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The dispersion of a passive scalar in a turbulent flow can be described by the turbulent
diffusivity tensor D;; which relates the turbulent flux of a scalar fluctuation ¢ to the
gradient of its mean value C' according to Te = —D;;0C/0z;. By means of Direct
Numerical Simulation we show how components of the unsymimetric tensor behave under
the influence of shear and thermally stable stratification. From an analysis of three-
dimensional flux spectra it turns out that weakly stratified lows are dominated by large
scale motions. The total fluxes can then sufficiently be explained by linear theory like
RDT. However, in moderatly stratified flows we find significant small-scale contributions
with signs opposing to the large scales. These are due to non-linearity and should be
considered in scalar dispersion models.

1. Introduction and method

We extend the study of Rogers, Mansour & Reynolds (1989), who calculated the de-
velopment in time of the components of D;; for an unbounded shear flow, to stably
stratified flows. They derived an algebraic flux model which predicts D;; from the
Reynolds stresses and the mean strain-rate.

Qur Direct Numerical Simulation captures all relevant scales of a turbulent flow at
low Reynolds number. The time-dependent, three-dimensional Navier-Stokes equations
in the Boussinesq approximation for the velocity fluctuations «, v and w and the balances
of the temperature fluctuation 7' and of three passive scalar fluctuations ¢; , ¢z and 3
are integrated in space and time. Figure 1 shows the computational domain and profiles
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Figure 1. The computational domain is a cubus with axes x, y and z. Note the uniform
gradients of the mean quantities U, 0,Cy, Cy and C3
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of the mean quantities. Velocity U and temperature © have uniform vertical gradients
S and s. whereas the mean scalar fields C, Cj, C3 possess gradients s,, s,, 83 in the
streamwise (#-), spanwise (y-) and vertical (z-) direction, respectively. Temperature
fluctuation T and scalar fluctuation ¢z behave identically because we consider only
cases with equal molecular diffusivities (Pr = Sc¢).

The horizontal boundaries are periodical, the vertical is shear-periodic. Our code
uses central differences, an explicit integration scheme in time (Adams-Bashforth) and
a pseudospectral approximation of the advection by the mean flow. The grid resolution
is 128 cells in each direction. For details see Gerz, Schumann & Elgobashi (1989).

Firstly, we performed a simulation under neutral stratification (temperature with
vertical gradient as passive scalar) starting from an isotropic velocity field with a given
energy spectrum. When this flow has reached self-similar behaviour with characteristic
properties of a developed shear flow, we then take these data as initial fields for runs
labeled as A to D in Table 1.

Table 1. Nondimensional parameters of developed shear flow at the onset of buoyancy
forces at shear time St == 6. Results from wind tunnel experiments carried out by
Tavoularis & Karnik (1989) with Rex between 120 and 400 are given in brackets.

Box length, integral length L/L,¢/L 1, 0.09

Taylor micro-l., Kolmogorov 1. Ay /L, Ix/L 0.084, 0.004

rms of velocity v = (ﬁfﬁi/?p)lﬂ = (thn)l/z 0.025

rms of temperature T = (TT)V*(=¢c) 0.049

rms of concentration o' = (m)lﬁ,cz’ 0.099, 0.067

Shear number Sh=(AU/L)(¢/v") 3.2

Reynolds number Rey =v'Aq /v 64

Prandtl, Schmidt number Pr, Se 1,1

Reynolds stresses u?/(2Fkin), v2/(2Ekin) 0.56 (0.51),0.29(0.27)
w2 [(2E4iy), U0 /(2 kin) 0.15(0.22),-0.16(-0.186)

