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Abstract. The modelling and simulation of sophisticated technical systems is a demanding
task. On the one hand, the physical part consists of a large number of subsystems which ex-
hibit predominantly continuous dynamics, sometimes with (infrequent) discontinuities. On
the other hand, the distributed computerised control systems constitute complex discrete-
time and discrete-event systems that require completely different modelling and simulation
methods. For an evaluation of the behaviour and the performance of the overall system, both
types of models have to be combined and simulated efficiently. This contribution presents the
requirements for a modelling environment for such systems and discusses an approach that
consists of object-oriented modelling and efficient simulation of the physical part using the
physical systems modelling language MODELICA, a software environment for the definition
of discrete-event models using various formalisms, and the integration of both parts of the
system via model translation. The coordination of both parts is performed by the MODELICA

simulator. The modelling environment called DES/M (discrete-event systems for Modelica)
supports the interoperation of different domain specific discrete-event formalisms. To illus-
trate the usage of the environment, a laboratory batch plant model is presented. A more elab-
orate example is described in another contribution in this volume (Mosterman et al., 2002).

1 Introduction

Sophisticated technological systems such as chemical plants, cars, and aircraft con-
sist of a large number of physical components, numerous low-level set-point con-
trollers and interlocks, and interacting complex supervisory controllers which may
be organised in a hierarchical manner. On the supervisory control level, trajectory
optimisation, fault detection, redundancy management, and sequence control e.g. for
start-up and shutdown are performed and the interaction with the user is managed.
The dominant part of the functions on this level consists of logic operations that are
triggered by thresholds or events in the environment, including user commands. The
physical part of the system and the supervisory control system put high demands on
the power and the user-friendliness of the modelling techniques. In order to study
the overall behaviour of such systems, a simulation model has to incorporate both
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parts and an integration is required that enables efficient and at the same time accu-
rate simulation.

1.1 The Physical Part

The physical part of the system consists of a large number of interconnected com-
ponents. The behaviour of these components is determined by the laws of physics
and chemistry. The overall system may consist of subsystems from various domains:
electrical circuits, pneumatic and hydraulic actuators, mechanical transmission, fuel
cells, combustion chambers, tanks, gas transport systems, chemical reactors, etc.
These submodels are usually developed by teams of domain experts who take a lot of
technological details and domain knowledge into account. Each modelling domain
has specific graphical representations and modelling traditions, but in most cases the
final models are algebraic and differential equations involving continuous variables
that depend on (continuous) time. The models of the physical components may con-
tain discontinuities that strictly speaking are caused by model simplifications which
are made in order to avoid models with largely different time scales. Examples are
friction and contact in mechanical systems, thermodynamic phase changes, ideal
switches, e.g. diodes, in electronic systems. Other discontinuities occur when phys-
ical limits are reached (overflow of a tank, rupture of a vessel) or inputs to the
physical system change abruptly. At these points in time, the movement of the sys-
tem trajectory in the state space may abruptly change its direction and its velocity,
or very fast transients occur that can be regarded as jumps in the state space. At
points of discontinuity, the number of independent state variables may change, e.g.
if two rigid bodies make contact. In consequence, the physical part of the system
itself may exhibit hybrid behaviour, i.e. mixed discrete/continuous dynamics.

The complexity of modelling and simulation of the physical part of the system is
exacerbated if several components with hybrid behaviour interact with each other,
e.g. electronic circuits with several diodes. This calls for powerful modelling and
simulation techniques.

1.2 The Supervisory Controllers

Supervisory control is used for many different purposes. For instance, sequential
control is needed for the execution of recipes in chemical batch plants, redundancy
management is crucial for the safety of aircraft, and resource booking systems are
needed for coordinating several interacting sequential controllers, e.g., to avoid col-
lisions of robots or to prevent the mixing of batches running in parallel in chemical
plants. Start up, shut down, and emergency procedures are further examples for the
necessity of supervisory controllers. In decentralised or redundant automation ar-
chitectures, autonomous supervisory controllers interact in order to achieve the per-
formance goals. Other functions of supervisory control are trajectory optimisation
and user interaction.

In general, a supervisory controller is a reactive discrete-event system. The states
and the outputs of such a system change discontinuously according to discrete state
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transition sequences that are performed when a reaction to external stimuli from the
user or from the physical system is required. For example, in the case of a tank that
is being filled, a controller may have to close the inlet valve when the desired level is
reached. The events that trigger the instantaneous reactions are determined by logi-
cal expressions containing analog and binary input variables that carry information
on the current state of the physical system as well as internal variables that belong
to the state of the controller and of other controllers in a distributed control system.
Hence, the reactions depend on the current discrete state whereas the event times
depend on the evolution of the state variables of the physical system and on clock
variables in the discrete system. If the duration of a specific process, e.g. the duration
of the filling of the tank, is known a priori and corresponding measurements, e.g., a
sensor for the tank level, are not available, timers have to be used for triggering the
transitions. Thus, time events occur that anticipate corresponding state events.

Even though supervisory controllers are mostly implemented as sampled data
systems, their behaviour can adequately be described as reactive, i.e., driven by ex-
ternal state events. This is because the sampling intervals in the logical part are nor-
mally very short in comparison to the continuous dynamics so that at most sampling
instants the controller does nothing but evaluating the triggering signals and wait-
ing. Consequently, the sampling rate has a subordinate significance for the overall
behaviour.

The difficulties for modelling and simulation arise from the fact that a reac-
tion of a supervisory controller that appears as a monolithic state transition to the
outer system may be the result of very complex inner iterations including hierarchi-
cal execution schemes as well as concurrency and synchronous and asynchronous
communication.

1.3 Modelling and Simulation

The overall behaviour of a technical system is generated by the interaction of the
physical components, discrete-event controllers and regulators. A precise compre-
hensive simulation model has to incorporate all these components and their rela-
tions if the purpose of the model is to evaluate the overall behaviour. Simulation
goals may be, e.g., testing of the reaction to failures, the estimation of throughput or
power consumption, a feasibility check for a specific production plan, or operator
training.

Independent of the way of modelling, the physical part generally is solved by
standard numerical integration methods such as Runge-Kutta methods or backward
differential formulae (BDF) (Brenan and Campbell, 1996). This implies that the
modelling process results in the generation of a consistent and uniquely solvable
set of equations, either of explicit ordinary differential equations (ODE form) or of
general differential and algebraic equations (DAE form). If hybrid phenomena have
to be considered, special facilities have to be provided, because the inequalities that
define the physical limits or the thresholds of a supervisory controller generate dis-
continuities, but the numerical integration methods usually require equations with a
certain degree of continuity.
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A usual approach is to ignore these inequalities during the numerical integration
process and to use any efficient integration scheme, usually with a variable step size.
This guarantees continuity of the equations. In order to handle the discontinuities,
the values of the variables that enter into the trigger inequalities are monitored, and
when a threshold is crossed, the integration is stopped and the time instant of the
state event is localised up to a certain precision by backtracking. In case the event
is dependent on time only, a time event, the integration simply stops directly at
the predetermined time. When the integration is stopped, the discrete changes are
performed and, afterwards, the integration is restarted.

The embedding of set-point controllers into the physical model is relatively
straightforward since regulators are usually described by the same type of equa-
tions as the physical systems, and an overall ODE or DAE system results. Sampling
effects often can be neglected because the sampling intervals are of the same order
of magnitude as the integration step size. If this is not the case, time events have
to be used in order to stop the integrator at every sample time. This is not conve-
nient for multistep methods because these schemes must be restarted after every
discontinuity which significantly decelerates the numerical integration (Brenan and
Campbell, 1996).

In contrast to the domain of predominantly continuous dynamics where there is
a standard system representation and general purpose numerical algorithms can be
used, discrete-event simulation algorithms are specific to the modelling formalism
used, and rather different from continuous integration methods. Popular formalisms
are automata, statecharts, Petri Nets, dataflow diagrams, synchronous languages,
or programming languages such as sequential function charts and function block
diagrams as specified in the IEC 61131-3 standard for programmable logic con-
trollers (IEC 1131, 1993). Each formalism has a specific syntax and semantics that
closely matches users’ training and expertise and that are well suited to the par-
ticular application. The transformation of formal models from one formalism into
another is complicated and often leads to inefficient models, even for formalisms
with equivalent expressive power (Huuck et al., 1997). Thus for a general purpose
simulation environment, it is preferable, if not indispensable, to offer various mod-
elling formalisms and even to allow the user to define new or specific formalisms
with little effort. The use of domain specific formalisms results in models that are
elegant, intelligible to the user, and closely correspond to the documentation for-
malism and/or the implementation language. This keeps the modelling effort low
and makes it less error prone than a transformation into one general, tool-specific
formalism.

2 Requirements for the Modelling Environment

Due to the complexity of both the physical part and the supervisory control system
in large technical systems, it is evident that a powerful modelling environment and
efficient simulation methods are indispensable to support the design process.
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2.1 Intuitive and Effortless Modelling of Physical Systems

The physical part should be modelled as intuitively as possible. From the modeller’s
point of view the optimum would be to assemble the whole model using predefined
building blocks that correspond to the technical components. The graphical connec-
tion of these elements would result in composition diagrams that look like familiar
engineering notations, e.g. electrical circuit diagrams, flow charts, and other con-
ventional notations.

In most cases, physical systems do not have explicit inputs and outputs; whether
an external variable is input or output depends on the environment. For instance,
the pressure drop in a pipe may be caused by a prescribed flow or be the cause of a
certain flow rate. Thus the building blocks of larger models should have non-causal,
undirected interfaces.

Due to the potential variety of components in technical systems, only a limited
number of standard elements can be predefined and stored in component libraries.
The remaining elements have to be defined by the modeller. For basic elements a
convenient approach is to enter the underlying physical equations, possibly taken
from the relevant literature, without transformation to a specific mathematical for-
mat, e.g. a system of explicit ODEs. Of course, the number of equations must match
the number of unknowns. This approach is called declarative modelling, because the
modeller states that these equations have to be satisfied, without determining how to
perform the calculations. The model acts as a set of constraints on the coupling vari-
ables, but it is not explicitly stated how to compute outputs from inputs and initial
states.

Larger elements should be defined as a composition of smaller building blocks.
This leads to a hierarchical structuring of the model, which is crucial for the effective
handling of large models. Since one has to deal with many different building blocks,
it should be possible to establish user-defined libraries in addition to the standard
libraries. Additionally, the concept of inheritance supports the modelling effort and
reduces the likelihood of errors. Component model classes then can be derived from
basic model classes by adding more detail. If the basic model class is modified, this
modification also effects the derived classes and the models that will be instantiated
from the derived classes.

