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Sparsing in Real Time Simulation

Modelling of mechatronical systems often leads to large DAFEs with stiff components. In real time simulation
neither implicit nor explicit methods can cope with such systems in an efficient way: explicit methods have to
employ too small steps and implicit methods have to solve too large systems of equations.

A solution of this general problem is to using a method that allows manipulations of the Jacobian by computing
only those parts that are necessary for the stability of the method.

Specifically, manipulation by sparsing aims at zeroing out certain elements of the Jacobian leading to a structure
that can be exploited using sparse matrixz techniques. The elements to be neglected are chosen by an a priori
analysis phase that can be accomplished before the real-time simulation starts.

In this article a sparsing criterion for the linearly implicit Euler method is derived that is based on block
diagonalization and matrixz perturbation theory.
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1 Introduction

Real time simulation is a growing field of applications for simulation software. Especially the so called "Hardware
in the Loop” (HIL) simulation is an application that becomes more and more important, e.g., in controller design
and testing. In such a scenario a piece of hardware (e.g. a controller) is set into a virtual environment, created by
a simulation that is running in real time. This controller communicates with the simulation software in short time
cycles, so that the software is required to provide results once in a cycle.

Using new modelling techniques, such as object oriented modelling, it is possible to describe more and more complex
technical models (see e.g. [9],[10],[4]). Many of those are multi-domain models, which means that they contain
components from more than one physical domain. Mechanic, electric, hydraulic, or thermodynamic components
are often coupled together in one model. This means that there are several different time scales present in the
model, which again leads to stiff ordinary differential equations (ODEs) or differential algebraic equations (DAEs).
Efficient real time simulation in such a stiff case poses problems very different from off-line simulation. Classical
methodology of efficient algorithms, such as step size control or the reuse of the Jacobian, is not feasible in the
context of real time simulation.

This paper covers one possible form of adaptivity for real time simulation: sparsing, which means that certain
elements of the Jacobian matrix are set to zero to permit more efficient LU-decompositions. In Section 2 the linearly
implicit Euler method is discussed in the light of real time simulation and sparsing. In Section 3 a preprocessing
routine analyzing a model and performing the sparsing is described. Results of numerical experiments are presented
in Section 4.

2 Linearly Implicit Euler and Sparsing
2.1 Stiff Real Time Simulation

We consider the numerical solution of a quasi-linear differential algebraic initial value problem of index 1:
Li = f(z,1); z(to) = o; (1)

This DAE is a model for a dynamic process that starts at model time ¢y and runs for a certain amount of time d¢.
For a given time grid A = {to,t1,...,tn = to + 0t} on the interval [to,tp + 0t] and for consistent initial values
we would like to obtain a numerical approximation {zg,z1,..., 2y} of the solution of (1) on A. For this purpose
we use an algorithm that starts to run on a computer at real time T. The special feature of ”"real time simulation”
(in an abstract sense) is that for each grid point ¢,, there is a specified ”deadline” §7,,, a time span in "real time”,
and we require that the computation of x, is complete at the time Ty + §75,.

"Hardware in the Loop simulation” (in an abstract sense) requires that for each grid point ¢, there is a time span
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05y, such that f(x,,t,) can’t be evaluated by the algorithm before the time Ty + 0.5,. This means that for given
Z,, the computation of the next solution point x,41 cannot start before T = Ty + §S,, and is required to take no
longer than the time span D,, = 671,11 — 05,. If this "real time” requirement is not met at each time instant the
simulation fails.

In most applications we have an equidistant time grid A with a constant ”sample time” 7 =t;—tg = ... =ty —tn_1
and a constant "deadline” § = Dy = ... = Dy_1. Often 7 is so small that it is also used as the step size for the
numerical integration scheme.

In short we observe two characteristic features of real time simulation: the required time grid is part of the speci-
fication of the problem and the computing time is tied closely to the temporal behavior of the simulated model.

