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Abstract 

Sintering induced phase transformation of TiO2 nanoparticles is investigated 

systematically via molecular dynamics simulation. By defining a coordination number 

and bond angle distribution criteria, local phase information is identified for each 

individual Ti atom originated from amorphous or crystal structure as well as three 

TiO2 polymorphs, anatase, brookite, and rutile. Size-dependent structures of 

nanoparticles lead to different dynamics of the sintering induced phase transformation. 

Grain boundaries that form between nanoparticles during sintering trigger the 

nucleation and growth of new phases. During the sintering of two equal-sized 

core-shell anatase nanoparticles, crystal core regions melt with the temperature rising 

and the surface energy decreasing in the microcanonical (NVE) ensemble. The new 

phase that develops from the grain boundary spreads into the destroyed core regions 

in stages, forming a new larger spherical nanoparticle with an ordered atomic 

arrangement. During the sintering of two unequal-sized nanoparticles (amorphous and 

core-shell anatase), atoms from the amorphous nanoparticle first nucleate to form 

crystal anatase in the contact region and a grain boundary is then developed between 

the original core region and the newly formed anatase crystal. After that, phase 

transformation follows much the same route as the equal-sized case from anatase to 

brookite.  

 

 

 



1. Introduction 

Phase stability of particles is a complex issue, which depends on a series of state 

variables such as external temperature, pressure, particle size, surface tension, etc.1 

Based on the principles of thermodynamics, changes in the variables will have an 

influence on the Gibbs free energy, thus leading to transformation of phase as well as 

morphology of particles.2,3 However, when the particle size reaches the nanoscale, 

high surface curvature, core-shell structure, and the depression of the melting point of 

a nanoparticle significantly influence its phase stability.1,4-10 Experiments, 

first-principle calculations, and molecular dynamics (MD) simulations have revealed 

that anatase is thermodynamically most stable at the nanoscale among three typical 

TiO2 polymorphs, while rutile is stable in bulk and brookite is a metastable state in 

between.11-17 Experimental results reveal that morphologies, sizes, surface states, 

surface environment such as surface coating, the pH value of the solution all 

contribute to phase transformation of nanoparticles.1,17-21 In particular, the transition 

diameter for spherical TiO2 nanoparticles from anatase to rutile is about 2.6 nm in 

vacuum, as indicated by DFT calculation22 and MD simulations14,15. 

Sintering, a common process during synthesis of nanoparticles, is usually 

accompanied by phase transformation. As-synthesized pure anatase nanoparticles 

were found to grow from smaller amorphous or anatase clusters.23-30 However, a 

certain amount of brookite phase exists besides the anatase phase during synthesis of 

nanoparticles.31,32 Banfield found the occurrence of brookite on anatase {112} twin 

surfaces in the synthesis of anatase.32 Moreover, under higher temperatures and larger 



sizes, the nanoparticles of anatase phase may sinter and transform to rutile 

phase.31,33,34 Cummings et al.35 carried out MD simulations of multiple TiO2 

nanoparticles with multiple phases and detected phase transformation through 

simulated X-ray diffraction (XRD) patterns. In previous experimental or MD studies, 

global parameters, e.g. XRD, X-ray photoelectron spectroscopy (XPS), are frequently 

utilized to identify phases structure.31-33,35 However, detailed local information about 

nucleation sites and the dynamics of subsequent structure evolutions are still lacking 

and need to be investigated during the sintering induced phase transformation of small 

nanoparticles. Fichthorn et al.15 developed a local order parameter to identify 

individual Ti ions as either anatase, rutile, or anatase {112} twin-like and tracked the 

nucleation of a single anatase nanoparticle and nanocrystal aggregates of low-energy 

Wulff construction via MD simulation. However, the proposed method is unable to 

identify the brookite phase. Furthermore, in experiments of nanoparticle synthesis, the 

initial core-shell nanoparticles are more common than the low-energy Wulff 

construction discussed by Fichthorn et al.15 

In this study, two typical cases, sintering of two equal-sized core-shell anatase 

nanoparticles and that of two unequal-sized amorphous and core-shell anatase 

nanoparticles, are investigated. MD simulation based on semi-empirical force fields is 

adopted, associated with two characteristic parameterizations, i.e., the coordination 

number (CN) and the bond angle distribution criteria (BADC), which are defined and 

utilized to scrutinize the phase and structure evolutions during nanoparticle sintering. 