Richardson number for case A B C D

Ri = ag(AG/L)/(AU/L)? 0 0.16 0.33 0.66

2. Results

2.1 Development of kinetic energy and turbulence variances

The shear number Sh = (AU/L)(£/v') approximately measures the ratio of cnergy
production by shear and destruction by dissipation ¢. For Sh = 3.2 the kinetic energy
grows in the neutral case. The balances of the kinetic energy 8F4;,/8t = —STw +
RiwT — ¢ and the potential energy 9E, 4/t = —RiwT — 0.5Riepy reveal the role of the
vertical heat flux @WT'. It transfers energy from its kinetic form Fi;, = 0.5(¢")? into the
potential form E,,; = 0.5Ri{(T")?. Depending on the strength of stability, the kinctic
energy grows or decays according to an exponential law (Figure 2a). Due to the low
Reynolds number of the flow, the critical Richardson number, at which the flow reaches
steady state, has a value of 0.16, which is smaller than the typical value of 0.25 for
inviscid linear cases as discussed by Gerz & Schumann (1990).
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Figure 2. (a) Logarithmic plot of the kinetic energy versus shear time S1. (b) Compo-
nents of the Reymnolds stress tensor versus St. Upper, middle and lower curves corre-
spond to Wu/(2Ekin), 70/(2Ekin) and Ww/(2Ekin), respectively.
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Figure 3. Correlation coefficients of the vertical momentum flux —~%/u'w’. (a) and the
scalar fluxes uT /u'T' (upper values) and Te7 /w'e; (lower values) (b) versus time S1.

The strong anisotropy of the flow is not much changed by the stratification (Figure
2b). Except for the strongly stable case D, all cases show steady normalized variances;
i.e. the flow is self-similar. The anisotropy extends over all scales of the velocities
because of the considerable viscosity of the flow. With increasing stability the vertical
momentum flux vanishes (Figure 3a) because vertical motions which cause temperaturc
fluctuations are damped by buoyancy forces. Oscillations with twice the Brunt-Vaisala
frequency N = Sv/Ri result from the lincar forcing terms by shear and buoyancy.

2.2 Scalar fluzes and diffusivity tensor

The three fluxes uej, v, We; of each of the three scalars ¢y, ¢z, ¢3 divided by the
mean gradients --dC;/dz; = —s; form the nine components of the turbulent diffusivity
tensor Di; = ~u;c;/8;. Due to normalization, s; = 1 and therefore Di; = —uc;.
In our case Dy, Doy, D23 and Djs are zero because of flow symmetry. The diagonal
components D1, D2z and Djy describe down-gradient transport along the axes whereas
D3 = —uc; = —uT and D3y = —Weg express fluxes orthogonal to the mean gradients
which cause them. The velocity variances times the mean scalar gradients s; form the
production terms in the scalar flux balances (1a, lc and le; & denotes pressure terms,
¢ denotes molecular smearing). Their anisotropy gives rise to the strong anisotropy of
the diffusivity tensor. D3; and Dy3 both contain the momentum flux or shear stress

329



uw in the production term (1b and 1d). The additional term wTS in the uT-balance
causes the asymmetry of the diffusivity tensor in the neutral case. BiT¢; enhances the
asymmetry for cases with Ri > 0.

]

Dy, : l;:l = —hus; — W1 S + P1e, — €1y (la)
D, 62?? = —uws, + RiTe; + $3c, — €3¢, (1b)
Doy 6‘;?3 = —VUsy + b2ey — €26, {lc)
Dy % = —wws — wl S + 11 — 1T (1d)
Dy : 8:;’? = —TWs + RiTT + ¢37 — €31 (le)

Because of the tensor asymmetry there is no analogy between turbulent and molec-
ular diffusivity (e.g. heat conduction in an anisotropic medium} which is always sym-
metric according to the Onsager-Casimir theorem.