Appropriate numerical methods. To perform real time simulation in a reliable way we have to
use numerical methods that perform predictable computational work for each step. This requirement rules out
implicit methods (they iteratively solve a non-linear system of equations) and leads us to explicit methods in the
non-stiff ODE case and to linearly implicit methods in the stiff or differential algebraic case. Taking into account
that the grid interval 7 is usually very small, we concentrate on low order methods like the explicit Euler method,

Tntl = Tpn + Tf($n,tn), (2)

or the linearly implicit Euler method,

Tpy1 = (En-I-T(L—TDf|(xmtn))_1f({L‘n,tn). (3)

In the following, we will concentrate on the stiff and differential algebraic case, so we will deal with the linearly
implicit Euler method.

Adaptivity. Classically, adaptivity adjusts the behavior of the algorithm while the simulation is
running. Two examples are step size control and the reuse of the Jacobian. This is done to make the algorithm
more reliable (in terms of error control) and more efficient (in terms of overall computation time).

In real time simulation we do not have the possibility to change the step size because it is given or severely restricted
by the real time specifications of the problem. The best thing we can do for ”controlling” the error is to estimate
it and log the estimates so that the value of the results can be judged a-posteriori.

Concerning efficiency we observe that in real time simulations performance is measured in a special way. For a
given step size 7 the performance of the method on a computer is indicated by the minimal deadline d,,;, in which
each integration step can be accomplished. This means that the most expensive step or in other words the ”worst
case” determines d,,;,. As a consequence, techniques like reusing the Jacobian over several steps are not useful
in the real time case because the most expensive steps - the ones where the Jacobian is updated - determine the
performance.

So, if we want to design an adaptive algorithm, we have to gather information before real time simulation starts
and then use a form of adaptivity that relies on time independent properties of the problem. This requires an
analysis of the problem before real time simulation starts. The goal of this paper is to describe one way to perform
such an analysis automatically during a preprocessing phase.

As the overall computation time is secondary in real time simulations, such a strategy makes sense even if the
preprocessing phase is much more expensive than the simulation itself.

Stiffness. Real time simulation is mostly performed in industrial applications. There, the systems
that have to be simulated are often modelled by large differential algebraic equation systems with stiff compo-
nents. In most cases, stiffness is caused by subsystems with fast dynamics (such as controllers or electric circuits)
compared to the time scales of interest (e.g. the movement of mechanical parts). Systems with such a structure
are sometimes called ”separably stiff” (see e.g. [6].). There are various ways to exploit this structure in off line
simulation (see e.g. [6], [13]). However, these methods are not suitable for real time simulations.

On the other hand, we observe that this structure inherent to the model is often time invariant. Therefore we can
also exploit this structure in the real time case. Moreover, issues as stability of the numerical discretization are
easy to predict because the step size is kept constant.

Sparsing. The linearly implicit Euler method for stiff simulations consumes a large part of compu-
tation time by the decomposition of the matrix (L — 7Df). If the Jacobian is large and sparse this effort can be
reduced by the use of direct sparse solvers (see e.g. Duff [2]): the more sparse the matrix the faster the factorization
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of the matrix.

This leads to the idea of zeroing selected elements of the Jacobian, such that - while the integration method is still
stable - the matrix factorization is performed more efficiently.

An example where sparsing was performed successfully in off line simulation is described by Nowak [8]. Here the
matrix elements were zeroed out dynamically before each time step using a criterion based on the magnitude of
the matrix elements.

In our approach for the real time case the Jacobian D f|(,, ¢, is analyzed for several (z,,t,) and a fixed sparsity
pattern is selected during a preprocessing phase. During simulation only the remaining elements will be taken into
account by the factorization routine. The factorization routine itself also has to meet real time requirements. We
will therefore use only the time independent structural features of the linear system that do not affect the stability
of the factorization.

For a successful application of sparsing we have to deal with two questions: How does the approximation of the
Jacobian affect the stability of the integration method? How is the accuracy of the method affected by sparsing?
In the rest of this section these two questions are answered for the linearly implicit Euler method.

2.2 Linearly implicit Euler with inexact Jacobian

As the simplest linearly implicit method the linearly implicit Euler method is a good candidate for sparsing. We
are going to analyze this method for the case of an inexact Jacobian, i.e., a matrix J =~ Df that is used in the
discretization:

Tpy1 = Tp +7(L —7J) " f (20, t0). (4)

The difference between the exact and the approximate Jacobian is denoted by AJ := D f — J.

