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Abstract

This thesis describes an image guided surgery system for useduring telemanipulator assisted radical

prostatectomy. The thesis is primarily concerned with determining the system accuracy. We first defined

a method to present the component errors as an on-screen projection error in pixels. This allowed the

error due to each component to be compared and then summed to give a system error.

An MRI image of the patient is transformed into the intraoperative coordinate system, defined by

the coordinate system of an optical tracking system. The endoscope is calibrated and tracked during

surgery, defining a transformation to the endoscope screen.This transform is used to project the MRI

image onto the endoscope video display.

A novel algorithm for registering MRI to ultrasound images of pelvic bone was used to transform

the MRI image to the intraoperative coordinate system. Thisalgorithm localises the prostate to within 7

mm, giving an on-screen error of 28 pixels.

The on-screen error due to endoscope tracking was found to be65 pixels. The high tracking error

is caused by a non-normally distributed marker tracking error, highlighting an important shortcoming

in the bulk of the image guided surgery literature. Due to thehigh tracking errors we implemented a

limited image guidance system that does not use endoscope tracking. The final part of the thesis details

our experience in implementing this system on 5 patients.

The main contributions of this thesis are:

• A robust error analysis of an image guided endoscopic surgery system.

• A novel algorithm for fitting inter patient CT data to an MRI image. The algorithm compares well

in with the state of the art for segmenting pelvic bone from MRI images.

• A method to analyse the endoscope tracking error that does not depend on the assumption of

normally distributed, homogeneous marker tracking error.
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Chapter 1

Introduction

1.1 Aim
Image guided surgery has long been proposed as a method to improve patient outcomes for various

surgical procedures. Systems are in place for surgery wherethe anatomy is largely rigid, for example

neurosurgery and orthopaedics. Image guided surgery enables the surgeon to refer to preoperative images

of the patient in an intuitive way during surgery. Using the example of neurosurgery, a preoperative image

of a sub surface tumour may be projected onto the surface of the brain. In recent years there has been

a growing focus on applying image guided surgery to thoracicand abdominal surgery. This thesis is

based on an attempt to design and implement an image guided surgical system for robot assisted radical

prostatectomy (RARP). The work has two key goals.

1. Develop and test in theatre an image guidance system for RARP.

2. Determine the accuracy that the system can achieve.

Successful completion of the first goal will give an enhancedunderstanding of the clinical requirements.

Successful completion of the second goal will give an understanding of the system’s capability. Com-

bining the two outputs will allow us to answer the question ofwhether the system is usable in theatre

and what areas to target for improvement.

1.2 Contributions
The thesis makes several important contributions to the field of study.

1.2.1 Error Analysis

Understanding of the accuracy of an image guided surgery system is necessary so the surgeon can make

informed decisions about the reliability of the information presented. The main thrust of this thesis has

been not only the development of such a system but furthermore a robust analysis of its errors. This has

shown that at present the accuracy is limited by the accuracywith which the endoscope can be tracked.

1.2.2 Ultrasound to MRI Bone Registration

To enable registration of the preoperative magnetic resonance imaging (MRI) image to the patient in

theatre we developed a novel algorithm to register two images of the pelvic bone. The first image is
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the MRI collected preoperatively. The second image is an ultrasound image collected intra operatively.

The method combines a novel MRI to computed tomography (CT) registration algorithm, see next point,

and an existing ultrasound to CT registration algorithm. The combined algorithm forms a novel and

interesting approach to the problem of registering preoperative images to the intraoperative scene.

1.2.3 MRI to CT Registration

As mentioned in the previous point we developed a novel algorithm for fitting inter patient CT data to

a MRI image. This algorithm is functionally equivalent to a MRI bone segmentation algorithm. Bone

segmentation from MRI is of great interest for orthopaedic studies. The proposed algorithm compares

well with the state of the art in this area. The algorithm may also prove useful in allowing radiotherapy

planning using MRI images instead of CT.

1.2.4 Tracking Error Analysis

We propose tracking the endoscope with a marker based tracking system. Such systems are well estab-

lished in the literature and used in commercial image guidedsurgery systems. Therefore the study of the

accuracy of these systems is of great importance to the proper understanding of the accuracy of image

guided surgery systems. A common assumption used in the literature is that the error at each marker is

independent, homogeneous, and normally distributed. We found that these assumptions do not hold in

our case. Therefore we proposed and tested a novel method to correctly model the error. We show that

the commonly help error assumptions significantly underestimate the tracking error in our case.

1.2.5 Clinical Use

The system has been used in theatre on five occasions. We have shown that it is a practical system.

At present its utility is limited by a high endoscope tracking error. Nonetheless the feed back from the

surgeon has been positive.

1.3 Summary

This thesis describes the development, analysis and implementation of an image guided surgery plat-

form for RARP. The system implemented takes voxels (XM , in 3D) of preoperative MRI data and

projects them, using a series of transformations, to pointson the endoscope screen (XES , in 2D) so that

they appear to be coincident with the corresponding points of the visible patient anatomy. At present

the system is only implemented on one of thedaVinciTM video channels, so is monocular rather than

stereoscopic. Figure 1.1 shows an example of the output of our overlay program, as seen by the surgeon

intraoperatively. A transverse MRI plane is shown overlaidon a typical surgical scene. The surgeon has

the option of changing the opacity, slice, or slice direction of the overlay. The interface and display have

been kept very simple. This thesis is primarily concerned with describing the methods used to define the

transforms and robustly determining the errors at each stage. Whilst the implementation is specific to

RARP using adaVinciTM telemanipulator we envisage that many of the components canbe applied to

other guidance applications.
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Figure 1.1: An example of a transverse slice of MRI overlaid on a typical endoscopic scene. The overlay

software projects the MRI using a model of the endoscope so that the MRI appears to be coincident with

the visible anatomy. The projection software allows the surgeon to change the opacity of the projection

or move through the MRI data in the transverse, sagittal, or coronal planes.

1.4 System Description and Structure of the Thesis

The system uses a novel MRI to ultrasound registration algorithm to transform the preoperative MRI

(XM ) into the tracker’s coordinate system (XO) in theatre, using equation 1.1.

XO = TM⇒O × XM (1.1)

With the MRI placed in the tracking systems coordinate system, projection of the MRI can be achieved

by equation 1.2.

XES = TO⇒ES × XO (1.2)

The aims of this thesis are twofold. Firstly it presents a method to determine the system wide

transform, equation 1.3. Secondly it presents an analysis of the accuracy of the system based on analyses

of the system components.

TM⇒ES = TO⇒ES × TM⇒O (1.3)

The system consists of the following steps.

1. Patient is selected and consented for image guided surgery.

2. Preoperative MRI scans are collected.

3. Pelvic bone is segmented automatically from scans.

4. Endoscope cameras are calibrated prior to surgery.

5. Tracked ultrasound is used to find the pelvic bone in theatre.

6. Registration algorithm matches ultrasound data to segmented pelvic bone.
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7. Endoscope is tracked during surgery.

8. Video stream fromdaVinciTM is captured and fed to monitor where the preoperative model is

overlaid.

For the purposes of development and analysis the system was broken into a set of subsystems. Each

of these systems is described and analysed in a separate chapter of this thesis. Throughout the thesis we

treat the image guidance system as a series of transformations from one coordinate system to another,

with the complete transformTM⇒ES being made up of a series of transforms. The precise details of

how these transforms are determined, and the error in their determination, forms the basis of this thesis

and will be discussed in detail in the relevant chapters. In the following pages the transforms will be

introduced and briefly explained. This forms both an introduction and a reference to which we will refer

back to in later chapters.

In Chapter 4 we present a method for registering an ultrasound image of the patient’s pelvic bone

to the patient’s MRI image. As the MRI image does not show the bone edge clearly we developed an

algorithm to transform the MRI prior to registration. This algorithm is described in Chapter 3. The

algorithm can be described as an inter-patient, inter-modality, non rigid registration. The algorithm takes

a CT image from a different patient and warps it match the patient’s MRI image. Figure 1.2 shows the

transformations used.

The patient’s pelvic bone can be imaged in theatre using a tracked ultrasound probe. The ultrasound

image of the pelvic bone can be registered to the preoperative bone, using methods broadly similar to

Penney et al. (2006). In Chapter 4 a new implementation of this method is described. The key difference

to the work of Penney et al. (2006) is that the ultrasound is registered to a CT image from a different

patient. The inter patient CT is first warped (usingTSM⇒M ) to approximate the shape of the patient’s

pelvic bone. Figure 1.3 defines the transforms determined inChapter 4. At the conclusion of Chapter 4

a transformTM⇒O (6 degrees of freedom in 3D) has been found that transforms the preoperative MRI

image into the coordinate system of a tracking system (an Optotrak Certus). The next stage is to calibrate

and track the endoscope to findTO⇒ES , completing the image guidance system.

