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ABSTRACT 
Using video cameras regions of cities can be monitored in 
order to extract traffic data. Stationary cameras fixed at 
high buildings can be used which provide data 24 hours a 
day. The data can be used, e.g., to optimize traffic flow 
by controlling traffic lights dynamically. In order to 
minimize the number of cameras it is useful to reidentify 
vehicles leaving one monitored region and afterwards 
entering the viewing field of a further camera. From 
reidentified vehicles travel times can be obtained which 
are relevant parameters to optimize traffic control. In the 
present text, a method to reidentify vehicles based on 
extraction of 3-d-prototype vehicle models and color 
extraction from the top plane of vehicles is described. 
Shadows and light reflections on wet street are corrected, 
and therefore, the high recognition accuracy is achieved 
which is necessary to find the top plane of the vehicles. 
Due to the 3-d-model based analysis the cameras can be 
placed in a broad region of viewing angles. The 
algorithms are suitable for real-time applications. First 
results from video data of two cameras are presented 
which show a high reidentification rate with no false 
reidentification hypothesis.  
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1.  INTRODUCTION 

Traffic data extraction from video data is of great value, 
e.g., in order to optimize traffic flow by dynamic traffic 
light control and dynamic control of electronic speed 
signals, and in order to obtain detailed information where 
improvements of infrastructure are to be made. In co-
operation with universities and a number of smaller and 
larger companies from Berlin and Brandenburg [1,2], we 
are interested to monitor, e.g., regions of the city of 
Berlin with its usually about 40 thousand cars traveling at 
the same time. Many systems exist concerning the 
question of how to extract traffic data from video signals 
[3-6]. A powerful method is 3-d model based analysis 
[7,8], where 3-d models of vehicle prototypes are 
compared with extracted object hypotheses. This method 
will be of increasing interest in the future as computer 

power further increases [8-11]. 

Another approach is region based tracking. The idea is to 
identify a connected region in the image associated with 
each vehicle and then track it over time using a cross-
correlation measure [12,13]. A dual to the region based 
approach is tracking based on active contour models, or 
'snakes'. The idea is to have a representation of the 
bounding contour of the object and keeping updating it 
dynamically [14].  

All these approaches exhibit a problem of handling 
partially occluded vehicles, because such vehicles are 
usually recognized as vehicle clusters and not as single 
vehicles. A method to solve this problem is to track 
vehicle sub-features [15]. In our approach we also extract 
sub-features, i.e. we extract corners of the vehicles, 
therefore, our approach is appropriate to expand it to 
solve this problem, too. 

In order to obtain reidentification data about vehicles 
from video data, alternatively it is possible to extract the 
information of the number plates. However, for larger 
regions this is expensive, because a large number of 
cameras is necessary with high resolution and in 
appropriate viewing angles.  

Instead, we perform the recognition of vehicles from 
rather arbitrary viewing angles by using a 3-d-model 
based approach. We show that our approach provides 
high accuracy, e.g., concerning the extracted lengths of 
vehicles. Due to this high accuracy, our algorithm is able 
to extract a part behind the middle part of the top plane of 
an object. From this part, appropriate color values are 
extracted, converted to HSV (hue, saturation, value) color 
space and used as parameters for reidentification of 
objects [16]. The reason for extracting data not from the 
middle part is that there are frequently openings in the 
front part of the top plane of the vehicles.  

We present concepts and results about fast recognition of 
vehicles with high accuracy, and about fast 
reidentification of vehicles for videos of two cameras. 
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2.  CONCEPT FOR FAST VEHICLE 
RECOGNITION  

Movement detection and merging of movement 
regions  
Movement regions on streets can be detected using 
difference images with a certain threshold. In order to 
suppress slight shadows, a renormalization with respect 
to brightness can be used, i.e. color values RGB are 
converted to r=R/(R+G+B), g=G/(R+G+B), b=1-r-g. This 
yields  

qp(t)=H(⏐rp(t)-rp(t-τ)⏐+⏐gp(t)-gp(t-τ)⏐+ 

+⏐bp(t)-bp(t-τ)⏐-θ) . (1) 

Here, p denotes the index of the pixel, and the function 
H(z) is zero for z<=0 and one for z>0. The threshold is θ, 
which depends on the camera, and the time difference 
between two images is chosen to be τ=1/6 s, which is 
suitable for city traffic for vehicle recognition. The 
regions with qp(t)=1 are called movement regions.  

