
FORM-AWARE, REAL-TIME ADAPTIVE MUSIC
GENERATION FOR INTERACTIVE EXPERIENCES

ABSTRACT

Many experiences offered to the public through interac-
tive theatre, theme parks, video games, and virtual envi-
ronments use music to complement the participants’ ac-
tivity. There is a range of approaches to this, from
straightforward playback of ‘stings’, to looped phrases, to
on-the-fly note generation. Within the latter, traditional
genres and forms are often not represented, with the mu-
sic instead being typically loose in form and structure.
We present work in progress on a new method for real-
time music generation that can preserve traditional musi-
cal genres whilst being reactive in form to the activities
of participants. The results of simulating participant tra-
jectories and the effect this has on the music generation
algorithms are presented, showing that the approach can
successfully handle variable length forms whilst remain-
ing substantially within the given musical style.

1. INTRODUCTION
A significant portion of current artistic and entertainment
narrative-based experiences are structured episodically
and the duration of these episodes (i.e. sections) may be
only loosely determined due to semi-improvised content
or participant-dependent advancement of their narrative.
Such experiences include live theatre containing improvi-
sation [1], theme parks [2, 3], extended theatrical interac-
tive experiences [4], video games, interactive film [5] and
virtual environments. We hereafter refer to all these as
Extended Performance Experiences (EPE).

Musical accompaniment is well established in EPEs due
to its potential for a more convincing and engaging expe-
rience on a “cultural, physical, social or historical level”
[6]. In addition, music can play a narrative-defining role
and, thus, significantly enhance the experience [7].

Computer generation of musical accompaniment for
EPEs is necessary for a number of reasons: The physical
presence of musicians may be counter-immersive or im-
practical e.g. where, owing to limited stamina of humans,
rotation may be required during a long-running experi-
ence. This could lead to musical incoherence due to sub-
jectivity of musical decisions if musical improvisation is
involved. In addition, the resources required for rehears-

als and performances may not be economically achieva-
ble for small-scale projects or independent companies.

It is common that EPE episodes are contrasting in con-
tent and aesthetic character and, thus, musical accompa-
niment needs to reflect this (for example, one might im-
agine four distinct zones within a single theatrical instal-
lation, each with a different cultural flavour and thus mu-
sical style). The transitions between episodes are an im-
portant aspect of the overall experience since, according
to Benford et al. [8], transitions are benchmarks in con-
tinuous interactive experiences in space and time. Musi-
cal transitions (MT) must take place at appropriate narra-
tive boundaries and without breaking musical continuity.

The indeterminate duration of EPE episodes, combined
with the necessity of timely and well-placed musical tran-
sitions, raises the issue of musical coherence and continu-
ity, i.e. we wish to avoid abrupt MTs or unexpected si-
lences. In order to avoid such abruptness during an EPE
transition, various techniques have been developed for
real-time generation of music (see section 2).

We can summarise the requirements for a music gen-
eration system for EPE as: the need to provide continu-
ous, non-repetitive music, with non-abrupt but distinct
musical transitions, with large-scale form awareness and
with note/chord level granularity. By large-scale form
we mean musical forms that might be traditionally recog-
nised e.g. blues, pop songs, binary, tertiary etc.

This paper addresses the problem of generating well-
formed music incorporating timely transitions in the
presence of indeterminate and dynamically changing
compositional length in real time. We present the Form-
Aware Transition Engine (FATE): an approach that com-
bines probabilistic music generation with participant tra-
jectory estimation to permit changes to be made to musi-
cal structure in real time within the constraints of a style
(represented by a probabilistic grammar).

The rest of the paper presents background (Section 2),
the FATE approach (Section 3), case studies (Section 4),
results (Section 5) and conclusions (Section 6).

2. BACKGROUND
There has been a substantial amount of work on genera-
tive music (see [9] for a survey) and in particular real-
time [e.g. 10, 11, 12, 13] and non-real-time [14, 15] gen-
erative music in EPE-like settings. The real-time work is
of particular relevance here and has resulted in a number
of common approaches (see summary in Table 1).

Christodoulos Aspromallis Nicolas E. Gold

Department of Computer Science
University College London

c.aspromallis@cs.ucl.ac.uk

Department of Computer Science &
UCL Centre for Digital Humanities

University College London
n.gold@ucl.ac.uk

Copyright: © 2016 Christodoulos Aspromallis and Nicolas E. Gold. This
is an open-access article distributed under the terms of the Creative
Commons Attribution License 3.0 Unported, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original
author and source are credited.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCL Discovery

https://core.ac.uk/display/110945401?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2.1 Pre-composed passages played once

This approach is traditionally taken in theatrical perfor-
mances, in the principle of television ‘stingers’ [16], by
manually triggering or conducting musical passages of
shorter duration than the narrative episode lasts. As a
result, this approach does not provide continuous musical
accompaniment of the narrative.

2.2 Pre-composed consecutive or looped passages

This approach is common throughout the history of music
for video games (Super Mario Series – 1985 onwards,
Halo – 2001, Earth Eternal – 2009, among others). Sud-
den stoppages and starts of music passages in early video
games were later replaced by volume crossfading [6].
Despite this, players have characterised such MTs as ab-
rupt and loops as monotonous [6]. Müller and Drieger
[10] developed a system for automated, real-time ma-
nipulation of pre-existing musical clips in response to
narrative action in visual media. The system manages
time-placement and concatenation of precomposed mu-
sic. Hazzard [17] developed an adaptive music sound-
track for a musically augmented walking experience in
Yorkshire Sculpture Park. The dynamically managed
composition relies on triggering and looping short seg-
ments of music or the alignment of longer ones.

The lack of note-level flexibility in precomposed music
may lead to abrupt changes in music and general incon-
sistency between music excerpts thus rendering it unsuit-
able for the problem being addressed here.

