
An Environment for the Integrated Modelling of
Systems with Complex Continuous and Discrete
Dynamics

Manuel A. Pereira Remelhe1, Sebastian Engell1, Martin Otter2, André Deparade1,
and Pieter J. Mosterman2

1 Process Control Laboratory, Department of Chemical Engineering,
University of Dortmund, 44221 Dortmund
e-mail: {M.Remelhe, S.Engell, A.Deparade}@ct.uni-dortmund.de

2 Institute of Robotics and System Dynamics,
DLR Research Center Oberpfaffenhofen, P.O.Box 1116, D-82230 Wessling
e-mail: {Martin.Otter, Pieter.J.Mosterman}@dlr.de

Abstract. The modelling and simulation of sophisticated technical systems is a demanding
task. On the one hand, the physical part consists of a large number of subsystems which ex-
hibit predominantly continuous dynamics, sometimes with (infrequent) discontinuities. On
the other hand, the distributed computerised control systems constitute complex discrete-
time and discrete-event systems that require completely different modelling and simulation
methods. For an evaluation of the behaviour and the performance of the overall system, both
types of models have to be combined and simulated efficiently. This contribution presents the
requirements for a modelling environment for such systems and discusses an approach that
consists of object-oriented modelling and efficient simulation of the physical part using the
physical systems modelling language MODELICA, a software environment for the definition
of discrete-event models using various formalisms, and the integration of both parts of the
system via model translation. The coordination of both parts is performed by the MODELICA

simulator. The modelling environment called DES/M (discrete-event systems for Modelica)
supports the interoperation of different domain specific discrete-event formalisms. To illus-
trate the usage of the environment, a laboratory batch plant model is presented. A more elab-
orate example is described in another contribution in this volume (Mosterman et al., 2002).

1 Introduction

Sophisticated technological systems such as chemical plants, cars, and aircraft con-
sist of a large number of physical components, numerous low-level set-point con-
trollers and interlocks, and interacting complex supervisory controllers which may
be organised in a hierarchical manner. On the supervisory control level, trajectory
optimisation, fault detection, redundancy management, and sequence control e.g. for
start-up and shutdown are performed and the interaction with the user is managed.
The dominant part of the functions on this level consists of logic operations that are
triggered by thresholds or events in the environment, including user commands. The
physical part of the system and the supervisory control system put high demands on
the power and the user-friendliness of the modelling techniques. In order to study
the overall behaviour of such systems, a simulation model has to incorporate both

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institute of Transport Research:Publications

https://core.ac.uk/display/11096782?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

84 Remelhe, Engell, Otter, Deparade, Mosterman

parts and an integration is required that enables efficient and at the same time accu-
rate simulation.

1.1 The Physical Part

The physical part of the system consists of a large number of interconnected com-
ponents. The behaviour of these components is determined by the laws of physics
and chemistry. The overall system may consist of subsystems from various domains:
electrical circuits, pneumatic and hydraulic actuators, mechanical transmission, fuel
cells, combustion chambers, tanks, gas transport systems, chemical reactors, etc.
These submodels are usually developed by teams of domain experts who take a lot of
technological details and domain knowledge into account. Each modelling domain
has specific graphical representations and modelling traditions, but in most cases the
final models are algebraic and differential equations involving continuous variables
that depend on (continuous) time. The models of the physical components may con-
tain discontinuities that strictly speaking are caused by model simplifications which
are made in order to avoid models with largely different time scales. Examples are
friction and contact in mechanical systems, thermodynamic phase changes, ideal
switches, e.g. diodes, in electronic systems. Other discontinuities occur when phys-
ical limits are reached (overflow of a tank, rupture of a vessel) or inputs to the
physical system change abruptly. At these points in time, the movement of the sys-
tem trajectory in the state space may abruptly change its direction and its velocity,
or very fast transients occur that can be regarded as jumps in the state space. At
points of discontinuity, the number of independent state variables may change, e.g.
if two rigid bodies make contact. In consequence, the physical part of the system
itself may exhibit hybrid behaviour, i.e. mixed discrete/continuous dynamics.

The complexity of modelling and simulation of the physical part of the system is
exacerbated if several components with hybrid behaviour interact with each other,
e.g. electronic circuits with several diodes. This calls for powerful modelling and
simulation techniques.

1.2 The Supervisory Controllers

Supervisory control is used for many different purposes. For instance, sequential
control is needed for the execution of recipes in chemical batch plants, redundancy
management is crucial for the safety of aircraft, and resource booking systems are
needed for coordinating several interacting sequential controllers, e.g., to avoid col-
lisions of robots or to prevent the mixing of batches running in parallel in chemical
plants. Start up, shut down, and emergency procedures are further examples for the
necessity of supervisory controllers. In decentralised or redundant automation ar-
chitectures, autonomous supervisory controllers interact in order to achieve the per-
formance goals. Other functions of supervisory control are trajectory optimisation
and user interaction.

In general, a supervisory controller is a reactive discrete-event system. The states
and the outputs of such a system change discontinuously according to discrete state

An Environment for the Integrated Modelling of Systems 85

transition sequences that are performed when a reaction to external stimuli from the
user or from the physical system is required. For example, in the case of a tank that
is being filled, a controller may have to close the inlet valve when the desired level is
reached. The events that trigger the instantaneous reactions are determined by logi-
cal expressions containing analog and binary input variables that carry information
on the current state of the physical system as well as internal variables that belong
to the state of the controller and of other controllers in a distributed control system.
Hence, the reactions depend on the current discrete state whereas the event times
depend on the evolution of the state variables of the physical system and on clock
variables in the discrete system. If the duration of a specific process, e.g. the duration
of the filling of the tank, is known a priori and corresponding measurements, e.g., a
sensor for the tank level, are not available, timers have to be used for triggering the
transitions. Thus, time events occur that anticipate corresponding state events.

Even though supervisory controllers are mostly implemented as sampled data
systems, their behaviour can adequately be described as reactive, i.e., driven by ex-
ternal state events. This is because the sampling intervals in the logical part are nor-
mally very short in comparison to the continuous dynamics so that at most sampling
instants the controller does nothing but evaluating the triggering signals and wait-
ing. Consequently, the sampling rate has a subordinate significance for the overall
behaviour.

The difficulties for modelling and simulation arise from the fact that a reac-
tion of a supervisory controller that appears as a monolithic state transition to the
outer system may be the result of very complex inner iterations including hierarchi-
cal execution schemes as well as concurrency and synchronous and asynchronous
communication.

1.3 Modelling and Simulation

The overall behaviour of a technical system is generated by the interaction of the
physical components, discrete-event controllers and regulators. A precise compre-
hensive simulation model has to incorporate all these components and their rela-
tions if the purpose of the model is to evaluate the overall behaviour. Simulation
goals may be, e.g., testing of the reaction to failures, the estimation of throughput or
power consumption, a feasibility check for a specific production plan, or operator
training.

Independent of the way of modelling, the physical part generally is solved by
standard numerical integration methods such as Runge-Kutta methods or backward
differential formulae (BDF) (Brenan and Campbell, 1996). This implies that the
modelling process results in the generation of a consistent and uniquely solvable
set of equations, either of explicit ordinary differential equations (ODE form) or of
general differential and algebraic equations (DAE form). If hybrid phenomena have
to be considered, special facilities have to be provided, because the inequalities that
define the physical limits or the thresholds of a supervisory controller generate dis-
continuities, but the numerical integration methods usually require equations with a
certain degree of continuity.

86 Remelhe, Engell, Otter, Deparade, Mosterman

A usual approach is to ignore these inequalities during the numerical integration
process and to use any efficient integration scheme, usually with a variable step size.
This guarantees continuity of the equations. In order to handle the discontinuities,
the values of the variables that enter into the trigger inequalities are monitored, and
when a threshold is crossed, the integration is stopped and the time instant of the
state event is localised up to a certain precision by backtracking. In case the event
is dependent on time only, a time event, the integration simply stops directly at
the predetermined time. When the integration is stopped, the discrete changes are
performed and, afterwards, the integration is restarted.

The embedding of set-point controllers into the physical model is relatively
straightforward since regulators are usually described by the same type of equa-
tions as the physical systems, and an overall ODE or DAE system results. Sampling
effects often can be neglected because the sampling intervals are of the same order
of magnitude as the integration step size. If this is not the case, time events have
to be used in order to stop the integrator at every sample time. This is not conve-
nient for multistep methods because these schemes must be restarted after every
discontinuity which significantly decelerates the numerical integration (Brenan and
Campbell, 1996).

In contrast to the domain of predominantly continuous dynamics where there is
a standard system representation and general purpose numerical algorithms can be
used, discrete-event simulation algorithms are specific to the modelling formalism
used, and rather different from continuous integration methods. Popular formalisms
are automata, statecharts, Petri Nets, dataflow diagrams, synchronous languages,
or programming languages such as sequential function charts and function block
diagrams as specified in the IEC 61131-3 standard for programmable logic con-
trollers (IEC 1131, 1993). Each formalism has a specific syntax and semantics that
closely matches users’ training and expertise and that are well suited to the par-
ticular application. The transformation of formal models from one formalism into
another is complicated and often leads to inefficient models, even for formalisms
with equivalent expressive power (Huuck et al., 1997). Thus for a general purpose
simulation environment, it is preferable, if not indispensable, to offer various mod-
elling formalisms and even to allow the user to define new or specific formalisms
with little effort. The use of domain specific formalisms results in models that are
elegant, intelligible to the user, and closely correspond to the documentation for-
malism and/or the implementation language. This keeps the modelling effort low
and makes it less error prone than a transformation into one general, tool-specific
formalism.

2 Requirements for the Modelling Environment

Due to the complexity of both the physical part and the supervisory control system
in large technical systems, it is evident that a powerful modelling environment and
efficient simulation methods are indispensable to support the design process.

An Environment for the Integrated Modelling of Systems 87

2.1 Intuitive and Effortless Modelling of Physical Systems

The physical part should be modelled as intuitively as possible. From the modeller’s
point of view the optimum would be to assemble the whole model using predefined
building blocks that correspond to the technical components. The graphical connec-
tion of these elements would result in composition diagrams that look like familiar
engineering notations, e.g. electrical circuit diagrams, flow charts, and other con-
ventional notations.

In most cases, physical systems do not have explicit inputs and outputs; whether
an external variable is input or output depends on the environment. For instance,
the pressure drop in a pipe may be caused by a prescribed flow or be the cause of a
certain flow rate. Thus the building blocks of larger models should have non-causal,
undirected interfaces.

Due to the potential variety of components in technical systems, only a limited
number of standard elements can be predefined and stored in component libraries.
The remaining elements have to be defined by the modeller. For basic elements a
convenient approach is to enter the underlying physical equations, possibly taken
from the relevant literature, without transformation to a specific mathematical for-
mat, e.g. a system of explicit ODEs. Of course, the number of equations must match
the number of unknowns. This approach is called declarative modelling, because the
modeller states that these equations have to be satisfied, without determining how to
perform the calculations. The model acts as a set of constraints on the coupling vari-
ables, but it is not explicitly stated how to compute outputs from inputs and initial
states.

Larger elements should be defined as a composition of smaller building blocks.
This leads to a hierarchical structuring of the model, which is crucial for the effective
handling of large models. Since one has to deal with many different building blocks,
it should be possible to establish user-defined libraries in addition to the standard
libraries. Additionally, the concept of inheritance supports the modelling effort and
reduces the likelihood of errors. Component model classes then can be derived from
basic model classes by adding more detail. If the basic model class is modified, this
modification also effects the derived classes and the models that will be instantiated
from the derived classes.

2.2 Adequate Modelling of Discrete-Event Systems

The requirements for the modelling of discrete-event systems are different from
those for physical systems in many respects. Discrete-event models are more di-
verse with respect to syntax and semantics than quantitative simulation models of
physical systems. Physical systems can be treated in a uniform way using DAEs
as an underlying semantic basis. The syntax of the graphical representation is also
simple: the blocks have uniform ports and the building blocks are coupled by simply
connecting these ports. In case of the modelling language MODELICA, the coupling
semantics is that all (generalised) flow variables must add up to zero or that the (gen-
eralised) potential variables, such as voltage, pressure etc., assume the same value.

88 Remelhe, Engell, Otter, Deparade, Mosterman

In contrast, each discrete-event formalism has its specific graphical syntax that does
not simply refine a common basic syntax so that specific graphical editors have to
be provided for each formalism that is supported.

Furthermore, no established semantic standard form, comparable to the DAE-
system, exists for discrete-event formalisms, and transformations to a basic formal-
ism are often inconvenient, sometimes due to relatively small semantic differences.
Consequently, for the simulation of DES models, specific algorithms must be used.

Regarding the complexity of real supervisory control systems which may consist
of a large number of modules that are specified by different designers from different
domains, it is necessary to support heterogeneous discrete-event models including
hierarchical execution schemes as well as concurrency with synchronous and asyn-
chronous communication systems, i.e., it should be possible to model different parts
of a controller with different formalisms and to connect these parts in a consistent
manner. If different simulators are used for different formalisms, these discrete-
event simulators have to interact with each other and have to be synchronised with
the numerical integration of the continuous part of the system.

2.3 Integration of Continuous and Discrete-Event Models

For a seamless integration of discrete-event formalisms and physical models, on
the syntax level, the coupling should reflect the actual hierarchical relations. Since
components of the supervisory control system often are related to particular sub-
systems of the continuous part, the corresponding discrete-event model should be
represented by a block that can be inserted into a composition diagram of the phys-
ical model. The inputs and the outputs of the discrete blocks can be connected with
ports of other building blocks, continuous or discrete.

On the semantic level, the coupling of a discrete-event model with the physical
model is more involved. Some numerical integrators evaluate the model equations
several times in order to do one step (Brenan and Campbell, 1996). This can cause
unpredictable behaviours if the discrete-event system is called at intermediate points
without considering the fact that the simulation of the continuous system has not
yet converged. The semantics of the discrete-event formalisms must not become
corrupted by the integration into the physical system. Conversely, transitions in the
discrete-event part occur while time in the physical system does not progress. If
iterations in the discrete-event part are performed, the intermediate states must not
be transmitted to the continuous system but the simulation must be stopped until the
discrete part has reached a stable state. This stable state may imply switchings not
only of variables but also of the structure of the continuous part which may trigger
new events in the discrete system. Even worse, the overall state of the continuous
system, composed of the discrete inputs and the past state of the physical part may
not be consistent such that a new initialisation has to be computed. So a nested
loop of computations must be performed with frozen physical time until the overall
system has reached a stable and consistent state from which the simulation can be
continued.

An Environment for the Integrated Modelling of Systems 89

The localisation of state events inevitably leads to increased simulation times
because iteration or other additional computations are required. If the discrete part
contains timers which trigger transitions, it is advantageous to propagate this infor-
mation to the continuous simulator such that the simulation stops precisely at the
event time and an iteration is avoided. Finally, discrete-event formalisms require an
adequate visualisation of the simulation results using the graphical formalism itself
typically in the form of animation. The usual plots of variables over time are not
sufficient.

2.4 The State-of-the-Art

Some general-purpose commercial software tools exist for modelling and simula-
tion of hybrid systems. Among these, the MATLAB package with SIMULINK and
STATEFLOW is the most widely used tool (Matlab, 2002). In consideration of the
requirements postulated above one has to realise that the state of the art is not satis-
factory.

Block diagrams have a fixed causality and are not really intuitive to model large
systems. The use of block diagrams results in an abstract mathematical represen-
tation of the modelled system as shown in Fig. 1. This block diagram corresponds
to an electrical circuit, but it is not evident how it is related to the structure and to
the parameters of the circuit. Furthermore, if e.g. a voltage source is replaced by a
current generator many modifications are required in the overall model, since the
cause and effect relations have to be inverted in several locations. This poses serious
problems for the reuse of aggregated building blocks.

Sine
Wave

1

Res2

1

Res1

1

Ind
s

1

I2

s

1

I1

1

Cap

Fig. 1. A block diagram

The STATEFLOW formalism is a variant of statecharts (Harel, 1987). Figure 2
illustrates this with a STATEFLOW model of a relay mechanism. Statecharts are an
intuitive and powerful formalism to model reactive behaviour and exist in many
slightly different flavours. But besides statecharts, many other formalisms, such as
High Level Petri Nets or GRAFCET, and programming languages, such as Sequen-
tial Function Charts, exist that have their specific strengths and can not be mapped
easily onto statecharts.

90 Remelhe, Engell, Otter, Deparade, Mosterman

Fig. 2. A stateflow diagram (screenshot)

3 The DES/M Approach

The proposed solution for the modelling and simulation of large, complex sys-
tems with continuous and discrete-event dynamics consists of two major elements.
The object-oriented equation-based modelling language MODELICA is used for the
modelling of the physical part and of the regulators. A newly developed software
tool for the modelling of discrete-event systems called DES/M (discrete-event sys-
tems for MODELICA) supports various formalisms (at present statecharts and SFCs)
and modular, hierarchical and heterogeneous models. The discrete-event part of the
model is automatically transformed into a MODELICA algorithm. Any simulator
that can process MODELICA code can then be used to solve the overall system. The
interaction of the continuous and the discrete part of the system is coordinated by
the event handling mechanism of the MODELICA solver.

3.1 Object-Oriented Modelling Using MODELICA

In object-oriented modelling, the model elements correspond to physical compo-
nents of the real system and the composition of the elements to the overall model
is in accordance with the physical structure of the system. The elements have undi-
rected interfaces and their behaviour is normally described declaratively. An ele-
ment can be a composition of other elements and it can contain equations for the
behavioural description. These equations need not to be solved explicitly for a par-
ticular variable. Another common feature of object-oriented modelling languages is
that the equations are processed symbolically. The overall mathematical model is
constituted by all the equations that describe the model elements and their connec-
tions. This usually leads to a large but sparse system of algebraic and differential
equations (DAE). By means of automatic symbolic manipulations this large set of

An Environment for the Integrated Modelling of Systems 91

equations is transformed into a sorted DAE where as many derivatives and algebraic
variables as possible are computed explicitly and redundant variables are removed.
This enables efficient simulation using standard integration methods.

The most prominent object-oriented modelling languages are MODELICA (Mod-
elica Design Group, 2000), VHDL-AMS (Heinkel, 2000) and gPROMS (gPROMS,
2002). MODELICA is best suited for our purposes because it is not tailored to a spe-
cific application domain, and it is standardised by a non-profit organisation, the
MODELICA Association, and freely available. Very important are the class concepts
of MODELICA that include class definition, object instantiation, partial classes, in-
heritance, and more, which facilitate the creation of model libraries. These features
are well known from object-oriented programming languages, but they are not al-
ways supported by object-oriented modelling languages. The meaning of the term
‘object-orientation’ depends on the context, here the essential property is the con-
struction of large models from building blocks which can be used freely because
they are formulated in a general, context-independent fashion. For MODELICA,
many free libraries exist for different domains such as electrical systems, rotational
and translational mechanics, multibody systems, and others.

For the definition and simulation of MODELICA models we use the commercial
software DYMOLA (Dymola, 2002). This tool provides a graphical editor for com-
position diagrams so that systems can be modelled visually. The graphical represen-
tation of the library components mimics conventional engineering notations. The
main reason to use DYMOLA, however, is the powerful symbolic engine that trans-
forms the set of equations into a form that can be solved efficiently. This permits the
simulation of very complex physical systems including hybrid phenomena (Otter
et al., 1999).

In Fig. 3 it is shown how simple it is to build a model of a hydraulic actua-
tor using given library components. The resulting model resembles the engineering
notation and can be aggregated to a new composed building block that can be incor-
porated into a library as well.

To illustrate how hybrid phenomena can be modelled in an equation-based declar-
ative style, consider an ideal electrical diode (Fig. 4). Due to the idealisation a sharp
discontinuity is introduced at u = 0. In order to achieve an equation-based descrip-
tion, the diode characteristic is parameterised by a parameter s so that u equals s if s
is less than zero, and i equals s if it is nonnegative. This results in the following set
of equations:

off = s < 0 (1)

u = if off then s else 0 (2)

i = if off then 0 else s. (3)

Due to this declarative formulation, the interaction of several diodes in an electrical
circuit needs not be modelled explicitly. The network behaviour is defined implicitly
by the composition of the component equations and of the connection equations
(Otter et al., 2000).

92 Remelhe, Engell, Otter, Deparade, Mosterman

technological
notation

Modelica model
in Dymola

aggregated
building block

Fig. 3. Modeling a hydraulic actuator using standard components

s=0

s
s

i

u

i

u

Fig. 4. Ideal diode model described as parameterized curve

Basic discrete event formalisms can also be expressed in an equation-based fash-
ion, e.g. simple Petri Nets and automata (Mosterman et al., 1998). For instance, in
a Petri Net model, the places and the transitions are represented by components that
are defined in the corresponding MODELICA library. The graph structure is consti-
tuted by the connections of the ports of the components. Since each object and each
connection just add equations to the overall set of equations, the behaviour of a Petri
Net model is defined as the mathematical solution of the subset of equations given
by the Petri Net model.

Unfortunately, this object-oriented modelling technique is not suitable for the
modelling of complex discrete-event systems. The first reason is that the syntax
of composition diagrams based on blocks with ports is not powerful enough for the
graphical representation of complex formalisms such as statecharts. The second rea-
son is that certain semantic elements such as local iterations can not be represented
adequately by a set of equations. For instance, in certain statechart variants (Harel
et al., 1987) a step of a statechart, i.e., its reaction to external stimuli, is defined as
a sequence of micro-steps. Each micro-step consists of a set of concurrently taken
transitions. At a micro-step, the firing transitions may generate events that trigger
the transitions of the subsequent micro-step. In this manner a kind of event iter-
ation is performed that ends when no further transitions are triggered (improper

An Environment for the Integrated Modelling of Systems 93

statecharts may result in infinite iterations). Micro-steps are considered just as an
internal mechanism to compute the reaction of a statechart so that the micro-steps
should be hidden from the environment of the statechart. Therefore, an adequate
realisation would use this operational semantics to generate the behaviour of a stat-
echart and omit an interleaved execution with the physical system. Unfortunately
this is not possible with an equation-based realisation, since the equations of a stat-
echart would have to be solved simultaneously with the equations of the physical
system. Thus, each micro-step would be connected to the evaluation of the overall
set of equations so that side-effects possibly can take place in the physical system.

3.2 A Compatible Modelling Environment for Discrete-Event Systems

For the reasons stated above, the DES/M modelling environment has been devel-
oped that provides dedicated editors for several discrete-event formalisms and al-
lows to insert the discrete-event models consistently into the overall model. By this
approach the restrictions on semantics, syntax and graphical appearance are circum-
vented, and the object-oriented modelling principles for continuous systems are not
enforced in a domain where they are not appropriate. By suitable transformations,
the models of the discrete-event part can be inserted into the overall MODELICA

model and can be solved using standard techniques for the manipulation and the
numerical solution of continuous systems.

For the definition of the discrete-event part of the models, there are two differ-
ent possible options. The first is to compose the model from discrete-event building
blocks, the behaviour of which is specified declaratively based on equations, simi-
lar to the procedure that is followed for the continuous part. However, these blocks
would have to be quite complex because a large number of interacting variables may
be required. Therefore the blocks should not simply be merged but a code optimisa-
tion step should be performed. Thus there would be two transformations before an
executable model is obtained; first the transformation of the individual blocks into
MODELICA code, then the construction of the overall model. The second approach
is to construct the discrete-event part of the model completely on the graphical level
using the chosen formalisms and the respective graphical editors, and then to per-
form an automatic translation into a single MODELICA-algorithm and to wrap it into
a MODELICA class. We prefer the second approach. For reasons discussed above,
all discrete-event subsystems that interact directly via events or messages must be
represented as a monolithic block in an imperative fashion. The transformation of
the complete system into an algorithm leads to a clear structure – first an overall
discrete-event model is composed from subblocks that can be structured hierar-
chically and may even be defined using different formalisms, e.g. statecharts and
SFCs, and then the transformation into an algorithm is performed following clearly
specified semantics. Actually, in the end a problem specific discrete-event simula-
tor is inserted into the MODELICA model of the physical system. This MODELICA

component can be easily connected to physical components because it interacts via
standard ports.

94 Remelhe, Engell, Otter, Deparade, Mosterman

The main advantage of using a MODELICA-algorithm is that the handling of the
state events is done by MODELICA automatically. The MODELICA compiler dis-
covers all potential sources of discontinuities in the algorithm and makes sure that
discontinuities are handled appropriately, i.e., when a threshold is reached and a dis-
crete state transition or any other discontinuity occurs, the integrator will be stopped
in order to perform the discrete changes. If the discrete-event model would be sim-
ulated by an external program, the conditions that trigger the state transitions in the
discrete-event model still would have to be inserted into the MODELICA model in
order to stop the continuous simulation when the discrete-event part causes state
events. If the discrete system is specified in a different environment, this task has to
be performed manually by copying the transition conditions or guards and invari-
ants, which is tedious and error-prone. In contrast, the DES/M environment generates
automatically a complete MODELICA simulation algorithm for the discrete system
parts from the graphical specification.

The modelling environment supports heterogeneous and hierarchical discrete-
event models by means of a special block editor. Model-reuse is enabled using
an archetype concept, i.e., each block that is used in a model is an instance of an
archetype that defines the ports and the general properties of the block type and one
or several alternative implementations. These implementations define the behaviour
of the instantiated blocks and can be specified using again block diagrams or another
formalism.