Regions of interest (ROIs) are defined within traffic areas 
like streets as follows. 3-d-world coordinates are obtained 
for the streets using GPS. A middle line within each 
street can be defined in the image by defining in 1 m 
distances points and connecting them. Analogously, lines 
which correspond approximately to the boundary of the 
streets can be defined.  

Movement regions are merged together when they are 
close to each other.  

Definition of object hypothesis 
Two movement regions successive in time in roughly the 
same region are candidates for vehicles. Around both 
regions a rectangular frame is defined with one direction 
along the street and the other direction perpendicular to 
the street. Both rectangles overlap and the largest 
rectangle which belongs to both rectangles is defined to 
be the uncorrected rectangle of the object hypothesis.  

The rectangular frame around the object hypothesis 
sometimes contains the shadow of the object and 
sometimes contains reflections especially of vehicle 
lights like vehicle beacons on wet surface, see Fig. 1.  

Such errors can be corrected by comparing regions of 
smoothed edge images of prototypes of a corresponding 
corner of 3-d-models of vehicles with the corresponding 
region of a smoothed edge image of the original image 
within the uncorrected rectangle of the object hypothesis, 
see Fig. 1 (b).  

The region which corresponds best to the corresponding 
corner is chosen, and the corresponding corner position is 
defined to be the (corrected) corner of the (corrected) 

rectangle of the object hypothesis.  

Testing vehicle hypotheses and definition of 
hypotheses of physical dimensions of objects 
The described (corrected) rectangles of the vehicle 
hypotheses are tested by comparing them with regions 
which are covered by projections of 3-d-models of 
vehicles (see Fig. 2) projected into the scene in such a 
way that they occupy the same rectangle.  

This procedure is simplified to enable fast vehicle 
recognition as follows: Only at the points of a 2m times 
2m grid these projections are computed, and they are 
computed before the online processing is done. Further, 
the 3-d-models contain only about twenty 3-d-points, 
corners of the vehicle. The displacement to the exact 
position and the scaling to the extracted rectangle is done 
only for the corners. By this method, the length, width, 
and height of the scaled model are obtained (Fig. 1 (b)). 
These values have to lie within a certain region of 
possible physical dimensions of the corresponding 
vehicle prototype, else the prototype is skipped for this 
object hypothesis. By this method, a car can be 
distinguished by a truck. Then, the extracted  physical 
dimensions are the hypotheses for the corresponding 
physical dimensions of the object.  

(a) (b) 

 
Fig. 1. (a) The black rectangle on the road shows the region 
where currently vehicles are recognized by the software. The 
light of the right vehicle beacon is reflected on the wet road into 
the camera. (b) The extracted (uncorrected) rectangle around the 
object parallels the black rectangle of Fig. 1 (a). The reflection 
of the light of the vehicle beacon is contained in the extracted 
(uncorrected) frame (arrow). Therefore, the rectangle is much 
larger than the image of the car, i.e. it is too large. Within (b) 
the result of the corner detection is illustrated, too. The lower 
right aft corner of the vehicle is detected by the software. 
Afterwards, a new rectangle is computed where the lower right 
corner of the (uncorrected) rectangle is corrected to the place of 
the detected corner. Then the software projects a 3-d-model of a 
car into the new rectangle. This is shown as the white grid 
model. It can be seen that the corner has been detected at the 
right position, and therefore, the reflection error is corrected by 
the software. Further explanations about the algorithms are 
given in the main text. 



Extraction of hypotheses of vehicle colors  
The position of the projection of a point which is 30cm 
behind the middle of the top plane of the 3-d vehicle 
model is known. In case that the resolution of the cameras 
is not worse than about 0.1m on the corresponding part of 
the road plane in the direction perpendicular to the vector 
which connects the street point with the camera, we find 
with our method, that this extracted point lies well within 
the real top plane of the vehicle (Fig. 1 (b)). Therefore, it 
makes sense to use the color values extracted around this 
position as color values of this plane of the vehicle.  

However, reflections from the sky disturb these values. 
Therefore, a vertical polarizing filter is used which 
corrects the values, which works especially well close to 
the Brewster angle.  

