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ABSTRACT
Though mutation testing has been widely studied for more
than thirty years, the prevalence and properties of equiv-
alent mutants remain largely unknown. We report on the
causes and prevalence of equivalent mutants and their rela-
tionship to stubborn mutants (those that remain undetected
by a high quality test suite, yet are non-equivalent). Our re-
sults, based on manual analysis of 1,230 mutants from 18
programs, reveal a highly uneven distribution of equivalence
and stubbornness. For example, the ABS class and half UOI
class generate many equivalent and almost no stubborn mu-
tants, while the LCR class generates many stubborn and
few equivalent mutants. We conclude that previous test ef-
fectiveness studies based on fault seeding could be skewed,
while developers of mutation testing tools should prioritise
those operators that we found generate disproportionately
many stubborn (and few equivalent) mutants.
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D.2.5 [Software Engineering]: Testing and Debugging

General Terms
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1. INTRODUCTION
In mutation testing, faults are deliberately inserted into a

program to create a mutant version; the mutant simulates
the e↵ect of a real fault [29]. Mutation testing has been
widely studied as a means of validating the fault finding
ability of test suites by seeding faults [11, 17, 43]. Muta-
tion testing has also been used as a means of generating test
suites that find these seeded faults [19, 24, 46]. We believe
that this paper’s findings have implications for both muta-
tion based test assessment and test data generation.
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A test input that reveals a di↵erence between the ba-
haviour of a mutant and the original program from which
it is constructed is said to ‘kill’ the mutant. The motiva-
tion for all approaches to mutation testing is that test data
that kills mutants should hopefully also detect real faults
[29], thereby making mutation testing useful for both test
e↵ectiveness measurement and test data generation.

The two problems that have traditionally inhibited wider
application of mutation testing are the equivalent mutant
problem and the large number of possible mutants that might
need to be considered. The problems posed by the large
number of mutants have been partly dealt with, through se-
lection [10], mutant schema [51] and search [28, 54], but the
problem of mutant equivalence remains unsolved.

For some mutations, the semantics of the mutant and orig-
inal will turn out to be equivalent, even though their syntax
is di↵erent. It is undecidable whether a mutant is equiva-
lent to the program from which it is constructed [12, 42].
This is the equivalent mutant problem: A tester is never
sure whether unkilled mutants are merely hard to kill (more
test e↵ort is required) or equivalent (attempts to kill them
are futile). Mutation operators that tend to generate dis-
proportionate numbers of equivalent mutants will thus bias
results, and much e↵ort will be wasted trying to kill them.

In this paper we want to better understand the relation-
ship between equivalent mutants and so-called stubborn [26]
(aka super-hero [20]) mutants. That is, assuming testing has
been reasonably thorough, then the set of mutants that re-
main unkilled will fall into one of two categories:

1. Equivalent: The mutants in this set cannot be killed
because they are equivalent to the original program.
No possible test input exists that can distinguish their
behaviour from that of the original program.

2. Stubborn: The mutants in this set can be killed.
Each stubborn mutant does have a test input that
distinguishes its behaviour from that of the original
program. However, none of these distinguishing test
inputs has yet been found.

Naturally, the definition of a stubborn mutant depends
upon the definition of ‘reasonably thorough’ testing. As
we increase the fault revealing power of the testing process,
there will be consequently fewer stubborn mutants. In the
limit, if we define reasonably thorough testing to be exhaus-
tive testing, then no mutant will be stubborn, since any
unkilled mutant must be equivalent. However, exhaustive
testing is just as infeasible as the equivalent mutant prob-
lem itself.
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In this paper we define a mutant to be stubborn if it re-
mains unkilled by a test suite that covers all feasible branches.
Like the equivalent mutant problem, branch feasibility is
also undecidable. Therefore, for each of the 18 programs we
study, we also use human e↵ort and ingenuity to generate a
test suite that covers all (feasible) branches. We believe this
to be ‘reasonably thorough’ because branch coverage is the
ultimate goal (as yet not fully realised) of many test data
generation systems [4, 13, 21, 33].

We present the results of a study of equivalent and stub-
born mutants for the 5-selective set of mutation operators.
This is a widely used [29] category of mutation operators
identified by previous work on selective mutation [45]. The
set consists of five collections of mutation operators, each of
which involves di↵erent numbers of specific mutation oper-
ators. In total our study considers 58 mutation operators to
provide the following primary contributions:

1. Distributions: We report on the numbers and distribu-
tions of equivalent and stubborn mutants over the set of 58
operators and 18 programs, ranging from previously studied
(tiny) programs through to medium sized real world pro-
grams. We find that the equivalent mutant problem a↵ects
programs of all sizes.
2. Stubbornness and Equivalence Relationship: We
study the relationship between equivalence and stubborn-
ness, identifying operators that create high numbers of equiv-
alent yet few stubborn mutants. Such operators are less ef-
fective in test assessment and generation and so their contin-
ued use is called into question by our findings. Our results
also provide evidence that some operators generate many
stubborn yet few equivalent mutants. These might be pri-
oritised in future work on mutation testing.
3. Causes of Equivalence: We report on the causes of
equivalent mutants and their distribution over the conse-
quent categories of equivalence. We find that surprisingly
few equivalent mutants are caused by dead code. We also
find that the largest single cause of equivalence is mutants
that cannot even be killed by weak mutation testing. Fur-
thermore, those that cannot be killed, even by strong mu-
tation testing, are largely the result internal state changes
of little consequence (i.e., never output), rather than those
that fail to propagate to an output.
4. Size E↵ects: We report on the relationship between
program size and the numbers of equivalent and stubborn
mutants and the statistical correlations observed between
mutant equivalence and stubbornness. We find that size
and numbers of mutants are strongly correlated with equiv-
alence (expected) but not with stubbornness (unexpected).
We also found that the operators of the ROR class exhibit a
moderately strong correlation between equivalence and stub-
bornness (but no other class did).