2.2 Adequate Modelling of Discrete-Event Systems

The requirements for the modelling of discrete-event systems are different from
those for physical systems in many respects. Discrete-event models are more di-
verse with respect to syntax and semantics than quantitative simulation models of
physical systems. Physical systems can be treated in a uniform way using DAEs
as an underlying semantic basis. The syntax of the graphical representation is also
simple: the blocks have uniform ports and the building blocks are coupled by simply
connecting these ports. In case of the modelling language MODELICA, the coupling
semantics is that all (generalised) flow variables must add up to zero or that the (gen-
eralised) potential variables, such as voltage, pressure etc., assume the same value.
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In contrast, each discrete-event formalism has its specific graphical syntax that does
not simply refine a common basic syntax so that specific graphical editors have to
be provided for each formalism that is supported.

Furthermore, no established semantic standard form, comparable to the DAE-
system, exists for discrete-event formalisms, and transformations to a basic formal-
ism are often inconvenient, sometimes due to relatively small semantic differences.
Consequently, for the simulation of DES models, specific algorithms must be used.

Regarding the complexity of real supervisory control systems which may consist
of a large number of modules that are specified by different designers from different
domains, it is necessary to support heterogeneous discrete-event models including
hierarchical execution schemes as well as concurrency with synchronous and asyn-
chronous communication systems, i.e., it should be possible to model different parts
of a controller with different formalisms and to connect these parts in a consistent
manner. If different simulators are used for different formalisms, these discrete-
event simulators have to interact with each other and have to be synchronised with
the numerical integration of the continuous part of the system.

2.3 Integration of Continuous and Discrete-Event Models

For a seamless integration of discrete-event formalisms and physical models, on
the syntax level, the coupling should reflect the actual hierarchical relations. Since
components of the supervisory control system often are related to particular sub-
systems of the continuous part, the corresponding discrete-event model should be
represented by a block that can be inserted into a composition diagram of the phys-
ical model. The inputs and the outputs of the discrete blocks can be connected with
ports of other building blocks, continuous or discrete.

On the semantic level, the coupling of a discrete-event model with the physical
model is more involved. Some numerical integrators evaluate the model equations
several times in order to do one step (Brenan and Campbell, 1996). This can cause
unpredictable behaviours if the discrete-event system is called at intermediate points
without considering the fact that the simulation of the continuous system has not
yet converged. The semantics of the discrete-event formalisms must not become
corrupted by the integration into the physical system. Conversely, transitions in the
discrete-event part occur while time in the physical system does not progress. If
iterations in the discrete-event part are performed, the intermediate states must not
be transmitted to the continuous system but the simulation must be stopped until the
discrete part has reached a stable state. This stable state may imply switchings not
only of variables but also of the structure of the continuous part which may trigger
new events in the discrete system. Even worse, the overall state of the continuous
system, composed of the discrete inputs and the past state of the physical part may
not be consistent such that a new initialisation has to be computed. So a nested
loop of computations must be performed with frozen physical time until the overall
system has reached a stable and consistent state from which the simulation can be
continued.
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The localisation of state events inevitably leads to increased simulation times
because iteration or other additional computations are required. If the discrete part
contains timers which trigger transitions, it is advantageous to propagate this infor-
mation to the continuous simulator such that the simulation stops precisely at the
event time and an iteration is avoided. Finally, discrete-event formalisms require an
adequate visualisation of the simulation results using the graphical formalism itself
typically in the form of animation. The usual plots of variables over time are not
sufficient.

2.4 The State-of-the-Art

Some general-purpose commercial software tools exist for modelling and simula-
tion of hybrid systems. Among these, the MATLAB package with SIMULINK and
STATEFLOW is the most widely used tool (Matlab, 2002). In consideration of the
requirements postulated above one has to realise that the state of the art is not satis-
factory.

Block diagrams have a fixed causality and are not really intuitive to model large
systems. The use of block diagrams results in an abstract mathematical represen-
tation of the modelled system as shown in Fig. 1. This block diagram corresponds
to an electrical circuit, but it is not evident how it is related to the structure and to
the parameters of the circuit. Furthermore, if e.g. a voltage source is replaced by a
current generator many modifications are required in the overall model, since the
cause and effect relations have to be inverted in several locations. This poses serious
problems for the reuse of aggregated building blocks.
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Fig. 1. A block diagram

The STATEFLOW formalism is a variant of statecharts (Harel, 1987). Figure 2
illustrates this with a STATEFLOW model of a relay mechanism. Statecharts are an
intuitive and powerful formalism to model reactive behaviour and exist in many
slightly different flavours. But besides statecharts, many other formalisms, such as
High Level Petri Nets or GRAFCET, and programming languages, such as Sequen-
tial Function Charts, exist that have their specific strengths and can not be mapped
easily onto statecharts.
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Fig. 2. A stateflow diagram (screenshot)

3 The DES/M Approach

The proposed solution for the modelling and simulation of large, complex sys-
tems with continuous and discrete-event dynamics consists of two major elements.
The object-oriented equation-based modelling language MODELICA is used for the
modelling of the physical part and of the regulators. A newly developed software
tool for the modelling of discrete-event systems called DES/M (discrete-event sys-
tems for MODELICA) supports various formalisms (at present statecharts and SFCs)
and modular, hierarchical and heterogeneous models. The discrete-event part of the
model is automatically transformed into a MODELICA algorithm. Any simulator
that can process MODELICA code can then be used to solve the overall system. The
interaction of the continuous and the discrete part of the system is coordinated by
the event handling mechanism of the MODELICA solver.

3.1 Object-Oriented Modelling Using MODELICA

In object-oriented modelling, the model elements correspond to physical compo-
nents of the real system and the composition of the elements to the overall model
is in accordance with the physical structure of the system. The elements have undi-
rected interfaces and their behaviour is normally described declaratively. An ele-
ment can be a composition of other elements and it can contain equations for the
behavioural description. These equations need not to be solved explicitly for a par-
ticular variable. Another common feature of object-oriented modelling languages is
that the equations are processed symbolically. The overall mathematical model is
constituted by all the equations that describe the model elements and their connec-
tions. This usually leads to a large but sparse system of algebraic and differential
equations (DAE). By means of automatic symbolic manipulations this large set of
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equations is transformed into a sorted DAE where as many derivatives and algebraic
variables as possible are computed explicitly and redundant variables are removed.
This enables efficient simulation using standard integration methods.

The most prominent object-oriented modelling languages are MODELICA (Mod-
elica Design Group, 2000), VHDL-AMS (Heinkel, 2000) and gPROMS (gPROMS,
2002). MODELICA is best suited for our purposes because it is not tailored to a spe-
cific application domain, and it is standardised by a non-profit organisation, the
MODELICA Association, and freely available. Very important are the class concepts
of MODELICA that include class definition, object instantiation, partial classes, in-
heritance, and more, which facilitate the creation of model libraries. These features
are well known from object-oriented programming languages, but they are not al-
ways supported by object-oriented modelling languages. The meaning of the term
‘object-orientation’ depends on the context, here the essential property is the con-
struction of large models from building blocks which can be used freely because
they are formulated in a general, context-independent fashion. For MODELICA,
many free libraries exist for different domains such as electrical systems, rotational
and translational mechanics, multibody systems, and others.

For the definition and simulation of MODELICA models we use the commercial
software DYMOLA (Dymola, 2002). This tool provides a graphical editor for com-
position diagrams so that systems can be modelled visually. The graphical represen-
tation of the library components mimics conventional engineering notations. The
main reason to use DYMOLA, however, is the powerful symbolic engine that trans-
forms the set of equations into a form that can be solved efficiently. This permits the
simulation of very complex physical systems including hybrid phenomena (Otter
et al., 1999).

In Fig. 3 it is shown how simple it is to build a model of a hydraulic actua-
tor using given library components. The resulting model resembles the engineering
notation and can be aggregated to a new composed building block that can be incor-
porated into a library as well.

To illustrate how hybrid phenomena can be modelled in an equation-based declar-
ative style, consider an ideal electrical diode (Fig. 4). Due to the idealisation a sharp
discontinuity is introduced at u = 0. In order to achieve an equation-based descrip-
tion, the diode characteristic is parameterised by a parameter s so that u equals s if s
is less than zero, and i equals s if it is nonnegative. This results in the following set
of equations:

off = s < 0 (1)

u = if off then s else 0 (2)

i = if off then 0 else s. (3)

Due to this declarative formulation, the interaction of several diodes in an electrical
circuit needs not be modelled explicitly. The network behaviour is defined implicitly
by the composition of the component equations and of the connection equations
(Otter et al., 2000).
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Fig. 3. Modeling a hydraulic actuator using standard components
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Fig. 4. Ideal diode model described as parameterized curve

Basic discrete event formalisms can also be expressed in an equation-based fash-
ion, e.g. simple Petri Nets and automata (Mosterman et al., 1998). For instance, in
a Petri Net model, the places and the transitions are represented by components that
are defined in the corresponding MODELICA library. The graph structure is consti-
tuted by the connections of the ports of the components. Since each object and each
connection just add equations to the overall set of equations, the behaviour of a Petri
Net model is defined as the mathematical solution of the subset of equations given
by the Petri Net model.

Unfortunately, this object-oriented modelling technique is not suitable for the
modelling of complex discrete-event systems. The first reason is that the syntax
of composition diagrams based on blocks with ports is not powerful enough for the
graphical representation of complex formalisms such as statecharts. The second rea-
son is that certain semantic elements such as local iterations can not be represented
adequately by a set of equations. For instance, in certain statechart variants (Harel
et al., 1987) a step of a statechart, i.e., its reaction to external stimuli, is defined as
a sequence of micro-steps. Each micro-step consists of a set of concurrently taken
transitions. At a micro-step, the firing transitions may generate events that trigger
the transitions of the subsequent micro-step. In this manner a kind of event iter-
ation is performed that ends when no further transitions are triggered (improper
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statecharts may result in infinite iterations). Micro-steps are considered just as an
internal mechanism to compute the reaction of a statechart so that the micro-steps
should be hidden from the environment of the statechart. Therefore, an adequate
realisation would use this operational semantics to generate the behaviour of a stat-
echart and omit an interleaved execution with the physical system. Unfortunately
this is not possible with an equation-based realisation, since the equations of a stat-
echart would have to be solved simultaneously with the equations of the physical
system. Thus, each micro-step would be connected to the evaluation of the overall
set of equations so that side-effects possibly can take place in the physical system.

3.2 A Compatible Modelling Environment for Discrete-Event Systems

For the reasons stated above, the DES/M modelling environment has been devel-
oped that provides dedicated editors for several discrete-event formalisms and al-
lows to insert the discrete-event models consistently into the overall model. By this
approach the restrictions on semantics, syntax and graphical appearance are circum-
vented, and the object-oriented modelling principles for continuous systems are not
enforced in a domain where they are not appropriate. By suitable transformations,
the models of the discrete-event part can be inserted into the overall MODELICA

model and can be solved using standard techniques for the manipulation and the
numerical solution of continuous systems.

