients implies that

(1.2)
∑
F∈Mn

Λ(F ) = qn,

and now Möbius inversion gives the the well-known “prime number theorem for Fq[x]”

|Pn| =
1

n

∑
d|n

µ(d)qn/d =
qn

n
+O

(qn/2
n

)
.

The analogous relationship in the integers, namely that
∑

n≤x Λ(n) = x+O(x1/2+o(1)), is an
open question, equivalent to the Riemann Hypothesis.

For a general multiplicative function f , take logarithms in (1.1), and write

(1.3) logF(z) =
∑
F∈M

Λf (F )

deg(F )
zdeg(F ),

for certain coefficients Λf (F ) with Λf (F ) = 0 unless F is the power of an irreducible.
Differentiating, we may equivalently write (1.3) as

(1.4) z
F ′

F
(z) =

∑
F∈M

Λf (F )zdeg(F ).

For a given positive real number κ we focus on the class of multiplicative functions C(κ)
consisting of those f for which f(1) = 1 and

(1.5) |Λf (F )| ≤ κΛ(F )
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for all F . The hypotheses (1.4) and (1.5) ensure the absolute convergence of the series and
product in (1.1) for |z| < 1/q.

In [2] we studied the analogous class of multiplicative functions f over the integers for
which |Λf (n)| ≤ κΛ(n), where −F ′(s)/F (s) =:

∑
n≥1 Λf (n)/ns. The bound on |Λf (n)|

guarantees that the Dirichlet series and Euler product defining F (s) are absolutely convergent
for Re(s) > 1.

Given a multiplicative function f in C(κ) our aim is to understand (for n ≥ 0) the mean
value

(1.6) σ(n) = σ(n; f) :=
1

qn

∑
M∈Mn

f(M)

in terms of the corresponding averages of f over prime powers

(1.7) χ(n) = χ(n; f) :=
1

qn

∑
F∈Mn

Λf (F ).

We have σ(0) = 1, χ(0) = 0 and σ(1) = χ(1), and then we observe (this follows from (1.4),
and will be justified in Remark 2 in Section 2 below) that

(1.8) nσ(n) =
n∑
k=1

χ(k)σ(n− k).

With this notation, we may also write (1.1) and (1.3) as

(1.9) F(z/q) =
∞∑
n=0

σ(n)zn = exp
( ∞∑
k=1

χ(k)

k
zk
)
.

The convolution relation (1.8) is a little more involved in the integer situation. The discrete
relation (1.8) is replaced by the continuous integral equation uσ(u) =

∫ u
0
χ(t)σ(u − t)dt,

where χ(t) = ψ(yt)−1
∑

n≤yt Λf (n) is an average of the multiplicative function f evaluated

at prime powers (here y is a suitably large parameter), and then σ(u) approximates (in many
situations) the mean-value of the function f evaluated over integers up to yu. Such integral
equations were first considered by Wirsing, and are discussed further in [3].

1.2. Halász’s Theorem over function fields. In [2] we show, generalizing a little the
pioneering work of Halász, that if x is large, and if |Λf (n)| ≤ κΛ(n) for all n then

(1.10)
1

x

∑
n≤x

f(n)�κ
1

log x

∫ 1

1/ log x

(
max

|t|≤(log x)κ

∣∣∣F (1 + σ + it)

1 + σ + it

∣∣∣)dσ
σ

+
(log log x)κ

log x
.

If one inserts a trivial bound |F (1+σ+it)| �κ 1/σκ on the right then one recovers the trivial
bound �κ (log x)κ−1 for the left hand side (up to constants), and inserting any non-trivial
information about F (1 + σ + it) supplies a non-trivial bound for the left hand side. This
lossless quality is the crucial feature of Halász-type theorems.

The left-hand side in (1.10) is independent of the values of f(pk) on the prime powers
pk > x. Hence if we define Λf⊥(pk) = Λf (p

k) for all prime powers with pk ≤ x, and
Λf⊥(pk) = 0 otherwise, then f⊥(n) = f(n) for each n ≤ x, and the Dirichlet series F⊥(s) :=∑

n≥1 f
⊥(n)/ns has the finite Euler product

∏
p≤x(1 + f⊥(p)/ps + f⊥(p2)/p2s + . . .) which is

analytic for all s with Re(s) > 0. One can replace F in the upper bound in (1.10) with F⊥,
which is sometimes convenient.
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We now describe the corresponding result in the function field setting. Define the mul-
tiplicative function f⊥ by setting Λf⊥(M) = Λf (M) if degM < n, and Λf⊥(M) = 0 if
degM ≥ n. Hence χ⊥(m) = χ(m) and σ⊥(m) = σ(m) for all m < n, whereas σ⊥(n) =
σ(n) − χ(n)/n in view of (1.8). Now F⊥(z) is entire, whereas F(z) might only be analytic
in a disc. Paralleling (1.10), we establish the following result.

Theorem 1.1. Let f be in the class C(κ) and let σ(n) be defined as in (1.6). Then for all
n ≥ 1 we have

(1.11) |σ⊥(n)| ≤ κ2

n

∫ 1

0

(
max
|z|=
√
t
|F⊥(z/q)|

)(1− tn−1

1− t

)
dt,

and therefore

|σ(n)| ≤ |σ⊥(n)|+
∣∣∣χ(n)

n

∣∣∣ ≤ κ2

n

∫ 1

0

(
max
|z|=
√
t
|F⊥(z/q)|

)(1− tn−1

1− t

)
dt+

κ

n
.

Our short proof of Theorem 1.1 is given in Section 3. Note the strong parallel between
this theorem and the corresponding estimate (1.10). In our bound for σ(n) above, the term
κ/n in the bound arose from the contribution of irreducibles of degree n. Correspondingly,
in (1.10) the error term (log log x)κ/ log x includes the contribution from primes near x, but
also includes contributions from certain other numbers, and from error terms in truncating
Perron integrals, and these do not arise in the simpler function field setting.