In order to reduce the effort for the implementation of several editors, the DES/M

environment is based on the meta-modelling tool DoME (DOME, 1999). DoME
was designed as a tool for the automatic generation of complex graphical editors
based on a formal syntax description and parameters that control the graphical ap-
pearance. A partially graphical language called DoME Tool Specification Language
is used for specifying the graphical entities, their properties and relations, struc-
tural constraints as well as their visual appearance. More advanced features such as
more complex syntactical constraints and code generation can be implemented with
DoME’s Lisp-like extension Alter or using Smalltalk. Besides the block diagram
editor, up to the present, two further editors have been realised: a statechart (SC)
editor and an editor for sequential function charts (SFC) (Deparade et al., 2001).

3.3 Formalism Interoperation via Special Block Diagrams

As already mentioned, a special hierarchical block diagram formalism has been im-
plemented for supporting the interoperation of different formalisms. The main idea
is rather straightforward: Certain blocks of a block diagram may contain either an-
other block diagram or a reactive model that is specified with a state transition for-
malism such as statecharts or sequential function charts. Consequently, it is possible
to use different formalisms within one model.

The idea to use a block diagram formalism arose from the modelling of the air-
craft elevator described in detail in (Mosterman et al., 2002). The main feature of
this control system is that 8 concurrent state machines, each modelled by a state-
chart, interact tightly in order to achieve a safe configuration of the redundant el-

An Environment for the Integrated Modelling of Systems 95

evator actuators when failures occur. The statecharts have the same structure and
their transition conditions are large logical expressions that reference the states of
the other statecharts and the failure signals. The goal of the block diagram formal-
ism was to separate the large and complex logical expressions from the statecharts,
so that the statecharts become identical (and clearer) and can be instantiated from
the same class. Therefore, the block diagram formalism distinguishes static blocks
that are depicted with a dashed border, from dynamic blocks that have a solid border
(Fig. 5).

Fig. 5. A sample block graph

A static block contains an algorithm or just a set of assignments and is used to
compute the current output values yi directly from the current input values ui of the
block. Hence the behaviour of a static block can be represented by a function:

yi = fstat (ui) (4)

Such a static block is applied to, e.g., the computation of the logical expressions of
the redundancy controller.

The dynamic blocks have internal state variables xi and a quasi-synchronous
semantics is applied, i.e., the blocks are evaluated synchronously, but without si-
multaneous data exchange:

xi = fdyn (xi−1,ui) , (5)

yi = gdyn (xi−1) . (6)

The state transition function fdyn and the output function gdyn impose an iterative
computation scheme for the block graph such that the response of such blocks to
new changes of the inputs becomes effective in the next iteration step. As long as

96 Remelhe, Engell, Otter, Deparade, Mosterman

the outputs of these blocks are changing, all blocks have to be reevaluated syn-
chronously. This quasi-synchronous semantics is analogous to the internal compu-
tation of statechart behaviour: if a statechart contains orthogonal parts (modelled
with and-states), the consequences of concurrently and independently taken transi-
tions of a micro-step, i.e., events and the new states, only become effective in the
subsequent micro-step. Thus, in the DEFORM approach, local event iterations are
not only performed inside of the statecharts, where a step can be computed by a
sequence of micro-steps, but also on the block diagram level.

Further elements in Fig. 5 are the outer ports that represent the interface of the
block diagram to the higher level (P1, P2, P3) and the ports of the blocks (a, b,
c, d). Each port has an associated port type that defines the structure of the data
transmitted through the respective port. This data-structure can be hierarchical and
may contain different basic types such as Real, Integer and Boolean.

At a higher level, the block diagram in Fig. 5 is itself a dynamic block with ports
P1, P2 and P3. The state of this enclosing block is the Cartesian product of the states
of the dynamic blocks B and E. For the computation of the state transition function
of the enclosing block an iteration at the level of the inner block graph (Fig. 5) is
started during which the following constraints have to be satisfied at each iteration
step:

A.ai = P1
B.bi = P2
E.ai = D.ai = C.ai = B.di = gB (B.xi−1)
D.bi = E.bi = gE (E.xi−1)
A.bi = fA (A.ai)
C.bi = fC (C.ai)
D.ci = fD (D.ai, D.bi)
B.ai = A.bi

B.ci = D.ci

B.xi = fB (B.xi−1, B.ai, B.bi, B.ci)
E.xi = fE (E.xi−1, E.ai) .

(7)

After this iteration has converged to a stable state, the outputs P3 of the enclosing
block are updated and the computation of the transition function of the enclosing
block is finished.

It should be noted, that for a specific block it does not make a difference whether
its behaviour is specified as a block diagram or as a statechart, since both formalisms
are transformed into a state transition function that hides the inner processes. Hence
arbitrary other reactive formalisms and communication paradigms can be incorpo-
rated as well, as long as they can be transformed into a compatible state transition
function.

3.4 The Modelling and Simulation Process

The approach described above leads to a tool architecture that consists of two main
cooperating tools: DYMOLA is used for physical system modelling, whereas the

An Environment for the Integrated Modelling of Systems 97

DES/M environment is used for modelling discrete-event systems (Fig. 6). By means
of the editors for the various discrete-event formalisms, the complete supervisory
control system is described. Then it is compiled into a MODELICA class that is
stored in the file system so that it can be retrieved by DYMOLA and instantiated in
the model of the physical system. The MODELICA classes created in DYMOLA are
stored in the file system as well. For simulating the overall model, the correspond-
ing class has to be compiled into an executable. The transformation of the set of
equations into a preferably explicit representation is performed automatically. The
simulator executable generates the trajectory for a given set of parameters that can
be changed without the need to recompile the model. Every time when the supervi-
sory controller has to react, the integrator stops because a state event is generated
due to inequality expressions in the MODELICA-algorithm. The execution of the
algorithm at these times realises a discrete state transition and the corresponding
change of the outputs. The internal processes during such a state transition do not
become visible to the model of the physical system, but they are saved in a log file.
This permits the visualisation of the internal processes of the discrete-event model
in the DoME tool for debugging purposes.

DESFORM

block-editor

SC-editor

SFC-editor

others...

DYMOLA

graphical &
textual

editor

Modelica-
compiler

plot

Modelica-
models

simulator

trajectories discrete state
transitions

physical
components

discrete-event
systems

Fig. 6. The modeling and simulation process using two tools

4 Realising Discrete-Event Dynamics in MODELICA

A discrete-event model that was composed within the DES/M environment is trans-
lated into a MODELICA component that contains one algorithm for the computation
of the reactions of the corresponding supervisory controller. This algorithm is a
simulator for the specific discrete-event model and is possibly very complex. In the
following, two simple examples are discussed in order to illustrate how the continu-
ous integration and the discrete-event dynamics are combined using the MODELICA

98 Remelhe, Engell, Otter, Deparade, Mosterman

language. The actual code generation is intricate, in essence it is the realisation of
the operational semantics of the formalisms supported by DEFORM using the MOD-
ELICA language.

4.1 Models with State Events

The synchronisation of the discrete-event dynamics and the continuous integration
is straightforward (Pereira Remelhe et al., 2001). To illustrate this, consider a simple
supervisory controller that fills a tank up to a certain level h_high, after a specific
low level h_low was reached. For safety reasons, an additional limit sensor is in-
stalled that indicates whether the tank is full. This controller has two input variables:
the current level h and the binary signal limit_h_full, as well as a binary out-
put variable v for the inlet valve. The corresponding discrete-event dynamics can
be described by a model with two states S1 and S2, and two Transitions T1 and
T2 (Fig. 7). An algorithm that exhibits the desired behaviour can be formulated as
follows:

T1_fires := pre(S1) and (limit_h_full or(h>h_high));
T2_fires := pre(S2)and (h<h_low);
S1 :=(pre(S1) and not T1_fires) or T2_fires;
S2 :=(pre(S2) and not T2_fires) or T1_fires;
v := S1;

Such an algorithm corresponds to a state transition function that maps the pre-
vious controller state xprev = {pre(S1),pre(S2)} and the current input vari-
ables u = {h,limit_h_full} into the new state xnew = {S1,S2} and the current
output variables y = {v}. During the continuous integration this algorithm is exe-
cuted simultaneously to the evaluations of the complete set of equations, but all state
variables and outputs remain constant, since the inequality expressions are fixed. If
the state S1 is active, in the algorithm pre(S1) is true and pre(S2) is false.
Therefore only the first logical expression can become true, and, consequently, only
the inequality expression (h>h_high) needs to be monitored during continuous
integration. When this expression becomes true, the integrator is stopped and the
whole set of equations including the algorithms is re-evaluated including the un-
fixed inequality expressions. Now the value of T1_fires becomes true, S1 be-
comes false, S2 becomes true, and v becomes false, i.e., the state changes from
“filling” to “waiting”. In a second discrete evaluation only the transition variable
T1_fires becomes false again, since pre(S1) is now false. Because the dis-
crete state variables did not change this time, the integration is started again. Now
(h<h_low) is monitored.

4.2 Models With Time Events

As an alternative, the limit sensor could be replaced by a time-out corresponding
to the known maximum duration of the filling process. This idea is realised in the

An Environment for the Integrated Modelling of Systems 99

S1: filling
v:=open

S2:waiting
v:=closed

T1: limit_h_full or (h>h_high)

T2: h < h_low

Fig. 7. Discrete-event model using only
state events

S1: filling
v:=open

S2:waiting
v:=closed

T1: (time>t_max) or (h>h_high)

T2: (h < h_low)
 / t_max:= time + maxDuration

Fig. 8. Discrete-event model using state
events and time events

diagram shown in Fig. 8. When the transition T2 is taken, an action is performed
that assigns a new value to the variable t_max that stores the point in time, when
the state S1 has to be left. Additionally, the transition T1 makes sure that the filling
activity stops when this time elapses. A corresponding algorithm is as follows:

T1_fires := pre(S1) and ((time>pre(t_max)) or
(h>h_high));
T2_fires := pre(S2) and (h<h_low);
t_max := if T2_fires then time+maxDuration else
pre(t_max);
S1 :=(pre(S1) and not T1_fires) or T2_fires;
S2 :=(pre(S2) and not T2_fires) or T1_fires;
v := S1;

Hence, an additional state variable t_max is needed that, in contrast to the other
state variables, is a real valued variable. If the controller is in state S1 the inequality
expression (h>h_high) has to be monitored in order to generate a state event, but
as long as the choice of t_max is correct, the expression (time>t_max) is used
to generate a time event and the simulation stops exactly at the corresponding time
without the need to localise a state event.

5 An Illustrative Application Example

To illustrate how the DES/M environment can be applied, a model of a laboratory
batch plant is presented that incorporates hybrid physical dynamics and a supervi-
sory controller. The plant is a slightly simplified variant of one of the benchmark
examples in this volume and was already described in (Kowalewski and Preußig,
1996). The physical part of the plant has been modelled in an object-oriented and
equation-based fashion using the MODELICA language. A library has been devel-
oped that provides the classes Valve, Pump, Condenser, Sensor and 4 different types
of tanks. These were graphically composed in the DYMOLA tool resulting in a pro-
cess flow chart (Fig. 9) that resembles the graphics of a standard piping and instru-
mentation diagram.

The supervisory controller model is also included in the plant model, but the
sensor objects and the actuator objects are not connected visually to the controller

100 Remelhe, Engell, Otter, Deparade, Mosterman

component inputs or outputs respectively, in order to keep the model clear. Instead,
on the top level of the model, additional equations are used that relate the current
values of the sensors to the input variables of the input port of the controller, e.g.:

controller.sensors.LIS_101 = LIS_101.value;

or that relate the input signals of the actuators to the outputs signals of the controller,
e.g.:

V1.open = controller.actuators.V1;

Fig. 9. The MODELICA model of the batch plant

The DES/M environment generated the MODELICA class of the supervisory con-
troller from a graphical specification that includes sequential function charts (SFC)

An Environment for the Integrated Modelling of Systems 101

and the block graph formalism. Figure 10 shows the overall structure of the con-
troller model. The objective of this controller is to run 2 recipes in parallel on the
plant. As a rudimentary means of coordination, the idle tanks are determined from
the sensor and actuator values using simple logical expressions such as:

idleTank.T7_idle := (sensors.LIS_701<=0.001) and
not(actuators.V15) and not(actuators.V18);

This means that a tank is idle if the tank is empty and the connected actuators are
passive. Since both recipes drive the same actuators, their outputs have to be super-
posed. This can be realised by simple logical expressions that activate an actuator,
if one recipe (or both recipes) set this actuator active, e.g.:

actuators.V1 := act1.V1 or act.V2.

Fig. 10. The top level block graph of the controller

These logical expressions were entered as static blocks. The only dynamic dis-
crete-event behaviour results from the recipes that are contained in the dynamic
blocks. Both recipe blocks run the same recipe and only differ in their parameters
such as the start time. Therefore, both recipes are described by the same SFC, see
Fig. 11. When the start time of a recipe elapses, an infinite loop is started where a
concentrated salt solution of tank T1 is drained into tank T3 and then mixed with
pure water from tank T2 until a certain concentration w_dilution is obtained.

102 Remelhe, Engell, Otter, Deparade, Mosterman

Fig. 11. The sequential function chart of the recipes

An Environment for the Integrated Modelling of Systems 103

This dilution is buffered in tank T4 and then concentrated in the evaporator T5 up to
a certain concentration w_concentrate. The condenser and the cooling in tank
T6 are started at the same time at which the electrical immersion heater of T5 is
started. When the evaporation is stopped, the recipe splits into 2 parallel threads in
which the concentrate is drained into tank T7 and cooled and then fed back to tank
T1, and the condensate in tank T6 is cooled and fed back to tank T2. Then the recipe
returns to the first step and repeats this procedure.

In order to omit redundancies in the model, types were declared for ports and
blocks. A port type defines which variables are transmitted through a port and their
numerical types (Real, Integer, or Boolean). In this example, only three port types
are needed: Sensors, IdleTanks, and Actuators. Each port in the model must have
an assigned type and connected ports must have the same type. The connections are
checked automatically before the translation to MODELICA.

Since all recipes in this controller framework must have the same interface, an
archetype is defined for the recipe blocks. Figure 12 shows the interface of the
archetype in the centre. The interface defines the ports and their port types for all
possible recipe blocks. In the upper right region of the window, both instances of
this archetype are enumerated corresponding to the blocks of Fig. 10. In the lower
right region, the behaviour specifications that are possible implementations of this
archetype are listed. In this case only one SFC is given. But more SFCs can be spec-
ified for the usage of different recipes. In principle, also statecharts and block graphs
are possible as implementations of a recipe block.

Fig. 12. The Shelf Browser in DOME with the archetype for the recipe blocks

104 Remelhe, Engell, Otter, Deparade, Mosterman

After finishing the overall controller model, the MODELICA class can be gener-
ated automatically by selecting a corresponding item from a pull down menu. The
MODELICA class contains a data structure that corresponds to the structure of the
controller and an algorithm that defines the behaviour. This class can be instantiated
in the plant model just like all other components. For simulation, the MODELICA

model is compiled with DYMOLA resulting in a simulator executable. The model
parameters can be changed conveniently for each simulation run without the need
to recompile the model. This includes also the parameters of the controller such as
the start times and the concentration parameters of each SFC. Thus, parameter stud-
ies can be performed efficiently. Figure 13 shows the plot of the mass hold-up of the
evaporator as it results from a simulation run. From this plot one can conclude that
the alternating recipes operate the evaporator at full capacity, i.e., there are no gaps
where the evaporator is waiting for the next batch.

Fig. 13. A plot of the mass hold-up of the evaporator T5

6 Conclusions

The different nature of physical systems and supervisory control systems leads to
two distinct sets of requirements for an integrated modelling and simulation method-
ology. In this work, the physical part of a system is captured by the object-oriented
modelling language MODELICA is used, and for the discrete-event parts the DES/M

environment has been developed.
MODELICA permits a very intuitive modelling of physical systems even if they

include hybrid phenomena, and meets the demands for object-oriented modelling
and effective and efficient simulation. The DES/M environment provides dedicated
editors for domain specific discrete-event formalisms (and programming languages),
and supports heterogeneous models including hierarchical structures and interoper-
ation.

An Environment for the Integrated Modelling of Systems 105

The connection of both parts of a model is done by translating the complete
discrete-event model into a MODELICA algorithm that is wrapped in a MODELICA

class. This is advantageous in several respects:

• both modelling environments are integrated seamlessly,
• the operational semantics of discrete-event formalisms can be formulated in an

arbitrary way and this semantics is realised without any disturbance by the in-
teraction of the continuous and the discrete part of the model or the solution
algorithm of the continuous part (e.g. the step size of the integrator is indepen-
dent of the execution of discrete transitions which occur at frozen simulation
time),

• state events are accessible from the discrete-event part.

The latter point is crucial for an accurate synchronisation of continuous integration
and discrete-event simulation.

At present, a first prototype of the DES/M environment is available. The current
work aims at the improvement of the translation framework towards a more general
approach and on the automatic support for graphical data visualisation. Then more
formalisms will be implemented. Since MODELICA is based on algebraic and dif-
ferential equations also other hybrid formalisms such as hybrid Petri Nets can be
considered.

Acknowledgement

We thank Hilding Elmqvist and Johann Bals for the helpful discussions. The re-
search reported here was performed in the context of the focused research program
(Schwerpunktprogramm) “Continuous-Discrete Dynamic System” (KONDISK) and
sponsored by the Deutsche Forschungsgemeinschaft under the grants OT174/1 and
EN152/22. This support is most gratefully acknowledged.

Simulation for Analysis of Aircraft Elevator Feedback
and Redundancy Control

Pieter J. Mosterman1, Manuel A. Pereira Remelhe2, Sebastian Engell2, and Martin
Otter1

1 Institute of Robotics and Mechatronics, DLR Oberpfaffenhofen,
P.O.Box 1116, D-82230 Wessling, Germany

2 Process Control Laboratory, Department of Chemical Engineering,
University of Dortmund, 44221 Dortmund, Germany

Abstract. Safety critical systems such as aircraft require functional and hardware redun-
dancy to achieve prescribed safety levels. Discrete event control is applied to ensure that a
safe system configuration is available at all times. Since, at present, formal verification tech-
niques are restricted to models with few continuous states, in this paper, simulation is used to
verify that the overall system operates according to the requirements when an actuator fail-
ure occurs. The feasibility study to modelling and simulation of complex controlled systems
presented here is characterised by (i) a complex object-oriented model of aircraft dynamics,
including gravity, aerodynamics, etc., (ii) the specification of the discrete event redundancy
control by a domain specific formalism that includes statecharts, (iii) the usage of energy
based hybrid bond graphs to model the dynamics of the hydraulic actuators, (iv) model inte-
gration on the model level as well as on the data level, (v) support of DAEs with dynamically
changing index and (vi) illustrative simulation results.

1 Introduction

Redundancy is one of the most important techniques to achieve the desired level of
safety in systems such as aircraft, nuclear plants, chemical plants, and other safety
critical applications. Its basic premise is to include redundant functionality into a
system that can be activated when failures of the normal operating components oc-
cur and to validate and select normal behaviour (e.g., voting procedures).

1.1 Aircraft Attitude Control

To illustrate the concept, consider the primary (attitude) control surfaces of an air-
craft as shown in Fig. 1. The ailerons are used to control roll, the elevators control
pitch, and the rudder controls yaw motion. This paper concentrates on the pitch con-
trol, performed by the elevators. Each of the elevators is positioned by one of two
actuators, the other one operates as a passive load. Discrete-event control embed-
ded on two primary flight control units (PFCU) selects the controlling actuator and
ensures that the redundant actuator is loading. Each PFCU controls one actuator
per elevator, so that both elevators can be controlled, even if one PFCU fails com-
pletely. The PFCUs also generate the position control signals for the four actuators.

370 Mosterman, Pereira Remelhe, Engell, Otter

elevators

aileron

aileron
rudder

Fig. 1. Primary control surface of an airplane

Feedback control is used for normal operation whereas so-called direct link con-
trol is applied to single actuators in the case of certain failures. To ensure minimal
transient disturbances caused by actuator switching, the loading actuator should be
shadowing the control signals ready to switch to a mode where it actively controls
the elevator. However, in some extreme cases the actuator may be disengaged, i.e.,
it is loading but not shadowing. Thus, each PFCU has to decide for two actuators
whether an actuator is disengaged, shadowing, or controlling and whether a feed-
back or a direct link controller is used for shadowing or controlling. These decisions
depend on the mode of the other actuator, the state of the other PFCU and the de-
tected failures. The best possible consistent state configuration of both PFCUs for a
given failure situation is achieved by a complex iterative interaction of both PFCUs.

The hydraulic actuator design and the controller parameters may influence the
overall behaviour of the aircraft significantly. Therefore, all contributing parts and
phenomena of the aircraft such as aerodynamics, gravity, engines, etc. have to be
considered in order to assess the design of the elevator control system. Because
of the immense complexity and the intricate redundancy management model-based
validation is required.

Formal verification techniques are widely used for pure discrete-event systems
and much research has been carried out recently on the verification of hybrid sys-
tems. However, at present, the complexity of systems amenable to hybrid systems
verification techniques is restricted to a low order continuous dynamics (typically
not more than three continuous state variables) (Benedetto and Sangiovanni-Vincen-
telli, 2001, Lynch and Krogh, 2000, Vaandrager and van Schuppen, 1999). Conse-
quently, formal methods are applied to the discrete-event part only, e.g., a so-called
Failure Mode Effect (FME) analysis is employed to verify certain safety and reli-
ability properties of the redundancy management system. However, its interaction
with the continuous parts as well as the design of the position controllers and the
hydraulic actuators can not be evaluated with formal verification techniques. There-
fore, the only practical model-based approach for this task is to perform extensive
simulation studies.

Aircraft Elevator Control 371

1.2 Model Design

In this contribution, we concentrate on the modelling and simulation of the elevator
control system and the aircraft. The model formulation is driven by the assumption
that the simulation studies have the purpose to assess whether the design of the eval-
uator control system meets the requirements with respect to the overall behaviour of
the aircraft (e.g., lateral and longitudinal aircraft velocity and flight path angle). In
particular, different sets of parameters of the controllers and of the hydraulic actua-
tors have to be tested in combination with certain failure scenarios.

As a consequence, the simulation model has to incorporate a realistic model of
the aircraft dynamics, including all essential effects and components such as aerody-
namics, gravity, engines, and hydraulic oil supply. In order to automatically generate
the correct Boolean input signals of the feedback controllers and the actuators de-
pending on the sequence of failure events it is convenient to include at least the
input-output behaviour of the redundancy management components. Since the sam-
pling times of the PFCUs are very fast in comparison to the bandwidth of the actua-
tors, the hardware aspects of the PFCUs can be neglected, i.e., the redundancy man-
agement model reacts instantaneously on failures and the controllers are modelled
as ideal continuous controllers. Another idealisation is introduced for the hydraulic
actuators. There are many small physical effects such as oil elasticity, viscosity, and
fluid inertia which do not influence the overall dynamics significantly, but consid-
erably increase the modelling effort, so that these effects are not considered in the
corresponding models.

These basic model design decisions cause several difficulties for the modelling
and the simulation. With respect to modelling, the complexity of the systems and
their heterogeneous nature mandates the use of dedicated formalisms. These for-
malisms differ greatly in their visual representation and require the interoperation
of specific and powerful modelling environments.

Present day simulation technology, on the one hand, can handle large systems
of differential and algebraic equations (DAE), possibly extended by some discon-
tinuous equations (ABACUSS, 1995). On the other hand, discrete-event simula-
tors apply an event driven approach to manage the huge number of state changes
in discrete-event models (Group, 1999). The combination of discrete and continu-
ous behaviour requires the integration of a numerical integrator with some sort of
discrete-event simulation. Especially, the detection and location of discrete events
during continuous integration has to be supported. Furthermore, at event times dis-
continuities in continuous state variables may occur. For the aircraft model, this
phenomenon emerges because the abstractions in the hydraulic actuator models re-
sult in a DAE with dynamically changing index. This requires a special simulation
engine that switches the active equations and automatically reinitialises the state
variables according to physical conservation laws, when the index changes. This
contribution presents techniques that cope with all these problems.

372 Mosterman, Pereira Remelhe, Engell, Otter

1.3 The Modelling and Simulation Approach

For the components of the physical system we use object-oriented modelling. In
this context, the term object-oriented modelling means that every physical object
is modelled independently without making assumptions about its environment and
preserving the physical connection structure of the object. The connections of a
model component have to correspond to physical interactions the computational
causality of which is not fixed a priori, i.e., the variables involved in an interac-
tion are not a priori defined as inputs or outputs. Furthermore, the behaviour of the
component should be defined in a declarative way where a set of (possibly implicit)
equations is regarded as a set of behavioural constraints rather than as a calculation
formula. To illustrate this, let us consider a hydraulic line. The component model
of the line would have two connections which each incorporate a pressure and a
flow variable. These variables represent neither inputs nor outputs, since depend-
ing on the structure of the environment the pressure drop causes the flow or the
flow causes the pressure drop. In some cases the causality can even change dynam-
ically so that a quantity that would be regarded as an input in signal flow diagrams
becomes an output and vice versa. This is why the equation-based behavioural de-
scription is inherent to object-oriented modelling. Using equations (which may be
written in an implicit style) for the description of the behaviour does not impose
a specific calculation scheme. From the modelling perspective the equations of all
model components and all connections of the overall aircraft model simply form a
global set of differential and algebraic equations (DAE) so that simulation is the task
to find a solution to these equations, i.e., functions over time that satisfy the equa-
tions. To generate efficient simulation code, the model equations must be processed
by a symbolic engine and compiled into executable code.