2.3 Dynamic management of pre-composed layers

In this approach, predefined melodies, rhythmic patterns,
chord progressions or baselines that are musically com-
patible are vertically managed, i.e. triggered and stopped.
Early instances of this approach include Langston’s ‘rif-
fology’ [18] for the Atari console game Ballblazer [19],
an engine that linearly connects precomposed melodies
based on interval connectivity as well as Whitmore’s in-
strumental layer approach [20] for Microsoft’s Russian
Squares [21]. In the more recent music engine prototype
[.talktome] [22] and in the recently released video game
NoMan’s Sky by Hello Games [11] music layers are also
algorithmically managed, based on game state changes.

Dynamic management of precomposed layers provides
arrangement flexibility and, specifically, the ability to
punctuate MTs through the use of different instrument
settings between music sections. However, the granulari-
ty of predefined music layers may not correspond to the
granularity of the narrative and so abruptness is still a
risk. This may also be musically restraining.

2.4 Note-level procedural generation of original ma-
terial

Video games like Journey [12], Spore (music by Brian
Eno) [23] and Simcell [24] generate an ambient music
floor as well as melodic and rhythmic motifs in response
to game states and events. However, the non-metric and
ambient character of the music does not generate distinc-

tively contrasting music sections. Even though musical
accompaniment in these instances meets the needs of the
specific video games, other EPEs may require musical
contrast at the level of harmonic context, rhythm and
large-scale musical form, which is something that these
instances of note-level generation do not provide.

2.5 Note-level morphing

Beyond the aforementioned EPEs, Wooller [25] applied
morphing programming techniques to music loops in
order to generate MTs between mainstream pieces of
popular dance music. This approach sets an initial loop as
a starting point and a second as a goal point. Systems
developed by Wooller [25] and Brown, Wooller and
Thomas [13] can generate MTs in the form of music
morphs between loops with music generation decisions at
the note-level. The Morph Table [13] can control the pro-
gress of these morphs in real time using interfaces such as
moving cubes on a table. Morphing was achieved by us-
ing parametric, probabilistic and evolutionary techniques.
However, the system manipulates short music excerpts
(i.e. loops) and does not take large-scale form into ac-
count. Instances of EPE episode transitions may require
music to either develop formally or to simply stop by
abiding to specific form rules. For instance, on-demand
ending of a blues form should be managed in a way that
preserves its character and does not sound imbalanced, as
might be the case if it ends at an arbitrary point.

3. FORM-AWARE TRANSITION ENGINE

We present a Form-Aware Transition Engine (FATE)
that aims to address the problem of MTs in EPEs.

3.1 Architecture

The FATE design consists of two main modules: a pre-
diction engine provided with external stimuli and a music
generation engine. The prediction engine receives data
from an EPE environment, such as the location and
movement of an EPE participant from a Microsoft
KinectTM sensor. Based on environment data, the predic-
tion engine estimates the remaining time towards the next
Narrative Transition Point (NTP): the point at which the
current episode of music should finish. In the current im-
plementation of FATE, the prediction engine receives its
data from a mouse-controlled 2D surface of the computer
screen (Figure 1). This simulates a simple version of an
EPE episode, where a participant, represented by the dot
(top left corner of Figure 1), is expected to arrive at the
goal point (bottom right corner) after some time. Reach-
ing the goal denotes the end of the episode. The predic-
tion engine provides the music engine with data based on
the three following elements:
(i) An exponentially weighted moving average (EWMA)
of minimum remaining time towards an episode end. To
calculate this, an EWMA of the absolute speed (irrespec-
tive of direction) of the participant is computed continu-
ously. Based on the participant’s distance from the goal

Table 1. Summary of real-time music generation approaches for EPE-like settings.

Figure 1. Mouse-controlled 2D surface.
Dot / participant (top-left), goal point (bottom-right).

Figure 2. FATE design.

point at a given time, the remaining time is computed
under the assumption that a direct linear path towards the
goal is taken at that time.

(ii) Binary information on whether the participant is ap-
proaching or moving away from the goal point.

(iii) Binary information on whether or not the partici-
pant has reached the goal.

The signals sent from the prediction engine to the music
engine are configured thus: If (i) is less than a specified
duration appropriate to the musical form being generated
(e.g. the duration of four bars in the following case stud-
ies – see Section 4) and (ii) the participant is approaching
the goal, then a signal (“ENDING”) is sent to the music
engine to request that a process to end the music should
begin (cadencing - Section 3.2.3). If “ENDING” is true
and either i or ii cease to apply, then the “RECOVERY”
signal is sent. Finally the “GOAL_REACHED” state
becomes true at the end of the episode and is irreversible.
The music engine generates chords in real time in order to
populate (currently) a blues twelve-bar form (the particu-
lar musical style required is captured by a probabilistic
grammar). Data received from the prediction engine ena-
bles the music engine to manipulate the generation of
chords so that the musical end matches the episode end in
a timely fashion, i.e. reaching the goal.

MTs must happen in a way that makes musical sense in
the context of both the finishing and upcoming music
sections. At this stage FATE has been developed to tackle
the first part of this issue i.e. ending and recovering (more
details in Sections 3.2.3 to 3.2.6) a finishing music sec-

tion in such a way that musical form is retained or at least
stopped in as least an abrupt manner as possible. At this
stage we use the twelve-bar blues because it is a well-
defined form of medium length.

Figure 2 presents the FATE design. Namely, the gram-
mar parser loads a set of structural attributes and gram-
mar rules to the system. A step sequencer drives and con-
tinuously updates the system on musical time. Grammar
productions happen according to musical time as well as
incoming data from the prediction engine. At each step of
harmonic progression – in this case defined at one chord
per bar – a chord symbol is sent to the MIDI translator
which finally outputs the MIDI notes (chords) to a virtual
synthesizer.

3.2 Grammar

The generation of chords relies on a hand-built, stochas-
tic, context-sensitive generative grammar. A grammatical
approach was chosen as grammars are good for support-
ing the management of the “macrostructure” of form
[26].

Music generation is driven by two main types of deci-
sions: a) musically-driven decisions (3.2.1), defined by
the norms of the style (here blues), and b) event driven
decisions (3.2.3 to 3.2.6), defined by incoming data from
the prediction engine.

