
Test Oracle Assessment and Improvement

Gunel Jahangirova
FBK, Trento, Italy &
UCL, London, UK

David Clark &
Mark Harman
UCL, London, UK

Paolo Tonella
FBK, Trento, Italy

ABSTRACT
We introduce a technique for assessing and improving test
oracles by reducing the incidence of both false positives and
false negatives. We prove that our approach can always re-
sult in an increase in the mutual information between the
actual and perfect oracles. Our technique combines test case
generation to reveal false positives and mutation testing to
reveal false negatives. We applied the decision support tool
that implements our oracle improvement technique to five
real-world subjects. The experimental results show that
the fault detection rate of the oracles after improvement
increases, on average, by 48.6% (86% over the implicit or-
acle). Three actual, exposed faults in the studied systems
were subsequently confirmed and fixed by the developers.

CCS Concepts
•Software and its engineering → Software verifica-
tion and validation;

Keywords
Test oracle; test case generation; mutation testing

1. INTRODUCTION
Recent advances in test input generation have left the

Oracle Problem as a key remaining bottleneck in improv-
ing the overall effectiveness and efficiency of the software
testing process. The latter depends both on the quality of
the test cases and that of the oracle [4, 29, 31]. There are
many techniques for assessing and improving the adequacy
of test cases, e.g. their code coverage, and many hundreds
of studies about search-based [18, 23] and symbolic execu-
tion [6] techniques alone. In comparison, there is relatively
little work to help the software tester with the Oracle Prob-
lem, i.e., the problem of defining accurate oracles, capable
of detecting all but only faulty behaviours exercised during
testing [13, 19, 22, 25, 26, 28]. Without a (good) oracle to
determine whether or not the output they induce is correct,

test inputs that satisfy the strictest adequacy criteria remain
useless and testing is ineffective.

In the absence of an automated oracle, possibly derived
from formal specifications, the task of determining output
correctness typically falls to the human [1, 17]. Unfortu-
nately, this is costly, slow and error prone, motivating the
need for automated decision support to assist the human.
We study the use of in-program logical assertions (assertion
oracles) as decision support and the problem of ensuring that
they faithfully reflect developer knowledge of the intended
behaviour of the software (the perfect oracle).

Oracle performance depends on two properties: Com-
pleteness: All correct program states are accepted by the
oracle, which raises an alarm only for faulty states, with
no false alarms (no false positives). Soundness: All faulty
program states are rejected by the oracle, so there are no
missed faults (no false negatives).

Oracle assessment must thus identify and report false pos-
itives or false negatives (or both), so as to support the devel-
oper in improving the oracle soundness and completeness.

We introduce an approach that is based on search based
test case generation [10, 16, 23] to identify false positives and
mutation testing [20, 21] to identify false negatives. Our tool
generates counterexamples as test cases that demonstrate
incompleteness and unsoundness, which the tester uses to
iteratively improve the assertion oracle. The process con-
tinues until the tool is unable to generate new counterex-
amples and finishes with an improved (more complete and
sound) oracle. Our approach necessarily places the human
tester in the loop, because modifications made to the ora-
cle to solve reported false positives and false negatives de-
pend on the intended program behaviour (vs. the imple-
mented behaviour), which we assume is known to develop-
ers through informal knowledge, requirement documents and
other sources of documentation.

Our primary contributions are:

1. A novel iterative oracle assessment and improvement
approach, validated on five nontrivial real-world sys-
tems, demonstrating the improvements that can be
achieved using our approach (on average, 48.6% in-
creased fault detection compared to unimproved). Us-
ing our approach, we found three bugs in Apache Com-
mons Math. Apache’s developers have confirmed all of
three to be genuine bugs and have already fixed them.

2. A formalisation of the oracle improvement step as a
change in the mutual information between the actual
and perfect oracles and a proof that a monotonic se-
quence of increases is always possible in practice.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by UCL Discovery

https://core.ac.uk/display/110929798?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2. QUALITY OF ASSERTIONS
Let us consider a program point, pp, in a program under

test, P . Let Σ be the set of all states that can occur in P
and I ⊆ Σ be the set of start states. We are interested in
the set of states that reach pp via execution of P on I.

Rpp = {s | ∃i ∈ I ∧ [[P ]]pp i = s}

where [[P ]]pp i indicates the state reached at pp by executing
P on i ∈ I.

We place an assertion, 〈assert〉, at pp with the intention
of using this assertion as an oracle. Define

App = {s ∈ Rpp | 〈assert〉s = T}

i.e. the set of reachable states for P at pp on which the
assertion is true.

Assume that a developer/tester knows exactly which states
that occur at pp are correct (the perfect oracle). Call this
set Epp, and think of Epp as the intersection between the set
of correct states at pp for some “ghost program” [3], G, an
error free version of the software under test, and Rpp, the
reachable states of the SUT.

Epp = {s ∈ Rpp | ∃i ∈ I ∧ [[G]]pp i = s}

Subsequently we can drop the subscript pp from R, E and
A where the program point is clear from context.

2.1 The oracle improvement process
The overall aim of the testing process is to expose and fix

faults via a cycle of testing and revision of P so that Epp

is as large as possible at every program point in P , making
P closer to G. Oracle improvement occurs within a given
cycle, i.e. for a fixed P , during the testing phase. By oracle
improvement we mean a process aimed at refining 〈assert〉
so as to obtain a new assertion, 〈assert〉′ for which A′ has
a larger overlap with the current E. Eventually, we would
like to obtain a new assertion such that A′ ∩ E = A′ = E
so that the states at pp on which the new assertion is true
are exactly the “correct” states of the ghost program. The
starting point of this process is represented in Figure 1, left.

Figure 1: Assertion improvement process: the in-
tersection between states where 〈assert〉 is true (A)
and expected states (E), restricted to the subset of
reachable states (R), is increased.

Here, the region (A − E) is the set of states of P which
are not “correct” but on which 〈assert〉 is True, that is the
set of reachable False Negatives, while (E−A) are the set of
“correct” states on which the assertion is False, that is the
set of reachable False Positives.

Definition 1 (False Negatives). A false negative is
a reachable program state where the given assertion is True,
although such state does not belong to the set of expected
states according to the intended program behaviour.

Definition 2 (False Positives). A false positive is a
reachable program state where the given assertion is False,
although such state does belong to the set of expected states
according to the intended program behaviour.

The notions of False Positives and False Negatives are
tightly connected with the notions of oracle soundness and
completeness. An assertion 〈assert〉 is Complete iff the
“correct” reachable states are a subset of the states accepted
by the assertion, i.e. E ⊆ A. An assertion 〈assert〉 is Sound
iff the accepted states are a subset of the“correct” reachable
states, i.e. A ⊆ E. Completeness implies that the number
of False Positives is zero; soundness implies that the number
of False Negatives is zero.

After testing for False Positives and False Negatives we
can strengthen 〈assert〉 to reduce the number of False Neg-
atives and simultaneously weaken it to reduce the number
of False Positives, producing a new assertion, 〈assert〉′ in
the process illustrated in Figure 1, right. By reducing the
number of False Positives and False Negatives, the proposed
oracle assessment and improvement process will make the
oracle more complete and sound.

3. APPROACH
In this section, we describe our technique for false positive

and false negative detection, as well as its implementation
based on the test case generator EvoSuite [10].

