TuM2-5 3:20

Proceedings of the 1999 IEEE
International Symposium on Computer Aided Control System Design
Kohala Coast-Island of Hawai’i, Hawai’i, USA * August 22-27, 1999

A graphical user interface for flight control development

Reinhard Finsterwalder

Universitiit der Bundeswehr, Miinchen
Wissenschaftliche Einrichtung Mathematik & Informatik
D-85579 Neubiberg, Germany
Reinhard.Finsterwalder @ unibw-muenchen.de

Abstract
The FSA (First Shot Approach) Demonstrator of DLR and
DASA/Airbus is a first prototype for an integrated
multidisciplinary environment for flight control
development. The FSA Demonstrator represents a state-of-
the-art computational tool which facilitates the study of
trade-off between competing specifications and
performance metrics. It integrates an object-oriented
modeling environment, a data and tool management system,
general purpose system analysis, simulation and synthesis
tools and an automatic multi-goal attainment optimization
program. The FSA Demonstrator comes with a dedicated
graphical user interface for problem setup and pushbutton
program operation which allows easy setup and operation
even by non-specialists. The main payoffs of the FSA are a
significant reduction in the design cycle and an improved
performance of handling qualities.

Keywords: Flight control development, graphical user
interaction, visual decision support, Java programming
language

1. Introduction
The DLR Institute for Robotics and System Dynamics in
conjunction with DASA/Airbus are currently specifying the
functional requirements for an integrated multidisciplinary
framework for flight control development. For exploration
of the potentials of such a framework, a prototype has been
implemented referred to as FSA Demonstrator .

The basic view behind the FSA Demonstrator is the
assumption that the flight control system developer has
already conducted a preliminary functional design study to
determine an appropriate control-law architecture. Then the
control system analyst can use the FSA Demonstrator to
evaluate the baseline design and to tune the design
parameters for best system behavior. FSA implements the
process model as shown in Figure 1.

0-7803-5500-8/99 $10.00 © 1999 |EEE 439

Hans-Dieter Joos, Andras Varga

DLR Deutsches Zentrum fiir Luft- und Raumfahrt e.V.
Institut fiir Robotik und Systemdynamik
D-82234 WeBling, Germany

Dieter.Joos@dIr.de Andras.Varga@dlr.de
\ Flight Physics |
_________________ Modelling
+ Functional Design : « Flight Dynamics (p)

, «» Controller/Filter (T)
=» + Systems (T}
« Flight System Dynamics (p,T)

« Criteria & Manoeuvres

!

Analysis & Selection
Models & Criteria

{

Tuning & Compromising
(T-Variation)

4
eyes no

Assesment
(p-Variation)

Flight Simulator

1
! Virtual Iron Bird
! S/W Integrity Bench

Figure 1: FSA design process

The FSA Demonstrator framework integrates an object-
oriented modeling environment (Modelica / DYMOLA) [1],
general purpose system analysis, simulation and synthesis
tools (ANDECS) [4], interactive result visualization
(ANDECS_AVIEWER), a data and tool management system
(ANDECS_RSYST) [5], and an automatic multi-goal
attainment optimization tool (ANDECS_MOPS) [7].
Predefined computation chains are provided for special
tasks like trimming, linearising, eigenvalue computation
including result visualization.

Computation experiments are controlled by a graphical user
interface (GUI) that is adopted to the special needs of the

flight control design process. All design steps are supported
by dedicated menus. Figure 2 shows the main window of
the FSA demonstrator. The pulldown buttons in the
menubar reflect the different phases of the design process:

® Project to create a new workspace / to open an existing
workspace
Model to start the modeling environment DYMOLA
A/C-Analysis to analyze the open-loop aircraft
dynamics for different operation conditions

e MOPS to perform a multi-objective optimization based
controller tuning

e Assessment to perform post-design assessment and
worst-case analysis for the (optimized) closed-loop

system
L3 First Shot Approach: nzlaw. fsa [O] x]
Proect Model Analpsic MOPS Agsessment Help
=

SYSTEM VERSION 3.2.0 RSYST LIBRARY VERSION 3.6.2-t

¥ o

ANDECS >M>

Figure 2: FSA Demonstrator-main window

(rudder positions)
delta >

2. Modeling

Parameterized models of the aircraft dynamics (A/C) and of
the flight control system (FCS) are needed as basis for
analysis and design computations. Both the aircraft model
parameters p as well as the free controller/filter/systems
parameters T are used as search variables either to perform
worst case parameter studies or for optimization based
automatic controller tuning, respectively.