3.2.1 Temporal Resolution of Hierarchical Decision-
Making (Form-Dependent)

The top-level of chord decision-making is made at specif-
ic points of the blues structure. Specifically, top-level

Musical elements

Generation
approaches

Continuity

Non-abrupt
development

Distinct
Transitions	

Repetition
avoidance

Granular control
(note/chord -
level generation)

Large-scale
form

Precomposed
passages-once

 X

Precomposed
passages-
consecutive/looped

X X 	 X

Precomposed layers X X X X

Note-level procedural
generation

X X X

Note-level morphing
of loops

X X X

Hypothesised
algorithm

X X X X X X

	

dec_1															|	 																										|	 																										|	 																										|	
dec_5															|	 																										|	 dec_7															|	 																										|	
dec_9															|	 																										|	 dec_11													|	 																										|	

	
	
	
	
																										|	 																										

|	
cad																			
|	

																										
|	

																										|	 																										
|	

cad																			
|	

																										
|	

																										
|	

																										
|	

cad																			
|	

																										
|	

	
	
	
	
	
	
	
																
	
	
	
																						
	
	
	
	
	
	
	
	
	
	
	
	
	
	

ENDING	
occurrence	

bars	

Cadence	
placement	

bar	

Expected	
end	
bar		

11	-	2	 3	 5	
3	-	6	 7	 9	
7	-	10	 11	 13	(1)	

	
	
	
	

	
Prediction	engine	

Synthesizer	MIDI	translator	

Step	sequencer	

Grammar	parser	Grammar	

 Figure 3: Top-level decision points.

Figure 4: Context-aware time-specific rule
for tonic in bar 1.

decisions are made in bars 1, 5, 7, 9 and 11 of the form as
shown in Figure 3 (denoted as ‘dec_*’) for each blues
cycle. In bar one a set of four non-terminal, type-level
chord symbols (see 3.2.2) is probabilistically chosen. It
follows that the rest of the top-level ‘dec_*’ decisions
return two non-terminal chord symbols each. In other
words, at certain points in the structure the grammar re-
turns a number of productions scheduled as future re-
writes or musical events. This approach is similar to the
way that Keller and Morrison [27] used probabilistic
grammars for the generation of style-abiding jazz melo-
dies. In [27] the grammar controls both rhythmic and
melodic structure of melodies and the latter are extended
by controlling the length of terminal strings produced (at
each point). The points at which top-level choices should
be made are determined by the form.

It can be argued that the blues form can be divided into
three four-bar sections (for clarity, note that here we take
“blues form” to indicate the basic blues form along with
its harmonic language (or variations known as rock ‘n’
roll blues, rock blues or others) and not what is known as
jazz blues, Blues for Alice form etc.).

For the sake of clarity of harmonic form and form flex-
ibility, in our example further division has been applied
(bars 5 to 12). Namely, dec_1, dec_7 and dec_11 can be
seen as extended tonics (I), dec_5 as extended subdomi-
nant (IV) and dec_9 extended dominant.

 Once ‘dec_*’ non-terminals are rewritten as non-
terminal chord symbols, a type-level rule is applied to
produce a terminal chord symbol. Rewrites occur in a
time-controlled manner. For instance, for the rule shown
in Figure 5 the non-terminal ‘dec_1’ may rewrite as “I IV
I I” with probability 0.25 (Figure 5). Next, if the context
matches the rule in Figure 4 the tonic (I) in bar 1 will be
rewritten as a terminal ‘i7’ with probability 0.4. Once a
terminal has been reached, rewriting stops until the next
musical time arrives (the next bar in this case).

3.2.2 Grammar Design

As Section 3.2.1 partly conveys, the grammar can be ab-
stracted as G = (M, T, R, S, P) where we have:

- Start point S à dec_* dec_* dec_* … (form-

dependent time-stamped decision points at the be-
ginning of every cycle)

- Non-terminals (non-t) M divided in:
o Top-level non-t = { dec_*, cad, fin, rec }

(see also Sections 3.2.3 to 3.2.5)
o Type-level non-t = { I, II, III, IV, V }

- Terminals T = { i, i6, i7, iim7, iiim, iiim7, iv, iv6,
iv7, v7 }

- Set of rules R
- Set of rewrite probabilities P

Type-level non-t chord symbols function as an interme-
diate step after top-level non-terminals in order to control
the final configuration of each chord according to its po-
sition and context (e.g. IV rewrites in either of ‘iv’, ‘iv6’
or ‘iv7’).

For our blues example, the probabilities of production
rules are hand-coded based on musical experience, how-
ever, we intend that in the future, probabilities will be
learnt from style-appropriate corpora. Beyond the above
elements, the system accepts a number of form-defining
data, i.e. form length, harmonic rhythm (chords per bar),
time-placements of top-level decisions in the form (‘dec’,
‘cad’), time signature and an optimal harmonic form (see
Section 3.2.5).

Rules R are divided in timed (denoted with ‘_*’ in the
grammar, Figures 3, 4 & 5) and general as well as con-
text-aware or not. Two main divisions of rules R apply to
non-terminals:
- Timed rules (TR - denoted as ‘_*’ in the grammar)

vs. general rules (GR).
- and context-aware rules vs. context-free rules.

As Roads and Wieneke state [26], a grammar described
only by rewrite rules is weak for music description and
generation of musical structure, unless somehow en-
hanced. In our case this enhancement relies on the time-
specification of certain rules as well as time-based resolu-
tion of hierarchical rewrites.

The following sections (3.2.3 to 3.2.6) describe how the
music engine responds to the signals received from the
prediction engine, i.e. ENDING, RECOVERY and
GOAL_REACHED (see Section 3.1).

rule: dec_1 à 0.2 I I I I

 à 0.1 I I V I

 à 0.25 I IV I I

 à 0.06 I IV V I

 à 0.08 I IV I V

 à 0.1 I I I V

 à 0.1 I V I I

 à 0.06 I V I V

 à 0.05 I V IV I

 :end_rule

rule: v7 I_1 I à 0.3 v7 i I

 à 0.3 v7 i6 I

 à 0.4 v7 i7 I

 :end_rule

dec_1															|	 																										|	 																										|	 																										|	
dec_5															|	 																										|	 dec_7															|	 																										|	
dec_9															|	 																										|	 dec_11													|	 																										|	
	
	
	

Prediction	engine	

Synthesizer	MIDI	translator	

Step	sequencer	

Grammar	Grammar	parser	
Figure 5: LHS is a time-specific (bar 1) top-level deci-
sion rule. On the RHS each production probability is
defined along with the type-level non-terminals pro-
duced (for bars 1 to 4).