The existing DAE based modelling languages such as gPROMS (Barton, 1992),
VHDL-AMS (Heinkel, 2000, Christen, 1997), and MODELICA (Modelica Design
Group, 2000) differ in many aspects. This work utilises an aircraft library (Moor-
mann et al., 1999, Moormann, 2001) developed using MODELICA which allows
to build domain-specific graphical component libraries and supports many features
known from object-oriented programming such as inheritance, packages, etc. For
the modelling and the symbolic processing task DYMOLA (Dymola, 2002) was
used. It provides a graphical user interface for model composition. The symbolic
engine of DYMOLA generates C-code from a MODELICA model. Then a standard
C-compiler generates the executable simulation code.

This configuration is already powerful enough to model most parts of the air-
craft and to simulate the resulting complex DAE system including certain discon-
tinuities (a so-called ‘hybrid DAE’). However, for simulating DAEs with dynam-
ically changing index, the current symbolic engine of DYMOLA (version 4.1d) is
too limited. Therefore, a specially developed environment, HYBRSIM (Mosterman
and Biswas, 1999), which is based on hybrid bond graphs (Mosterman and Biswas,
1995) was used to model the components with variable index, i.e., the hydraulic ac-
tuators. The C-code generated by the two environments, DYMOLA and HYBRSIM

Aircraft Elevator Control 373

was then merged manually and simulated using a general purpose hybrid dynamic
system simulator MASIM (Mosterman, 2001).

The purely discrete-event parts of the elevator control, i.e., the redundancy man-
agement, are modelled by a domain-specific formalism including statecharts. It
will be shown that the syntax and the semantics of the object-oriented modelling
paradigm is not well suited to represent the objects of such a formalism. Instead, a
separate modelling environment has been implemented which supports this formal-
ism and generates a monolithic MODELICA component that can be integrated into
the MODELICA aircraft model .The behaviour of this component is defined by an
algorithm that is interpreted by MODELICA as an additional model constraint, i.e.,
it is equivalent to one equation with multiple input and output variables. In contrast
to the other parts of the model the causality of the interface variables and the calcu-
lation scheme of the resulting object are predetermined. While the actuator model is
integrated on the data level, the redundancy management model is integrated on the
model level.

Section 2 presents a system level view of the elevator redundancy control. Sec-
tion 3 discusses the different parts in detail and presents the respective models. Sim-
ulation results are given in Sect. 4. Finally some conclusions are drawn in Sect. 5.

2 Aircraft Elevator Control System

The aircraft elevator control system includes several forms of redundancy (Seebeck,
1998). The system itself consists of two elevators, the control surfaces. Each of these
are controlled by one of two hydraulic actuators while the other one is operating as a
passive load. The four actuators take their power from three hydraulic subsystems as
depicted in Fig. 2. Two primary flight control units are available to compute actuator
control signals and modes.

LIO1/1

PFCU1

LDL1

RIO1/1

RDL1

LIO2/1

PFCU2

LDL2

RIO2/1

RDL2

right elevatorleft elevator

hydraulic
system 2

hydraulic
system 1

hydraulic
system 3

ri
gh

t
ac

tu
at

or
 2

ri
gh

t
ac

tu
at

or
 1

le
ft

ac
tu

at
or

 1

le
ft

ac
tu

at
or

 2

Fig. 2. Elevator system

374 Mosterman, Pereira Remelhe, Engell, Otter

The functionality of each actuator is specified in textual form in terms of a num-
ber of module actuator control modes (MACM) all with their specific behaviour
characteristics. These are defined in Table 1. Note that the MACM definitions in-
clude behavioural information along with structural information about the particular
mode of operation of the actuator components.

Table 1. Module actuator control modes

MACM Description Actuator Actuator

Servo valve Spool valve

active The module controls the servo valve in closed
loop mode. The corresponding actuator is active
and controls the elevator movement.

controlled open

hot and
standby

The module controls the servo valve in closed
loop mode. The corresponding actuator is not
active and operates as a load.

controlled closed

passive The module is waiting and does not generate ac-
tuator control signals. It can change its mode at
any time to take on control of the corresponding
actuator.

not controlled closed

off The module is turned off temporarily because
of an intermittent failure and does not generate
actuator control signals. As long as the failure
has not been fixed, it cannot change to a mode
where it controls the corresponding actuator.

not controlled closed

isolated The module is turned off indefinitely. A persis-
tent fault in the control loop of the correspond-
ing system isolates the module and it cannot
change to a mode where it controls the corre-
sponding actuator.

not controlled closed

The discrete outputs of the redundancy management system are transformed
into physical behaviour by means of a spool valve and a servo valve in the hydraulic
actuator. Power is supplied by one of the hydraulic systems and delivered to the ac-
tuator cylinder that positions the elevator. This flow of energy is modulated by the
servo valve, the modulation is computed by a PID feedback control law. The control
signals for the actuators are generated by two primary flight control units (PFCU)
that can operate as input-output modules (IOM) or as direct-link modules (DLM)
controlled by a switch in the control law. The IOMs calculate setpoint values for the
actuators based on a PID control algorithm and monitor a number of critical system
variables and change between the modes in response. The DLMs allow limited but
direct control of the actuators in case the IOMs are not available. The control mod-
ules can be in different modes for each of the actuators separately. Moreover, they

Aircraft Elevator Control 375

may control other aircraft actuators as well. In addition, the servo valve may not be
controlled and its piston then is in a default position. Also, the spool valve can be
turned on and off to switch between active control and passive loading. Continu-
ous feedback control drives the elevator to its desired setpoint, while higher level
redundancy management selects the active actuator and the control law to be used.

Interaction between the actuator and the aircraft model consist of forces and
moments acting on the elevator that is stiffly connected to the actuator positioning
cylinder as well as the pressure generated by the hydraulic systems. Three hydraulic
systems supply the oil for the actuators shown in Fig. 1. When a failure occurs,
the redundancy management switches between actuators and oil supply systems to
achieve maximum control.

The behavioural redundancy requirements may be formalised by a set of rules
for the redundancy management to switch between module actuator control modes
as follows (Seebeck, 1998):

1. Mode changes only occur when
– a system failure is detected, or
– control of an uncontrolled elevator is requested, or
– one module requests control of both elevators which are controlled by sep-

arate modules.
2. One module should be simultaneously in either active, hot, or standby for both

elevators as long as possible.
3. If not overruled by the previous specification, the module priority is such that

the switching sequence is IOM2/1→ IOM1/1→ DLM2→ DLM1.
4. There is always one and only one module that controls one elevator, i.e., that is

active.
5. In case of a failure of the controlling module, control is assumed by a module

that is hot or standby. If no module is in this mode, the one with highest priority
that is passive assumes control.

6. A module switches to hot when the other module that controls the same eleva-
tor, and, therefore, is active, belongs to another PFCU and both elevators are
controlled by IOMs.

7. A module switches to standby when the other module that controls the same
elevator, and, therefore, is active, belongs to another PFCU and one of the ele-
vators is controlled by a DLM.

8. In case of pressure failure, the ‘low pressure’ signal only serves for fault classi-
fication. It does not cause a direct mode change.

9. In case of ‘low pressure’ and if a sensor detects an elevator positioning system
failure, the module switches off. The module switches back to passive only
when no system failure is reported and the ‘low pressure’ condition does not
hold anymore.

10. If ‘low pressure’ is not reported and the elevator positioning system is reported
to fail then the module switches to isolated.

To prevent nondeterministic switching, priorities are assigned to the possible tran-
sitions. Because of the critical nature of switching to the isolated mode to prevent

376 Mosterman, Pereira Remelhe, Engell, Otter

damage to the system, this transition has the highest priority. In addition this causes
another module to immediately assume control. This is also desired when, e.g., a
pressure loss is detected and the module switches off. Therefore, the corresponding
transition has second highest priority. Another decision criterion is to allow mod-
ules to take over control as quickly as possible. As a result, modes that implement
as much control as possible should have highest priority. So, when a module can be
switched active this should be immediately executed rather than first switching to
standby if this transition is also enabled. This yields the following priorities:

1. Transition to isolated
2. Transition to off
3. Transition to active
4. Transition to hot, standby, and passive.

Sensors in the elevator control system provide the PFCUs with information about the
functioning of the system. In case of abnormal readings, the entire set of measure-
ments is used to infer a particular failure mode. Details of this inference mechanism
are beyond the scope of this paper. To test the redundancy management, failure
mode effect (FME) analysis investigates the availability of the system for several
test cases that embody a set of sensor readings:

• Pressure decrease in the hydraulic system (H1, H2, H3)
• Predefined set of failures (F)

– IO module failure (1, 2)
– DL module failure (1, 2)
– Actuator failure (left inner/outer, right inner/outer).

These failures represent abstractions of actual physical phenomena underlying the
failure detection. FME is still the most important step in verifying system safety and
reliability of discrete-event control (Mai and Schröder, 1999, Osder, 1999).

The combined discrete redundancy management for two of the four actuators
on each of the four modules results in eight redundancy modules. This adds up to a
considerable discrete behavioural complexity. Each module consists of six possible
local modes and there are eight such modules. Thus, the total number of modes of
the redundancy management control is 48. There is always one and only one active
state in each of the discrete-event models. But, because of the redundancy specifi-
cation, each of the models needs to have information about the mode of each of the
other ones. This interaction is based on the MACMs and causes logic connections
between each of the actuator control modules. Finally, an additional discrete-event
model is used to model possible fault scenarios by activating states that correspond
to particular failure modes. This model has eleven states.

3 Modelling the Parts of the System

The elevator control system described in Sect. 2 contains a number of parts that are
best captured by different modelling approaches: (i) the aircraft dynamics, (ii) the
redundancy control, including control law switching, and (iii) the actuator switching
behaviour.

Aircraft Elevator Control 377

3.1 Aircraft Dynamics

To investigate the effect of actuator switching on the overall flight characteristics
such as nick rate (q) and angle of attack (α), an aircraft model is required. The more
realistic this model, the higher is the probability that the analysis results also hold
for the actual implementation on the aircraft.

Object-Oriented Modelling. The design of a realistic aircraft model is a tremen-
dous task that combines several domains within aircraft design such as (i) aerody-
namics, (ii) gravity, atmospheric, and wind models, (iii) engine/thrust models, (iv)
rigid body models including the effects of fuel consumption, and (v) systems models
for primary (attitude) control.

Traditionally, such complex aircraft models are written in a computer process-
able format such as, e.g., FORTRAN, and they are completely integrated with facili-
ties for behaviour generation, e.g., the numerical solver. This, however, renders the
models unwieldy, error-prone, and rather costly to implement and update.

Recently, a more structured approach to aircraft modelling has been developed
based on object-oriented modelling techniques and the use of libraries of the domain
specific components mentioned before (Moormann et al., 1999, Moormann, 2001).
Object-oriented modelling techniques rely on the notion of encapsulation to hide
the details of physical component models and to increase maintainability. Further-
more, the models are organised hierarchically which allows successive refinement
of behaviours at increasing levels of detail.

Graphical Syntax. Figure 3 shows a top-level view of the aircraft model with
the engine objects (left), the systems component (top) and the aerodynamics model
(right), the rigid body model, and the gravity/atmosphere/wind models (bottom-
right). These components can be decomposed hierarchically in similar object dia-
grams.

ATD

Earth

grav ity
1 dim

atm os gust

body

CO G

ATD

aeroRef

engRef 1

ATD

engRef 2

ATD

ATD
interac t

REF CO G

ATD

sy st ems

Fig. 3. Top level object diagram of
the aircraft model

378 Mosterman, Pereira Remelhe, Engell, Otter

Communication between objects is realised through ports that also constitute the
interface to the next level in the hierarchical decomposition. For a set of connected
variables, vi, these ports use two different connection semantics, (i) ∀i(i �= 0|vi = v0),
i.e., all connected variables are set equal, and (ii) Σivi = 0, i.e., the connected vari-
ables are summed to 0. This allows for a convenient implementation of energy flows
across ports where the different semantics correspond to the across and through vari-
ables, respectively, the product of which constitutes power.

Execution Model. The behaviour of each of the primitive model objects is de-
scribed in terms of algebraic and differential equations. These are treated as non-
causal, i.e., no computational direction of the variables is assigned (it is not deter-
mined which variable is to be computed from an equation), which is a convenient
way of modelling physical systems in terms of declarative constraint specification.
Furthermore, it enhances model reuse.

flangeAct

airflow

MOTI

deflection

Fig. 4. Elevator control surface library component

To illustrate, consider the elevator control surface library component in Fig. 4.
This surface consists of one or more movable parts to adjust the aerodynamic force
acting on the aircraft. The library component is connected to the remainder of the
aircraft model by three ports: (i) a mechanical port flangeAct, that contains the eleva-
tor deflection, δ , (ii) an aerodynamic port, deflection, that carries the forces because
of the airflow around the elevator, and (iii) a mechanical port, MOTI, that contains
the force acting on the aircraft. Table 2 itemises the most important interface vari-
ables of the ControlSurface class. The elevator computes the force Fact from

0 = f (Fact , V 2
a , δ , ρ, Scs, . . . , mcs, g, . . .), (1)

the deflection δ from

δ = kkinxact , (2)

and, finally, its rate of change δ̇ from

δ̇ = kkinvact . (3)

Aircraft Elevator Control 379

Note that kkin is a parameter internal to the object that represents the kinematics of
the mechanism.

Table 2. ControlSurface class interface variables

Interface Variables

across xact displacement of actuator flange

vact displacement velocity of actuator flange

Va airspeed velocity

ρ air density

g gravitational acceleration

through Fact force acting on actuator flange

To enable the execution, the primitive object equations and the connection con-
straints for across and through variables are accumulated by a global model inter-
pretation scheme. It sorts and solves the overall system of differential and algebraic
(DAE) equations by assigning causality so that the unknowns can be computed from
the equations and input and state variables. Algebraic manipulations are performed
to reduce the system of equations, e.g., (Andersson, 1994).

To represent switching, equations may be conditionally active. When the con-
ditions change their truth value, this causes events. When events occur, variables
may undergo discontinuous changes. In addition to the differential and algebraic
equations, a ‘pre’ operator is defined to allow access to the value of a variable im-
mediately before a discontinuous change. Because this introduces discrete state be-
haviour, an iteration is required to converge to a consistent state before the continu-
ous simulation is resumed. Though this mechanism can be used for implementing
discrete-event behaviour, it is difficult to mimic state transition diagrams using ob-
ject diagrams and even more so to describe the state transition behaviour by local
equations of the primitive states and transitions. The graphical syntax of object di-
agrams does not allow annotation of component connections, thus it is not possible
to write conditions, events, and actions alongside a transition. Furthermore, transi-
tions are not objects in object diagrams. Therefore, the transition behaviour requires
a specific transition object to be inserted. Execution has to be described in terms of
local algebraic constraints that communicate between states and transitions to eval-
uate whether a state is active and a transition is enabled (Mosterman et al., 1998).

The result of collecting the local equations, adding the connection constraints,
and sorting and solving these leads to a global system of equations of the form

ẋ = fα(x,u, t)
0 = gα(x,u, t)

α+ = φα(x,u, t)
(4)

380 Mosterman, Pereira Remelhe, Engell, Otter

where fα specifies the dynamics in mode α , gα the event generation functions (‘zero
crossings’), and φα the next mode function. Before continuous simulation can start
or be resumed after an event occurred, a consistent mode α , i.e., α+ = α , has to be
found. Typically, this is performed by a fixed point iteration scheme.

3.2 Redundancy and Position Control

The main purpose of the two primary flight control units is the generation of appro-
priate continuous and discrete control signals for the four elevator actuators. Each
PFCU contains a failure monitoring function, a specific discrete-event part for the
redundancy management as well as one feedback and direct link controller per ele-
vator. When a failure is detected, the redundancy management parts of both PFCUs
interact tightly in order to achieve a consistent decision on the appropriate reaction,
before switching the operating control laws. This is because each PFCU is respon-
sible for different actuators and has to take the discrete state of the other PFCU into
account in order to guarantee that each elevator is controlled by one actuator only.
Therefore a simple failure may trigger a sequence of transitions in both PFCUs,
where a discrete mode transition in one PFCU may lead to a state which forces
another transition in the other PFCU and so on.

Graphics. Since hardware aspects are beyond the scope of this paper, the redun-
dancy management parts of both PFCUs are unified in one discrete-event model
component neglecting the distributed architecture of the system. As a consequence,
the aircraft model contains only one elevator control component. This is divided into
three parts: (i) a failure injection module that replaces the failure monitoring func-
tions so that specific failure scenarios can be studied, (ii) the combined redundancy
management parts of both PFCUs that react on changes of the failure configura-
tion and (iii) the switched position controllers of both PFCUs the transfer functions
of which depend on the actual modes of the redundancy management component
(Fig. 5).

Fig. 5. The structure of the elevator controller model

The requirements for the redundancy management which were formulated in-
formally in Section 2 state that each redundancy module contains 6 possible local

Aircraft Elevator Control 381

modes. Since a redundancy module switches from one mode to another under cer-
tain conditions, the modules should be modelled by a kind of state transition dia-
gram, where the modes are represented by discrete states and the transition arrows
represent the possible mode switchings. In order to take the transition priorities into
consideration, hierarchical states as known from the statechart formalism (Harel,
1987) are used. Additional states are introduced that do not correspond to a mode,
but represent the priorities of the transitions: The higher a state in the hierarchy the
higher is the priority of its outgoing transitions, e.g., the transition ToOff in Fig. 6
has a higher priority than ToAct and a lower priority than ToIso. The statechart
model in Fig. 6 reflects the state transition aspects of a redundancy module declared
in the informal description of the requirements.

RedCon_SC

trigger
states

RED_CON_SC

Isolated

HS1

Off

HS2

HotStandby

HotStandby

Passive Active

PasSta PasHot

ToAct

ActPas

ToOff

ToIso

FroOff

StaPas HotPas

PasAct

Fig. 6. The redundancy module statechart

The transition conditions can be derived from the switching rules of the require-
ments and differ for each statechart. In order to keep the statechart model generic
and take architectural aspects into consideration, a specific hierarchical block di-
agram formalism is used (Fig. 7). Two blocks on the top level represent the two
primary flight control units. The input port contains the failure values that origi-
nate from the failure injection module whereas the output ports transmit the actual
module modes to the switched controllers. Each PFCU block contains four control
modules (LIO, RIO, LDL and RDL) as subblocks. Their behaviour is defined by the
statechart in Fig. 6. The transition conditions are calculated outside the statecharts
in a special block (PFCU1_Logic and PFCU2_Logic) with no state behaviour.

Execution The intended behaviour of the elevator control model is as follows:
The failure injection module generates Boolean signals that indicate the presence

382 Mosterman, Pereira Remelhe, Engell, Otter

inp

PFCU1s

PFCU2

sys_in

PFCU1sPFCU2s

PFCU1

sys_in

PFCU1sPFCU2s

PFCU2s
RDL

trigger

states

LDL

trigger

states

RIO

trigger

states

LIO
trigger

states

PFCU1_Logic

PFCU2s

sys_in

LIOt

RIOt

LDLt

RDLt

LIOs

RIOs

RDLs

LDLsPFCU1s

PFCU1s

sys_in

PFCU2s

Fig. 7. Two block diagrams of the discrete-event part

of specific failures. When a failure signal changes, the transition conditions of both
PFCUs are evaluated and their values are transmitted to the statechart blocks that
perform their transitions independently. After all statecharts have converged to a
persistent discrete state, i.e. no further transitions happen, the transition conditions
are calculated again taking the new states into account and a new set of transitions
may be performed in the modules again. When the overall discrete-event system
reaches a stable state, this local event iteration is stopped, the output values are set,
and the position controllers may change their mode.

In order to analyse the behaviour of the elevator control and the overall aircraft
for different failure scenarios, the failure injection module generates predetermined
sequences of failures. These scenarios can be modelled by equations containing log-
ical expressions and inequalities over the independent variable time and parameters
as shown in the following example where IO2failure is present from time t1 to t2:

IO2failure = (t > t1)∧ (t < t2). (5)

The output of the redundancy management part switches the position controllers that
are easily described using equations. The following example shows the controller
equations of PFCU1 for the left elevator:

eact,l1 = wact − xact,l (6)

uact =


0 if PFCU1states.LIO is Off or Isolated

wact else if PFCU1states.LDL is Active,

kpeact,l1 + kdvact,l else

(7)

uspool,l1 = PFCU1states.LIO.Active (8)

3.3 Actuator Dynamics

The hydraulic actuators are the interface between the discrete-event domain of re-
dundancy control and the continuous domain of the aircraft dynamics. The actuator

Aircraft Elevator Control 383

here is not modelled with all details as this would lead to steep gradients in the
behaviour that are difficult to handle and slow down simulation of the aircraft be-
haviour, even if efficient numerical solvers such as DASSL (Petzold, 1982) are used.

Higher Index DAE. The decision to remove small physical effects such as fluid
storage in lines and oil elasticity and viscosity leads to DAEs with a higher complex-
ity because state variables are then directly coupled instead of interacting through
additional states with small time constants. These DAEs can be transformed by dif-
ferentiation before simulation run, but the switching effects of the actuators may
also cause such algebraic constraints to emerge during simulation, requiring two
phenomena to be handled: (i) the state variables that become algebraically coupled
are constrained to a subspace of reduced dimension and the values before the con-
straint becomes active have to be projected into this subspace, and (ii) the future
dynamic behaviour of these state variables must be in this reduced subspace.

supply PS

SET

ACT

return

servo valve

spool valve

cylinder

q q
Se

TF

TF

R,I

I

R

Fig. 8. Schematic of hydraulic actuator

To illustrate these effects, consider the actuator model in Fig. 8. When initially
the actuator is active, the supply path is open, i.e., control signals generated by the
servo valve are supplied to the positioning cylinder, causing the piston to acceler-
ate. When, at a given point in time, the actuator is switched to be off, the loading
path becomes active. Because of the inertial effects in the loading pathway, there is
dependency between the piston and this fluid inertia and an algebraic constraint be-
tween these two variables (vpiston =−Ap fload) restricts the state space in which the
system evolves. This is illustrated in Fig. 9(a), where the double arrow heads on the
dashed field lines indicate the direction of the discontinuous change. This algebraic
dependency would be eliminated by introducing small parasitic storage effects for
the piping and some oil elasticity and viscosity, but this adds very steep gradients to
overall system behaviour as illustrated by Fig. 9(b) that complicate simulation and
are not relevant for the overall behaviour of the aircraft.

384 Mosterman, Pereira Remelhe, Engell, Otter

vpiston

fload

(a) Discontinuous changes

vpiston

fload

(b) Steep gradients

Fig. 9. Phase space for
vp and fload

The implicit jumps in the state variable values have to be computed during sim-
ulation. At present, commercially available simulation tools cannot handle such
abrupt changes in DAE models. Therefore the experimental modelling and simu-
lation environment HYBRSIM (Mosterman and Biswas, 1999) was used which has
been realised for the purpose of testing algorithms for the reinitialisation of switched
systems with index changes. HYBRSIM is based on bond graph modelling of the
physical system.

Bond Graph Model of the Actuators. Figure 10 shows the hybrid bond graph
model of the two left hydraulic actuators. The two Se elements1 are sources (inputs)
of a bond graph model which are connected to the hydraulic circuits in the aircraft
model that provide the input pressure. The servo valve modulation is applied by
the TF elements, where the setL1 and setL2 elements are connected to the setpoint
generated by the aircraft control model. The I elements represent connections (equal
flow points) and the attached R element captures dissipative effects. Note that these
are modelled as linear phenomena. The loadL1 (loadL1) connection also has some
inertia associated with it, embodied by the IloadL1 (IloadL2) element. The cylinder
chamber is modelled by a 0 element, an equal pressure point. Both cylinders connect
through a piston with area modelled by a TF element to one equal velocity point for
the elevator control surface movement. This velocity, as well as the displacement
and force are inputs to the aircraft model.

The switching behaviour is modelled by two controlled junctions (Mosterman
and Biswas, 1995) in each actuator, in the left actuator these are supplyL1 and
loadL1. The local finite state machines that control their states are given in Fig. 11.
The control event actL1 is generated by the redundancy control in the enclosing
part of the model. When the supplyL1 junction is ON and loadL1 is OFF, the ac-
tuator is active. When supplyL1 is OFF and loadL1 is ON, it is loading (either hot,
standby, passive, or isolated). Note that the mutual switching constraints allow no
other configurations.