For the definition of the discrete-event part of the models, there are two differ-
ent possible options. The first is to compose the model from discrete-event building
blocks, the behaviour of which is specified declaratively based on equations, simi-
lar to the procedure that is followed for the continuous part. However, these blocks
would have to be quite complex because a large number of interacting variables may
be required. Therefore the blocks should not simply be merged but a code optimisa-
tion step should be performed. Thus there would be two transformations before an
executable model is obtained; first the transformation of the individual blocks into
MODELICA code, then the construction of the overall model. The second approach
is to construct the discrete-event part of the model completely on the graphical level
using the chosen formalisms and the respective graphical editors, and then to per-
form an automatic translation into a single MODELICA-algorithm and to wrap it into
a MODELICA class. We prefer the second approach. For reasons discussed above,
all discrete-event subsystems that interact directly via events or messages must be
represented as a monolithic block in an imperative fashion. The transformation of
the complete system into an algorithm leads to a clear structure – first an overall
discrete-event model is composed from subblocks that can be structured hierar-
chically and may even be defined using different formalisms, e.g. statecharts and
SFCs, and then the transformation into an algorithm is performed following clearly
specified semantics. Actually, in the end a problem specific discrete-event simula-
tor is inserted into the MODELICA model of the physical system. This MODELICA

component can be easily connected to physical components because it interacts via
standard ports.
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The main advantage of using a MODELICA-algorithm is that the handling of the
state events is done by MODELICA automatically. The MODELICA compiler dis-
covers all potential sources of discontinuities in the algorithm and makes sure that
discontinuities are handled appropriately, i.e., when a threshold is reached and a dis-
crete state transition or any other discontinuity occurs, the integrator will be stopped
in order to perform the discrete changes. If the discrete-event model would be sim-
ulated by an external program, the conditions that trigger the state transitions in the
discrete-event model still would have to be inserted into the MODELICA model in
order to stop the continuous simulation when the discrete-event part causes state
events. If the discrete system is specified in a different environment, this task has to
be performed manually by copying the transition conditions or guards and invari-
ants, which is tedious and error-prone. In contrast, the DES/M environment generates
automatically a complete MODELICA simulation algorithm for the discrete system
parts from the graphical specification.

The modelling environment supports heterogeneous and hierarchical discrete-
event models by means of a special block editor. Model-reuse is enabled using
an archetype concept, i.e., each block that is used in a model is an instance of an
archetype that defines the ports and the general properties of the block type and one
or several alternative implementations. These implementations define the behaviour
of the instantiated blocks and can be specified using again block diagrams or another
formalism.

In order to reduce the effort for the implementation of several editors, the DES/M

environment is based on the meta-modelling tool DoME (DOME, 1999). DoME
was designed as a tool for the automatic generation of complex graphical editors
based on a formal syntax description and parameters that control the graphical ap-
pearance. A partially graphical language called DoME Tool Specification Language
is used for specifying the graphical entities, their properties and relations, struc-
tural constraints as well as their visual appearance. More advanced features such as
more complex syntactical constraints and code generation can be implemented with
DoME’s Lisp-like extension Alter or using Smalltalk. Besides the block diagram
editor, up to the present, two further editors have been realised: a statechart (SC)
editor and an editor for sequential function charts (SFC) (Deparade et al., 2001).

3.3 Formalism Interoperation via Special Block Diagrams

As already mentioned, a special hierarchical block diagram formalism has been im-
plemented for supporting the interoperation of different formalisms. The main idea
is rather straightforward: Certain blocks of a block diagram may contain either an-
other block diagram or a reactive model that is specified with a state transition for-
malism such as statecharts or sequential function charts. Consequently, it is possible
to use different formalisms within one model.

The idea to use a block diagram formalism arose from the modelling of the air-
craft elevator described in detail in (Mosterman et al., 2002). The main feature of
this control system is that 8 concurrent state machines, each modelled by a state-
chart, interact tightly in order to achieve a safe configuration of the redundant el-
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evator actuators when failures occur. The statecharts have the same structure and
their transition conditions are large logical expressions that reference the states of
the other statecharts and the failure signals. The goal of the block diagram formal-
ism was to separate the large and complex logical expressions from the statecharts,
so that the statecharts become identical (and clearer) and can be instantiated from
the same class. Therefore, the block diagram formalism distinguishes static blocks
that are depicted with a dashed border, from dynamic blocks that have a solid border
(Fig. 5).

Fig. 5. A sample block graph

A static block contains an algorithm or just a set of assignments and is used to
compute the current output values yi directly from the current input values ui of the
block. Hence the behaviour of a static block can be represented by a function:

yi = fstat (ui) (4)

Such a static block is applied to, e.g., the computation of the logical expressions of
the redundancy controller.

The dynamic blocks have internal state variables xi and a quasi-synchronous
semantics is applied, i.e., the blocks are evaluated synchronously, but without si-
multaneous data exchange:

xi = fdyn (xi−1,ui) , (5)

yi = gdyn (xi−1) . (6)

The state transition function fdyn and the output function gdyn impose an iterative
computation scheme for the block graph such that the response of such blocks to
new changes of the inputs becomes effective in the next iteration step. As long as
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the outputs of these blocks are changing, all blocks have to be reevaluated syn-
chronously. This quasi-synchronous semantics is analogous to the internal compu-
tation of statechart behaviour: if a statechart contains orthogonal parts (modelled
with and-states), the consequences of concurrently and independently taken transi-
tions of a micro-step, i.e., events and the new states, only become effective in the
subsequent micro-step. Thus, in the DEFORM approach, local event iterations are
not only performed inside of the statecharts, where a step can be computed by a
sequence of micro-steps, but also on the block diagram level.

Further elements in Fig. 5 are the outer ports that represent the interface of the
block diagram to the higher level (P1, P2, P3) and the ports of the blocks (a, b,
c, d). Each port has an associated port type that defines the structure of the data
transmitted through the respective port. This data-structure can be hierarchical and
may contain different basic types such as Real, Integer and Boolean.

At a higher level, the block diagram in Fig. 5 is itself a dynamic block with ports
P1, P2 and P3. The state of this enclosing block is the Cartesian product of the states
of the dynamic blocks B and E. For the computation of the state transition function
of the enclosing block an iteration at the level of the inner block graph (Fig. 5) is
started during which the following constraints have to be satisfied at each iteration
step:

A.ai = P1
B.bi = P2
E.ai = D.ai = C.ai = B.di = gB (B.xi−1)
D.bi = E.bi = gE (E.xi−1)
A.bi = fA (A.ai)
C.bi = fC (C.ai)
D.ci = fD (D.ai, D.bi)
B.ai = A.bi

B.ci = D.ci

B.xi = fB (B.xi−1, B.ai, B.bi, B.ci)
E.xi = fE (E.xi−1, E.ai) .

(7)

After this iteration has converged to a stable state, the outputs P3 of the enclosing
block are updated and the computation of the transition function of the enclosing
block is finished.

It should be noted, that for a specific block it does not make a difference whether
its behaviour is specified as a block diagram or as a statechart, since both formalisms
are transformed into a state transition function that hides the inner processes. Hence
arbitrary other reactive formalisms and communication paradigms can be incorpo-
rated as well, as long as they can be transformed into a compatible state transition
function.

3.4 The Modelling and Simulation Process

The approach described above leads to a tool architecture that consists of two main
cooperating tools: DYMOLA is used for physical system modelling, whereas the
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DES/M environment is used for modelling discrete-event systems (Fig. 6). By means
of the editors for the various discrete-event formalisms, the complete supervisory
control system is described. Then it is compiled into a MODELICA class that is
stored in the file system so that it can be retrieved by DYMOLA and instantiated in
the model of the physical system. The MODELICA classes created in DYMOLA are
stored in the file system as well. For simulating the overall model, the correspond-
ing class has to be compiled into an executable. The transformation of the set of
equations into a preferably explicit representation is performed automatically. The
simulator executable generates the trajectory for a given set of parameters that can
be changed without the need to recompile the model. Every time when the supervi-
sory controller has to react, the integrator stops because a state event is generated
due to inequality expressions in the MODELICA-algorithm. The execution of the
algorithm at these times realises a discrete state transition and the corresponding
change of the outputs. The internal processes during such a state transition do not
become visible to the model of the physical system, but they are saved in a log file.
This permits the visualisation of the internal processes of the discrete-event model
in the DoME tool for debugging purposes.

DESFORM

block-editor

SC-editor

SFC-editor

others...

DYMOLA

graphical &
textual

editor

Modelica-
compiler

plot

Modelica-
models

simulator

trajectories discrete state
transitions

physical
components

discrete-event
systems

Fig. 6. The modeling and simulation process using two tools

4 Realising Discrete-Event Dynamics in MODELICA

A discrete-event model that was composed within the DES/M environment is trans-
lated into a MODELICA component that contains one algorithm for the computation
of the reactions of the corresponding supervisory controller. This algorithm is a
simulator for the specific discrete-event model and is possibly very complex. In the
following, two simple examples are discussed in order to illustrate how the continu-
ous integration and the discrete-event dynamics are combined using the MODELICA



98 Remelhe, Engell, Otter, Deparade, Mosterman

language. The actual code generation is intricate, in essence it is the realisation of
the operational semantics of the formalisms supported by DEFORM using the MOD-
ELICA language.

4.1 Models with State Events

The synchronisation of the discrete-event dynamics and the continuous integration
is straightforward (Pereira Remelhe et al., 2001). To illustrate this, consider a simple
supervisory controller that fills a tank up to a certain level h_high, after a specific
low level h_low was reached. For safety reasons, an additional limit sensor is in-
stalled that indicates whether the tank is full. This controller has two input variables:
the current level h and the binary signal limit_h_full, as well as a binary out-
put variable v for the inlet valve. The corresponding discrete-event dynamics can
be described by a model with two states S1 and S2, and two Transitions T1 and
T2 (Fig. 7). An algorithm that exhibits the desired behaviour can be formulated as
follows:

T1_fires := pre(S1) and (limit_h_full or(h>h_high));
T2_fires := pre(S2)and (h<h_low);
S1 :=(pre(S1) and not T1_fires) or T2_fires;
S2 :=(pre(S2) and not T2_fires) or T1_fires;
v := S1;

Such an algorithm corresponds to a state transition function that maps the pre-
vious controller state xprev = {pre(S1),pre(S2)} and the current input vari-
ables u = {h,limit_h_full} into the new state xnew = {S1,S2} and the current
output variables y = {v}. During the continuous integration this algorithm is exe-
cuted simultaneously to the evaluations of the complete set of equations, but all state
variables and outputs remain constant, since the inequality expressions are fixed. If
the state S1 is active, in the algorithm pre(S1) is true and pre(S2) is false.
Therefore only the first logical expression can become true, and, consequently, only
the inequality expression (h>h_high) needs to be monitored during continuous
integration. When this expression becomes true, the integrator is stopped and the
whole set of equations including the algorithms is re-evaluated including the un-
fixed inequality expressions. Now the value of T1_fires becomes true, S1 be-
comes false, S2 becomes true, and v becomes false, i.e., the state changes from
“filling” to “waiting”. In a second discrete evaluation only the transition variable
T1_fires becomes false again, since pre(S1) is now false. Because the dis-
crete state variables did not change this time, the integration is started again. Now
(h<h_low) is monitored.