As in (1.9),

(1.12) F⊥(z/q) =
∑
F∈M

f⊥(F )
(z
q

)deg(F )

=
∞∑
n=0

σ⊥(n)zn = exp
( n−1∑
k=1

χ(k)

k
zk
)
,

and so one can rephrase the estimate in Theorem 1.1 as

(1.13) |σ(n)| ≤ κ2

n

∫ 1

0

(
exp

(
max
|z|=
√
t
Re

n−1∑
j=1

χ(j)

j
zj
))(1− tn−1

1− t

)
dt+

κ

n
.

For every fixed real number θ, the function fθ(M) = f(M)e(−θ deg(M)) is also multi-
plicative, with χθ(k) = χ(k)e(−kθ), and correspondingly σθ(n) = σ(n)e(−nθ) (throughout
we define e(t) := e2πit). This is analogous to the “twist” f(n)n−iθ of a multiplicative function
f on the integers. Note that the inequalities in Theorem 1.1 and (1.13) remain unchanged
if we replace χ by χθ and σ by σθ.

The integral in Theorem 1.1 can be difficult to work with, and we now give a slightly
weaker bound which is simpler to use. By the maximum modulus principle we may bound
max|z|=

√
t |F⊥(z/q)| by max|z|=1 |F⊥(z/q)|. Moreover, if |z| ≤ 1 then

log |F⊥(z/q)| ≤
n−1∑
k=1

|χ(k)|
k
≤ κ

n−1∑
k=1

1

k
≤ κ log(2n),

so that |F⊥(z/q)| ≤ (2n)κ. In Section 3.2, using these bounds appropriately in Theorem 1.1
we show the following corollary.

Corollary 1.2. For all integers n ≥ 1, we have

|σ(n)| ≤ 2κ(κ+ 1 +M)e−M(2n)κ−1,
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where

max
|z|= 1

q

|F⊥(z)| =: e−M(2n)κ.

Since M ≥ 0 we deduce from Corollary 1.2 the trivial bound |σ(n)| �κ n
κ−1 (see Remark

5 in Section 2 for a more precise estimate). Inserting any non-trivial lower bound for M
will yield a non-trivial bound for |σ(n)|, which as remarked earlier is the crucial feature of
Halász-type theorems.

In the integer situation, the bound corresponding to Corollary 1.2 is

1

x

∑
n≤x

f(n)�κ (1 +M)e−M(log x)κ−1 +
(log log x)κ

log x
,

where

max
|t|≤(log x)κ

∣∣∣F⊥(1 + it)

1 + it

∣∣∣ =: e−M(log x)κ.

This is usually stated with F⊥(1 + it) replaced by F (1 + 1/ log x + it); note that these two
quantities are of comparable size (up to multiplicative constants).

1.3. Lipschitz-type theorems for mean values of multiplicative functions over
function fields. Mean values of multiplicative functions in number fields vary slowly with
x, provided one corrects by the “rotation” of the form niθ that best approximates f(n); that
is, one replaces f(n) by the twist fθ(n) := f(n)n−iθ where θ maximizes |F⊥(1 + iθ)| with
|θ| ≤ log x. One can show that the mean value of f up to x equals xiθ/(1 + iθ) times the
mean value of fθ plus a small error term. Let us restrict for simplicity to the case κ = 1.
Building on Elliott’s work [1], in [4] (and see also [2]), we obtained the bound

(1.14)
1

x1+φ

∑
n≤x1+φ

fθ(n)− 1

x

∑
n≤x

fθ(n)� φ1− 2
π log

2

φ
,

whenever (log log x)2

log x
≤ φ ≤ 1. In [2] we found examples showing the sharpness of (1.14), up

to the factor of log 2/φ. Thus the exponent 1 − 2
π

cannot be increased in general, and we

say that 1− 2
π

is the Lipschitz exponent for mean values of multiplicative functions over the
integers.

We now give analogous “Lipschitz estimates” in the function field case, again restricting
attention, for simplicity, to functions in C(1).

Theorem 1.3. Let f be in the class C(1), and let σ and χ be defined as in (1.6) and (1.7).
Let n ≥ 2 be given, and let f⊥ = f⊥,n, σ⊥, χ⊥, and F⊥(z) be defined as before. Select
θ ∈ [0, 1) for which |F⊥(e(−θ)/q)| is maximized. Then for any integer ` with 1 ≤ ` ≤ n, we
have

|σθ(n+ `)− σθ(n)| �
( `
n

)1− 2
π

log
2n

`
+

(log n)O(1)

n1−cm
,

where σθ(k) = σ(k)e(−kθ), and m is the smallest odd integer that does not divide `, with
cm := 1/(m sin( π

2m
)).

Since σθ(n) = σ(n)e(−nθ), Theorem 1.3 implies that∣∣∣|σ(n+ `)| − |σ(n)|
∣∣∣� ( `

n

)1− 2
π

log
2n

`
+

(log n)O(1)

n1−cm
.
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Note that 1−cm increases to 1−2/π as m→∞ through odd values. The first term of the
upper bound in Theorem 1.3 corresponds to the upper bound in (1.14), but the second term
indicates a new phenomenon, which has no parallel in the integer situation. In Section 6 we
will construct examples, for each odd m > 1, of f for which |σθ(n + `)− σθ(n)| � 1/n1−cm

for a positive proportion of integers n. For instance, if m = 3 we take χ(n) = 1 if 3 divides
n, and χ(n) = −1 otherwise. Then one can show that σ(3n) = −σ(3n+ 1) ∼ 1/(Γ(2

3
)n1/3),

whereas σ(3n+ 2) = 0. Note here that 1− c3 = 1
3
.

When ` is large, the first term in the Lipschitz bound dominates the second, and one
can construct examples in which the exponent 1 − 2/π is attained. Since this situation
is in complete analogy with the situation for integers (see [2]), we do not carry out this
construction here.

2. Some Examples and Remarks

In this section we collect together some remarks on our class C(κ) and offer various motivating
examples of functions in this class. The proofs of our theorems are deferred to the subsequent
sections.