Global parameter of simulated XRD patterns is also applied to identify phase 



information at different sintering stages. The dynamic sintering process, the 

nucleation sites, and the route for the growth of new phase are revealed at an 

atomistic-scale through our simulation and analysis. 

2. Methods 

2.1 Simulation Details 

MD simulations are performed using the computer package LAMMPS36 to 

investigate size-dependent structures of TiO2 nanoparticles and phase transformation 

during sintering. The pair interaction between atoms of TiO2 was proposed by Matsui 

and Akaogi,37 which has been tested as the most suitable force field for reproducing 

structural properties of TiO2 polymorphs, rutile, anatase, brookite and amorphous 

phases among the available force fields38,39 and widely adopted in MD 

simulations.5,14,15,19,27,35,40-43 The Matsui-Akaogi force field potential can be divided 

into three parts: repulsion, dispersion, and Coulombic interactions (the first two parts 

are denoted as the Buckingham potential), which are expressed as Eqn. 1: 

  （1） 

where the potential Uij represents the interaction between atom i and atom j with a 

distance of rij. qi is the effective partial charge of atom i and qO equals to – qTi / 2, 

which are obtained by Taylor et al.44 through observing the phonon dispersion of rutile. 

Other parameters such as f is a standard force of 4.184 kJ ∙ Å－1 ∙ mol−1. Ai and Bi are 

the repulsive radius and softness parameter, which are shown in Table 1.  
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Table 1. Interaction Parameters for the Matsui-Akaogi Force Field  

 q (|e|) A（Å） B（Å）  

 C (Å3kJ
1
2mol−1) 

Ti +2.196 1.1823 0.077 22.5 
O -1.098 1.6339 0.117 54.0 

Before MD simulations, perfect anatase TiO2 spherical nanoparticles of different 

sizes (dp = 2 ~ 5 nm) are established from the bulk material. The excess titanium 

atoms or oxygen atoms are removed from the surface to ensure charge balance.40,41 

Non-periodic boundary conditions are applied in three dimensions and the potential is 

valid in the whole simulation box without a cutoff truncation in the simulation. The 

Velocity-Verlet algorithm is employed with a time step of 1 fs to integrate Newton’s 

equations of motion and to update velocities and positions of the atoms. The 

Nosé-Hoover thermostat is adopted to equilibrate the nanoparticles in the canonical 

(NVT) ensemble to a target temperature for 3×106 timesteps. After that the 

equilibrated nanoparticles are placed at a center-to-center distance of 4 nm in the 

center of the simulation box and the initial velocities of two separated particles are 

zero.27, 35, 40, 42, 43 Simulations of the sintering process are in the NVE ensemble, which 

is based on the fact that both the heat conduction and radiation can be ignored during 

the sintering process.5,14,15,27,35,40-43  

2.2 Structural Analysis of Nanoparticle 

To distinguish the ordered and disordered structure of nanoparticles, we utilize 

radical distribution functions (RDF) and CN to identify global and local structure 

information of nanoparticles. The definition of RDF,1 g(r), is expressed as  



     （2） 

where dn(r) is the number of O atoms in a spherical shell at a distance r from a Ti 

atom within thickness of dr. ρ is the O atom number density around a Ti atom in the 

radius of the Ti-O distance R’. Here structures of equilibrated nanoparticles at 

different temperatures and sizes are taken as examples for examining the RDF. The 

high surface-to-volume ratio of nanoparticles leads to decreased melting points as 

well as a core-shell structure.5 Therefore, only Ti atoms in the core region (0-0.5 R, R 

is the radius of a nanoparticle) are considered, which are indicated by the dashed 

circle in Figure 1. O atoms within the Ti-O distance of R’ = 4 Å are counted, which is 

enough to include the nearest six O atoms.  

 

Figure 1. A sketch map indicates the atoms considered in the calculation of the radical 

distribution function and the coordination number of Ti atoms in a TiO2 nanoparticle. Red 

balls are Ti atoms while grey balls are O atoms. 

 

  The RDFs of nanoparticles at various temperatures and of various sizes are plotted 
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in Figure 2 (a) and Figure 2 (b). The first strongest peak in RDF represents the nearest 

Ti-O bond length, which almost coincides with the ideal bond length of anatase 

crystal46, as shown in the brown dashed line. According to RDFs, 0.24 nm is chosen 

to be the criterion for judging whether one O atom is adjacent to a Ti atom or not. The 

number of these adjacent O atoms is then summed up as the CN of one Ti atom. 