3.1 False positive detection
Given a program assertion, we detect its false positives

by generating execution scenarios where the assertion fails
when it should hold because the behaviour of the program
is deemed correct. In such a case, failure of the assertion
points to a bug in the assertion, not in the program.

To be able to generate the necessary execution scenar-
ios (test cases), we perform a testability transformation [15]
that transforms the criterion for false positive detection into
the standard branch coverage criterion, for which automated
test case generators are available.

Let us consider a program under test P containing n as-
sertions a1 . . . an : ai = assert(ci), i ∈ [1 . . . n], where ci is
the boolean expression used in the assertion ai. For each as-
sertion ai, i ∈ [1 . . . n] in P the proposed testability transfor-
mation takes ci, negates it and replaces the assertion ai with
a new branch containing the negated condition: if (!(ci)) {}.

Class Subtract in Figure 2 (top) has two assertions at
lines 4 and 5. The transformation for false positive detec-
tion, takes the condition of the assert statement at Line 4
‘(result != x)’, negates it to ‘(!(result != x))’ and re-
places the assertion with the branch: ‘if (!(result != x))

{}’. By performing a similar transformation on the assert
statement at Line 5 we get the transformed version of class
Subtract shown in Figure 2 (bottom).

Test case generators are given two targets to cover: the
‘then’ parts of the ‘if’ statements at lines 4, 5. Test cases
produced by the generator provide evidence that there are
program executions that violate the assertions. In order
to classify such execution scenarios as false positives of the



1 public class Subtract {
2 public double value(double x, double y) {
3 double result = x-y;
4 assert (result != x);
5 assert (result == x-y);
6 return result; } }

1 public class Subtract {
2 public double value(double x, double y) {
3 double result = x-y;
4 if (!(result != x)) {}; // target
5 if (!(result == x-y)) {}; // target
6 return result; } }

Figure 2: Example of class under test, including an
incorrect assertion (at Line 4, top)

assertions, the behaviour of the program in such scenarios
must be contrasted with the expected behaviour of the pro-
gram, according to its requirements/specifications. If a test
case violating an assertion has been generated and the pro-
gram behaviour under such an execution scenario has been
deemed correct, a false positive (i.e., a bug in the assertion)
has been detected. This means that the assertion should be
fixed in order not to reject a correct program behaviour.

In the example shown in Figure 2, a test case can be pro-
duced that covers the first target: TC=(0, 0). By contrast,
the second target cannot be covered and a test case gener-
ator would probably fail or time out while trying to cover
it. Since the expected result of the execution of value with
input (0, 0) is indeed 0, we have detected a false positive
of the assertion at line 4. The assertion is incorrect and the
fix consists simply of removing it.

3.2 False negative detection
An assertion has no false negatives if it exposes all faults.

Therefore, if we deliberately insert a fault into the source
code of program P , a sound oracle ought to always report the
presence of this fault. Hence, to find evidence of false nega-
tives we use mutation testing [14] to insert a (known) fault
in program P that corrupts the program state so that the
corrupted state reaches the given assertion and the assertion
statement does not fail. We apply a testability transforma-
tion [15] that converts the false negative detection criterion
to the standard branch coverage criterion.

Let us consider the implementation under test P and its
mutations M1, . . . ,Mk. Program P and each of its mutants
have n assertions a1, . . . , an: ai = assert(ci), i ∈ [1 . . . n].
Let us consider the variables (v1, . . . , vmi) in scope at the
assertion point ppi. Their values after running a test case
on P is indicated as (vo1 , . . . , v

o
mi

), while they are indicated

as (v
Mj

1 , . . . , v
Mj
mi ) after running the same test case on mu-

tant Mj . For each assertion ai and mutant Mj we create
a transformed version of P by going through the following
steps:

• Step 1: In P , for each variable v1, . . . , vmi we create a
private field and a public setter method for this field.

• Step 2: In P , we replace each assertion ai with the
following branch:

if ((coi == c
Mj

i ) && (v
Mj

1 6= vo1 || . . . || v
Mj
mi 6= vomi

)) {}

Automated generation of test cases to cover the branch
produced at Step 2 proceeds iteratively as follows:

1. The test case generator runs each newly generated test
case on each mutant Mj .

2. If the mutant is strongly killed (i.e., P and Mj exhibit
observably different behaviours), the test case genera-

tor stores the values (v
Mj

1 , . . . , v
Mj
mi ) into P by calling

the public setter methods created at Step 1.

3. The test case generator runs the strongly killing test
case on P .

4. If the test case executed on P covers the target branch
created at Step 2, a false negative is reported. Other-
wise, the test case generator modifies the test case so
as to get closer to the target branch, hence producing
a new test case to be run.

So, when a false negative is reported, the following condi-
tions hold: (1) the program under test P contains a known
fault (the mutation), associated with an observably different
behaviour between P and Mj (strongly killing) condition;
(2) the corrupted program state (infection) reaches the con-
sidered assertion ai (at least one of the variables in scope has
a different value in P vs. Mj); but, (3) the outcome of the
assertion is the same for P and for Mj (presumably a pass;
otherwise we are potentially in the presence of a false posi-
tive). This means that the assertion is not strong enough to
capture the difference between P and Mj , although at least
one variable accessible to the assertion has indeed a different
value between the execution of P and that of Mj .

1 public class FastMath {
2 public int max (int a, int b) {
3 int max;
4 if (a >= b) {
5 max = a;
6 } else {
7 max = b; // max = a;
8 }
9 assert (max >= a);
10 return max; } }

1 public class FastMath {
2 private int max_m;
3 private int a_m, b_m;
4 public void setMax_m(int max_m)
5 { this.max_m = max_m; }
6 public void setA_m(int a_m) { this.a_m = a_m; }
7 public void setB_m(int b_m) { this.b_m = b_m; }
8 public int max (int a, int b) {
9 int max;
10 if (a >= b) {
11 max = a;
12 } else {
13 max = b;
14 }
15 if ((max_m >= a_m) == (max >= a) &&
16 (max_m != max || a_m != a || b_m != b))
17 {} // target
18 return max; } }

Figure 3: Class under test (top) and class trans-
formed for false negative detection (bottom)

Figure 3 shows an example of the described transforma-
tion. Fields max_m, a_m and b_m, together with the respec-
tive setter methods, are added to class FastMath, to store
the values of the variables visible at Line 9 in Figure 3 (top)



and observed during the execution of the mutant. The as-
sertion at Line 9 in Figure 3 (top) becomes the if condition
at Line 15 in the transformed program shown in Figure 3
(bottom). The then branch of this conditional statement
is the target for test case generation. If the test genera-
tor succeeds in creating a mutation killing test case (in our
example, one returning a different value of max) that cov-
ers this target, we obtain evidence of a false negative. In
fact, although such a test case can strongly kill the mutant,
the assertion (max >= a) does not fail (provided it did not
fail in the original program), despite the presence of differ-
ent values of either max, a or b in the original vs. mutated
program.

Let us consider a mutant that changes the assignment
max = b; at Line 7 in Figure 3 (top) into max = a;. The
test case TC=(0, 1) can strongly kill this mutant, because
the value returned by the original version of max is 1, while
it is 0 when the mutant is executed. On the other hand, the
assertion passes on both original and mutated programs,
since on both we have that max >= a is true. This means
that this test case satisfies the first part of the condition to
reach the target (Line 15 in Figure 3 (bottom)). It satisfies
also the second part (Line 16) because max_m and max are
different (in this particular example, this happens to be the
same condition as the strongly killing condition; in general,
this might not be the case). So, this test case shows that
it is possible to inject a fault in class FastMath, resulting
in an observably different behaviour between original and
mutated programs, which no present assertion can detect.
This is an example of a false negative, requiring an inter-
vention by the developers in order to make the assertion
stronger. Specifically, it is possible to eliminate this false
negative by replacing the assertion in Figure 3 (top) with
assert (max >= a && max >= b);.