Chapter 5 details our methods to determineTO⇒ES . Figure 1.4 details the transformations found in

Chapter 5. The proposed method is not novel, using an existing camera calibration method to determine

the projection parameters of the endoscope and a marker based tracking method to estimate the location

of the endoscope. However, we do present a novel method to analyse the tracking error, which used more

realistic marker error distributions, to yield a result significantly closer to observed values for this case.

We show that the endoscope tracking error is, as a result, thelargest error for the system and propose

methods to reduce the error.

Development of the methods presented in Chapters 3 to 5 is ongoing and has yet to yield a practical

image guidance system. In the mean time we have implemented a“bare bones” guidance system in

theatre, in order to assess some of the other factors involved in an image guidance system. These factors

include how the data is presented to the surgeon and how the surgeon interacts with the display, and

assessing what anatomy is of importance to the surgeon during the operation. This image guidance
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Chapter 3 Segmentation of Bone from MRI

TSM⇒M =

TSM(nd9)⇒M [nrr] × TSM⇒M [nd9]

SM Generic Shape Model

M Patient MRI

SM(nd9) Shape Model Scaled

and Aligned to MRI

SM(nrr) Shape Model Warped

to MRI

CSSM(nrr) =

CSSM × TSM⇒M

Figure 1.2: The transformTSM⇒M transforms voxels from the Coordinate System (CS) of a sepa-

rate patient’s CT image (effectively the mean shape of a shape model) to the coordinate system of the

prospective RARP patient. A two stage process is used. The two images are first brought into alignment

using a 9 degree of freedom transform (TSM⇒M [nd9], number of degrees of freedom = 9). This trans-

form consists of rotation, translation, and scaling in three directions. With the two images thus aligned a

non rigid transformation (TSM(nd9)⇒M [nrr], non rigid registration) warps the CT image to the MRI.
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Chapter 4 Registration of Ultrasound to Fitted Bone Image

TUI⇒O =

TUT⇒O × TUP⇒UT × TUI⇒UP

TSM(nrr)⇒O =

TUI⇒O × TSM(nrr)⇒UI

TM⇒O = TSM(nrr)⇒O

UI Ultrasound Image

(2D)

O Optical Tracker

UT Ultrasound Tracking

Collar

UP Ultrasound Probe

CSO = CSM × TM⇒O

Figure 1.3: As will be described in Chapter 4 a 3 dimensional ultrasound image of the patient’s bone is

first built from set of 2D slice images acquired using a tracked ultrasound probe. Pixels in the Coordinate

System (CS) of the ultrasound slice image (points in 2D) are transformed to 3D points in the coordinate

system of the ultrasound probe usingTUI⇒UP . These 3D points are transformed to 3D points in the

coordinate system of a tracking collar attached to the ultrasound probe usingTUP⇒UT , a rigid body

transform. FinallyTUT⇒O transforms these points to points in the coordinate system of the Optotrak

tracking system used in theatre. This ultrasound image is registered to the preoperative model found in

Chapter 3 to giveTSM(nrr)⇒UI and henceTSM(nrr)⇒O. As the model is fitted to the MRI dataTM⇒O

is the same asTSM(nrr)⇒O.
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Chapter 5 Endoscope Calibration and Tracking using an Optical Tracker

TO⇒ES =

TEL⇒ES × TET⇒EL × TO⇒ET

ES Endoscope Screen

(2D)

ET Endoscope Tracker

EL Endoscope Lens

CSES = CSES × TO⇒ES

Figure 1.4: In Chapter 5 the transformation (TO⇒ES) between 3D points in the coordinate system (CS)

of the tracking system (Optotrak) and 2D points on the endoscope screen is found. The “intrinsic” pro-

jection parameters of the endoscope define the transform (TEL⇒ES) between 3D points relative to the

endoscope lens and 2D points on the endoscope screen. The “extrinsic” parameters of the endoscope

define the rigid (6 degrees of freedom) transformation (TET⇒EL) from the coordinate system of a track-

ing collar attached to the endoscope to the coordinate system of the endoscope lens. BothTEL⇒ES and

TET⇒EL are found using a camera calibration algorithm. The Optotrak tracking system estimates the

position and pose of the tracking collar to giveTO⇒ET .
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Chapter 6 Patient Trials

TM⇒O[live]

Figure 1.5: Chapter 6 presents a method we used to implement asimple image guidance system rapidly.

In this systemTM⇒O[live] is found directly using the inner surface of the pubic arch, which is visible

both in the MRI image and in some of the endoscopic video frames. A manual alignment algorithm is

used to find a revised estimate ofTM⇒O, referred to asTM⇒O[live]. The manual alignment algorithm

allows each degree of freedom to be incremented until the twoimages (MRI and endoscopic) of the

pubic arch are overlaid.

system is described in Chapter 6. The system uses a direct manual registration between the MRI image

and the endoscope image using surfaces visible in both images, see Figure 1.5 Chapter 6 also presents

our experience in implementing the system in theatre on a total of 5 patients.

Preceding these chapters is a review of the existing literature, which has three aims. Firstly we

introduce radical prostatectomy and specifically RARP. We then introduce image guided surgery. Image

guided surgery can refer to a very great range of systems, so we define what we mean by image guided

surgery for this application. We then define a generic endoscopic image guidance system consisting of

a set of interconnected components. We show that the transformations shown in Figures 1.2 to 1.5 are

core to any such system. Finally we look in depth at the state of the art for determining each of the

transformations required for our system as defined in Figures 1.2 to 1.5.
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Data Set Number of Data Sets Image Modalities Chapter(s)

SM-X 21 CT 3 & 4

Patient-XX 5 MRI, ultrasound, video, & tracking 3 & 6

XMR-XX 2 MRI 3

Cadaver-XX 3 CT & ultrasound 4

Phantom 1 CT & ultrasound 4

Camera Calibration 1 Video & tracking 5

Table 1.1: A summary of the data used in this thesis.

1.5 Data

Each of the experiments in this thesis rely on data. A total of32 data sets are used in this thesis. Full

details of each data set are contained in Appendix A. The following is a brief introduction to the data

sets and how and where they are used.

21 CT images of adult male pelvis are used in Chapter 3 to construct and test a statistical shape

model (SSM) of the adult male pelvis. These images are designated SM-X, where X is a letter from A to

U. The aim of the SSM is to perform bone segmentation from MRI images, so four data sets containing

MRI images were used to test the algorithm. Two of these were taken from a previous study at Guy’s

Hospital, using co-registered CT and MRI images. These datasets are referred to as XMR-01 and

XMR-02. Only the MRI data was used. MRI scans from two prospective prostatectomy patients were

also used, referred to as Patient-01 and Patient-02.

For Chapter 4, it was necessary to have data sets containing CT and ultrasound images of the pelvic

bone, together with the transformations between the two. For algorithm development and validation a

custom plastic anatomy phantom was built. The phantom consists of a life size plastic pelvic bone, a

spherical target representing the prostate, and eight fiducial markers. The phantom was imaged in both a

CT scanner and with an ultrasound probe in a water bath. The gold standard transform between the CT

and ultrasound images was established using the eight fiducial markers. The phantom data set is referred

to by the prefix Phantom. The phantom is further described in Section 4.5.

As neither the CT nor ultrasound images of the phantom were representative of actual anatomical

images the algorithms were validated using CT and ultrasound images from cadavers. Three cadaver

data sets were used, denoted Cadaver-XX, where XX=01,02,03. The images were taken from a previous

orthopaedic study. The gold standard transformation from ultrasound to CT images was determined

using a set of bone implanted fiducial markers.

Chapter 5 uses tracking data collected during an in theatre calibration of thedaVinciTM endoscope,

together with images of the calibration grid.

Finally, in Chapter 6 data from 3 more prostatectomy patients are introduced. These are denoted

Patient-03, Patient-04, and Patient-05. These data sets contain MRI and ultrasound images, as well as

endoscope tracking data. Table 1.1 summarises the data setsused in this thesis.
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1.6 Measuring System Error and Summing Component Errors

As well as detailing the methods used by our surgical navigation system this report is largely concerned

with the quantification and analysis of the systems’ errors.It will be useful therefore to define the error

measures used at the outset. We have used two measures of error in the report. The first is the registration

error at the prostate. This is a measure of how far the preoperative image of the prostate is from the actual

position of the patient’s prostate. We use this is Chapters 3and 4. The second measure is an on screen

error visible to the surgeon. This is intended to give the surgeon an understanding of the system accuracy.

This is used at the conclusion of each chapter to visualise the errors found in the chapter. We will now

define how these errors are calculated.

