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Abstract

Urban traffic flow can be roughly approximated by a Schrödinger equation. For
a simulation of the Schrödinger equation as well as for analytical computations
it is useful that waves of traffic which travel along a road are not reflected at
the boundaries of the simulated region. Here, we present the non-reflecting
boundary condition for the Schrödinger equation and prove it via numerical
computations.

1 Theory

One way to describe urban traffic is to use the following macroscopic equations:

ρ̇ +∇q = 0 , (1)

v̇ = −v∇v + µ∇2v +
∑

j

Fj(t) . (2)

The first equation is the equation of continuity, the second one includes external
forces

∑

j

Fj(t) representing the effects of traffic light signals at intersections. A

second order viscosity like term like µ∇2v often is introduced in order to smooth
shock waves [1,2]. A relaxation term for a velocity adaptation as well as an an-
ticipation term are neglected which is possible as a rough approximation for
urban traffic in contrast to, e.g., highway traffic.

The equations can be written in the following way

iη Ψ̇ =

(

−η2

2
∇2 + U

)

Ψ (3)
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with ∇U = −∑

j

Fj(t), Ψ =
√

ρ · e
i
η
Φ, and ∇Φ = v when generalizing the

viscosity term as
η2

2
∇∇

2√ρ
√

ρ
.

The interpretation of a fluid dynamical equation as a Schrödinger equation first
was pointed out by Madelung [3].

To derive the non-reflecting boundary conditions consider a road for x from
−∞ to +∞. A right boundary of the system shall be established at the point
x = 0. For x < −b, b > 0, there are assumed to be one or some positive
potential barriers, and zero potential for x ≥ −b . There exist eigenfunctions
with positive energy eigenvalues Em. Waves travelling from inside the system
from x < 0 to the boundary x = 0 are assumed, and no waves in the other
direction. No reflections of waves means for values x between −b and 0 for zero
mean waves:

Ψ(x, t) =
∑

km>0

ameikmx−i Em
η

t . (4)

The positive values km are given by

Em = η2k2
m/2 . (5)

In order to simplify computations we restrict m to fulfil m ∈ {1, 2, 3, ...} and
we define km < km+1 for all m. In order to obtain the corresponding boundary
conditions, the function

J(t) =

t
∫

−∞

Ψ(0, t′) · (t− t′)−1/2dt′ (6)

is considered. Replacing t− t′ by T , and replacing the integral over T from 0 to
∞ by a sum of three integrals in the complex plane T = T ′ + iT ′′ starting from
close to zero with T ′′ = 0 along a circle to T ′ = 0 into the part of the plane with
positive T ′′, then from this point to close to T = +i∞ , and from there along a
circle back to T ′′ = 0 the integral finally arrives close to T = T ′ = ∞, as desired.
Both integrals along the parts of the circles converge to zero when taking the
limit of the radius of the former circle to zero, and that of the latter to infinity.
Within the relevant region, i.e. for positive T ′ and positive T ′′ , there are no
singularities. Therefore, using the Gamma function for the remaining integral,
J(t) can be computed directly which yields

J(t) = eiπ/4
√

π ·
∑

km>0

am
√

Em/η
· e−i Em

η
t . (7)
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From here it follows that the function d
dtJ(t) is proportional to ∇xΨ(x, t) |x=0,

i.e.

d

dt

t
∫

−∞

Ψ(0, t′) · (t− t′)−1/2dt′ = −
√

ηπ/2 · eiπ/4 · ∇xΨ(x, t) |x=0 (8)

which are the desired non-reflecting boundary conditions.

2 Simulation results

In order to check the validity of the above boundary conditions we compared
the temporal evolution of a system with and without non-reflecting boundaries.
The value Ψ(0, t) influences ∇Ψ(x, t) |x=0 and, therefore, also Ψ̇(x, t) (Eq. 3).
So, the boundary conditions can be proven in simulations by comparing the
temporal evolution of Ψ(x < 0, t) with and without boundary.

Eq. (8) gives a relation between dJ(t)/dt and dΨ(x, t)/dx |x=0. From this, it
is possible to calculate the wave function values Ψ(0, t) at the boundary from
the previous values of Ψ at the boundary and the values of the wave function
Ψ(x < 0, t) which are defined by Eq. 3.

Numerical problems might result from that Ψ(0, t) and, therefore, J(t) have to
be calculated from previous values of Ψ(0, t∗) at t∗ < t which themselves are
obtained from the boundary condition equation. Therefore, we compute J(t)
not from the values of Ψ(t) at the boundary x = 0, but as close as possible
before the boundary at x = 0− dx.

Fig. 1 shows the simulation results. As example, we define an initial wave func-
tion in the interval [−5.2,−2.8] (blue line in Fig. 1) and set all values outside
this interval to zero initially. Within the interval the function is approximately
e−ikmx with km = 4π smoothed around−5.2 and−2.8. The parameter η is set to
0.1. The discretisation steps have been chosen as follows: dx = 0.1, dt = 0.001.
The temporal evolution of this function has been studied with and without the
non-reflecting boundary described above. The result in Fig. 1 demonstrates a
nice correspondence between the non-reflecting boundary conditions at x = 0
(green line) and the situation without boundary (red line).

3 Conclusions

Generally, the solution of the Schrödinger equation (Eq. 3) leads for initially
localized functions to a wave function that is extended over any given interval
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Figure 1: Real part of Ψ(x, t) for t = 0 (blue), t = 5 without boundary (red),
t=5 with non-reflecting boundary (green) at x = 0. The parameters for the
Schrödinger equation have been chosen as km = 4π, η = 0.1.

after a certain time. In order to allow long–time simulations, it is necessary
to limit the definition area. The problem, however, is that the introduction of
a boundary, especially a reflecting one, falsifies the shape of the function. We
introduced a non-reflecting boundary condition where the characteristics of the
function are maintained. This has been proven in simulations.
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