The time series of the scalar flux correlation coefficients become more or less sta-
tionary as to be expected in a self-similar flow (Figure 3b). If the turbulent diffusivity
is an universal property of the flow, the ratios of the scalar fluxes should become steady.
Other than Rogers et al. (1989) we~use the spanwise flux (or D2;) in order to normal-
ize the other fluxes because the vertical scalar (heat) flux reaches very small values in
strongly stable cases (Figure 4a). Although these time series do not show exact steady
state, they give us some approximate values of the normalized tensor components as
a function of Ri (Figure 4b). For Dy3 and D38 measured values are available in the
neutral case. As Rogers et al. (1989) pointed out, it is practically impossible to realize a
stationary mean scalar gradient in the streamwise direction in a laboratory experiment.
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Figure 4. (a)} Components of the diffusivity tensor, normalized by the spanwise compo-
nent Dj; versus time St; upper values correspond to Dy; /Dag, lower values to Dy3/ Dy
(b) Normalized diffusivity tensor versus Richardson number at St > 12. The dashed
error bars mark values from Direct Numerical Simulations of Rogers et al. {1989). Stars
mark measured tensor components from Tavoularis & Corrsin (1981 and 1985),
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The stability has significant influence on the tensor components D;3 and D3y, both
of them expressing vertical fluxes. The sign change of D3y results from the fact that
the production term —uws, is counterbalanced by the sink RiTe¢, (1b). The large
correlation of the scalar fluctuations T’ and ¢; extends over #ll scales and is not much
affected by the stability, except for case D. Explanation of scalar flux behaviour is
limited to simple qualitative statements if only the balances (1la-1e) are used. However,
Hunt, Stretch & Britter (1988) showed, that important aspects of the flow behaviour
are derivable using linear RDT. From a detailed discussion of the distribution of flux
contributions on several scales - which is done in the next section - it turns out that
some of the scalar fluxes show opposing contributions on large and small scales which
are due to non-linearity.

2.3 Spectral analysis of fluz behaviour for neutral stratification

In order to understand how the flow is affected by the buoyancy forces it is useful
to discuss the neutral flow first. We extend Rogers et al.’s work by analysing the
three-dimensional flux spectra of momentum and scalars of our neutral case A, which
is comparable to their flow cases. Results from Brasseur & Lin (1990) who analysed
the data of Rogers’ simulations, are very useful to interprete the spectra. By means
of a sampling method they looked out for spots with strong local momentum flux uw
which they called "events”. They found that the most intense uw-events are completely
dominated by negative uw-fluctuations - which can be expected from mixing-length
theory - whereas weak events cause as often negative as positive uw-fluxes. In our
simulation we find positive uw at 33 % of all grid points and a value of 2.7 for the ratio
of rms-values of negative and positive uw-samples, which is consistent with the results
of Brasseur.

The shear-stress spectrum ®,,, has strong negative contributions at large scales
(see Figure 5a). We find a sharp decrease at medium wave numbers and almost no
contributions at small scales. Analysis of the isocontour plot of uw illuminates that
the low wave-number contributions mark rather the distance between strong negative
events than their spatial extension. The absence of small-scale contributions in ®,,,

does not say that there is no small-scale momentum flux. It expresses rather the fact
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Figure 5. Cospectra versus wave number & of the momentum flux &,,, (a) at several
times and of —®,.,, —®,., and —®,7 (b) at St = 9. The countergradient values
(originally positive) of ®,7 are omitted due to the logarithmic axis. Wave-number
k = 1 corresponds to a wave-length L.
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Figure 6. Isocontours of velocitiy fields of u (a) and w (b) from case A with Ri = 0 in
a r-z plane at St =6,

that at small scales the positive and therefore counter-gradient shear-stress is as big
as the negative one. Vanishing shear-stress on small scales, however, does not indicate
local isotropy in our case, since we observe an anisotropic flow behaviour at all scales.
Further, in case of local isotropy, there would be no cause for the strikingly different
shapes of the cospectra of the down-gradient scalar fluxes shown in Figure 5b. Since the
three scalars ¢, ¢; and ¢ = T differ only with regard to the orientation of their mean
gradients, one would expect, that the cospectra look similar at high wave numbers in
an locally isotropic flow.

The vertical velocity fluctuation w behaves differently than horizontal fluctuations
u and v. Comparison of vertical cross-sections of the fields of u and w (Figure 6) gives
rise to the conjecture that the w-fluctuations play the key-role in this flow, since the
w-field looks more random and, hence, changes sign more frequently, whereas the u-
fluctuations show some inclined streaky coherent structures (see also Gerz, 1990). This
is consistent with the fact that the skewness-coefficients of the velocity derivatives show
strong skewness of vertical and horizontal derivatives of u but only weak values of the
corresponding coefficients of w. The physical reason for this behaviour is the orientation
of the gradient of the mean velocity U(z).