The rest of this paper is organised as follows. Section 2
motivates the research questions that we investigate, while
Section 3 explains, in detail, the manual decision proce-
dures used to answer them. Section 4 provides the results of
the study, answering the research questions, while Section 5
draws out the actionable findings and recommendations for
mutation testing that accrue as a result of our study. Sec-
tion 6 considers the threats to the validity of our findings
and to those of previous studies revealed by our work. Sec-
tion 7 describes related work on equivalent mutants, while
Section 8 concludes with a summary of our findings.

2. RESEARCH QUESTIONS
This section presents the research questions concerning

equivalent and stubborn mutants (and the relationship be-
tween them), for which Section 4 provides the answers.

All mutation testing is a↵ected by the possible distorting
e↵ects that the presence of equivalent mutants can have on
the mutation score reported. Therefore, the natural first re-
search question we consider concerns the prevalence of equiv-
alent and stubborn mutants over the programs considered:

RQ1: What are the numbers and proportions of equivalent
and stubborn mutants found overall and per program
studied?

RQ2: What is the contribution of each mutant operator to
the proportion of equivalent mutants found and the re-
lationship between equivalent and stubborn mutants?

The relationship between equivalent mutants and stub-
born mutants is interesting because they may be connected.
In all mutation testing, it is natural to include as many stub-
born mutants as possible (since these drive testing hardest),
while also hoping to exclude as many equivalent mutants as
possible.

A stubborn mutant is very hard to kill, while an equiva-
lent mutant is impossible to kill. Perhaps all mutants lie on
a spectrum of killability from easy to kill to impossible to
kill. Alternatively, perhaps some mutation operators gener-
ate more stubborn mutants than equivalent mutants or vice
versa.

Knowing about these properties of mutation operators
will be useful in the design of mutation testing systems and
choices of operators to be used. We examine the contribu-
tion of each mutation operator and class of operators and
report on a statistical analysis of the correlations between
stubborn and equivalent mutants.

RQ3: What are the causes of mutant equivalence?

We need to study the causes of equivalence because not
all equivalent mutants are equal. For example, those that
are caused by the inability of any test case to even execute
the mutated code are merely a manifestation of ‘dead code’
in the program studied. They can be regarded as entirely
a property of the program studied rather than the muta-
tion operator concerned; all mutation operators applied at
the same unreachable point would yield equivalent mutants.
If we had a better understanding of the causes of mutant
equivalence then this may help us to design mutation tools
that can ameliorate their pernicious e↵ects.

Finally, we ask whether there are any di↵erences in equiv-
alent and stubborn mutants based on the sizes of the pro-
grams studied:

RQ4: Does program size or the number of mutants correlate
to the number of equivalent and number of stubborn
mutants found?

We might expect that the more mutants we generate, the
more stubborn and equivalent mutants we will find. We
might also expect that larger programs (which tend to have
more possible mutants) would also tend to have more equiv-
alent and stubborn mutants.



Table 1: Subject programs ordered by Size in Lines
of Code (‘#LoC’). The ‘#Bran’ column shows the
number of branches in each program.

Name #LoC #Bran. Description
Min 10 2 Minimum of two integers
Bubble Sort 16 6 Sorting routine
Profit 24 10 Salesperson’s commission
Mid 26 10 Median of three integers
Prime_num 27 10 Prime number listing
Triangle 35 16 Widely studied program
Insert 35 12 Insertion sort
Day 42 23 Day order for given year
Calendar 137 29 Calendar for given year
Carsim 171 22 Driving simulator
Tcas 173 66 Aircraft collision avoidance
Defroster 230 82 Car defroster controller
Schedule 412 66 Priority scheduler
Hashmap 455 82 Information Management
Replace 564 66 Pattern matching
Space 9,564 1,190 Array language interpreter
Flex 10,459 1,286 Unix lexer utility
Make 35,545 3,838 Unix compilation utility

3. MANUAL ANALYSIS OF STUBBORN &
EQUIVALENT MUTANTS

This section explains how we set up and carried out the
procedures required to determine equivalence and stubborn-
ness of mutants so that we can answer the four research ques-
tions set out in the previous section. Section 3.1 describes
the 18 programs used in the study, while Section 3.2 de-
scribes the mutation operations applied to these programs.
Section 3.3 explains, in detail, the procedure we adopted for
determining whether a mutant is equivalent. Finally, Sec-
tion 3.4 describes the procedure used to construct branch
adequate test suites for each of the 18 programs studied,
and how this determines whether a mutant is stubborn.

3.1 Subjects
Eighteen C programs were chosen for the investigation

of equivalence and stubbornness. Information about each
program, including name, size, number of branches, and a
simple description of its functionality are presented in Table
1. This table is sorted by the sizes of the programs, measured
in lines of code.

The programs Min, Bubble_Sort, Profit, Mid, Prime_num,
Triangle, Insert and Day are eight trivial programs stud-
ied in previous work on equivalent mutants [41, 42]. Their
inclusion allows us to investigate whether the size of a pro-
gram influences the prevalence of equivalent mutants or their
relationship to stubborn mutants.

The three programs TCAS, Schedule and Replace are part
of the Siemens Suite (available from SIR [16]). These pro-
grams come with existing test suites. However, we did not
use these existing suites because 1) they do not yield 100%
coverage of feasible branches and 2) we wanted the same test
suite construction method for all subjects.

Finally, we also include six ‘real world’ programs that vary
in size from tiny to relatively more substantial. Calendar
is the simple UNIX utility program and Carsim car cruise-
control simulation component used by Mouchawrab et al.
[37]. Though ‘real’, both are relatively small.

The program Defroster is an embedded system that im-

plements the controller for the rear window defroster of an
automobile. It is closed-source production software from
DaimlerChrysler, generated as C code from a state-based
model. The program Hashmap is an open source program for
managing a hash table. The program Space is the widely-
studied European Space Agency program (also available from
SIR [16]). The programs Flex and Make are the well-known
UNIX utilities.

The size, data types, and functionality of these programs
are wide and varied. We conduct mutation testing by apply-
ing mutants to the whole program, at every point at which
a mutation operator applies in all but the largest three cases
(Space, Flex and Make).