Figure 2 (c) and Figure 2 (d) present the mean CNs at various temperatures and of 

different sizes which correspond to cases in Figure 2 (a) and (b), respectively. The 

mean CN decreases from 6 to 5.6, which shows a clear global ordered to disordered 

structure transition with the increase of temperature and the decrease of size. This 

phenomenon is consistent with the size-dependent structure transition by Zhang et al.5 
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Figure 2. The radical distribution functions and coordination number at different 

temperatures and of varied nanoparticle sizes. (a) RDFs of dp = 2.5 nm nanoparticles at 

temperatures ranging from 273 K to 2073 K. (b) RDFs of nanoparticles of diameters from 2 



nm to 5 nm at T0 = 1473 K. (c) mean coordination numbers of dp = 2.5 nm nanoparticles at 

temperatures ranging from 273 K to 2073 K. (d) mean coordination numbers of 

nanoparticles of diameters from 2 nm to 5 nm at T0 = 1473 K. 

 

  As for local ordered or disordered structure information of one particular atom in a 

nanoparticle, the CN of every Ti atom is calculated to quantify the unique structure. In 

Figure 3, the CN of every Ti atom in a TiO2 nanoparticle is plotted versus the 

non-dimensional radius position, which shows a core-shell structure of nanoparticles 

at dp = 3 ~ 5 nm and an amorphous structure at dp = 2 nm. It should also be noted that 

the portion of the amorphous layer decreases with the increase of size, but the 

thicknesses are all within the region of 4 ~ 6 Å, which verifies the result of Cummings 

et al.43 
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Figure 3. Coordination Number along the nanoparticle radius from the center to the surface 

of nanoparticles in different sizes, dp = 2, 3, 4 and 5 nm at 1473 K. 

 

2.3 Structural Characterization of TiO2 Polymorphs 

  Simulated XRD 1,14,47 is used to characterize the global phase structure, which helps 



to distinguish the existing crystal phases and to qualitatively indicate the relative 

intensity. The simulated XRD patterns can be expressed through the relationship 

between the diffracted coherent radiation intensity, , and the diffraction angle, 2θ, 

determined by applying the Debye functional analysis,48 

  （3） 

where  and are the scattering factors for atoms n and m separated by a 

distance of . In Eqn. 3, , λ is the wavelength of the incident X-ray 

(Cu Kɑ radiation λ = 1.5406 Å).49 The simulated XRD patterns for three TiO2 

polymorphs are in good agreement with those of experimental results in terms of the 

diffraction angle and the relative intensity. 
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Figure 4. The position and probability of the bond angle formed by a Ti atom and two 

nearest arbitrary O atoms of the three polymorphs of TiO2 in equilibrium at 1473 K and in 

crystal structure. The values in the table are the criteria integrated from the three regions 

and used to distinguish different polymorphs.   

 

  Moreover, a parameter of the BADC is proposed to distinguish the local Ti-O phase 

among the three polymorphs of TiO2. In detail, for each Ti atom surrounded by six 

nearest O atoms in the lattice structure of three polymorphs,46 the distribution of the 

O-Ti-O bond angles reflects distinctive local information of the three polymorphs. 

Figure 4 presents the statistical bond angle distributions for 3 nm nanoparticles in 

three phases. It should be noted that the peaks around the regions of 120°-135°, 



135°-150°, 165°-180° in the bond angle distribution of the ideal crystals and 

equilibrated nanoparticles are quite different for rutile, brookite, and anatase phases. 

Therefore, we calculate the ratio of O-Ti-O bond angles in these three regions and 

define them as the criteria for identifying local phase among three polymorphs. It has 

been tested that more than 95% of atoms in the ordered crystal core region can be 

identified as the corresponding phase for three polymorphs.  