1.6.1 Registration Error at Prostate

This is used when calculating the errors in the calculation of TM⇒O. The registration error can be

quantified by first defining a point in space, transforming it by the known correctTM⇒O(GldStd) 1 and

the estimatedTM⇒O(Est.). The registration error is simply the magnitude of the difference (in three

dimensions) between the two transformed points. As we are interested primarily in the position of points

near the prostate we have used such points in our error measure. Similar error measures are widely used

in the literature and can be referred to as a target registration error (TRE). To allow direct comparison

between the various data sets used in the work the same set of six points in space were used for this

error measure. We refer to these as the “nominal” prostate surface points. The location of this was based

on the position of the prostate in the plastic phantom used inmuch of the development work. Figure

1.6 shows the six points used. Doing this simplifies the calculation of errors and should be reasonably

accurate as the position of the prostate does not vary significantly. The effects of this assumption are

discussed further in Appendix D.

1.6.2 On Screen Error

From the surgeon’s point of view the error measure of interest is the apparent error in the position of

the prostate shown on the endoscope screen. Therefore each error source is ultimately converted to an

on screen error. To do this in a consistent manner we first defined a point of interest in the preoperative

MRI. We chose the apex of the prostate, as this is a landmark that can be seen through the endoscope and

is clinically relevant. We then selected a frame of endoscopic video that shows the entire prostate and

in our clinical experience was a good frame to overlay. The choice of this frame placed the apex of the

prostate approximately 200 mm away from the lens, 20 mm abovethe horizontal centre line and 5 mm

to the right of centre. The point is then projected onto the endoscope screen using intrinsic parameters

found during a calibration of the endoscope, and detailed inTable 1.2. To visualise the errors, various

errors are simulated in the projection process and the process repeated many times to give a distribution

of on screen points. 1.7 gives an example of such an overlay.

1The gold standard transformationTM⇒O is the combination ofTSM⇒M (GldStd) andTM⇒O[nrr](GldStd). Model

fitting errors are determined in Chapter 3 using simulation, sothe gold standard transform is known beforehand. In Chapter4 the

ultrasound tracking and registration errors are determinedexperimentally using a plastic phantom and cadaver data. In both cases

the gold standard transforms are determined using sets of fiducial markers.
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Figure 1.6: Definition of the six nominal prostate surface points used throughout to quantify the compo-

nent errors.

Name Horizontal Vertical

Focal Length 852.02 923.14

Principal Point 415.38 288.12

Second Order Radial Distortion -0.36

Forth Order Radial Distortion 1.16

Tangential Distortion 0.0085 0.0082

Sixth Order Radial Distortion 0.00

Screen Dimensions (pixels) 720 576

Table 1.2: The Intrinsic parameters of the endoscope used for error visualisation. The endoscope is

modelled as a pin hole camera with radial and tangential distortion as per Heikkila and Silven (1997).
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Simulated Points
1 σ
2 σ

σx=11.64 Pixels (2.8 mm)
σy=13.18 Pixels (2.9 mm)

Figure 1.7: A landmark point (near the apex of the prostate) has been chosen and projected onto the

endoscope screen under the influence of errors. The yellow points represent the projected points. The

standard deviation of the point spread in the x and y directions is calculated and shown in the text box at

the top right. Two ellipses are drawn on the image showing 1 and 2 standard deviations. The principal

axes of the point distribution are also shown. To aid interpretation a value in mm has also been calculated.

This is the pixel error back projected onto a plane 200 mm fromthe endoscope lens.
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Whilst we recognise that the resulting error values expressed in pixels are very specific to our

application and endoscope geometry making comparison withother work more difficult, they are none

the less the most relevant to our application. To aid interpretation an error value in mm is also shown.

This is the on screen error in pixels back projected onto a plane 200 mm distant from the endoscope

lens (near the prostate apex). Measuring the error in different ways is of course possible and where

appropriate we have done this also.

1.7 Ethics
Ethical approval for all studies involving prospective RARP patients was obtained from the Research

Ethics Committee at Guy’s Hospital (Reference Number 08/H0804/1). All prospective patients gave

informed consent for the use of their MRI and ultrasound data, as well as the use of the tracking system

during surgery.
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Chapter 2

Literature Review

This chapter is structured as follows. We first give a brief introduction to prostate cancer and its treatment

using RARP. Following this we introduce the key concepts of image guided surgery and explain where

our system sits in this very broad field. Having defined an image guidance system as a connected group

of subsystems, we then examine the state of the art for the subsystems.

2.1 Prostate Cancer and Radical Prostatectomy

In the UK prostate cancer is the most commonly diagnosed cancer in men, [Office of National Statistics

(2008)]. It is also the second most common cause of cancer related death (after lung cancer) of men

in both the UK and USA. Over 10,000 men die from Prostate cancer each in the United Kingdom,

[Kirby et al. (2010)]. Around three quarters of men diagnosed will survive the disease beyond five years.

Many more men will have prostate cancer but remain undiagnosed. Incidence will likely increase as

screening improves [Kirby et al. (2010)]. Autopsy studies,[Breslow et al. (1977)] have found that up

to 80% of men in their seventies have prostate cancer. Understanding the causes of and improving the

treatment of prostate cancer is therefore an important challenge,

There are a wide range of treatments available for prostate cancer, these are listed in Table 2.1.

Correct management of the symptoms is also of critical importance [Thompson et al. (2007)]. The choice

of treatment will depend on the stage of cancer (whether it isconfined to the prostate gland, or has spread

beyond the prostate), the aggressiveness of the cancer, thelife expectancy of the patient and the patient’s

wishes. Radical prostatectomy may be used when the cancer has not yet spread beyond the prostate

gland, but is likely to do so if left untreated, and the patient is healthy enough to undergo surgery.

The spread of the cancer is typically determined with an MRI scan. The aggressiveness of the cancer

is assessed using a prostate biopsy and quantified using the Gleason score [Gleason (1977)]. Excision

biopsies taken from nearby lymph nodes can also be use to assess the aggressiveness of the cancer. There

are several approaches to radical prostatectomy. Radical prostatectomy removes the cancerous organ

and the attached seminal vesicles. Biopsies can also be taken from the nearby lymph nodes allowing

accurate assessment of the spread of the cancer. The nerve bundles that control potency run very close to

the prostate. Depending on the location of the cancer withinthe prostate it is possible to attempt nerve

sparing prostatectomy so that the patient may remain potent. Alternatively a non nerve sparing procedure
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Established Techniques

Active Surveillance No treatment is undertaken, however the progress of the

cancer is monitored.

Radical prostatectomy The prostate is surgically removed.

External beam radiation therapy Radiation is focused on the prostate from an external

source.

Brachytherapy Radioactive seeds are inserted into the prostate through

the perineum. Cancerous cells are destroyed by radiation.

Experimental Techniques

High frequency focused ultrasound Cancerous cells are ablated using sound energy from a

trans-rectal probe

Cryogenic ablation Cooling fluid is passed through a needle to cool a target

region. The cold temperatures destroy cancerous tissue.

Table 2.1: Some of the options for the treatment of localisedprostate cancer. The option used will depend

on the stage and aggressiveness of the cancer as well as the age and health of the patient.

Oncological outcomes (positive margin rate and biochemical PSA recurrence)

Time to and rate of urinary continence (Months, %)

Time to and rate of potency (if nerve sparing) (Months, %)

Unintended damage to surround anatomy (principally the rectum).

Length of hospital stay (Days)

Patient post operative pain

Time under general anaesthetic (minutes)

Cost of Surgery (£)

Table 2.2: Parameters that can be used to assess the success of a prostatectomy, allowing different

methods to be compared. To be successful any alteration to the surgical method needs to demonstrably

improve one of these.

can be performed. The success of a radical prostatectomy canbe measured by a number of parameters.

Table 2.2 lists parameters that can be used to measure the success or otherwise of a prostatectomy and

thus compare alternative surgical approaches and assess the effectiveness of a proposed new method.

Traditionally, open surgery has been used, and this can either be done with a retro pubic approach

(incision through the abdomen) or via an incision through the perineum. More recently, first reported

in 1997 (Varkarakis et al. (2005)) laparoscopic approacheshave been used. These reduce the patient’s

hospital stay and post operative pain. In the hands of a skilled laparoscopic surgeon laparoscopic surgery

can have the same outcomes for positive margins, and time to continence/potency. The cost of surgery
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is higher due to more expensive consumables and the requirement for higher skilled surgeons. There

is also a long history of robotics in urology (Challacombe etal. (2006)) as surgeons and scientists have

strived to improve the available methods.