These color values are converted to hue-saturation-value 
(HSV) color space, because the value hue yields for a 
large part of the color space a stable parameter which 
encodes the tone of the color of a vehicle rather precisely. 
Roughly speaking, the parameter hue is invariant against 
changes of brightness and remains invariant when adding 
white light to the values RGB. 

3.  RESULTS OF VEHICLE RECOGNITION 

An RGB video of traffic in Berlin-Adlershof at the 
crossing Rudower Chaussee with Wegedornstreet with 50 
vehicles turning from the Wegedornstreet to the right into 
the Rudower Chaussee is recorded with 6 Hz frame rate 
with vertical polarizing filter.  

The region of the road which is analyzed is the region in 
front of the traffic light in Fig. 1 (a), ranging from the 
traffic light back to the lower boundary of the image. 
100% of the vehicles are recognized by the algorithm. 

The extracted hypotheses of the physical dimensions of 
the vehicles are compared with the actual dimensions of 

the vehicles [17]. The lengths have a standard deviation 
from the actual values of 0.4 m. The widths and heights 
have a standard deviation of 0.2 m. 

These results demonstrate the high accuracy of the 
software, because the objects are seen from behind and, 
therefore, it is difficult to extract the correct lengths. The 
resolution of the image was about 0.1m. 

For the color values extracted from extracted hypotheses 
of the uppermost vehicle plane (Fig. 1 (b)) the empirical 
standard deviations for each single vehicle are computed 
for multiple measurements of the vehicle. The mean of 
these standard deviations were 3% in H (where H is a 
value between 0 to 360 degrees), 3% in S (which is a 
value between 0 and 1), and 2% in V (which is a value 
between 0 and 1). 

The complete computations have to be conducted for 
every third image, i.e. with a rate of 2 Hz. The 
computation lasts 0.2 s for each three images on a 2 GHz 
usual personal computer. Therefore, it is faster than real-
time. In future it is planned to use also a field 
programmable gate array (FPGA), which will further 
increase computation speed.  

4.  CONCEPT FOR FAST VEHICLE 
REIDENTIFICATION 

The reidentification is conducted with the extracted 
vehicle parameters described above after the vehicles 
have been tracked within the viewing field of each 
camera. Tracking is performed according to the place and 
velocity of an object and an object of the following time 
step according to the assumption of constant velocity 
allowing for some deviations regarding place and 
velocity. The tracking algorithm did not yield any error in 
the videos analyzed so far.  

The number of parameters is much lower than, e.g., 
comparing the whole vehicle image data, therefore, fast 
reidentification can be achieved. 

Reidentification can be done by testing the hypothesis 
that the differences of the parameter values are 
stochastically for two extracted objects. In case that some 
approximations are made, especially normally distributed 
extracted parameter values, and statistical independence 
of the parameters, theoretical equations exist. We get   
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where U(m,k) is an error function for the extracted and 
tracked object m of the first camera, and k that of the 
second camera, respectively. The parameters we use are 

 
Fig. 2.  Some 3-d grid models of vehicles projected into the 
image. Such models are used to compare them with edge 
images of real extracted object hypotheses.  



for i=1 the color tone H, for i=2 the color saturation S, for 
i=3 the brightness V, for i=4 the vehicle length, and for 
i=5 the parameter time. n=5 is the number of parameters 
taken into account. The parameter α is the level of 
significance. The function a(n,α) is related to the 
incomplete Gamma function. With α=0.05 we get 
a(5,0.05)≈3.33. We define H1(m) to be the parameter 
value hue H of the tracked object m in camera 1. We 
define H2(k) to be the parameter value H of the tracked 
object k in camera 2. Analogous definitions are made for 
the other parameters saturation S1(m), brightness V1(m). 
length L1(m), time t1(m) etc.. The function d(i,m,k) is the 
absolute difference of the parameter values of the two 
objects for i=1,2,3,4. For i=5 it is  

d(5,m,k) = |t2(k) – t1(m) – t_R| . (3) 