3.2.3 Cadencing

When ‘ENDING’ (Section 3.1) becomes true, the music
is scheduled to cadence within a number of bars, accord-
ing to the chosen generated form. In the blues form that
has been chosen for the case studies in this paper (see
Section 4) two-bar cadences can be placed at every four
bars, i.e. bars 3, 7, 11 with the prospect for each cadence
to end at bars 5, 9 and 13 (i.e. 1 of the form) respectively
(Table 2). This choice was made based on consistency
with the 12-bar blues form. In other words, finishing at
every two bars or on the even bars of the form would
have a syncopated feel, compared to finishing on either of
bars 5, 9 or 13.

Figure 6. Correspondence of ‘ENDING’
occurrence with cadence placement.

Figure 7. Post-cadencing: ‘fin’ placed in
remaining form.

Table 2. Potential cadence (‘cad’) and ending
bars.

Depending on when the ENDING signal is received, the
cadence is scheduled for the equivalent point in the form
as shown in Figure 6 and Table 2. E.g. if the ENDING
signal is received within bars three to six, the cadence
will be scheduled for bar seven (second row of Table 2).
The top-level non-terminal ‘cad’ probabilistically pro-
duces two type-level chords (pre-dominant, dominant)

based on the context that precedes the cadence placement
bar. It follows that the cadence at bar 11 is placed there
despite it being the end of the cycle in order to highlight
the ending of the form.

3.2.4 Post-Cadencing

Under the same circumstances, along with scheduling
‘cad’, the top-level non-terminal ‘fin’ is placed in every
bar after the cadence is finished (Table 2 - column 3, Fig.
7) until the music ends. A micro-grammar of non-
terminals ‘fin’ guarantees that a sequence of V – I chords
will be played after the music has cadenced. The purpose
of this feature is to prolong the end of music until the
goal is reached, by providing some basic harmonic
movement that is flexible enough to end within one or
two bars after the goal. I.e. once the goal is reached and a
cadence has completed, the music stops at the first tonic
chord generated.

3.2.5 Recovering

A significant feature of the music engine is its ability to
recover from a ‘false alarm’ from the prediction engine.
By that it is meant that the music can be led back into the
previously ending form. Unless the goal has been
reached, the prediction engine may, theoretically, change
from ENDING to RECOVERY (Section 3.1) countless
times. Music generation can support this in the following
way: Regardless of whether the previously ENDING mu-
sic has reached its scheduled cadence or not, or even if it
is already in a post-cadencing phase, the music engine
takes a two-step recovery approach. When a new bar is
reached and ENDING has just turned to RECOVERY, an
optimum harmonic sequence of the form is applied from
one harmonic-rhythm step (i.e. 1 bar) ahead onwards.
This aims to re-establish the feel of the form by placing
the most “classic” chords at each bar. The optimum har-
monic sequence is placed one bar later so that the one
gap-bar that connects it with the previous harmonic phase
(i.e. pre-cadencing, cadencing or post-cadencing) works
as a reconciling chord between the falsely ending harmo-
ny and the optimum harmony. In order to preserve non-
abrupt harmonic progress, an additional number of timed
and general (i.e. non-timed), context-aware rules are de-
fined by the grammar. These rules can support all cases
of recovery regardless of the preceding harmonic phase.

The top-level non-terminal for the reconciling gap-bar
is ‘rec’. As with rule production probabilities, the opti-
mum chord progression has been hand-coded here, but
will be statistically modeled in the future.

3.2.6 Stopping

When the goal point is reached and the post-cadencing
phase has been entered (even by 1 bar), the grammar pro-
ductions and music in general stop once a tonic chord is
reached, i.e. until a top-level non-terminal ‘fin’ is rewrit-
ten as one of terminals ‘i’, ‘i6’ or ‘i7’. As mentioned ear-
lier (Section 3.1) reaching the goal point is irreversible,
so the ‘episode’ finishes and recovery is no longer an
option.

	
Musical elements

Generation
approaches

Continuity

Non-abrupt
development

Distinct
Transitions	

Repetition
avoidance

Granular control
(note/chord -
level generation)

Large-scale
form

Precomposed
passages-once

 X

Precomposed
passages-
consecutive/looped

X X 	 X

Precomposed layers X X X X

Note-level procedural
generation

X X X

Note-level morphing
of loops

X X X

Hypothesised
algorithm

X X X X X X

	
	
	
	

||																									|	 																									|	 cad																				|	 					(V)														|	

|																										|	 																									|	 cad																				|	 					(V)														|	

|																										|	 																									|	 cad																				|	 					(V)														||		
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

||																									|	 																							|	 																											|	 																											|	

|																										|	 																							|	 cad																				|	 					(V)														|	

||		fin	à	(I)				|		 fin	à	(V)			|	 fin	à	(I)								|	 fin	à	(V)							||	
(etc...)	

dec_1															|	 																										|	 																										|	 																										|	
dec_5															|	 																										|	 dec_7															|	 																										|	
dec_9															|	 																										|	 dec_11													|	 																										|	

	
	
	
	
																										|	 																										

|	
cad																			
|	

																										
|	

																										|	 																										
|	

cad																			
|	

																										
|	

																										
|	

																										
|	

cad																			
|	

																										
|	

	
	
	
	
	
	
	
																
	
	
	
																						
	
	
	
	
	
	
	
	
	
	
	
	
	
	

ENDING	
occurrence	

bars	

Cadence	
placement	

bar	

Expected	
end	
bar		

11	-	2	 3	 5	
3	-	6	 7	 9	
7	-	10	 11	 13	(1)	

	
	
	
	

	
Prediction	engine	

Synthesizer	MIDI	translator	

Step	sequencer	

Grammar	parser	Grammar	

 Traj. 1 Traj. 2 Traj. 3
ENDING 21 24, 32 13, 21, 29, 35

RECOVERY - 31 18, 25, 33

GOAL_REACHED 31 38 41

Table 3: Bars when prediction engine events occur in
each trajectory. Bars are numbered linearly irrespective
of form.