The object-oriented modeling language Modelica/DYMOLA
[1] is used for modeling of the aircraft dynamics. For that a
flight-mechanics class library has been developed. This
library contains all the elements needed to define aircraft
flight dynamic models, including different types of engine,
atmosphere and gravity models. Model building is done by
means of a graphical object diagram editor, as shown in
Figure 3. By using graph-theoretical algorithms and
symbolic formula manipulations, DYMOLA transforms the
object diagram into state space form and generates efficient
simulation code for several simulation platforms.

Ireat]

(!n-ents in stability axes v.r.t. Aesrodynamic Center (AC)}

ngine- 1 Ks'qS'[s’p::/Zﬂcxg,

[N, -« TS - :

aerodynamics spanc? = cRAC |

interaction
ATD
™ / COG vehicle carried axes
,-o__aero
’ A
! REF body axes
’I, 1 AT 1dim
i >
Ii 9 =
I’ atmos
’ o b
icle carri e i
Ao V) o COGwehicle carried axes environment
-
engines 1/ue| environme!

Figure 3: Object-oriented modeling of aircraft dynamics [9)

440

3. A/C-Analysis
The purpose of A/C-Analysis is to explore the open-loop
aircraft dynamics for different flight conditions (load mass,
fuel, etc.). This involves the simulation of nonlinear A/C
models, trimming and linearising in predefined points of the
flight envelope, application of linear analysis methods (e.g.
eigenvalue computation).

The A/C-Analysis is mainly used to select representative
points on the flight envelope. The corresponding linear
models define the multi-model used for controller
parameter tuning and compromising. The selection of
models is done interactively using the graphical outputs of
the simulation and computational results over a complete
sweep of predefined trim conditions. The left part of Figure
4 shows the graphical user interface for aircraft analysis.
This menu gives information on the model parameters p
(name, current value, minimum, maximum, number of
intermediary grid points) and on existing predefined
parameter sets and trim conditions.

Three experiment modes are provided:

e One Experiment: single analysis experiment in the
current trim point

e Parameter Study: variation of one or more parameters

e Scan DB: visualize precomputed analysis runs that are
stored on database

TP_GATA

_PARSET 100 -

_PARSET 107
_PARSET.108
_PARSET 108 J
_PARSET.110
_PARSET 111
_PARSET 112
_PARSET 113
_PARSET 114
_PARSET.115
PARSET 118

13160

_PARSET 118
_PARSET 201
gt

TPTME_DATA

Clicking on Compute starts a new analysis run. The results
of an analysis experiment are automatically displayed in
multiple windows (see right part of Figure 4). Furthermore
multiple analysis results originating from successive
analysis experiments can be visualized simultaneously.
Advanced user interaction techniques support the fast
selection of representative models among a large number of
available parameter sets. Picking any point/trajectory
highlights all curves belonging to that experiment. In
addition the corresponding parameter values are displayed.

4. Tuning and Compromising
Tuning & Compromising is based on a multi-criteria/multi-
model parameter tuning facility which provides a
systematic way for optimization based control law tuning
by directly specifying bounds and demands on FCS
specifications and handling qualities as well as physical
control realization constraints [8]. The variations in the
model parameters and operating conditions are covered
basically by the multi-model formulation. For a given
control structure, the free parameters of the controller, T,
are automatically tuned by optimizer to their best values
satisfying the specifications and flying/handling quality
demands. The multi-goal tuning of parameters is achieved
by using the optimization tool ANDECS_MOPS.