It is infeasible to consider every possible mutant of these
largest three programs. Instead, we adopted the following
process for determining the parts of the program to be stud-
ied: Starting with the top level procedure m, we include all
procedures transitively called from each of the procedures
called by m, terminating when we have accrued at least 10
procedures. Using this selection procedure we identified 20
procedures from Space (824 LoC), 11 procedures from Flex
(924 LoC) and 10 procedures from Make (672 LoC). In order
to understand whether or not a mutant is equivalent and
to construct test cases, we consider the entire program, but
only these 41 selected procedures are actually mutated.

3.2 Mutation Operators Studied
A program can be mutated by applying a set of muta-

tion operators to it. King and O↵utt presented the first
set of proposed mutation operators, each of which is repre-
sented by a three letter acronym [31]. However, subsequent
work on selective mutation by O↵utt and Lee, resulted in
the identification of five classes of operators (ABS, AOR,
LCR, ROR, and UOI) which were deemed to be su�cient
to achieve almost full mutation coverage [40].

Many subsequent authors [29] have used only operators
from these five classes, called the ‘five-selective’ mutation
operators [40]. Therefore, we only use these five operator
classes for our experiments too. A full description of each
class of operators and the specific mutations that they in-
volve can be found in Table 2. In total, we consider 58 spe-
cific mutation operators, covering all those found in these
five classes.

To aid replication, we state exactly how the operators were
applied to the program, since these details can vary from
one approach to another: The mutation operators from the
class LCR, ROR and AOR were applied to every expression
and predicate. The ABS and UOI class of operators were
applied only to the variables that occurred in expressions
and predicates.

No mutation operators were applied to lvalue uses of vari-
ables so, for example, the lefthand side of an assignment
statement is not mutated, but the expression on the right-
hand side is. Operators are applied recursively to all sub
expressions.

3.3 Manual Equivalent Mutant Decision Pro-
cedure

Since the determination of whether a mutant is equivalent
is undecidable, we used a manual decision procedure in order
to decide the answer to this question. Our decision proce-
dure, implemented by purely manual inspection of code, is
outlined in Figure 1 and defined in more detail below.



Table 2: The Five Mutant Operator Classes and the Specific Mutation Operators they Contain
Mutation

Description Specific mutation operators
Number of

operator class operators
ABS Absolute Value Insertion {(e,abs(e)), (e,-abs(e))} 2
AOR Arithmetic Operator Replacement {(x, y) | x, y 2 {+, -, *, /, \%} ^ x 6= y} 20
LCR Logical Connector Replacement {(x, y) | x, y 2 {&&, ||} ^ x 6= y} 2
ROR Relational Operator Replacement {(x, y) | x, y 2 {>, >=, <, <=, ==, !=} ^ x 6= y} 30
UOI Unary Operator Insertion {(v, --v), (v, v--), (v, ++v), (v, v++)} 4

Total 58

Though our process is entirely manual, it is not arbitrary;
we followed a set procedure for identification of equivalent
mutants and this allowed us to categorise the reason for
equivalence. It is well known [52] that there are three nec-
essary criteria for a mutant to be killed: Reachability, In-
fection and Propagation (RIP), each of which subsumes the
preceding condition(s):

1. Reachability (R): The mutation must be executed
by a test case; the mutant is ‘reached’. For non-equivalent
mutants, the reachability criterion can be achieved by
any branch adequate test set.

2. Infection (I): Immediately after the execution of the
mutant, the state must be infected. That is, the state
after the execution of the mutation and the corre-
sponding state in the original program must di↵er. A
test case that achieves infection is said to ‘weakly kill’
the mutant [15, 29, 36].

3. Propagation (P): The infected state must propagate
to some point in the program at which it can be ob-
served, such as an output or return statement. A test
case that achieves propagation is said to ‘strongly kill’
the mutant [15, 29, 36].

This ‘RIP framework’ defines the three necessary condi-
tions for killing a mutant and, implicitly, it also defines the
conditions for a mutant to be equivalent; one or more of the
necessary conditions must fail for a mutant to be equivalent.
This gives us three broad categories of equivalent mutant,
depending on whether they are equivalent because they can-
not be reached, cannot infect the state or cannot propagate
an infection to an output.

A mutant that cannot be reached by any possible test in-
put also, by definition, cannot infect and also cannot prop-
agate (so we denote this case ¬R¬I¬P). A mutant that can
be reached by at least one test input but subsequently fails
to infect the state for any reaching input cannot, by defini-
tion, propagate (so we denote this case R¬I¬P). A mutant
that can be reached and can infect the state for at least one
test input, but cannot propagate the infection to an output,
will be denoted RI¬P.

Within these three broad categories of reasons for equiva-
lence, we distinguish sub-categories which capture, in more
detail, the reason for the failure of the necessary killing con-
dition. This allows us to report, in more detail, the distri-
bution of reasons for mutant equivalence. We adopted the
human-evaluated decision procedure for mutant equivalence
outlined in Figure 1. Each of the seven categories of equiv-
alence is defined as follows:

Case 1.1 (¬R¬I¬P normal): The mutated predicate or
statement is unreachable. Such a statement of predicate is
dead code and so no test case can even executed the mutant.
The number of mutants in this category is thus partly related
to the amount of ‘dead code’ present in the programs under
investigation. Previous work indicates that we might expect
a small amount of dead code (perhaps about 2% [8]).

Case 1.2 (¬R¬I¬P short-circuit): We expected that
most of the non-reaching mutants would fall into the cat-
egory defined by Case 1.1. However, there is a special case,
which applies to predicates only: the predicate is reached
and evaluated, but the mutated part of the predicate is
never evaluated due to ‘short circuit’ evaluation of predicate
subexpressions. That is, in C, the boolean operators && and
|| are evaluated using ‘short circuit’ evaluation. This intro-
duces a sequence point [27], such that the righthand side of
the boolean expression is not evaluated when the outcome of
the overall expression can be determined from the lefthand
side evaluation alone. For example, in the expression p &&
q, suppose p turns out to be false, then q (and any mutant
it might contain) will not be evaluated. Therefore, should
it turn out that all reaching inputs cause p to evaluate to
false, then any mutation to q will be equivalent.