Remark 1. The Dirichlet convolution of f1 ∈ C(κ1) and f2 ∈ C(κ2) is given by (f1∗f2)(F ) :=∑
AB=F f1(A)f2(B), and lies in the class C(κ1 + κ2). The Rankin–Selberg convolution,

f1 × f2, is defined by setting Λf1×f2(M) = 0 unless M is a prime power, in which case
Λf1×f2(M)Λ(M) = Λf1(M)Λf2(M), so that f1 × f2 is a multiplicative function in the class
C(κ1κ2). The function f1× f2 matches the product f1f2 on squarefree M , but the two func-
tions differ on prime powers P k with k > 1 with the Rankin–Selberg convolution being the
more natural choice.

Remark 2. Let f ∈ C(κ), and let the averages σ and χ be as in (1.6) and (1.7). Note that
χ(0) = 0 and |χ(n)| ≤ κ for all n. We now prove the convolution relation (1.8) satisfied by
σ and χ. First note that

f(F )deg(F ) =
∑
D|F

Λf (D)f(F/D),

which follows upon comparing the two sides of the relation zF ′(z) = (zF ′/F(z))F(z). Tak-
ing the average over F ∈Mn gives

nσ(n) =
1

qn

∑
F∈Mn

f(F )deg(F ) =
1

qn

∑
F∈Mn

∑
D|F

Λf (D)f(F/D)

=
n∑
k=1

( 1

qk

∑
D∈Mk

Λf (D)
)( 1

qn−k

∑
M∈Mn−k

f(M)
)
.

In other words we have the convolution identity

nσ(n) =
n∑
k=1

χ(k)σ(n− k).

As discussed in the introduction, this is a simpler, discrete version of the integral equation

uσ(u) =

∫ u

0

χ(t)σ(u− t)dt
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that occurs for number field mean values, which was first considered by Wirsing, and dis-
cussed further in [3].

Remark 3. The convolution identity (1.8) shows that σ(n), the average of f over elements
of Mn, depends only on the χ-values, which are the average of f taken over suitable prime
powers, but not on the individual f(P `). Thus there is no loss in generality in assuming that
f(P `) = χ(k) whenever deg(P `) = k. We will use this observation repeatedly in the sequel
when discussing and constructing examples. Further, this observation means that we can
view Theorem 1.1 purely as a result in analysis: given information about the coefficients of
the power series

∑∞
k=1 χ(k)zk/k, it obtains information about the coefficients of the series∑∞

n=0 σ(n)zn = exp(
∑∞

k=1 χ(k)zk/k).

Example 4. In the introduction, we saw that if f(P k) = 1 for all prime powers P k then
F(z) = (1− qz)−1, and χ(k) = 1 for all k ≥ 1, and σ(n) = 1 for all n ≥ 0.

Generalizing this, we consider the construction where χ(k) = α for some fixed α ∈ C, and
all k ≥ 1. We find (either by solving the recurrence (1.8), or by noting that the corresponding
generating function F(z) equals (1− qz)−α) that

(2.1) σ(n) =

(
α + n− 1

n

)
=
α(α + 1) · · · (α + n− 1)

n!
.

Therefore σ(n) ∼ nα−1/Γ(α) for large n. This is analogous to the Selberg-Delange theorem,
which gives asymptotics for

∑
n≤x dz(n) where ζ(s)z =

∑
n≥1 dz(n)/ns.

When α = k ∈ N, the example above deals with the k-divisor function over Fq[x], and
(2.1) gives the average number of ways of writing a polynomial F of degree n as the product
F1 · · ·Fk. The case α = −1 deals with the analog of the Möbius function: f(P ) = −1 for
irreducibles P , and f(P `) = 0 for ` ≥ 2. Finally, note that when α = −k is a negative
integer then σ(n) = 0 for all n ≥ k + 1.

Remark 5. If f ∈ C(κ), then by induction using (1.8) we see that for all n ≥ 0,

|σ(n)| ≤
(
κ+ n− 1

n

)
.

Example 6. Smooth polynomials. A y-smooth integer is a positive integer n, all of whose
prime factors are ≤ y. The indicator function of y-smooth integers is the completely mul-
tiplicative function f for which f(p) = 1 if p ≤ y, and f(p) = 0 otherwise. It is known
that for a wide range of u ≥ 1 there are ∼ ρ(u)yu y-smooth integers up to yu, where
ρ(u) = e−(1+o(1))u log u is the Dickman function (which equals 1 for 0 ≤ u ≤ 1, and is defined

by uρ(u) =
∫ 1

0
ρ(u− t)dt for u > 1).

Analogously an m-smooth polynomial is one all of whose irreducible factors have degree
≤ m. Consider the construction where χ(`) = 1 if 1 ≤ ` ≤ m and χ(`) = 0 for ` > m. If
we determine σ(·) using (1.8) then N(n,m), the number of m-smooth monic polynomials
of degree n, satisfies N(n,m) ≥ σ(n)qn. Now σ(n) = 1 = ρ(n/m) for 0 ≤ n ≤ m. By an
induction hypothesis and (1.8) one can then deduce that σ(n) ≥ ρ(n/m) for all n, as follows:

σ(n) ≥ 1

n

m∑
`=1

ρ
(n− `

m

)
≥ 1

n

m∑
`=1

∫ `

`−1
ρ
(n− t

m

)
dt =

1

n

∫ m

0

ρ
(n− t

m

)
dt = ρ

( n
m

)
,
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the final equality holding since uρ(u) =
∫ u
u−1 ρ(v)dv for u ≥ 1. In fact there is some room to

spare in the lower bound above, and one can show that

σ(n) ≥ ρ(n/m) exp
( c
m

⌊ n
m

⌋)
,

for some positive constant c. This implies that in the function field case, the Dickman
function is not a good approximation to N(n,m) if n ≈ m2 (whereas it is a good approxi-
mation in the corresponding range u ≈ log y for the y-smooth integer counting problem). A
similar phenomenon occurs when we count “smooth permutations”; that is, elements of Sn
composed of cycles of length at most m.