1571

CAETERR

CAMERR _..........._J........_J
CAFRERR_..E
_PARSET20
PRI _PARSET 101
CWOERR _PARSET. 117

_PARSET 201

CMIHERR _PARSET217

_PARSET 229
CMFRERR
CMOERR

CMALPERR
CMFERR

Bibal -]
LENENNAN NN NERNNNGRRRERUCREE
REEEER RN ERRRREELEEL CRRE

TRIMOPT

TPTMP_SAVE

T One Bsperiment (Paameter Study (v Soan DB

] oy o

AUrsd

Select database |TP_DATA 'E
First: i‘ Lagt:]300

_OK| Cancet |

Figure 4: A/C Analysis — visualization of pre-computed results

441

[E1FSA MOPS NZLAW_DESIGN.2 - Criteria
Models Criteria Tuners Mthod

Criteria settings for |_TP.20 b

Type i c BadLow OGoodLow GoodUp Badup D Q=CiD
OED Overall Damping |CONSTR ¥| [082i70 [019673 ”" 1’ "B { i [o000 ‘.,.a |__‘ {9873
GEG Gamma following | CONSTR =] Inanaa 30‘13330570 | i] 1 l 20]! 00 I-a 01336
HO4 Stability [Passve =] lmoou Iuoouau | l l I l I
HO5 Risingdelay |PASSMVE =] [062170 [0Doooo | I | | |]
HOBL C*lowerbound |CONSTR] [038383 [034023 } | | - | ' [1.00 0.34023
HOSR Crreterence [CONSTR =] [-0.96497E-C [099035 | & [[fos [roo 098035
HOBU C*upperbound [MN =] [o13544 luaaesr J l i l j | 170 }qu 0.30887
HQ7 Neal Smith [consTR 7] [11248 11244 [ooo0 [0 | 2000 [115 0077739
HOBP Phase rate [iuuaza 10.14528 i 1 l ; Jaage [0.474335
HOBO PR-Omega |CONSTR ¥] Iugsaou Iu.asuou | 000 I l [iw 05 [:J 904762
ROP2 Varance(An [MIN =] [o2s972 [015200€-0 | o | | [200 [1.00 | 1:5209e-001
RGB! Elevatorrate |[MN =] [154 02 |nman I 06 | | | Iw 00 {n 7203
ROLE Higemoment: [N] [o7eei6 [0.00000 l = l I [0.000 [100 E

Design step 1-1- 2 Delete ast design step | Visualize | Design | Cancel |

Figure 5: Tuning & compromising — submenu Criteria

The set up and steering of an optimization experiment is
done via four submenus: Models, Criteria, Tuners, Method.
Figure 5 shows the submenu Criteria. This mask serves for
input of criteria related data, like demand values d, or the
definition of a criterion as a constraint. The criteria on
display are standard design objectives in flight control.

When the multi-objective parameter tuning is running, all
intermediate iteration steps are visualized to give the user
maximum insight into the tuning process. At any time the
computation can be interrupted. Then the user can examine
actual and previous results with the help of the following
graphical facilities, shown in Figure 6:

» Selecting a particular design candidate by picking any
point/curve

e Scanning the design history stepwise
(forward/backward) yields all data belonging to a
specific design iteration being visualized

¢ Trade-off analysis via the parallel coordinate editor [3],

[6] gives information about what criteria are competing
and how strongly

Then the best design candidate is selected and can be stored
on the project database. It can also be used as starting point
for further optimization.

442

5. Assessment

Task of the assessment is to detect hidden weaknesses in
the designed FCS. Usually systematic gridding based
parameter studies are performed where a large number of
parameter combinations and different operating conditions
have to be examined. A more efficient way is to search
worst cases by parameter optimization, i.e. for given
optimal tuner values T* the worst-case models parameter p*
are searched such that a selected performance criterion, e.g.
stability, is as bad as possible. Worst case models can be
used to update the multi-models used for tuning &
compromising.

To perform assessment the user has to specify one or more
design cases to be used as a single constant controller or as
a gain-scheduled controller, respectively. The set of
available designs is displayed in the controller window,
where for each selected design, the corresponding speed
value is also displayed, see Figure 7. From several designs
at different speed values, a gain-scheduled controller can be
assembled to cover all air speed values between 0 and 500
m/s. The controller gains between two speed values are
linearly interpolated.

Iteration: 7
Criteria (m - min./ ¢ - constr./ e -
* = near maximum / vioclated constra

1 GED1 2 GEG1 3 Hol
c 0.0092 (il 1.000¢4 p
6 HQ41 7 HQOS1
c 0.8899 m 0.3157 o*

11 HQ71 12 HQ8P1 13 HoB
m 0.0000 m 0.4790 m

16 Rosil 17 RQL51 18 sSTS

n* 0.9830 m 0.2134 P
maximum criteria [16 RQS11)=
violated constraints:

Z GEG1 8 HQ6L1

optimization parameters:
KETINZ KETNZ KETTHP
8.128297D0-01 6.758372D+00 3.3427

>>>>> MOPS_Info(Up

R

Figure 6: Tuning & Compromising — visual decision support

To facilitate the speed selection, the flight envelope
together with the trimming points used for all existent
designs are displayed in the graphical output window. The
trim points corresponding to one design (usually at the same
speed) are displayed with the same colour.

o

»

- oo o e |

Figure 7: Assessment - setup of a gain-scheduled
controller

Four experiment modes are provided:

® One Experiment: single analysis experiment in the
current trim point
Parameter Study: variation of one or more parameters
Scan DB: visualize precomputed analysis runs that are
stored on database

e Worst case:worst case parameter search using multi-
objective optimization

The assessment task realized in the FSA Demonstrator
includes trimming, nonlinear step response simulation,
linearization and criteria computations. The results of each
assessment run are automatically visualized in the graphical
output window. For experiment evaluation similar facilities
are provided as described in tuning & compromising. The
worst cases found in the assessment are stored on database.
Thus they can be used to define new multi-models for
further parameter tuning.