Case 2.1 (R¬I¬P context free): In this situation the
mutated expression is always equivalent to the unmutated
expression, no matter what the program context in which
the expression occurs. For example, if we mutate abs(x) to
abs(abs(x)) then this will result in an equivalent mutant,
regardless of the program context in which it occurs. It is
useful to distinguish this sub-case because it is far simpler to
detect by manual inspection: since it is context free we need
not be concerned with the state on each path that reaches
the mutant.

Case 2.2 (R¬I¬P context sensitive): In this situation
the mutant is executed but, for each test input that reaches
and executes the mutant, it so-happens that the state is
always one in which the mutant and the original yield iden-
tical results. For example, if we mutate x+2 to x+x this is not
equivalent according to Case 2.1 above. However, suppose
it turns out that all reaching inputs arrive at the mutant
in a state in which the value of x happens to be 2. In this
execution context the mutant will be equivalent; we say that
the equivalence is ‘context sensitive’.

Case 2.3 (R¬I¬P subpath equivalence): There is a
special case of R¬I¬P that applies only to predicates: a
mutated predicate is evaluated and yields a di↵erent result
in the mutant and the original. However, all paths from the
predicate yield identical states.



Case 1: ¬R¬I¬P Mutant cannot be reached by any test input
Case 1.1 (normal): Mutated statement or predicate cannot be reached
Case 1.2 (short-circuit): Mutated sub-expression never evaluated though its containing predicate is

Case 2: R¬I¬P Mutant is reached by at least one test input, but no test causes state infection
Case 2.1 (context free): Infection can never occur in any state
Case 2.2 (context sensitive): Not context free, but infection cannot occur in any reaching state
Case 2.3 (subpath equivalence): Mutation changes path executed, but all paths are equivalent

Case 3: RI¬P Mutant is reached and infects the state, but no infection propagates to an output
Case 3.1 (unobservable): No output statement mentions an infected variable
Case 3.2 (observable): Outputs mention infected variable(s), but infection fails to reach any

Figure 1: A Summary of the Human-Evaluated Decision Procedure for Mutant Equivalence

Case 3.1 (RI¬P unobservable): In this case, the mutant
is executed and infects the state, but there simply is no
output statement that mentions any infected part of the
state. In this situation, the infection may reach the end of
the program execution, but remains unobserved and so the
mutant is not (strongly) killed.

Case 3.2 (RI¬P observable): In this case, there is an
output statement that yields the result of a variable infected
by the mutant. However, all paths to all such statements
also contain an assignment statement that ‘squeezes’ [14]
the state, so that any di↵erences in the infected state and
the original state are removed before they reach the output
statement. Such a squeezing statement could be a killing
assignment, like x=1; in the sense of ‘killing assignment’
used in the literature on compilers [3]. That is, a statement
that always assigns a constant and so ‘kills’ the value of the
variable to which it assigns. However, an assignment need
not be a killing assignment to ‘squeeze out’ the value of the
infected variable. For example, suppose the mutant a↵ects
only the least significant bit of the value of the variable x.
For this mutant, the assignment x=x<<1 (which shifts the
contents of x one bit left) is one that removes all trace of the
infection, yet it is not a killing assignment.

3.3.1 Manual Analysis
The seven classes defined above were used to categorise

equivalent mutants according to the reason for their equiv-
alence. We devoted 6 person months continuous e↵ort to
the determination of equivalence according to our human-
evaluated decision procedure. That is, one of the authors
(Xiangjuan Yao) was devoted to this task exclusively for 6
months.

In order to retain consistency, we did not use any auto-
mated tools to determine equivalence, other than running
the test suite. All mutants which were not killed by the test
suite were checked manually for equivalence.

In total, 4,181 mutants were generated. Of these 1,230
were unkilled by our branch adequate test suites and were
thus manually checked using the decision procedure specified
above. Of those manually checked, 946 (⇠ 23%) were found
to be equivalent and 284 stubborn (⇠ 7%) according to the
decision procedure.

The manual nature of our analysis renders it subject to
human error. Of course, where we find that a mutant is not
equivalent we can be sure that we are correct in this assertion
because each such non-equivalence claim is accompanied by
a test case that distinguishes between the mutant and the
original program. However, for all cases where we declare a
mutant to be equivalent, we cannot be completely sure.

Indeed, for these mutants, the undecidability of equiva-
lence makes it unlikely that anyone could ever be completely
sure, no matter how well examined. We therefore treat our
scores for equivalent mutants as upper bounds and make all
data available to support wider scrutiny:

www.cs.ucl.ac.uk/staff/Y.Jia/projects/equivalent_mutants

For complete details about the outputs selected, the mu-
tants seeded, the test cases we constructed and the determi-
nation of which test kills which mutants (and the mutants
we believe to be equivalent), the reader is refereed to this
website. We hope that this website will be a useful resource
for testing. Other researchers are welcome to use the test
suites, mutants and other information in their research, so
long as they acknowledge this paper as the source.

3.3.2 Determining what Constitutes an Output
For our study, we regarded an output to be any changes to

the console or a file that can be observed as having occurred
as the result of execution of any statement that produces
such ‘output’. However, some of the programs have no such
output. Clearly, it would be unreasonable to regard all mu-
tants in these programs as equivalent simply because they
fail to contain output statements.

Therefore, we also deem any statement that returns values
to the operating system through a return statement to be
an ‘output statement’. Furthermore, for the tiny programs
used in some previous studies, the programs contained nei-
ther an output statement nor any return statement. This
issue is reminiscent of the problem of determining the prin-
cipal variables in slice based measurement of cohesion and
coupling [7, 25].

More precisely, the ten programs Min, Bubble Sort, Profit,
Mid, Prime num, Triangle, Insert, Day, Calendar and Tcas
all have either output or return statements. For Carsim
and Defroster we identified key state variables and regarded
these as output. For the other six programs (Schedule,
hashmap, Replace, Space, Flex and Make) we compare the
output (files, screen, error log etc.) for each task carried out
by the system.