The value t_R is an estimation of the travel time which is 
computed according to the velocity and the estimated 
acceleration of the objects as follows. For vehicles slower 
than the recommended velocity v_recomm = 50km/h an 
acceleration towards the recommended velocity and 
afterwards constant velocity are assumed. For vehicles 
faster than v_recomm constant velocity is assumed. The 
following auxiliary variables are defined. For 
v1(m)<v_recomm the time to reach v_recomm for 
constant acceleration is 

t_change = t1(m)+[v_recomm – v1(m)] /a_usual , (4) 

where a_usual is set to 2.75 m/(s·s). The travel time for 
constant acceleration would be 
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where y1(m), and y2(k) respectively, are the positions of 
a corner of the vehicle along the street. The algorithm for 
computation of t_R is: 

if [v1(m) >= v_recomm] then t_R = [y2(k)-y1(m)]/v1(m) ,  

else if [t_change < t1(m) + t_R_aux] then 
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else  

t_R = t_R_aux . (6) 

In Eq. (2) the functions s(i,m,k) are estimations of 
empirical standard deviations. They can be optimized, 
e.g., using neural networks. It is also possible to use 

empirical knowledge to estimate values for these 
parameters. As an ansatz we use the following equations.  

Max_V = Max ( V1(m) , V2(k) ) , (7) 

Max_V_part = (1.2/255)2 / (Max_V + 1/255)2 . (8) 

The Max_V_part equation is designed for an 8bit RGB 
matrix camera, therefore, the value 28-1 = 255 is used. 
Further we define 

Max_S = Max ( S1(m) , S2(k) ) , (9) 

s(1,m,k) = [10 + 250·(d(3,m,k))2 + 70·(d(2,m,k))2 +  
+5/(Max_S + 0.005) + 200·Max_V_part] degree ,  (10) 

s(2,m,k) = 0.035 + 0.5·d(3,m,k)  + Max_V_part , (11) 

s(3,m,k) = Min ( 0.06 + 0.0001·|t1(m)-t2(k)|, 0.15 ) , (12) 

s(4,m,k) = 60 cm , (13) 

s(5,m,k) = t_R / 3 . (14) 

The equations mirror the knowledge that for larger 
deviations of the time larger variations usually occur in 
the parameter values, because brightness usually changes 
more when the time difference is larger, and that for large 
parameter value differences the values obtain a larger 
standard deviation, because the values are then closer to 
the boundary values, at which the camera usually shows 
larger standard deviations for the parameters, since the 
CCD camera sensor which was used was not designed for 
high quality color results. 

In Eq. (2) the values b(i) are weighting parameters. In 
case they all were one a usual hypothesis testing would 
be conducted. However, different parameters have 
different relevance, e.g., hue H is more relevant than the 
brightness V, because the latter may vary rather much 
between the two regions monitored by the cameras for the 
same object.  

The distance between the regions of the two cameras was 
60m. For this distance the time slot in which objects are 
taken into account for reidentification is defined to range 
from t1(m)+t_R/1.4 up to t1(m)+t_R·1.8. 

5.  RESULTS OF VEHICLE REIDENTIFICATION 

The regions monitored by the two cameras are shown in 
Fig. 3. Two lanes are analyzed for cloudy weather 
conditions. Camera 1 is upstream. Camera 2 is 
downstream. The reidentification is complicated by the 
pedestrian crossing and by the crossing of vehicles in the 
images of camera 2. Further some vehicles slow down 
and leave the analyzed road at the crossing. Two videos 
were used. The first video was the training data to 



optimize parameters. The second video was the test data 
to verify the results. The first video of camera 1 was 
about 8min long with 39 cars. 38 of the cars are 
recognized by the algorithm. The discrimination between 
cars and larger vehicles worked without an error. The 
data base which was used does not work perfect: the data 
base does not receive all extracted data sets. For the first 
video only 36 of the 38 obtained data sets from vehicles 
were stored in the data base. The tracking algorithm takes 
the data from the data base. 100% of the 36 vehicles are 
tracked correctly. The weighting parameters in Eq. (2) 
were  

b(1) = 1.8, b(2) = 2.8, b(3) = 4, b(4) = 4, b(5) = 0.26.  (15) 

For U<1.3 the interim hypothesis of possibly same 
vehicle is defined. In case that the second smallest U-
value for a vehicle is larger than U1=0.1 plus the smallest 
U-value the final hypothesis is defined that the objects are 
the same. In case one wants to decrease the rate of false 
reidentification hypotheses, which is already zero for all 
data analyzed so far, further, one can increase the value 
of U1. The lane changing is restricted so that it does not 
exceed 1.9m, because the distance between the images of 
the cameras is small which restricts lane changing. 
Further reidentification hypotheses are made when there 
are two vehicles A and B which may correspond to a 
third vehicle C, and there is a fourth vehicle D which can 
only correspond to A or to B and not to A and to B 
according to the U-values. Then D is identified with A, or 
B respectively, and C with B, or A respectively. The 
reidentification algorithm yields a reidentification rate of 
100% of the 36 vehicles. No false reidentification 
hypothesis occurred. 