Remark 7. In Example 4 we saw that if χ(`) = −k is a negative integer for all ` ≥ 1 then
σ(n) equals zero for all n ≥ k + 1. We now consider the converse situation: if σ(n) = 0 for
all n ≥ k+1 (where k ≥ 0), what can we conclude about χ(`)? Our assumption implies that

F(z) =
∞∑
n=0

σ(n)(qz)n =
k∑

n=0

σ(n)(qz)n

is a polynomial of degree k. Factoring F into its roots we obtain

F(z) =
k∏
j=1

(1− zαj)

for some complex numbers αj. Since logF(z) =
∑∞

`=1
χ(`)
`

(qz)` is holomorphic in the region
|z| < 1/q, we see that |αj| ≤ q, or in other words all the zeros of F lie in |z| ≥ 1/q. Further
we have

q`χ(`) = −
k∑
j=1

α`j.

If |χ(`)| ≤ κ for all `, it follows that there can be at most κ values of αj with |αj| = q, and
the rest are strictly smaller than q in magnitude.

If f ∈ C(κ) with κ < 1 satisfies σ(n) = 0 for n ≥ k + 1, then from the above we conclude
that χ(`) must decrease exponentially for large `. If κ = 1, then either |αj| < q for all j, in
which case χ(`) once again decreases exponentially for large `, or |αj| = q for some j (say
j = 1). In the latter case, we may use Dirichlet’s theorem to find ` such that all the α`j (for
1 ≤ j ≤ k) have argument in (−π/8, π/8) say, and this forces k = 1 (else one would find an
` with |χ(`)| > 1). Thus in this case one must have F(z) = (1− qze(θ)) for some θ; in other
words, the only possibility for f is a twist of the Möbius function by some θ. This is a simple
analog of a striking converse theorem of Koukoulopoulos [5] for multiplicative functions over
the integers. It may be interesting to work out a precise analog of his result, which would
involve imposing (given f ∈ C(1)) the weaker restriction |σ(n)| � n−2−δ for some δ > 0, and
deriving a similar dichotomy for the behavior of χ(`).

We proved that for any κ > 0, at most bκc of the αj can have size q. Here too, one
would like to replace the condition that σ(n) = 0 for large n, by a weaker condition like
σ(n) � n−A for some A = A(κ). Koukoulopoulos and the third author have taken some
first steps in this direction for multiplicative functions over the integers.
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Remark 8. One of the main results in [3] states that if f : N → {−1, 1} is a completely
multiplicative function, then for large x one has

∑
n≤x f(n) ≥ (δ1 + o(1))x, where

δ1 = 1− 2 log(1 +
√
e) + 4

∫ √e
1

log t

t+ 1
dt = −0.656999 . . . ,

and the constant δ1 is optimal. The exact parallel of this result is false in the function field
setting: the function f(F ) = (−1)deg(F ) is completely multiplicative, and here σ(n) = (−1)n.
It would be interesting to develop the right version of this result in the function field setting.
Perhaps parity is the only substantial obstruction to such a result?

Example 9. Let e(α1), . . ., e(αk) be distinct points on the unit circle, and let a1, . . ., ak be
complex numbers, all bounded by 1 say. An interesting class of examples is given by setting
(for n ≥ 1)

χ(n) =
k∑
j=1

aje(−nαj).

Here, by (1.9),
∞∑
n=0

σ(n)zn =: F(z/q) =
k∏
j=1

(1− ze(−αj))−aj .

By matching up the coefficients of the (1− ze(−αj))−aj , we may construct a function

G(z) =
k∑
j=1

(
C0(j)(1− ze(−αj))−aj + C1(j)(1− ze(−αj))1−aj

)
,

such that F(z/q)−G(z), and its first derivative are bounded uniformly in |z| < 1 (the bound
may depend on the e(αj)’s and aj, but remains uniform as |z| → 1). Here, for example,

C0(j) =
∏
`6=j

(1− e(αj − α`))−a`

for each j, and the C1(j) are given by a similar but more complicated expression. Since the
first derivative of F(z/q) − G(z) is bounded uniformly in |z| < 1, it follows that the n-th
coefficient of F(z/q)− G(z) is O(1/n). Thus we conclude that

σ(n) =
k∑
j=1

(
C0(j)e(−nαj)

(
aj + n− 1

n

)
+ C1(j)e(−nαj)

(
aj − 1 + n− 1

n

))
+O

( 1

n

)

=
k∑
j=1

C0(j)e(−nαj)
naj−1

Γ(aj)
+O

( 1

n

)
,

since each |aj| ≤ 1.

3. Proofs of Theorem 1.1 and Corollary 1.2

The key to our proof of Halász’s Theorem over function fields, as well as over number fields,
is an identity, given in Lemma 3.1 below. As discussed in [2], the crucial feature of this
identity is the presence of three generating functions in the integral on the right-hand side,
which will allow us to bound that integral efficiently. There is a strong analogy with additive
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number theory, where ternary problems are accessible to harmonic analysis techniques (such
as the circle method) but binary problems are usually not.

Lemma 3.1. Let f be any multiplicative function in the class C(κ), and let F(z) be as in
(1.1). Let r be a positive real number with r < 1/q. Then∑

M∈Mn

f(M) =
1

n

∑
M∈Mn

Λf (M) +
1

n

∫ 1

0

1

2πi

∫
|z|=r

(
z
F ′

F
(z)
)(
tz
F ′

F
(tz)

)
F(tz)

dz

zn+1

dt

t
.

Proof. By Cauchy’s formula we may write, for any 0 < r < 1/q,

(3.1)
∑

M∈Mn

f(M) =
1

n

1

2πi

∫
|z|=r

zF ′(z)
dz

zn+1
.

Now we write

zF ′(z) =
(
z
F ′

F
(z)
)
F(z) =

(
z
F ′

F
(z)
)(

1 +

∫ 1

0

d

dt
F(tz)dt

)
=
(
z
F ′

F
(z)
)

+
(
z
F ′

F
(z)
)∫ 1

0

(
tz
F ′

F
(tz)

)
F(tz)

dt

t
,

and use this expression in (3.1). The first term above gives

1

n

1

2πi

∫
|z|=r

(
z
F ′

F
(z)
) dz

zn+1
=

1

n

∑
M∈Mn

Λf (M),

matching the first term in the right-hand side of the lemma. The second term gives, upon
interchanging the integrals over z and t, the other term in the right-hand side of the lemma.