4.2 Models With Time Events

As an alternative, the limit sensor could be replaced by a time-out corresponding
to the known maximum duration of the filling process. This idea is realised in the
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S1: filling
v:=open

S2:waiting
v:=closed

T1: limit_h_full or (h>h_high)

T2: h < h_low

Fig. 7. Discrete-event model using only
state events

S1: filling
v:=open

S2:waiting
v:=closed

T1: (time>t_max) or (h>h_high)

T2: (h < h_low)
     /  t_max:= time + maxDuration

Fig. 8. Discrete-event model using state
events and time events

diagram shown in Fig. 8. When the transition T2 is taken, an action is performed
that assigns a new value to the variable t_max that stores the point in time, when
the state S1 has to be left. Additionally, the transition T1 makes sure that the filling
activity stops when this time elapses. A corresponding algorithm is as follows:

T1_fires := pre(S1) and ((time>pre(t_max)) or
(h>h_high));
T2_fires := pre(S2) and (h<h_low);
t_max := if T2_fires then time+maxDuration else
pre(t_max);
S1 :=(pre(S1) and not T1_fires) or T2_fires;
S2 :=(pre(S2) and not T2_fires) or T1_fires;
v := S1;

Hence, an additional state variable t_max is needed that, in contrast to the other
state variables, is a real valued variable. If the controller is in state S1 the inequality
expression (h>h_high) has to be monitored in order to generate a state event, but
as long as the choice of t_max is correct, the expression (time>t_max) is used
to generate a time event and the simulation stops exactly at the corresponding time
without the need to localise a state event.

5 An Illustrative Application Example

To illustrate how the DES/M environment can be applied, a model of a laboratory
batch plant is presented that incorporates hybrid physical dynamics and a supervi-
sory controller. The plant is a slightly simplified variant of one of the benchmark
examples in this volume and was already described in (Kowalewski and Preußig,
1996). The physical part of the plant has been modelled in an object-oriented and
equation-based fashion using the MODELICA language. A library has been devel-
oped that provides the classes Valve, Pump, Condenser, Sensor and 4 different types
of tanks. These were graphically composed in the DYMOLA tool resulting in a pro-
cess flow chart (Fig. 9) that resembles the graphics of a standard piping and instru-
mentation diagram.

The supervisory controller model is also included in the plant model, but the
sensor objects and the actuator objects are not connected visually to the controller
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component inputs or outputs respectively, in order to keep the model clear. Instead,
on the top level of the model, additional equations are used that relate the current
values of the sensors to the input variables of the input port of the controller, e.g.:

controller.sensors.LIS_101 = LIS_101.value;

or that relate the input signals of the actuators to the outputs signals of the controller,
e.g.:

V1.open = controller.actuators.V1;

Fig. 9. The MODELICA model of the batch plant

The DES/M environment generated the MODELICA class of the supervisory con-
troller from a graphical specification that includes sequential function charts (SFC)
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and the block graph formalism. Figure 10 shows the overall structure of the con-
troller model. The objective of this controller is to run 2 recipes in parallel on the
plant. As a rudimentary means of coordination, the idle tanks are determined from
the sensor and actuator values using simple logical expressions such as:

idleTank.T7_idle := (sensors.LIS_701<=0.001) and
not(actuators.V15) and not(actuators.V18);

This means that a tank is idle if the tank is empty and the connected actuators are
passive. Since both recipes drive the same actuators, their outputs have to be super-
posed. This can be realised by simple logical expressions that activate an actuator,
if one recipe (or both recipes) set this actuator active, e.g.:

actuators.V1 := act1.V1 or act.V2.

Fig. 10. The top level block graph of the controller

These logical expressions were entered as static blocks. The only dynamic dis-
crete-event behaviour results from the recipes that are contained in the dynamic
blocks. Both recipe blocks run the same recipe and only differ in their parameters
such as the start time. Therefore, both recipes are described by the same SFC, see
Fig. 11. When the start time of a recipe elapses, an infinite loop is started where a
concentrated salt solution of tank T1 is drained into tank T3 and then mixed with
pure water from tank T2 until a certain concentration w_dilution is obtained.
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Fig. 11. The sequential function chart of the recipes
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This dilution is buffered in tank T4 and then concentrated in the evaporator T5 up to
a certain concentration w_concentrate. The condenser and the cooling in tank
T6 are started at the same time at which the electrical immersion heater of T5 is
started. When the evaporation is stopped, the recipe splits into 2 parallel threads in
which the concentrate is drained into tank T7 and cooled and then fed back to tank
T1, and the condensate in tank T6 is cooled and fed back to tank T2. Then the recipe
returns to the first step and repeats this procedure.

In order to omit redundancies in the model, types were declared for ports and
blocks. A port type defines which variables are transmitted through a port and their
numerical types (Real, Integer, or Boolean). In this example, only three port types
are needed: Sensors, IdleTanks, and Actuators. Each port in the model must have
an assigned type and connected ports must have the same type. The connections are
checked automatically before the translation to MODELICA.

Since all recipes in this controller framework must have the same interface, an
archetype is defined for the recipe blocks. Figure 12 shows the interface of the
archetype in the centre. The interface defines the ports and their port types for all
possible recipe blocks. In the upper right region of the window, both instances of
this archetype are enumerated corresponding to the blocks of Fig. 10. In the lower
right region, the behaviour specifications that are possible implementations of this
archetype are listed. In this case only one SFC is given. But more SFCs can be spec-
ified for the usage of different recipes. In principle, also statecharts and block graphs
are possible as implementations of a recipe block.

Fig. 12. The Shelf Browser in DOME with the archetype for the recipe blocks
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After finishing the overall controller model, the MODELICA class can be gener-
ated automatically by selecting a corresponding item from a pull down menu. The
MODELICA class contains a data structure that corresponds to the structure of the
controller and an algorithm that defines the behaviour. This class can be instantiated
in the plant model just like all other components. For simulation, the MODELICA

model is compiled with DYMOLA resulting in a simulator executable. The model
parameters can be changed conveniently for each simulation run without the need
to recompile the model. This includes also the parameters of the controller such as
the start times and the concentration parameters of each SFC. Thus, parameter stud-
ies can be performed efficiently. Figure 13 shows the plot of the mass hold-up of the
evaporator as it results from a simulation run. From this plot one can conclude that
the alternating recipes operate the evaporator at full capacity, i.e., there are no gaps
where the evaporator is waiting for the next batch.

Fig. 13. A plot of the mass hold-up of the evaporator T5

6 Conclusions

The different nature of physical systems and supervisory control systems leads to
two distinct sets of requirements for an integrated modelling and simulation method-
ology. In this work, the physical part of a system is captured by the object-oriented
modelling language MODELICA is used, and for the discrete-event parts the DES/M

environment has been developed.
MODELICA permits a very intuitive modelling of physical systems even if they

include hybrid phenomena, and meets the demands for object-oriented modelling
and effective and efficient simulation. The DES/M environment provides dedicated
editors for domain specific discrete-event formalisms (and programming languages),
and supports heterogeneous models including hierarchical structures and interoper-
ation.
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The connection of both parts of a model is done by translating the complete
discrete-event model into a MODELICA algorithm that is wrapped in a MODELICA

class. This is advantageous in several respects:

• both modelling environments are integrated seamlessly,
• the operational semantics of discrete-event formalisms can be formulated in an

arbitrary way and this semantics is realised without any disturbance by the in-
teraction of the continuous and the discrete part of the model or the solution
algorithm of the continuous part (e.g. the step size of the integrator is indepen-
dent of the execution of discrete transitions which occur at frozen simulation
time),

• state events are accessible from the discrete-event part.

The latter point is crucial for an accurate synchronisation of continuous integration
and discrete-event simulation.

At present, a first prototype of the DES/M environment is available. The current
work aims at the improvement of the translation framework towards a more general
approach and on the automatic support for graphical data visualisation. Then more
formalisms will be implemented. Since MODELICA is based on algebraic and dif-
ferential equations also other hybrid formalisms such as hybrid Petri Nets can be
considered.
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Abstract. Safety critical systems such as aircraft require functional and hardware redun-
dancy to achieve prescribed safety levels. Discrete event control is applied to ensure that a
safe system configuration is available at all times. Since, at present, formal verification tech-
niques are restricted to models with few continuous states, in this paper, simulation is used to
verify that the overall system operates according to the requirements when an actuator fail-
ure occurs. The feasibility study to modelling and simulation of complex controlled systems
presented here is characterised by (i) a complex object-oriented model of aircraft dynamics,
including gravity, aerodynamics, etc., (ii) the specification of the discrete event redundancy
control by a domain specific formalism that includes statecharts, (iii) the usage of energy
based hybrid bond graphs to model the dynamics of the hydraulic actuators, (iv) model inte-
gration on the model level as well as on the data level, (v) support of DAEs with dynamically
changing index and (vi) illustrative simulation results.

1 Introduction

Redundancy is one of the most important techniques to achieve the desired level of
safety in systems such as aircraft, nuclear plants, chemical plants, and other safety
critical applications. Its basic premise is to include redundant functionality into a
system that can be activated when failures of the normal operating components oc-
cur and to validate and select normal behaviour (e.g., voting procedures).

1.1 Aircraft Attitude Control

To illustrate the concept, consider the primary (attitude) control surfaces of an air-
craft as shown in Fig. 1. The ailerons are used to control roll, the elevators control
pitch, and the rudder controls yaw motion. This paper concentrates on the pitch con-
trol, performed by the elevators. Each of the elevators is positioned by one of two
actuators, the other one operates as a passive load. Discrete-event control embed-
ded on two primary flight control units (PFCU) selects the controlling actuator and
ensures that the redundant actuator is loading. Each PFCU controls one actuator
per elevator, so that both elevators can be controlled, even if one PFCU fails com-
pletely. The PFCUs also generate the position control signals for the four actuators.
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elevators

aileron

aileron
rudder

Fig. 1. Primary control surface of an airplane

Feedback control is used for normal operation whereas so-called direct link con-
trol is applied to single actuators in the case of certain failures. To ensure minimal
transient disturbances caused by actuator switching, the loading actuator should be
shadowing the control signals ready to switch to a mode where it actively controls
the elevator. However, in some extreme cases the actuator may be disengaged, i.e.,
it is loading but not shadowing. Thus, each PFCU has to decide for two actuators
whether an actuator is disengaged, shadowing, or controlling and whether a feed-
back or a direct link controller is used for shadowing or controlling. These decisions
depend on the mode of the other actuator, the state of the other PFCU and the de-
tected failures. The best possible consistent state configuration of both PFCUs for a
given failure situation is achieved by a complex iterative interaction of both PFCUs.

The hydraulic actuator design and the controller parameters may influence the
overall behaviour of the aircraft significantly. Therefore, all contributing parts and
phenomena of the aircraft such as aerodynamics, gravity, engines, etc. have to be
considered in order to assess the design of the elevator control system. Because
of the immense complexity and the intricate redundancy management model-based
validation is required.