A more recent (since 2000, Takenaka et al. (2006)) alternative to laparoscopic surgery is robot as-

sisted laparoscopic surgery. Here the standard laparoscopic tools are replaced with tools actuated re-

motely by the surgeon via thedaVinciTM “robot” [Guthart and Salisbury (2000)]. By removing the

surgeon from direct control of the laparoscopic tools this allows the control interface to be designed

to mimic direct control of the surgical tools, as opposed to the reversed control required for standard

laparoscopic surgery. In 2008 there were 70,000 prostatectomies performed with adaVinciTM robot

worldwide, and there are now more than 1000daVinciTM systems worldwide [Tan et al. (2009)].

There is active debate over the benefits of thedaVinciTM system, however there is evidence

[Tonet et al. (2006)] that use of thedaVinciTM allows surgeons without laparoscopic experience to per-

form to minimally invasive procedures, whilst thedaVinciTM provides limited benefit to an already

skilled laparoscopic surgeon. Most trials show patient outcomes improving as the surgeon becomes

more adept at using thedaVinciTM [Dasgupta and Kirby (2009)]. With the exception of time to conti-

nence outcomes are at least as good open surgery [Dasgupta and Kirby (2009)].

There is a need for randomised trials to assess the performance of the various surgical approaches

(Dasgupta et al. (2006)). Robot assisted laparoscopic surgery is however a recently developed procedure

and to date the procedure largely mimics standard laparoscopic surgery. It seems likely that as more

surgeons use the system and the product itself evolves that the robot assisted procedure will diverge from

the standard laparoscopic procedure, taking advantage of the increased degrees of freedom available at

the end effectors, the ability to scale movements, the filtering of tremors, and the 3D endoscopic vision

available on thedaVinciTM .

2.1.1 Description of robot assisted radical prostatectomy.

The following describes the robot assisted radical prostatectomy procedure currently in use at Guy’s

Hospital. The patient is first prepared for surgery. A catheter is inserted into the bladder, and six ports

are cut in the patient’s abdomen. A central port for thedaVinciTM endoscope. A port on either side

for the two arms of thedaVinciTM and an additional three ports for laparoscopic tools controlled by an

assistant. The patient can be insufflated with carbon dioxide through one of the three assistant ports.

After port cutting the patient is placed head down in the Lithotomy position. This position is necessary

to allow thedaVinciTM to be placed between the patients legs and gain access to the patients abdomen.

At this stage the both the patient and thedaVinciTM are locked in position and do not move until the

procedure is completed. The endoscope is inserted into the central port and thedaVinciTM tools into the

side ports. Figures 2.1 to 2.9 give a pictorial step by step description of the prostatectomy performed on

one of the studied patients. The use of medical terminology has been avoided to try and keep it accessible

to the layman. As an indication of the time taken for the procedure the time elapsed since the start of

port cutting is shown at the bottom right of each image.
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Figure 2.1: The prostate and surrounding anatomy as seen through the patient’s mid sagittal plane

[courtesy Tsaitgaist (2008)] with modifications. The nervetissues, shown in red are not actually located

on the mid plane but are slightly to the right and left of the mid plane. The endoscope and surgical

tools are inserted through the abdominal wall into the retro-pubic cavity, to the right of the picture. The

bladder is kept deflated during the first part of the procedureto aid access to the prostate.

Figure 2.2: On entry to the retropubic space the surgeon cannot see any relevant anatomy, though the

position of the prostate can be estimated from the curvatureof the pubic arch. The first stage is to remove

a layer of fascia from the inner wall of the abdomen. This has been done on the right, allowing the pubic

arch to be more clearly seen. The prostate, however, remainsobscured.
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Figure 2.3: Tissue (membranes and fat) in front of the prostate is removed to reveal the prostate, on left.

Incisions are made to along both sides of the prostate, rightside incision shown on right. The extent of

these incisions is limited to prevent damage to nerve fibres.

Figure 2.4: On the left the prostate is now visible with a small incision on either side. The blood supply

(the dorsal vein) at the apex of the prostate is then sutured (at right) to limit bleeding.
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Figure 2.5: Dissection of the prostate from the neck of bladder is started. Knowledge of the size of the

prostate’s medial lobe is useful here as this can extend intothe bladder. For good continence results it

also important to minimise damage to the bladder neck. Once the dissection is sufficiently advanced

the catheter can be pulled out of the urethra and pulled upwards, using an additional hook through the

patient’s abdomen, as shown on right. This pulls the prostate upwards allowing access to the far side.

Figure 2.6: After dissection of the bladder neck is completethe base of the prostate can be freed. Clips

rather than cauterisation are used to prevent blood loss dueto the proximity to the neuro-vascular bundles.

The left hand image shows a clip being applied to the left handside of the prostate. After the base has

been freed it is possible to reach under the prostate and pullthe seminal vesicles and vas deferens forward.
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Figure 2.7: With the seminal vesicles and prostate pulled upwards the rear face of the prostate can be

dissected along the plane between the rectum and the prostatic capsule. The depth of this incision is

dictated by the nerve sparing procedure in use. It is of critical importance not to cut into the rectum

during this cut.

Figure 2.8: The prostate is now relatively mobile and can be pulled to either side to allow the dissection

along the sides of the prostate to be completed. Dissection here can either include or exclude the neuro

vascular bundles depending on the nerve sparing plan in use.Dissection moves from the base to the apex

of the prostate.
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Figure 2.9: The prostate is left attached only through the apex, which is now severed, (on left). The

prostate is put in a specimen bag and withdrawn from the operating field. The surgeon is now left with

a gap between urethral sphincter and the bladder neck. This gap must be closed in order for the patient

to regain continence. This is done by pulling the bladder neck to the urethral sphincter and suturing the

two together.

2.1.2 Drawbacks and Opportunities of Robot Assisted Radical Prostatectomy

Whether or not use of thedaVinciTM robot improves patient out come is a subject of some debate in

urology. Some studies show an improvement in patient outcomes [Mavrich (2006)] others are more cau-

tious, while overall there seems little to pick between the two [Atug et al. (2006)]. It is our opinion that

given the relative immaturity of the approach, improvements in patient outcomes are more likely to be

gained using the RARP approach than remaining with an open approach. Most reports agree that laparo-

scopic procedures reduce the amount of time the patient muststay in hospital, thereby reducing hospital

bed costs. Whether or not the system is cost effective therefore depends on an individual hospitals cost

of a bed versus the additional cost of the equipment.

The main difficultly with a RARP procedure is that the surgeonis unable to feel the tissue, reducing

the surgeon’s ability to assess the spread of cancer. This reduces the surgeon’s ability to make informed

decisions about the size of the margin to leave around the prostate and whether or not to attempt a

nerve sparing approach. There are two ways to adjust for this. One is to introduce a method of haptic

feedback for the surgeon, which is an area of active researchfor many groups. The other is what this

thesis is concerned with, which is introducing image guidance to the procedure. This takes advantage of

the improving ability of preoperative imaging methods to detect the extent of cancer. If information on

the location and extent of the cancer captured preoperatively can be sensibly overlaid onto the surgeons

vision, then this can take the place of the tactile feedback available in an open procedure.

2.2 Image Guided Surgery

Before we begin an introduction to image guided surgery we must first define what we mean by the term

for the purposes of this report. We start with a broad definition.
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Image Guided Surgery 1 An intervention during which the surgeon’s view of the patient is augmented

with images from a separate source.

In a typical RARP the surgeon sees the patient through the endoscope using visible light. We propose

adding information from preoperative MRI, making the procedure image guided. An alternative to using

preoperative MRI is to supplement the visible anatomy with an intraoperative imaging method, such as

ultrasound [Ukimura et al. (2006)]. Intraoperative ultrasound is also used by Leven et al. (2005), but

here is laparoscopic and integrated with the surgeon’s viewthrough the endoscope. Most modern defi-

nitions of image guided surgery, for example that in Peters and Cleary (2008), imply that the additional

imaging modalities must be registered to the main modality,so as to appear in the same coordinate sys-

tem. Strictly speaking this is true, however it is wrong to assume that this must be done by some form

of tracking system and/or an overlaid display. It is also possible to display the two modalities separately

and allow the surgeon to implicitly align them mentally. Indeed this was the case for what is generally

regarded as the first image guided surgery when a x-ray print was used to guide the surgeon during the

removal of a needle from a patients hand in 1896 [Brailsford (1946)]. The surgeon mentally aligned

the x-ray to the visible anatomy of the patients hand and usedthe x-ray to visualise the needle. Sim-

ilarly, Ukimura et al. (2006) do not overlay the ultrasound onto the endoscope view, but rather relies

on communication between the ultrasonographer and the surgeon to place the ultrasound data into the

endoscope’s coordinate system. The new generation ofdaVinciTM systems , thedaVinci STM [Tan et al.