There are a few possible, though unlikely, corner cases.
A bug might affect both the implementation and the asser-
tions consistently, making the assertions pass on original and
mutated program. In such a case, it would be prudent for
the tester to check the output of mutant killing test cases,
rather than assuming that only assertions can be wrong.
Other cases are discussed in section 3.3 below.

3.3 Iterative improvement process
We propose a process for iterative oracle assessment and

improvement based on the outcome of false positive/neg-
ative detection. The human is necessarily in the loop of
the process, because we assume that knowledge about the
intended program behaviour is available only informally or
semi-formally to the developers, who are asked to manu-
ally refine the oracle whenever a false negative or a false
positive is reported. Our approach might not be applicable
in software processes that include complete formal specifi-
cations, from which oracles are derived automatically. In
the authors’ experience, industrial practice usually does not
currently encompass complete formal specification, hence we
think the proposed approach has wide applicability.

The starting point for iterative oracle assessment and im-
provement is an initial oracle, which can be defined manu-
ally, or can be produced automatically by tools for invari-
ant inference, like Daikon [8], or can be even the empty
(vacuous) oracle. Oracle deficiencies (i.e. false negatives or
false positives) are detected and reported automatically by
our tool. The developer fixes the assertions in the program

based on the reported oracle deficiencies. Some care must
be taken in this step, in order to recognise the following
cases: (1) A reported false positive might point to a bug in
the program, not in the assertion; (2) A test case killing a
mutant and triggering an assertion violation in the mutant
might be associated with consistent bugs in both implemen-
tation and assertion; (3) A mutant might accidentally fix a
fault in the program (this is expected to occur extremely
rarely), causing a reported false negative to point to a bug
in the program, not in the assertion. The first case is very
important, since the improved oracle is immediately used
for fault detection when this case occurs. Once assertions
have been improved by the developer, the iterative process
restarts and the new assertions are assessed for the presence
of further oracle deficiencies. The overall outcome of the
process is the improved oracle together with the bugs that
such an improved oracle can find.

3.4 Implementation in EvoSuite
Our prototype tool for false positive and false negative

detection is implemented as an extension of the EvoSuite [9,
10] test case generator1.

For the detection of false positives, we use EvoSuite’s
branch coverage criterion. Let P be the original program
and B the set of branches in P . Let P ′ be the transformed
version of P and B′ the set of branches in P ′.

Since we are interested in covering only branches BA =
B′ −B, i.e., the set of branches that are created as a result
of the transformation of assertions in P into branches, we
changed the fitness function of EvoSuite [11] into:

fB′ =| F | − | FT | +
∑

b∈B′\B

d(b, T )

where | F | − | FT | is the set of unexecuted methods in the
class under test; d(b, T ) is the minimal normalized branch
distance.

For the detection of false negatives, we use EvoSuite’s
mutation killing criterion. In EvoSuite, a mutant is strongly
killed if EvoSuite can create a test case assertion (not to
be confused with the program assertions that are assessed
for false negatives) that evaluates to false if the test is ex-
ecuted on the mutant and to true if it is executed on the
original class. In fact, the test case assertions generated by
EvoSuite capture the observable behaviour of the program,
so a mutant is considered as strongly killed if the observ-
able behaviour changes upon test case execution between
the original and the mutated program. When the mutant is
executed, but not strongly killed, the minimum normalized
impact is measured in the fitness function [11]. Its inverse
gives the level of propagation of the infected state in the
program (propagation distance, dp), with a wider impact
(lower dp) regarded as an indicator that the test case is get-
ting closer to achieving the strong killing condition.

To detect false negatives, we have to further restrict the
notion of mutation killing. For a given assertion ai and
mutation Mj the mutation is considered to be killed only if:

1. The original killing condition of EvoSuite is satisfied:
a test case assertion fails.

2. The conditions in the program assertions do not change

their values: ∀i ∈ [1 . . . n] : c
Mj

i = coi .
1http://www.evosuite.org



3. One of the variables visible at ppi has different values in

P and Mj : ∃i ∈ [1 . . . n] : v
Mj

1 6= vo1 ∨ . . . ∨ v
Mj
mi 6= vomi

.

As a result, we changed the formula for the normalized
propagation distance dp, so that, when the mutant is killed,
it returns the normalized distance for the following condi-

tion: (∀i ∈ [1 . . . n] : c
Mj

i = coi ) ∧ (∃i ∈ [1 . . . n] : v
Mj

1 6=
vo1 ∨ . . . ∨ v

Mj
mi 6= vomi

), instead of returning zero.

4. EXPERIMENTAL RESULTS
We have conducted a set of experiments to answer the

following research questions:
RQ1 (Implicit oracle): Can new program assertions be
introduced and iteratively improved in classes without as-
sertions thanks to the computation of oracle deficiencies?
RQ2 (Inferred properties): Can automatically inferred
program properties be improved thanks to the computation
of oracle deficiencies?
RQ3 (Manual oracle): Can the proposed approach reveal
oracle deficiencies in classes that include human written pro-
gram assertions?
RQ4 (Fault detection): Can the improved oracle reveal
more faults than the initial (implicit, automatically inferred,
manual) oracle and the test case oracle?

The goal is to assess the applicability of the proposed ap-
proach in different contexts, ranging from one where no or-
acle is present, hence fault detection relies entirely on the
implicit oracle (program crashing or raising exceptions), to
a context where the oracle is obtained automatically, by
mining program specifications from the observed program
behaviour, or is produced manually. The effectiveness of
the improved oracle is assessed in terms of increased fault
detection with respect to the initial and test case oracle.

To answer RQ1-2-3 we report the number of assertions
added in each iteration to solve the false positives and neg-
atives reported by our tool.

To answer RQ4 we analyse the mutation score reported
by the popular and scalable mutation analysis tool PIT2 for
test case assertions and for program assertions before and
after the improvement process.

There is empirical scientific evidence that mutants are an
appropriate (and laboratory controllable) surrogate for real
software faults [2, 21], making the mutation score a reason-
able proxy for the actual fault detection rate. Since false
negative detection relies also on mutation analysis, we used
different tools (EvoSuite and PIT) for our technique and its
evaluation, thereby avoiding any circularity in the evalua-
tion. We further manually verified that these two techniques
generate different mutants when the oracle is improved (us-
ing EvoSuite’s internal mutant generator) compared to when
the effectiveness of the generated oracles is assessed (using
the PIT fault insertion tool).

During the experiments the human in the iterative asser-
tion improvement process was the first author, who had no
familiarity with the subjects and no previous experience in
writing specifications. She of course knew how to interpret
the tool’s output very well.