3.4 Semi-Manual Generation of Branch Ade-
quate Test Suite

In order to construct a branch adequate test suite for
each program studied, we could have used sophisticated au-
tomated test data generation techniques [18, 21, 24, 33].
However, though great advances have been achieved in au-
tomated test input generation, no tools can generate 100%
branch adequate test data; this is theoretically impossible
and practically, such tools remain limited [34].



We therefore constructed test suites using pure random
testing to find those branches that can be easily covered and
then augment the test suite with human generated test case
design. We then manually constructed test cases specifically
designed to execute any remaining uncovered branches until
all branches were covered.

This means that there is one test case per branch uncov-
ered by random testing. A smaller test suite could be found
with equivalent coverage [44], but we are not presently con-
cerned with e�ciency of testing, only its e↵ectiveness. That
is, none of the results reported in this paper depend upon
the e�ciency of the testing process, but the determination
of stubbornness rests of the e↵ectiveness of our test suites.

We choose branch coverage as a measure of test e↵ective-
ness, because this is a criterion widely studied by many au-
thors [4, 5, 9, 13, 21, 35]. Branch adequacy also corresponds
to a well-defined lower bound for mutation killability: it en-
sures that the necessary reachability criterion is met by at
least one test case for every possible reachable mutant.

We define a mutant to be a stubborn mutant if it is not
equivalent, but it is not killed by the branch adequate test
suite for the program that has been mutated.

4. RESULTS & ANSWERS TO RESEARCH
QUESTIONS

This section reports results that provide the answer to
each of the research questions. Section 5 draws actionable
conclusions from these findings for mutation-based test suite
assessment and test data generation. Section 6 considers
threats to the validity of our findings (and also potential
new threats to validity of previous studies that use fault
seeding to assess test technique e↵ectiveness).

4.1 RQ1: Prevalence of equivalent and stub-
born mutants

Table 3 shows the total number of mutants and propor-
tions of equivalent and stubborn mutants per program stud-
ied over each of the five classes of mutation operator. From
this table we see that equivalent mutants, which account
for 23% of all mutants, are more prevalent than stubborn
mutants, which account for only 7% of all mutants.

We also immediately notice some startling disparities in
the numbers of equivalent and stubborn mutants generated
by each operator class. For example, while almost half
(47%) of all ABS mutants are equivalent, none are stub-
born, whereas just over a quarter (26%) of all LCR mutants
are stubborn, while very few are equivalent (only 2%).

We can see that almost all programs, no matter how small,
do possess equivalent and stubborn mutants. Figure 2 shows
the proportionate contribution of the mutants from each
program to the total number of all equivalent and all stub-
born mutants (as a percentage of all mutants drawn from
all 18 programs).

We can see that almost a quarter of the equivalent mutants
come from the program Replace, while Tcas contributes
most stubborn mutants. However, there is no obvious re-
lationship between the contribution of equivalent and stub-
born mutants made by each of the 18 programs. We can see
no obvious trend in Figure 2 and found no high Spearman
rank correlations between the two.
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Figure 2: The proportionate contribution of the mu-
tants from each program to the total number of all
equivalent and all stubborn mutants (as a percent-
age of all mutants)

4.2 RQ2: Relationship of Equivalent and Stub-
born Mutants for Each Operator

From Figure 2, we can see that there does not appear to
be a relationship between overall numbers of mutants and
the proportion which are equivalent or stubborn for each
program. However, consider Figure 3, which shows the pro-
portion of equivalent and stubborn mutants over all muta-
tion operator classes (thereby visualising the summary data
for each operator class from Table 3). This figure reveals
some interesting findings: it is very clear that the ABS op-
erators are problematic for mutation testing; they generate
a great many equivalent mutants and no stubborn mutants.
By contrast, the LCR operators generate stubborn mutants,
but very few equivalent mutants.
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Figure 3: Proportion of equivalent and stubborn
mutants for each of the five operator classes

The other three classes of mutants generate both equiv-
alent and stubborn mutants, so we analyse these in more
detail: Figure 4 shows the contribution of each operator to
the overall number of equivalent and stubborn mutants (as
proportions) for each operator.

We can see that post increment/decrement operators are
problematic (they generate a preponderance of the equiva-
lent mutants and fewer stubborn mutants), while pre incre-
ment/decrement operators behave in exactly the opposite
manner and may be thus much more practical.

In Figure 4, operators are ordered in descending order
of their contribution to the number of equivalent mutants
overall. Notice that ROR operators show some degree of
correlation between equivalent and stubborn mutants, which
is not present in the AOR category. We used a Spearman
rank correlation test to explore this correlation further.



Table 3: Total mutants (T), proportion of equivalent mutant (E) and stubborn mutants (S)
Mutation Operator Class