�

In [2], we use an analogous “triple convolution” identity in our proof of Halász’s Theorem
over number fields, but the key analytic technique there is Perron’s formula rather than
Cauchy’s formula, which leads to several additional complications.

3.1. Proof of Halász’s Theorem in function fields. Theorem 1.1 clearly holds when
n = 1, and so we suppose below that n ≥ 2. Since σ(n) depends only on the values of f
on prime powers with degree at most n, we are motivated to use the multiplicative function
f⊥(= f⊥,n) as described in the introduction. We recall that σ⊥(j) = σ(j) for all j ≤ n− 1,
and that σ⊥(n) = σ(n)− χ(n)/n, and note that F⊥(z) is an entire function for all z ∈ C.

Now use Lemma 3.1 with F replaced by F⊥ there. From our observations above, we
obtain (with F⊥′(z) denoting the derivative of F⊥(z))

(3.2) σ(n)− χ(n)

n
= σ⊥(n) =

q−n

n

∫ 1

0

1

2πi

∫
|z|=r

(
z
F⊥′

F⊥
(z)
)(
tz
F⊥′

F⊥
(tz)

)
F⊥(tz)

dz

zn+1

dt

t
.

By (1.12) we see uF⊥′/F⊥(u) =
∑n−1

j=1 χ(j)(qu)j is a finite sum, so we may take the inner

integral over z in (3.2) to be over the circle with radius 1/(q
√
t), and obtain

(3.3) σ(n)− χ(n)

n
=
q−n

n

∫ 1

0

1

2πi

∫
|z|= 1

q
√
t

( n−1∑
j=1

χ(j)(qz)j
)( n−1∑

j=1

χ(j)(qtz)j
)
F⊥(tz)

dz

zn+1

dt

t
.
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Now consider the inner integral in (3.3). Using Cauchy–Schwarz we see that

∣∣∣ 1

2πi

∫
|z|= 1

q
√
t

( n−1∑
j=1

χ(j)(qz)j
)( n−1∑

j=1

χ(j)(qtz)j
)
F⊥(tz)

dz

zn+1

∣∣∣
≤ (q
√
t)n
(

max
|z|= 1

q
√
t

|F⊥(tz)|
)( 1

2π

∫
|z|= 1

q
√
t

∣∣∣ n−1∑
j=1

χ(j)(qz)j
∣∣∣2 |dz||z| ) 1

2

×
( 1

2π

∫
|z|= 1

q
√
t

∣∣∣ n−1∑
j=1

χ(j)(qtz)j
∣∣∣2 |dz||z| ) 1

2
.(3.4)

By Parseval, and since |χ(j)| ≤ κ for all j, we have

(3.5)
1

2π

∫
|z|=R

∣∣∣ n−1∑
j=1

χ(j)(qz)j
∣∣∣2 |dz||z| =

n−1∑
j=1

|χ(j)|2(qR)2j ≤ κ2
n−1∑
j=1

(qR)2j.

Inserting this into (3.4), we deduce that (3.4) is

≤ κ2(q
√
t)n
(

max
|z|=

√
t
q

|F⊥(z)|
)( n−1∑

j=1

t−j
) 1

2
( n−1∑
j=1

tj
) 1

2
= κ2qnt

(1− tn−1

1− t

)(
max
|z|=

√
t
q

|F⊥(z)|
)
.

Inserting this into (3.3) yields Theorem 1.1.

3.2. Proof of Corollary 1.2. As mentioned in the introduction, the maximum modulus
principle gives

max
|z|=

√
t
q

|F⊥(z)| ≤ max
|z|= 1

q

|F⊥(z)| =: e−M(2n)κ

for 0 ≤ t ≤ 1. Moreover, by definition when |z| < 1/q we have

log |F⊥(z)| = Re
( n−1∑
k=1

χ(k)

k
(qz)k

)
≤ κ

n−1∑
k=1

(q|z|)k

k
≤ κ

∑
k≥1

(q|z|)k

k
= −κ log(1− q|z|).

Therefore

(3.6) max
|z|=

√
t
q

|F⊥(z)| ≤ min
(
e−M(2n)κ, (1−

√
t)−κ

)
.
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Taking t = (1− u)2, and using (3.6), we obtain

κ2
∫ 1

0

(
max
|z|=

√
t
q

|F⊥(z)|
)(1− tn−1

1− t

)
dt

≤ κ2
∫ 1

0

min
(
e−M(2n)κ, u−κ

)
min

(
(n− 1),

1

u(2− u)

)
(2(1− u))du

≤ κ2
∫ 1

0

min
(
e−M(2n)κ, u−κ

)
min

(
2n,

1

u

)
du

≤ κ2
(∫ 1/2n

0

2ne−M(2n)κdu+

∫ eM/κ/2n

1/2n

e−M(2n)κ
du

u
+

∫ 1

eM/κ/2n

u−κ−1du
)

= κ2
(
e−M(2n)κ + e−M(2n)κ

M

κ
+
e−M(2n)κ − 1

κ

)
= κe−M(2n)κ(κ+ 1 +M)− κ.

Substituting this bound into Theorem 1.1 yields Corollary 1.2.

4. Lipschitz estimates: A key proposition

Throughout this section, we restrict attention to f ∈ C(1), and prove an appropriate modi-
fication of Corollary 1.2 to bound the difference |σθ(n+ `)− σθ(n)|.

Proposition 4.1. Let f be in the class C(1), and let σ(n) and χ(n) be defined as in (1.6)
and (1.7). Let n ≥ 2. Define, for a given θ ∈ R/Z,

L(n, `; θ) = max
|z|=1

∣∣∣(1− z`) exp
( n−1∑
j=1

χθ(j)
zj

j

)∣∣∣.
For any integer ` ≥ 1, we have (recall σθ(k) = σ(k)e(−kθ))

|σθ(n+ `)− σθ(n)| � `

n
+
L(n, `; θ)

n

(
1 + log

2n

L(n, `; θ)

)
.

We will apply this result for a suitable choice of θ in the next section, so as to deduce
Theorem 1.3.