4.1 Subjects
The subject systems used in our study are shown in Ta-

ble 1. As each research question requires a different type

2http://pitest.org

Table 1: Features of the subject systems
Id Oracle Name NCLoC
CC None commons-collections 29,954
CM None commons-math4 83,929
CL None commons-lang 25,386
FE JML JavaFE 31,912
LG JML Logging 1,583

of initial oracle, the subjects for each of them vary too. For
the purpose of evaluation on programs with no initial ora-
cles (RQ1, RQ2), we have selected Apache Commons Math,
Apache Commons Collection and Apache Commons Lang,
which are popular open source libraries that have been also
used in previous testing research. To evaluate our approach
on programs that include human written program assertions
(RQ3), we have used the JavaFE front-end parser library
and Logging framework, which contain JML contracts. All
of the subjects are used to evaluate the increased fault de-
tection capability (RQ4) of the improved oracles.

4.2 Experimental procedure
For RQ1 no initial oracle is needed, since the implicit

one is used. To infer initial oracles for RQ2, first, the ran-
dom test generation tool Randoop has been used to produce
a large test suite T for the system under test (SUT), P .
The training traces needed by the invariant inference tool
Daikon [8] are obtained by running T on P . From such
traces, Daikon infers properties of program P . These are
used as initial oracles. For RQ3, the initial oracles are al-
ready provided with the SUTs. However, to make them
compatible with our tool, the JML specifications have been
manually transformed into standard Java assertions.

Once the initial oracles are available, the iterative process
of oracle assessment and improvement begins. Each itera-
tion consists of two sub-processes: detecting and removing
(1) false positives and (2) false negatives. The stopping con-
dition for each sub-process is defined according to EvoSuite’s
default stopping criterion which is 60 seconds as search bud-
get and 600 seconds as global budget. Note that the first
sub-process is iterative itself, as we repeat it until no more
false positives can be detected. It involves running our tool
using its branch coverage criterion. The outputs of the tool
in this case are the test cases which show the existence of
false positives in the given assertions. Using these counterex-
amples, the assertions can be either improved to contain no
false positives or can be removed completely, if deemed com-
pletely incorrect and useless. For the second sub-process, we
run our tool enabling its strong mutation criterion. In this
case, the outputs consist of the test cases and the list of mu-
tations killed by each test case according to our redefined
notion of mutation killing. These counterexamples show the
cases for which there is no assertion that reacts to the fault
injected by a mutation.

The nature of the mutation operations applied provides
specific and detailed guidance during the improvement pro-
cess of the assertions. Table 2 shows the list of mutation
operators reported by EvoSuite grouped by the type of im-
provement actions required to remove false negatives.

Check variable value: the way to improve the asser-
tions is first to identify whether the changed variable is in-
deed allowed to change its value during the execution of the



Table 2: Procedure for assertion improvement
Improvement Action Mutation Operator Reported

Check variable value

DeleteField
InsertUnaryOperation

ReplaceConstant
ReplaceVariable

Check statement
DeleteStatement

ReplaceArithmeticOperator
ReplaceBitwiseOperator

Check condition
DeleteStatement
NegateCondition

ReplaceComparisonOperator

program. If not, we should add a check on the variable
immutability. In case the change is allowed, the assertions
should be revised so as to ensure that the variable is changed
in accordance with the expected program behaviour.

Check statement: assertions fail to differentiate the
original output of the statement from that of the mutated
one. The typical improvement in this case consists of adding
a check on the output value of the mutated statement.

Check condition: when assertions are not responsive to
a mutated condition, the relationship between the changed
condition and the output of the program is usually not cap-
tured in the assertions, so this relationship should be intro-
duced into the assertions, in accordance with the intended
conditional behaviour of the program.

To compare the fault detection capability of the initial,
improved and test case oracles (RQ4), we used mutation
analysis. First we generated the following test suites: (T1)
Randoop test suite without assertions; (T2) Randoop test
suite with test case assertions, minimised by line coverage
as measured using Cobertura3; (T3) EvoSuite test suite with
test case assertions, generated according to the branch cov-
erage criterion. Each class had three versions: (P1) class
with initial assertions; (P2) class with improved assertions;
(P3) class without any assertions. Then, we used PIT to
compute the mutation score using the following combina-
tions of test suite and program version: (1) P2, T1 compared
to P1, T1; (2) P2, T1 compared to P3, T2 and P3, T3.

4.3 Results
Table 3 shows a summary of the results obtained in our ex-

periments. The interested reader can find detailed results for
each class considered in our study in our companion Tech-
nical Report 4.

Column C/M in Table 3 reports the number of construc-
tors and methods in each subject’s classes. Column Iter-
ation1 shows the number of assertions available in the first
iteration. For RQ1 (implicit oracle), it is the number of new
assertions introduced to address the false negatives revealed
initially by mutation analysis (subcolumn New). For RQ2
and RQ3 these are respectively the number of assertions
produced by Daikon or those already available in the orig-
inal programs (subcolumn Init). Columns Iteration2 and
Iteration3 contain three subcolumns New, FP, FN, which
report the number of newly added assertions, assertions in
which false positives were detected and assertions in which
false negatives were detected. The subcolumns A, FP, FN

3http://cobertura.sourceforge.net/
4TR-FBK-SE-2016-1: https://se.fbk.eu/technical-reports

of column Total show the overall number of assertions gen-
erated, false positives and false negatives detected during all
the iterations.

In terms of human effort we estimate that the average
time spent to improve the assertion in the case of a detected
false positive was 4 minutes and for a detected false negative
it was 10 minutes.

4.3.1 RQ1 (Implicit Oracle)
To generate the experimental data necessary to answer

RQ1 we ran our tool on 25 classes from Apache Commons
Math and 25 classes from Apache Commons Collections.

For most classes (98%) the improvement process was com-
pleted in no more than three iterations. For 4% of the
classes, all of which belong to Collections, the process was
completed in just one iteration, which means that no or-
acle deficiencies were detected for the assertions generated
in the first iteration. For 72% of the classes from Math and
80% from Collections two iterations were enough. Only 28%
of classes from Math and 25% of classes from Collections
required three iterations to find all the oracle deficiencies.
In the third and last iteration, 90% of detected deficiencies
were false negatives and only 10% false positives. There was
only one class from Collections (StringKeyAnalyzer) that
required 7 iterations to complete the process.

RQ1: The proposed oracle improvement process effec-
tively supported the creation of program assertions from
scratch. The process typically involved two to three iter-
ations of successive oracle refinement to converge to an
oracle for which no deficiency is reported.

4.3.2 RQ2 (Inferred Properties)
For RQ2 we considered Apache Commons Lang and Apa-

che Commons Math. The size of the test suite generated
by Randoop to create the training traces for Daikon ranges
between 250 and 34,126, with an average of 4,141. The
number of preconditions and postconditions generated by
Daikon for each class was on average 10 and 30, respectively.

There were no classes for which Daikon was able to gen-
erate assertions without any oracle deficiencies. For 75% of
the classes from Lang and 65% of the classes from Math one
iteration was enough to complete the process. For the re-
maining classes, two iterations (after initial oracle creation)
were needed. All of the detected false positives in Daikon-
generated assertions were removed in the first iteration. The
false positives in the second iteration (just 2 classes) are due
to the new assertions added at the first iteration.

The preconditions generated by Daikon have been treated
as filters for the postconditions. Hence, a false positive is
found if a precondition holds and the postcondition fails.
Failure of a precondition was regarded as a true positive
(i.e. a needed check at the beginning of the method) if such
a failure prevents an execution that results in some error.
Otherwise the precondition was weakened or removed.

