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Abstract: For the simulation of traffic flows various macroscopic and microscopic
models exist. Developing these models it is important to check the models against
reality, whereas there are well-established means how to do this for macroscopic
fluid-dynamical models. For microscopic models this work has yet to be done. This
article is intended as a first step towards a common benchmarking of those models.
A method is suggested to test microscopic models against single-car data sets and
applied to two public available single-car data sets recorded by C. Daganzo on a one
lane road in the USA in 1997. The calibration of the used models is done by
analysing the deviations of the travel times on the observed street segments. As a
result one gets a single number for each model giving the mean percentage error it
produces in comparison to reality. This way the models can be compared directly to
each other quantitatively. Furthermore, the obtained results point towards some
deficiencies of the models and give ideas how to correct them.

Key Words: modeling, simulation, traffic flow, benchmark.

Introduction
A large number of macroscopic and microscopic models simulating traffic flow exists.
Some of them are described in detail and some are not, see [1] and [2] for an
overview on publicly available models, but all claim to reproduce the reality to a
certain degree. For traffic flows this means to define equations or rules for the
movement of the vehicles or the time evolution of flows, in order to reproduce
phenomena like headway distributions, synchronised flow, jam-formation at
bottlenecks and spontaneous jams. An important step is the calibration and validation
of  the models, which means to find the parameters that reproduce a given observed
data set as close as possible. There are well-established means how to do this for
macroscopic fluid-dynamical models, whose output can be directly matched against
the aggregated data that are commonly recorded (see [3] for example). For
microscopic models it is more difficult to find relevant microscopic data to test the
models against, and even if such data are available, it is not entirely clear how to use
these data for calibrating and validating the models.

Furthermore, another problem is that models tend to be calibrated only with a few
data sets which are usually not publicly available. Some models may be performing
well for special data sets, but it is very difficult to compare the models against each
other for common data sets. As a result of this lack of common benchmarking, it may
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be roughly known which real situations a certain model is able to reproduce well,
however the exact quality of real data reproduction is in general not well
documented.

In this article some common microscopic traffic flow models are tested exemplarily
using data recorded on a one-lane road. Furthermore, a technique for calibration is
suggested how to do this.

At first the road where the data have been recorded is described including some
modifications which have been performed preparing the data for use in the
simulations. Further the boundary conditions used for all simulations and the
simulation set-up are described.

Before the results of the simulations are presented and analysed, the method of
error-measurement is defined. It analyses the deviations of travel times, which are
produced by the simulations compared to real data.

Finally, some conclusions and an outlook on future work is given.

1 Modeling and simulation set-up
1.1 The experimental site and the data sets

Fig. 1: At the top a sketch of the experimental site in reality is pictured, showing
the observer positions on the road. The sketch in the middle shows the
site as used for the simulations reproducing the first data set and at the
bottom for the second data set (segment lengths in [meter]).

The data sets used for calibration ([4]) have been recorded by C. Daganzo et al. on a
long one-lane road with a total of 4 miles as described in [5]. In one direction eight
observers were positioned on the road with distances to each other decreasing
towards the traffic light at the end of the road as shown at the top of figure 1. The
traffic light causes congested states on the road. Each observer was a person who
clicked a key on a laptop each time a vehicle passed the observer. From time to time
a special car drove along the road, which defined the first car in the sequence of
cumulative arrivals.



Therefore, the data sets consist of the arrival times of all the cars that passed the
lane on the road. So this data set explicitly contains the travel times between the
observers, and the number of cars that are on the stretch of road between the
observers, in the form of the so called N(t)-curves.

Daganzo’s team recorded data sets on Tuesday, November 18, 1997 and on
Thursday, November 20, 1997, each from 6:45 AM to 9:00 AM containing information
of about 2300 vehicles. Not surprisingly, because of hardware malfunctions,
computer failures, and human errors the raw data sets contain some errors
(miscounts) that could not be corrected completely. But of course Daganzo et al. tried
to identify each vehicle and produced “justified IDs”, which can be found in their
Excel-Sheets.

For a microscopic simulation it is useful to have a complete set of observer times for
each vehicle. So - based on the “justified IDs” - the data sets have been slightly
modified by eliminating doubled IDs and inserting missing IDs with the passing time
of the vehicle before. The number of counts can be seen in the following table.