4. CASE STUDIES
In order to test the effectiveness of the system in generat-
ing musical cadences, form recoveries and musical end-
ings on demand, we provided the music engine with data
generated by the prediction engine. Computer mouse
movement, which served as a proxy for the movement of
a virtual participant for our case studies, produced the test
trajectories offline. For these case studies of grammar
productions, the sequencer was not used but instead a test
harness replayed the offline-recorded trajectory data. All
three trajectories were performed in a distinctly different
way in order to challenge the music engine under differ-
ent series of events. Trajectory 1 is the smoothest of the
three, where the virtual participant approaches the goal
point rather directly (Fig. 8) with relatively consistent
speed, trajectory 2 significantly diverges from what
would be an ideal trajectory towards the goal point with
moderate speed variation and, finally, trajectory 3 ap-
proaches the goal point but spins in circles before it
reaches it, this time with significant speed variation.

Regarding the data received from the prediction engine,
the ‘ENDING’ signal is sent based on a logical conjunc-
tion of data levels (i) and (ii) (Section 3.1). Specifically
‘ENDING’ is sent if (i) the EWMA of minimum remain-
ing time towards an episode end is less than 4 bars’ AND
if (ii) the participant is approaching the goal point. As
explained in Section 3.2.3, 4 bars duration for (i) has
been chosen because the blues form ends more naturally
in this configuration. Finally, the ‘RECOVERY’ signal
(3.2.5) is sent when ‘ENDING’ ceases to apply and
‘GOAL_REACHED’ (3.2.6) occurs as the episode ends.

The recorded prediction engine data were provided to
the parser in order to produce the three chord sequences
in response to trajectories’ events. In order to render au-
dio examples, these chord sequences were translated into
MIDI and rendered using Ableton Live1. Drums and bass
parts were added as pre-programmed MIDI loops, trig-
gered alongside the harmonic parts and – in the case of
the bass part – selected based on the grammar-generated
harmony. The tempo of music was set at 80 bpm and
harmonic rhythm at 1, i.e. one chord per bar.

Decisions of the music engine are made at the begin-
ning of each bar, so Tables 3, 4, 5 and 6 represent the
sequence of prediction engine data as the music engine
examines them, i.e. at every bar.

5. RESULTS AND DISCUSSION
All music generated from the above input data was suc-
cessful in cadencing, form recovering and ending the
music on demand, in a form-complying manner.

Tables 4, 5 and 6 demonstrate the harmonic states of the
blues cycle. Specifically, the column Grammar states of
cycle in each figure presents bars from 1 through to 12 at
the time of corresponding events. ‘||’ denotes the end of
music generation. Bars are shown in terms of linear (‘L’)

1At this stage translation into MIDI was made by hand although it will
be automatic in the future.

and cycle (‘C’) numbering and each row demonstrates the
post-rewrite state of its corresponding bar, i.e. a terminal
has been produced for that bar. Arrows from each table
row show the trajectory points that trigger each corre-
sponding event, which, in turn, impacts music generation
(Tables 4, 5, 6 and Figures 8, 9, 10).

Music for trajectory 1 is generated according to form
rules until bar 21, i.e. bar nine of the form, second time
round, when a cadence is introduced. The cadence is
placed in bar 11 of the form (second time round) since
‘ENDING==true’ occurred in bar 9 of the form, i.e. with-
in bars seven to ten (Figure 6). In bar 25, i.e. the first bar
of the form in the third cycle, the post-cadence phase is
reached and the top-level non-terminal ‘fin’ populates the
form. ‘GOAL_REACHED’ occurs in bar 31 (or seven in
the third cycle) where a tonic has been produced, so
grammar productions and music stop there.

In trajectory 2 we have a similar development until bar
30. As shown in Table 5 at bar 29 a post-cadencing phase
has been reached (‘fin’) while previously the cadence at
bar three of the form has been scheduled since bar 24.
When bar 31 is reached, a recovery bar is scheduled for
the next bar, i.e. bar eight of the form. Along with it, op-
timum chords are placed in the remaining bars. Subse-
quently, at bar 32 a cadence is scheduled again for bar 11
of the form and post-cadencing begins at bar 37. The goal
is reached at bar 38 and music generation continues only
for one more bar (39) when a tonic is produced.
In a similar way trajectory 3 schedules a cadence at bar
24 (for the third bar of the form), post-cadences at bar 17
and schedules recovery at bar 18 for the next bar (seventh
of the form). At bar 25 it is interesting to note that post-
cadencing is cancelled by a recovery at that point. So
instead of a ‘fin’ population (for bars two to twelve of the
form), the optimum chords populate bars three to twelve
with a ‘reconciling’ chord (‘rec’) at bar two of the form.
The same happens at bar 33 when post-cadencing would
be expected at bar ten of the form. However, post-
cadencing coincides with recovery again and recovery
overrules as expected. In addition, it is worth mentioning
that at bar 35, when a cadence is scheduled for bar three
of the form, ‘rec’ is still present at bar ten of the cycle.
This is a leftover symbol from the preceding recovery
(bar 33) and is cancelled by ‘fin’ once the post-cadence
phase is reached (bar 41). Finally, post-cadencing (bar
41) coincides with GOAL_REACHED and since the
‘current’ chord is a tonic (form bar five) the music stops.
 Generally, as Tables 4, 5 and 6 show, the positioning of
top-level non-terminals (dec, cad, fin, rec) is, in most
cases, scheduled in advance. Thus, the non-terminal is
not rewritten until its musical time (i.e. bar) has arrived.

6. CONCLUSIONS AND FUTURE WORK
In summary, FATE is a real-time system design that gen-
erates music in a form-aware manner and can respond to
environment data to cadence, recover and end musical
form on demand. It aims to generate music in a way that
retains the flexibility of the short-form approaches like

 Figure 8. Trajectory 1.