Accuracy. In general the use of an inexact Jacobian for linearly implicit methods leads to a loss of
order in the method. However one can construct methods without loss of order, called W-methods. They were
first studied by Steinhaug and Wolfbrandt [11]. The linearly implicit Euler method is just the simplest example of
a W-method. We can verify this by computing the error expansion. However, order is only an asymptotic concept.
If we consider the linearly implicit Euler method at a given step size 7, modifying the Jacobian of course changes
the dynamics of the numerical method.

The conclusion concerning accuracy is therefore: sparsing has only a small effect if sufficiently small step sizes are
used.

Stability. Linearly implicit methods solve linear systems of equations for the sake of stability. Sta-
bility is the property of the method most severely affected by sparsing.
It is well known that stability of a linear difference equation

Tpa1 = Axy, (5)

is determined by the magnitude of the eigenvalues A of A. Stability requires that all eigenvalues lie on the unit
disc: |A| <1 and that all eigenvalues on the border of the disc are algebraically simple (see e.g. [1]). This result
can be generalized to

Bxpi1 = Axy. (6)

If B is invertible then the same requirement does apply for the generalized eigenvalues A of the "matrix pair”
(A, B):

Av — ABuv = 0. (7)
In the case of the linearly implicit Euler method with inexact Jacobian applied to a linearized DAE

Li = Df|y-x (8)

we obtain
(L—70)any1 = (L—1J)xy + 7D fr, = (L+7AJ)x,. (9)
So instead of the eigenvalue problem for an exact Jacobian

Lv— ML —7Df)v =0, (10)
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we have to deal with
(L+7AJ)v—XNL—7Df+1AJ)v =0. (11)

It is a standard result of numerical analysis that for stable linear DAEs of index 1 the linearly implicit Euler
method with an exact Jacobian is also stable regardless of the step size 7 (A-stability). For an inexact Jacobian
this property has to be checked. If AJ is introduced deliberately, this has to be done in such a way that stability
is preserved.

3 A Sparsing Criterion

For appropriate sparsity structure of the Jacobian matrix we have to analyze within a preprocessing routine the
effects of sparsing on the dynamical behavior of the numerical method. The core of such a routine is a cheap
sparsing criterion that estimates those effects for each non-zero element of the Jacobian.

In the off-line case it did pay off to use a very simple criterion based on the magnitude of the entries, applying
it dynamically during the simulation run [8]. However, in the real time case a more accurate, more expensive
criterion seems to be more appropriate. This criterion can then be applied during a preprocessing phase before
the simulation starts. This preprocessing phase yields a sparsity structure that remains fixed during the entire
simulation.

As we have seen in section 2, stability of the numerical integration scheme applied to a linear problem Li = D fx
depends on the eigenvalues of the discrete evolution of the linearly implicit Euler method, i.e. the matrix pair:

(L4+7AJ, L —71Df +71AJ). (12)

If |A] < 1 for all eigenvalues A of (12) then the discrete evolution is asymptotically stable.

For small perturbation matrices AJ it is feasible to estimate the changes of the eigenvalues with the help of linear
perturbation theory. For this purpose the system is first transformed to block diagonal form and then the change
of eigenvalues is estimated for each block.

3.1 Simultaneous block diagonalization of matrix pairs

In the following section a short overview is given about the numerical tools that are used to calculate the sparsing
criterion. Our approach leads to the generalized eigenvalue problem (7). A detailed discussion of the theoretical
and numerical issues of this generalized eigenvalue problem can be found in [12] or [5]. In our application we can
assume that B is invertible, simplifying the discussion. This is because we are dealing with index 1 problems only.
The goal of this section is to simultaneously transform A and B to block diagonal form with blocks that are upper
triangular.

Triangularization. The most important numerical tool used for the solution of the generalized eigen-
value problem is the QZ-algorithm, an adaptation of the QR-~Algorithm to obtain the generalized Schur form.
For a given regular matrix pair (A, B) the QZ-Algorithm performs orthogonal transformations @ and Z such that:

QAZ = Ap QBZ = Br, (13)

where Ar and Br are both upper triangular matrices. Information about the eigenvalues is given by the diagonal
elements «;; and §;; of Ar and Br. If §;; # 0 (true if B is non-singular) then A\; = /8.