1 The element type is listed on the left of each element rectangle.

Aircraft Elevator Control 385

Fig. 10. Hybrid bond graph of the two left hydraulic actuators

(a) Supply path (b) Load path

Fig. 11. Finite state machines of actuator 1 in the hybrid bond graph

Equations. The equations generated from the hybrid bond graph by HYBRSIM in-
corporate the switching effect as guarded equations. This prevents the need for pre-
enumeration which would cause an exponential growth of the number of modes.2

For example, for the loading pathway, loadL1, the equation generated is

0 = (−chamberL1.p+ IloadL1.p+RloadL1.p)αi +(loadL1. f) · (1−αi) (9)

where αi is the ith entry in the mode vector α . This ensures that in a mode where
this connection is active, αi = 1, the pressure drops of the connected elements are
balanced. When the connector is not active, αi = 0, the fluid flow through loadL1
becomes 0. This models ideal switching but may lead to higher index DAEs (e.g.,
because IloadL1 and mpL become algebraically related). A numerical solver such as
DASSL can handle systems up to index 1 directly and up to index 2 with some pro-
visions, e.g., the step-size control of index 2 variables needs to be switched off (Bu-
jakiewicz, 1994). Another prerequisite is that DASSL should be given a set of con-
sistent initial conditions, i.e., those that are in the correct subspace of continuous
behaviours. This is achieved by applying a projection mechanism which is consis-
tent with physical conservation laws (Griepentrog and März, 1986, van der Schaft
and Schumacher, 1996, Verghese et al., 1981).

2 For the hybrid bond graph in Fig. 10 there are already 24 = 16 possible modes, but only
two occur during normal operation.

386 Mosterman, Pereira Remelhe, Engell, Otter

The discontinuous changes are computed by first linearising the system with a
finite difference method. Then a pseudo Weierstrass normal form is derived (up till
index 2)

0 =

 Ē11 0 0
0 0 Ē22,12

0 0 0

 ˙̄x1
˙̄x2,1
˙̄x2,2

+

 Ā11 Ā12,1 Ā12,2

0 Ā22,11 Ā22,12

0 0 Ā22,22

 x̄1

x̄2,1

x̄2,2

+

 B̄1

B̄2,1

B̄2,2

[u
]

, (10)

where Ē11,11, Ā22,11, and Ā22,22 are of full rank. This allows computation of the
initial conditions as (Mosterman, 2000b)

x̄1 = x̄0
1 + Ē−1

11 Ā12,1Ā−1
22,11Ē22,12(x̄2,2− x̄0

2,2)
x̄2,1 =−Ā−1

22,11(B̄2,1u+ Ē22,12 ˙̄x2,2 + Ā22,12x̄2,2)
x̄2,2 =−Ā−1

22,22B̄2,2u ,
(11)

where x̄0 are the user-provided initial values after the coordinate transformation to
achieve the desired normal form, x̄0 = Zx0. The values for x̄ can then be transformed
back to obtain initial values for x that are in the correct subspace of the dynamic
behaviour, and in this manner the implicit jump is determined.

4 Simulation of the Overall System

The aircraft model, the redundancy control system, and the actuator feedback and
discrete event control were modelled using different modelling formalisms and tools
(DYMOLA, HYBRSIM, DOME). Each of these is best suited for the respective task.
To enable a comprehensive analysis, however, the parts have to be integrated into a
coherent model.

4.1 Integrating the Components

Since the descriptions of the failure injection module and the redundancy manage-
ment system laws are based on equations, they can be incorporated easily into the
object-oriented and equation-based aircraft model. This also holds for the hydraulic
actuators, in principle, because the bond graph models correspond to a set of hybrid
differential and algebraic equations. But due to present restrictions of the simula-
tion software available for object-oriented modelling languages, specific simulation
code is generated from the bond graphs of the actuators and merged with the C-code
that results from the aircraft model.

For the redundancy management component, the modelling environment gener-
ates a simulation algorithm that defines the input-output behaviour of the discrete-
event component. This automatically generated algorithm is designed in a way that
is compatible to the MODELICA language so that it can be embedded directly into
the aircraft model. In MODELICA such an algorithm is regarded simply as an addi-
tional model constraint that corresponds to an equation that contains a function with
a fixed set of input and output variables.

Aircraft Elevator Control 387

To simulate the resulting hybrid model, MODELICA’s hybrid DAE semantics
is exploited. The temporal inequality expressions in the failure injection module
are transformed into time events for the numerical integrator so that the continuous
integration stops exactly when a switching time has elapsed. Then the whole set of
equations is re-evaluated with the new values of the inequality expressions. Thereby,
the algorithm of the redundancy management is also re-evaluated resulting possibly
in a new state which may switch the feedback control laws.

4.2 Simulation Results

The phugoid in Fig. 12 is the result of two interacting phenomena: When the aircraft
pitch angle increases, it gains altitude and at the same time loses airspeed. Because
of this loss of airspeed, there is less upward thrust, which causes the aircraft to lose
altitude in return. However, as it starts losing altitude, it picks up speed again and
the airspeed rises. This results in a slightly damped oscillatory behaviour which is
required to be stable in commercial aircrafts.

0 20 40 60 80 100
88

89

90

91

92

93

time [s]

v
[m/s]

TAS

Fig. 12. Simulation shows a phugoid typical for aircraft

To investigate the effect of the redundancy control on the aircraft’s behaviour, an
actuator failure is introduced during a setpoint change. The setpoint change occurs
at t = 0.05 [s] and the actuator failure at t = 0.08 [s]. Figure 13 shows that the failure
leads to an immediate change of the active actuators and the switching transients in
the hydraulics cause a sharp drop in elevator velocity. Because small effects such as
oil elasticity and viscosity are neglected in the simulation, this results in a discon-
tinuous change that occurs because of the algebraic dependency between elevator
inertia and fluid inertia of the new loading path.

During a short period of time, the PID control causes the elevator velocity to
ramp up to the value which it would have assumed without the failure. Note the
short delay that is possible because the actuator that switches to active was hot and
shadowing the PID control.

388 Mosterman, Pereira Remelhe, Engell, Otter

0 0.1 0.2 0.3 0.4 0.5
-5

-4

-3

-2

-1

0

1
x 10

-3

time [s]

v
[m/s]

meL

no actuator switch

actuator switch

Fig. 13. Elevator velocity when a fail-
ure occurs at t = 0.08 shortly after a
setpoint change at t = 0.05

The aircraft redundancy control is designed such that an actuator failure should
not have a noticeable effect on the behaviour of the aircraft. Using the compre-
hensive model with switching logic and transients, and an extensive model of the
aircraft dynamics, this effect can be studied as well. Figure 14(b) shows the effect
of the actuator switch on the aircraft pitch angle, and Fig. 15(b) shows the effect on
the pitch angle velocity. This verifies that the actuator switch has almost no effect
on the overall aircraft behaviour which, because of the realistic aircraft model, pro-
vides much confidence for the real implementation. Note that the small effect of the
actuator switching on the global behaviour manifests itself after a significant delay.

0 1 2 3 4 5
0.106

0.108

0.11

0.112

0.114

time [s]

α
[rad]

no actuator switch

(a) Detailed view

0 10 20 30 40 50
0.104

0.106

0.108

0.11

0.112

0.114

time [s]

α
[rad]

(b) Overall behaviour

Fig. 14. Pitch angle for normal behaviour and for an actuator switch at t = 0.08

Table 3 illustrates how the redundancy management reacts, when the IO module
failure occurs in PFCU2. In this case, all resulting state transitions are symmetrical,
i.e., the modules of the right elevator have always the same state as the correspond-
ing modules of the left elevator. Therefore the given states refer to both sides. In

Aircraft Elevator Control 389

0 1 2 3 4 5
-10

-8

-6

-4

-2

0

2
x 10

-3

time [s]

q
[rad/s]

no actuator switch

(a) Detailed view

0 10 20 30 40 50
-10

-5

0

5
x 10

-3

time [s]

q
[rad/s]

(b) Overall behaviour

Fig. 15. Pitch angle velocity for normal behaviour and for an actuator switch at t = 0.08

the first local transition the statecharts of LIO and RIO (Left / Right IO) of PFCU2
switch from Active to Isolated, since these modules should not be activated again
(see rules 1 and 10 in Section 2). Then PFCU1 takes over the actuators by activating
its LIO and RIO modules (rules 1, 3, 5). In the last local transition, the LDL and
RDL (Left / Right DL) statecharts of PFCU2 switch into the Hot mode preparing
the system for a possible second failure (rule 6). Since state 2 would violate rule 4
and the transition from state 3 to state 4 would violate rule 1, the internal iterations
have to be hidden from the outer system in order to prevent inconsistent outputs.
This is why only the global transition from state 1 to state 4 is made observable to
the outside.

Table 3. State transitions of the redundancy management system

components local steps

1 2 3 4

PFCU2 RIO/LIO Active Isolated Isolated Isolated

RDL/LDL Passive Passive Passive Hot

PFCU1 RIO/LIO Hot Hot Active Active

RDL/LDL Passive Passive Passive Passive

outer actuators control – – shadow

inner actuators shadow – – control

global visibility yes no no yes

390 Mosterman, Pereira Remelhe, Engell, Otter

5 Conclusions

The comprehensive model of the aircraft developed here incorporates the redun-
dancy management system, the switched positioning controllers, the actuator mod-
els as well as a complex model of the general dynamics of the aircraft. Hence, it is
possible to assess the design of the elevator control system with respect to the over-
all behaviour of the aircraft in the case of failures. Since the less important physical
effects of the hydraulic actuators were neglected, the simulation is fast enough to be
used also in the context of a multi-objective parameter optimisation (MOPS) (Joos,
1999). Such an optimisation may, e.g., reduce the elevator surface or the actuator
power such that the switching transients still do not affect the level of aircraft han-
dling.

The abstractions used in the actuator models, i.e. neglecting small physical ef-
fects such as oil elasticity and viscosity, result in a DAE that may change its index
during simulation. A standard DAE solver, such as DASSL, can be applied for this
model, if the re-initialisation at event times results in a consistent state. For a correct
behavioural simulation, this re-initialisation has to satisfy the physical conservation
laws. For the purpose of this feasibility study the actuators were modelled in HYBR-
SIM, a modelling environment based on hybrid bond graphs that supports the nec-
essary re-initialisation procedure. The C-code generated by this environment was
manually combined with the C-code generated by DYMOLA which includes the rest
of the aircraft model. The hybrid system simulator MASIM was used to generate
behaviors. MASIM has facilities to compute discontinuous changes of generalized
state variables as algebraic constraints between them become active. The discrete-
event parts of the aircraft are modelled using a visual specification language and are
translated into a MODELICA algorithm that can be integrated into the aircraft model
on the model level (Mosterman et al., 2002).

The presented modelling and simulation approach that combines an object-orien-
ted modelling language such as MODELICA, domain-specific model libraries, dis-
crete-event modelling formalisms and powerful simulation methods including cor-
rect state re-initialisation, was successfully applied to the aircraft elevator control
system and seems to be promising for general complex technological systems.

References

ABACUSS (1995). http://yoric.mit.edu/abacuss/abacuss.html. Massachussets Insti-
tute of Technology.

Abadi, M. and Cardelli, L. (1996). A Theory of Objects. Springer, New York.
Abel, D. (1990). Petri-Netze für Ingenieure. Springer, Berlin, Germany.
Adjiman, C., Schweiger, C., and Floudas, C. (1998). Mixed-integer nonlinear opti-

mization in process synthesis. In Du, D.-Z. and Pardalos, P., editors, Handbook
of Combinatorial Optimization, volume 1, pages 1–76. Kluwer Acadademic
Publisher.

Albro, J. and Bobrow, J. (2001). Optimal motion primitives for a 5 DOF experimen-
tal hopper. In Proceedings of the IEEE International Conference on Robotics
and Automation (Seoul, Korea), pages 3630–3635.

Allgor, R. and Barton, P. (1997). Mixed integer dynamic optimization. Computa-
tional Chemical Engineering, 21:451–456.

Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T., Ho, P.-H., Nicollin, X.,
Olivero, A., Sifakis, J., and Yovine, S. (1995). The algorithmic analysis of
hybrid systems. Theoretical Computer Science, 138:3–34.

Alur, R., Courcoubetis, C., Henzinger, T. A., and Ho, P. H. (1993). Hybrid Au-
tomata: An Algorithmic Approach to the Specification and Verification of Hy-
brid Systems. In Grossmann, R. L., Nerode, A., Ravn, A. P., and Rischel, H.,
editors, Hybrid Systems, volume 736 of Lecture Notes in Computer Science,
pages 209–229. Springer.

Alur, R., Dang, T., Esposito, J., Fierro, R., Hur, Y., Ivanĉić, F., Kumar, V., Lee, I.,
Mishra, P., Pappas, G., and Sokolsky, O. (2001). Hierarchical hybrid model-
ing of embedded systems. In Henzinger, T. and Kirsch, C., editors, EMSOFT
2001: First International Workshop on Embedded Software, Tahoe City, CA,
USA, October 8–10, 2001, volume 2211 of Lecture Notes in Computer Sci-
ence, pages 14–31. Springer.

Alur, R. and Dill, D. (1990). A theory of timed automata. Theoretical Computer
Science, 126:183–235.

Alur, R., Grosu, R., Hur, Y., Kumar, V., and Lee, I. (2000a). Modular specification
of hybrid systems in Charon. In Proc. HSCC’00, Springer LNCS 1790.

Alur, R., Henzinger, T., Lafferiere, G., and Pappas, G. (2000b). Discrete abstractions
of hybrid systems. Proceedings of the IEEE, 88(7):971–984.

Alur, R. and Henzinger, T. A. (1999). Reactive modules. Formal Methods in System
Design: An International Journal, 15(1):7–48.

Alur, R., Henzinger, T. A., and Sontag, E. D., editors (1996). Hybrid Systems III:
Verification and Control, volume 1066 of Lecture Notes in Computer Science.
Springer.

Andersson, M. (1994). Object-Oriented Modeling and Simulation of Hybrid Sys-
tems. PhD dissertation, Department of Automatic Control, Lund Institute of
Technology, Lund, Sweden.

468

Antsaklis, P., editor (2000). Special Issue on Hybrid Systems: Theory and Applica-
tions, volume 88, no. 7 of Proceedings of the IEEE.

Antsaklis, P., Kohn, W., Lemmon, M., Nerode, A., and Sastry, S., editors (1999). Hy-
brid Systems V, volume 1567 of Lecture Notes in Computer Science. Springer.

Antsaklis, P. and Koutsoukos, X. D. (1998). On Hybrid Control of Complex Sys-
tems: A Survey. In Proceedings Hybrid Dynamical Systems, ADPM ’98, pages
1–8, Reims, France.

Antsaklis, P. and Nerode, A., editors (1998a). Special Issue on Hybrid Control
Systems, volume 43 of IEEE Transactions on Automatic Control.

Antsaklis, P., Nerode, A., Kohn, W., and Sastry, S., editors (1995). Hybrid Systems
II, volume 999 of Lecture Notes in Computer Science. Springer.

Antsaklis, P., Nerode, A., Kohn, W., and Sastry, S., editors (1997). Hybrid Systems
IV, volume 1273 of Lecture Notes in Computer Science. Springer.

Antsaklis, P. J. and Nerode, A. (1998b). Special issue on hybrid systems. IEEE
Transactions on Automatic Control, 43.

Apt, K. R., Francez, N., and de Roever, W.-P. (1980). A proof system for commu-
nicating sequential processes. ACM Transactions on Programming Languages
and Systems, 2(3):359–385.

Asarin, E., Bournez, O., Dang, T., and Maler, O. (2000a). Reachability analysis of
piecewise-linear dynamical systems. In 3rd Int. Workshop of Hybrid Systems:
Comp. and Control, volume 1790 of LNCS, pages 20–31. Springer.

Asarin, E., Bournez, O., Dang, T., Maler, O., and Pnueli, A. (2000b). Effective
synthesis of switching controllers for linear systems. Proceedings of the IEEE,
88:1011–1025.

Automatica 35(3) (1999). A special issue on hybrid systems. Automatica, 35:347–
519.

Back, A., Guckenheimer, J., and Myers, M. (1993). A dynamical simulation facility
for hybrid systems. In Grossmann, R., Nerode, A., Ravn, A., and Rischel,
H., editors, Lecture Notes in Computer Science: Hybrid Systems, volume 736,
pages 255–267. Springer.

Balas, E. (1985). Disjunctive programming and a hierarchy of relaxations for dis-
crete optimization problems. SIAM Journal Alg. Disc. Meth., 6(3):466–486.

Barros, F. J. (1996). The dynamic structure discrete event system specification for-
malism. Transactions of the SCS International, 13(1):35–46.

Barton, P. I. (1992). The Modelling and Simulation of Combined Discrete/Continu-
ous Processes. PhD dissertation, University of London.

Bastide, R. (1995). Approaches in unifying Petri nets and the Object-Oriented Ap-
proach. In Object-Oriented Programming and Models of Concurrence 16th
International Conference on Application and Theory of Petri Nets, Italy.

Baumgarten, B. (1990). Petri-Netze: Grundlagen und Anwendungen. BI-Wissen-
schaftsverlag, Mannheim, Wien, Zürich.

Bellman, R. (1957). Dynamic Programming. Princeton University Press.
Bemporad, A., Borelli, F., and Morari, M. (2002). On the optimal control law for

linear discrete time hybrid systems. In Hybrid Systems: Computation and Con-
trol, volume 2289 of LNCS, pages 105–119. Springer.

References 469

Bemporad, A., Mignone, D., and Morari, M. (1999). An efficient branch and bound
algorithm for state estimation and control of hybrid systems. In Proc. 5th Eu-
ropean Control Conference.

Bemporad, A. and Morari, M. (1999a). Control of systems integrating logic, dy-
namics, and constraints. automatica, 35(3):407–427.

Bemporad, A. and Morari, M. (1999b). Verification of hybrid systems using math-
ematical programming. In Vaandrager, F. W. and van Schuppen, J. H., ed-
itors, Hybrid Systems: Computation and Control, Proc. 2nd Int. Workshop,
HSCC’99, Berg en Dal, The Netherlands, March 1999, Lecture Notes in Com-
puter Science 1569, pages 31–45. Springer.

Bender, K. and Kaiser, O. (1995). Simultaneous Engineering durch Maschinenemu-
lation. CIM Management, 11(4):14–18.

Benedetto, M. D. D. and Sangiovanni-Vincentelli, A. L., editors (2001). Hybrid Sys-
tems: Computation and Control, volume 2034 of Lecture Notes in Computer
Science. Springer.

Bergstra, J. and Klop, J. (1984). Process algebra for synchronous communication.
Information and Control, 60(1):109–137.

Betts, J. (1998). Survey of numerical methods for trajectory optimization. AIAA
Journal of Guidance, Control, and Dynamics, 21(2):193–207.

Bhat, G., Cleaveland, R., and Grumberg, O. (1995). Efficient on-the-fly model
checking for CTL∗. In LICS ’95: 10th Annual IEEE Symposium on Logic
in Computer Science, San Diego, California, USA, June 26–29, 1995, pages
388–397. IEEE Computer Society Press.

Blanke, M., Frei, C., Kraus, F., Patton, R., and Staroswiecki, M. (2000a). Fault-
tolerant control systems. In Isidori, A., Aström, K. J., Blanke, M., Schaufel-
berger, W., Albertos, P., and Sanz, R., editors, Control of Complex Systems,
chapter 8, pages 165–189. Springer.

Blanke, M., Frei, C. W., Kraus, F., Patton, R. J., and Staroswiecki, M. (2000b).
What is fault-tolerant control? In Proceeding of SAFEPROCESS 2000: 4th
Symposium on Fault Detection, page 40. IFAC.

Bobbio, A., Garg, S., Gribaudo, M., Horváth, A., Sereno, M., and Telek, M. (1999).
Modeling software systems with rejuvenation, restoration and checkpointing
through fluid stochastic petri nets. In Proc. Eighth International Workshop on
Petri Nets and Performance Models - PNPM’99, pages 82–91.

Bolognesi, T. and Brinksma, E. (1987). Introduction to the ISO specification lan-
guage LOTOS. Computer Networks, 14:25–59.

Brack, G. (1974). Dynamik technischer Systeme. VEB Deutscher Verlag für Grund-
stoffindustrie, Leipzig.

Branicky, M. (1993). Topology of hybrid systems. In Proceedings of the 32nd IEEE
Conference on Decision and Control (San Antonio, TX), pages 2309–2314.

Branicky, M. (1994a). Analyzing continuous switching systems: Theory and exam-
ples. In Proceedings of the American Control Conference (Baltimore, MD),
pages 3110–3114.

Branicky, M. (1994b). Stability of switched and hybrid systems. In Proceedings of
the 33rd IEEE Conference on Decision and Control (Lake Buena Vista, FL),
pages 3498–3503.

470

Branicky, M. (1994c). A unified framework for hybrid control. In Proceedings of
the 33rd IEEE Conference on Decision and Control (Lake Buena Vista, FL),
pages 4228–4234.

Branicky, M. (1995). Studies in Hybrid Systems: Modeling, Analysis and Control.
PhD thesis, Massachusetts Institute of Technology, Department of Electrical
Engineering and Computer Science.

Branicky, M. (1996). General hybrid dynamical systems: Modeling, analysis, and
control. In Alur, R., Henzinger, T., and Sontag, E., editors, Lecture Notes in
Computer Science: Hybrid Systems III, volume 1066, pages 186–200. Springer.

Branicky, M. (1998). Multiple Lyapunov Functions and Other Analysis Tools for
Switched and Hybrid Systems. IEEE Trans. Aut. Control, 43(4):475–482.

Branicky, M., Borkar, V., and Mitter, S. (1998). A unified framework for hybrid
control: Model and optimal control theory. IEEE Transactions on Automatic
Control, 43(1):31–45.

Branicky, M., Hebbar, R., and Zhang, G. (1999). A fast marching algorithm for
hybrid systems. In Proceedings of the 38th IEEE Conference on Decision and
Control (Phoenix, AZ), pages 4897–4902.

Brenan, K. E. and Campbell, S. L. (1996). Numerical Solution of Initial-Value
Problems in Differential-Algebraic Equations. siam.

Brockett, R. (1993). Hybrid models for motion control systems. In Trentelmann, H.
and Willems, J., editors, Essays on Control: Perspectives in the Theory and its
Applications, pages 29–53. Boston: Birkhäuser.

Broenink, J., Hilderink, G., and Bakkers, A. (1998). Conceptual design for con-
troller software of mechatronic systems. In Bradshaw, A. and Counsel, J.,
editors, Computer aided Conceptual Design ’98.

Bröhl, A. and Dröschel, W. (1995). Das V-Modell. Oldenburg.
Brooke, A., Kendrick, D., Meeraus, A., and Raman, R. (1998). GAMS/CPLEX – A

User’s Guide. GAMS Development Corporation.
Brookes, S., Hoare, C., and Roscoe, A. (1984). A theory of communicating sequen-

tial processes. Communications of the ACM, 31(3):560–599.
Broucke, M., Di Benedetto, M., Di Gennaro, S., and Sangiovanni-Vincentelli, A.

(2000). Theory of optimal control using bisimulations. In Proc. 3rd Int. Work-
shop of Hybrid Systems: Comp. and Control, volume 1790 of LNCS, pages
89–102. Springer.

Brown, J. S. and de Kleer, J. (1990). A qualitative physics based on confluences. In
Qualitative Reasoning about Physical Systems, pages 88–126. Morgan Kauf-
mann Publishers, San Mateo, CA.

Broy, M. (2001). Refinement of time. Theoretical Computer Science, 253(1):3–26.
Bryant, R. E. (1986). Graph-based algorithms for Boolean function manipulation.

IEEE Transactions on Computers, C-35(8):677–691.
Bryant, R. E. (1992). Symbolic Boolean manipulation with ordered binary-decision

diagrams. ACM Computing Surveys, 24(3):293–318. Preprint version pub-
lished as CMU Technical Report CMU-CS-92-160.

Buchholz, J. J. (1999). Systemsimulation. Vorlesungsmanuskript.

References 471

Bühler, M. and Koditschek, D. (1993). From stable to chaotic juggling: Theory, sim-
ulation, and experiments. In Spong, M., Lewis, F., and Abdallah, C., editors,
Robot Control – Dynamics, Motion Planning, and Analysis, pages 525–530.
New York: IEEE Press.

Bujakiewicz, P. (1994). Maximum weighted matching for high index differential
algebraic equations. PhD dissertation, TU Delft, Delft, Netherlands. ISBN
90-9007240-3.

Buss, M. (1998). Multi-fingered Regrasping using a Hybrid Systems Approach. In
Proceedings of the 2nd IMACS/IEEE International Multiconference on Com-
putational Engineering in Systems Applications (CESA’98), pages 857–861,
Hammamet, Tunisia.

Buss, M. (2000). Control Methods for Hybrid Dynamical Systems – Models, Control
Loops, Optimal Control, Computation Tools, and Mechatronic Applications –
(in German). PhD thesis, Institute of Automatic Control Engineering, Tech-
nische Universität München.

Buss, M., Glocker, M., Hardt, M., von Stryk, O., Bulirsch, R., and Schmidt, G.
(2002). Nonlinear hybrid dynamical systems: Modeling, optimal control, and
applications. In Engell, S., Frehse, G., and Schnieder, E., editors, Modelling,
Analysis, and Design of Hybrid Systems, Lecture Notes in Control and Infor-
mation Science. Springer. (This volume).

Buss, M., Hashimoto, H., and Moore, J. (1996). Dextrous Hand Grasping Force
Optimization. IEEE Transactions on Robotics and Automation, 12(3):406–
418.