 Figure 9. Trajectory 2.

 Figure 10. Trajectory 3

procedural note/chord-level generation and dynamic lay-
ers, while managing larger-scale form.

The design is divided in two: a prediction engine that
captures EPE episode data and estimates the remaining
time of that episode and a music engine that generates
music in real-time. The prediction engine uses an EWMA
of a participant’s speed (among other calculations) to
estimate the remaining time. The music engine uses a
stochastic, context-sensitive grammar that allows for hi-
erarchical grammar rewrites at specific times of the musi-
cal form. Currently we address the non-abrupt musical
termination of episodes.

The parser enables the programmer/computer composer
(length, top-level time-specific decision points, rewrite
rules) in order to generate the harmony of a medium-
(length, top-level time-specific decision points, rewrite
rules) in order to generate the harmony of a medium-
length chorus-based form such as 12-bar blues and jazz
standards.

Table 4. Events, bars of occurrence and current cycle
state at each bar for trajectory 1.

Table 5. Events, bars of occurrence and current cycle
state at each bar for trajectory 2.

Table 6. Events, bars of occurrence and current cycle
state at each bar for trajectory 3.

 Future work will address a number of open challenges:
1. Grammatical production probabilities as well as the
optimum harmonic sequence will be learnt from a corpus.
2. Longer ‘reconciling’ musical periods will be applied to
test their impact on musical smoothness of harmonic re-
covery and how effectively the form is re-established.
Also, the location of the reconciling period will be varied.
3. The algorithm will be further developed to support
generation and non-abrupt ending of musical forms that
are longer and less repetitive than the medium-length
chorus-based forms that are currently supported.
4. The algorithm will be further developed in order to
generate musical transitions between two musical sec-
tions rather than simply ending and recovering one.

	
	
	
	
	

Trajectory	1	
	Events	 Bars	 Grammar	states	of	cycle	

L	 C	
No	significant	

input	
20	 8	 i	i6	v7	i7	iv6	iv6	i7	i6	dec	v7	dec	v7	

ENDING	 21	 9	 i	i6	v7	i7	iv6	iv6	i7	i6	v7	IV	cad	v7	

Post-cadencing	 25	 1	 i6	fin	fin	fin	fin	fin	fin	fin	fin	fin	fin	fin	
GOAL_REACHED	 31	 7	 i6	v7	i6	v7	i6	v7	i7	fin	fin	fin	fin	fin	

Stopping	 31	 7	 i6	v7	i6	v7	i6	v7	i7	||	fin	fin	fin	fin	fin	

	
Trajectory	2	

Events	 Bars	 Grammar	states	of	cycle	
L	 C	

No	significant	
input	

23	 11	 i7	v7	i7	i7	iv7	iv7	iiim7	i6	v7	iv7	i7	V	

ENDING	 24	 12	 i7	v7	cad	i7	iv7	iv7	iiim7	i6	v7	iv7	i7	V	

Post-cadencing	 29	 	5	 i7	v7	iv7	v7	i7	fin	fin	fin	fin	fin	fin	fin	

RECOVERY	 31	 7	 i7	v7	iv7	v7	i7	v7	i7	rec	V	IV	I	I	

ENDING	 32	 8	 i7	v7	iv7	v7	i7	v7	i7	i7	V	IV	cad	I	

Post-cadencing	 37	 1	 i7	fin	fin	fin	fin	fin	fin	fin	fin	fin	fin	fin	
GOAL_REACHED	 38	 2	 i7	v7	fin	fin	fin	fin	fin	fin	fin	fin	fin	fin	

Stopping	 39	 3	 i7	v7	i7	||	fin	fin	fin	fin	fin	fin	fin	fin	fin	

	
Trajectory	3	

Events	 Bars	 Grammar	states	of	cycle	
L	 C	

No	
significant	
input	

12	 12	 i7	iv7	i7	v7	iv7	iv6	i7	i6	v7	iv7	i7	v7	

ENDING	 13	 		1	 i7	IV	cad	V	dec	iv6	dec	i6	dec	iv7	dec	v7	

Post-
cadencing	

17	 		5	 i7	iv7	iim7	v7	i7	fin	fin	fin	fin	fin	fin	fin	

RECOVERY	 18	 6	 i7	iv7	iim7	v7	i7	v7	rec	I	V	IV	I	I	

ENDING	 21	 9	 i7	iv7	iim7	v7	i7	v7	i7	i6	v7	IV	cad	I	

Post-
cadencing	

25	 1	 (cancelled	by	RECOVERY–see	next	row)	

RECOVERY	 25	 1	 i6	rec	I	I	IV	IV	I	I	V	IV	I	I	

ENDING	 29	 5	 i6	iv7	i7	i7	iv7	IV	cad	I	V	IV	I	I	

Post-
cadencing	

33	 9	 (cancelled	by	RECOVERY–see	next	row)	

RECOVERY	 33	 9	 i6	iv7	i7	i7	iv7	iv6	iim7	v7	i7	rec	I	I	

ENDING	 35	 11	 i6	iv7	cad	i7	iv7	iv6	iim7	v7	i7	(rec)	I	I	

Post-
cadencing	

41	 5	 i6	iv7	iim7	v7	i7	fin	fin	fin	fin	fin	fin	fin	

GOAL_	
REACHED	

41	 5	 i6	iv7	iim7	v7	i7	fin	fin	fin	fin	fin	fin	fin	

Stopping	 41	 5	 i6	iv7	iim7	v7	i7	||	fin	fin	fin	fin	fin	fin	fin	

	
	
	
	

	
	
	
	
	

Trajectory	1	
	Events	 Bars	 Grammar	states	of	cycle	

L	 C	
No	significant	

input	
20	 8	 i	i6	v7	i7	iv6	iv6	i7	i6	dec	v7	dec	v7	

ENDING	 21	 9	 i	i6	v7	i7	iv6	iv6	i7	i6	v7	IV	cad	v7	

Post-cadencing	 25	 1	 i6	fin	fin	fin	fin	fin	fin	fin	fin	fin	fin	fin	
GOAL_REACHED	 31	 7	 i6	v7	i6	v7	i6	v7	i7	fin	fin	fin	fin	fin	