3. Results and Discussions 

  Combining global phase information from simulated XRD patterns with local phase 

information from CN and BADC, the phase transformation is scrutinized during the 

sintering processes of two equal-sized anatase nanoparticles and two unequal-sized 

nanoparticles (amorphous and anatase). Both cases occur frequently during the 

synthesis of nanoparticles.23-27 

3.1 Sintering induced phase transformation of two equal-sized nanoparticles 

  According to the previous studies on phase stability of TiO2 nanoparticles, anatase 

is thermodynamically stable for dp ≤ 2.6 nm.14,15,22 MD simulation of the sintering 

process of the two equal-sized anatase nanoparticles is implemented at various 

nanoparticle sizes and temperatures. Here a typical case is presented with initial 

temperature of 1473 K and dp = 2.5 nm, which ensures the core-shell anatase structure 

of initial nanoparticles. The history of temperature versus time is plotted in Figure 5 

on logarithmic coordinates combined with snapshots from cross-section. Atoms are 

colored according to the regions they locate initially. From Figure 5, the sintering 

process can be then classified into the following four stages: (i) before the formation 



of the sintering neck, the two nanoparticles first attract with each other and take a 

lattice rotation to find an appropriate contact site (also regarded as the oriented 

attachment mechanism in previous studies50-52), which leads to asymmetric structure 

evolutions of two nanoparticles as sintering proceeds; (ii) the sintering neck begins to 

grow from t = 0.14 ns to t = 1 ns dominated by grain diffusion mechanism which 

results in the reduction of surface area and the quick increase of temperature; (iii) in 

the third stage of the sintering from 1 ns ~ 10 ns, some atoms in the former grain 

boundary and surface region diffuse to the initially concave region between 

nanoparticles, contributing to the neck growth as well as the overall structure from 

ellipsoid to sphere, accompanied by a temperature rise from about 1600 K to 1730 K; 

(iv) finally, the structure of the sintered nanoparticle tends to approach a spherical 

shape slowly from 10 ns to 140 ns, as the temperature history remains constant before 

increasing slightly from 40 ns to 120 ns and plateaus after that. The first three stages 

have been frequently discussed in previous studies, but little work has focused on the 

last sintering stage due to limitations in computation, which is the focus of this study.  

 



 
Figure 5. Temporal evolution of temperature and the corresponding morphology changes of 
two equal-sized anatase from cross-sectional views, with Ti and O atoms initially (t = 0 ns) 
colored green and red (core) or blue and navy (surface), respectively, during sintering by 
molecular dynamics simulation in the microconanical ensemble (NVE) at T0 = 1473 K. 

 

  The simulated XRD patterns are plotted in Figure 6 according to different sintering 

stages. Compared with that of the standard XRD data of anatase, brookite and rutile 

from experiments,53 the intensities of anatase (101) and anatase (112) decrease, while 

those of brookite (121) and brookite (241) increase during the last sintering stage. It is 

noteworthy that the intensity of the brookite (121) increases dramatically from 50 ns 

to 120 ns and remains much the same after that, which has already been reported in 

the experiment of the hydrolytic sol-gel synthesis of crystal anatase nanoparticles.54  
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Figure 6. Simulated XRD patterns of the nanoparticles in Figure 5 at different sintering 

stages at t = 0 (navy), 10 (red), 50 (green), 120 (magenta) and 140 ns (blue) compared with 

that of the standard data from experiments (dotted lines). 

 
  Nevertheless, XRD patterns only present global phase information of nanoparticles. 

A lack of detailed local information during phase transformation makes it difficult to 

identify how the nucleation and growth of the new phase take place. Here the CN and 

the BADC are applied to identify local structure and phase information by observing 

local Ti-O arrangement. First of all, numbers of Ti atoms in anatase, brookite and 

rutile phases are counted at the last stage of sintering, as shown in Figure 7, 

illustrating that atom numbers in anatase and brookite phase enjoy an opposite trend, 

while few atoms are in rutile phase. Figure 8 presents Ti atoms colored according to 

local phases in the sintered nanoparticle. In detail, Figure 8 (a) includes all kinds of Ti 

atoms from the cross-section view, while Figure 8 (b) only presents the Ti atoms in 

crystal phases. Initially, after the oriented attachment of two sintering nanoparticles, a 

grain boundary is formed in the contact region. Atoms in the grain boundary are 



amorphous without crystal structures as shown in the blue atoms in Figure 8 (a) and 

the white gap between two contacting nanoparticles in Figure 8 (b). Before 40 ns, the 

generation and subsequent disappearance of some small nuclei with a few crystal 

atoms in brookite phase are observed mainly located on the surface of anatase 

nanoparticles or in the grain boundary, indicating that the nuclei have not reached the 

critical nucleus size for the growth of the new phase. Obvious phase transformation 

begins after t = 40 ns and the whole process can be divided into three steps based on 

three continuous ‘S’ curves of the atom numbers in brookite and anatase phases (with 

slow transformation at the beginning and at the end, but rapid transformation in 

between) in Figure 7. During the first step, from 40 ns to 50 ns, the size of the 

brookite nuclei reaches the critical value in the grain boundary region and grows 

rapidly consuming original atoms in this region. This is consistent with the simulated 