(2009)], allows image guided surgery with implicit registration by the surgeon by placing preoperative

data on the machine’s console next to the intraoperative endoscope view.

Such systems become difficult to implement when the anatomy visible in each modality differs. It

is also not possible to quantify the accuracy of such systemsindependently of the surgeon using them.

Image guidance using additional registration methods (stereo tactic frames or fiducial markers) is most

frequently used in neurosurgery [Skrinjar et al. (2001),Warfield et al. (2000a)] where the surgical targets

may be deep in the brain and only a very small section of brain surface may be visible to the surgeon. This

has led to the development of equipment and algorithms for tracking surgical tools and registering multi-

modality images. The dominant registration method in use today is the point based fiducial registration

method. For rigid anatomy it is relatively easy to implementand its accuracy is well studied [Wiles et al.

(2008),Fitzpatrick et al. (1998)].

These methods lead to what is generally envisaged as the nextstage of image guided surgery. Pro-

totype image guided systems for digestive tract surgery [Soler et al. (2004)], heart surgery [Szpala et al.

(2005)], RARP [Chen et al. (2008)], urology surgery [Ukimura and Gill (2009)] , and microscope as-

sisted neurosurgery [Edwards et al. (2000)], all envisage overlaying rendered projections of segmented

anatomy over the surgical scene. Figure 2.10 gives an example of this, presenting the same data as in

Figure 1.1 but as rendered objects rather than MRI slices.

Hawkes et al. (2005) discuss the need to deform the overlaid renderings to account for intraopera-

tive motion. In theory, by extracting surfaces from the endoscopic image [Visentini-Scarzanella et al.

(2009)], registering these to the segmented surface and deforming the segmented surface to match
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Figure 2.10: In contrast to the MRI overlay shown in figure 1.1the prostate and neuro-vascular bundles

have here been segmented from the MRI and are presented as 3D renderings.

[Skrinjar et al. (2001), Cash et al. (2005)] it should be possible to use such systems for image guid-

ance in non rigid anatomy. Such systems are attractive as they present an intuitive representation of the

anatomy to the surgeon and would also allow integration withplanning and simulation tools. A seg-

mented patient model aligned to the robots coordinate system would enable optimised port placement

[Adhami and Coste-Maniére (2003)]. Such a model would also allow preoperative simulation of the pro-

cedure [Bro-Nielsen (1996)] using a patient specific model,alternatively the surgeon could interactively

switch to a simulated patient mid operation in order to practice a difficult part of the procedure imme-

diately prior to performing it on the patient. Constraints could also be placed on the operating tools to

prevent cutting into non target anatomy [Davies et al. (1992), Ukimura and Gill (2009)]. We present a

block diagram of such a system in Figure 2.11

Whilst we agree that such a guidance system represents the long term future of image guidance in

urology surgery, we also realise that the implementation ofsuch a system introduces risks and sources

of error to the operating theatre that may not be strictly necessary.

There are two issues with presenting rendered segmentations of the anatomy to the surgeon. The

first is that regardless of the method used to segment the anatomy there is an error inherent in doing this.

This error needs to be properly understood. The second issueis that surgeons are experienced in the

interpretation of medical images (MRI,CT and ultrasound) relevant to their speciality. So while rendered

surfaces may present a more intuitive image on screen it is not certain that they will give the surgeon a

better understanding of the anatomy than a more traditionalthree plane projection of a MRI volume.

The benefits of registering the auxiliary data to the patientalso need to be properly demonstrated.

As noted earlier, provided sufficient anatomy is visible thesurgeon is capable of mentally aligning the

multiple image types. Bringing automatic registration into the operating theatre introduces algorithms

and or equipment that will have errors and may fail outright.Therefore it must be demonstrated that
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Figure 2.11: Block diagram of proposed surgical image guidance system. System is built from seven

discrete subsystems. These can be treated in isolation and built into an integrated system when complete.

these methods bring a benefit to the patient before their introduction.

What we propose is to implement a core system, focusing on a rigid body registration between pre-

operative MRI and the intraoperative endoscope image. It will then be possible to compare the clinical

benefits (as measured by the parameters defined in table 2.2) with either a system that does not register

the data (ie thedaVinciTM s) or a more sophisticated system that may warp the preoperative data to bet-

ter match the visible intraoperative anatomy. Alternatively we can investigate the benefits of presenting

the anatomy as rendered segmented bodies versus a MRI overlay. Furthermore a more complex image

guidance system that uses endoscopic video data can be initialised by our system. Therefore it is im-

portant to understand the accuracy of our proposed system, and if the accuracy is to be improved it is

important to understand the sources of error.

For completeness the remainder of this literature review isstructured in line with the system areas

defined in Figure 2.11. However the systems that deal with thecore transforms, see Table (2.3), are dealt

with in substantially greater depth.

2.3 Preoperative Knowledge

In order for an image guidance system to be useful it must be possible to image the anatomy of interest

preoperatively. This section details what anatomy we intend to image and the methods available to do

so. The first part details methods to image the surrounding anatomy of the prostate, while the second

section details methods to image prostate lesions.
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Transform Description Section

TSM⇒M Fitting a pelvic bone to the patient MRI /

Segmentation of bone

2.4.1

TSM(nrr)⇒O Registration 2.6

TSM(nrr)⇒UI Image to Image Registration 2.6.2

TUI⇒O Ultrasound calibration and tracking 2.6.2 and 2.6.2

TO⇒ES Endoscope calibration and tracking 2.6.3 and 2.6.2

TO⇒ET Tracking the endoscope 2.6.2

TM⇒O[nrr] Adjust model based on endoscope image2.7

Table 2.3: Summary of the core transformation dealt within in this thesis (from Figures 1.2 to 1.5) and

where they are in the literature review.

2.3.1 Surrounding Anatomy

Chen et al. (2008) identify the prostate, urethra, rectum, seminal vescicles and surrounding nerve bundles

as anatomy that would be useful to locate on a prostate image guidance system. This agrees with the

description of nerve sparing RARP given by Tewari et al. (2008). Understanding the position of the

neuro-vascular bundles is obviously important to avoid cutting through them. Similarly it is critical not

to cut into the rectum. As shown in figure 2.6 the seminal vesicles and vas deference are located on the

far side of the prostate so must be pulled through and out of the way. Here it would be useful to know

their position and size. Locating the junction of the prostate and bladder prior to the dissection shown

in Figure 2.5 would also be useful as would a measure of the size of the medial lobe of the prostate and

its extension into the bladder. All this soft tissue anatomyis visible on a T2 weighted MRI. Typically

the MRI used has an in plane resolution around 0.7 mm and a slice spacing between 3 and 4 mm. This

places an upper limit on the accuracy of an image guidance system that uses data. Of course if it can be

shown that higher resolution scans could improve the surgical guidance then this could be gathered at

the expense of a longer scan time.

2.3.2 Prostate Pathology

Knowing where the cancerous lesions are within the prostatic capsule allows the surgeon to make an

informed decision about the margin to leave around the prostate. The decision on whether to attempt

a nerve sparing prostatectomy is generally made preoperatively, however as discussed in Section 2.1 it

is possible to alter the plan during the procedure. In the case of open surgery this might be based on

palpation of the prostate, while for RARP it may be result of abiopsy [Tewari et al. (2008)]. Provided

the cancer can be well imaged prior to the operation image guidance could greatly assist this process.

Cancerous cells are visible on T2 weighted MRI to some extent. However they are not used diagnos-

tically. The size and location of the tumor is generally determined using needle biopsy. The resolution

of data from needle biopsies is limited by the number of biopsies taken and the ability to determine the

position of each biopsy [Venugopal et al. (2005)].
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There is great deal of research into techniques for the non invasive detection and characterisa-

tion of prostate lesions. Promising results have been shownby groups using fusion of MRI and

MRI spectroscopy [Hricak (2005); Lee et al. (2005); Venugopal et al. (2005)]. Other groups have re-

ported promising results using sonoelastography [Taylor et al. (2005)]. Braeckman et al. (2007) and

Mohamed and Salama (2008) have developed systems using (TRUS).

The above is not intended to be an exhaustive review, but rather to highlight that prostate cancer

detection is an area currently under intense research scrutiny. It is likely that in the short term future

an accurate and reliable system for localising prostate cancer will be clinically available. The primary

purpose of developing these systems is to assist in the selection of a treatment method, of which there

are many. In the case where radical prostatectomy is chosen as the treatment method, a good knowledge

of the precise location and extent of the cancer should enable the surgeon to make informed decisions

about the surgical approach (nerve sparing or not) and to accurately judge the margins required.

2.4 Create Model (TSM⇒M )

In addition to being able to image anatomy as in Section 2.3, if we wish to project renderings of seg-

mented anatomy to the surgeon as in Figure 2.10 then the anatomy must first be segmented from the

preoperative image. This section deals briefly with this, however as discussed in Section 2.2 presenta-

tion of rendered anatomy is not the focus of this work. As discussed in Chapter 1 our system uses the

pelvic bone as a registration frame. Therefore what is of relevance here is the processing required to al-

low this registration in theatre, this will be discussed in depth. As we are more interested in segmenting

the pelvic bone we will discuss this first.

2.4.1 Segmentation of Bone from MRI (TSM⇒M )

The following is a brief explanation of our in theatre registration algorithm as an explanation of the re-

quirements of our pelvic bone segmentation algorithm. A more complete description of the registration

algorithm will follow in Section 2.6.2. The registration algorithm will use a b-mode ultrasound probe

to image the patient’s abdominal region and these images will be registered to the patients preopera-

tive data using a image based registration method. We know from past work [Penney et al. (2006) and

Barratt et al. (2006)] that it is possible to accurately register ultrasound images of the pelvic bone to CT

images of the pelvic bone. Figure 2.12 shows example MRI, CT,and ultrasound images of the pelvic

region. Figure 2.13 shows the data shown in Figure 2.12 re-sliced and interpolated to match the ultra-

sound slice. This more clearly shows the correspondence between the data sets, when a slice to volume

registration algorithm is used. The ultrasound and CT both have strong intensity gradients at the bone

edges. This indicates that computationally efficient similarity measures such as cross correlation can be

used to drive the in theatre registration. The appearance ofbone in MRI however is quite different. The

cortical bone corresponding to the bright bone edges in the ultrasound appear as dark regions surround-

ing the brighter trabecular bone. Identifying the bone in the MRI therefore requires reference to both

the individual voxel intensity and the intensity of surrounding voxels. It is possible that using a multi-

modal similarity measure such as normalised mutual information (NMI) might enable direct registration
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(a) MRI (b) CT (c) Ultrasound

Figure 2.12: Ultrasound (c) and CT (b) images of bone have broadly similar appearance, the bone edge

appears as a bright line on the image. On a T2 weighted MRI (a) image of the same anatomy the bone

edge does no appear as a bright line. The thick cortical bone appears as a dark line around the perimeter

of the trabecular bone in the centre of the pelvic bone. Registering ultrasound to CT is a proven process.

Registering MRI to ultrasound for the pelvic bone is untried.

of ultrasound to MRI, however no evidence of this having beendone for pelvic bone was found in the

literature. The aim of this section therefore is to investigate methods that could be used to process the

preoperative data to enable a robust and rapid registrationwith ultrasound data. In short we require an

algorithm to segment the bone from the MRI data.

We have discounted the use of manual segmentation by a radiologist for the following reason.

Because of our unique application we are segmenting bone from a T2 weighted MRI image. This is not

a task that is of clinical use, and so is not a task that many radiologists have done, nor is there a standard

way of doing it. Therefore, in addition to being very time consuming (about 2 hours), the results of

manual segmentation would be expected to vary significantlybetween radiologists. On the other hand

an automatic segmentation will be repeatable.

Several algorithms exist in the literature that aim to segment bone from MRI data, either in 2D

or 3D [Strzelecki (2004); Carballido-Gamio et al. (2004); Kapur et al. (1998); Lorigo et al. (1998)] us-

ing only the available image intensities. Rather than working directly on the image voxel intensities,

these approaches process the image intensities to create some measure of the local texture around each

pixel/voxel. This is based on the underlying assumption that unlike in CT data where each voxel of bony

anatomy is brighter than a voxel of soft tissue, a bony voxel in MRI may have similar intensity to a non

bony voxel, however they can be differentiated by looking atthe intensity distribution of surrounding

voxels. The consensus is that bone cannot be segmented usingMRI intensity values alone due to over-

lapping intensities, intensity inhomogeneity over homogeneous anatomy due to scanning artefacts, and

the lack of strong edges at the bone surface. Strzelecki (2004) and Carballido-Gamio et al. (2004) use

texture information to segment bony structure in the ankle and lower spine respectively. Kapur et al.

(1998) use region growing based on texture information followed by active contour smoothing to seg-

ment the femur and tibia. Lorigo et al. (1998) use an active contour directly to segment the femur and
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(a) MRI (b) CT (c) Ultrasound

Figure 2.13: This shows the same data sets as in Figure 2.12, but here the MRI and CT have been re-

sliced and interpolated to match the ultrasound. This matches the registration procedure which matches

ultrasound slices to volume images. It should be noted here that the ultrasound and CT come from the

same patient, while the MRI is from a separate patient that has been registered to the CT, hence the

match between these data sets is not perfect. They serve as a useful illustration nonetheless. In both

cases the bone edge imaged by the ultrasound at the right is visible as a bright line in the CT. In the MRI

the correspondence is not as straightforward, however the general appearance is similar, suggesting that

registration using a multi-modal similarity measure has some chance of success.
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tibia.

These methods use different approaches to drive the segmentation, however they all demonstrably

fail when the chosen measures of image texture become similar for bone and surrounding tissue. In

situations where the appearance of bone and soft tissue do not vary outside the segmentation thresholds

these methods will work. Segmentation of the pelvic bone, however, is not such a situation. Due to the

large size of the pelvic bone and the variety of tissue types immediately adjacent to it the appearance of

the bone / soft tissue interface will vary significantly across the pelvis.

Failures in the appearance only algorithms are easily spotted using an understanding of what shape

the bone should take. Building prior knowledge of the expected bone shape into the segmentation al-

gorithm should therefore improve performance. This introduces the wide field of shape priors in seg-

mentation. A shape prior can range from a constraint on the curvature of the segmentation to statistical

population models for a given object or group of objects. Hoad and Martel (2002) introduce two shape

priors when segmenting bone from MRI in the lower spine. Theymodel the spinal column as an el-

liptical column and mask data anterior to the spinal column.Cootes and Taylor (2004) mention the use

of an active appearance model of the knee based on MRI data to segment bone. Fripp et al. (2007)

use a shape model to segment knee bone form MRI with some success. Their shape model is based on

the active shape model (ASM) frame work introduced by Cooteset al. (1994). They use the minimum

description length (Davies et al. (2002)) method to build the model. This works on the assumption that

the model that describes the variation in the training population in the most compact way is the correct

model. Fripp et al. (2007) also demonstrate that both concepts can be readily applied to multiple objects

in the same image.

The shape of the pelvis has been described using a statistical shape model by Lamecker et al. (2004),

who used their model to accurately segment bone from CT images. Yao and Taylor (2003) incorpo-

rate CT intensity information into their pelvic bone model.Chan et al. (2004) and Barratt et al. (2008)

demonstrate the use of a pelvic CT statistical shape model for registration using ultrasound. None of

these shape models have been used to segment bone from MRI. Lamecker et al. (2004) mention their

intention to extend their model to MRI applications, however no further published work on this was

found.

Two methods were found that attempt to automatically segment the pelvic bone from MRI.

Boettger et al. (2008) presented their work on segmentationof pelvic bone from MRI for use in ra-

diation therapy planning. However their method required specific MRI sequences and at present is not

giving very good results for the pelvis. Schmid and Magnenat-Thalmann (2008) introduce a shape model

based segmentation of T1 weighted MRI data for adult female pelves and femurs, driven by the need

to do this for diagnosis of osteoarthritis. It is useful hereto compare T1 and T2 weighted MRI. In

general T1 weighting allows better delineation of bone. Figure 2.14 compares a T1 and T2 image of

the same patient from our study. The T1 image on the left does show a better defined cortical bone,

however it is still possible to see the bone on the T2 weightedimage. In our study we are using T2

weighted scans as they show the soft tissues of surgical interest more clearly, so our results will not be
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(a) T1 (b) T2

Figure 2.14: The same anatomy shown with a T1 (a) and T2 (b) weighted MRI image. The large circles

at either side of these images are the heads of the femurs. Thebladder and rectum are also prominent.

The cortical bone shows as a dark line around the boundary of the trabecular bone. This line is more

precisely delineated in the T1 image, though the differenceis marginal.

directly comparable with Schmid and Magnenat-Thalmann (2008), though we should expect them to be

similar. Schmid and Magnenat-Thalmann (2008) report a segmentation accuracy of 1.44 mm mean with

a standard deviation of 1.1 mm. Assuming this is a Gaussian distribution this equates to an root mean

square (RMS) error of 1.81 mm. This is calculated as the distance error between points on the seg-

mented surface and points on a manually segmented gold standard surface. This figure appears excellent

in comparison with other MRI bone segmentation algorithms,and in particular, referring to Table 2.5,

seems to outperform several shape models based on higher resolution, higher contrast, CT pelves. There

are several reasons to doubt the accuracy and generality of the published figure.

1. Results are published for 6 data sets out of a possible 29, without explanation of why these 6 where

chosen.

2. The segmentations used to build the shape model and as goldstandards are based on “expert” man-

ual segmentations. No literature has been found examining the accuracy of manual segmentation

of pelvic and femur bone from MRI, and it is not validated here. The results may vary significantly

if the gold standards were prepared by a different expert. However this is a difficult problem to

solve for a niche application such as pelvic bone segmentation.

3. The results presented appear to be averages across the pelvis and 2 femurs. It is possible that errors

are less on the relatively simple shapes of the femurs and higher in areas of more complex shape

such as the pelvis.
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4. The method presented is multistage and multi-resolutionwith various tunable parameters at each

level. There is an initial image force (based on intensities) versus a smoothing force. Then the po-

sition of the evolved surface within the model space is checked (using the Mahalanobis distance)

and if it exceeds a certain threshold the mode coefficients are scaled. This is repeated at different

model resolutions. Finally, the SSM is discarded and the segmentation is locally deformed assum-

ing that errors from the true shape form a Markov Random Field. This stage also has a tunable

smoothing and image force parameter. In total there are 5 declared tunable parameters. This sug-

gests that while the method can be tuned to work in a given setting it may not perform reliably on

a larger, more diverse data set.

Tables 2.4 and 2.5 summarize the relevant results from the literature. Table 2.4 covers the results that

deal just with segmentation of MRI. The type of errors reported varies from study to study, as they are

used for several different applications. As will be seen later, a system that matches the results reported by

Fripp et al. (2007) would provide a good result in the contextof the proposed image guidance system. Ta-

ble 2.5 covers the results for pelvic shape models. The methods used to construct the models are as varied

as are the results. The reported boundary errors are less then those reported by Carballido-Gamio et al.

(2004), suggesting that a pelvic shape model approach to segmenting MRI will have the best chance of

success.

Automatic segmentation of bone is essential for the proposed system. Based on the preceding

literature review a system that combines measures of image texture with a statistical shape model would

be the best approach. The use of statistical shape models is wide spread in medical imageing and there

are many implementations. The following section serves as an introduction to statistical shape models

and describes the statistical deformation model (SDM) method that we have chosen to implement.

2.4.2 Statistical Shape Modelling in Medical Image Segmentation

Statistical shape models can be used to parametrize arbitrary shapes. The underlying assumption is that

the variation in shape seen across a population a set ofN objects (for example the adult male pelves)

can be described to a given precision by a setM parameters. If the shape of each member is defined by

a vector of lengthn, thenM << n. The number of description parameters will depend on the geometry

of the shapes being described. To give a trivial case as an example, any number of spheres centred at

the same point can be uniquely described a single parameter (the radius). In the case of medical images

where complex shapes are being described the number of parameters required will be higher.

Cootes et al. (1994) were among the first to show how statistical shape models could be first con-

structed and then applied to the problem of image segmentation. Since then there have been innumerable

publications on the use of shape models in medical imaging. In general they share the following method-

ology.

• A training set of images (of sizeN ) is first captured or artificially generated.

• A set ofn corresponding points between the training images is defined.
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Paper Method Application Result

Strzelecki (2004) Appearance Only Ankle Bone No Quantitative Result

Carballido-Gamio et al.

(2004)

Appearance Only Spine 6.82 mm Boundary Error

Kapur et al. (1998) Appearance plus

regulisation

Knee No Quantitive result for bone only.

Lorigo et al. (1998) Appearance only Knee No Quantitive results

Hoad and Martel

(2002)

Simple shape mod-

els

Spine 1.12 ± 0.15 TRE for registration

using segmentation

Cootes and Taylor

(2004)

Statistical Shape

Model

Knee No Results

Fripp et al. (2007) Statistical Shape

Model

Knee Dice 0.94

Zhan et al. (2008) Appearance based

on combination of

2 MRI protocols

Pelvis Poor

Schmid and

Magnenat-Thalmann

(2008)

Shape Model plus

local deformation

Pelvis and fe-

mur

1.44± 1.1 mm = 1.81 mm RMS

Table 2.4: A summary of published results of bone segmentation from MRI. A minority the published

papers presented quantitative results.

Paper Method Application Result

Lamecker et al.

(2004)

Statistical Shape

Model

Pelvis 0.8 mm RMS Boundary erroor with

source image in model , 2.4 mm

with out.

Yao and Taylor

(2003)

Statistical model Pelvis 1.27 mm Average Boundary Error.

Chan et al.

(2004)

Statistical Model Pelvis 3.90 mm RMS Boundary Error

Schmid and

Magnenat-

Thalmann (2008)

Shape Model plus lo-

cal deformation

Pelvis and fe-

mur

1.44± 1.1 mm = 1.81 mm RMS

Table 2.5: Results for published work using shape models forsegmentation of the pelvic bone. These

are all based on CT data except for Schmid and Magnenat-Thalmann (2008) which is MRI based.
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• The shape statistics are calculated. By far the most common approach is principal component

analysis (PCA), though other methods have been proposed.

• The last step is shape model fitting.

The goal of this thesis is not to examine the various methods of constructing and applying statistical

shape models. The following text is an attempt to explain andjustify the shape modelling method that

was adopted.

Training Set Size

Statistical shape models are built on the shape variation observed across a training population. Therefore

the shape model can only be as informative as the training setused to build the model. In cases where

the shapes being modelled are simple, only a small training set is required. Returning to the example of

a sphere, the population could be fully parametrized using atraining set of two spheres of different radii.

In the case of medical images where the shapes can be complex alarger number of training shapes will

be required to properly describe the population variance. Mei et al. (2008) showed that in the case of 3D

face images, 150 training images were sufficient, whereas for the left ventricle of the brain, greater than

319 training images would have been required.

In practical cases the number of training images is generally constrained by the amount of data

available. There have been attempts (Cootes and Taylor (1995) and Koikkalainen et al. (2008)) to arti-

ficially enlarge the training set using finite element analysis. Unless these enlargement techniques have

a grounding in a physical phenomena, for example Hu et al. (2008) where the shape model describes

mechanical deformation due to a trans rectal probe, the enlargement amounts to little more than a re-

laxation of the shape constraints. As we have no physical basis for deforming the pelvic bone, artificial

enlargement of the training set is not considered further.

Defining Correspondence

Each shape in the training population must now be defined relative to each of the other shapes. Typically

an ordered set of points is defined on the boundary of each shape. Each shape hasn points, with pointni

defining the same point in each shape. For relatively simple shapes in 2D, as in (Cootes et al. (1994)), it

is practical to manually define a set of corresponding landmark points on the boundary of each shape in

the training population. As the shape becomes more complex alarger number of landmarks points (n) is

required along with a larger number (N ) of training images. This makes manual definition of correspond-

ing points impractical. Methods to automatically define corresponding are therefore an important area

of research for the development of practical shape models for medical imaging. One promising method

is the minimum description length approach presented by Davies et al. (2002). Using the minimum de-

scription length method automates the finding of corresponding points, however it remains necessary to

segment the shapes of interest from the training population. A promising alternative is the statistical

deformation model (SDM) (Rueckert et al. (2001)). Here the point to point correspondences are defined

automatically without the need to segment the training images.

The SDM method uses the deformations required to map each training image to a target image to
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define the correspondences. A registration algorithm is used to find the transformation of each training

image to a target image. Rueckert et al. (2001) use a b-splineregistration algorithm (Rueckert et al.

(1999)), though the SDM method should work with any registration algorithm. Once an average image

has been found the registration process can be repeated, using the mean image as the target, if desired.

The shape statistics are then calculated using the deformations to define the correspondences, rather than

points, hence the term statistical deformation model.

Calculating Shape Statistics

Each shape in the training set (ofN shapes) can now be represented by a vectorXi. In the following

we will only deal with the 3D case. For a model defined by point correspondences as for Cootes et al.

(1994) wheren corresponding points are defined in 3D, eachXi will be 3n units long. Similarly for a

model defined by deformation fields, each vector will be3n units long wheren now refers to the number

of vectors in the deformation field. The mean shape or mean deformation field is first found, as;

X̄ =
1

N

N
∑

i=1

Xi (2.1)

For each shape, or deformation field, the deviation from the mean is calculated as;

dXi = Xi − X̄ (2.2)

The covariance matrix for the training set can then be calculated as;

S =
1

N

N
∑

i=1

dXidXT
i (2.3)

The shape, or deformation field, variation seen in the training set can then be described by the eigen-

vectors of the covariance matrixS. The eigenvectors can be ranked according to their corresponding

eigenvalues. Eigenvectors with large eigenvalues correspond to modes of variation that account for a

significant part of the variation observed in the training set.