Stopping	 31	 7	 i6	v7	i6	v7	i6	v7	i7	||	fin	fin	fin	fin	fin	

	
Trajectory	2	

Events	 Bars	 Grammar	states	of	cycle	
L	 C	

No	significant	
input	

23	 11	 i7	v7	i7	i7	iv7	iv7	iiim7	i6	v7	iv7	i7	V	

ENDING	 24	 12	 i7	v7	cad	i7	iv7	iv7	iiim7	i6	v7	iv7	i7	V	

Post-cadencing	 29	 	5	 i7	v7	iv7	v7	i7	fin	fin	fin	fin	fin	fin	fin	

RECOVERY	 31	 7	 i7	v7	iv7	v7	i7	v7	i7	rec	V	IV	I	I	

ENDING	 32	 8	 i7	v7	iv7	v7	i7	v7	i7	i7	V	IV	cad	I	

Post-cadencing	 37	 1	 i7	fin	fin	fin	fin	fin	fin	fin	fin	fin	fin	fin	
GOAL_REACHED	 38	 2	 i7	v7	fin	fin	fin	fin	fin	fin	fin	fin	fin	fin	

Stopping	 39	 3	 i7	v7	i7	||	fin	fin	fin	fin	fin	fin	fin	fin	fin	

	
Trajectory	3	

Events	 Bars	 Grammar	states	of	cycle	
L	 C	

No	
significant	
input	

12	 12	 i7	iv7	i7	v7	iv7	iv6	i7	i6	v7	iv7	i7	v7	

ENDING	 13	 		1	 i7	IV	cad	V	dec	iv6	dec	i6	dec	iv7	dec	v7	

Post-
cadencing	

17	 		5	 i7	iv7	iim7	v7	i7	fin	fin	fin	fin	fin	fin	fin	

RECOVERY	 18	 6	 i7	iv7	iim7	v7	i7	v7	rec	I	V	IV	I	I	

ENDING	 21	 9	 i7	iv7	iim7	v7	i7	v7	i7	i6	v7	IV	cad	I	

Post-
cadencing	

25	 1	 (cancelled	by	RECOVERY–see	next	row)	

RECOVERY	 25	 1	 i6	rec	I	I	IV	IV	I	I	V	IV	I	I	

ENDING	 29	 5	 i6	iv7	i7	i7	iv7	IV	cad	I	V	IV	I	I	

Post-
cadencing	

33	 9	 (cancelled	by	RECOVERY–see	next	row)	

RECOVERY	 33	 9	 i6	iv7	i7	i7	iv7	iv6	iim7	v7	i7	rec	I	I	

ENDING	 35	 11	 i6	iv7	cad	i7	iv7	iv6	iim7	v7	i7	(rec)	I	I	

Post-
cadencing	

41	 5	 i6	iv7	iim7	v7	i7	fin	fin	fin	fin	fin	fin	fin	

GOAL_	
REACHED	

41	 5	 i6	iv7	iim7	v7	i7	fin	fin	fin	fin	fin	fin	fin	

Stopping	 41	 5	 i6	iv7	iim7	v7	i7	||	fin	fin	fin	fin	fin	fin	fin	

	
	
	
	

	
	
	
	
	

Trajectory	1	
	Events	 Bars	 Grammar	states	of	cycle	

L	 C	
No	significant	

input	
20	 8	 i	i6	v7	i7	iv6	iv6	i7	i6	dec	v7	dec	v7	

ENDING	 21	 9	 i	i6	v7	i7	iv6	iv6	i7	i6	v7	IV	cad	v7	

Post-cadencing	 25	 1	 i6	fin	fin	fin	fin	fin	fin	fin	fin	fin	fin	fin	
GOAL_REACHED	 31	 7	 i6	v7	i6	v7	i6	v7	i7	fin	fin	fin	fin	fin	

Stopping	 31	 7	 i6	v7	i6	v7	i6	v7	i7	||	fin	fin	fin	fin	fin	

	
Trajectory	2	

Events	 Bars	 Grammar	states	of	cycle	
L	 C	

No	significant	
input	

23	 11	 i7	v7	i7	i7	iv7	iv7	iiim7	i6	v7	iv7	i7	V	

ENDING	 24	 12	 i7	v7	cad	i7	iv7	iv7	iiim7	i6	v7	iv7	i7	V	

Post-cadencing	 29	 	5	 i7	v7	iv7	v7	i7	fin	fin	fin	fin	fin	fin	fin	

RECOVERY	 31	 7	 i7	v7	iv7	v7	i7	v7	i7	rec	V	IV	I	I	

ENDING	 32	 8	 i7	v7	iv7	v7	i7	v7	i7	i7	V	IV	cad	I	

Post-cadencing	 37	 1	 i7	fin	fin	fin	fin	fin	fin	fin	fin	fin	fin	fin	
GOAL_REACHED	 38	 2	 i7	v7	fin	fin	fin	fin	fin	fin	fin	fin	fin	fin	

Stopping	 39	 3	 i7	v7	i7	||	fin	fin	fin	fin	fin	fin	fin	fin	fin	

	
Trajectory	3	

Events	 Bars	 Grammar	states	of	cycle	
L	 C	

No	
significant	
input	

12	 12	 i7	iv7	i7	v7	iv7	iv6	i7	i6	v7	iv7	i7	v7	

ENDING	 13	 		1	 i7	IV	cad	V	dec	iv6	dec	i6	dec	iv7	dec	v7	

Post-
cadencing	

17	 		5	 i7	iv7	iim7	v7	i7	fin	fin	fin	fin	fin	fin	fin	

RECOVERY	 18	 6	 i7	iv7	iim7	v7	i7	v7	rec	I	V	IV	I	I	

ENDING	 21	 9	 i7	iv7	iim7	v7	i7	v7	i7	i6	v7	IV	cad	I	

Post-
cadencing	

25	 1	 (cancelled	by	RECOVERY–see	next	row)	