Buss, M., Schlegl, T., and Schmidt, G. (1997). Development of Numerical Inte-
gration Methods for Hybrid (Discrete-Continuous) Dynamical Systems. In
Advanced Intelligent Mechatronic AIM97, Tokyo, Japan.

Buss, M. and Schmidt, G. (1996). Hybrid System Behavior Specification for Multi-
ple Robotic Mechanisms. In Proceedings of the IEEE/RSJ International Con-
ference on Intelligent Robots and Systems IROS, pages 140–147, Osaka, Japan.

Buss, M., von Stryk, O., Bulirsch, R., and Schmidt, G. (2000a). Towards hybrid
optimal control. at–Automatisierungstechnik, 48:448–459.

Buss, M., von Stryk, O., Bulirsch, R., and Schmidt, G. (2000b). Towards hybrid
optimal control. Automatisierungstechnik, 9:448–459.

Cellier, F., Elmqvist, H., and Otter, M. (1996). Modelling from physical principles.
In Levine, W., editor, The Control Handbook, pages 99–107. CRC Press, Boca
Raton, FL.

Champagnat, R., Esteban, P., Pingaud, H., and Valette, R. (1996). Petri Net Based
Modeling of Hybrid Systems. In Proc. of ASI’96, pages 53–60, Toulouse,
France. Advanced Summer Institute.

Champagnat, R., Esteban, P., Pingaud, H., and Valette, R. (1998). Modeling and
Simulation of a Hybrid System Through PR/TR PN-DAE Model. In Proc. of
the 3rd Int. Conf. on Automation of Mixed Processes, pages 131–137, Reims,
France.

Chase, C., Serrano, L., and Ramadge, P. J. (1993). Periodicity and chaos from
switched flow systems: examples of discretely controlled continuous systems.
IEEE Trans. Automatic Control.

472

Cherif, M. and Gupta, K. K. (1997). Practical Motion Planning for Dextrous Re-
Orientation of Polyhedra. In Proceedings of the IEEE/RSJ International Con-
ference on Intelligent Robots and Systems IROS, pages 291–297, Grenoble,
Frankreich.

Chouikha, M. (1999). Entwurf disktret-kontinuierlicher Steuerungssysteme - Mo-
dellbildung, Analyse und Synthese mit hybriden Petri-Netzen. PhD thesis, TU
Braunschweig.

Chouikha, M., Decknatel, G., Drath, R., Frey, G., Müller, C., Simon, C., Thieme,
J., and Wolter, K. (2000). Petri net-based descriptions for discrete-continuous
systems. at - Automatisierungstechnik, 48(9):415–425.

Chouikha, M. and Krebs, V. G. (1998). Beschreibungsmittel und Methoden für
kontinuierlich-diskrete Systeme. In Abel, D. and Lemmer, K., editors, Theorie
ereignisdiskreter Systeme, München, Wien. Oldenbourg.

Chouikha, M., Ober, B., and Schnieder, E. (2001). Automatisierter Steuerungsent-
wurf für diskrete und kontinuierlich-diskrete Systeme. at - Automatisierungs-
technik, 49(6):280–289.

Chouikha, M. and Schnieder, E. (1998a). Beschreibung kontinuierlich-diskreter
Systeme mit hybriden Petrinetzen. In GMA-Kongress ’98 Mess- und Automa-
tisierungtechnik, pages 365–372, Ludwigsburg. Institut für Regelungs- und
Automatisierungstechnik, TU Braunschweig, VDI-Verlag. VDI-Bericht 1397.

Chouikha, M. and Schnieder, E. (1998b). Modelling of Continuous-discrete Sys-
tems with hybrid Petri Nets. In IEEE: Computational Engineering in Systems
Applications, pages 606–612.

Chouikha, M. and Schnieder, E. (1999). Model-based control synthesis of continu-
ous-discrete systems. In Proc. IEEE Int. Conf. Systems, Man and Cybernetics,
pages 452–456.

Chow, A.-H. (1996). Parallel DEVS: A parallel, hierarchical, modular modeling
formalism and its distributed simulator. Transaction of the SCS International,
13(2):55–67.

Christen, E. (1997). The VHDL 1076.1 Language for Mixed-Signal Design. http://-
www.analogy.com/support/wp/vhdl_ern.htm.

Chutinan, A. and Krogh, B. H. (1999a). Computing approximating automata for a
class of linear hybrid systems. In Hybrid Systems V: Proc. Int. Workshop, Notre
Dame, USA, Lecture Notes in Computer Science 1567, pages 16–37. Springer.

Chutinan, A. and Krogh, B. H. (1999b). Verification of polyhedral-invariant hybrid
automata using polygonal flow pipe approximation. In 2nd Int. Workshop on
Hybrid Systems: Computation and Control, volume 1569 of LNCS, pages 76–
90. Springer.

Ciardo, G., Nicol, D., and Trivedi, K. (1999). Discrete-event simulation of fluid
stochastic petri nets. IEEE Trans. Softw. Eng., 25(2):207–217.

Clarke, E. M. and Emerson, E. A. (1982). Design and synthesis of synchronization
skeletons for branching time temporal logic. In Kozen, D., editor, Logics of
Programs Workshop, IBM Watson Research Center, Yorktown Heights, New
York, May 1981, volume 131 of Lecture Notes in Computer Science, pages
52–71. Springer.

References 473

Clarke, E. M., Grumberg, O., and Peled, D. A. (1999). Model Checking. MIT Press.
Clarke, E. M. and Kurshan, R. P. (1996). Computer-aided verification. IEEE Spec-

trum, pages 61–67.
Collins, D. (1995). Designing Object-Oriented User Interfaces. Benjamin/Cum-

mings Publishing Company, Inc., Redwood City, CA.
Console, L., de Kleer, J., and Hamscher, W., editors (1992). Readings in Model-

based Diagnosis, San Mateo, CA. Morgan Kaufmann Publishers.
Courcoubetis, C., Vardi, M. Y., Wolper, P., and Yannakakis, M. (1992). Memory-

efficient algorithms for the verification of temporal properties. Formal Methods
in System Design, 1(2/3):275–288.

Cury, J. E. R., Krogh, B. A., and Niinomi, T. (1998). Synthesis of supervisory
controllers for hybrid systems based on approximating automata. IEEE Trans-
actions on Automatic Control, Special issue on hybrid systems, 43:564–568.

Czogalla, O. and Hoyer, R. (1997). Simulation based design of control strategies for
urban management and control. In 4th World Congress on Intelligent Transport
Systems, Berlin.

Czogalla, O. and Hoyer, R. (1999). Model based approximation of traffic actuated
signal control for mesoscopic traffic simulation. In 6th World Congress on
Intelligent Transport Systems, Toronto.

Dang, T. and Maler, O. (1998). Reachability analysis via face lifting. In Henzinger,
T. and Sastry, S., editors, Hybrid Systems: Computation and Control, Proc.
1st Int. Workshop, HSCC’98, Berkeley, USA, March 1998, Lecture Notes in
Computer Science 1386, pages 96–109. Springer.

David, R. and Alla, H. (1987). Continuous Petri Nets. In 8th European Workshop
on Applications and Theory of Petri Nets, pages 275–294, Spain.

David, R. and Alla, H. (1992). Petri nets and Grafcet - Tools for modelling discrete
event systems. Prentice Hall, New York, London.

David, R. and Alla, H. (1994). Petri Nets for Modeling of Dynamic Systems - A
Survey. Automatica, 30(2):175–202.

David, R. and Alla, H. (1998). Continuous and hybrid Petri nets. International
Journal of Circuits and Systems, 8(1):159–188.

Davoren, J. M. and Nerode, A. (2000). Logics for hybrid systems. Proceedings of
the IEEE, 88:985–1010.

de Kleer, J. and Weld, D. S., editors (1990). Readings in Qualitative Reasoning
about Physical Systems, San Mateo, CA. Morgan Kaufmann Publishers.

de Roever, W.-P. (1998). The need for compositional proof systems: A survey. In
de Roever, W.-P., Langmaack, H., and Pnueli, A., editors, Compositionality:
The Significant Difference, Proceedings of the International Symposium COM-
POS ’97, Malente, Germany, September 7–12, 1997, volume 1536 of Lecture
Notes in Computer Science, pages 1–22. Springer.

de Roever, W.-P., de Boer, F., Hannemann, U., Hooman, J., Lakhnech, Y., Poel,
M., and Zwiers, J. (2001). Concurrency Verification: Introduction to Compo-
sitional and Noncompositional Methods. Number 54 in Cambridge Tracts in
Theoretical Computer Science. Cambridge University Press.

De Schutter, B. (1999). Optimal control of a class of linear hybrid systems with
saturation. In Proc. 38th IEEE Conf. Decision and Control, pages 3978–3983.

474

Decknatel, G. and Schnieder, E. (1998). Hybrid petri nets as a new formalism for
modelling railway systems. In Computers in Railways VI, pages 773–782.
Computational Mechanics Publications/WIT Press.

DEDS’98 (1998). Special issue on hybrid systems. Discrete Event Dynamic Sys-
tems: Theory and Application, 8:99–222.

Denk, J. (1999). Online optimal control strategies for mechatronic systems under
multiple contact configurations. Technical report, Institute of Automatic Con-
trol Engineering, Technische Universität München. Internal Report.

Deparade, A., Pereira Remelhe, M., and Engell, S. (2001). Eine Modellierungs- und
Simulationsumgebung für hybride technische Systeme mit ereignis-diskreten
Steuerungen. In 3. VDI/VDE-GMA Aussprachetag, Rechnergestützter Entwurf
von Regelungssystemen, Dresden, volume 36 of GMA-Berichte, Düsseldorf.
GMA-Aussprachetag FA-6.23, VDI/VDA-GMA.

Design/CPN (2002). Design/CPN Version 4.0.1. http://www.daimi.au.dk/design-
CPN. University of Aarhus, Department of Computer Science, CPN Group.

Dijkstra, E. W. (1969a). On understanding programs (EWD 264). Published in an
extended version as (Dijkstra, 1969b).

Dijkstra, E. W. (1969b). Structured programming. In Buxton, J. and Randell, B.,
editors, Software Engineering Techniques, Report on a conference sponsored
by the NATO Science Committee, pages 84–88. NATO Science Committee.

Dill, D. (1990). Timing assumptions and verification of finite-state concurrent sys-
tems. In Sifakis, J., editor, International Workshop on Automatic Verification
Methods for Finite State Systems, Grenoble, France, June 12–14, 1989, volume
407 of Lecture Notes in Computer Science, pages 197–212. Springer.

Dimitriadis, V., Shah, N., and Pantelides, C. (1997). Modelling and safety verifi-
cation of dicrete/continuous processing systems. AIChE Journal, 43(4):1041–
1059.

Dimitriadis, V. D., Shah, N., and Pantelides, C. C. (1996a). A case study in hybrid
process safety verification. Computers and Chem. Eng., 20, Suppl.:S503–S508.

Dimitriadis, V. D., Shah, N., and Pantelides, C. C. (1996b). Optimal design of hybrid
controllers for hybrid process systems. In R. Alur, T.A. Henzinger, and E.D.
Sontag, editors, Lecture Notes in Computer Science 1066: Hybrid Systems III,
volume 1066 of LNCS, pages 224–257. Springer.

Doğruel, M. and Özgüner, U. (1995). Modeling and stability issues in hybrid sys-
tems. In Antsaklis, P., Kohn, W., Nerode, A., and Sastry, S., editors, Lecture
Notes in Computer Science: Hybrid Systems II, volume 999, pages 148–165.
Springer.

Doğruel, M., Özgüner, U., and Drakunov, S. (1996). Sliding-mode control in
discrete-state and hybrid systems. IEEE Transactions on Automatic Control,
41:414–419.

DOME (1999). DOME guide. http://www.htc.honeywell.com/dome/, Honeywell
Technology Center, Honeywell. version 5.2.1.

Drath, R. (1999). Modellierung hybrider Systeme auf der Basis modifizierter Petri-
Netze. PhD thesis, TU-Ilmenau, Fachgebiet Automatisierungsanlagen und
Prozeßleittechnik, Ilmenau. ISBN-Nr.: 3-932633-40-7.

References 475

Drath, R., Engmann, U., and Schwuchow, S. (1999). Hybrid aspects of modelling
manufacturing systems using modified petri nets. In 5th Workshop on Intelli-
gent Manufacturing Systems, Granado, Brasil.

Drath, R. and Schwuchow, S. (1997). Modellierung diskret-kontinuierlicher Sys-
teme mit Petri-Netzen. In Schnieder, E., editor, Entwurf komplexer Automa-
tisierungsysteme 5. Fachtagung, pages 265–283, Braunschweig.

Dymola (2002). Dymola version 4.2a. http://www.dynasim.se/.
Elmqvist, H., Cellier, F. E., and Otter, M. (1993). Object-oriented modeling of

hybrid systems. In ESS’93, European Simulation Symposium, Delft.
Engell, S. (1997). Modellierung und Analyse hybrider dynamischer Systeme. at–

Automatisierungstechnik, 45(4):152–162.
Engell, S., editor (2000). Special Issue on Discrete Event Models of Continuous Sys-

tems, volume 6, no. 1 of Mathematical and Computer Modelling of Dynamical
Systems.

Engell, S., Hoffmann, I., and Sapronowa, L. (1997). Chaos in einfachen kon-
tinuierlich-diskreten dynamischen Systemen. at–Automatisierungstechnik,
45(9):399–406.

Engell, S., Kowalewski, S., and Zaytoon, J., editors (2000). 4th Int. Conf. on Au-
tomation of Mixed Processes: Hybrid Dynamic Systems (ADPM 2000), Dort-
mund, Germany. Shaker.

Enste, U. (2001). VDI Fortschritt-Berichte, Reihe 8, Nr. 884, Generische Entwurfs-
muster in der Funktionsbausteintechnik und deren Anwendung in der opera-
tiven Prozessführung. VDI-Verlag.

Enste, U. and Epple, U. (1998). Standardisierte Prozessfuehrungsbausteine - die
Basis fuer Applikationsmodelle zur operativen Fuehrung von verfahrenstech-
nischen Produktionsanlagen. In VDI Bericht 1397. VDI-Verlag.

Enste, U. and Epple, U. (2001). Technical application of hybrid modeling methods
to specify function block systems. Automatisierungstechnik - at, 49(2):52–59.

Enste, U. and Fedai, M. (1998). Flexible process control structures in multi-product
and redundant-routing-plants. In 9th IFAC Symposium on Automation in Min-
ing, Mineral and Metal Processing, pages 211–214.

Enste, U. and Kneissl, M. (2000). Modelling of software structures in process con-
trol systems - avoiding bugs by using graph grammars. In IMACS Symposium
on MATHEMATICAL MODELLING, ARGESIM Report No. 15: Proceedings
Vol.1, Vienna, pages 381–384.

Enste, U. and Uecker, F. (2000). Use of supervision information in process control.
IEE Computing & Control Engineering Journal, pages 234–241.

Epple, U. (1994). Operational control of process plants. In Process Control Engi-
neering. VCH-Verlagsgesellschaft, Weinheim.

Ernst, T., Jähnichen, S., and Klose, M. (1997). Object-oriented physical systems
modeling, Modelica, and the SmileM simulation environment. In Sydow, A.,
editor, Proceedings of the 15th IMACS World Congress on Scientific Computa-
tion, Modelling and Applied Mathematics, volume 6, pages 653–658.

Ernst, T., Klein-Robbenhaar, C., Nordwig, A., and Schrag, T. (2000). Modellierung
und Simulation hybrider Systeme mit Smile. Informatik Forschung und Ent-
wicklung, 5.

476

Evans, R. and Savkin, A., editors (1999). Systems and Control Letters, Special issue
on Hybrid Control Systems, volume 38(3).

Fábián, G., van Beek, D. A., and Rooda, J. E. (1998). Integration of the discrete
and the continuous behaviour in the hybrid chi simulator. In 1998 European
Simulation Multiconference, Manchester, pages 207–257.

Fahrland, D. (1970). Combined discrete event continuous systems simulation. Sim-
ulation, 14(2):71–72.

Fellendorf, M. (1994). VISSIM: A microscopic Simulation Tool to evaluate Ac-
tuated Signal Control including Bus priority. In 64th ITE Annual Meeting,
Dallas.

Fieldbus DDLS (1996). Device description language specification. Technical report,
Fieldbus Foundation, Austin Texas.

Floyd, R. W. (1967). Assigning meanings to programs. In Schwartz, J., editor,
Proceedings AMS Symposium Applied Mathematics, volume 19, pages 19–31,
Providence, RI. American Mathematical Society.

Föllinger, O. (1994). Regelungstechnik. Einführung in die Methoden und ihre An-
wendung. Hüthig.

Forbus, K. D. (1990). Qualitative reasoning. Draft chapter.
Förstner, D. (2001). Qualitative Modellierung für die Prozeßdiagnose und deren

Anwendung auf Dieseleinspritzpumpen. PhD thesis, TU Hamburg-Harburg.
Frank, P. M. (1998). Komplexe Systeme - Nichtlineare Rückkopplungssysteme jen-

seits der Stabilität. at - Automatisierungstechnik, 46(4):167–179.
Frank, R. (2001). Entwicklung einer Internetanbindung für den Modellprozess Drei-

Tank-System. Diplomarbeit, Institut für Automatisierungs- und Softwaretech-
nik (IAS), Universität Stuttgart.

Franke, D., Moor, T., and Raisch, J. (2000). Discrete supervisory control of switched
linear systems. at-Automatisierungstechnik, 48:9:461–467.

Frehse, G., Stursberg, O., Engell, S., Huuck, R., and Lukoschus, B. (2002). Modular
analysis of discrete controllers for distributed hybrid systems. In b ’02: The XV.
IFAC World Congress, Barcelona, Spain, July 21–26, 2002. To appear.

Frehse, G. F., Stursberg, O., Engell, S., Huuck, R., and Lukoschus, B. (2001). Ver-
ification of hybrid controlled processing systems based on decomposition and
deduction. In ISIC 2001: 16th IEEE International Symposium on Intelligent
Control, Mexico City, Mexico, September 5–7, 2001, pages 150–155. IEEE
Control Systems Society, IEEE Press.

Friesen, V. (1995). An exercise in hybrid system specification using an extension
of Z. In Bouajjani, A. and Maler, O., editors, Second European Workshop on
Real-Time and Hybrid Systems, pages 311–316.

Friesen, V. (1997). Objektorientierte Spezifikation hybrider Systeme. PhD thesis,
Technical University of Berlin.

Friesen, V. (1998). A logic for the specification of continuous systems. LNCS 1386,
Berlin, Germany. Springer.

Friesen, V., Nordwig, A., and Weber, M. (1998a). Object-oriented specification of
hybrid systems using UMLh and ZimOO. In Proc. 11th Int. Conf. on the Z
Formal Method (ZUM), LNCS 1493. Springer.

References 477

Friesen, V., Nordwig, A., and Weber, M. (1998b). Toward an object-oriented design
methodology for hybrid systems. Proceedings of the Colloquium on Object
Technology and System Re-Engineering, Oxford.

Fröhlich, P. (1996). Überwachung verfahrenstechnischer Prozesse unter Ver-
wendung eines qualitativen Modellierungsverfahrens. PhD thesis, Institut für
Automatisierungs- und Softwaretechnik (IAS), Universität Stuttgart.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995). Design Patterns, Ele-
ments of Reusable Object-Oriented Software. Addison-Wesley.

Gao, Z. and Antsaklis, P. J. (1991). Stability of the pseudo-inverse method for
reconfigurable control systems. International Journal of Control, 53:717–729.

Gazis, D. C. et al. (1959). Car following theory of steady-state traffic flow. Operns.
Res., 7:499–505.

Geisler, R., Klar, M., and Pons, C. (1998). Dimensions and dichotomy in metamod-
eling. Technical Report 98-2, Technical University of Berlin.

Genrich, H. J. (1978). Ein Kalkül des Planens und Handelns. In Ansätze zur Or-
gansiationstheorie rechnergestützter Informationssysteme, GMD Bericht 111,
pages 77–92. Oldenbourg.

Genrich, H. J. (1987). Predicate/transition nets. Advances in Petri nets 1986, part I.
Lecture Notes in Computer Science, 254:207–247.

Genrich, H. J. and Lautenbach, K. (1981). System modelling with high-level petri
nets. Theoretical Computer Science, 13.

Ghezzi, C., Mandrioli, D., Morasca, S., and Pezzè, M. (1991). A unified high-level
petri net formalism for time-critical systems. IEEE Transactions On Software
Engineering, 17(2):160–172.

Gill, P., Murray, W., and Saunders, M. (1997). User’s guide for SNOPT 5.3: a
fortran package for large-scale nonlinear programming. Department of Math-
ematics, Univ. of California San Diego.

Gilles, E. D., Holl, P., and Marquardt, W. (1986). Dynamische Simulation kom-
plexer chemischer Prozesse. Chem.-Ing.-Tech, 58(4):268–278.

Giua, A. and Piccaluga, A. (2002). Bibliography on hybrid petri nets. http://bode.-
diee.unica.it/˜ hpn/.

Giua, A. and Usai, E. (1996). High-level hybrid petri nets: a definition. In 35th
Conference on Decision and Control, pages 148–150, Kobe, Japan.

Giua, A. and Usai, E. (1998). Modeling hybrid systems by high-level petri nets. In
ADPM’98, pages 316–323.

Glocker, C. (1995). Dynamik von Starrkörpersystemen mit Reibung und Stößen.
PhD thesis, TU München, München.

Glover, F. (1975). Improved linear integer programming formulations of nonlinear
integer problems. Managem. Science, 22(4):455–460.

Göhner, P. and Lauber, R. (1999). Prozessautomatisierung 2, volume 2. Springer,
Berlin Heidelberg, 1 edition.

Gokbayrak, K. and Cassandras, C. G. (2000). Hybrid controllers for hierarchically
decomposed systems. In Proc. 3rd Int. Workshop of Hybrid Systems: Compu-
tations and Control, volume 1790 of LNCS, pages 117–129. Springer.

478

Goldstein, H. H. and von Neumann, J. (1947). Planning and coding problems of
an electronic computing instrument. In Taub, A., editor, J. von Neumann—
Collected Works, pages 80–151. McMillan, New York.

gPROMS (2002). Homepage: http://www.psenterprise.com/.
Greenstreet, M. and Mitchell, I. (1999). Reachability analysis using polygonal pro-

jections. In Vaandrager, F. W. and van Schuppen, J. H., editors, Hybrid Sys-
tems: Computation and Control, Proc. 2nd Int. Workshop, HSCC’99, Berg en
Dal, The Netherlands, March 1999, Lecture Notes in Computer Science 1569,
pages 103–116. Springer.

Gribaudo, M., Sereno, M., and Bobbio, A. (1999). Fluid stochastic petri nets: An
extended formalism to include non-markovian models. In Proc. Eighth Inter-
national Workshop on Petri Nets and Performance Models - PNPM’99, pages
74–81, Zaragoza, Spain.

Griepentrog, E. and März, R. (1986). Differential-Algebraic Equations and Their
Numerical Treatment. BSB Teubner, Leipzig. ISBN 3-322-00343-4.

Grossman, R. L., Nerode, A., Ravn, A. P., and Rischel, H., editors (1993). Hybrid
Systems, volume 736 of Lecture Notes in Computer Science. Springer.

Grosu, R., Krüger, I., and Stauner, T. (2000). Hybrid Sequence Charts. In Proc. of
ISORC 2000. IEEE.

Grosu, R., Stauner, T., and Broy, M. (1998). A modular visual model for hybrid
systems. In Proc. of FTRTFT’98, LNCS 1486. Springer.

Group, I. . W. (1999). IEEE standard 1076.1-1999. http://www.vhdl.org.
Haidacher, S., Schlegl, T., and Buss, M. (1999). Grasp Evaluation Based on Unilat-

eral Force Closure. In Proceedings of the IEEE/RSJ International Conference
on Intelligent Robots and Systems IROS, pages 424–429, Kyongju, Korea.

Hamscher, W., deKleer, J., and Console, L., editors (1992). Readings in Model-
Based Diagnosis. Morgan Kaufman.

Hanisch, H.-M. (1992). Petri-Netze in der Verfahrenstechnik. Oldenbourg,
München, Wien.

Hanisch, H.-M., Lautenbach, K., Simon, C., and Thieme, J. (1998a). Timestamp
nets in technical applications. In IEEE International Workshop on Discrete
Event Systems, San Diego, CA, USA.

Hanisch, H.-M., Lautenbach, K., Simon, C., and Thieme, J. (1998b). Timestamp
petri nets in technical applications. In Giua, A., Smedinga, R., and Spathopou-
los, M. P., editors, IEE International Workshop on Discrete Event Systems, IEE
Control, pages 321–326, Cagliari, Sardinia, Italy.

Hanisch, H.-M., Lautenbach, K., Simon, C., and Thieme, J. (1998c). Zeitstempel-
netze in technischen Anwendungen. Fachberichte Informatik 2–98, Universität
Koblenz-Landau, Institut für Informatik, Rheinau 1, D-56075 Koblenz.