Location of error Type of error Correction Counts
First data set Doubled justified Ids Last ID cancelled 37
First data set Missing ID ID inserted with passing

time of ID-1
63

First data set Empty data at observer 5 Complete data of observer
cancelled

791

Second data set Doubled justified Ids Last ID cancelled 165
Second data set Missing ID ID inserted with passing

time of ID-1
35

Second data set Empty data at observer 6 Complete data of observer
cancelled

409

Table 1: Modifications of the data sets.

Finally, a refined data set was used in our analysis. A total of 2298 vehicles for the
first data set from 06:47:46 - 08:57:12 AM, and 2293 vehicles for the second data set
from 06:44:35 - 08:52:46 AM. For the simulations, the data of observer 5 in the first
data set and those of observer 6 in the second data set have been cancelled for the
calibrations because of some missing data in the time series. The resulting changes
in the simulation-set-up are shown in the middle and bottom of figure 1.

The models that have been tested against the data sets did not use the topography
of the road nor used the fact that drivers have knowledge about the traffic light at the
end of the road that may influence their behaviour. The traffic light settings are not
part of the data set therefore some workarounds had to be made in order to set the
appropriate boundary conditions for the models as described in the next section of
this text. Finally, the vehicle type data - which are included in the data sets – were
not used.

1.2 Boundary conditions
Very important for all traffic flow models are the boundary conditions. Since each
vehicle has been recorded in the data sets, the inflow and the outflow are known,



unfortunately the velocities are not. So the following assumptions have been made to
get a realistic behaviour at the boundaries.

At the beginning of the road the vehicles are introduced at the times corresponding to
the time-recorded data of observer 1. It has been assumed that the vehicles enter the
experimental site with free flow velocity that will be slightly slower than the maximum
allowed velocity of s

mmphv 22.2250max �� . Of course every vehicle entering the road
has to fulfil the same rules for moving as the used model defines, respectively. If it is
not able to enter the first segment with free-flow velocity, it has to wait and probably
enter the road in the next time step.

The outflow boundary condition is a bit more complicated to handle. The optimum
would be to have the exact cycle times of the traffic light. In this case, the road could
be blocked for the vehicles each time the traffic light turned to red. As mentioned
above, this information is not available. Even worse, the traffic light is vehicle-
actuated and so the cycle time changes permanently. First attempts using the N(t)-
curves in order to guess the states of the traffic light were not satisfying. Finally the
following procedure has been implemented to overcome this problem. The idea is to
let the vehicles leave the system approximately when they passed the last observer 8
- whose real position is 75 meter apart from the traffic light - in the observed data. For
that purpose a “virtual traffic light” is set exactly at the position of the last observer,
which lets the vehicles pass only when they already passed it in the observed data.
This way in the simulation no vehicle can pass the last observer earlier than the
observed data shows.

2 Analysis
2.1 Method of measurement
Typically, comparing simulated to real data, the relation between flow and density
(“fundamental diagram”) or those between velocity and density are used. For
microscopic models one can go much more into detail and compare them using
microscopic data.

Out of all possible measurements (see [6] for an overview) the chosen basic
measurement is the travel time of vehicles on each segment of a street. So in this
article the comparison was done by subtracting the observed and the simulated
travel times for each vehicle. From the observed data the total amount of vehicles
N and the observed passing times are available and the travel times s

itobs for each
vehicle i on segment s can be calculated. From the simulation the simulated travel
times s

itsim for every vehicle on each segment are obtained. So the mean absolute
deviation over all vehicles on each segment s can be calculated:
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In order to get a measurement not for each segment but for all segments together
one has to weigh the deviations. The suggested way is to relate the mean absolute
deviations to the average travel times s

meantobs  as calculated from the observed data



for each segment (see tables 2 and 3 for details). This way one calculates as a first
step the percentage mean deviation for each segment:
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Accumulating these values for each segment, finally the mean percentage deviation
over all segments together is given by:
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where 6�S is the number of segments.

These two measurements in percent will be used in the following to give an idea of
the relative deviations the simulation produces in comparison to the observed data.

Segment 1 2 3 4 5 6
Length [m] 2896 714 895 858 350 326
Average travel time [mm:ss] 03:20 01:25 02:11 02:52 01:19 01:18
Average speed [km/h] 52,13 30,24 24,59 17,96 15,95 17,26
Table 2: Average values calculated from the first data set.