RECOVERY	 25	 1	 i6	rec	I	I	IV	IV	I	I	V	IV	I	I	

ENDING	 29	 5	 i6	iv7	i7	i7	iv7	IV	cad	I	V	IV	I	I	

Post-
cadencing	

33	 9	 (cancelled	by	RECOVERY–see	next	row)	

RECOVERY	 33	 9	 i6	iv7	i7	i7	iv7	iv6	iim7	v7	i7	rec	I	I	

ENDING	 35	 11	 i6	iv7	cad	i7	iv7	iv6	iim7	v7	i7	(rec)	I	I	

Post-
cadencing	

41	 5	 i6	iv7	iim7	v7	i7	fin	fin	fin	fin	fin	fin	fin	

GOAL_	
REACHED	

41	 5	 i6	iv7	iim7	v7	i7	fin	fin	fin	fin	fin	fin	fin	

Stopping	 41	 5	 i6	iv7	iim7	v7	i7	||	fin	fin	fin	fin	fin	fin	fin	

	
	
	
	

5. The system will be applied for musical accompaniment
of a real-world interactive theatrical installation.

Acknowledgments
This work is funded by the UK Engineering and Physical
Sciences Research Council through the VEIV Doctoral
Training Centre at UCL [grant number: EP/G037159/1]
and the Alexander S. Onassis Foundation. We are grate-
ful for the partnership of Penny Dreadful Productions in
this work. Data in support of this paper is available at
DOI: 10.14324/000.ds.1503636

7. REFERENCES
[1] B. Magerko, W. Manzoul, M. Riedl, A. Baumer, D.

Fuller, K. Luther, C. Pearce, An Empirical Study of
Cognition and Theatrical Improvisation – creativity
’09, 2009, Berkeley, California, USA.

[2] Cirque du Soleil Theme Park,
https://www.cirquedusoleil.com/en/press/news/2014
/grupo-vidanta-nueva-vallarta-entertainment-park-
122, 2014 (announcement).

[3] DisneyQuest®, https://disneyworld.disney.go.com/
entertainment/disney-springs/disney-quest-indoor-
interactive-theme-park/, 1998 – present.

[4] Blast Theory, Desert Rain, www.blasttheory.co.uk/,
2000.

[5] M. Niemann, Five Minutes, www.fiveminutes.gs,
2014.

[6] K. Collins, Game sound: An Introduction to the
History, Theory, and Practice of Video Game Music
and Sound Design, MIT Press, 2008.

[7] S. Williams, Music in the Theatre, The Oxford
Companion to Theatre and Performance, ed. by D.
Kennedy, Oxford University Press, 2010.

[8] S. Benford, G. Giannachi, B. Koleva, T. Rodden,
“From Interaction to Trajectories: Designing
Coherent Journeys Through User Experiences”, CHI
2009, Boston, USA.

[9] J.D. Fernandez, F. Vico,“AI Methods in Algorithmic
Composition: A Comprehensive Survey”, Journal of
Artificial Intelligence Research 48 513-582, 2013.

[10] M. Muller, J. Driedger, “Data-driven soundtrack
generation, Multimodal Music Processing”,
Dagstuhl Follow-Ups - vol. 3, Multimodal Music
Processing, ed. by M. Muller, M. Goto, M. Schedl,
ISBN 978-3-939897-37-8, 2012.

[11] Hello Games, No Man’s Sky, http://www.no-mans-
sky.com/, 2016.

[12] Thatgamecompany, Journey,
http://thatgamecompany.com/games/journey/, 2012.

2All URLs shown were last accessed on 15/07/2016.

[13] A. R. Brown, R. Wooller, K. Thomas, “The Morph
Table: A collaborative interface for musical
interaction”, Proc. Australasian Computer Music
Conference 2007, Lefkada, Greece.

[14] M. O. Jewell, Motivated Music: Automatic
Soundtrack Generation for Film, PhD Thesis,
University of Southampton, 2007.

[15] E. Vane, W. Cowan, “A computer-aided soundtrack
composition system designed for humans”,
International Computer Music Conference, 2007.

[16] D. Goldmark, Pixar and the Animated Soundtrack,
The Oxford Handbook of New Audiovisual
Aesthetics, ed. by J. Richardson, C. Gorbman, C.
Vernallis, Oxford University Press, 2010.

[17] A. Hazzard, Guidelines for Composing Locative
Soundtracks, PhD Thesis, University of Nottingham,
2014.

[18] S. P. Langston, (201) 644-2332 or Eedie & Eddie on
the wire: An experiment in music generation, Bell
Communications Research Morristown, NJ, 1986.

[19] Lucasfilm Games, Ballblazer,
http://www.mobygames.com/game/ballblazer, 1984.

[20] G. Whitmore, Adaptive Audio Now! A Spy’s Score:
A Case Study for No One Lives Forever, DirectX 9
Audio Exposed: Interactive Audio Development, ed.
by T. M. Fay, S. Selfon, T. J. Fay, Plano, Texas:
Wordware Publishing, 2004.

[21] Microsoft, Russian Squares,
https://www.youtube.com/watch?v=a-ZyozBeUDg,
2002.

[22] Y. Ioannides, [.talktome]: adaptive/dynamic audio
prototyping for video games,
https://cycling74.com/project/talktome-
adaptivedynamic-audio-prototyping-for-video-
games/#.V4pq-TaqTIw, 2012.

[23] B. Eno, Spore, http://www.spore.com, Electronic
Arts, 2009.

[24] Strange Loop Games, Simcell,
http://www.strangeloopgames.com/education/, 2012.

[25] R. Wooller, Techniques for automated and
interactive note sequence morphing of mainstream
electronic music, Queensland University of
Technology, PhD Thesis, 2007.

[26] C. Roads, P. Wieneke, “Grammars as
representations for music”, Computer Music Journal,
vol.3, no.1, 1979.

[27] R. M. Keller, D. R. Morrison, “A grammatical
approach to automatic improvisation”, Proc. Sound
and Music Computing Conference, 2007, Lefkada,
Greece.