The postconditions generated by Daikon for the analysed
classes can be classified as follows: (1) Daikon was able to
generate the exact postcondition for all the methods in the
class, so no false negatives were detected. This happened in
30% of the classes in Lang and 50% of the classes in Math.
(2) Daikon was not able to generate the exact postcondition,
but it was able to generate a very weak one, as for example,
the check for non null-ness. This happened in 35% of the
classes in Lang and 25% of the classes in Math. In this case,



Table 3: Oracle deficiencies (FP/FN) reported by our tool at each improvement iteration
RQ Classes Subj C/M Iteration1 Iteration2 Iteration3 Total

New Init New FP FN New FP FN A FP FN
RQ1 25 CM 66/203 285 0 24 13 98 0 0 12 309 13 110
RQ1 25 CC 69/302 307 0 43 23 53 2 0 6 352 23 59
RQ2 20 CL 49/191 0 605 55 114 44 6 0 2 660 114 46
RQ2 20 CM 26/107 0 1014 43 297 166 8 4 13 1065 301 179
RQ3 50 FE 55/155 0 465 21 0 106 0 2 17 486 2 123
RQ3 10 LG 13/55 0 134 26 0 33 3 0 5 153 0 38

the generated assertion was improved to contain no more
false negatives. (3) Daikon was not able to generate any
postcondition, so the new assertions were added to remove
the false negatives. This was the case in 35% of the classes
in Lang and 25% of the classes in Math.

RQ2: The proposed oracle improvement process was ex-
tremely effective in improving weak assertions generated
by Daikon or in adding assertions that were missed by
Daikon. The process typically involved one iteration of
Daikon oracle refinement.

4.3.3 RQ3 (Manual Oracle)
While JavaFE and Logging do include JML specifications,

the number of constructors and methods having contracts
is indeed quite low. To apply our tool in a scenario dif-
ferent from that of RQ1, we have selected 50 classes from
JavaFE and all the classes from Logging, which have at
least two methods/constructors with at least one requires

or ensures JML specification.
In 82% of the classes in JavaFE and in 60% of the classes

in Logging no oracle deficiencies were detected after the first
iteration. The remaining classes required just one more iter-
ation. In 48% of the classes from JavaFE there was at least
one method with no oracle deficiencies at all.

Overall, the oracle improvement process was not able to
detect any false positives in these classes, but it was able to
find at least one false negative in each class.

The improvements necessary to remove the identified or-
acle deficiencies are typically minor improvements. The
most common case was the addition of some immutability
check. Less frequent were cases where a very weak post-
condition (such as @ensures \result != null or @ensures
\fresh (\result), had to be strengthened, or a postcondi-
tion had to be added to a method with only @requires and
no @ensures clause.

RQ3: The proposed oracle improvement process was able
to detect deficiencies in manually defined JML contracts,
but the associated improvements were typically minor
ones, with the exception of a few cases of weak or missing
postconditions.

4.3.4 RQ4 (Fault Detection)
Table 4 shows the average mutation score computed by

PIT for each subject with initial/test case (µs) and improved
(µ′

s) oracle.
In case of comparison between the program assertions be-

fore and after iterative oracle improvement, the highest mu-
tation score increase was observed for subjects with no initial
oracle (other than the implicit one): the implicit oracle is
unable to react to the injected faults in most cases. Re-
markably, for 72% of the classes with no initial oracle, the
mutation score increased from 0% to 100%.

Table 4: RQ4: Average mutation score by subject
for initial/test case (µs) and improved (µ′

s) oracle

Oracle Subj µs µ′s ∆ Â12 p-value

Implicit
CM 16% 97.6% 81.6% 1.0 1.4 · 10−5

CC 8.3% 98.4% 90.1% 0.98 2.2 · 10−5

Inferred
CL 60.5% 98.8% 38.3% 0.9 9.0 · 10−3

CM 50.2% 95.8% 45.6% 0.91 4.7 · 10−4

Manual
FE 78.8% 100% 21.2% 0.9 6.3 · 10−7

LG 81.5% 100% 18.5% 0.89 1.7 · 10−2

All All 50.1% 98.4% 48.3% 0.92 < 2.2−16

Randoop All 45% 98.4% 53.4% 0.93 5.3 · 10−7

EvoSuite All 46.9% 98.4% 51.5% 0.95 3.8 · 10−6

A substantial increase in the mutation score was observed
for subjects equipped with Daikon assertions. A smaller,
still quite relevant, mutation score increase occurred for sub-
jects coming with manually written JML contracts. While
for 20% of the classes with JML contracts the mutation score
did not change at all, for the remaining 80% of the classes
oracle improvement contributed to a higher mutation killing
capability.

The improved program assertions achieve 51.8% and 53.4%
higher mutation score than the test case assertions generated
by EvoSuite and Randoop respectively. The average num-
ber of program assertions in the subject classes is 20 and
the average number of test case assertions is 18 in EvoSuite
and 55 in Randoop. This shows that program assertions
require the manual validation of a lower(Randoop) or com-
parable(EvoSuite) number of assertions but have a higher
fault detection capability.

In all cases, the observed mutation score increase is sta-
tistically significant (p ≤ 0.05) according to the Wilcoxon
non-parametric (paired, two-tailed) statistical test (p-values
are presented in Table 4). The Vargha-Delanay effect size

Â12 is always large (in our study, Â12 ≥ 0.89).

RQ4: The improved oracle has significantly higher mu-
tation score than the implicit, the inferred (Daikon), the
manual (JML) and test case oracles.

4.4 Qualitative Analysis

4.4.1 Improvement of implicit oracle
Figure 4 (top) shows the source code of method add()

from class MapBackedSet, taken from Apache Commons Col-
lections. This method does not contain any assertions. To
create assertions for it, we first run our tool with mutation
analysis enabled, getting the output shown in Figure 5.

Let us consider the mutations in test0() and the asser-
tions that should be added to detect them: (1) mutations 1,
4 and 7 lead to the change of the method’s return value, so



the check for this value is necessary; (2) mutations 2, 5 and
8 show that we should check whether the given parameter
was inserted into the map; (3) mutations 3 and 6 show that
the relationships between the values of size and map.size()

should be checked. Based on this analysis, we add the new
assertion shown in Figure 4 (middle).

However, when we check the newly added assertion for
false positives, we get a test case violating the assertion.
By analysing the test case we can see that it adds elements
with key equal to null into the map twice. As the map
does not keep two values with the same key, the second
inserted element replaces the first one, so the size of the
map does not change and the assertion fails. Taking this
situation into account, we improve our assertion as shown in
Figure 4 (bottom) and the check for false positives confirms
this improvement.

1 public boolean add(final E obj) {
2 final int size = map.size();
3 map.put(obj, dummyValue);
4 return map.size() != size; }

1 public boolean add(final E obj) {
2 final int size = map.size();
3 map.put(obj, dummyValue);
4 boolean result = map.size() != size;
5
6 assert (map.get(obj) == dummyValue) &&
7 map.size() == size + 1 &&
8 (result == (map.size() != size)));
9
10 return result; }

6 assert (
7 map.get(obj) == dummyValue &&
8 result == (map.size() != size) &&
9 implication (result == true,
10 map.size() == size + 1)));

Figure 4: Method add() with no assertions (top),
with the assertion added at iteration 1 (middle) and
with the final assertion (bottom)

4.4.2 Improvement of inferred oracle
Figure 6 (top) shows the source code of the getSize()

method of class Interval from the Apache Commons Math
library with the postconditions generated for it by Daikon.
Following the described process, we first checked the given
assertions for the existence of false positives. The output of
the tool for this step is a test case calling the constructor of
Interval with input parameters (-1, -1) and then calling
getSize. Indeed, following the test case execution we can
see that result = -1.0 - (-1.0) = 0, so it is greater than
old_upper which has the value of -1.0. Hence, the 4th as-
sertion (line 19) contains a false positive. Moreover, result
= 0 also shows the existence of a false positive in the 3rd
assertion (line 18), declaring that result cannot be zero.