Segment 1 2 3 4 5 6
Length [m] 2896 714 895 249 958 326
Average travel time [mm:ss] 02:36 01:09 01:43 00:46 03:25 01:22
Average speed [km/h] 66,83 37,25 31,28 19,48 16,82 14,31
Table 3: Average values calculated from the second data set.

2.2 Finding the optimal parameter settings for each model
In order to find the optimal parameter settings for each model fitting the observed
data well, basically an optimisation algorithm was used known as the downhill-
simplex method in multi-dimensions [7]. This algorithm tries to minimise an objective
function (the error-function percentf  or s

percentf as defined above). For initialisation a
simplex is set up in the multi-dimensional space of solutions by calculating the error-
function for a set of parameter constellations of a used model. Once initialised, the
algorithm tries to minimise the function by estimating “better” parameter
constellations using heuristic methods causing the simplex to stretch, move and
shrink. This process is repeated letting the simplex shrink together till it reaches a
local minimum in the error-function. Of course it is only a local but not a global
minimum. So for initialisation various possibilities of parameter constellations have to
be tested to increase the probability of finding a global minimum. As usual, numerical
minimisation cannot guarantee that a global minimum is found.

A problem using this algorithm is related to the space of solutions to be explored. For
example it is obvious that the maximum velocity of vehicles – a parameter used in all
models, which have been analysed – can not be negative nor having a value much
greater than the allowed speed limit. The same applies for acceleration and



deceleration. Therefore, the algorithm has been changed in order to force it to stay
within realistic boundaries for each model parameter.

2.3 The structure of the observed data sets
Analysing the data collected by Daganzo it can be found easily, that the jams caused
by the traffic light propagate against the driving direction; these congested states
finally reach observer 2 and become visible in the first segment. This can clearly be
seen when looking at the travel times for segment 1 in figure 2.

Fig. 2: Travel times on the first segment (length of 2896 m) as recorded in data
set 1 (left) and data set 2 (right).

For the first data set there is a free-flow phase at the beginning and the end with
approx. 2:10 minutes travel time, which means an average velocity of

)/2.80(28.22 hkms
m
� . Jammed states occur in the middle with travel times up to 6:30

minutes and an average speed of )/74.26(43.7 hkms
m
� . In the second data set the

same structure can be found except for the fact that the jammed states are obviously
not as pronounced as in the first. The travel times reach a maximum of only 4:30
minutes. Therefore, the important goal was to reproduce the lengths of the jams and
thus the correct backward-propagation of jams.

3 Simulation results
3.1 Optimisation of all segments together
The simulations have been performed for the following microscopic traffic flow
models:

- SK: car following model by S. Krauss [8],
- CA: cellular automaton model by K. Nagel and M. Schreckenberg [9],
- VDR: enhanced CA-model with Velocity Dependend Randomisation by R.

Barlovic et al. [10],
- OVM: Optimal Velocity Model by M. Bando et al. [11],
- IDM: Intelligent Driver Model by M. Treiber et al. [12].

While the SK-, OVM- and IDM-model could be treated as defined in the
corresponding publications, the parameter settings of the CA- and the VDR-model



had to be modified. Both models are fully discrete cellular automata and use normally
a cell-length (= vehicle-length) of 7.5 m, which causes a free-flow velocity which is
much too low for the data set at hand. For the simulations presented in this article
this cell-length was increased to 8.5 m in order to obtain a more realistic free-flow-
velocity. For all five models the optimisation process was started several times and
the minimal obtained errors percentf  were taken for the final results as they are shown
in figure 3.

Fig. 3: Final results of the simulations minimising the error-function percentf  ( error
over all segments together) for data set 1 (left) and data set 2 (right).

The best results for both data sets were found for the SK-model with errors of 15%
for the first data set and 17% for the second, followed by the very simple CA- and the
VDR-model with 17% and 18%, respectively. The much more sophisticated IDM-
model can not reach these results with 18% resp. 21%. The largest error was
produced by the OVM-model with 23% resp. 27% error.

Looking deeper into the results obtained for the individual segments in figure 4 it is
found, that for both data sets the greatest errors are caused in the middle segments.
The errors on the segments 1 and 6 are generally quite good with errors between 9%
and 18%. For segment 1 there are three basic explanations for that. At first, this is
the segment with the greatest length, so the exact driving behaviour will not play
such a very important role for analysing the travel times. Second, it is the segment
with the fewest states of congested flow as these states become more frequent as
one approaches the traffic lights. Third, the boundary condition for the inflow will have
some effect because the vehicles are forced to enter the road nearly at the same
time as they do in the observed data set. For the sixth segment directly in front of the
traffic light the outflow conditions play a similar role. In addition this is a segment
where the traffic states are similar the whole time, namely jammed states changing
regularly with starting and braking vehicles.