Formal verification techniques are widely used for pure discrete-event systems
and much research has been carried out recently on the verification of hybrid sys-
tems. However, at present, the complexity of systems amenable to hybrid systems
verification techniques is restricted to a low order continuous dynamics (typically
not more than three continuous state variables) (Benedetto and Sangiovanni-Vincen-
telli, 2001, Lynch and Krogh, 2000, Vaandrager and van Schuppen, 1999). Conse-
quently, formal methods are applied to the discrete-event part only, e.g., a so-called
Failure Mode Effect (FME) analysis is employed to verify certain safety and reli-
ability properties of the redundancy management system. However, its interaction
with the continuous parts as well as the design of the position controllers and the
hydraulic actuators can not be evaluated with formal verification techniques. There-
fore, the only practical model-based approach for this task is to perform extensive
simulation studies.
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1.2 Model Design

In this contribution, we concentrate on the modelling and simulation of the elevator
control system and the aircraft. The model formulation is driven by the assumption
that the simulation studies have the purpose to assess whether the design of the eval-
uator control system meets the requirements with respect to the overall behaviour of
the aircraft (e.g., lateral and longitudinal aircraft velocity and flight path angle). In
particular, different sets of parameters of the controllers and of the hydraulic actua-
tors have to be tested in combination with certain failure scenarios.

As a consequence, the simulation model has to incorporate a realistic model of
the aircraft dynamics, including all essential effects and components such as aerody-
namics, gravity, engines, and hydraulic oil supply. In order to automatically generate
the correct Boolean input signals of the feedback controllers and the actuators de-
pending on the sequence of failure events it is convenient to include at least the
input-output behaviour of the redundancy management components. Since the sam-
pling times of the PFCUs are very fast in comparison to the bandwidth of the actua-
tors, the hardware aspects of the PFCUs can be neglected, i.e., the redundancy man-
agement model reacts instantaneously on failures and the controllers are modelled
as ideal continuous controllers. Another idealisation is introduced for the hydraulic
actuators. There are many small physical effects such as oil elasticity, viscosity, and
fluid inertia which do not influence the overall dynamics significantly, but consid-
erably increase the modelling effort, so that these effects are not considered in the
corresponding models.

These basic model design decisions cause several difficulties for the modelling
and the simulation. With respect to modelling, the complexity of the systems and
their heterogeneous nature mandates the use of dedicated formalisms. These for-
malisms differ greatly in their visual representation and require the interoperation
of specific and powerful modelling environments.

Present day simulation technology, on the one hand, can handle large systems
of differential and algebraic equations (DAE), possibly extended by some discon-
tinuous equations (ABACUSS, 1995). On the other hand, discrete-event simula-
tors apply an event driven approach to manage the huge number of state changes
in discrete-event models (Group, 1999). The combination of discrete and continu-
ous behaviour requires the integration of a numerical integrator with some sort of
discrete-event simulation. Especially, the detection and location of discrete events
during continuous integration has to be supported. Furthermore, at event times dis-
continuities in continuous state variables may occur. For the aircraft model, this
phenomenon emerges because the abstractions in the hydraulic actuator models re-
sult in a DAE with dynamically changing index. This requires a special simulation
engine that switches the active equations and automatically reinitialises the state
variables according to physical conservation laws, when the index changes. This
contribution presents techniques that cope with all these problems.
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1.3 The Modelling and Simulation Approach

For the components of the physical system we use object-oriented modelling. In
this context, the term object-oriented modelling means that every physical object
is modelled independently without making assumptions about its environment and
preserving the physical connection structure of the object. The connections of a
model component have to correspond to physical interactions the computational
causality of which is not fixed a priori, i.e., the variables involved in an interac-
tion are not a priori defined as inputs or outputs. Furthermore, the behaviour of the
component should be defined in a declarative way where a set of (possibly implicit)
equations is regarded as a set of behavioural constraints rather than as a calculation
formula. To illustrate this, let us consider a hydraulic line. The component model
of the line would have two connections which each incorporate a pressure and a
flow variable. These variables represent neither inputs nor outputs, since depend-
ing on the structure of the environment the pressure drop causes the flow or the
flow causes the pressure drop. In some cases the causality can even change dynam-
ically so that a quantity that would be regarded as an input in signal flow diagrams
becomes an output and vice versa. This is why the equation-based behavioural de-
scription is inherent to object-oriented modelling. Using equations (which may be
written in an implicit style) for the description of the behaviour does not impose
a specific calculation scheme. From the modelling perspective the equations of all
model components and all connections of the overall aircraft model simply form a
global set of differential and algebraic equations (DAE) so that simulation is the task
to find a solution to these equations, i.e., functions over time that satisfy the equa-
tions. To generate efficient simulation code, the model equations must be processed
by a symbolic engine and compiled into executable code.

The existing DAE based modelling languages such as gPROMS (Barton, 1992),
VHDL-AMS (Heinkel, 2000, Christen, 1997), and MODELICA (Modelica Design
Group, 2000) differ in many aspects. This work utilises an aircraft library (Moor-
mann et al., 1999, Moormann, 2001) developed using MODELICA which allows
to build domain-specific graphical component libraries and supports many features
known from object-oriented programming such as inheritance, packages, etc. For
the modelling and the symbolic processing task DYMOLA (Dymola, 2002) was
used. It provides a graphical user interface for model composition. The symbolic
engine of DYMOLA generates C-code from a MODELICA model. Then a standard
C-compiler generates the executable simulation code.

This configuration is already powerful enough to model most parts of the air-
craft and to simulate the resulting complex DAE system including certain discon-
tinuities (a so-called ‘hybrid DAE’). However, for simulating DAEs with dynam-
ically changing index, the current symbolic engine of DYMOLA (version 4.1d) is
too limited. Therefore, a specially developed environment, HYBRSIM (Mosterman
and Biswas, 1999), which is based on hybrid bond graphs (Mosterman and Biswas,
1995) was used to model the components with variable index, i.e., the hydraulic ac-
tuators. The C-code generated by the two environments, DYMOLA and HYBRSIM
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was then merged manually and simulated using a general purpose hybrid dynamic
system simulator MASIM (Mosterman, 2001).

The purely discrete-event parts of the elevator control, i.e., the redundancy man-
agement, are modelled by a domain-specific formalism including statecharts. It
will be shown that the syntax and the semantics of the object-oriented modelling
paradigm is not well suited to represent the objects of such a formalism. Instead, a
separate modelling environment has been implemented which supports this formal-
ism and generates a monolithic MODELICA component that can be integrated into
the MODELICA aircraft model .The behaviour of this component is defined by an
algorithm that is interpreted by MODELICA as an additional model constraint, i.e.,
it is equivalent to one equation with multiple input and output variables. In contrast
to the other parts of the model the causality of the interface variables and the calcu-
lation scheme of the resulting object are predetermined. While the actuator model is
integrated on the data level, the redundancy management model is integrated on the
model level.

Section 2 presents a system level view of the elevator redundancy control. Sec-
tion 3 discusses the different parts in detail and presents the respective models. Sim-
ulation results are given in Sect. 4. Finally some conclusions are drawn in Sect. 5.

2 Aircraft Elevator Control System

The aircraft elevator control system includes several forms of redundancy (Seebeck,
1998). The system itself consists of two elevators, the control surfaces. Each of these
are controlled by one of two hydraulic actuators while the other one is operating as a
passive load. The four actuators take their power from three hydraulic subsystems as
depicted in Fig. 2. Two primary flight control units are available to compute actuator
control signals and modes.
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Fig. 2. Elevator system
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The functionality of each actuator is specified in textual form in terms of a num-
ber of module actuator control modes (MACM) all with their specific behaviour
characteristics. These are defined in Table 1. Note that the MACM definitions in-
clude behavioural information along with structural information about the particular
mode of operation of the actuator components.

Table 1. Module actuator control modes

MACM Description Actuator Actuator

Servo valve Spool valve

active The module controls the servo valve in closed
loop mode. The corresponding actuator is active
and controls the elevator movement.

controlled open

hot and
standby

The module controls the servo valve in closed
loop mode. The corresponding actuator is not
active and operates as a load.

controlled closed

passive The module is waiting and does not generate ac-
tuator control signals. It can change its mode at
any time to take on control of the corresponding
actuator.

not controlled closed

off The module is turned off temporarily because
of an intermittent failure and does not generate
actuator control signals. As long as the failure
has not been fixed, it cannot change to a mode
where it controls the corresponding actuator.

not controlled closed

isolated The module is turned off indefinitely. A persis-
tent fault in the control loop of the correspond-
ing system isolates the module and it cannot
change to a mode where it controls the corre-
sponding actuator.

not controlled closed

The discrete outputs of the redundancy management system are transformed
into physical behaviour by means of a spool valve and a servo valve in the hydraulic
actuator. Power is supplied by one of the hydraulic systems and delivered to the ac-
tuator cylinder that positions the elevator. This flow of energy is modulated by the
servo valve, the modulation is computed by a PID feedback control law. The control
signals for the actuators are generated by two primary flight control units (PFCU)
that can operate as input-output modules (IOM) or as direct-link modules (DLM)
controlled by a switch in the control law. The IOMs calculate setpoint values for the
actuators based on a PID control algorithm and monitor a number of critical system
variables and change between the modes in response. The DLMs allow limited but
direct control of the actuators in case the IOMs are not available. The control mod-
ules can be in different modes for each of the actuators separately. Moreover, they
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may control other aircraft actuators as well. In addition, the servo valve may not be
controlled and its piston then is in a default position. Also, the spool valve can be
turned on and off to switch between active control and passive loading. Continu-
ous feedback control drives the elevator to its desired setpoint, while higher level
redundancy management selects the active actuator and the control law to be used.

Interaction between the actuator and the aircraft model consist of forces and
moments acting on the elevator that is stiffly connected to the actuator positioning
cylinder as well as the pressure generated by the hydraulic systems. Three hydraulic
systems supply the oil for the actuators shown in Fig. 1. When a failure occurs,
the redundancy management switches between actuators and oil supply systems to
achieve maximum control.

The behavioural redundancy requirements may be formalised by a set of rules
for the redundancy management to switch between module actuator control modes
as follows (Seebeck, 1998):

1. Mode changes only occur when
– a system failure is detected, or
– control of an uncontrolled elevator is requested, or
– one module requests control of both elevators which are controlled by sep-

arate modules.
2. One module should be simultaneously in either active, hot, or standby for both

elevators as long as possible.
3. If not overruled by the previous specification, the module priority is such that

the switching sequence is IOM2/1→ IOM1/1→ DLM2→ DLM1.
4. There is always one and only one module that controls one elevator, i.e., that is

active.
5. In case of a failure of the controlling module, control is assumed by a module

that is hot or standby. If no module is in this mode, the one with highest priority
that is passive assumes control.

6. A module switches to hot when the other module that controls the same eleva-
tor, and, therefore, is active, belongs to another PFCU and both elevators are
controlled by IOMs.

7. A module switches to standby when the other module that controls the same
elevator, and, therefore, is active, belongs to another PFCU and one of the ele-
vators is controlled by a DLM.

8. In case of pressure failure, the ‘low pressure’ signal only serves for fault classi-
fication. It does not cause a direct mode change.