Proof. Let χ⊥(k), σ⊥(k) and F⊥(·) be defined as in the introduction, so that χ⊥(k) = χ(k)
when k ≤ n− 1, and χ⊥(k) = 0 for larger k, and

F⊥(z/q) =
∞∑
n=0

σ⊥(n)zn = exp
( ∑
k≤n−1

χ(k)

k
zk
)
.

If k ≤ n− 1 we have σ⊥(k) = σ(k), and hence, using (1.8), if 1 ≤ ` ≤ n then

(n+ `)|σ(n+ `)− σ⊥(n+ `)| ≤
n+∑̀
k=1

|χ(k)σ(n+ `− k)− χ⊥(k)σ⊥(n+ `− k)| ≤ 2(2`+ 1),
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since the terms cancel out unless k ≤ ` or k ≥ n, and as |χ(·)|, |χ⊥(·)|, |σ(·)|, |σ⊥(·)| are all
at most 1. Therefore we have

n |σθ(n+ `)− σθ(n)| = n |σ(n+ `)e(−`θ)− σ(n)|
≤ |(n+ `)σ(n+ `)e(−`θ)− nσ(n)|+ `

≤ |(n+ `)σ⊥(n+ `)e(−`θ)− nσ⊥(n)|+ 5`+ 4.(4.1)

Following the above tidying up, we switch to our main analytic argument and apply
Lemma 3.1 to the first term on the right hand side, obtaining

(n+ `)σ⊥(n+ `)e(−`θ)− nσ⊥(n) =∫ 1

0

1

2πi

∫
|z|=r

(
z
F⊥′

F⊥
(z)
)(
tz
F⊥′

F⊥
(tz)

)
F⊥(tz)

e(−`θ)(qz)−` − 1

(qz)n
dz

z

dt

t
.(4.2)

As before we take the inner integral to be over the circle with radius r = 1/(q
√
t). Using that

uF⊥′/F⊥(u) =
∑n−1

j=1 χ(j)(qu)j, and by Cauchy–Schwarz, we can bound the inner integral
by

max
|z|= 1

q
√
t

|F⊥(tz)(e(−`θ)(qz)−` − 1)|×

t
n
2

( 1

2π

∫
|z|= 1

q
√
t

∣∣∣ n−1∑
j=1

χ(j)(qz)j
∣∣∣2 |dz||z| ) 1

2
( 1

2π

∫
|z|= 1

q
√
t

∣∣∣ n−1∑
j=1

χ(j)(qtz)j
∣∣∣2 |dz||z| ) 1

2
.(4.3)

Using the Parseval bound of (3.5) (with κ = 1 there) and the display immediately following
(3.5), the second line of (4.3) is

≤ t
(1− tn−1

1− t

)
≤ t min

{
n,

1

1− t

}
.

To bound the maximum on the first line of (4.3), we first let w = qtz so that

max
|z|= 1

q
√
t

|F⊥(tz)(e(−`θ)(qz)−` − 1)| = max
|w|=

√
t
|F⊥(w/q)(e(−`θ)(w/t)−` − 1)|

= max
|w|=

√
t
|F⊥(w/q)(e(`θ)w` − 1)|,

where the final equality holds because (w/t)−1 is the complex conjugate of w when |w| =
√
t.

By the maximum modulus principle, this is

≤ max
|w|=1
|F⊥(w/q)(e(`θ)w` − 1)| = max

|w|=1
|e(−`θ)w−` − 1| · exp

(
Re
( ∑
k≤n−1

χ(k)

k
wk
))
.

Writing w = e(−θ)z, we see that this is L(n, `; θ). Since |F⊥(z)| ≤ (1−|qz|)−1 for |z| ≤ 1/q,
we also have the alternative bound

max
|z|= 1

q
√
t

|F⊥(tz)(e(−`θ)(qz)−` − 1)| ≤ 2 max
|z|= 1

q
√
t

|F⊥(tz)| ≤ 2

1−
√
t
.

Inserting these bounds into (4.3) and then (4.2) yields

|(n+ `)σ⊥(n+ `)e(−`θ)− nσ⊥(n)| ≤
∫ 1

0

min
{
n,

1

1− t

}
min

{
L(n, `; θ),

2

1−
√
t

}
dt.
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Arguing as in the proof of Corollary 1.2, we set t = (1− u)2 so that the integral is

≤
∫ 1

0

min
{

2n,
1

u

}
min

{
L,

2

u

}
du ≤

∫ 1/2n

0

2nLdu+

∫ 1/L

1/2n

L

u
du+

∫ 1

1/L

2

u2
du

= L+ L log(2n/L) + 2L− 2

where L = L(n, `; θ). Inserting this into (4.1), we obtain

n |σθ(n+ `)− σθ(n)| ≤ 5`+ 3L+ L log(2n/L) + 2,

and the result follows. �

5. Lipschitz estimates: Proof of Theorem 1.3

In the previous section we estimated |σθ(n+ `)− σθ(n)| in terms of the parameter L(n, `; θ)
defined in Proposition 4.1. In the next lemma we show that if we choose θ such that
Re(
∑n−1

j=1 χθ(j)/j) is maximized (which is the same as choosing it such that |F⊥(e(−θ)/q)|
is maximized), then

L(n, `; θ) ≤ max
α∈[0,1)

L∗(n, `;α) where L∗(n, `;α) := |1− e(`α)| exp
( n−1∑
k=1

| cos(πkα)|
k

)
.

We then proceed to give accurate estimates, up to a constant, for each L∗(n, `;α) and,
optimizing, deduce Theorem 1.3.

5.1. Determining what is to be optimized.

Lemma 5.1. Select θ so as to maximize Re(
∑n−1

j=1 χθ(j)/j). Then∣∣∣(1− z`) exp
( n−1∑
j=1

χθ(j)
zj

j

)∣∣∣
z=e(α)

≤ |1− e(`α)| exp
( n−1∑
k=1

| cos(πkα)|
k

)
Proof. If z = e(α) then, by the definition of θ as the maximizer,

Re
( n−1∑
j=1

χθ(j)

j
zj
)
≤ 1

2
Re
( n−1∑
j=1

χθ(j)

j
+

n−1∑
j=1

χθ(j)

j
zj
)

= Re
( n−1∑
j=1

χθ(j)e(jα/2)

j
cos(πjα)

)
≤

n−1∑
k=1

| cos(πkα)|
k

.