Fig. 4: Errors produced on each segment after minimising the error function
percentf  (optimisation has been performed over all segments together) for

data set 1 (top) and data set 2 (bottom).

Going backwards from the traffic light, from segment 5 to segment 2, the deviations
for the first data set increase. This can be explained by the propagation of jams
against the driving direction. Getting far away from the traffic light, the less congested
states occur and the jams are not that dominant. Furthermore, the influence of the
segments in front becomes stronger, which means propagation of the errors. For the
second data set the situation is similar, having in mind that segment 4 is a very small
one with 249 meter length and thus very difficult to reproduce.

The SK-model outperforms the other models nearly in all segments except for the
first. For data set 1 surprisingly the OVM-model produces the lowest errors in the first
segment while the IDM-model does this for the second data set with an error of only
8%.



3.2 Optimisation of each segment separately for the SK-model

Fig. 5: Errors produced on each segment after minimising the error function
percentf  (optimisation over all segments together) in comparison to the

errors produced minimising the s
percentf  functions (optimising each segment

separately). Results for the first data set on the left, for the second on the
right.

Exemplarily for the SK-model, parameter values have been determined by optimising
each segment individually, in order to have an idea about the robustness of the
results. So, the functions s

percentf  for each segment s have been optimised. The results
for the optimal values of the functions are shown in figure 5 together with the
optimisation values as obtained by the optimisation over all segments. Optimising
each segment separately, especially for the second data set it turns out that the
deviations can be minimised much more than with optimising over all segments
together. Especially on the segments 1, 5 and 6 the error can be minimized to very
small values of 7 and 8 %. For the first segment figure 6 shows the evolution of the
travel times exemplarily.

Fig. 6: Evolution of the travel times on segment 1 for data set 1 (left) and data set
2 (right). Shown are the observed travel times in comparison to the times
optimising segment 1 separately and the resulting evolution on segment 1
when optimising over all segments.



Additionally analysing the obtained parameter values for the different minimisations
as listed in table 4 it stands out that optimising segment 6, which is directly in front of
the traffic light, the values for random braking and time delays in the reaction of the
drivers are smaller than by optimizing the other segments. A possible conclusion is
that the driver behaviour in front of the traffic light is much less dawdling than in the
other jammed traffic situations. This seems to be realistic since the drivers in front of
the traffic light have more than information about a few vehicles directly in front of
them. The state of the traffic light gives the drivers a guess about the traffic situation
in a much wider area so they will react much quicker than in other jammed situations.

Vmax [m/s] a [m/s^2] b [m/s^2] e_a tau [s] %-error
all segments 21,64 2,325 1,397 0,43 1,691 17,3
segment 1 22,60 0,463 1,024 0,46 1,534 7,1
segment 2 22,48 1,552 1,541 0,59 1,750 14,3
segment 3 20,95 3,494 1,369 0,48 1,688 18,4
segment 4 20,44 3,968 1,335 0,32 1,664 26,6
segment 5 21,12 2,833 2,163 0,57 1,565 7,1
segment 6 20,79 5,787 1,266 0,33 1,361 7,7

Table 4: Obtained parameter values for the SK-model optimising the second data
set over all segments together and every segment separately. Vmax is the
maximum velocity of the cars, a the acceleration and b the deceleration.
e_a and tau are parameters which cause random brakings and time
delays in the driver reaction.

4 Conclusions and further plans
The results obtained point towards some problems the used models have
reproducing the observed data sets. On a few segments of the observed road some
models produced acceptable errors of 10% or less. But especially the observed
propagation and inner structure of jams is not described well enough. First detailed
analyses of the SK-model give hints how models could be enhanced.

In future work on the one hand more models will be tested against the data sets. On
the other hand new public available data sets will be recorded by the Institute of
Transportation Research to make further steps towards benchmarking traffic flow
models. All researchers are invited to test yet implemented models or their own
models under the topic “clearing” on http://ivf.dlr.de/. Finally, detailed criteria should
be developed concerning a benchmark for traffic flow models so that existing models
can be objectively compared to each other, forcing the development of better models.
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