9. In case of ‘low pressure’ and if a sensor detects an elevator positioning system
failure, the module switches off. The module switches back to passive only
when no system failure is reported and the ‘low pressure’ condition does not
hold anymore.

10. If ‘low pressure’ is not reported and the elevator positioning system is reported
to fail then the module switches to isolated.

To prevent nondeterministic switching, priorities are assigned to the possible tran-
sitions. Because of the critical nature of switching to the isolated mode to prevent
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damage to the system, this transition has the highest priority. In addition this causes
another module to immediately assume control. This is also desired when, e.g., a
pressure loss is detected and the module switches off. Therefore, the corresponding
transition has second highest priority. Another decision criterion is to allow mod-
ules to take over control as quickly as possible. As a result, modes that implement
as much control as possible should have highest priority. So, when a module can be
switched active this should be immediately executed rather than first switching to
standby if this transition is also enabled. This yields the following priorities:

1. Transition to isolated
2. Transition to off
3. Transition to active
4. Transition to hot, standby, and passive.

Sensors in the elevator control system provide the PFCUs with information about the
functioning of the system. In case of abnormal readings, the entire set of measure-
ments is used to infer a particular failure mode. Details of this inference mechanism
are beyond the scope of this paper. To test the redundancy management, failure
mode effect (FME) analysis investigates the availability of the system for several
test cases that embody a set of sensor readings:

• Pressure decrease in the hydraulic system (H1, H2, H3)
• Predefined set of failures (F)

– IO module failure (1, 2)
– DL module failure (1, 2)
– Actuator failure (left inner/outer, right inner/outer).

These failures represent abstractions of actual physical phenomena underlying the
failure detection. FME is still the most important step in verifying system safety and
reliability of discrete-event control (Mai and Schröder, 1999, Osder, 1999).

The combined discrete redundancy management for two of the four actuators
on each of the four modules results in eight redundancy modules. This adds up to a
considerable discrete behavioural complexity. Each module consists of six possible
local modes and there are eight such modules. Thus, the total number of modes of
the redundancy management control is 48. There is always one and only one active
state in each of the discrete-event models. But, because of the redundancy specifi-
cation, each of the models needs to have information about the mode of each of the
other ones. This interaction is based on the MACMs and causes logic connections
between each of the actuator control modules. Finally, an additional discrete-event
model is used to model possible fault scenarios by activating states that correspond
to particular failure modes. This model has eleven states.

3 Modelling the Parts of the System

The elevator control system described in Sect. 2 contains a number of parts that are
best captured by different modelling approaches: (i) the aircraft dynamics, (ii) the
redundancy control, including control law switching, and (iii) the actuator switching
behaviour.
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3.1 Aircraft Dynamics

To investigate the effect of actuator switching on the overall flight characteristics
such as nick rate (q) and angle of attack (α), an aircraft model is required. The more
realistic this model, the higher is the probability that the analysis results also hold
for the actual implementation on the aircraft.

Object-Oriented Modelling. The design of a realistic aircraft model is a tremen-
dous task that combines several domains within aircraft design such as (i) aerody-
namics, (ii) gravity, atmospheric, and wind models, (iii) engine/thrust models, (iv)
rigid body models including the effects of fuel consumption, and (v) systems models
for primary (attitude) control.

Traditionally, such complex aircraft models are written in a computer process-
able format such as, e.g., FORTRAN, and they are completely integrated with facili-
ties for behaviour generation, e.g., the numerical solver. This, however, renders the
models unwieldy, error-prone, and rather costly to implement and update.

Recently, a more structured approach to aircraft modelling has been developed
based on object-oriented modelling techniques and the use of libraries of the domain
specific components mentioned before (Moormann et al., 1999, Moormann, 2001).
Object-oriented modelling techniques rely on the notion of encapsulation to hide
the details of physical component models and to increase maintainability. Further-
more, the models are organised hierarchically which allows successive refinement
of behaviours at increasing levels of detail.

Graphical Syntax. Figure 3 shows a top-level view of the aircraft model with
the engine objects (left), the systems component (top) and the aerodynamics model
(right), the rigid body model, and the gravity/atmosphere/wind models (bottom-
right). These components can be decomposed hierarchically in similar object dia-
grams.
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Fig. 3. Top level object diagram of
the aircraft model
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Communication between objects is realised through ports that also constitute the
interface to the next level in the hierarchical decomposition. For a set of connected
variables, vi, these ports use two different connection semantics, (i) ∀i(i �= 0|vi = v0),
i.e., all connected variables are set equal, and (ii) Σivi = 0, i.e., the connected vari-
ables are summed to 0. This allows for a convenient implementation of energy flows
across ports where the different semantics correspond to the across and through vari-
ables, respectively, the product of which constitutes power.

Execution Model. The behaviour of each of the primitive model objects is de-
scribed in terms of algebraic and differential equations. These are treated as non-
causal, i.e., no computational direction of the variables is assigned (it is not deter-
mined which variable is to be computed from an equation), which is a convenient
way of modelling physical systems in terms of declarative constraint specification.
Furthermore, it enhances model reuse.

flangeAct

airflow

MOTI

deflection

Fig. 4. Elevator control surface library component

To illustrate, consider the elevator control surface library component in Fig. 4.
This surface consists of one or more movable parts to adjust the aerodynamic force
acting on the aircraft. The library component is connected to the remainder of the
aircraft model by three ports: (i) a mechanical port flangeAct, that contains the eleva-
tor deflection, δ , (ii) an aerodynamic port, deflection, that carries the forces because
of the airflow around the elevator, and (iii) a mechanical port, MOTI, that contains
the force acting on the aircraft. Table 2 itemises the most important interface vari-
ables of the ControlSurface class. The elevator computes the force Fact from

0 = f (Fact , V 2
a , δ , ρ, Scs, . . . , mcs, g, . . .), (1)

the deflection δ from

δ = kkinxact , (2)

and, finally, its rate of change δ̇ from

δ̇ = kkinvact . (3)
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Note that kkin is a parameter internal to the object that represents the kinematics of
the mechanism.

Table 2. ControlSurface class interface variables

Interface Variables

across xact displacement of actuator flange

vact displacement velocity of actuator flange

Va airspeed velocity

ρ air density

g gravitational acceleration

through Fact force acting on actuator flange

To enable the execution, the primitive object equations and the connection con-
straints for across and through variables are accumulated by a global model inter-
pretation scheme. It sorts and solves the overall system of differential and algebraic
(DAE) equations by assigning causality so that the unknowns can be computed from
the equations and input and state variables. Algebraic manipulations are performed
to reduce the system of equations, e.g., (Andersson, 1994).

To represent switching, equations may be conditionally active. When the con-
ditions change their truth value, this causes events. When events occur, variables
may undergo discontinuous changes. In addition to the differential and algebraic
equations, a ‘pre’ operator is defined to allow access to the value of a variable im-
mediately before a discontinuous change. Because this introduces discrete state be-
haviour, an iteration is required to converge to a consistent state before the continu-
ous simulation is resumed. Though this mechanism can be used for implementing
discrete-event behaviour, it is difficult to mimic state transition diagrams using ob-
ject diagrams and even more so to describe the state transition behaviour by local
equations of the primitive states and transitions. The graphical syntax of object di-
agrams does not allow annotation of component connections, thus it is not possible
to write conditions, events, and actions alongside a transition. Furthermore, transi-
tions are not objects in object diagrams. Therefore, the transition behaviour requires
a specific transition object to be inserted. Execution has to be described in terms of
local algebraic constraints that communicate between states and transitions to eval-
uate whether a state is active and a transition is enabled (Mosterman et al., 1998).

The result of collecting the local equations, adding the connection constraints,
and sorting and solving these leads to a global system of equations of the form

ẋ = fα(x,u, t)
0 = gα(x,u, t)

α+ = φα(x,u, t)
(4)
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where fα specifies the dynamics in mode α , gα the event generation functions (‘zero
crossings’), and φα the next mode function. Before continuous simulation can start
or be resumed after an event occurred, a consistent mode α , i.e., α+ = α , has to be
found. Typically, this is performed by a fixed point iteration scheme.

3.2 Redundancy and Position Control

The main purpose of the two primary flight control units is the generation of appro-
priate continuous and discrete control signals for the four elevator actuators. Each
PFCU contains a failure monitoring function, a specific discrete-event part for the
redundancy management as well as one feedback and direct link controller per ele-
vator. When a failure is detected, the redundancy management parts of both PFCUs
interact tightly in order to achieve a consistent decision on the appropriate reaction,
before switching the operating control laws. This is because each PFCU is respon-
sible for different actuators and has to take the discrete state of the other PFCU into
account in order to guarantee that each elevator is controlled by one actuator only.
Therefore a simple failure may trigger a sequence of transitions in both PFCUs,
where a discrete mode transition in one PFCU may lead to a state which forces
another transition in the other PFCU and so on.

Graphics. Since hardware aspects are beyond the scope of this paper, the redun-
dancy management parts of both PFCUs are unified in one discrete-event model
component neglecting the distributed architecture of the system. As a consequence,
the aircraft model contains only one elevator control component. This is divided into
three parts: (i) a failure injection module that replaces the failure monitoring func-
tions so that specific failure scenarios can be studied, (ii) the combined redundancy
management parts of both PFCUs that react on changes of the failure configura-
tion and (iii) the switched position controllers of both PFCUs the transfer functions
of which depend on the actual modes of the redundancy management component
(Fig. 5).

Fig. 5. The structure of the elevator controller model

The requirements for the redundancy management which were formulated in-
formally in Section 2 state that each redundancy module contains 6 possible local
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modes. Since a redundancy module switches from one mode to another under cer-
tain conditions, the modules should be modelled by a kind of state transition dia-
gram, where the modes are represented by discrete states and the transition arrows
represent the possible mode switchings. In order to take the transition priorities into
consideration, hierarchical states as known from the statechart formalism (Harel,
1987) are used. Additional states are introduced that do not correspond to a mode,
but represent the priorities of the transitions: The higher a state in the hierarchy the
higher is the priority of its outgoing transitions, e.g., the transition ToOff in Fig. 6
has a higher priority than ToAct and a lower priority than ToIso. The statechart
model in Fig. 6 reflects the state transition aspects of a redundancy module declared
in the informal description of the requirements.

RedCon_SC

trigger
states

RED_CON_SC

Isolated

HS1

Off

HS2

HotStandby

HotStandby

Passive Active

PasSta PasHot 

ToAct 

ActPas 

ToOff 

ToIso 

FroOff 

StaPas HotPas 

PasAct 

Fig. 6. The redundancy module statechart

The transition conditions can be derived from the switching rules of the require-
ments and differ for each statechart. In order to keep the statechart model generic
and take architectural aspects into consideration, a specific hierarchical block di-
agram formalism is used (Fig. 7). Two blocks on the top level represent the two
primary flight control units. The input port contains the failure values that origi-
nate from the failure injection module whereas the output ports transmit the actual
module modes to the switched controllers. Each PFCU block contains four control
modules (LIO, RIO, LDL and RDL) as subblocks. Their behaviour is defined by the
statechart in Fig. 6. The transition conditions are calculated outside the statecharts
in a special block (PFCU1_Logic and PFCU2_Logic) with no state behaviour.