After removing the two assertions with false positives, we
ran the tool to check the remaining assertions for the exis-
tence of false negatives. The output of the tool for this step
is in Figure 7. As we can see, it shows that if we replace
the ‘-’ sign in the code with either ‘+’ or ‘∗’, there is no
assertion that reacts to this injected fault. To prevent this
situation we add two new assertions that check the value of
the result as follows: assert (result == upper - lower),

//Test case number: 0
/* 7 covered goals:
* 1 add(Ljava/lang/Object;)Z:4 - ReplaceConstant -

true -> false
* 2 add(Ljava/lang/Object;)Z:3 - DeleteField:

mapLjava/util/Map;
* 3 add(Ljava/lang/Object;)Z:2 - DeleteField:

mapLjava/util/Map;
* 4 add(Ljava/lang/Object;)Z:4 -

ReplaceComparisonOperator != -> ==
* 5 add(Ljava/lang/Object;)Z:3 - DeleteStatement:

put(Ljava/lang/Object;Ljava/lang/Object;)Ljava/
lang/Object;

* 6 add(Ljava/lang/Object;)Z:2 - DeleteStatement:
size()I

* 7 add(Ljava/lang/Object;)Z:4 - DeleteStatement:
size()I

* 8 addAll(Ljava/util/Collection;)Z:3 - DeleteField:
dummyValueLjava/lang/Object; */

@Test
public void test0() throws Throwable {

HashMap<String, Object> hashMap0 = new
HashMap<String, Object>();

MapBackedSet<String, Integer> mapBackedSet0 =
MapBackedSet.mapBackedSet((Map<String, ? super

Integer>) hashMap0, (Integer) (-144));
boolean boolean0 = mapBackedSet0.add("");
assertEquals(true, boolean0);

}

Figure 5: FN detection for method add()

assert (result >= 0). The new version of class Interval

with improved oracle is shown in Figure 6 (with improved
assertions at the bottom).

After this improvement, we start the next iteration, and
the tool detects a false positive, which happens to be a true
positive, i.e. a real bug of class Interval. The new asser-
tion #6 (at line 19) is violated when the constructor of class
Interval is called with input parameters 0.0, -1.0. In such
a case the returned size of the interval is negative, while an
interval size is supposed to be always non-negative. The bug
has been reported to the Apache Commons Math developer
community (bug report # MATH-1256) and was immedi-
ately fixed by the developers, by raising an exception inside
the constructor of Interval when upper < lower (see Fig-
ure 6, middle).

In a similar way, we have detected two more bugs in
Apache Commons Math. One involves five classes: Canberra-
Distance, ChebyshevDistance, EarthMoversDistance, Eu-
clideanDistance and ManhattanDistance. Each of them
contains a method to compute a distance between two ar-
rays. If the length of the first array is greater than the
length of the second, method compute() in all five classes
gives an error (ArrayIndexOutOfBoundsException). Quite
strangely, if the length of the second array is greater than the
first, the method terminates silently. The bug was reported
to developers (bug report # MATH-1258) and fixed.

The third bug is in class Incrementor. If an instance of
this class is initialized with a negative number, its method
canIncrement returns false, although the upper bound set
in the class has not yet been reached (bug report # MATH-
1259). The reported bug led to the discussion that the over-
all functionality of the class does not serve its purpose, so
the solution was to replace the class Incrementor with a new
class with the correct functionality, to deprecate Incrementor



1 public class Interval {
2
3 private final double lower;
4 private final double upper;
5
6 public Interval(double lower, double upper) {
7 this.lower = lower;
8 this.upper = upper;
9 }
10
11 public double getSize() {
12 double old_upper = upper;
13 double old_lower = lower;
14 double result = upper - lower;
15
16 assert (this.lower == old_lower); //1
17 assert (this.upper == old_upper); //2
18 assert (result != 0); //3: removed (FP)
19 assert (old_upper >= result); //4: removed (FP)
20
21 return result; } }

7 if (upper < lower) { // Fix for bug #MATH-1256
8 throw new NumberIsTooSmallException(
9 LocalizedFormats.ENDPOINTS_NOT_AN_INTERVAL,
10 upper, lower, true);

16 assert (this.lower == old_lower); //1
17 assert (this.upper == old_upper); //2
18 assert (result == upper-lower); //5: new (FN)
19 assert (result >= 0); //6: new (FN)

Figure 6: Method getSize() with Daikon assertions
before (top) and after (bottom) oracle improvement;
a real bug was reported and fixed (middle)

in Math 3.6 (so as to ensure backward compatibility for some
time) and to remove it in Math 4.0.

4.5 Threats to Validity
Internal validity : The first author has been involved in a

number of tasks carried out during the experiments. Specif-
ically, she has developed the tool being evaluated and she
has manually refined the oracles during the experiments,
playing the role of the human in the loop. We carefully
mitigated this validity threat by defining precise rules and
procedures for oracle improvement to be followed by the hu-
man experimenter, prescribing what to do for each reported
deficiency (e.g., for each EvoSuite mutation operator trig-

//Test case number: 1
/* 2 covered goals:
* 1 Strong Mutation 9:

org.apache.commons.math4.geometry.euclidean.oned.
Interval.getSize()D:14 -

ReplaceArithmeticOperator - -> +
* 2 Strong Mutation 11:

org.apache.commons.math4.geometry.euclidean.oned.
Interval.getSize()D:14 -

ReplaceArithmeticOperator - -> * */
@Test
public void test1() throws Throwable {

Interval interval0 = new Interval((-1.0), (-1.0));
double double0 = interval0.getSize();
assertEquals (double0, 0.0); }

Figure 7: FN detection for method getSize()

gering a false negative). As a result, the human in the loop
in our experiments has behaved largely deterministically and
unimaginatively, as determined by these procedures. More-
over, to mitigate the single-annotator bias risk we followed
a cross-checked-annotator approach, in which the first au-
thor’s implementation of the protocol was cross-checked by
another author. Developers properly trained on the usage
of our tool and on the changes to apply for each oracle de-
ficiency can be as efficient as the first author, but possibly
even more effective, given their higher domain knowledge
and freedom to improve the oracle.

External validity : We have validated our approach on a set
of classes from five different subjects and with three differ-
ent types of initial oracles. While we expect similar results
to hold for other subjects, generalizability of our findings
requires further replications on additional subjects.