Hardt, M., Helton, J., and Kreutz-Delgado, K. (2000). Numerical solution of non-
linearH2 andH∞ control problems with application to jet engine compressors.
IEEE Transactions on Control Systems Technology, 8(1):98–111.

Hardt, M. and von Stryk, O. (2000). Towards optimal hybrid control solutions for
gait patterns of a quadruped. In CLAWAR 2000 – 3rd International Conference
on Climbing and Walking Robots, Madrid, 2–4 October, Professional Engi-
neering Publishing, UK, pages 385–392.

References 479

Harel, D. (1987). Statecharts: A Visual Formalism for Complex Systems. Science
of Computer Programming, 8:231–274.

Harel, D. and Gery, E. (1996). Executable object modeling with Statecharts. In Pro-
ceedings of the 18th International Conference of Software Engineering, IEEE
Press.

Harel, D., Pnueli, A., Schmidt, J., and Sherman, R. (1987). On the formal semantics
of statecharts. In 2nd IEEE Symp. on Logic in Computer Science, pages 54–64.
IEEE Press.

He, K. X. and Lemmon, M. D. (1998). Lyapunov Stability of Continous-Valued
Systems Under the Supervision of Discrete-Event Transition Systems. In Hen-
zinger, T. A. and Sastry, S., editors, Hybrid Systems: Computation and Control,
LNCS 1386, pages 175–189, Berlin, Germany. Springer.

Hedlund, S. and Rantzer, A. (1999). Optimal control of hybrid systems. In Pro-
ceedings of the 38th IEEE Conference on Decision and Control (Phoenix, AZ),
pages 3972–3977.

Heinkel, U. (2000). The VHDL reference. Wiley, Chichester.
Henzinger, A., Kopke, P., Puri, A., and Varaiya, P. (1995). What’s decidable about

hybrid automata. In Proceedings of the 27th Annual ACM Symposium on The-
ory of Computing (STOC1995), pages 373–382.

Henzinger, T., Ho, P., and Wong-Toi, H. (1997). Hytech: A model checker for hybrid
systems. Software Tools for Technology Transfer, 1(1,2):110–122.

Henzinger, T., Ho, P., and Wong-Toi, H. (1998a). Algorithmic analysis of nonlinear
hybrid systems. IEEE Transactions on Automatic Control, 43(4):540–554.

Henzinger, T., Kopke, P., Puri, A., and P.Varaiya (1998b). What’s decidable about
hybrid automata. J. Comp. Syst. Science, 57:94–124.

Henzinger, T., Qadeer, S., Rajamani, S., and Tasiran, S. (1998c). You assume,
we guarantee: Methodology and case studies. In Proc. 10th Int. Conf. on
Computer-Aided Verification, volume 1427 of Lecture Notes in Computer Sci-
ence, pages 440–451. Springer.

Henzinger, T. A. (1996). The theory of hybrid automata. In Proc. of 11th Annual
IEEE Symposium on Logic in Computer Science (LICS’96), pages 278–292.
IEEE Computer Society Press.

Henzinger, T. A., Minea, M., and Prabhu, V. (2001). Assume-guarantee reasoning
for hierarchical hybrid systems. In HSCC ’01: 4th International Workshop on
Hybrid Systems: Computation and Control, volume 2034 of Lecture Notes in
Computer Science, pages 275–290. Springer.

Henzinger, T. A. and Sastry, S., editors (1998). Hybrid Systems – Computation
and Control (HSCC’98), volume 1386 of Lecture Notes in Computer Science.
Springer.

HLA TMD Document (1996). HLA time management design document, version
1.0.

Hoare, C. (1969). An axiomatic basis for computer programming. Communications
of the ACM, 12(10):576–580, 583.

Hoare, C. (1985). Communicating Sequential Processes. Prentice-Hall Interna-
tional, Engelwood Cliffs.

480

Holzmann, G. J. (1997). The model checker SPIN. IEEE Transactions on Software
Engineering, 23(5):279–295.

Horton, G., Kulkarni, V. G., Nicol, D. M., and Trivedi, K. S. (1998). Fluid stochastic
petri nets: Theory, applications and solution. European Journal of Operations
Research, 105(1):184–201.

Huber, F., Schätz, B., and Einert, G. (1997). Consistent graphical specification
of distributed systems. In FME ’97: 4th International Symposium of Formal
Methods Europe, LNCS 1313, pages 122 – 141.

Hubert, P., Jensen, K., and Shapiro, R. (1991). Hierarchies in couloured petri nets.
Lecture Notes in Computer Science, 483.

Huuck, R., Engell, S., Kowalewski, S., Lakhnech, Y., Preußig, J., and Urbina, L.
(1997). Comparing timed c/e systems with timed automata. In International
Workshop on Hybrid and Real-Time Systems (Hart ’97), LNCS 1201, pages
81–86, Grenoble. Springer.

IEC 1131 (1993). International standard IEC 1131 programmable controllers, part
3, programming languages.

IEC 61131-3 (1992). Programming language for programmable controllers. Tech-
nical report, Committee IEC 61131-3.

IEC SC 65C WG7 (1999). Function blocks for process control. Technical report,
Committee IEC 61804-1.

IEC TC65 WG6 (1999). Function blocks for industrial-process measurement and
control systems. Technical report, Committee IEC 61499-1.

Ioannou, P. (1996). Robust Adaptive Control. Prentice-Hall Upper Saddle River NJ.
Isermann, R. (1996a). Modellgestützte Überwachung und Fehlerdiagnose Tech-

nischer Systeme (Teil 1). atp, 38(5):9–20.
Isermann, R. (1996b). Modellgestützte Überwachung und Fehlerdiagnose Tech-

nischer Systeme (Teil 2). atp, 38(6):48–57.
ITU (1999). ITU-T Recommendation Z.120: Message Sequence Charts (MSC).
Jähnichen, S. and Klein-Robbenhaar, C. (2000). Generic modeling and simulation

of hybrid systems with adaptive modeling depth. Technical report, Technical
University of Berlin. (in German).

Jensen, H. E. (1999). Abstraction-Based Verification of Distributed Systems. PhD
thesis, Aalborg University.

Jensen, H. E., Larsen, K. G., and Skou, A. (2000). Scaling up Uppaal – automatic
verification of real-time systems using compositionality and abstraction. In
Joseph, M., editor, FTRTFT 2000: 6th International Symposium on Formal
Techniques in Real-Time and Fault-Tolerant Systems, September 20–22, 2000,
Pune, India, volume 1926 of Lecture Notes in Computer Science, pages 19–30.
Springer.

Jensen, K. (1992). Coloured Petri Nets: Basic Concepts, Analysis Methods and
Practical Use, volume 1. Springer.

Jensen, K. (1997). Coloured Petri Nets: Basic Concepts, Analysis Methods and
Practical Use, volume 2. Springer.

Jensen, K. and Rozenberg, G., editors (1991). High-level Petri Nets: theory and
application. Springer.

References 481

Jhala, R. and McMillan, K. L. (2001). Microarchitecture verification by composi-
tional model checking. In Berry, G., Comon, H., and Finkel, A., editors, CAV
2001: 13th International Conference on Computer Aided Verification, Paris,
France, July 18–22, 2001, volume 2102 of Lecture Notes in Computer Science,
pages 396–410. Springer.

Jirstrand, M. (1998). Constructive Methods for Inequality Constraints in Con-
trol. PhD thesis, Department of Electrical Engineering, Linköping University,
Linköping, Sweden.

Johannson, M. and Rantzer, A. (1998). Computation of Piecewise Quadratic Lya-
punov Functions for Hybrid Systems. IEEE Trans. Aut. Control, 43(4):555–
559.

John, S. (2001). Transition selection algorithms for Statecharts. Proceedings of the
GI/OCG annual congress, 1:pp. 622–627.

Jones, C. B. (1981). Development Methods for Computer Programs including a
Notion of Interference. PhD thesis, Oxford University Computing Laboratory.
Printed as: Programming Research Group, Technical Monograph 25.

Jones, C. B. (1983). Tentative steps toward a development method for interfer-
ing programs. ACM Transactions on Programming Languages and Systems,
5(4):596–619.

Joos, H.-D. (1999). A methodology for multi-objective design assessment and flight
control synthesis tuning. Aerospace Science and Technology, 3(3):161–176.

Kaiser, R. and Beaumariage, T. (1997). Conceptual design of an artificial in-
telligence architecture for decision making in manufacturing simulation. In
Wallace, J. and Beaumariage, T., editors, Object-Oriented Simulation Conf.
OOS’97, pages 11–15. SCS International, San Diego.

Kienle, A. (2000). Low-order models for ideal multicomponent distillation pro-
cesses using nonlinear wave propagation theory. Chemical Engineering Sci-
ence, 55:1817–1828.

Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. (1983). Optimization by simulated
annealing. Science, 220(4598):671–680.

Klar, M. and Mann, S. (1998). A Metamodel for Object-Oriented Statecharts. The
Second Workshop on Rigorous Object Oriented Methods, ROOM 2.

Klein, E., Itigin, A., Raisch, J., and Kienle, A. (2000). Automatic generation of
switching start-up schemes for chemical processes. Proc. ESCAPE10 – 10th
European Symposium on Computer Aided Process Engineering, pages 619–
624.

Klein, E., Kienle, A., and Raisch, J. (1998). Synthesizing a supervisory control
scheme for the start-up procedure of a distillation column - an approach based
on approximating continuous dynamics by des models. Proc. LSS’98 - 8th
IFAC Colloquium on Large Scale Systems, pages 716–721.

Klein, E., Kienle, A., Raisch, J., and Wehlan, H. (1999). Synthese einer An-
fahrregelung für eine Destillationskolonne auf der Grundlage einer ereignis-
diskreten Approximation der kontinuierlichen Dynamik. 6. Fachtagung Ent-
wicklung and Betrieb komplexer Automatisierungssysteme (EKA99), pages
447–464.

482

Klein, E. and Raisch, J. (1998). Safety enforcement in process control systems - a
batch evaporator example. In Proc. WODES’98 - International Workshop on
Discrete Event Systems, Cagliari, Italy, pages 327–333. IEE.

Kleinmann, K. P. (1996). Lernende Regelung eines mehrfingrigen Robotergreifers.
PhD thesis, TU Darmstadt, Darmstadt.

Kloas, M., Friesen, V., and Simons, M. (1995). Smile — A simulation environment
for energy systems. In Sydow, A., editor, Proceedings of the 5th International
IMACS-Symposium on Systems Analysis and Simulation (SAS’95), pages 503–
506. Gordon and Breach Publishers.

Komarow, W. B. and Skotschinski, A. A. (1956). Grubenbewetterung. VEB Verlag
Technik Berlin.

Kondak, K. and Hommel, G. (2001). Computation of time optimal movements for
autonomous parking of non-holonomic mobile platforms. In Proceedings of the
IEEE International Conference on Robotics and Automation (Seoul, Korea),
pages 2698–2703.

König, R. and Quäck, L. (1988). Petri-Netze in der Steuerungs- und Digitaltechnik.
Oldenbourg, München, Wien.

Koutsoukos, X., Antsaklis, P. J., Stiver, J. A., and Lemmon, M. D. (2000). Supervi-
sory control of hybrid systems. Proceedings of the IEEE, 88:1026–1049.

Kowalewski, S. (1996). Modulare diskrete Modellierung verfahrenstechnischer
Anlagen zum systematischen Steuerungsentwurf. PhD thesis, Fachbereich
Chemietechnik, Dortmund.

Kowalewski, S. (2002). Introduction to the analysis and verification of hybrid sys-
tems. In this volume.

Kowalewski, S., Engell, S., Preussig, J., and Stursberg, O. (1999). Verification
of logic controllers for continuous plants using timed condition/event system
models. Automatica, 35(3):505–518.

Kowalewski, S., Herrmann, P., Engell, S., Huuck, R., Krumm, H., Lakhnech, Y.,
and Lukoschus, B. (2001a). Approaches to the formal verification of hybrid
systems. at-Automatisierungstechnik, 49(2):66–74.

Kowalewski, S. and Preußig, J. (1996). Timed condition/event systems: A frame-
work for modular models of chemical plants and verification of their real-time
discrete control. In Margaria, T. and Steffen, B., editors, Tools and Algorithms
for the Construction and Analysis of Systems, Proc. 2nd International Work-
shop TACAS’96, Lecture Notes in Computer Science 1055, pages 225–240,
Passau. Springer.

Kowalewski, S., Stursberg, O., and Bauer, N. (2001b). An experimental batch plant
as a test case for the verification of hybrid systems. European Journal of Con-
trol, 7.

Kowalewski, S., Stursberg, O., and Treseler, H. (1998). Diskrete Modellierung ver-
fahrenstechnischer Prozesse zur Steuerungsverifikation. at - Automatisierungs-
technik, 4:180–187.

Kramer, D. (1997). JDK 1.1.1 Documentation. Sun Microsystems, Inc.
Krebs, V. G. and Schnieder, E., editors (2000). Hybrid Systems I: Modeling and

Control, volume 48.

References 483

Kripke, S. A. (1963). Semantical considerations on modal logic. Acta Philosophica
Fennica, 16:83–94.

Krogh, B. (1993). Condition/event signal interfaces for block diagram modeling and
analysis of hybrid systems. In 8th Int. Symp. on Intelligent Control Systems,
pages 180–185.

Kuipers, B. (1986). Qualitative simulation. Artificial Intelligence, 29:289–338.
Kuipers, B. (1994). Qualitative Reasoning. MIT Press.
Kupferman, O., Vardi, M. Y., and Wolper, P. (2000). An automata-theoretic ap-

proach to branching-time model checking. Journal of the ACM, 47(2):312–
360.

Kurz, H. (1990). Realisierung gehobener Methoden der Regelungstechnik auf
Prozessleitsystemen - Ein Diskussionsbeitrag. Automatisierungstechnische
Praxis - atp, 32(10):489–494.

Labinaz, G., Bayoumi, M. M., and Rudie, K. (1996). Modeling and Control of
Hybrid Systems: A Survey. In Proc. IFAC 13th Triennial World Congress,
pages 293–304, San Francisco, USA. IFAC.

Lafferiere, G., Pappas, G., and Yovine, S. (1999). A new class of decidable hybrid
systems. In Vaandrager, F. W. and van Schuppen, J. H., editors, Hybrid Sys-
tems: Computation and Control, Proc. 2nd Int. Workshop, HSCC’99, Berg en
Dal, The Netherlands, March 1999, volume 1569 of Lecture Notes in Computer
Science, pages 137–151. Springer.

Lafferriere, G., Pappas, G., and Sastry, S. (2000). O-minimal hybrid systems. Math-
ematics of Control, Signals, and Systems, 13(3):1–21.

Larsen, K. G., Pettersson, P., and Yi, W. (1997). UPPAAL in a nutshell. International
Journal on Software Tools for Technology Transfer, 1(1–2):134–152.

Laudwein, A. (1999). Konzeption und Entwicklung einer Steuerungs- und
Regelungssoftware für den Modellprozess “Drei-Tank-System”. Diplom-
arbeit, Institut für Automatisierungs- und Softwaretechnik (IAS), Universität
Stuttgart.

Laufenberg, X. (1997). Ein modellbasiertes qualitatives Verfahren für die Gefahr-
enanalyse. Dissertation, Institut für Automatisierungs- und Softwaretechnik
(IAS), Universität Stuttgart.

Lautenbach, K. and Simon, C. (1999). Erweiterte Zeitstempelnetze. Fach-
berichte Informatik 03–99, Universität Koblenz-Landau, Institut für Infor-
matik, Rheinau 1, D-56075 Koblenz.

Lautenbach, K. and Simon, C. (2000). Verification in a logic of actions. In 7.
Workshop Algorithmen und Werkzeuge für Petrinetze, Koblenz.

Lautenbach, K. and Simon, C. (2001). Modellierung der Dynamik einer Batch-
Anlage. In Schnieder, E., editor, Engineering komplexer Automatisierungssys-
teme, EKA 2001, Braunschweig.

Le Bail, J., Alla, H., and David, R. (1991). Hybrid petri nets. In European Control
Conference, pages 1472–1477.

Lee, J.-D. e. a. (2000). Analysis of moving and fixed autoblock systems for korean
high speed railway. In Computers in Railways VII, pages 843–851. WIT Press,
Bologna.

484

Lee, S. and Grossmann, I. (2000). New algorithms for nonlinear generalized dis-
junctive programming. Comp. and Chemical. Eng., 4:2125–2141.

Lemmon, M., He, K., and Markovsky, I. (1999). Supervisory hybrid systems. IEEE
Control Systems Magazine, 19:42–55.

Leue, S., Mehrmann, L., and Rezai, M. (1998). Synthesizing ROOM Models from
MSC Specifications. Technical Report TR-98-06, University of Waterloo.

Levin, G. M. and Gries, D. (1981). A proof technique for communicating sequential
processes. Acta Informatica, 15(3):281–302.

Li, Z., Soh, C., and Xu, X. (2000). Lyapunov stability of a class of hybrid dynamic
systems. Automatica, 36:297–302.

Liberzon, D. and Morse, A. S. (1999). Basic problems in stability and design of
switched systems. IEEE Control Systems Magazine, 19.

Lichtenberg, G. and Kamau, S. (2001). A classification of the input-output be-
haviour of hybrid systems. In European Control Conference.

Lichtenberg, G., Lunze, J., and Raisch, J. (1999a). Two approaches to modeling
the qualitative behaviour of dynamic systems. at-Automatisierungstechnik,
47:187–198.

Lichtenberg, G., Lunze, J., and Raisch, J. (1999b). Zwei Wege zur Modellierung des
qualitativen Verhaltens dynamischer Systeme. at - Automatisierungstechnik,
47(5):187–198.

Lichtenberg, G., Lunze, J., Scheuring, R., and Schröder, J. (1999c). Prozessdia-
gnose mittels qualitativer Modelle am Beispiel eines Wasserstoffverdichters.
at - Automatisierungstechnik, 47(3):101–109.

Lichtenstein, O. and Pnueli, A. (1985). Checking that finite state concurrent pro-
grams satisfy their linear specifications. In Twelfth ACM Symposium on the
Priciples of Programming Languages, pages 97– 105.

Liggesmeyer, P. and Mäckel, P. (2000). Automtisierung erweiterter Fehlerbaum-
analysen für komplexe technische Systeme. at - Automatisierungstechnik,
48(2):67–76.

Lighthill, M. J. and Whitham, G. B. (1955). On kinematic waves. ii. a theory of
traffic flow on long crowded roads. In Roy. Society, volume 229 A, pages 317–
345, London.

Lincoln, B. and Rantzer, A. (2001). Optimizing linear system switching. In Proc.
40th IEEE Conf. Decision and Control, pages 2063–2068.

Lorch, O., Denk, J., Seara, J., Buss, M., Freyberger, F., and Schmidt, G. (2000). Vig-
wam — an emulation environment for a vision guided virtual walking machine.
In Proceedings of the First IEEE-RAS International Conference on Humanoid
Robots HUMANOIDS 2000 (Cambridge, MA, USA).

Lötzbeyer, H. and Pretschner, A. (2000). AutoFocus on Constraint Logic Program-
ming. In Proc. (Constraint) Logic Programming and Software Engineering.

Lunze, J. (1994). Qualitative modelling of linear dynamical systems with quantized
state measurements. Automatica, 30:417–431.

Lunze, J. (1995). Stabilisation of nonlinear systems by qualitative feedback con-
trollers. Intern. J. Control, 62:109–128.

Lunze, J. (1998a). On the Markov property of quantised state measurement se-
quences. Automatica, 34:1439–1444.

References 485

Lunze, J. (1998b). Qualitative Modellierung dynamischer Systeme durch stochasti-
sche Automaten. at - Automatisierungstechnik, 46(6):271–283.

Lunze, J. (1999). A timed discrete-event abstraction of continuous-variable systems.
Intern. J. Control, 72:1147–1164.

Lunze, J. (2000). Process supervision by means of qualitative models. Annual
Reviews in Control, 24:41–54.

Lunze, J. (2001). Control reconfiguration. In Encyclopedia of Live Support Systems.
EOLSS Publishers. submitted.

Lunze, J. (2002). Regelungstechnik, Band 2. Springer.
Lunze, J., Heiming, B., and et. al., M. S. (2000). Three-tank control reconfiguration.

In Aström, K., editor, Control of Complex Systems. Springer.
Lunze, J. and Nixdorf, B. (2002). Representation of hybrid systems by means of

stochastic automata. Mathematical Modelling of Systems, 7:383–422.
Lunze, J. and Nixdorf, B. (2003). Discrete reachability of hybrid systems. Intern.

J. Control, submitted.
Lunze, J., Nixdorf, B., and Richter, H. (1997). Hybrid modelling of continuous-

variable systems with application to supervisory control. In Proceedings of the
European Control Conference 1997.

Lunze, J. and Raisch, J. (2002). Discrete models for hybrid systems. In Engell,
S., Frehse, G., and Schnieder, E., editors, Modelling, Analysis, and Design of
Hybrid Systems, Lecture Notes in Control and Information Science. Springer.
(This volume).

Lunze, J. and Schiller, F. (1997). Qualitative Prozessdiagnose auf wahrschein-
lichkeitstheoretischer Grundlage. at - Automatisierungstechnik, 45(8):351–
359.

Lunze, J. and Schröder, J. (1999). Process diagnosis based on a discrete-event de-
scription. at – Automatisierungstechnik, 47:358–365.

Lunze, J. and Steffen, T. (2000). Reconfigurable control of a quantised system. In
Proceeding of SAFEPROCESS 2000: 4th Symposium on Fault Detection, pages
822–827. IFAC.

Lunze, J. and Steffen, T. (2002). Hybrid reconfigurable control. In this volume.
Lüth, T. (1998). Technical Multiagent Systems. Hanser Publisher. (in German).
Lygeros, J., Tomlin, C., and Sastry, S. (1999). Controllers for reachability specifi-

cations for hybrid systems. Automatica, 35:349–370.
Lynch, N. and Krogh, B. H., editors (2000). Hybrid Systems – Computation and

Control (HSCC 2000), volume 1790 of Lecture Notes in Computer Science.
Springer.

Lynch, N., Segala, R., Vaandrager, F., and Weinberg, H. B. (1996). Hybrid I/O
automata. In Alur, R., Henzinger, T. A., and Sontag, E. D., editors, Hybrid
Systems III, LNCS 1066, pages 496–510. Springer.

Maciejowski, J. (2002). Predictive control with constraints. Prentice Hall.
Mai, G. and Schröder, M. (1999). Simulation of a Flight Control Systems’ Redun-

dancy Management System using Statemate. 7. User group meeting STATE-
MATE.

Maler, O., editor (1997). Hybrid and Real-Time Systems (HART’97), volume 1201
of Lecture Notes in Computer Science. Springer.

486

Maler, O., editor (2001). Special Issue on Verification of Hybrid Systems, volume 7,
issue 4 of European Journal of Control.

Manz, S. (1999). Qualitative Modeling of a Three-Tank-System. In Interkama-ISA
Tech Conference, Düsseldorf.

Manz, S. (2000). On-line monitoring and diagnosis based on hybrid component
models. In 13th International Conference on Software & Systems Engineering
and Applications ICSSEA 2000, Paris.

Manz, S. (2001a). Fuzzy based qualitative models in combination with dynamical
models for online monitoring of technical systems. In International Confer-
ence on Computational Intelligence for Modelling, Control and Aut. CIMCA
2001, Las Vegas.

Manz, S. (2001b). Online fault detection and diagnosis of complex systems based on
hybrid component models. In 14th International Congress on Condition Moni-
toring and Diagnostics Engineering Managem. COMADEM2001, Manchester.

Mareczek, J., Buss, M., and Schmidt, G. (1998). Robust Global Stabilization of
the Underactuated 2-DOF Manipulator R2D1. In Proceedings of the IEEE In-
ternational Conference on Robotics and Automation (Leuven, Belgium), pages
2640–2645.

Mareczek, J., Buss, M., and Schmidt, G. (1999). Robust Control of a Non-
Holonomic Underactuated SCARA Robot. In Tzafestas, S. and Schmidt, G.,
editors, Lecture Notes in Control and Information Sciences: Progress in System
and Robot Analysis and Control Design, volume 243, pages 381–396. Springer.

Marsan, M. A., Balbo, G., Chiola, G., Donatelli, S., and Francheschinis, G. (1995).
Modelling with Generalized Stochastic Petri Nets. John Wiley & Sons.

Martin, B. and Bobrow, J. (1997). Minimum effort motions for open chain ma-
nipulators with task-dependent end-effector constraints. In Proceedings of
the IEEE International Conference on Robotics and Automation (Albuquerque,
New Mexiko), pages 2044–2049.

Matlab (2002). Homepage: http://www.mathworks.com.
Matsuno, H. and Doi, A. (2000). Hybrid Petri Net Representation of Gene Regula-

tory Network. In Pacific Symposium on BioComputing 2000, pages 341–352,
Hawaii.

Matsuno, H., Doi, A., Drath, R., and Miyano, S. (2000). Genomic object net: Object
representation of biological systems. Genome Informatics, 11.

Matsuno, H., Doi, A., Drath, R., and Miyano, S. (2001). Genomic object net: Hy-
brid petri net for describing biological systems. In Fifth Annual International
Conference on Computational Molecular Biology, Montreal, Canada.