Execution The intended behaviour of the elevator control model is as follows:
The failure injection module generates Boolean signals that indicate the presence
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Fig. 7. Two block diagrams of the discrete-event part

of specific failures. When a failure signal changes, the transition conditions of both
PFCUs are evaluated and their values are transmitted to the statechart blocks that
perform their transitions independently. After all statecharts have converged to a
persistent discrete state, i.e. no further transitions happen, the transition conditions
are calculated again taking the new states into account and a new set of transitions
may be performed in the modules again. When the overall discrete-event system
reaches a stable state, this local event iteration is stopped, the output values are set,
and the position controllers may change their mode.

In order to analyse the behaviour of the elevator control and the overall aircraft
for different failure scenarios, the failure injection module generates predetermined
sequences of failures. These scenarios can be modelled by equations containing log-
ical expressions and inequalities over the independent variable time and parameters
as shown in the following example where IO2failure is present from time t1 to t2:

IO2failure = (t > t1)∧ (t < t2). (5)

The output of the redundancy management part switches the position controllers that
are easily described using equations. The following example shows the controller
equations of PFCU1 for the left elevator:

eact,l1 = wact − xact,l (6)

uact =


0 if PFCU1states.LIO is Off or Isolated

wact else if PFCU1states.LDL is Active,

kpeact,l1 + kdvact,l else

(7)

uspool,l1 = PFCU1states.LIO.Active (8)

3.3 Actuator Dynamics

The hydraulic actuators are the interface between the discrete-event domain of re-
dundancy control and the continuous domain of the aircraft dynamics. The actuator
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here is not modelled with all details as this would lead to steep gradients in the
behaviour that are difficult to handle and slow down simulation of the aircraft be-
haviour, even if efficient numerical solvers such as DASSL (Petzold, 1982) are used.

Higher Index DAE. The decision to remove small physical effects such as fluid
storage in lines and oil elasticity and viscosity leads to DAEs with a higher complex-
ity because state variables are then directly coupled instead of interacting through
additional states with small time constants. These DAEs can be transformed by dif-
ferentiation before simulation run, but the switching effects of the actuators may
also cause such algebraic constraints to emerge during simulation, requiring two
phenomena to be handled: (i) the state variables that become algebraically coupled
are constrained to a subspace of reduced dimension and the values before the con-
straint becomes active have to be projected into this subspace, and (ii) the future
dynamic behaviour of these state variables must be in this reduced subspace.

supply PS

SET

ACT

return

servo valve

spool valve

cylinder

q q
Se

TF

TF

R,I

I

R

Fig. 8. Schematic of hydraulic actuator

To illustrate these effects, consider the actuator model in Fig. 8. When initially
the actuator is active, the supply path is open, i.e., control signals generated by the
servo valve are supplied to the positioning cylinder, causing the piston to acceler-
ate. When, at a given point in time, the actuator is switched to be off, the loading
path becomes active. Because of the inertial effects in the loading pathway, there is
dependency between the piston and this fluid inertia and an algebraic constraint be-
tween these two variables (vpiston =−Ap fload) restricts the state space in which the
system evolves. This is illustrated in Fig. 9(a), where the double arrow heads on the
dashed field lines indicate the direction of the discontinuous change. This algebraic
dependency would be eliminated by introducing small parasitic storage effects for
the piping and some oil elasticity and viscosity, but this adds very steep gradients to
overall system behaviour as illustrated by Fig. 9(b) that complicate simulation and
are not relevant for the overall behaviour of the aircraft.
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Fig. 9. Phase space for
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The implicit jumps in the state variable values have to be computed during sim-
ulation. At present, commercially available simulation tools cannot handle such
abrupt changes in DAE models. Therefore the experimental modelling and simu-
lation environment HYBRSIM (Mosterman and Biswas, 1999) was used which has
been realised for the purpose of testing algorithms for the reinitialisation of switched
systems with index changes. HYBRSIM is based on bond graph modelling of the
physical system.

Bond Graph Model of the Actuators. Figure 10 shows the hybrid bond graph
model of the two left hydraulic actuators. The two Se elements1 are sources (inputs)
of a bond graph model which are connected to the hydraulic circuits in the aircraft
model that provide the input pressure. The servo valve modulation is applied by
the TF elements, where the setL1 and setL2 elements are connected to the setpoint
generated by the aircraft control model. The I elements represent connections (equal
flow points) and the attached R element captures dissipative effects. Note that these
are modelled as linear phenomena. The loadL1 (loadL1) connection also has some
inertia associated with it, embodied by the IloadL1 (IloadL2) element. The cylinder
chamber is modelled by a 0 element, an equal pressure point. Both cylinders connect
through a piston with area modelled by a TF element to one equal velocity point for
the elevator control surface movement. This velocity, as well as the displacement
and force are inputs to the aircraft model.

The switching behaviour is modelled by two controlled junctions (Mosterman
and Biswas, 1995) in each actuator, in the left actuator these are supplyL1 and
loadL1. The local finite state machines that control their states are given in Fig. 11.
The control event actL1 is generated by the redundancy control in the enclosing
part of the model. When the supplyL1 junction is ON and loadL1 is OFF, the ac-
tuator is active. When supplyL1 is OFF and loadL1 is ON, it is loading (either hot,
standby, passive, or isolated). Note that the mutual switching constraints allow no
other configurations.

1 The element type is listed on the left of each element rectangle.
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Fig. 10. Hybrid bond graph of the two left hydraulic actuators

(a) Supply path (b) Load path

Fig. 11. Finite state machines of actuator 1 in the hybrid bond graph

Equations. The equations generated from the hybrid bond graph by HYBRSIM in-
corporate the switching effect as guarded equations. This prevents the need for pre-
enumeration which would cause an exponential growth of the number of modes.2

For example, for the loading pathway, loadL1, the equation generated is

0 = (−chamberL1.p+ IloadL1.p+RloadL1.p)αi +(loadL1. f ) · (1−αi) (9)

where αi is the ith entry in the mode vector α . This ensures that in a mode where
this connection is active, αi = 1, the pressure drops of the connected elements are
balanced. When the connector is not active, αi = 0, the fluid flow through loadL1
becomes 0. This models ideal switching but may lead to higher index DAEs (e.g.,
because IloadL1 and mpL become algebraically related). A numerical solver such as
DASSL can handle systems up to index 1 directly and up to index 2 with some pro-
visions, e.g., the step-size control of index 2 variables needs to be switched off (Bu-
jakiewicz, 1994). Another prerequisite is that DASSL should be given a set of con-
sistent initial conditions, i.e., those that are in the correct subspace of continuous
behaviours. This is achieved by applying a projection mechanism which is consis-
tent with physical conservation laws (Griepentrog and März, 1986, van der Schaft
and Schumacher, 1996, Verghese et al., 1981).

2 For the hybrid bond graph in Fig. 10 there are already 24 = 16 possible modes, but only
two occur during normal operation.
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The discontinuous changes are computed by first linearising the system with a
finite difference method. Then a pseudo Weierstrass normal form is derived (up till
index 2)

0 =

 Ē11 0 0
0 0 Ē22,12

0 0 0

 ˙̄x1
˙̄x2,1
˙̄x2,2

+

 Ā11 Ā12,1 Ā12,2

0 Ā22,11 Ā22,12

0 0 Ā22,22

 x̄1

x̄2,1

x̄2,2

+

 B̄1

B̄2,1

B̄2,2

[u
]

, (10)

where Ē11,11, Ā22,11, and Ā22,22 are of full rank. This allows computation of the
initial conditions as (Mosterman, 2000b)

x̄1 = x̄0
1 + Ē−1

11 Ā12,1Ā−1
22,11Ē22,12(x̄2,2− x̄0

2,2)
x̄2,1 =−Ā−1

22,11(B̄2,1u+ Ē22,12 ˙̄x2,2 + Ā22,12x̄2,2)
x̄2,2 =−Ā−1

22,22B̄2,2u ,
(11)

where x̄0 are the user-provided initial values after the coordinate transformation to
achieve the desired normal form, x̄0 = Zx0. The values for x̄ can then be transformed
back to obtain initial values for x that are in the correct subspace of the dynamic
behaviour, and in this manner the implicit jump is determined.

4 Simulation of the Overall System

The aircraft model, the redundancy control system, and the actuator feedback and
discrete event control were modelled using different modelling formalisms and tools
(DYMOLA, HYBRSIM, DOME). Each of these is best suited for the respective task.
To enable a comprehensive analysis, however, the parts have to be integrated into a
coherent model.

4.1 Integrating the Components

Since the descriptions of the failure injection module and the redundancy manage-
ment system laws are based on equations, they can be incorporated easily into the
object-oriented and equation-based aircraft model. This also holds for the hydraulic
actuators, in principle, because the bond graph models correspond to a set of hybrid
differential and algebraic equations. But due to present restrictions of the simula-
tion software available for object-oriented modelling languages, specific simulation
code is generated from the bond graphs of the actuators and merged with the C-code
that results from the aircraft model.

For the redundancy management component, the modelling environment gener-
ates a simulation algorithm that defines the input-output behaviour of the discrete-
event component. This automatically generated algorithm is designed in a way that
is compatible to the MODELICA language so that it can be embedded directly into
the aircraft model. In MODELICA such an algorithm is regarded simply as an addi-
tional model constraint that corresponds to an equation that contains a function with
a fixed set of input and output variables.
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To simulate the resulting hybrid model, MODELICA’s hybrid DAE semantics
is exploited. The temporal inequality expressions in the failure injection module
are transformed into time events for the numerical integrator so that the continuous
integration stops exactly when a switching time has elapsed. Then the whole set of
equations is re-evaluated with the new values of the inequality expressions. Thereby,
the algorithm of the redundancy management is also re-evaluated resulting possibly
in a new state which may switch the feedback control laws.

4.2 Simulation Results

The phugoid in Fig. 12 is the result of two interacting phenomena: When the aircraft
pitch angle increases, it gains altitude and at the same time loses airspeed. Because
of this loss of airspeed, there is less upward thrust, which causes the aircraft to lose
altitude in return. However, as it starts losing altitude, it picks up speed again and
the airspeed rises. This results in a slightly damped oscillatory behaviour which is
required to be stable in commercial aircrafts.
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Fig. 12. Simulation shows a phugoid typical for aircraft

To investigate the effect of the redundancy control on the aircraft’s behaviour, an
actuator failure is introduced during a setpoint change. The setpoint change occurs
at t = 0.05 [s] and the actuator failure at t = 0.08 [s]. Figure 13 shows that the failure
leads to an immediate change of the active actuators and the switching transients in
the hydraulics cause a sharp drop in elevator velocity. Because small effects such as
oil elasticity and viscosity are neglected in the simulation, this results in a discon-
tinuous change that occurs because of the algebraic dependency between elevator
inertia and fluid inertia of the new loading path.