5. A FORMAL MODEL OF ORACLE IM-
PROVEMENT

We model our oracle improvement process using Shan-
non’s information theory [27] and prove that every improve-
ment step can make the information in the actual oracle
closer to the information in the perfect oracle. These ora-
cles are modelled as a pair of Boolean-valued random vari-
ables, α,G : R → Bool respectively, assuming the set of
reachable states at pp, R, is equipped with some probabil-
ity distribution. With reference to the left diagram in Fig-
ure 1, we interpret the regions labelled a, b, c, d as probabil-
ity masses: a = p(α = F, G = F), b = p(α = T, G = F) ,
c = p(α = T, G = T), and d = p(α = F, G = T). A reduc-
tion, ∆, of false negative probability repartitions the proba-
bility weights to create a new oracle, α′ where a′ = a + ∆,
b′ = b−∆. Similarly, reducing false positive probability by
Γ creates a new oracle, α′, where c′ = c + Γ, d′ = d − Γ.
We can measure how closely connected two random vari-
ables (oracles) are by measuring their mutual information,
a measure of their lack of independence [7]:

I(X; Y ) =
∑
x∈X

∑
y∈Y

p(x, y) log2
p(x, y)

p(x) p(y)

When they are completely independent I(X; Y ) = 0 and
when they are completely dependent they contain the same
information.

We can define I(α; G) in terms of a, b, c, d, getting:

I(α; G) =

 −(b+ c)log2(b+ c)− (a+ d)log2(a+ d)
−(a+ b)log2(a+ b)− (c+ d)log2(c+ d)
+a log2 a+ b log2 b+ c log2 c+ d log2 d

As before, we can always consider improvement steps ∆
and Γ separately as they don’t affect each other. We would
like that each improvement step for α to α′ always increases
the mutual information between the actual and perfect ora-
cles. Unfortunately this is not always true, but we can prove
that it is always true whenever conditions on ∆ and Γ are
met. First, consider a step that improves false negatives.

Theorem 1. Let α, α′ and G be Boolean-valued random
variables modelling oracles (as above) and let α′ be obtained
from α via an improvement step ∆ (as above). Then

∆ >
bd− ac
c+ d

⇒ I(α′; G) ≥ I(α; G)



Proof: (sketch) Rewrite I(α′; G) as a function of ∆ with
constants a, b, c, d.
I(α′; G) = −(b+c−∆)log2(b+c−∆)−(a+d+∆)log2(a+

d+∆)−(a+b)log2(a+b)−(c+d)log2(c+d)+(a+∆) log2 (a+
∆) + (b−∆) log2 (b−∆) + c log2 c+ d log2 d

Differentiate I(α′; G) with respect to ∆ to find the single
turning point and the region of monotonic increase. �

We can immediately consider a step that improves false
positives and obtain a very similar result.

Corollary 1. Let α, α′ and G be Boolean-valued ran-
dom variables modelling oracles (as above) and let α′ be ob-
tained from α via an improvement step Γ (as above). Then

Γ >
bd− ac
a+ b

⇒ I(α′; G) ≥ I(α; G)

Surprisingly, in spite of these limiting conditions on which
improvement steps increase mutual information, we can guar-
antee that for every given oracle we can construct another
oracle for which any improvement increases the mutual in-
formation.

Corollary 2. For all actual oracles, α there is an ora-
cle, α′, constructed from α, such that for all improvement
steps, ∆ or Γ on α′ that produce an oracle α′′, I(α′′; G) ≥
I(α′; G).

Proof: Consider an arbitrary oracle α. Associated with α
is a partition of probability weights {a, b, c, d}. If bd ≤ ac
then bd − ac ≤ 0. As ∆ > 0 and Γ > 0 by assumption,
application of either to produce a new oracle satisfies the
appropriate condition of either Theorem 1 or Corollary 1
respectively. So α′ = α. Otherwise, ac < bd. Since the
oracle, α, corresponds to a logical assertion, 〈assert〉, let
α′ be the oracle corresponding to the negation of 〈assert〉,
!〈assert〉, in which case a′ = b, b′ = a, c′ = d, d′ = c and we
have b′d′ < a′c′ and any improvement on this oracle satisfies
the appropriate condition. �

The proof of Corollary 2 makes clear some intuitions about
assertion oracles. For a poor oracle the product of the prob-
abilities of the inaccuracies is bigger than the product of the
probabilities of its accuracies. However a poor oracle can
be made into a good one by simply negating it. For a good
oracle any improvement in its inaccuracy at all brings its
information closer to that of the perfect oracle.

An oracle having high mutual information with the per-
fect oracle is one that agrees with the perfect oracle most
of the time. This means it tends to accept/reject correct/-
faulty program executions whenever the perfect oracle does
so. Since the proposed oracle improvement process increases
mutual information between actual and perfect oracles, it
leads to an oracle which, in agreement with the perfect or-
acle, reveals all the faults it can reveal, while at the same
time accepting all correct executions it should accept.

6. RELATED WORK
The importance of oracles as an integral part of the test-

ing process has been a key topic of research for over three
decades [25, 29, 31]. For a recent survey on the oracle prob-
lem and techniques for defining software oracles the reader
is referred to the comprehensive review by Barr et al. [4].

The work by Fraser and Zeller [12] presents an approach
to generate parameterised unit tests for which oracles are

represented in the form of pre- and postconditions charac-
terising test input and test result. They use the definition
of false positives and false negatives close to ours, but only
to assess the accuracy of generated postconditions, without
any guidance on further improvement. The later work of
these authors [13] uses mutation testing to generate both
test inputs and test oracles for standard JUnit test cases.
However, test cases generated in this way express the ob-
served behaviour of the program under test rather than the
intended behaviour. Moreover, the focus is on test case or-
acles, not program oracles.

In their work, Staats, Gay and Heimdahl [28] propose
a method supporting test oracle creation, which is based
on the use of mutation analysis to rank variables in terms
of fault-finding effectiveness. Similarly, Loyola et al. [22]
propose a system that ranks program variables based on
the interactions and dependencies observed between them
during program execution. While these approaches provide
a good basis for oracle variable selection, they do not provide
any support for oracle assessment and improvement.

The work by Nguyen, Marchetto and Tonella [30] studies
the training cost, false positive rate and fault finding capa-
bility of three types of automated oracles: Data Invariants,
Temporal Invariants and Finite State Automata. Results
show that automated oracles can detect several real faults,
but such fault detection capability comes at the price of a
quite high false positive rate (30% on average) and the next
step for the successful adoption of automated oracles should
be the decrease in this false positive rate.

In their work Huo and Clause [19] measure the quality of
the oracles in terms of the presence of brittle test case asser-
tions and unused inputs. During their evaluation of 4,000
real test cases they were able to detect 164 tests containing
brittle assertions and 1,618 tests containing unused inputs,
with a quite high false positive rate. They considered test
case, not program, assertions. The work by Schuler and
Zeller [26] introduces the concept of checked coverage –
the dynamic slice of covered statements that actually influ-
ence the oracle. The results of their study show that checked
coverage is a better indicator of the quality of testing than
coverage alone. However, no guidance is provided on how to
improve the oracle quality.

The work by Zhang et al. [32] introduces iDiscovery
which, similar to our approach, aims to improve the quality
of the oracles iteratively using symbolic execution. However,
it is applicable only to automatically inferred oracles and the
level of improvement is limited by the initial set of candidate
invariant templates. Hence, our approach can be applied to
further improve the invariants produced by iDiscovery.

Other previous work has sought to reduce the manual or-
acle effort by reducing the number of test cases generated
and by increasing their realism [1, 5, 17, 24].

7. CONCLUSION
We have proposed an iterative technique for the assess-

ment and improvement of the oracles. Experimental results
show that our tool is able to identify both false positives
and false negatives in three important types of initial ora-
cles (implicit, inferred and manual), leading to an average
48.6% improvement of mutation score over all the analysed
classes and exposing real faults that have been reported to
and fixed by the developers.