The test data is a video of about 17.5 min length with 117 
cars in the images of camera 1. From these cars for 
camera 1 there are 102 (=87%) recognized and passed 
into the data base. For camera 2 there are 105 (=90%) 
recognized, and 101 (=86%) are passed into the data 
base. Further, the number of cars which occur in the data 
base from both cameras was 89. The reidentification 

yields 78 reidentified cars. No false reidentification 
hypothesis occurs. The corresponding rate of 
reidentification is 78/89=88%. The reidentification rate of 
the total number of 117 cars is 78/117=67%.  

We remark that due to technical limitations the frame rate 
of the images was not optimal. The mean rate was 4.4 Hz. 
Most of the images had a rate of 5 Hz, the rest of them a 
rate of 2.5 Hz. The algorithm is designed to work 
optimally for about 6 Hz, therefore, 2.5 Hz is too low for 
good recognition results. The number of recognition 
errors due to 2.5 Hz frame rate was 7. Therefore, 117-
7=110 cars should be recognized by the algorithm which 
means a rate of recognized cars passed into the data base 
of 102/110=93%. The corresponding reidentification rate 
is 78/110=71%.  

The tracking and reidentification processes, and the 
computation of travel times and mean velocities, 
including reading data from database and writing results 
into a file for the two times about 17.5 min data with 117 
cars lasts about 2.3 s on a common 1.7 GHz personal 
computer. Therefore, the reidentification scheme is well 
suited for real-time applications. 

Another analysis was done to compare the data of cars 
coming from Wegedornstreet, Fig. 1 (a), turning to the 
right into Rudower Chaussee, Fig. 3. In addition to the 
first ROI, which was placed as shown in Fig. 1 (a) in the 
Wegedornstreet, a second ROI was placed in the bend. 
For reidentification only color HSV and length were 
used, i.e. n=4, compare Eq. (2). Reidentification could be 
done successfully [18]. This demonstrated that for 
different viewing angles of the cameras reidentification 
can be conducted due to the 3-d-model based analysis 
which allows finding the top plane of the vehicles for 
different viewing angles. 

6.  CONCLUSION 

With the concept presented it is possible to extract traffic 
data with high accuracy in real-time from video data. Due 
to an explicit vehicle corner detection (Fig. 1) errors like 
reflections on wet surface can be corrected so that the 
accuracy is sufficient for reidentification of vehicles.  

The concept to extract the colors of the top plane of a car, 
by using 3-d-model based vehicle recognition, yields the 
advantage that traffic data from rather arbitrary viewing 
directions can be obtained. Therefore, the number of 
cameras which are necessary to monitor a given region is 
usually lower than for systems with rather restricted 
viewing angles, and, therefore, the system is 
comparatively cheap. Additionally, the possibility of 
reidentification of vehicles reduces the number of 
cameras further, because with reidentification it is not 
necessary to monitor directly the complete region. 

(a) (b) 

 
Fig. 3. Rudower Chaussee in Adlershof, Berlin, Germany. (a) 
An image of camera 1 is shown. The black rectangle on the 
road indicates the region where vehicles are analyzed by the 
software. (b) An image of camera 2 is shown with the region 
which is analyzed.   



The next step is to obtain and to analyze data from 
cameras with large distance between the monitored 
regions. The vehicle color and vehicle length will be 
weighted the stronger the larger the distance is, i.e. in Eq. 
(15) b(1), b(2), b(4), and 1/b(5) will be chosen smaller. 
Especially cars with characteristic saturated colors are 
optimal for reidentification [18]. Further we want to 
optimize reidentification of vehicles by extending the 
software by algorithms for platoon matching [19] and to 
reidentify sets of vehicles. Further the initial estimation of 
the travel time, Eq. (6), shall be done by a faster than 
real-time microscopic simulation [20] of the detected 
vehicles. 
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