This proves the lemma. Note also that equality holds in the last step above when χ(k) =
e(k(θ − α/2)) sign(cos(πkα)), and so the lemma is sharp in general. �

5.2. Upper bounds for a given α.

Lemma 5.2. Suppose n ≥ 2 and α ∈ [0, 1) are given. Let R := dlog ne, and select m ≤ 2R
such that |α− b/m| ≤ 1/(2mR) for some (b,m) = 1. Then

L∗(n, `;α) � ‖`α‖ n
2
π

(
min{n, 1/‖mα‖}

)cm− 2
π
mO(1)
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where ‖t‖ is the distance from t to the nearest integer, and

cm :=
1

m

m−1∑
a=0

| cos(πa/m)| =

{
cosec(π/2m)

m
if m is odd,

cot(π/2m)
m

if m is even.

An alternative expression for cm is

cm =
2

π

(
1− 2

∑
r≥1
m|r

(−1)r

4r2 − 1

)
.

Proof. The function | cos(πt)| is periodic with period 1, and a little computation gives the
Fourier expansion

| cos(πt)| =
∑
r∈Z

(−1)r+1

2π(r2 − 1/4)
e(rt) =

2

π
−
∞∑
r=1

(−1)r

2π(r2 − 1/4)
(2 cos(2πrt)).

Therefore

(5.1)
n−1∑
k=1

| cos(πkα)|
k

=
2

π

( n−1∑
k=1

1

k
− 2

∑
r≥1

(−1)r

4r2 − 1

n−1∑
k=1

cos(2πkrα)

k

)
.

The first sum is = log n + O(1), and all subsequent sums over k are � log n, so we may
truncate the r-sum at r ≤ R, with an error of O(1).

Let S(x) :=
∑

k≤x cos(2πkrα), which is easily seen to be� 1/‖rα‖. By partial summation,
we deduce that if K � 1/‖rα‖ then∑

k≥K

cos(2πkrα)

k
=

∫ ∞
K

dS(t)

t
=
S(K)

K
+

∫ ∞
K

S(t)

t2
dt� 1

K‖rα‖
� 1.

Therefore

n−1∑
k=1

cos(2πkrα)

k
=

min{1/‖rα‖,n}∑
k=1

1

k
+O(1) = log(min{1/‖rα‖, n}) +O(1).

For each r ≤ R we have |rα − rb/m| ≤ r/2mR ≤ 1/2m. Therefore if m - r then
‖rα‖ ≥ 1/2m, and so log(min{1/‖rα‖, n}) = log(1/‖rb/m‖) + O(1). Since this is � logm
we see in particular that the terms in the r-sum, for which R ≥ r > logm and m - r,
contribute O(1). Therefore the contribution of the terms r ≤ R with m - r to (5.1) is

(5.2) − 4

π

∑
1≤r≤logm

(−1)r

4r2 − 1
log

1

‖rb/m‖
+O(1) = O(1 + logm).

Note also that if r ≤ R and m|r then ‖rα‖ = (r/m) ‖mα‖, and so the contribution of
these terms to (5.1) is

− 4

π

∑
1≤r≤R
m|r

(−1)r

4r2 − 1
log min

(
n,

1

(r/m)‖mα‖

)
+O(1) =

(
cm −

2

π

)
log min

(
n,

1

‖mα‖

)
+O(1).

Using these observations in (5.1), we deduce the lemma. �
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Remark 10. From (5.2), we see that the mO(1) term in Lemma 5.2 can be replaced by the
more precise expression

exp
(
− 4

π

∑
1≤r≤logm

(−1)r

4r2 − 1
log(m/|(rb)m|)

)
,

where (t)m is the least residue of t (modm), in absolute value. This can be shown to be �
m1− 2

π (which is attained when b = 1) and� m
1
2
− 2
π (which is attained when 2b ≡ 1 (modm)).

Corollary 5.3. Let m0 be the smallest odd integer that does not divide `. Then

max
α∈[0,1)

L∗(n, `;α) � max{ncm0m
O(1)
0 , n

2
π `1−

2
π }.

Proof. Observe first, for use later, that c1 = 1 and c2 = 1/2, and that the cm tend upwards
to 2/π as m varies over even values, and they tend downwards to 2/π as m varies over odd
values. Note also that if m is odd we have 2

π
+ C

m2 > cm > 2
π

+ c
m2 , for certain absolute

constants C, c > 0.
Let 0 ≤ α < 1, and correspondingly choose 1 ≤ m ≤ 2dlog ne as in Lemma 5.2. First we

shall establish the upper bound implicit in Corollary 5.3.
In the case where m is even we have cm − 2

π
< 0, so Lemma 5.2 directly implies that

L∗(n, `;α)� ‖`α‖ n
2
πmO(1) ≤ n

2
πmO(1).

Since m0 is odd we have cm0 >
2
π

+ c
m2

0
, and since also m,m0 � log n we conclude that

L∗(n, `;α)� ncm0m
O(1)
0 if m is even, as required.

In the case where m is odd we have cm− 2
π
> 0, and we need to divide into some sub-cases.

Firstly, if m ≥ m0 then cm ≤ cm0 , and so Lemma 5.2 implies similarly as before that

L∗(n, `;α)� ‖`α‖ ncmmO(1) ≤ ncmmO(1) � ncm0m
O(1)
0 .

If m is odd and m < m0 then we must have m | `, by definition of m0. Now there are
two further sub-cases. Firstly, if ‖mα‖ ≤ 1/` then we use the bound ‖`α‖ ≤ (`/m)‖mα‖ ≤
`‖mα‖ in conjunction with Lemma 5.2, obtaining

L∗(n, `;α)� ‖`α‖ n
2
π ‖mα‖

2
π
−cmmO(1) ≤ `n

2
π ‖mα‖1+

2
π
−cmmO(1) ≤ n

2
π `cm−

2
πmO(1),

since ‖mα‖ ≤ 1/`. Then since m < m0 � log(2`), and cm ≤ c3 = 2/3 unless m = 1, this

bound is � n
2
π `1−

2
π , which is acceptable.