Thus, if we accept the key-role of w-fluctuations, we are able to present a concept
of the evolution of a probable flow event. Strong events which caused negative uw and
other scalar fluxes according to mixing-length theory break down into small-scale fluid
parcels which carry their properties for some time, e.g. horizontal velocity fluctuation u
and scalar properties like T and ¢;. If w changes sign before the fluid parcels have lost
their properties from the past event, vertical fluxes uw and wT will become counter-
gradient. Also wc; will change sign. On the other hand, small-scale luxes or correlations
which do not involve vertical motion, e.g. uT,uc; and ¢;T will retain the same values
as in the event. In Figure 7 it is tried to sketch the evolution of a "typical” event.

The figure illustrates how properties of a fluid parcel, which starts with mcan
values of its surroundings according to its initial position, change during a vertical
upward displacement Az(t) which is followed by a break-up into several small-scale
fluid parcels under the action of turbulence. Some of the small-scale "relics” - still
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Figure 7. Sketch of properties of a fluid parcel versus time during a "typical” flow event.
The dotted lines mark the time when the fluid parcel breaks up into small-scale parcels.
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Figure 8, Cospectra from case A with Ri = 0 at several times of ®,,., (a) and of the
streamwise heat flux ®,7 (b).

carrying some of their initial properties - undergo a sort of ”compensating” downward
motion. It is possible to derive all other fluctuations from the development of w, if
one uses the relations w = d{Az)/dt, u = d{Az)/dt = —AzdU/dz, T ~ - A2dO/dz,
e1 & —AzdC) /dz, where Az only considers the horizontal displacement caused by the

fluctuation w. This presentation is consistent with the moving reference frame due to
the mean advection U(2).

So we can subdivide the correlations into two groups. The fluxes vw, wT and wc,
change their sign during the break-down of the event whereas uT,uci and ¢;T retain
their signs. It turns out that the cospectra of these correlations can be separated into
the same two classes. Cospectra ®,71,®,., and ®., r have similar shapes and do not
change sign (Figure 8b) whereas ®,,,, ®,,7 and ®,,., show sharp decreases at medium
wave numbers followed by opposing or vanishing contributions at small scales (Figure
8a).

Whereas &, has small-scale counter-gradient contributions (not shown here) &,
does not (Figure 5). This can be explained by the longer life time of scalar fluctuations
T than of velocity fluctuations u for Pr ~ 1. The negative small-scale parts in &,
have two causes. Firstly, due to ¢,'/T" = 2, the flux we; is greater than wT on average;
(wer)' = 2(wT)'. Secondly, the different orientation of the mean gradients of u and
T on one side and of ¢;"on the other side leads to the distinct small-scale behaviour.
From the sketch of an event (Figure 7) it is evident that a vertical backward motion
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reduces the values of T and u whereas it does not affect ¢;. Therefore we; stays
relatively large on small scales. The shape of the cospectrum @, emphasizes that non-
linear effects can have considerable contributions. The subdivision into two groups also
holds if one regards the correlation coefficients. The first group with @@ /u'vw’ = 0.5,
wT/w'T = —0.4 and Wer/w'c) = 0.2 has smaller values than the second group with
wer/u'c) = —0.75, uT/u'T' = 0.65 and T/, T' = —0.75.

2./ Buoyancy influence on the spectra

The moderately stratified cases B and C show similar shape of spectra as the neutral
case. However the large-scale contributions are smaller, the high wave-number parts of
@y, &1 and D, are distinctly counter-gradient (not shown here). We conclude that
buoyancy acts on all scales of a shear flow at the given (small) Reynolds number. The
large-scale upward motion in our flow example (Figure 7) is diminished by the stratifica-
tion, whereas the small-scale ”compensating” downward displacement is enhanced due
to the body force which draws the fluid-parcels with negative T-fluctuation downwards.
T and ¢ stay strongly correlated in stratified flows except for case D which indicates
that the mechanism of flow events given above is adequate even for the description of
moderately stratified flows. From the distinct opposing behaviour at different scales we

conclude that accurate modeling of scalar dispersion under stable stratification will be
difficult.
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