Program
ABS AOR LCR ROR UOI Totals

T E S T E S T E S T E S T E S T E S

# %-age # %-age # %-age # %-age # %-age # %-age

Min 6 0 0 0 0 0 0 0 0 5 20 0 20 40 10 31 29 6

Bubble Sort 6 0 0 4 50 0 0 0 0 5 20 0 20 30 5 35 26 3

Profit 24 50 0 100 5 0 0 0 0 25 20 0 84 29 19 233 20 7

Mid 12 0 0 0 0 0 0 0 0 25 20 0 68 21 0 105 18 0

Prime_num 6 50 0 12 17 0 0 0 0 10 20 0 24 8 0 52 17 0

Triangle 18 50 0 4 0 0 2 0 0 40 18 8 104 23 25 168 24 17

Insert 14 14 0 0 0 0 0 0 0 10 10 10 40 40 5 64 30 5

Day 4 50 0 16 0 50 3 0 0 25 16 16 28 29 18 76 18 22

Calendar 22 50 0 76 0 18 2 0 0 20 20 15 60 27 13 180 17 14

Carsim 12 42 0 56 13 5 0 0 0 45 18 7 64 38 11 177 25 7

Tcas 54 48 0 4 0 25 17 0 59 70 29 26 76 26 74 221 30 38

Defroster 6 100 0 24 58 0 8 0 25 105 49 2 152 47 3 295 48 3

Schedule 52 50 0 8 0 0 2 0 50 15 13 7 84 24 7 161 30 5

Hashmap 46 43 0 28 0 0 3 0 67 60 12 0 144 14 0 281 17 1

Replace 274 48 0 160 0 0 25 8 8 235 2 3 540 14 4 1,234 17 3

Space 80 50 0 8 0 0 14 0 7 205 16 2 48 29 0 355 25 2

Flex 42 57 0 56 0 0 17 0 41 100 16 4 24 0 0 239 17 5

Make 42 50 0 40 0 0 10 0 20 90 12 17 92 30 10 274 22 9

Grand Total 720 47 0 596 5 4 103 2 26 1,090 17 6 1,672 24 10 4,181 23 7

Ordering the 20 operators in the ROR class by propor-
tion of equivalent and stubborn mutants exhibits a rank
correlation (⇢ = 0.82), whereas ranking the 30 operators
of the AOR class in the same way yields no such correla-
tion (⇢ = �0.25). Over all 58 mutation operators there is
also no correlation between the ranking of operators by their
contribution to equivalence and stubbornness (⇢ = 0.45).

We conclude that one cannot have stubborn mutants with-
out equivalent mutants in the ROR class and that there is a
tendency for the ROR operators that generate high numbers
of stubborn mutants to also generate high numbers of equiv-
alent mutants. By contrast, we find that some of the AOR
operators ({(%, +), (%, -), (%, *), (%, /)}) are (perhaps surpris-
ingly) good at generating stubborn mutants (but no equiva-
lent mutants), while others are, unfortunately, good at gen-
erating equivalent mutants. That is, the four AOR operators
that replace ‘-’ with one of {+, *, /, %} generate about half
of all AOR’s equivalent mutants.

Finally, checked the correlation between the numbers of
equivalent and stubborn mutants, overall and within each
operator class. We speculated that equivalence might be
merely an ‘extreme form’ of stubbornness and we believed
other researchers may have made the same implicit assump-
tion. Our results surprised us and challenged this assump-
tion: they revealed no evidence for any such correlation.

The strongest correlations were for the operator (!=,>) for
which ⇢ = 0.61 and for (v,v++) for which ⇢ = 0.51, neither
of which is particularly strong. It should be noted that for
many (35 of the 58 operators), there were simply too few
mutants to compute a meaningful ⇢ value, while for those
with su�ciently many data points, these two reported above
were the only results that indicated even a mild correlation.
We conclude that we can find little evidence of any notice-
able correlation between equivalence and stubbornness.
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Figure 4: Stubbornness and Equivalence for the
AOR, ROR and UOI Classes. AOR and ROR oper-
ators not listed in this figure generate no stubborn
and no equivalent mutants.



4.3 RQ3: Causes of Equivalent Mutants
Figure 5 shows the proportion of each category of equiv-

alent mutants over all equivalent mutants. This reveals
a number of interesting observations about the causes of
equivalence. We see that there are no equivalent mutants
due to unreachable code.

This is not because our programs contain no unreachable
statements; there were unreachable statements in Tcas and
Defroster, for example. However, the unreachable branches
contain few statements, and those that they do contain at-
tract no mutation operators because their expressions were
merely constants. For example, in the defroster program,
there is an unreachable branch:

if ((We1_BA_DEF_ev_ctr0 >= ((signed short)3250))
&& error_e>0 && confirmation_e>0)

{
AU8.We11_BLINK_OUT = 0;
}

The right hand side of the unreachable assignment to
AU8.We11_BLINK_OUT is a constant and so it is not mutated.

Similarly, Case 2.1 (context free) contains no equivalent
mutants, revealing another interesting property of the pro-
grams under study: though they contain redundant (un-
reachable) code, none of them contains the kind of ‘redun-
dant’ expression that would lead to a context free equivalent
mutant.

The mutation operators studied in this paper are able to
generate such equivalent mutants, in principle. For exam-
ple, should the expression x+0 occur in the program, then
it would be equivalently replaced by x-0. However, no such
trivially equivalent code was present in any of the 18 sub-
jects studied.

We found that there are cases where the predicate is in-
fected and causes execution to follow a di↵erent path, yet no
state infection occurs (Case 2.3 of mutant equivalence). This
surprised us: it seems that programmers do write programs
which, when mutated, can have disrupted control flow, but
that this disruption does not a↵ect the state. We observed
this behaviour in 4 of the programs (profit, Mid, Carsim
and Space).

The most common cause of equivalence is Case 2.2, which
accounts for 51% of all equivalent mutants. These mutants
will be equivalent, even under weak mutation testing, be-
cause they fail to infect the state. This is an interesting
finding because weak mutation testing was introduced as a
weaker alternative to strong mutation testing in the hope
that it might overcome some of strong mutation’s di�cul-
ties [53]. Mutants that are equivalent due to Cases 1.1, 1.2
and 2.1 will also be equivalent under weak mutation. Our
results thus suggest that many of the overall population of
equivalent mutants (59%) will still be equivalent, even for
weak mutation testing.

Mutants that are equivalent because of Cases 3.1 and 3.2
can be killed by weak mutation testing, but will be equiva-
lent for strong mutation testing. Considering these strongly
equivalent mutants, it is striking to note how many of them
occur due to Case 3.1 (unobservable). This means that the
mutants have a↵ected the state, but the e↵ect is not ‘im-
portant’ to the computation. That is, the program never
externalises the corrupted part of the state, using an output
statement (even given our broad interpretation of the notion
of ‘output’).
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Figure 5: Proportion of All Equivalent Mutants that
Result from Each of the Seven Causes of Equivalence

Had the oracle exposed more of the internal state, then
more of these mutants would be equivalent. This finding
may also have a bearing on the work on fault tolerant com-
puting [38]; it suggests that many faults can be tolerated.
That is, Case 3.1 faults are those that corrupt the state, but
for which this corruption ‘does not matter’.

4.4 RQ4: The effect of Size on Mutant Equiv-
alence and Stubbornness

We found a strong correlation between the overall num-
ber of mutants and the numbers of these that are equiva-
lent (⇢ = 0.90). This was expected because ‘more mutants’
should surely mean ‘more equivalent mutants’. We also ex-
pected a similar correlation for stubborn mutants (‘more mu-
tants’ should surely also mean ‘more stubborn mutants’?).
However, there was no such correlation (⇢ = 0.47), indicat-
ing that stubbornness appears to be more related to special
program circumstances than equivalence.

We also investigated the correlation between the size of
the program and the number of equivalent mutants. For
this correlation test we ranked only the 15 programs for
which we constructed all possible mutants (and for which it
is therefore meaningful to consider such a correlation). Once
again, we found some degree of Spearman rank correlation
between the size of the program and the number of equiva-
lent mutants (⇢ = 0.81), but not between the program size
and the number of stubborn mutants (⇢ = 0.46).

We already found that for the most operators and oper-
ators classes there is little connection between equivalence
and stubbornness (ROR being the exception). We now also
conclude that there is also no correlation between size and
stubbornness, though there is for equivalence, further high-
lighting their di↵erent character. These di↵erences between
equivalence and stubbornness are optimistic findings because
they indicate that mutation testing systems might be re-
designed to reduce the generation of equivalent mutants, as
we discuss in the next section.

5. ACTIONABLE FINDINGS
Our results suggest that mutation testing tools should

drop or de-emphasise operators that create many equiva-
lent but few stubborn mutants (unless there is some other
reason to retain these). For instance, inclusion of the ABS
class of operators would require some careful justification
since these operators seem to be responsible for large num-
ber of equivalent mutants yet very few stubborn mutants.



By contrast, the LCR class of mutant operators may be
more valuable than previously realised. Our results suggest
that its two logical operators tend to create a relatively large
number of stubborn mutants yet mercifully few equivalent
mutants. Designers of mutation testing tools might want to
favour the inclusion of this operator over others, provided
this does not a↵ect mutation e↵ectiveness.

The ROR operators generate many stubborn and also
many equivalent mutants. Indeed, our results indicate that
there is some correlation between the two. As such, this
operator should be retained for thorough testing (since it
creates stubborn mutants). However, it might be dropped
if the test scenario is particularly sensitive to the pernicious
e↵ects of the equivalent mutant problem.

Work on equivalent mutant detection should focus on the
ROR class of operators, since the prevalence of equivalent
and stubborn mutants appears to be correlated in this class.
This correlation may make equivalent mutants unavoidable,
without some form of detection technique. That is, when
we seek to retain the e↵ectiveness that accrues from stub-
born mutants, we may encounter the associated equivalent
mutants, which will harm the accuracy of the assessment of
test e↵ectiveness.

Our results also indicate that the current widely-used cat-
egorisation of mutants into the five classes ABS, AOR, ROR,
LCR, UOI needs to be refined. The sub-categories of oper-
ator are important in their own right; we found noticeable
di↵erences in their behaviours. For example, not all AOR
operators are equal: we found that replacing ‘-’ with any
of the other four arithmetic operators tended to generate a
disproportionately high number of equivalent mutants (with
the benefit of comparatively few stubborn mutants). More
work is required to determine whether this is a more gener-
alisable phenomenon, in which case some of the AOR class
of operators might be prioritised over others.

Finally, in the UOI category, there is a clear distinction
in the behaviour of the pre– increment and decrement op-
erators, compared to their post– increment and decrement
counterparts. While the post– operators tend to create both
equivalent and stubborn mutants, the pre– operators tend
to create proportionately more stubborn mutants than the
post– operators and very few, if any equivalent mutants.
This suggest that the tester might want to favour pre– op-
erators over post– operators.

6. THREATS TO VALIDITY
The most glaring threat to the validity of the findings re-

ported in this paper is the inherent undecidability of the
equivalent mutant problem and, by extension, the stubborn
mutant problem. No approach to this problem can be free
from threats to validity. Despite these threats, we believe
it necessary to address the equivalent mutant problem more
thoroughly than has been achieved in the literature. With-
out a better understanding of the properties of mutation
operators with regard to equivalence, we cannot design re-
liable mutation testing systems. Our results may also be
a↵ected by our test suite. Further work is required in dif-
ferent test suites since these will a↵ect the determination of
whether a mutant is stubborn.

However, as our results indicate, previous test e↵ective-
ness studies that used fault seeding may be the subject of
previously under-appreciated threats to the validity of their
findings.

For example, previous work on mutation testing in which
the ABS operator is used may su↵er disproportionately from
threats to the validity of their findings due to the unusually
high prevalence of ABS-created equivalent mutants. Also,
suppose there are two studies of testing techniques, Study A
and Study B. In Study A, the programs just so happened to
contain proportionately more relational operators and fewer
arithmetic operators compared to Study B. Even if the re-
searchers control for size and use the same set of mutation
operators and the same testing tools, we can expect (from
our findings) that Study A will report much lower mutation
scores than Study B.

These threats to validity a↵ect previous work that has at-
tempted to use operators from the five-selective set to assess
testing techniques based on fault seeding. However, our own
study is also the subject of threats to validity from the equiv-
alent mutant problem. Our claims about equivalence need
to be treated cautiously since they are the result of human
analysis and not automated and proven-correct algorithms.
While humans are error prone, no automated solution can
be complete due to undecidability.

In order to ameliorate the e↵ects of this inherent threat,
we seek to be cautious in our findings, paying attention only
to strongly observed e↵ects. Such stronger e↵ects are less
likely to be a↵ected by changes in the details regarding the
numbers of equivalent mutants. We also used a statistical
analysis of the correlations between stubborn and equivalent
mutants, since we can hope that such statistical techniques
may prove to yield reliable findings, even in the presence of
‘human error noise’.

Finally, we make our programs, mutants, test suites, and
all data about equivalence and stubbornness available online
to support wider analysis, scrutiny and replication. All test
data, mutants and programs can be found on the web at the
project website.