Matsuno, H. and Miyano, S. (2000). A platform for virtual cells; simulation of gene
regulatory control by hybrid object net. bit, 32:22–31. (in Japanese).

McMillan, K. L. (1992). Symbolic Model Checking: An Approach to the State Ex-
plosion Problem. PhD thesis, Carnegie Mellon University. CMU Technical
Report CMU-CS-92-131.

McMillan, K. L. (1995). A Technique of a State Space Search Based on Unfolding.
In Formal Methods in System Design 6 (1), pages 45–65.

McMillan, K. L. (2000). The SMV system. Carnegie Mellon University. Manual for
SMV version 2.5.4.

References 487

Merz, R. and Litz, L. (2000). Objektorientierte mathematische Modellierung. In-
formatik Spektrum, pages 90–99.

Merz, S. (2001). Model checking: A tutorial overview. In Cassez, F., Jard, C.,
Rozoy, B., and Ryan, M. D., editors, Modeling and Verification of Parallel
Processes, volume 2067 of Lecture Notes in Computer Science, pages 3–38.
Springer.

Meyer, B. (1992). Eiffel: The Language. Object-Oriented Series. Prentice Hall,
New York, NY.

Meyer, B. (1997). Object-Oriented Software Construction, Second Edition. The
Object-Oriented Series. Prentice-Hall, Englewood Cliffs (NJ), USA.

Michalewicz, Z. and Fogel, D. (2000). How to solve it: Modern Heuristics. Springer.
Millington, D. and Stapleton, J. (1995). Special report: Developing a RAD Standard.

In IEEE Software, volume 12(5).
Milner, R. (1980). A Calculus of Communicating Systems, volume 92 of Lecture

Notes in Computer Science. Springer.
Milner, R. (1989). Communication and Concurrency. Prentice-Hall International,

Engelwood Cliffs.
Misra, J. and Chandy, K. M. (1981). Proofs of networks of processes. IEEE Trans-

actions on Software Engineering, 7(4):417–426.
Modelica Design Group, T. (2000). Modelica – a unified object-oriented language

for physical system modeling v1.4. http://www.modelica.org.
Moody, J. O. and Antsaklis, P. J. (1998). Supervisory Control of Discrete Event

Systems Using Petri Nets. Kluwer Academic Publishers.
Moor, T. (1998). Event driven control of switched integrator systems. In Proc.

ADPM’98 (Automatisation des Processus Mixtes: les Systèmes Dynamiques
Hybrides), pages 271–277, Reims, France.

Moor, T. (2000). Approximationsbasierter Entwurf diskreter Steuerungen für ge-
mischtwertige Regelstrecken, volume 2 of Forschungsberichte aus dem Max-
Planck-Institut für Dynamik komplexer technischer Systeme. Shaker, Aachen,
Germany. Also PhD thesis, Fachbereich Elektrotechnik, Universität der Bun-
deswehr Hamburg.

Moor, T., Davoren, J. M., and Raisch, J. (2001a). Modular supervisory control of
a class of hybrid systems in a behavioural framework. In Proceedings of the
European Control Conference 2001, pages 870–875, Porto, Portugal.

Moor, T. and Raisch, J. (1999a). Discrete control of switched linear systems. In
Proceedings of the European Control Conference 1999, Karlsruhe, Germany.

Moor, T. and Raisch, J. (1999b). Supervisory control of hybrid systems within a
behavioural framework. Systems and Control Letters, 38:157–166.

Moor, T. and Raisch, J. (2000). Approximation of multiple switched flow systems
for the purpose of control synthesis. In Proc. of the 39th International Confer-
ence on Decision and Control, CDC’00. IEEE Press.

Moor, T. and Raisch, J. (2002). Abstraction based supervisory controller synthesis
for high order monotone continuous systems. In this volume.

Moor, T., Raisch, J., and Davoren, J. M. (2001b). Computational advantages of a
two-level hybrid control architecture. In Proc. of the 40th International Con-
ference on Decision and Control, CDC’2001, pages 358–362. IEEE Press.

488

Moor, T., Raisch, J., and O’Young, S. D. (1998). Supervisory control of hybrid
systems via l-complete cpproximations. In Proc. WODES’98 - International
Workshop on Discrete Event Systems, Cagliari, Italy, pages 426–431. IEE.

Moor, T., Raisch, J., and O’Young, S. D. (2002). Discrete supervisory control of
hybrid systems based on l-complete approximations. Journal of Discrete Event
Dynamic Systems, 12:83–107.

Moormann, D. (2001). Automatisierte Modellbildung der Flugsystemdynamik.
PhD dissertation, Aachen Technical University (RWTH Aachen), Aachen, Ger-
many. in German.

Moormann, D., Mosterman, P., and Looye, G.-J. (1999). Object-Oriented Compu-
tational Model Building of Aircraft Flight Dynamics and Systems. Aerospace
Science and Technology, 3:115–126.

Mosterman, P. and Biswas, G. (1999). A Java implementation of an environment for
hybrid modeling and simulation of physical systems. In International Confer-
ence on Bond Graph Modeling (ICBGM ’99), pages 157–162. San Francisco.

Mosterman, P., Otter, M., and Elmqvist, H. (1998). Modeling Petri Nets as Local
Constraint Equations for Hybrid Systems Using Modelica. In Proceedings of
SCS Summer Simulation Conference, pages 314–319, Reno, Nevada.

Mosterman, P., Remelhe, M. P., Engell, S., and Otter, M. (2002). Simulation for
analysis of aircraft elevator feedback and redundancy control. In Engell, S.,
Frehse, G., and Schnieder, E., editors, Modelling, Analysis, and Design of Hy-
brid Systems. Springer.

Mosterman, P. J. (1999). An overview of hybrid simulation phenomena and their
support by simulation packages. In Hybrid Systems Computation and Control
(HSCC’99), LNCS 1569. Springer.

Mosterman, P. J. (2000a). HYBRSIM - a modeling and simulation environment for
hybrid bond graphs. Journal of Systems and Control.

Mosterman, P. J. (2000b). Implicit modeling and simulation of discontinuities in
physical system models. In Engell, S., Kowalewski, S., and Zaytoon, J., editors,
The 4th International Conference on Automation of Mixed Processes: Hybrid
Dynamic Systems, pages 35–40.

Mosterman, P. J. (2001). MASIM. Technical Report DLR-IB, DLR Oberpfaffen-
hofen, Oberpfaffenhofen, Germany.

Mosterman, P. J. and Biswas, G. (1995). Modeling discontinuous behavior with hy-
brid bond graphs. In 1995 International Workshop on Qualitative Reasoning,
pages 139–147, Amsterdam. University of Amsterdam.

Müller, C. (2002). Analyse und Synthese diskreter Steuerungen hybrider Systeme
mit Petri-Netz-Zustandsraummodellen, volume 930 of Fortschritt-Berichte
VDI Reihe 8. VDI-Verlag, Düsseldorf, Germany.

Müller, C., Orth, P., and Rake, H. (2001). Analyse und Synthese diskreter
Steuerungen hybrider Systeme mit einem Petri-Netz-Zustandsraummodell. In
Schnieder, E., editor, Engineering komplexer Automatisierungssysteme, EKA
2001, pages 113–131, Braunschweig, Germany.

Müller, C. and Rake, H. (1999). Modellbildung und Analyse hybrider Systeme mit
Petri-Netzen und geschalteten Differentialgleichungen. In Schnieder, E., ed-

References 489

itor, Entwicklung und Betrieb komplexer Automatisierungssysteme, EKA ’99,
pages 233–246, Braunschweig, Germany.

Müller, C. and Rake, H. (2000). A Petri Net-State-Model for the Analysis and
the Control Synthesis of Hybrid Technical Systems. In Proceedings Hybrid
Dynamic Systems, ADPM 2000.

Müller, K. (1996). Entwurf robuster Regelungen. B.G. Teubner Stuttgart.
Münnemann, A. and Enste, U. (2001). Systemtechnische Integration gehobener

Regelungsverfahren. atp - Automatisierungstechnische Praxis, 43(7):40–48.
Nagel, K. and Schreckenberg, M. (1992). A cellular automaton model for free-way

traffic. Journal Phys., 2:2221.
Naur, P. (1966). Proof of algorithms by general snapshots. BIT (Nordisk tidskrift

for informationsbehandling), 6(4):310–316.
Nenninger, G. (2001). Modellbildung und Analyse hybrider dynamischer Sys-

teme als Grundlage für den Entwurf hybrider Steuerungen, volume 902 of
Fortschritt-Berichte VDI Reihe 8. VDI-Verlag.

Nenninger, G., Frehse, G., and Krebs, V. (2000). Hybrid regions of attraction of
piecewise affine hybrid systems. In 4th Conference on Automation of Mixed
Processes: Hybrid Dynamic Systems ADPM 2000, pages 87–92.

Nenninger, G. and Krebs, V. (1998). Analysis of Hybrid Systems using Hybrid Dy-
namical Models. In Hybrid Dynamical Systems: 3rd International Conference
on Automation of Mixed Processes, pages 428–431.

Nenninger, G., Schnabel, M., and Krebs, V. (1999). Modellierung, Simulation und
Analyse hybrider dynamischer Systeme mit Netz-Zustands-Modellen. Auto-
matisierungstechnik, 47(3):118–126.

Nenninger, G. M., Nixdorf, B., Krebs, V. G., and Lunze, J. (2001). Erreichbarkeits-
analyse hybrider Systeme. at - Automatisierungstechnik, 49(2):75–85.

Nerode, A. and Kohn, W. (1993). Models for hybrid systems: Automata, topolo-
gies, controllability, observability. In Grossmann, R., Nerode, A., Ravn, A.,
and Rischel, H., editors, Lecture Notes in Computer Science: Hybrid Systems,
volume 736, pages 317–356. Springer.

Nicol, D. M. and Miner, A. S. (1995). The fluid stochastic petri net simulator. In
Proc. Sixth International Workshop on Petri Nets and Performance Models -
PNPM’95, pages 214–215, Durham, North Carolina, USA. IEEE-CS Press.

Nicollin, X., Olivero, A., Sifakis, J., and Yovine, S. (1992). An approach to the
description and analysis of hybrid systems. In Proceedings of Workshop on
Theory of Hybrid Systems, volume 736 of Lecture Notes in Computer Science,
pages 149–178, Lyngby, Denmark. Springer.

Ning, B. (1998). Absolute braking and relative distance braking train operation
control modes in moving block systems. In Computers in Railways VI, pages
991–1001. WIT Press, Lisbon.

Nixdorf, B. and Lunze, J. (2000a). Control of a manufacturing cell. Technical report,
Arbeitsbereich Regelungstechnik, TU Hamburg-Harburg. Internal document.

Nixdorf, B. and Lunze, J. (2000b). KONDISK benchmark of an automated man-
ufacturing cell. Technical report, Technical University of Hamburg-Harburg.
(in German).

490

Nordwig, A. (2000). the zooed homepage. Technische Universität Berlin. ISTI.
http://swt.cs.tu-berlin.de.

Nordwig, A. (2002). Formal integration of structural dynamics into the object-
oriented modeling of hybrid systems. In Proceedings of the European Simula-
tion Multi-Conference ’02. to appear.

Nöth, G. (1998). Randbedingungen für den Einsatz von regelungstechnischen Me-
thoden. In GMA-Kongress’98 Meß- und Automatisierungstechnik, VDI Bericht
1397. VDI-Verlag.

Nytsch-Geusen, C. (2001). Berechnung und Verbesserung der Energieeffizienz von
Gebäuden und ihren energietechnischen Anlagen in einer objektorientierten
Simulationsumgebung. PhD thesis, TU Berlin.

Olivero, A. and Yovine, S. (1993). KRONOS: A Tool for Verifying Real-Time Sys-
tems. User’s Guide and Reference Manual. Verimag, Grenoble, France.

Omata, T. and Farooqi, M. A. (1996). Regrasps by a Multifingered Hand Based on
Primitives. In Proceedings of the IEEE International Conference on Robotics
and Automation ICRA, pages 2774–2780, Minneapolis, Minnesota, USA.

Osder, S. (1999). Practical view of redundancy management application and theory.
Journal of Guidance, Control, and Dynamics, 22(1):12–21.

Otter, M., Elmqvist, H., and Mattson, S. (1999). Hybrid modeling in Modelica based
on the synchronous data flow principle. In CACSD’99, Hawaii, USA.

Otter, M., Remelhe, M., Engell, S., and Mosterman, P. (2000). Hybrid mod-
els of physical systems and discrete controllers. at-Automatisierungstechnik,
48:426–437.

Owicki, S. S. and Gries, D. (1976). An axiomatic proof technique for parallel pro-
grams I. Acta Informatica, 6:319–340.

Pachl, J. (1999). Systemtechnik des Schnieneverkehrs. B. G. Teubner, Stuttgart.
Panreck, K. (1999). Systembeschreibungen zur Modellierung komplexer Systeme.

at - Automatisierungstechnik, 47(4):157.
Park, T. and Barton, P. (1997). Implicit model checking of logic based control

systems. AIChE Journal, 43(9):2246–2260.
Pawletta, T. and Lampe, B. (2001). KONDISK project report no. la 724/8− 2 —

Modeling and simulation of modular-hierarchical systems with discret event
oriented structure dynamics. Technical report, University of Rostock. (in Ger-
man).

Pawletta, T., Lampe, B., Pawletta, S., and Drewelow, W. (1996). An object oriented
framework for modeling and simulation of variable structure systems. In In-
galls, V., Cynamon, J., and Saylor, A., editors, SCS Summer Simulation Conf.,
Portland, Oregon, pages 8–13. SCS International.

Pawletta, T., Lampe, B., Pawletta, S., and Drewelow, W. (2002). A DEVS-based
approach for modeling and simulation of structure dynamics in hybrid systems.
In Engell, S., Frehse, G., and Schnieder, E., editors, Modelling, Analysis, and
Design of Hybrid Systems, Lecture Notes in Control and Information Science.
Springer. (This volume).

Pawletta, T., Lampe, B., Pawletta, S., Drewelow, W., and Schildmann, P. (2001).
Modeling of temporal objects with self-dynamics in hybrid systems. In Pan-
reck, K. and Dörrscheidt, F., editors, 15th Symp. of Simulation, Paderborn,

References 491

Frontiers in Simulation, pages 73–78, Ghent, Belgium. SCS Publishing House.
(in German).

Pawletta, T., Pawletta, S., and Dimitrov, E. (1994). Modeling and simulation of
structure variable systems. In Kampe, G. and Zeitz, M., editors, Progress in
Simulation, pages 59–64. Vieweg Publisher. (in German).

Pawletta, T., Pawletta, S., Schildmann, P., and Drewelow, W. (1997). Interactive
modeling and simulation of time-invariant system structures. In Kuhn, A. and
Wenzel, S., editors, Progress in Simulation, pages 649–655. Vieweg Publisher.
(in German).

Paynter, H. M. (1961). Analysis and design of engineering systems. The M.I.T.
Press, Cambridge, Massachusetts.

Pearson, R. (1984). Modern control: Why don’t we used it? InTech, 11:47–49.
Pereira Remelhe, M., Deparade, A., and Engell, S. (2001). Integration und Syn-

chronisierung von diskreten Beschreibungsformen und kontinuierlichen Sys-
temmodellen in Modelica. In Panreck, K. and Dörrscheidt, F., editors, Simula-
tionstechnik, ASIM 2001, 15. Symposium, pages 95–100. ASIM, SCS.

Péter, I., Pretschner, A., and Stauner, T. (2000). Heterogeneous development of hy-
brid systems. In Proc. GI workshop Rigorose Entwicklung software-intensiver
Systeme, pages 83–93.

Petri, C. (1962). Kommunikation mit automaten. Technical Report 2, Institut für
Instrumentelle Mathematik, Bonn. Schriften des IIM.

Petterson, S. (1999). Analysis and Design of Hybrid Systems. PhD thesis, Chalmers
University of Technology.

Petzold, L. R. (1982). A description of DASSL: A differential/algebraic system
solver. Technical Report SAND82-8637, Sandia National Laboratories, Liver-
more, California.

Philips, P. (2001). Modeling, Control and Fault Detection of Discretely Observed
Systems. PhD thesis, TU Eindhoven.

Philips, P., Weiss, M., and Preisig, H. A. (1999). Control based on diskrete-event
models of continuous systems. In Proceedings of the European Control Con-
ference 1999.

Plank, J. (1997). State Events in Continous Modelling and Simulation. PhD thesis,
Technical University of Vienna.

PNO (1999). Profibus-pa profile for process control devices, revision 3.0. Technical
report, PNO, Karlsruhe.

Pnueli, A. (1977). The temporal logic of programs. In Proceedings of the 18th IEEE
Symposium on Foundations of Computer Science (FOCS 1977), pages 46–57.

Pnueli, A. (1981). The temporal logic of concurrent programs. Theoretical Com-
puter Science, 13:45–60.

Pnueli, A. (1984). In transition for global to modular temporal reasoning about
programs. In Logics and Models of Concurrent Systems, volume 13 of NATO
ASI-F. Springer.

Pnueli, A. and Sifakis, J. (1995). Special issue on hybrid systems. Theoretical
Computer Science, 138:1–239.

Prähofer, H. (1991). System Theoretic Foundations for Combined Discrete-Conti-
nuous System Simulation. PhD thesis, Johannes Kepler University of Linz.

492

Prähofer, H. (1996). An environment for DEVS-based multi-formalism modeling
und simulation in C++. In 6th Annual Conference on AI, Simulation and Plan-
ning in High Autonomy Systems, page 8pp. SCS International, San Diego.

Prähofer, H. and Zeigler, B. (1992). Modelling and simulation. In Pichler, F.
and Schwaertzel, H., editors, CAST - Methods in Modelling, pages 123–241.
Springer Publisher, Berlin.

Pretschner, A. (2001). Classical search strategies for test case generation with Con-
straint Logic Programming. In Proc. Formal Approaches to Testing of Soft-
ware, pages 47–60.

Pretschner, A., Lötzbeyer, H., and Philipps, J. (2001). Model Based Testing in Evo-
lutionary Software Development. In Proc. 11th IEEE Intl. Workshop on Rapid
System Prototyping, pages 155–160.

Pretschner, A., Slotosch, O., and Stauner, T. (2000). Developing Correct Safety
Critical, Hybrid, Embedded Systems. In Proc. New Information Processing
Techniques for Military Systems, NATO Research.

Preußig, J. (2000). Formale Überprüfung der Korrektheit von Steuerungen mittels
rektangulärer Automaten. PhD thesis, Department of Chemical Engineering,
University of Dortmund, Germany. (in German).

Preußig, J., Kowalewski, S., Henzinger, T., and Wong-Toi, H. (1998). An algorithm
for the approximate analysis of simple rectangular automata. In Proc. 5th Int.
School and Symposium on Formal Techniques in Fault Tolerant and Real Time
Systems, Lyngby, Denmark, 1998, Lecture Notes in Computer Science 1486,
pages 228–240. Springer.

Preußig, J., Stursberg, O., and Kowalewski, S. (1999). Reachability analysis of a
class of switched continuous systems by integrating rectangular approxima-
tion and rectangular analysis. In Vaandrager, F. W. and van Schuppen, J. H.,
editors, Hybrid Systems: Computation and Control, Proc. 2nd Int. Workshop,
HSCC’99, Berg en Dal, The Netherlands, March 1999, Lecture Notes in Com-
puter Science 1569, pages 209–222. Springer.

Preußig, J. and Wong-Toi, H. (2000). An procedure for the reachability analysis
of rectangular automata. In Proc. American Control Conference, pages 1674–
1678.

Queille, J.-P. and Sifakis, J. (1982). Specification and verification of concurrent
systems in CESAR. In Dezani-Ciancaglini, M. and Montanari, U., editors,
Proceedings of the 5th International Symposium on Programming, Turin, April
6–8, 1982, pages 337–350. Springer.

Raisch, J. (1998). A hierarchy of discrete abstractions for a hybrid plant. JESA -
European Journal of Automation, Special Issue on Hybrid Dynamical Systems,
32(9-10):1073–1095.

Raisch, J. (2000a). Complex systems – simple models? In Proc. ADCHEM2000 -
International Symposium on Advanced Control of Chemical Processes, Pisa,
pages 275–286.

Raisch, J. (2000b). Discrete abstractions of continuous systems - an input/output
point of view. Mathematical and Computer Modelling of Dynamical Systems,
6(1):6–29.

References 493

Raisch, J., Iitgin, A., and Moor, T. (2001). Hierarchical strategies for hybrid process
control problems. In Proceedings of the European Control Conference 2001,
pages 2534–2539, Porto, Portugal.

Raisch, J. and Itigin, A. (2000). Synthesis of hierarchical process control systems
based on sequential aggregation. In Proc. 3rd Mathmod, Vienna, pages 385–
389.

Raisch, J., Itigin, A., and Moor, T. (2000). Hierarchical control of hybrid sys-
tems. In Engell, S., Kowalewski, S., and Zaytoon, J., editors, Proc. 4th In-
ternational Conference on Automation of Mixed Processes: Dynamic Hybrid
Systems, pages 67–72. Shaker.

Raisch, J., Klein, E., O’Young, S. D., Meder, C., and Itigin, A. (1998). Approximat-
ing automata and discrete control for continuous systems - two examples from
process control. In Antsaklis, P., Kohn, W., Nerode, A., and Sastry, S., editors,
Hybrid Systems V, LNCS 1567, pages 279–303. Springer.

Raisch, J. and O’Young, S. (1997). A totally ordered set of discrete abstractions
for a given hybrid or continuous system. In Antsaklis, P., Kohn, W., Nerode,
A., and Sastry, S., editors, Hybrid Systems IV, volume 1273 of LNCS, pages
342–360. Springer.

Raisch, J. and O’Young, S. D. (1998). Discrete approximation and supervisory con-
trol of continuous systems. IEEE Transactions on Automatic Control, Special
issue on hybrid systems, 43:569–573.

Rakoto-Ravalontsalama, N. and Aguilar-Martin, J. (1998). Diagnosing uncertain
parameters to improve hybrid process model. In Hybrid Dynamical Systems.
3rd International Conference on Automation of Mixed Processes, pages 49–53,
Reims.

Ramadge, P. J. and Wonham, W. M. (1987). Supervisory control of a class of dis-
crete event systems. SIAM J. Control and Optimization, 25:206–230.

Ramadge, P. J. and Wonham, W. M. (1989). The control of discrete event systems.
Proceedings of the IEEE, 77:81–98.

Rational (1999). Unified Modeling Language. Rational Software Corporation. Ver-
sion 1.3.

Rational UML (1997). Unified modeling language, version 1.1. Rational Software
Corporation.

Rausch, M. and Hanisch, H.-M. (1995). Netz-Condition/Event-Systeme. In Schnie-
der, E., editor, Entwurf komplexer Automatisierungssysteme - Methoden, An-
wendungen und Tools auf der Basis von Petrinetzen und anderer formaler
Beschreibungsmittel, pages 55–71, Braunschweig.

Raymond, P., Weber, D., Nicollin, X., and Halbwachs, N. (1998). Automatic testing
of reactive systems. In Proc. 19th IEEE Real-Time Systems Symposium.

Rebolledo, M. (2002). Development of a Concept for the Handling of Vagueness in
the SQMA Modeling Approach. Diplomarbeit, Institut für Automatisierungs-
und Softwaretechnik (IAS), Universität Stuttgart.

Reckdahl, K. J. and Mitiguy, P. C. (1996). AUTOLEV 3 Tutorial. OnLine Dynamics,
Inc., Sunnyvale, USA.

Reisig, W. (1985). Petri Nets, An Introduction. EATCS, Monographs on Theoretical
Computer Science. Springer, Berlin.

494

Ricker, S. L., Sarkar, N., and Rudie, K. (1996). A Discrete-Event Systems Approach
to Modeling Dextrous Manipulation. Robotica, 14:515–525.

Royce, W. W. (1970). Managing the development of large software systems: Con-
cepts and techniques. In Proc. IEEE WESTCON.

Ruhl, H. (1999). Konzeption und Implementierung einer Visualisierungssoft-
ware für den Modellprozess ”Drei-Tank-System”. Diplomarbeit, Institut für
Automatisierungs- und Softwaretechnik (IAS), Universität Stuttgart.

Rumbaugh, J. (1991). Object-Oriented Modeling and Design. Prentice-Hall Inc.,
New Jersey.

Ruspini, D. and Khatib, O. (2000). A Framework for Multi-Contact Multi-Body
Dynamic Simulation and Haptic Display. In Proceedings of the 2000 IEEE/RSJ
International Conference on Intelligent Robots and Systems, Takamatsu,Japan.

Schätz, B. and Pretschner, A. (2002). Model based development of embedded
systems. Submitted to Model-Driven Approaches to Software Development,
OOIS’02.

Schildmann, P. (2000). Benchmarks for the simulator prototype MATSIM-2. Tech-
nical report, University of Rostock. (in German).

Schiller, F. (1997). Diagnose dynamischer Systeme auf der Grundlage einer quali-
tativen Prozessbeschreibung. Dissertation, TU Hamburg-Harburg.

Schlegl, T. (2002). Diskret-kontinuierliche Regelung mehrfingriger Roboterhände
zur robusten Manipulation von Objekten. Number 928 in Fortschrittsberichte
VDI, Reihe 8: Meß-, Steuerungs- und Regelungstechnik. VDI-Verlag, Düssel-
dorf.