6. Software Architecture
Figure 8 shows the architecture of the FSA-Demonstrator.
Graphical user interface and the computation engine
ANDECS are realized as independent programs that
communicate with each other via TCP/IP sockets. This
enables the distributed execution of the software in a
heterogeneous network.

The user interface is implemented in the Internet-
programming language Java [2]. Since Java code is not

443

bound to any computer platform, it can be executed both on
PC and on UNIX workstations. JAVA provides the
programmer a powerful class library for building graphical
user interfaces. The java.awt (abstract window toolkit)
library contains all usual components like push buttons,
radio buttons, lists, menubars, etc.. For process
communication the java.net package is applied.

Visualization is done with the independent plot program
AVIEWER. This plot module makes use of the MDI
(multiple document interface) technology of Microsoft. It
supports the simultaneous display of multiple diagrams in
multiple windows. This feature is used for clear
visualization of analysis results even in the multi-model
case. AVIEWER also provides versatile facilities for
interactive result evaluation. Both post-computational
analysis and runtime-monitoring are supported.

TCP/IP Sockets
Visualisation Computation engine
AViewer ANDECS
C/C+ - MFC

fsaGUI
Java F1C
% DSBLOCK - DLL
-

Dymola

Figure 8: Overview of the FSA architecture

7. Summary and conclusions
A new framework for flight control development has been
presented. This framework offers a state-of-the-art
graphical computer interface for steering the design

444

process. Advanced graphical user interface technology in
combination with interactive result visualization supports
the user during all design phases: modeling, A/C-analysis,
tuning & compromising and assessment. Simultaneous
visualization of information belonging together in different
displays are very much assistant for the design process
itself. Predefined database structures makes it easy to
exchange data between the different design phases.

References

[1] H. Elmquist. Object Oriented Modeling and Automatic
Formula Manipulation in Dymola. Scandinavian
Simulation Society SIMS’93, Kongsberg, Norwegen,
1993.

[2] J. Gosling, B. Joy and G. Steele. The Java language
specification. Sun Microsystems Inc., Addison Wesley,
1996.

[3] R. Finsterwalder. A Parallel Coordinate Editor as a
Visual Decision Aid in a Multi-Objective Concurrent
Control Engineering Environment. 5" IFAC/IMACS
Symposium on Computer Aided Design in Control
Systems, Swansea, UK, pp. 118-122, 1991.

[4] G. Griibel, H.-D. Joos, M. Otter, R. Finsterwalder. The

ANDECS Design Environment for Control Engineering.

12 IFAC World Congress, Sydney, Australia, Vol. 6,

pp. 447-454, 1993.

G. Griibel. The ANDECS-CACE Framework
A_RSYST for Integrated Analysis and Design of
Controlled Systems. IEEE/IFAC Joint Symposium on
Computer-Aided Control System Design, Tucson,
Arizona, pp. 389-396, 1994,

[6] A. Inselberg. The plane with parallel coordinates. In The
Visual Computer, 1985.

[71 H.-D. Joos. Multi-Objective Parameter Synthesis
(MOPS). In J.-F. Magni, S. Benani and J. terlouw, Eds.,
Robust Flight Control: A Design Challenge. Lecture
notes in control and information sciences, vol. 224,
Springer Verlag, pp. 199-217, 1997.

[8] H.-D. Joos, A. Varga and R. Finsterwalder. Multi-
Objective Design Assessment. IEEE Symposium on
Computer-Aided Control System Design, Kohala,
Hawai’i, USA, 1999.

(9] D. Moormann, P. J. Mostermann, G. Looye. Object
Oriented Computational Model Building of Aircraft
Flight Dynamics and Systems. Aerospace Science and
Technology, 3(2), 1999.

(5]

	074_440a:
	074_441:
	074_442:
	074_443b:
	074_443a:

