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ABSTRACT

We extend the “turbo” belief propagation framework for com-

pressive imaging to the dual-tree complex wavelet transform

(DT-CWT) to exploit both sparsity and dependency across

scales. Due to the near shift-invariance property and the im-

proved angular resolution of DT-CWT, better reconstruction

can be expected when incorporating with the compressed

sensing (CS) algorithms. Two types priors to form the hidden

Markov tree structure for the DT-CWT coefficients are con-

sidered. One models the real and imaginary components of

DT-CWT separately while the other assumes the shared hid-

den states between the two. Simulation with natural images

confirm an improved performance when iterating between the

CS reconstruction and the DT-CWT HMT.

Index Terms— compressed sensing, dual-tree complex

wavelet transform, HMT, turbo decoding, approximate mes-

sage passing

1. INTRODUCTION

The typical compressive imaging problem is to estimate a im-

age x ∈ R
n or its representation in the transformed domain

θ ∈ R
n by solving an under-determined system

y = Φx = ΦΨθ (1)

where y ∈ R
m is the compressed sensing (CS) observation,

Φ ∈ R
m×n,m < n is known as the measurement matrix and

Ψ is some orthonomal basis (i.e. Fourier, wavelet). The ill-

posed problem can be solved by exploiting the sparse property

of x or θ via ℓ1-minimization [1], greedy methods [2] or ap-

proximate message passing (AMP) [3]. Nature images, when

expressed in the wavelet domain, have an additional quad-tree

structure and some statistical dependency along the branches

of the wavelet trees [4]. To better aid the CS reconstruction,

several authors have looked beyond the signal sparsity and in-

corporated wavelet dependencies [5–9], among which [9] has

demonstrated the state-of-the-art performance.

The authors in [9] deployed the hidden Markov tree

(HMT) [4] to model the interscale dependencies of the dis-

crete wavelet transform (DWT) coefficients. The CS observa-

tion system in (1) and the HMT structure can be graphically

represented by the corresponding factor graph [10]. The re-

construction is then based on loopy belief propagation [11]

to propagate beliefs for the DWT coefficients on the factor

graph. The turbo message passing schedule which alternates

between the exploitation of CS observation and the HMT

structure is proposed. The introduction of wavelet interscale

dependencies has largely reinforced the local beliefs on DWT

coefficients thus significantly benefited the reconstruction.

The novelty of [9] is the introduction of the turbo scheme

to incorporate additional signal properties into the standard

CS reconstruction. Inspired by its success it is natural to con-

sider the utility of richer, overcomplete wavelet representa-

tions in this framework. In this paper, we adopt and extend

the turbo reconstruction approach to the dual-tree complex

wavelet transform (DT-CWT) [12, 13]. The advantages of

DT-CWT over the standard DWT have been shown in many

image processing applications, such as denoising, detection,

segmentation and classification [14, 15]. Compared to the

DWT, the DT-CWT is near shift-invariant and more direc-

tional sensitive, making it better at characterizing geometric

images features like edges. When imposed with the HMT

structure, large and small DT-CWT coefficients cascade more

consistently along branches of the wavelet trees, which leads

to less edge blurring and artifacts.

Two statistical priors to form the HMT have been pro-

posed for the DT-CWT coefficients [14]. The first one simply

models the real and imaginary components of the complex co-

efficients as independent and separate two-state 1-D HMTs.

The other is more realistic, which assigns a shared hidden

state to the real and imaginary part to form the tree. In this

paper, both HMT structures are exploited for the CS imaging.

For the former, we directly deploy the factor graph and turbo

approach in [9] for reconstruction. For the latter, a new fac-

tor graph and turbo scheme are proposed to incorporate the

shared states. Numerical simulations demonstrate a signifi-

cant improvement for the use of DT-CWT, both visually and

quantitatively.

We begin with the introduction of the DT-CWT and two

HMT models in Section 2. The corresponding factor graphs

and turbo reconstruction are explained in Section 3. Image

reconstruction examples are shown in Section 4. We finish

with conclusion in Section 5.
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2. COMPLEX WAVELET TRANSFORM AND

STATISTICAL HIDDEN MARKOV TREE MODEL

2.1. Dual-Tree Complex Wavelet Transform

The DT-CWT is inspired by the shift invariant property of the

Fourier transform, namely that the energy in each frequency

bin is invariant to any shifts in time or space. As with the

Fourier transform, the DT-CWT encodes the signal informa-

tion in the magnitude and phase of the complex coefficients.

For example, a large magnitude indicates the presence of sin-

gularity while the phase encodes its position. The DT-CWT

decomposition of a 1-D signal is implemented via two par-

allel DWTs. Each of the DWTs produces a set of real value

coefficients {µi} and {υi}. Together they form the complex

wavelet coefficients ci = µi + jυi, j =
√
−1. With the two

DWTs jointly designed, the real and imaginary components

are statistically uncorrelated and the DT-CWT is insensitive

to small shifts [16].

The extension of DT-CWT to 2D signals is achieved by

separately filtering along rows then columns by two paral-

lel DWTs. The resulting coefficients are thus four times re-

dundant. As a bonus, the additional information provides us

good directional selectivity with six subbands at each scale,

which capture image features strongly oriented at angles of

{±15◦,±30◦,±45◦,±75◦} [15]. With the more explicit ori-

entation information of singularities, we are able to distin-

guish signals in a more subtle way.

Like the DWT for 2D signals, DT-CWT coefficients for

images across scales form a quad-tree structure and exhibit

the persistence across scale property [14]. To be specific,

if the parent wavelet coefficient is large then the children

wavelet coefficients are very likely to be large. Similarly, if

the parent coefficient is small, its children are likely to be

small. The HMT structure to model the persistence prop-

erty has also been extended to the DT-CWT. Due to its near

shift-invariant, the progressions of the magnitude are better

preserved in DT-CWT coefficients.

2.2. Prior for independent HMT

The simplest prior is to model the real and imaginary part at

each wavelet scale separately with the independent and iden-

tically distributed (i.i.d) two-state Gaussian mixture distribu-

tion.

p(µk,i) = p(µk,i|sµ,k,i = 1)p(sµ,k,i = 1)

+ p(µk,i|sµ,k,i = 0)p(sµ,k,i = 0)

= λµ,kN (µk,i; 0, σ
2
k,L) + (1− λµ,k)N (µk,i; 0, σ

2
k,S) (2)

where k is the wavelet scale index and i is the coefficient in-

dex. In the sequel, we sometimes drop the scale index to im-

ply the generality for all wavelet scales. Each µk,i can be

seen as generated from either the large variance Gaussian dis-

tribution with variance σ2
k,L or from small variance Gaussian

(a) (b)

Fig. 1. HMT models for dual-tree complex wavelet coeffi-

cients: (a) standard HMT structure for real or imaginary part;

(b) assign a shared hidden state for the associated real and

imaginary components.

distribution with variance σ2
k,S , depending on the associated

hidden state sµ,k,i being 1 or 0.

Similarly, the pdf of the imaginary part at scale k is

p(υk,i) = p(υk,i|sυ,k,i = 1)p(sυ,k,i = 1)

+ p(υk,i|sυ,k,i = 0)p(sυ,k,i = 0)

= λυ,kN (υk,i; 0, σ
2
k,L) + (1− λυ,k)N (υk,i; 0, σ

2
k,S) (3)

Connecting the hidden states across scales for µ and υ

results in a HMT structure that is the same as the one for the

standard DWT, which is illustrated in Fig. 1(a).

2.3. Prior for HMT with shared hidden states

A more reasonable model to capture the magnitude persis-

tence would be assigning a two-state hidden variable sc,i for

the complex wavelet coefficient ci, taking value 1 when |ci|
being large and 0 when |ci| being small. One statistical model

is to consider ci as a 2-d random vector (µi, υi) and approx-

imate p(ci) as a two-state 2-d Gaussian mixture, as proposed

in [14].

p(ck,i) = p(ck,i|sc,k,i = 1)p(sc,k,i = 1)

+ p(ck,i|sc,k,i = 0)p(sc,k,i = 0)

=
λc,k√
2πςk,L

e
−

µ2
k,i

+υ2
k,i

2ς2
k,L +

1− λc,k√
2πςk,S

e
−

µ2
k,i

+υ2
k,i

2ς2
k,S (4)

Since µi and υi are uncorrelated, this is equivalent to model

the real and imaginary parts as the two-state Gaussian mixture

with a shared hidden state variable sc,i [14]. The quad-tree

structure with shared hidden states is depicted in Fig. 1(b).

Compared to the independent HMT structure, this model

is more realistic: small |ci| can only appears when |µi| and

|υi| are simultaneously small, which is characterized by

sc,i = 0. While for the independent HMT model, small co-

efficients generated from a Gaussian mixture with the hidden

variable being 1 is also possible.

2.4. Complete statistical model for HMT

So far we have presented two priors for DT-CWT coefficients.

To complete the statistical model for the HMT structure, we



Fig. 2. Factor graph for reconstructing real µ and imaginary

υ separately.

also need the prior for the hidden states and the transition

probabilities ξ00k , ξ11k across scales, where ξ00k = p(sk+1 =
0|sk = 0) and ξ11k = p(sk+1 = 1|sk = 1). Similar to [9], we

take the Bayesian approach and model the remaining statis-

tical parameters as random variables. The appropriate priors

are assigned according to the recommendation in [9].

3. TURBO RECONSTRUCTION

With the statistical model chosen, we now discuss the imple-

mentation of the turbo reconstruction method. Throughout,

we assume the CS measurements are taken in the DT-CWT

domain, which is

y = Φc = Φµ+ jΦυ (5)

where c = {ck,i}, µ = {µk,i}, and υ = {υk,i} for all k, i.
Separating the real and imaginary parts of the DT-CWT

coefficients, we have

yµ = Φµ, yυ = Φυ (6)

Ideally, we would like to calculate the posterior pdf p(c|y) to

infer c. However, exact computation of p(c|y) is intractable

due to the dense measurement matrix. Alternatively, we can

resort to the marginal posterior p(ci|y) which can be effec-

tively approximated using loopy belief propagation on the

factor graph.

3.1. Reconstruction for Independent HMT

When µ and υ are modeled separately with two-state 1-D

HMT structure, the reconstruction can be performed inde-

pendently in parallel by calculating p(µi|yµ) and p(υi|yυ).
When dealing with complicated functions involving many

variables, efficient algorithms may be derived by exploiting

the factorization of the global function: expressing it as a

product of several simpler “local” functions, each of which

depends on only a subset of the variables. A factor graph is

Fig. 3. The decoupled two subgraphs for the original factor

graph in Fig. 2.

graphical representation of such factorization, which connects

local functions with their related argument variables [10]. The

factor graph for p(µ|yµ) or p(υ|yυ) is illustrated in Fig. 2.

We use round nodes to denote variables (i.e. µi, υi, si),
square nodes for operations (i.e. transition function among

hidden states, assigning priors) and lines to connect opera-

tions with the associated augments in the factor graph. “Mes-

sages” flowing to/from a variable node along edges (as illus-

trated by arrows in Fig. 5) can be calculated according to the

sum-product algorithm [10]. The loopy belief propagation is

conducted by exchanging messages passing along nodes and

edges until they converge. In our context, messages take the

form of pdfs and represent local beliefs for variables.

Unsurprisingly, the factor graph in Fig. 2 has the same

structure as the one in [9] since we essentially treat the recon-

struction of c as two DWT CS problems. Thus we can directly

deploy the same turbo approach in [9] to obtain p(µi|yµ) and

p(υi|yυ). The essence is to decouple the factor graph into

two subgraphs (reconstruction parts) along the dash line in

Fig. 2 and exchange the local belief on the hidden states

{si} between two subgraphs alternately, by treating the like-

hood from one part as the prior for the other. More specif-

ically, at the first turbo iteration, by assuming some initial

prior p(si = 1) for the hidden states, we start with the recon-

struction on the left subgraph. Performing the loopy belief

propagation on the left subgraph of Fig. 2 is equivalent to the

AMP algorithm [3] and produces the “local likelihood” on

hidden states. These local beliefs are then treated as priors for

{si} in the right subgraph for the HMT reconstruction. The

belief propagation for factor graphs without loops has exact

solution and yields the commonly known forward-backward

algorithm [10]. The local likelihood for {si} from the right

subgraph are then fed back to the left subgraph as an updated

prior for the AMP algorithm and trigger the new turbo itera-

tion.

The decoupled factor graph is shown in Fig. 3, where the

quad-tree structure are abstracted as the supernode H in the



Fig. 4. Factor graph for modeling µ and υ with shared hidden

states.

right subgraph. Let t denote the turbo iteration index, {qi(·)}
are hidden states priors acting on the left subgraph, {di(·)} are

hidden states priors acting on the right subgraph. Let m
(t)
A→B

represents the message sent from node A to node B in the tth
turbo iteration. At t = 1, initialize qi(si) = p(si = 1). Then

the turbo message passing can be summarized as

d
(t)
i (si) =m

(t)
fi→si

(si) (7)

q
(t+1)
i (si) =m

(t)
H→si

(si) (8)

for t = 2, 3, · · · . We refer to this reconstruction as the Turbo-

CHMT1 algorithm.

3.2. Reconstruction for HMT with shared hidden states

When connecting µ and υ with the shared hidden states, the

reconstruction is no longer separable. The new factor graph

for the system is illustrated in Fig. 4.

To perform the belief propagation, we also deploy the

turbo method and split the loopy factor graph along the

two dash lines into two AMP reconstruction parts and one

HMT reconstruction part. The turbo iteration starts with

the AMP reconstruction on the left and right subgraph si-

multaneously and produces two partial information for the

hidden state mµi→si(si) and mυi→si(si), respectively. The

forward-backward algorithm is then performed for the middle

subgraph on the quad-tree structure, which yields two output

messages msi→µi
(si) and msi→υi

(si). In the next turbo

iteration these are used as the updated prior for si for the

separate AMP reconstructions.

Fig. 5 features a hidden state node sk with one parent

node sk−1, four children nodes {sk+1,i}4i=1 and the associ-

ated real and imaginary coefficients µi, υi. Compared to the

HMT structure in Fig. 3, the key modification is the extra

input message for the hidden states, which needs to be taken

care of when performing the forward-backward to calculate

the messages exchanging between sk and its parent and chil-

dren. According to the sum-product algorithm, the output

Fig. 5. One typical hidden variable node for the factor graph

in Fig. 4.

message from sk to µi and υi are

msk→µi
(sk) =mυi→sk(sk)msk−1→sk(sk) (9)

×
4∏

i=1

msk+1,i→sk(sk)

msk→υi
(sk) =msk→µi

(sk)msk−1→sk(sk) (10)

×
4∏

i=1

msk+1,i→sk(sk)

The benefit of sending messages from both real and imag-

inary parts to the hidden states is twofold. For one thing, it

reinforces the confidence of estimation for si when the mes-

sages agree with each other (both imply si is more likely to

be 1 or 0). For another, it softens the decision for si when

they indicate different state. We denote this turbo approach

as the Turbo-CHMT2 algorithm. Numerical simulation with

natural images indicates an accelerated convergence for the

reconstruction with Turbo-CHMT2.

4. NATURAL IMAGE EXAMPLE

In this section, the proposed Turbo-CHMT1 and Turbo-

CHMT2 algorithm are tested on three 128 × 128 grayscale

images using 4 level Q-shift DT-CWT 1, and compared with

the original Turbo algorithm with db2 wavelet decomposi-

tion 2 and the EM-GM-GAMP algorithm 3, which does not

exploit the wavelet dependency. In all cases, the entries of

the measurement matrix are i.i.d Gaussian elements. The CS

measurements are taken in the wavelet domain. We used the

normalized mean squared error (NMSE) ‖x − x̂‖22/‖x‖22 for

performance comparison.

Table 1 reports the quantitative comparison of the recon-

struction algorithms under different sampling ratios for three

standard images. The reconstruction of the lena images in

Fig. 6 gives us a visual comparison. We can see that both

Turbo-CHMT1 and Turbo-CHMT2 provide us a significant

1http://www-sigproc.eng.cam.ac.uk/Main/NGK
2http://www2.ece.ohio-state.edu/ schniter/turboAMPimaging/
3http://www2.ece.ohio-state.edu/ vilaj/EMGMAMP/EMGMAMP.html



(a) Original (b) EM-GAMP (c) Turbo (c) Turbo-CHMT1 (c) Turbo-GHMT2

Fig. 6. Reconstruction with 30% CS observations of the 128× 128 lena image using various algorithms.

reconstruction improvement (about 1.5 dB) over the origi-

nal Turbo algorithm. We attribute the improvement to the

near shift-invariant property and good directional resolution

of the DT-CWT. The best performance belongs to the Turbo-

CHMT2, which validates the HMT model with shared hidden

states and the proposed turbo reconstruction approach.

Table 1. NMSE (dB) for image reconstruction
Image Cameraman Lena Boat

m/n 0.2 0.3 0.2 0.3 0.2 0.3

EM-GAMP -15.10 -19.03 -14.11 -17.43 -16.74 -19.29

Turbo -17.96 -20.85 -15.60 -18.47 -18.36 -21.08

Turbo-CHMT1 -18.63 -23.32 -17.64 -20.36 -19.38 -21.61

Turbo-CHMT2 -19.12 -23.98 -18.06 -20.88 -19.76 -22.09

5. CONCLUSION

Given the advantageous near shift-invariant property and di-

rectional selectivity of the DT-CWT, we are motivated to ex-

ploit wavelet dependencies for the DT-CWT coefficients to

aid the CS imaging. Two types of Gaussian mixture priors

are considered for the DT-CWT coefficients with two dif-

ferent graphical representations for reconstruction. Inspired

by the turbo decoding mechanism for the DWT coefficients,

we propose two turbo algorithms for the loopy factor graphs.

As the reconstruction examples have demonstrated, our algo-

rithms have successfully leveraged the interscale dependen-

cies among DT-CWT coefficients for CS reconstruction. Fur-

ther work might involve the exploitation of the phase infor-

mation encoded in the DT-CWT coefficients.
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