XRD patterns, with a distinct stronger peak of brookite (121) at t = 50 ns compared to 

that at t = 10 ns in Figure 6. The asymmetric structure evolution of two nanoparticles, 

which results from the oriented attachment, may be amplified because of the heat 

release during phase transforms from a state with high potential energy to that with 

low potential energy in the NVE ensemble. These lead to the separated phase 

transformation steps for the two nanoparticles follow. During the second step of phase 

transformation from 50 ns to 70 ns, the atom number in brookite phase fluctuates 

around a constant value before increasing drastically. The new phase develops into the 

original core crystal region of the left nanoparticle. Finally, phase transformation 

engulfs the core region of the right nanoparticle, as the atom number in the brookite 



phase increases sharply once more. It should be noted that the growth of brookite 

phase in the original core regions of the two nanoparticles develops from nuclei in the 

grain boundary after the melting of the crystal anatase in two nanoparticles with the 

rising temperature. Up to now, the majority of atoms in sintered nanoparticles have 

transformed into brookite phase which can be seen from the changeless brookite (121) 

peak in simulated XRD patterns and the plateaued atom number of brookite after t = 

120 ns in Figure 6 and Figure 7, respectively. Meanwhile, as the energy of the 

simulated sintering system is conserved, a slight increase of the temperature from 40 

ns to 120 ns leads to the decrease of the potential energy, reflecting the spontaneous 

characteristic of phase transformation, from a higher energy state to a lower energy 

state. 
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Figure 7. Time evolution of the number of the crystal atoms of the three TiO2 polymorphs 

(anatase, brookite and rutile) in the last sintering stage from 10 to 140 ns of the equal-sized 

sintering process. The dark solid lines indicate the trend of change in the crystal number. 

 



 
Figure 8. Simulation snapshots of the sintering process of the two equal-sized 2.5 nm 

nanoparticles at T0 = 1473 K. The local structure information of Ti and O atoms are reflected 

through different colors on Ti atoms. Ti atoms in the amorphous structure are colored in 

blue, and in the crystal structure of anatase are colored in green and brookite in red. (a) The 

cross-sectional snapshots include all the Ti atoms both in amorphous and crystal structures. 

(b) The snapshots present all the Ti atoms in the crystal structures. 



 

3.2 Sintering induced phase transformation of two unequal-sized nanoparticles 

  The sintering case between two unequal-sized nanoparticles is investigated on the 

same condition. In detail, the unequal-sized case contains the same atom number and 

sinters at the same initial temperature in the NVE ensemble as the equal-sized case, 

i.e., dp,1 = 2 nm with 342 atoms and dp,2 = 2.9 nm with 1080 atoms at T0 = 1473 K. It 

should be noted that at this initial temperature, the smaller nanoparticle is amorphous 

while the larger nanoparticle is core-shell anatase as discussed in Figure 3. The history 

of temperature versus time is plotted on logarithmic coordinates and the 

cross-sectional snapshots of morphology evolutions during the sintering process are 

shown in Figure 9. Ti and O atoms from two nanoparticles are colored differently. 

Similar to the equal-sized case, the sintering process can also be divided into four 

stages: (i) at the first stage, there is a lattice rotation of the larger core-shell 

nanoparticle before contacting, which is the same as the equal-sized nanoparticle case; 

(ii) then the contact region between two nanoparticles grows rapidly with a dramatic 

shape deformation of the smaller nanoparticle and atoms spread out on to the surface 

of the larger nanoparticle; (iii) from 1 ns to 10 ns, atoms of the smaller nanoparticle 

continue to spread out, accompanied by the formation of an ellipsoidal nanoparticle as 

well as a small portion of amorphous atoms nucleated in the contact region; (iv) after 

10 ns, some atoms from the smaller nanoparticle mix with the surface atoms of the 

original larger nanoparticle, while some permeate into the crystal lattice of the larger 

one, destroying the original ordered structure. 