During a short period of time, the PID control causes the elevator velocity to
ramp up to the value which it would have assumed without the failure. Note the
short delay that is possible because the actuator that switches to active was hot and
shadowing the PID control.
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Fig. 13. Elevator velocity when a fail-
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The aircraft redundancy control is designed such that an actuator failure should
not have a noticeable effect on the behaviour of the aircraft. Using the compre-
hensive model with switching logic and transients, and an extensive model of the
aircraft dynamics, this effect can be studied as well. Figure 14(b) shows the effect
of the actuator switch on the aircraft pitch angle, and Fig. 15(b) shows the effect on
the pitch angle velocity. This verifies that the actuator switch has almost no effect
on the overall aircraft behaviour which, because of the realistic aircraft model, pro-
vides much confidence for the real implementation. Note that the small effect of the
actuator switching on the global behaviour manifests itself after a significant delay.
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Fig. 14. Pitch angle for normal behaviour and for an actuator switch at t = 0.08

Table 3 illustrates how the redundancy management reacts, when the IO module
failure occurs in PFCU2. In this case, all resulting state transitions are symmetrical,
i.e., the modules of the right elevator have always the same state as the correspond-
ing modules of the left elevator. Therefore the given states refer to both sides. In
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Fig. 15. Pitch angle velocity for normal behaviour and for an actuator switch at t = 0.08

the first local transition the statecharts of LIO and RIO (Left / Right IO) of PFCU2
switch from Active to Isolated, since these modules should not be activated again
(see rules 1 and 10 in Section 2). Then PFCU1 takes over the actuators by activating
its LIO and RIO modules (rules 1, 3, 5). In the last local transition, the LDL and
RDL (Left / Right DL) statecharts of PFCU2 switch into the Hot mode preparing
the system for a possible second failure (rule 6). Since state 2 would violate rule 4
and the transition from state 3 to state 4 would violate rule 1, the internal iterations
have to be hidden from the outer system in order to prevent inconsistent outputs.
This is why only the global transition from state 1 to state 4 is made observable to
the outside.

Table 3. State transitions of the redundancy management system

components local steps

1 2 3 4

PFCU2 RIO/LIO Active Isolated Isolated Isolated

RDL/LDL Passive Passive Passive Hot

PFCU1 RIO/LIO Hot Hot Active Active

RDL/LDL Passive Passive Passive Passive

outer actuators control – – shadow

inner actuators shadow – – control

global visibility yes no no yes
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5 Conclusions

The comprehensive model of the aircraft developed here incorporates the redun-
dancy management system, the switched positioning controllers, the actuator mod-
els as well as a complex model of the general dynamics of the aircraft. Hence, it is
possible to assess the design of the elevator control system with respect to the over-
all behaviour of the aircraft in the case of failures. Since the less important physical
effects of the hydraulic actuators were neglected, the simulation is fast enough to be
used also in the context of a multi-objective parameter optimisation (MOPS) (Joos,
1999). Such an optimisation may, e.g., reduce the elevator surface or the actuator
power such that the switching transients still do not affect the level of aircraft han-
dling.

The abstractions used in the actuator models, i.e. neglecting small physical ef-
fects such as oil elasticity and viscosity, result in a DAE that may change its index
during simulation. A standard DAE solver, such as DASSL, can be applied for this
model, if the re-initialisation at event times results in a consistent state. For a correct
behavioural simulation, this re-initialisation has to satisfy the physical conservation
laws. For the purpose of this feasibility study the actuators were modelled in HYBR-
SIM, a modelling environment based on hybrid bond graphs that supports the nec-
essary re-initialisation procedure. The C-code generated by this environment was
manually combined with the C-code generated by DYMOLA which includes the rest
of the aircraft model. The hybrid system simulator MASIM was used to generate
behaviors. MASIM has facilities to compute discontinuous changes of generalized
state variables as algebraic constraints between them become active. The discrete-
event parts of the aircraft are modelled using a visual specification language and are
translated into a MODELICA algorithm that can be integrated into the aircraft model
on the model level (Mosterman et al., 2002).

The presented modelling and simulation approach that combines an object-orien-
ted modelling language such as MODELICA, domain-specific model libraries, dis-
crete-event modelling formalisms and powerful simulation methods including cor-
rect state re-initialisation, was successfully applied to the aircraft elevator control
system and seems to be promising for general complex technological systems.
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attributed hybrid dynamic nets, 27
AutoFocus, 46
automata
– ω , 159
– cellular, 422
– discrete, 229
– hybrid, 158, 230
– nondeterministic, 75
– rectangular, 165
– stochastic, 77
– stopwatch, 163
– timed, 158, 230

batch, 56
– evaporator, 99
– plant, 212
Bellman, 273
bisimulation, 179
bond graph model, 384
Branch-and-Bound, 322, 348
branching time temporal logic, 233

car diesel engine, 288
cellular automata, 422
Charon, 39

charts
– hybrid sequence, 42
– message sequence, 45
– object-oriented state, 146
chemical reactor, 349
component model, 53
compositionality, 237
computation
– issues, 158
– model, 231
computational tree logic, 233
computing model, 124
condensation
– of a graph, 301
– of an evolution graph, 301
constraint system, 218
control
– correction of, 305
– design, 272, 342
– hybrid, 176
– linear, 275
– optimal, 318
– reconfiguration, 267
– supervisory, 84, 249
– synthesis, 286
– via left eigenvector, 184
controllability, 305
controller synthesis
– using verification, 286
conveyor belt, 26
CPLEX, 350
Crank-Nicolson scheme, 197
CTL, 233
cycle, 300

DAE
– higher index, 383
data structure, 236
deactivator, 306
deadlock, 160, 299
decidability, 161, 179, 234
decomposition, 11
DES/M, 90
destillation column, 260
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deterministic behaviour, 298
diagnosis, 395
diesel engine, 288
Dirac impulse, 10
Dircol, 320
direct collocation, 320
discrete
– abstraction, 251
– approximations, 74
– automata, 229
– boundary condition, 198, 200
– control, 21, 295
– control loop, 270
– controller, 337
– controller design, 272
– error compensation, 455
– model, 75
– time, 341
discretisation, 164, 193, 320
disjunctive form, 345
Dymola, 91
dynamics
– structural, 146

eigenvector, 184
error compensation, 455
evolution graph, 299

filtration process, 63
firing
– condition, additional, 305
– sequence, 219
flow, 158
formal
– methods, 225
– verification, 227
function blocks, 53

genericity, 141
guard, 158

HDS, 313
HSM, 442
hybrid
– automata, 158, 230, 339
– control, 176, 317, 447
– dynamic nets, 16
– dynamical system, 313
– object nets, 24

– optimal control, 318
– Petri Net, 356
– phenomena, 5
– reachability, 177
– reachability graph, 295
– sequence charts, 42
– state, 160
– state model, 314, 442
– state vector, 297
– token, 28
hybrid system, 4
– example, 26, 29, 43, 63, 99, 116, 167,

187, 201, 212, 260, 280, 288, 291, 297,
302, 324, 327, 349, 369, 409, 437

– nature, 154
HyCharts, 46
HyROOM, 42
HySC, 42
Hytech, 162, 234

IB-state, 298
IMMA, 38
impedance control, 449
implicitness parameter, 197
interval, 214, 217
invariant, 158
invariant behaviour, 298

Java, 148

Kripke structure, 231
KRONOS, 162, 234

laboratory batch plant, 212
Langrange-multiplier, 446
LD-systems, 181
linear divided system, 181
linear programming
– mixed integer, 348
linear time temporal logic, 233
Lipschitz
– condition, 5
– constant, 258
liveness, 301
LTL, 233

M-approach, 344
manifolds
– attractive, 259
manufacturing cell, 116, 201, 291, 302
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MaSiEd, 41
MATHEMATICA, 220
Matlab, 128
– Real-Time Workshop, 43
MatrixX, 38
maximal step, 298
minimal extension to a control, 305
model
– based development, 39
– checking, 228
– discrete, 75
– discrete-event, 270
– transformation, 423
Modelica, 90, 142
modeling, 85
– component-oriented, 395
– environment, 86
– frameworks, 154
– hybrid systems, 154
– qualitative, 397
modular
– hierarchical systems, 109
– modelling, 296
– verification, 237
monotone systems, 253
moving horizon, 348
MSC, 45
multi-arm transportation task, 324
multi-fingered robotic hand, 439
MVC, 147

net elements, 18
net state model, 174
nondeterministic automata, 75
NSM, 174

object-oriented
– modeling, 90, 377
– structuring, 140
online
– analysis, 408
– state space reduction, 403
online monitoring, 394
OOSC, 146
optimisation, 273

path quantifier, 233
Peaceman-Rachford scheme, 200
performance model, 193

Petri Net, 295
– coloured, 357
– fluid stochastic, 193
– hybrid, 356
– Place/Transition, 296
– State-Model, 296
– stochastic, 193
– timed coloured, 359
place
– complementary, 309
POSEIDON, 216, 220
process control, 56
production unit, 291

qualitative
– monitoring and diagnosis, 395
quantisation, 12, 71
– boxes, 256
quantised process model, 271
quantiser, 271

random flow, 195
reachability, 161, 219
– affine, 180
– analysis, 157, 176
– hybrid, 177
– set, 219
reachability graph, 195
reconfiguration, 267, 268
– linear, 275
rectangular automata, 165
redundancy, 380
reflecting boundary, 195
relaxation, 344
requirements definition, 135
reversibility of a hybrid system, 301
robot, 327, 437
ROOM, 41
ROOMcharts, 41
run, 159

sampling, 69
self-loop, 309
Semi-Markov-process, 78
sequential control, 295
significant
– firing condition, 306
– place, 307
– state, 307
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simulation, 85, 156, 361
– modular, 123
– monolithic, 123
SMV, 234
SPIN, 234
SQMD, 395
state
– machine, 45
state space
– extended model, 297
– model, 295
– reduction, 403
statechart, 96, 381
stochastic
– automata, 77
– process, 195
stopwatch automata, 163
strong component, 301
structural changes, 109
structure
– Kripke, 231
supervisory control, 84, 249
switched differential equations, 297
symbolic
– firing sequence, 219
– marking, 217, 218
synthesis of control corrections, 304
system
– first order, 20
– second order, 20
systems
– monotone, 253

template, 57
temporal induction, 239

temporal logic, 232
temporal operator, 233
term, 217
three-tank-system, 409
time interval, 214
timed
– automata, 158, 230
– CP-net, 359
timestamp
– net, 214
timewise stuck, 216
titration plant, 280
token, 28
traffic modeling, 420
transition
– congruent, 309
– critical, 306
traveling salesman, 331
two-tank-system, 167, 187, 297

UML, 39
underactuated robot arm, 327
UPPAAL, 162, 234
upwind scheme, 197
utilization, 207

V-model, 134
variable structure systems, 109
verification, 156, 227
– compositional, 237
– in controller synthesis, 286
virtual actuator, 278

wire stretching plant, 43