8. REFERENCES

[1] S. Afshan, P. McMinn, and M. Stevenson. Evolving
readable string test inputs using a natural language
model to reduce human oracle cost. In International
Conference on Software Testing, Verification and
Validation (ICST 2013), pages 352–361, March 2013.

[2] J. H. Andrews, L. C. Briand, and Y. Labiche. Is
mutation an appropriate tool for testing experiments?
In 27th International Conference on Software
Engineering (ICSE), pages 402–411, 2005.

[3] K. Androutsopoulos, D. Clark, H. Dan, R. M. Hierons,
and M. Harman. An analysis of the relationship
between conditional entropy and failed error
propagation in software testing. In 36th International
Conference on Software Engineering, ICSE ’14,
Hyderabad, India - May 31 - June 07, 2014, pages
573–583, 2014.

[4] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, and
S. Yoo. The oracle problem in software testing: A
survey. IEEE Transactions on Software Engineering,
41(5):507–525, May 2015.

[5] M. Bozkurt and M. Harman. Automatically
generating realistic test input from web services. In
J. Z. Gao, X. Lu, M. Younas, and H. Zhu, editors,
IEEE 6th International Symposium on Service
Oriented System Engineering (SOSE 2011), pages
13–24, Irvine, CA, USA, December 2011. IEEE.

[6] C. Cadar and K. Sen. Symbolic execution for software
testing: Three decades later. Communications of the
ACM, 56(2):82–90, Feb. 2013.

[7] T. M. Cover and J. A. Thomas. Elements of
information theory, 2nd ed. John Wiley & Sons, 2012.

[8] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant,
C. Pacheco, M. S. Tschantz, and C. Xiao. The daikon
system for dynamic detection of likely invariants. Sci.
Comput. Program., 69:35–45, December 2007.

[9] G. Fraser and A. Arcuri. Evolutionary generation of
whole test suites. In M. Núñez, R. M. Hierons, and
M. G. Merayo, editors, 11th International Conference
on Quality Software (QSIC), pages 31–40, Madrid,
Spain, July 2011. IEEE Computer Society.

[10] G. Fraser and A. Arcuri. EvoSuite: automatic test
suite generation for object-oriented software. In 8th

European Software Engineering Conference and the
ACM SIGSOFT Symposium on the Foundations of
Software Engineering (ESEC/FSE ’11), pages
416–419. ACM, September 5th - 9th 2011.

[11] G. Fraser and A. Arcuri. Achieving scalable
mutation-based generation of whole test suites.
Empirical Software Engineering, 20(3):783–812, 2015.

[12] G. Fraser and A. Zeller. Generating parameterized
unit tests. In Proceedings of the 2011 International
Symposium on Software Testing and Analysis, ISSTA
’11, pages 364–374, New York, NY, USA, 2011. ACM.

[13] G. Fraser and A. Zeller. Mutation-driven generation of
unit tests and oracles. IEEE Trans. Software Eng.,
38(2):278–292, 2012.

[14] R. Geist, A. J. Offutt, and F. C. H. Jr. Estimation
and enhancement of real-time software reliability
through mutation analysis. IEEE Transactions on
Computers, 41(5):550–558, 1992.

[15] M. Harman, L. Hu, R. M. Hierons, J. Wegener,
H. Sthamer, A. Baresel, and M. Roper. Testability
transformation. IEEE Trans. Software Eng.,
30(1):3–16, 2004.

[16] M. Harman, Y. Jia, and Y. Zhang. Achievements,
open problems and challenges for search based
software testing (keynote). In 8th IEEE International
Conference on Software Testing, Verification and
Validation (ICST 2014), Graz, Austria, April 2015.

[17] M. Harman, S. G. Kim, K. Lakhotia, P. McMinn, and
S. Yoo. Optimizing for the number of tests generated
in search based test data generation with an
application to the oracle cost problem. In 3rd

International Workshop on Search-Based Software
Testing (SBST 2010), Paris, France, April 2010.

[18] M. Harman, A. Mansouri, and Y. Zhang. Search based
software engineering: A comprehensive analysis and
review of trends techniques and applications.
Technical Report TR-09-03, Department of Computer
Science, King’s College London, April 2009.

[19] C. Huo and J. Clause. Improving oracle quality by
detecting brittle assertions and unused inputs in tests.
In Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software
Engineering, (FSE-22), Hong Kong, China, November
16 - 22, 2014, pages 621–631, 2014.

[20] Y. Jia and M. Harman. An analysis and survey of the
development of mutation testing. IEEE Transactions
on Software Engineering, 37(5):649 – 678,
September–October 2011.

[21] R. Just, D. Jalali, L. Inozemtseva, M. D. Ernst,
R. Holmes, and G. Fraser. Are mutants a valid
substitute for real faults in software testing? In
International Symposium on Foundations of Software
Engineering (FSE), pages 654–665, 2014.

[22] P. Loyola, M. Staats, I. Ko, and G. Rothermel.
Dodona: automated oracle data set selection. In
International Symposium on Software Testing and
Analysis, ISSTA ’14, San Jose, CA, USA - July 21 -
26, 2014, pages 193–203, 2014.

[23] P. McMinn. Search-based software test data
generation: A survey. Software Testing, Verification
and Reliability, 14(2):105–156, June 2004.

[24] P. McMinn, M. Stevenson, and M. Harman. Reducing
qualitative human oracle costs associated with
automatically generated test data. In 1st International
Workshop on Software Test Output Validation (STOV
2010), pages 1–4, Trento, Italy, July 2010.

[25] D. K. Peters and D. L. Parnas. Using test oracles
generated from program documentation. IEEE
Transactions on Software Engineering, 24(3):161–173,
1998.

[26] D. Schuler and A. Zeller. Assessing oracle quality with
checked coverage. In Fourth IEEE International
Conference on Software Testing, Verification and
Validation, ICST 2011, Berlin, Germany, March
21-25, 2011, pages 90–99, 2011.

[27] C. E. Shannon. A mathematical theory of information.
Bell System Technical Journal, 27(3):379–423, 1948.

[28] M. Staats, G. Gay, and M. P. E. Heimdahl.
Automated oracle creation support, or: How I learned
to stop worrying about fault propagation and love



mutation testing. In 34th International Conference on
Software Engineering, ICSE 2012, June 2-9, 2012,
Zurich, Switzerland, pages 870–880, 2012.

[29] M. Staats, M. W. Whalen, and M. P. E. Heimdahl.
Programs, tests, and oracles: the foundations of
testing revisited. In Proceedings of the 33rd
International Conference on Software Engineering,
ICSE 2011, Waikiki, Honolulu , HI, USA, May 21-28,
2011, pages 391–400, 2011.

[30] P. Tonella, C. D. Nguyen, A. Marchetto, K. Lakhotia,
and M. Harman. Automated generation of state
abstraction functions using data invariant inference. In
Proceedings of the 8th International Workshop on
Automation of Software Test (AST), 2013.

[31] E. J. Weyuker. On testing non-testable programs. The
Computer Journal, 25(4):465–470, Nov. 1982.

[32] L. Zhang, G. Yang, N. Rungta, S. Person, and
S. Khurshid. Feedback-driven dynamic invariant
discovery. In Proceedings of the 2014 International
Symposium on Software Testing and Analysis, ISSTA
2014, pages 362–372, New York, NY, USA, 2014.
ACM.