Naturally, results also depend on the choice of subject pro-
grams, as they do with any study. We partly address this
threat by studying a relatively large and varied set of pro-
grams. The programs studied are also of di↵erent sizes and
come from many di↵erent domains. However, all our pro-
grams are C Language programs. Further generalisability
requires additional replication studies, as always with this
kind of empirical study.

7. RELATED WORK
There has been much work on techniques to reduce the

number of equivalent mutants, either by detecting them or
preventing their creation. These approaches have used a va-
riety of techniques, including constraint solving [30, 41, 42],
slicing [23, 26, 52], compiler optimisation [12, 39], impact
analysis [49, 50] and search based software engineering [2,
47]. Of course, the undeciability of equivalence means that
such approaches must be inherently partial and their true
performance remains unknown.

Baldwin and Sayward [6] proposed an approach that used
compiler optimisation techniques to detect equivalent mu-
tants. Their approach uses six types of compiler optimi-
sation rule. The compiler optimisations were implemented
and empirically studied by O↵utt and Craft [39] who re-
ported that 10% of all mutants were equivalent mutants for
the subject programs they studied. However, the programs
were small and the results only applied to mutants that could
be detected by the compiler optimisations used.



O↵utt and Pan [41, 42] introduced a constraint-based
equivalent mutant detection approach. They evaluated it
on 11 small programs and found that their approach could
find approximately half of the equivalent mutants present.
The results were reported to be superior to those achieved
using the previously formulated compiler optimisation ap-
proach [39].

Program slicing has also been proposed as a way to de-
tect equivalent mutants [23, 26, 52]. Voas and McGraw [52]
were the first to suggest that slicing may be helpful, while
Hierons et al. were the first to formulate such an approach,
which they did in terms of both dependence analysis [23] and
amorphous program slicing [26]. Their approach was eval-
uated using only case studies and remains unimplemented.
Adamopoulos et al. [2] proposed a co-evolutionary approach
to detect possible equivalent mutants, but this was only eval-
uated on simulations and not real mutants.

More recently, Grün et al. [22, 48] proposed to measure
the impact of a mutant on execution, postulating that the
greater the impact the greater the killability. By extension,
their work could be thought of a means of approximating
the likelihood of equivalence, rather than seeking to pro-
vide a partial (but exact) decision procedure, as had been
attempted in previous work.

Schuler and Zeller [49] studied the correlation between the
impact of various mutations, including impacts on coverage,
return values and invariants. This approach can also be
used as an approximate estimate of the likelihood of mutant
equivalence.

Few authors have attempted to specifically and compre-
hensively determine which mutants are and which are not
equivalent for a set of programs studied. Such an approach
requires manual analysis and is tedious and time-consuming.
We found ten previous papers in which some form of man-
ual analysis is used to confirm results. A summary of this
literature is presented in Table 4.

In Table 4, the first two columns give a reference to the
previous work (authors and year), while the final two columns
list the number of mutants that were manually examined1

and the number reported to be equivalent. In the studies
from before the year 2000, the programs were tiny. This ob-
servation is not intended as a criticism of this foundational
work; available human and computing resources of the time
did not permit anything else. The purpose of these studies
was specifically to examine the prevalence of equivalent mu-
tants and the e↵ectiveness of techniques for detecting them
automatically.

The more recent studies were able to include much larger
programs, but only a tiny sample of mutants was examined
manually. The purpose of this manual analysis was not to
answer questions about equivalent mutants but rather, to
assess the possible impact that their presence might have on
the results reported.

None of the previous studies reports on the relationship
between equivalent and stubborn mutants (according to any
definition of stubbornness). It is this examination of rela-
tionships between stubborn and equivalent mutants that is
the primary novelty of the present paper and from which we
draw most of our actionable conclusions.

1
The two approximated entries (indicated with a ⇠ symbol in Table 4)

were provided by a private communication with one of the authors of
each of the two papers in question (O↵utt and Patrick).

Table 4: Comparison to previous manual studies
Author(s) [Reference] Year #Stu- #Equi-

died valent

Acree [1] 1980 90 25
O↵utt & Craft [39] 1994 ⇠1000 255
O↵utt & Pan [41, 42] 1994-7 695 695
Grün, Schuler & Zeller [22] 2009 20 8
Schuler & Zeller [49, 50] 2010-2 140 63
Patrick, Oriol & Clark [47] 2012 ⇠500 193
Kintis, Papadakis & Malevris [32] 2012 140 63
Just, Ernst & Fraser [30] 2013 17 9
This paper 2013 1230 946

8. CONCLUSIONS
We have presented a detailed manual study of equivalent

mutants and their relationship to stubborn mutants. Equiv-
alent mutants are those that are impossible to kill, while
stubborn mutants are those that are killable, but prove hard
to kill in practice. It might therefore be natural to assume
that equivalence is merely an extreme case of stubbornness.

However, our results contradict this assumption. We found
that, though equivalence is correlated with program size
(and number of mutants created), stubbornness is not. We
also found a correlation between the tendency for operators
to generate equivalent and stubborn mutants only for the
ROR operator class (for other operators there was no such
correlation). In conclusion, though there is clearly some
relationship between equivalence and stubbornness, the re-
lationship is more subtle than might previously have been
assumed.

Our findings also indicated that some mutation opera-
tors (for example ABS and post increment operators) should
be used with caution or discarded. They appear to gener-
ate many equivalent and few stubborn mutants. We found
that other operator classes (such as LCR) are more valu-
able. They tend to produce proportionately more stubborn,
yet fewer equivalent mutants. These findings also applied to
sub-classes of operators within the five categories, indicat-
ing that tool designers cannot a↵ord to treat operator class
members identically.

We believe that our findings may benefit the design of mu-
tation testing tools; mutants that generate many stubborn,
but few equivalent mutants can be prioritised for selection
and generation, based on our findings. We also believe that
our findings have implications for the validity of empirical
and experimental studies of testing techniques that use fault
seeding. The mutation scores reported in all such studies
may have been adversely a↵ected by the uneven distorting
e↵ects of equivalent mutants.
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