Block diagonalization. After the eigenvalues were computed, the next step would be to calculate the

eigenvectors, as they contain information about the behavior of the eigenvalues under perturbations. Unfortunately,
for non-symmetric matrix pairs the eigenvector problem is in general badly conditioned. Especially if eigenvalues
are close together, eigenvector sensitivity becomes large (see again [12] or [5]).
In technical applications multiple eigenvalues and Jordan blocks are very common. Moreover, algebraic equations
lead to a multiple eigenvalue 0 with sometimes very high multiplicity. Hence at least some eigenvectors cannot be
computed reliably in real life problems. To construct a robust algorithm we have to be satisfied with less: To given
disjunct subsets of eigenvalues (with well conditioned corresponding eigenspaces) compute right and left orthogonal
bases. The unions of these bases yield two transformation matrices X and Y, such that

YHAX = Ap Y#BX = Bp, (14)
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where Ap and Bp have the same block diagonal structure and the column subsets of X and Y corresponding to
the blocks are sets of orthonormal vectors. This kind of factorization is sometimes called ”spectral resolution” (see

e.g. [12]).
If we assume without loss of generality that there are only two blocks, (14) has the following structure:
Y A1 0
(i Jacx e = (34
Y B, 0
(3 Jotn = (3 4)

The standard approach to obtain a block diagonal form is via solving a Sylvester equation (see [12]). This however
leads to non-orthogonal bases X} and Y}, which may distort the sparsing criterion.

An algorithm for block diagonalization, that preserves orthogonality inside the subsets, is based on the observation
that the first ¢ columns of Z are orthogonal bases for the eigenspaces corresponding to the first i eigenvalues, if they
are ordered by appearance on the diagonal of the triangular matrices Ar and Br. The same holds correspondingly
for the last i rows of Q). To construct orthogonal bases for a given set of eigenvalues we only have to sort them to
the top of the diagonal or to the bottom respectively. This can be done by a sequence of Givens rotations in a way
similar for the standard Schur form (see [5]). If this is done for all given subsets, we get the desired transfomation
matrices X and Y. This algorithm is slower in performance than block diagonalization by solving the Sylvester
equation, but still O(n3) in complexity.

3.2 Results from perturbation theory

In this section the theoretical basis of the sparsing criterion is derived. We study the behavior of the eigenvalues
of a matrix pair (A, B), if a small perturbation (F, F) is applied. For the theoretical foundation of the following
we mainly refer to the book of Stewart and Sun [12]. In contrast to the results presented there, our main goal is to
achieve first order approximations of the eigenvalue perturbations rather than bounds. This is because a sparsing
criterion compares elements with each other rather than estimates a worst case.

As a starting point of our considerations be use a very general result of [12], that contains all the information we
will need for our purpose. As we only need a weaker result, we state a simplified formulation.

Theorem 1. (Perturbations of block diagonal matrix pairs) Let the reqular matriz pair (A, B) have a spec-
tral resolution (15). Given a sufficiently small O(e) perturbation (E, F), let

& Ei1 Epo
F( X, X =
(YQH ) (X1 %) <E21 Ea
Y _ Fiy Fio
( Y, )F( X, X, ) = ( Py Fy (16)

Then there is also a spectral resolution of (A, B) = (A+ E, B + F) with pairs of diagonal blocks:

(A1,B1) = (A1 + Eu+O0(€%), B+ Fi1 + O(€%));
(A2,B2) = (As+ Ezo+O(%), By + Fa + O(%));

Proof: Consider [12] Theorem VI.2.15 that gives explicit perturbation bounds and check that the terms that
are not listed here are O(e?). O

Remark 1. The theorem states that the non-diagonal blocks of the transformed perturbation matrix can be
neglected up to first order. Dealing with finite perturbations, the question about the quality of this approximation
arises.

One obvious issue is the norm of the transformation matrices Y;, X;. The lower it is, the smaller are the trans-
formed perturbations E;;. This should have an impact on the way of computing these transformations.

Another issue is the relation between the two blocks, an exhaustive analysis of which is beyond the scope of this
article. What can be said here is that the closer the eigenvalues of the blocks are, the larger the errors tend to be.
This should have an impact on the choice of the blocks.

If we consider only 1 x 1 blocks we get a result about perturbations of eigenvalues:
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Corollary 2. Consider the diagonalizable matrix pair (A, B) with invertible B and no multiple eigenvalues.
Let YH and X be the transformation matrices containing the left and right eigenvectors such that YT AX and
YHBX are diagonal matrices. Furthermore consider a sufficiently small O(e) perturbation (E,F). Then the
diagonal matrix A of eigenvalues of the perturbed matriz pair (A+ E, B + F) can be approzimated as follows:

A = diag(YA(B+ F)X)'YH (A + E)X) + O(é%); (17)
Proof: From Theorem 1 and the non-singularity of B follows that
) . 2 ) g
o TR o)
or written in matrix form:
A = diag(YH(B + F)X)) 'diag(Y (A + E)X)) + O(€?);
Lemma 3 below shows that:

diag(YH (B + F)X))"diag(Y# (A + E)X)) = diag(Y (B + F)X)"'Y# (A + B)X) + O(é%);

O
Lemma 3. Let Dy, Dy be diagonal matrices and Ey, E sufficiently small O(€) perturbations. Then we have:
diag((D1 + El)il(DQ + EQ)) = (diag(D1 + El))fldiag(Dz + EQ) + 0(62); (18)

Proof: Without loss of generality assume that E;, E5 have zero diagonal. Otherwise the diagonal elements
of E; can be moved to the D;. Then it remains to show:

diag((Dy + E1)"Y(Da + E»)) = Dy ' Dy + O(é?);
Neumann expansion of the leftmost factor yields:

diag((Dy + E1) "' (D3 + E»)) diag(D; (I — EyDy ! 4 O(€%)) (Do + E»))
= diag(Dy ' (Dy — E\Dy ' Dy + E)) + O(é?);

Due to the fact that E; multiplied with diagonal matrices still has zero diagonal all the terms containing F; drop
out and the proof is complete. O

With the help of Corollary 2 we can now proof a theorem about symmetric perturbations. It will be the
theoretical basis for the sparsing criterion in the next section.

Theorem 4. Let (A, B) be a diagonalizable matriz pair with eigenvalues \; and with left and right eigen-
vectors y; and x;. Assume all eigenvalues to be algebraically simple and B to be invertible. Let E be a sufficiently
small O(€) perturbation matriz. Let \; be the eigenvalues of the perturbed matriz pair (A+ E,B+ E). Then a
first order approzimation of the sum of the differences between the original and the perturbed eigenvalues is given
by the trace of B-E(I — B~1A):

> (A= X) =tx(BT'E(I - B'A)) + O(*) (19)

Proof: Corollary 2 and the invariance of the trace under coordinate transformation yield:
SDi=X) = a(YT(B+E)X)'YH(A+E)X - (YTBX)T'YTAX) + O(e)
= tr(X Y B+E) A+ E)X - X 'BTAX) + O(?)
= tr((B+E) " (A+E)— B 'A) + O(é%);
If we linearize this formula using the first order Neumann expansion and sort out higher order terms we obtain:
S Ai=X) = (B (I-EB'+0(?)(A+ E) - B'A) + O(¢)
= tr(B"Y(A—EB'A+ E +0(é) — A) + O(¢?)
tr(B~'E(I — B~ A)) + O(¢%);
O

Remark 2. With this theorem we get information about the behavior of the eigenvalues without using
information about the eigenvectors. Moreover the estimate is invariant under similarity transformations.
The drawback is that if the terms A; — A; of the sum cancel out, the sum might be small but the changes in the
eigenvalues might be large anyhow.



SCHIELA, A.; BORNEMANN, F.: Sparsing in Real Time Simulation 7

3.3 Computation of a first order sparsing criterion

For the linearly implicit Euler method the matrix pair under consideration is (L, L —7Df). Recall that the matrix
B =L — 1tDf is invertible for reasonable step sizes 7. To this matrix pair special perturbations AJ;; (zeroing out
the matrix element D f;;) are applied symmetrically. So the perturbed matrix pair is (L + AJ;;, L — 7D f + AJy;).
We will now use the numerical methods and theoretical results of the last two sections to derive a sparsing criterion
that estimates the impact of zeroing out a matrix element on a predefined cluster of eigenvalues.

The computation of the criterion is split into two phases: first a block diagonalization as described in section 3.1
is performed:

YHLX = Ap YH(L-7Df)X = Bp (20)

and we obtain the matrices Y, X, Ag and Bg. Recall that Ag and Bg are block diagonal matrices with upper
triangular blocks Ay and Bj. The resulting blocks can now be treated separately which is justified by Theorem 1.
To evaluate equation (19) for each block we will now compute the matrices on the left and the right of the
perturbation matrix. Included are the transformation matrices that lead to the block diagonal form.

v = By, (21)
VR = X (I - B Ay); (22)

As By, is upper triangular this can be done by solving upper triangular matrix equations. Up to now all computations
could be performed without knowledge about the perturbation. This means that this O(n?) computation can be
done once for all elements.

The second phase, the computation of a sparsing criterion for each element and each block is a simple matter now
and also - as we will show - computationally cheap. To apply Theorem 4 we have to compute :

e = (U TAT V) (23)

for the k*" cluster of, say, m eigenvalues. Because AJ;; contains only one non-zero element the matrix whose trace
is calculated is a rank 1 matrix:

UBATVE = (U, UMHT (—rDfi) ) (V.. V), (24)

The trace of such a rank 1 matrix can be computed very cheaply in O(m) operations:

m

e ATV = 7Dy - (U, .. ,UHVP, VDT = |7Dfy; - ZU(’“>V’“>, (25)

Jjl o Jjm

3.4 Discussion of the criterion

In Section 3.2 some issues concerning approximation errors and the sparsing criterion itself were mentioned briefly
and shall be discussed more thoroughly in this section. Some conclusions will be drawn on how to use the degrees
of freedom that are still left in the design of the algorithm.

Errors introduced by the block diagonalization. As we have already mentioned our criterion
does not take into account higher order terms. Therefore algorithmic decisions should be made in order to keep
those terms small. This affects the choice of the blocks and also the algorithm used to transform the problem to
block diagonal form.

Concerning the choice of the blocks - or equivalently the clustering of the eigenvalues - there is a tendency that
close eigenvalues in different blocks lead to large higher order terms. So blocks should be chosen in such a way
that eigenvalues that are grouped together stay together in one block. The existence of such clusters is a property
of the model and models with distinct clustering are especially well suited for sparsing.

As we see from Theorem 1 the perturbation matrix E is transformed by Y# and X and the non-diagonal blocks
that are responsible for the higher order terms are neglected. Thus the size of the higher order terms is largely
dependent on the transformations Y¥ and X. Therefore, we compute Y and X as column wise orthogonal matrices
to control the size of those terms.
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Cancellation. An important issue that needs to be addressed is the fact that due to cancellation it
is possible that:

>R = 20| < 10 =2l

This means that it may happen that an element with a strong impact on the eigenvalues receives a small criterion
and is classified in the wrong way. This also suggests to use rather small blocks when performing the block diago-
nalization so that this effect happens less probable.

One conclusion is that, as we deal with real perturbations of real matrices, only the real part of the perturbations
is considered by the criterion if an eigenvalue and its conjugate complex counterpart are located inside one block.
However, at least if we consider the stiff eigenvalues, there is an heuristic argument that suggests that the magnitude
of the sum is a good estimation for the sum of magnitudes. Sparsing was described as a way of blending implicit
and explicit methods such that the result is a numerically stable algorithm. So, the more elements of the Jacobian
are deleted, the more will the method behave like an explicit one. Therefore, the stiff eigenvalues will move to
the left of the complex half-plane. Therefore, they will all move into the same direction, and so the effects of
cancellation might not be so grave. This effect was also observed in numerical experiments. Concerning oscillatory
modes, this tendency to move into one direction is not that strong and it might well happen that cancellation plays
a role in the choice of an element.

These observations give a hint how to choose the clusters of eigenvalues. For the stiff eigenvalues we can use few
clusters but the oscillatory eigenvalues should be divided into as many clusters as possible to avoid cancellation.
One important aspect of cancellation is that it smooths out the large first order estimates of eigenvalues that are
very close together because the matrix is a numerically perturbed Jordan matrix. In this case, first order estimates
are very large but meaningless, because the higher order terms are large too. Clearly a sufficiently small pertur-
bation will not cause multiple eigenvalues to jump to infinity as suggested by the first order criterion. To sum up,
cancellation makes the criterion more robust dealing with multiple eigenvalues. In fact the presence of multiple
eigenvalues was the reason to retreat to block diagonalization.

3.5 Implementation of sparsing

Equipped with a first order estimate of eigenvalue perturbations we turn to the implementation of sparsing. As we
are going to treat non-linear problems (with some time independent structure) the first point is to obtain several
linearizations to grasp as good as possible the dynamical structure of the model. This can e.g. be performed by
running the simulation off-line and keeping linearizations that differ sufficiently from previous ones. Then sparsing
will be applied to all linearizations and a pattern will be chosen that guarantees stability for all of them. As we
can regard a new Jacobian as a perturbation of an older one we can use our first order sparsing criterion also to
decide when a new Jacobian has to be analyzed. In this case we have AJ = D fo1q — D frew-

Secondly, as we want to guarantee stability for a certain step size, the application of the criterion should be embed-
ded into an iterative process of sparsing and a-posteriori check of stability. In this process a reasonable trade-off
has to be achieved between sparsity and the stability properties of the method. In some applications it might be
acceptable that the stiff eigenvalues move towards the stability boundary for the sake of sparsity in others not.
The sparsing criterion gives us a measure for the expected deviation. The magnitude of the accepted deviation has
to be provided by a higher instance, e.g., by fixing a threshold value that can be chosen separately for each cluster
of eigenvalues if necessary.

4 Numerical experiments

To test our sparsing criterion on a practical problem we consider the model of an industrial robot with six degrees
of freedom. (see [9]). In this test example many aspects of simulation with sparsing can be observed. For each joint
the mechanical part, the electric circuit of the motor, and a controller are modelled. This leads to a system of 78
ODEs. This industrial robot is a very characteristic example for a modular system as described in Section 2.1. The
dynamic behavior of the electric circuits and the controller takes place on faster time scales than the movement of
the robot. An interesting feature of the robot is also that the six drives are only coupled by the mechanical part.
We will see that this structure is visible in the sparsity structure of the Jacobian after sparsing.
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Figure 1: The Jacobian Df of the robot model before sparsing, the LU-factorization of I — 7D f and the
eigenvalues of the discrete evolution
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Figure 2: The Jacobian J of the robot model after sparsing, the LU-factorization of I — 7J and the eigenvalues
of the discrete evolution

Sparsing was performed for a simulation of the robot with the linearly implicit Euler method and a step size
7 = 1ms. In the right part of Figure 1 we see the eigenvalues of the discretized system (with exact Jacobian) at
time ¢ = 0 i.e. the eigenvalues of the matrix pair (I,I—7Df|o 4,). We can observe the clustering of the eigenvalues
very well: the stiff eigenvalues are all inside a disc with radius 0.5, a couple of non-stiff eigenvalues are very close
to 1, and near the stability boundary there are three pairs of oscillatory eigenvalues. Sparsing of this system leads
to a tridiagonal matrix. Except for the stiff eigenvalues all eigenvalues remain virtually unchanged.
Both matrices are factorized by the Matlab 6.0 sparse LU-solver with a pre-ordering applied to rows and columns
(command: colamd(I-taux*Df)). Figures 1 and 2 show a comparison of the structure of the Jacobians, the structure
of the LU-factors (factorization in place) and of the eigenvalues of the corresponding discrete system. Note that both
factorizations are performed with threshold pivoting. Therefore, especially the factors of the unsparsed Jacobian
could be much denser if the choice of the pivot elements had to be changed for numerical reasons. The tridiagonal
sparsed Jacobian allows for far better worst case estimates.
If the robot was a linear system, then real-time simulation could be performed using the sparsed Jacobian described
above. However, during the movement of the robot the Jacobian changes significantly and some of the eigenvalues
that were close to zero at start now moving into the unit sphere and spread out. This makes sparsing more
difficult and allows for less elements to be sparsed. Moreover, we are want to balance between sparsity and good
approximation of these intermediate eigenvalues because they have a stronger influence on the long term behavior
of the difference equation than the stiff eigenvalues . We can see in Figure 3 and 4 how sparsing affects the structure
of the Jacobian and the location of the eigenvalues in this case.

Table 1 lists some results concerning the performance of sparse factorizations of the matrices shown in Figure
3 and 4. As we assume that a sequence of systems of equations has to be solved we measure only the time for
the factorization itself. We observe that while the number of non-zeros of I — 7J is approximately halved, the
performance gains in LU factorization is at about a factor of 3 compared to a sparse solver and about a factor
of 11 compared to a dense solver. We also observe that the sparsity patterns of Figure 1 and 3 are completely
different. In real time simulation this would force us to use a dense solver. In contrast to this our preprocessing
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Figure 3: The Jacobian Df of the moving robot model before sparsing, the LU-factorization of I — 7D f and
the eigenvalues of the discrete evolution
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Figure 4: The Jacobian J of the moving robot model after sparsing, the LU-factorization of I — 7J and the
eigenvalues of the discrete evolution

routine found a sparsity pattern that can be held constant and therefore enables us to use a sparse solver in real
time simulation.

Turning to the simulation, we first have to say that meaningful time measurements are not available yet. The
evaluation of the model equations in Matlab introduces a large overhead due to the interface between Matlab
and the modelling tool. However, the impact of sparsing on the accuracy of the solution can be studied. As
we already mentioned, the analysis of the Jacobian at ¢ = 0 is not sufficient to obtain a stable simulation. The
instabilities do not originate from the stiff part but from a pair of eigenvalues close to the stability boundary. If
we use a linearization of the robot model at an instant when the robot is in motion, we obtain a stable simulation.
Comparing the simulated trajectory to one with higher accuracy, we observe that the errors introduced by sparsing
are in our case not negligible and somewhat larger than the errors obtained by integration with the exact Jacobian.
However the relative errors are still in a range of 1% to 3%. If we apply more aggressive sparsing we obtain spurious
oscillations in the solution. This indicates that the chosen step size of 1ms is slightly too large and sparsing therefore
also influences the behavior of the discrete evolution on large time scales.

nnzy_rj NWNZpy  tfac
sparsing 158 204 0.22 ms
no sparsing 390 646 0.67 ms
dense lin. alg. | 78 x 78 78 x 78 2.0 ms

Table 1: Performance of sparse LU factorization with sparsing, without sparsing and dense LU factorization
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5 Conclusions and Outlook

We have shown that sparsing of the Jacobian is a practicable way of improving efficiency in real time simulation
using one of the few possibilities of adaptivity in this field. We have derived a first order sparsing criterion based
on perturbation theory. Details of its application were given. We have also tested our sparsing routine on an
industrial application and we have achieving considerable performance gains in the factorization of the Jacobian.

To judge the overall performance of the method it will be necessary to implement a real time simulator in a low
level programming language. Then on the one hand the effects of the function evaluations can be included, on the
other hand the computational overhead can be reduced, e.g., by using static data structures together with worst
case estimates for the sparse factorization.

A typical case of application in object oriented modelling is a separated DAE with a large sparse algebraic part.
If such a system is very large it will be necessary to exploit this structure for the computation of the criterion.
One the other hand, if the algebraic part has got moderate size only, it might be possible to treat this part more
carefully.

There are some related issues that could be interesting to explore. For example, how can the sparsing criterion be
utilized for off-line simulation using, e.g., the linearly implicit Euler method with extrapolation. Or the other way
round, how to combine sparsing and extrapolation to improve accuracy in real time simulations.
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