 

Figure 9. Temporal evolution of the temperature and the corresponding cross-sectional 

snapshots of the morphologies of two unequal-sized sintering TiO2 nanoparticles (dp,1 = 2 nm, 

Ti: green, O: blue; dp,2 = 2.9 nm, Ti: red, O: gold) by molecular dynamics simulation in the 

NVE ensemble at T0 = 1473K. 
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Figure 10. Simulated XRD patterns of the nanoparticles in Figure 9 at different sintering 



stages at t = 0 (navy), 10 (red), 25 (green), 50 (magenta), 100 (blue) and 120 ns (olive) 

compared with that of the standard data from experiments (dotted lines). 

 

  To better understand the evolution of atomic arrangements during the sintering of 

two unequal-sized nanoparticles, the simulated XRD patterns are plotted according to 

different sintering stages and compared with the standard XRD data of anatase, 

brookite, and rutile,53 as shown in Figure 10. Initially, the intensities of anatase (101) 

and anatase (211) increase slightly before 10 ns, which indicate that some of the 

atoms transform to anatase at the third stage of sintering. Then the intensities of 

anatase (101) and anatase (112) in the simulated XRD patterns decrease significantly, 

while the phase intensities of brookite (121) and brookite (241) increase at the same 

time, which indicate that anatase phase transforms into brookite phase.  
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Figure 11. Time evolution of the number of the crystal atoms of TiO2 polymorphs of anatase, 

brookite and rutile during the sintering from 1 to 140 ns of the unequal-sized sintering 

process. The dark solid lines indicate the trend of change in the crystal number. 

 

  The CN and the BADC are adopted to identify atoms in amorphous or crystal 



structure as well as different phases and to track the details of phase transformation. 

The number of Ti atoms of different crystal phases are counted and plotted in Figure 

11. The variation trend of atom number in anatase phase is contrary to that of brookite 

phase. Phase information of Ti atoms is expressed in Figure 12 through different 

colors. Cross-sectional views of the sintering nanoparticles are present in Figure 12 (a) 

including atoms of amorphous and crystal structures and Figure 12 (b) displays Ti 

atoms in three crystal polymorphs. The atom number in anatase phase increases 

slightly before 10 ns. During this period, the original smaller amorphous nanoparticle 

on the right transforms into crystal anatase phase with an ordered Ti-O arrangement 

layer by layer. A grain boundary then develops between the newly formed anatase 

phase and the original crystal anatase, forming a region filled with amorphous atoms. 

From 10 to 25 ns, a slight rise of temperature leads to a higher diffusion rate of atoms 

and the melting of the original anatase structure. This consequently destroys the 

crystal anatase core region and the atom number of anatase phase decreases during 

this period. Then from 25 ns to 70 ns, the temperature and the atom number in 

different phases remain much the same. Small nuclei with atoms of brookite phase 

frequently appear on the surface as well as in the grain boundary before a rapid 

growth of the new phase. After 70 ns, the temperature trends to rise slightly again, 

leading to a decrease of the potential energy. From the snapshots in Figure 12, atoms 

in brookite phase emerge rapidly in the grain boundary region after 85 ns. The 

brookite phase nuclei in the grain boundary then progress into the newly developed 

crystal anatase region and the original core region of the larger nanoparticle. No 



obviously separated phase transformation stages have been observed in this case, 

which is different from the equal-sized sintering case. This is because that the number 

of atoms in the newly formed anatase phase is fewer compared with that in the 

original crystal core of the larger nanoparticle and the two stages merge into one step.  

  Both equal-sized and unequal sized sintering cases indicate that atoms in the grain 

boundary are important for triggering phase transformation. An explanation of this 

phenomenon is that the grain boundary region, as a planar zone filled with atoms not 

in perfect crystal arrangement and relatively weak bonding, provides preferred sites 

for nucleation and being a breeding ground for the growth of new phases. Besides, 

compared with the surface nucleation and bulk nucleation, the grain boundary 

nucleation is temperature independent in kinetics and only determined by the Gibbs 

free energy of different phases in thermodynamics.28 Therefore, phase transformation 

of the original crystal core regions subsequently develops from the nuclei formed in 

the grain boundary. 