The remaining sub-case is where m < m0 is odd but ‖mα‖ > 1/`, in which case Lemma
5.2 gives

L∗(n, `;α)� ‖`α‖ n
2
π ‖mα‖

2
π
−cmmO(1) ≤ n

2
π ‖mα‖

2
π
−cmmO(1) ≤ n

2
π `cm−

2
πmO(1),

which is acceptable as in the previous sub-case.
We complete the proof by establishing the lower bound implicit in the corollary: namely,

maxα∈[0,1) L
∗(n, `;α)� max{ncm0m

O(1)
0 , n

2
π `1−

2
π }. We show that the first term in the max is

attained when α = b/m0 with (b,m0) = 1, and the second term in the max is attained when
α is roughly of size 1/`. Indeed, if α = b/m0 for some (b,m0) = 1 then Lemma 5.2 (with
m = m0) gives

L∗(n, `;α) �
∥∥∥ `b
m0

∥∥∥ ncm0m
O(1)
0 � ncm0m

O(1)
0 ,

since m0 does not divide `.
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This suffices, unless ` is at least a large multiple of log n (otherwise n
2
π `1−

2
π < ncm0m

O(1)
0 ,

since cm0 >
2
π

+ c
m2

0
> 2

π
+ c

log2(2`)
). If ` is at least a large multiple of log n, then for any

1/(4`) ≤ ‖α‖ ≤ 1/(2`) we can take m = 1 in Lemma 5.2, and obtain

L∗(n, `;α) � ‖`α‖ n
2
π ‖α‖

2
π
−c1 � `n

2
π ‖α‖1+

2
π
−c1 � n

2
π `1−

2
π ,

since c1 = 1. �

Proof of Theorem 1.3. As noted earlier, if θ in Proposition 4.1 is chosen as in Lemma 5.1,
then L(n, `; θ) ≤ maxα∈[0,1) L

∗(n, `;α). Now using the bound of Corollary 5.3 in Proposition

4.1, we obtain Theorem 1.3. We record that, using Remark 10, one can replace (log n)O(1)

in the statement of Theorem 1.3 by (log n)2−
2
π . �

6. Final examples

We now give examples which establish that the upper bound in Theorem 1.3 is attained for
each fixed odd m. These are based on the discussion of Example 9, with a suitable choice of
the points αj there.

Suppose that for integers k ≥ 1, the function χ(k) is periodic (modm). Write

χ̂(j) =
1

m

m∑
k=1

χ(k)e
(
− jk

m

)
,

so that for all n ≥ 1 we have

χ(n) =
m∑
j=1

χ̂(j)e
(jn
m

)
.

This class of examples satisfies the hypothesis of Example 9, and so the corresponding
solution σ(n) is given by the generating function∑

n≥0

σ(n)zn =
m∏
j=1

(1− ze(j/m))−χ̂(j).

Arguing as in Example 9, we may find asymptotics for σ(n).
We now consider the special case where m > 1 is odd, and χ(k) = sign(cos(2πk/m)) for

all k ≥ 1. Thus χ(k) = 1 when ‖k/m‖ < 1
4

and χ(k) = −1 otherwise. Recall from Remark
3 above that we are free to construct examples simply by specifying the behaviour of χ(k).
Since χ(k) = χ(m− k) for all 1 ≤ k ≤ m− 1 we see that

χ̂(j) =
χ(m)

m
+

1

m

m−1∑
k=1

cos(2πjk/m)χ(k) =
1

m

m∑
k=1

cos(2πjk/m)χ(k).

In particular

χ̂(1) = χ̂(m− 1) =
1

m

m∑
k=1

|cos(2πk/m)| = cm,

whereas χ̂(j) is a real number smaller than cm for all other values of j (because the values χ(k)
no longer perfectly “resonate” with the coefficients cos(2πjk/m)). Therefore, by Example
9, we have

σ(n) =
(
C0(1)e(n/m)+C0(m−1)e(−n/m)+o(1)

)ncm−1
Γ(cm)

= C
(

cos
(2πn

m
+β
)

+o(1)
)ncm−1

Γ(cm)
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for a suitable non-zero real number C, and some β.
Now Theorem 1.3 asserts that for any 1 ≤ ` ≤ n such that m is the smallest odd integer

not dividing `, we will have

|σθ(n+ `)− σθ(n)| = |σ(n+ `)e(−`θ)− σ(n)| �
( `
n

)1− 2
π

log
2n

`
+

(log n)O(1)

n1−cm
,

for a suitable θ ∈ [0, 1). We now show that we will have |σ(n+ `)e(−`θ)− σ(n)| � 1/n1−cm

for some (in fact a positive proportion of) n values, for any such fixed `, so that the second
term in the upper bound is sharp up to logarithmic factors. Indeed, for all θ we have

|σ(n+ `)e(−`θ)− σ(n)| ≥
∣∣∣|σ(n+ `)| − |σ(n)|

∣∣∣
=
∣∣∣Cncm−1

Γ(cm)

{∣∣∣ cos
(2π(n+ `)

m
+ β

)∣∣∣− ∣∣∣ cos
(2πn

m
+ β

)∣∣∣+ o(1)
}∣∣∣.

This will be�m 1/n1−cm unless (2πn
m

+β) ≡ ±(2π(n+`)
m

+β) (mod π), and since m is odd and

m - ` that can only happen if (2πn
m

+β) ≡ −(2π(n+`)
m

+β) (mod π), which (since m is odd) can
only happen for those n in one particular residue class (modm). This justifies the remarks
made at the end of the introduction concerning the optimality of the exponents appearing
in Theorem 1.3.

To give a more explicit example, when m = 3 the analysis of Example 9 gives, for ω = e(1
3
),∑

n≥0

σ(n)zn =
(1− z)1/3

((1− ωz)(1− ωz))2/3
=

1− z
(1− z3)2/3

,

and indeed that σ(3n) = −σ(3n+ 1) = Γ(n+ 2
3
)/n!Γ(2

3
) ∼ n−1/3/Γ(2

3
), and σ(3n+ 2) = 0.
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