Schlegl, T., Buss, M., Omata, T., and Schmidt, G. (2001). Fast Dextrous Regrasping
with Optimal Contact Forces and Contact Sensor Based Impedance Control. In
Proceedings of the IEEE International Conference on Robotics and Automa-
tion ICRA, pages 103–107, Seoul, Korea.

Schlegl, T., Buss, M., and Schmidt, G. (1997). Development of numerical inte-
gration methods for hybrid (discrete-continuous) dynamical systems. In Pro-
ceedings of the IEEE/ASME International Conference on Advanced Intelligent
Mechatronics AIM’97 (Tokyo, Japan, Paper No. 154).

Schlegl, T., Buss, M., and Schmidt, G. (2002a). A Hybrid Systems Approach to-
wards Modeling and Dynamical Simulation of Dextrous Manipulation. IEEE
Transactions on Mechatronics, under review.

Schlegl, T., Buss, M., and Schmidt, G. (2002b). Hybrid control of multi-fingered
dextrous hands. This volume.

Schlegl, T., Schnabel, M. K., Buss, M., and Krebs, V. G. (2000). State Reconstruc-
tion and Error Compenstation in Discrete-Continuous Control Systems. at -
Automatisierungstechnik, 48(9):439–447.

Schnabel, M. (2001). Diskret-kontinuierliche dynamische Systeme: Steuerung und
Beobachtung, volume 900 of Fortschritt-Berichte VDI Reihe 8. VDI-Verlag.

Schöneburg, E., Heinzmann, F., and Feddersen, S. (1996). Genetische Algorithmen
und Evolutionsstrategien. Addison-Wesley.

Schröder, J. (2002). Modelling, State Observation and Diagnosis of Quantised Sys-
tems. Lecture Notes in Control and Information Sciences. Springer, Berlin.

References 495

Schuler, H. (1992). Was behindert den praktischen Einsatz moderner regelungstech-
nischer Methoden in der Prozessindustrie? atp - Automatisierungstechnische
Praxis, 34(3):116–123.

Schumacher, J., Morse, A., Pantelides, C., and Sastry, S., editors (1999). Special
Issue on Hybrid Systems, volume 35 of Automatica.

Schürr, A. (1994). Logic based structure rewriting systems. In Lecture Notes in
Computer Science. Springer.

Schütt, H. (1990). Entwicklung und Erprobung eines sehr schnellen, bitorientierten
Verkehrssimulationssystems für Straßennetze. PhD thesis, TU Hamburg-
Harburg.

SDL92 (1992). Specification and Description Language SDL, blue book. CCITT
Recommendation Z.100.

Seebeck, J. (1998). Modellierung der Redundanzverwaltung von Flugzeugen am
Beispiel des ATD durch Petrinetze und Umsetzung der Schaltlogik in C-Code
zur Simulationssteuerung. Diplomarbeit, Arbeitsbereich Flugzeugsystemtech-
nik, Technische Universität Hamburg-Harburg.

Seiche, W. (1991). Analyse und Synthese diskret gesteuerter Systeme mit Petri-
Netzen, volume 269 of Fortschritt-Berichte VDI Reihe 8. VDI-Verlag, Düssel-
dorf, Germany.

Seiche, W. and Abel, D. (1993). Entwurf verklemmungsfreier Steuerungen auf der
Grundlage einer graphentheoretischen Petri-Netz-Analyse. Automatisierungs-
technik, 41:88–93.

Selic, B., Gullekson, G., and Ward, P. T. (1994). Real-Time Object-Oriented Mod-
eling. John Wiley & Sons Ltd, Chichester.

Simon, C. (2001a). Developing software controllers with petri nets and a logic of
actions. In IEEE International Conference on Robotics and Automation, ICRA
2001, Seoul, Korea.

Simon, C. (2001b). A Logic of Actions and Its Application to the Development of
Programmable Controllers. PhD thesis, Universität Koblenz-Landau.

Simon, C., Ridder, H., and Marx, T. (1997). The petri net tools neptun and posei-
don. Fachberichte Informatik 15–97, Universität Koblenz-Landau, Institut für
Informatik, Rheinau 1, D-56075 Koblenz.

Simon, C. and Thieme, J. (1999). Transformation zeitbewerteter Netzmodelle.
Fachberichte Fakultät Elektrotechnik 3–99, Otto-von-Guericke-Universität
Magdeburg, Institut für Automatisierungstechnik, Postfach 4120, D-39016
Magdeburg.

Six, J. (1996). Abstandhaltung und Streckenleistungsfähigkeit. Signal+Draht.
Smith, H. (1995). Monotone Dynamical Systems. American Mathematical Society,

Providence.
Sreenivas, R. S. and Krogh, B. H. (1991a). On condition/event systems with discrete

state realizations. Discrete Event Dynamic Systems: Theory and Application 1,
pages 209–236.

Sreenivas, R. S. and Krogh, B. H. (1991b). Petri net based models for con-
dition/event systems. Proceedings of 1991 American Control Conference,
3:2899–2904.

496

Stahl, K. (1998). Comparing the expressiveness of different real-time models. Mas-
ter’s thesis, Christian-Albrechts-University of Kiel.

Stauner, T. (2001). Systematic development of hybrid systems. PhD thesis, Tech-
nische Universität München.

Stauner, T. (2002). Discrete-Time Refinement of Hybrid Automata. In Proc.
HSCC’02. To be published.

Stauner, T., Pretschner, A., and Péter, I. (2001). Approaching a Discrete-Continuous
UML: Tool Support and Formalization. In Proc. UML’2001 workshop on Prac-
tical UML-Based Rigorous Development Methods, pages 242–257.

Steffen, T. (2001). Rekonfiguration linearer Systeme durch eine Ergänzung des
Reglers. Technical report, Ruhr University Bochum, Institute for Automation
and Computer Control.

Strikwerda, J. C. (1989). Finite Difference Schemes and Partial Differential Equa-
tions. Wadsworth & Brooks/Cole.

Stursberg, O. (2000a). Analyse gesteuerter verfahrenstechnischer Prozesse durch
Diskretisierung. PhD thesis, Department of Chemical Engineering, University
of Dortmund, Germany. (in German).

Stursberg, O. (2000b). Analysis of switched continuous systems based on discrete
approximation. In Proc. 4th Int. Conf. on Automation of Mixed Processes,
pages 73–78.

Stursberg, O. and Engell, S. (2001). Optimized startup-procedures of processing
systems. In Proc. 6th IFAC Symp. Dynamics and Control of Process Sys., pages
231–236.

Stursberg, O. and Engell, S. (to appear in July 2002). Optimal control of switched
continuous systems using mixed-integer programming. In Proc. 15th IFAC
World Congress on Automatic Control.

Stursberg, O. and Kowalewski, S. (1999). Approximating switched continuous sys-
tems by rectangular automata. In Proc. European Control Conference. CD-
ROM, file 1014–4.

Stursberg, O. and Kowalewski, S. (2000). Analysis of controlled hybrid processing
systems based on approximation by timed automata using interval arithmetics.
In Proc. 8th IEEE Mediterranean Conference on Control and Automation. CD-
ROM, file TA1–3.

Stursberg, O., Kowalewski, S., and Engell, S. (2000). On the generation of timed
discrete approximations for continuous systems. Mathematical and Computer
Modelling of Dynamical Systems, 6(1):51–70. Special Issue on "Discrete Event
Models of Continuous Systems".

Stursberg, O., Kowalewski, S., Hoffmann, I., and Preus̈sig, J. (1997). Compar-
ing timed and hybrid automata as approximations of continuous systems. In
Antsaklis, P., Kohn, W., Nerode, A., and Sastry, S., editors, Hybrid Systems IV,
volume 1273 of LNCS, pages 361–377. Springer.

Stursberg, O. and Panek, S. (to appear in 2002). Control of switched continuous
systems based on disjunctive formulations. In 5th Int. Workshop on Hybrid
Systems: Computation and Control, LNCS. Springer.

Sussmann, H. (1999). A maximum principle for hybrid optimal control problems.
In Proc. 38th IEEE Conf. Decision and Control, pages 425–430.

References 497

Tavernini, L. (1987). Differential automata and their discrete simulators. Nonlinear
Analysis, Theory, Methods, and Applications, 11:665–683.

Thieme, J. (2002). Symbolische Erreichbarkeitsanalyse und automatische
Implementierung struktureller, zeitbewerteter Steuerungsmodelle. PhD
thesis, Martin-Luther-Universität Halle-Wittenberg, Mathematisch-
Naturwissenschaftlich-Technische Fakultät.

Thieme, J. and Lüder, A. (1999). Transformation von Netzmodellen zur Analyse
technischer Systeme. Fachberichte Fakultät Elektrotechnik 2–99, Otto-von-
Guericke-Universität Magdeburg, Institut für Automatisierungstechnik, Post-
fach 4120, D-39016 Magdeburg.

Thomas, C. (1996). An Object Oriented Approach to Modeling and Simulation of
Complex Systems. VDI-Verlag. (in German).

Thomas, J. (1995). Numerical Partial Differential Equations: Finite Difference
Methods. Springer.

Tittus, M., Egardt, B., and Lennartson, B. (1994). Hybrid systems in process control.
In 3rd IEEE Conference on Decision and Control, pages 3587–3595.

Tomlin, C. (1999). Towards efficient computation of solutions to hybrid systems. In
Proceedings of the 38th IEEE Conference on Decision and Control (Phoenix,
AZ), pages 3532–3537.

Tomlin, C. and Greenstreet, M. R., editors (2002). Hybrid Systems: Computation
and Control, 5th International Workshop (HSCC’02), volume 2289 of Lecture
Notes in Computer Science, Stanford, CA, USA. Springer.

Tomlin, C., Lygeros, J., and Sastry, S. (2000). A game theoretic approach to con-
troller design for hybrid systems. Proceedings of the IEEE, 88(7):949–970.

Treseler, H. (2001). Ein Rechnerwerkzeug zur formalen Verifikation diskret ge-
steuerter verfahrenstechnischer Prozesse. PhD thesis, Department of Chemical
Engineering, University of Dortmund, Germany. (in German).

Trontis, A. and Spathopoulos, M. (2001). Target control for hybrid systems with
linear continuous dynamics. In Proc. 40th IEEE Conf. on Decision and Control,
pages 1229–1234.

Turing, A. M. (1949). On checking a large routine. In Report of a Conference on
High Speed Automatic Calculating Machines, pages 67–69, Cambridge. Uni-
versity Mathematics Laboratory.

Uebel, H. (2000). Durchsatz von Strecken und Stationen bei Bahnen. In Gesamtver-
kehrsforum 2000, number 1545 in VDI Berichte, pages 257–275. VDI-Verlag,
Düsseldorf.

Uhrmacher, A. M. and Arnold, R. (1994). Distributing and maintaining knowledge:
Agents in variable structure environment. In 5th Annual Conference on AI,
Simulation and Planning in High Autonomy Systems, pages 178–194.

Utkin, V. (1992). Sliding Modes in Control Optimization. Springer.
Vaandrager, F. and van Schuppen, J., editors (1999). Hybrid Systems – Computation

and Control, Proc. 2nd Int. Workshop HSCC’99, Berg en Dal, The Netherlands,
March 1999, volume 1569 of Lecture Notes in Computer Science. Springer.

Valavanis, K. (1997). Special issue on applications of discrete event and hybrid
systems. IEEE Robotics and Automation Magazine, 4.

498

van der Schaft, A. and Schumacher, H. (2000). An Introduction to Hybrid Systems,
volume 251 of Lecture Notes in Control and Information Science. Springer,
London.

van der Schaft, A. J. and Schumacher, J. M. (1996). The complementary-slackness
of hybrid systems. Math. Contr. Signals Syst., 9:266–301.

Vardi, M. Y. and Wolper, P. (1994). Reasoning about infinite computations. Infor-
mation and Computation, 115(1):1–37.

Vecchietti, A. and Grossmann, I. (1999). Logmip: A disjunctive 0-1 nonlinear opti-
mizer for process system models. Comp. and Chemical. Eng., 23:555–565.

Verghese, G. C., Lévy, B. C., and Kailath, T. (1981). A generalized state-space for
singular systems. IEEE Transactions on Automatic Control, 26(4):811–831.

Vidal, R. (1993). Applied Simulated Annealing. Springer, Berlin.
Vidal, R., Schaffert, S., Shakernia, O., Pappas, G., and Sastry, S. (2001). Decidable

and semi-decidable controller synthesis for classes of discrete-time hybrid sys-
tems. In Proc. 40th IEEE Conf. Decision and Control, pages 1243–1248.

Visual Object Net ++ (2000). http://www.r-drath.de/VON/von_e.htm.
von Stryk, O. (2000). Numerical hybrid optimal control and related topics. Habili-

tation Dissertation, Technische Universität München.
von Stryk, O. (2001). User’s guide for DIRCOL version 2.1: A direct colloca-

tion method for the numerical solution of optimal control problems. Technical
report, Simulation and Systems Optimization Group, Technische Universität
Darmstadt. WWW: www.sim.informatik.tu-darmstadt.de/sw/.

von Stryk, O. and Bulirsch, R. (1992). Direct and indirect methods for trajectory
optimization. Annals of Operations Research, 36:357–373.

von Stryk, O. and Glocker, M. (2000). Decomposition of mixed-integer optimal
control problems using branch and bound and sparse direct collocation. In
ADPM – 4th Int’l Conf. on Automation of Mixed Processes: Hybrid Dynamic
Systems, pages 99–104.

von Stryk, O. and Glocker, M. (2001). Numerical mixed-integer optimal control
and motorized traveling salesmen problems. APII – JESA (Journal européen
des systèmes automatisés – European Journal of Control), 35(4):519–533.

Vries, R. d., Tretmans, J., Belinfante, A., Feenstra, J., Feijs, L., Mauw, S., Goga, N.,
Heerink, L., and Heer, A. d. (2000). Côte de Resyste in Progress. In Progress
2000 – Workshop on Embedded Systems, pages 141–148.

W3C (1998). Extensible markup language XML. http://www.w3.org/TR/REC-xml.
Wiedemann, R. (1974). Simulation des Straßenverkehrsflusses. Technical Report 8,

Instituts für Verkehrswesen der Universität, Karlsruhe, Germany.
Wiedemann, R. (1991). Modelling of rti-elements on multi-lane roads. In of the Eu-

ropean Community, C., editor, Advanced Telematics in Road Transport, Brus-
sels.

Wieting, R. (1996). Modeling and simulation of hybrid systems using hy-brid high-
level nets. In 8th European Simulation Symposium ESS’96, volume 1, pages
96–100.

Wieting, R. (1998). Modellbildung und Simulation mit hybriden höheren Netzen.
PhD thesis, Carl von Ossietzky Universität, Oldenburg. ISBN 3-8265-3291-0.

References 499

Willems, J. C. (1989). Models for dynamics. Dynamics Reported, 2:172–269.
Willems, J. C. (1991). Paradigms and puzzles in the theory of dynamic systems.

IEEE Transactions on Automatic Control, 36:258–294.
Williams, H. P. (1978). Model Building in Mathematical Programming. J. Wiley P.,

1st edition.
Woelfl, K. (1995). Planung von Manipulationsvorgängen einer Roboterhand. Num-

ber 455 in Fortschrittsberichte VDI, Reihe 8: Meß-, Steuerungs- und Regel-
ungstechnik. VDI-Verlag, Düsseldorf.

Wolf, A. (2001). Components and Interfaces for Modeling and Simulation of
Continuous-Discrete Systems. PhD thesis, Technical University of Magdeburg.
(in German).

Wöllhaf, K. (1995). Object Oriented Modeling and Simulation of Multi-Product
Batch Plants. PhD thesis, University of Dortmund. (in German).

Wolter, K. (1999). Performance and Dependability Modelling with Second Order
Fluid Stochastic Petri Nets. Shaker, Aachen.

Wolter, K. (2001). A performability model for a hybrid reactor system. In Dje-
mame, K. and Kara, M., editors, Proc. 17th annual UK Performance Engi-
neering Workshop, pages 13–22, Leeds, UK.

Wolter, K. and Zisowsky, A. (2001). Performance evaluation. On Markov Reward
Modelling with FSPNs, 44:165–186.

Xu, X. and Antsaklis, P. (2001). An approach for solving general switched linear
quadratic optimal control problems. In Proc. 40th IEEE Conf. Decision and
Control, pages 2478–2483.

Yovine, S. (1997). Kronos: a verification tool for real-time systems. Software Tools
for Technology Transfer, 1(1,2):123–133.

Zaytoon, J., editor (1998). 3rd Int. Conf. on Automation of Mixed Processes: Hybrid
Dynamic Systems (ADPM’98), Reims, France. Université de Reims.

Zeigler, B. (1976). Theory of Modelling and Simulation. John Wiley & Sons.
Zeigler, B. (1984). Multifacetted Modelling and Discrete Event Simulation. Aca-

demic Press, Inc.
Zeigler, B. (1990). Object-Oriented Simulation with Hierarchical, Modular Models.

Academic Press, Inc.
Zeigler, B. and Prähofer, H. (2000). Theory of Modelling and Simulation. Academic

Press, London, second edition.
Zhang, P. and Cassandras, C. (2001). An improved forward algorithm for optimal

control of a class of hybrid systems. In Proc. 40th IEEE Conf. Decision and
Control, pages 1235–1236.

Zhivoglyadov, P. and Middleton, R. (1999). A novel approach to systematic switch-
ing control design for a class of hybrid systems. In Proc. of the 38th Interna-
tional Conference on Decision and Control, CDC’99. IEEE Press.

Zhu, P. (2001). Betriebliche Leistung von Bahnsystemen unter Störungsbeding-
ungen. VDI-Verlag, Düsseldorf.

Zimmermann, A., German, R., Freiheit, J., and Hommel, G. (2000). Petri net mod-
elling and performability evaluation with timenet 3.0. In Proc. 11th Int. Conf.
on Computer Performance Evaluation; Modelling Techniques and Tools, num-
ber 1786 in LNCS, pages 188–202, Schaumburg, IL, USA.

500

Zisowsky, A. (1998). Entwurf und Implementierung eines Verfahrens für die tran-
siente Analyse fluider stochastischer Petri-Netze. Master’s thesis, TU Berlin.

Index

ω-automata, 159
θ -scheme, 197

abstraction, 164, 236, 249, 271
activator, 306
additional firing condition, 309
ADI method, 198
advanced control, 61
aircraft attitude control, 369
aircraft elevator control, 373
alternating direction implicit scheme, 198
analysis, 156
annealing furnace, 29
approximate analysis, 166
approximation, 252
arbiter example, 11
assignment, 218
assume/guarantee, 241
assumption/commitment, 238
attributed hybrid dynamic nets, 27
AutoFocus, 46
automata
– ω , 159
– cellular, 422
– discrete, 229
– hybrid, 158, 230
– nondeterministic, 75
– rectangular, 165
– stochastic, 77
– stopwatch, 163
– timed, 158, 230

batch, 56
– evaporator, 99
– plant, 212
Bellman, 273
bisimulation, 179
bond graph model, 384
Branch-and-Bound, 322, 348
branching time temporal logic, 233

car diesel engine, 288
cellular automata, 422
Charon, 39

charts
– hybrid sequence, 42
– message sequence, 45
– object-oriented state, 146
chemical reactor, 349
component model, 53
compositionality, 237
computation
– issues, 158
– model, 231
computational tree logic, 233
computing model, 124
condensation
– of a graph, 301
– of an evolution graph, 301
constraint system, 218
control
– correction of, 305
– design, 272, 342
– hybrid, 176
– linear, 275
– optimal, 318
– reconfiguration, 267
– supervisory, 84, 249
– synthesis, 286
– via left eigenvector, 184
controllability, 305
controller synthesis
– using verification, 286
conveyor belt, 26
CPLEX, 350
Crank-Nicolson scheme, 197
CTL, 233
cycle, 300

DAE
– higher index, 383
data structure, 236
deactivator, 306
deadlock, 160, 299
decidability, 161, 179, 234
decomposition, 11
DES/M, 90
destillation column, 260

502

deterministic behaviour, 298
diagnosis, 395
diesel engine, 288
Dirac impulse, 10
Dircol, 320
direct collocation, 320
discrete
– abstraction, 251
– approximations, 74
– automata, 229
– boundary condition, 198, 200
– control, 21, 295
– control loop, 270
– controller, 337
– controller design, 272
– error compensation, 455
– model, 75
– time, 341
discretisation, 164, 193, 320
disjunctive form, 345
Dymola, 91
dynamics
– structural, 146

eigenvector, 184
error compensation, 455
evolution graph, 299

filtration process, 63
firing
– condition, additional, 305
– sequence, 219
flow, 158
formal
– methods, 225
– verification, 227
function blocks, 53

genericity, 141
guard, 158

HDS, 313
HSM, 442
hybrid
– automata, 158, 230, 339
– control, 176, 317, 447
– dynamic nets, 16
– dynamical system, 313
– object nets, 24

– optimal control, 318
– Petri Net, 356
– phenomena, 5
– reachability, 177
– reachability graph, 295
– sequence charts, 42
– state, 160
– state model, 314, 442
– state vector, 297
– token, 28
hybrid system, 4
– example, 26, 29, 43, 63, 99, 116, 167,

187, 201, 212, 260, 280, 288, 291, 297,
302, 324, 327, 349, 369, 409, 437

– nature, 154
HyCharts, 46
HyROOM, 42
HySC, 42
Hytech, 162, 234

IB-state, 298
IMMA, 38
impedance control, 449
implicitness parameter, 197
interval, 214, 217
invariant, 158
invariant behaviour, 298

Java, 148

Kripke structure, 231
KRONOS, 162, 234

laboratory batch plant, 212
Langrange-multiplier, 446
LD-systems, 181
linear divided system, 181
linear programming
– mixed integer, 348
linear time temporal logic, 233
Lipschitz
– condition, 5
– constant, 258
liveness, 301
LTL, 233

M-approach, 344
manifolds
– attractive, 259
manufacturing cell, 116, 201, 291, 302

Index 503

MaSiEd, 41
MATHEMATICA, 220
Matlab, 128
– Real-Time Workshop, 43
MatrixX, 38
maximal step, 298
minimal extension to a control, 305
model
– based development, 39
– checking, 228
– discrete, 75
– discrete-event, 270
– transformation, 423
Modelica, 90, 142
modeling, 85
– component-oriented, 395
– environment, 86
– frameworks, 154
– hybrid systems, 154
– qualitative, 397
modular
– hierarchical systems, 109
– modelling, 296
– verification, 237
monotone systems, 253
moving horizon, 348
MSC, 45
multi-arm transportation task, 324
multi-fingered robotic hand, 439
MVC, 147

net elements, 18
net state model, 174
nondeterministic automata, 75
NSM, 174

object-oriented
– modeling, 90, 377
– structuring, 140
online
– analysis, 408
– state space reduction, 403
online monitoring, 394
OOSC, 146
optimisation, 273

path quantifier, 233
Peaceman-Rachford scheme, 200
performance model, 193

Petri Net, 295
– coloured, 357
– fluid stochastic, 193
– hybrid, 356
– Place/Transition, 296
– State-Model, 296
– stochastic, 193
– timed coloured, 359
place
– complementary, 309
POSEIDON, 216, 220
process control, 56
production unit, 291

qualitative
– monitoring and diagnosis, 395
quantisation, 12, 71
– boxes, 256
quantised process model, 271
quantiser, 271

random flow, 195
reachability, 161, 219
– affine, 180
– analysis, 157, 176
– hybrid, 177
– set, 219
reachability graph, 195
reconfiguration, 267, 268
– linear, 275
rectangular automata, 165
redundancy, 380
reflecting boundary, 195
relaxation, 344
requirements definition, 135
reversibility of a hybrid system, 301
robot, 327, 437
ROOM, 41
ROOMcharts, 41
run, 159

sampling, 69
self-loop, 309
Semi-Markov-process, 78
sequential control, 295
significant
– firing condition, 306
– place, 307
– state, 307

504

simulation, 85, 156, 361
– modular, 123
– monolithic, 123
SMV, 234
SPIN, 234
SQMD, 395
state
– machine, 45
state space
– extended model, 297
– model, 295
– reduction, 403
statechart, 96, 381
stochastic
– automata, 77
– process, 195
stopwatch automata, 163
strong component, 301
structural changes, 109
structure
– Kripke, 231
supervisory control, 84, 249
switched differential equations, 297
symbolic
– firing sequence, 219
– marking, 217, 218
synthesis of control corrections, 304
system
– first order, 20
– second order, 20
systems
– monotone, 253

template, 57
temporal induction, 239

temporal logic, 232
temporal operator, 233
term, 217
three-tank-system, 409
time interval, 214
timed
– automata, 158, 230
– CP-net, 359
timestamp
– net, 214
timewise stuck, 216
titration plant, 280
token, 28
traffic modeling, 420
transition
– congruent, 309
– critical, 306
traveling salesman, 331
two-tank-system, 167, 187, 297

UML, 39
underactuated robot arm, 327
UPPAAL, 162, 234
upwind scheme, 197
utilization, 207

V-model, 134
variable structure systems, 109
verification, 156, 227
– compositional, 237
– in controller synthesis, 286
virtual actuator, 278

wire stretching plant, 43