 

 



 
Figure 12. Simulation snapshots of the sintering process of the unequal-sized nanoparticles 

with dp,1 = 2 nm and dp,2 = 2.9 nm at T0 = 1473 K. The local structure information of Ti and O 

atoms are reflected through different colors on Ti atoms. Ti atoms in amorphous and crystal 

structure of anatase are colored in blue and green, and brookite in red. (a) The 

cross-sectional snapshots include all the Ti atoms both in amorphous and crystal structures. 

(b) The snapshots present the Ti atoms in the crystal structures. 



  Rutile is more thermodynamically stable than anatase and brookite when dp is 

larger than 2.6 nm14,15,22, Therefore, as the final sintered nanoparticles of dp ~ 3.1nm 

in above sintering cases, we believe that they will finally transform to rutile, which is 

thermodynamically favorable. However, because of the limited simulation time of 140 

ns in our simulation, it is unable to capture this successive phase transformation, 

which may happen later in a much longer time scale. In fact, phase transformation 

may not take place directly to the most thermodynamically stable state, that is, anatase 

may firstly transform to brookite then to rutile. According to the Ostwald’s step rule,55 

crystallization often occurs in steps in such a way that often thermodynamically 

unstable phase occurs first, followed by the thermodynamically stable step. More 

specifically, if several products are produced in a reaction, it is not the most stable 

state with the least amount of free energy that is initially obtained, but the least stable 

one, lying nearest to the original state in free energy.56 Stranski and Totomanow57 

re-examined this rule and argued that the nucleated phase is the phase that has the 

lowest free-energy barrier of formation, rather than the phase that is globally stable 

under the conditions prevailing. Our simulations have detected the phase 

transformation from anatase to brookite, which indicates that the Ostwald’s step rule 

can be applicable to the phase transformation of nano-sized TiO2 particles. 

  From the kinetic point of view, Penn and Banfield32 found that on the sintering of 

two nanoparticles in initial anatase phase, orientated attachment at anatase surface 

leads to twinning on {112}. Brookite, occurs at some {112} twin surfaces5, may 

nucleate at twin planes and grow at the expense of anatase. Last but not least, it was 



reported that there were an amount of nanoparticles in brookite and rutile phases 

during synthesis of ultrafine anatase nanoparticles in experiments,33 which support our 

simulation results to some extent. 

4. Conclusions  

  MD simulation, combined with the defined CN and the BADC, elucidates details of 

the sintering induced phase transformation from the aspect of the local information 

and reveals the underlying mechanisms. Two typical cases of equal-sized core-shell 

anatase nanoparticles (dp = 2.5 nm) and unequal-sized amorphous and core-shell  

anatase nanoparticles (dp,1 = 2 nm and dp,2 = 2.9 nm), containing the same total atom 

number, sinter in the NVE ensemble at T0 = 1473 K. The dynamics of phase 

transformation differ in the above two cases. In the equal-sized case, phase 

transformation occurs at the final sintering stage of the equal-sized case, which 

consists of three steps. Atoms in brookite phase first begin to nucleate and grow 

rapidly at the grain boundary. Original anatase core regions of nanoparticles then melt 

due to the rising temperature during sintering. The new generated brookite phase 

subsequently develops into the core regions in stages, forming a larger nanoparticle in 

ordered atomic arrangement. However, in the unequal-sized case, a distinct phase 

transformation step has been observed due to different initial structures. Firstly, atoms 

from the amorphous nanoparticle spread onto the surface of the larger core-shell 

nanoparticle and nucleate to the crystal anatase phase layer by layer. A grain boundary 

is then generated between the original core crystal and the newly formed anatase 

lattice, which serves as the site for the subsequent phase transformation from anatase 



to brookite. Thereafter, phase transformation of the unequal-sized case follows much 

the same route as the equal-sized case. It is found that grain boundaries formed during 

sintering trigger the subsequent nucleation and the growth of new phase and the initial 

structures of two nanoparticles, i.e. core-shell or amorphous structure, significantly 

influence the dynamics of sintering induced phase transformation. However, for the 

final stable phase of the sintered nanoparticles in our simulations, we believe that they 

will transform to rutile, which is more thermodynamically stable than anatase and 

brookite when nanoparticles are larger than 2.6 nm. Moreover, our simulation results 

confirm that the Ostwald’s step rule is applicable to the phase transformation of 

nano-sized TiO2 particles. That is, anatase may firstly transform to brookite then to 

rutile, rather than directly to the most stable state. 
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