Shape Model Fitting

Any member of the training population can now be described bya weighted linear sum of the eigenvec-

tors. The coefficients of the weighted linear sum form a vector B. For an arbitrary shape (the target), not

in the training population, the shape model is “fitted” by finding the set of coefficients,B, that produce a

shape that best matches the target, according to some measure of similarity. It is common to truncate the

linear sum to only include a subset of eigenvectors, those with the largest eigenvalues. It is also possible

to set limits on the allowable coefficient values.

The shape model fitting forms an optimisation problem for which there are a great many different

solutions proposed in the literature. We elected to use NMI (Studholme et al. (1999)) as a similarity

measure due to its ability to compare images of differing modalities. We chose to use a differential

evolution optimiser (Price et al. (2005)) to fit the model. Wehave not attempted to benchmark these

methods against the other methods in the literature.

Some authors allow the fitted shape model to deform further after shape model fitting to fit local

edges, Schmid and Magnenat-Thalmann (2008) being one example. The effectiveness of this approach
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will vary greatly depending on the information content of the images being used. In general these ap-

proaches will have similar effects to the “training set enlargement” methods (Koikkalainen et al. (2008))

discussed previously.

2.4.3 Segmentation of Soft Tissue Targets from MRI

Segmentation of soft tissues presents similar challenges to segmentation of bone, along with the further

difficultly that soft tissues can deform. The bladder and therectum can change shape significantly

depending on their state of fill. The prostate itself has beenshown to translate rigidly and non rigidly

deform depending on the patient position [Fei et al. (2003b)]. Hoogeman et al. (2004) show that prostate

movement is about 2.4 mm if the general patient position is not radically changed and that prostate

position is dependent on the filling of the rectum. For these reasons, a preoperative segmentation of

these tissues from the MRI scan will only serve as a starting estimate of their intraoperative location.

MRI is generally acknowledged as a good modality for the delineation of soft tissue, studies by

Rasch et al. (1999) indicate that the prostate is shown more accurately in MRI than by CT. This indicates

that the soft tissues can be manually segmented from MRI data, the next stage is to investigate whether

they can be segmented automatically. Freedman et al. (2005)have shown some success using a patient

specific shape model to register the prostate and rectum overseveral scans (allowing the propagation of

a manual segmentation), while Tsai et al. (2004) present a framework for the incorporation of several

interacting shapes (prostate, rectum, and obturator muscles) into a single model. Both these studies

only use intra patient models and would need extension to inter patient segmentation to be of use for

the proposed guidance system. Using the bone shape segmentation from Section 2.4.1 to initialise a

shape model incorporating the relationship between separate soft tissues [Tsai et al. (2004)] it should be

possible in the future to build a system that can automatically segment relevant soft tissue from patient

MRI data. This however is not considered further in this thesis. The detection of nerve fibres from MRI

has not been investigated yet. Literature exists for imaging nerves, especially within the skull. It should

also be possible to present likely positions of nerve bundles based on the location of other segmented

anatomy.

2.5 Preoperative Planning

The existence of an accurate preoperative anatomical map will aid in the preoperative planning of the

procedure. Depending on the resolution of the preoperativemodel it should be possible to draw the

surgeons’ attention to unusual anatomy such as very large prostates that may alter the surgeons planned

approach [Tewari et al. (2008)]. Similarly, enlarged medial lobes have been highlighted as causing dif-

ficulty when cutting the prostate from the bladder. Where these changes may affect the operation time

suitable provisions can be made ahead of time. Similarly themodel could be used in a surgical simulator

to perform a trial run of the operation.

A popular research question in laparoscopic surgery is the optimal positioning of surgical tool

ports. In the case of thedaVinciTM system three bulky arms are competing for space above the pa-

tient alongside the laparoscopic tools of two assistants. If ports are not placed correctly situations can
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arise where the laparoscopic tools cannot access the patient anatomy. For urology surgery there are

no bones in the way to constrain the placement of ports however the port planning procedure is not

trivial. Adhami and Coste-Maniére (2003) demonstrate the use of existing robot planning software for

daVinciTM based heart surgery, where the choice of port locations is constrained by the rib cage. Their

method relies on an accurate model of the patient anatomy to enable simulation of the pivoting motion

of the various laparoscopic arms.

2.6 Registration (TM⇒ES)

This section deals with several of the technologies that arecore to an endoscope based image guided

surgery system. In essence our image guidance system takes apoint in the preoperative MRI and

projects it onto the endoscope screen usingTM⇒ES . This section introduces various methods to de-

termine a transform from preoperative images to a video screen. This can be done in one of two ways.

Firstly the transform can be determined directly using landmarks visible in both the video image and the

preoperative image. Secondly the preoperative image can first be put into the coordinates of a tracking

system, using a transform equivalent toTM⇒O. The transformed points can then be projected onto the

video screen using a transform equivalent toTO⇒ES . The first approach requires that sufficient anatomy

is visible on the video screen to perform the registration. As will be seen there are several applications

where this is the case. In Chapter 6 we also use this approach based on the visible inner surface of the

pubic arch, which becomes visible reasonably early in the procedure, see Figure 2.3. However in order

for the system to be operational earlier than this we have adopted the second approach. The remainder

of this chapter is divided into three sections. The first looks at direct methods to determineTM⇒ES ,

the second at methods to determineTM⇒O, and the third section looks at ways to determineTO⇒ES .

Although we refer to the Optotrak, MRI, and an endoscope in our transformation definitions it should be

noted that we have not limited the literature review to systems that use this hardware.

2.6.1 Direct Registration (TM⇒ES)

Provided the intrinsic parameters of the endoscope are known and the anatomy visible through the endo-

scope provides sufficient registration points it is possible to register a preoperative model to the intraop-

erative endoscope view directly. This has the significant advantage that it does not require any tracking

of the endoscope, which as will be shown in Chapter 5 is a significant source of error. Mori et al.

(2006) demonstrate this for a bronchoscopy (where the anatomy is well defined and largely static).

Skrinjar et al. (2000) use a surface derived from a stereo image of the brain to register a preoperative

brain model. If the endoscope’s “intrinsic” projection characteristics are known it is possible to track the

anatomy using either a set of visible landmarks, implanted fiducial markers, or by extracting a surface.

Stefansic et al. (2000), and Ukimura and Gill (2009) both useimplanted fiducial markers to track moving

tissue. The drawback of this approach is that if registration to preoperative data is required the markers

must also be visible in the preoperative data. This would necessarily be an invasive procedure. Several

groups have demonstrated the tracking of surfaces using either mono or stereo endoscopes,[Hu et al.

(2002),Visentini-Scarzanella et al. (2009),Cash et al. (2005)]. If these surfaces are also present on the
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(a) Not Aligned (b) Aligned

Figure 2.15: Once the inner surface of the pubic arch becomesvisible it is possible to use it to manually

align the preoperative data to the visible anatomy. The set of lines overlaid on these images represent a

set of points manually segmented on the pubic arch of the preoperative data. The centre line is shown

and the most distant point matches the prostate apex. Provided that the starting estimate is reasonable

manual alignment can be achieved in less than a minute.

preoperative data then direct registration should be possible.

In Chapter 6 we use a surface to surface registration procedure to perform a direct registration.

Figure 2.15 shows the registration procedure using the visible inner surface of the pubic arch. This is

not ideal as it prevents image guidance earlier on in the procedure, and is also difficult to estimate the

accuracy of this procedure. Therefore we have favoured using a two stage tracking approach.

2.6.2 RegistrationTM⇒O

There are many ways to perform the registration of the preoperative data to the intraoperative space, in

most cases two steps are required. The patient (or a set of points attached to the patient) must be localised

in the intraoperative space, then the preoperative data must be registered to this.

The most widespread method for registration is the use of fiducial markers. These are attached to

the patient prior to the preoperative imaging and kept in place during the procedure. They define a set

of points that can be seen on both the preoperative and intraoperative data and can thus be registered.

The most commonly used registration method is the orthogonal Procustes formulation and singular value

decomposition, [Fitzpatrick et al. (2000)]. The main advantage of this method is that an analytic solution

exists, enabling rapid and robust registration. Another advantage is that the accuracy of the method is

well studied [Fitzpatrick et al. (1998),Wiles et al. (2008)] allowing the likely error at the clinical target

to be estimated. However it requires that fiducial markers can be placed in such a way that they do not

move in relation to the clinical targets between imaging andsurgery. In neurosurgery or orthopaedic

surgery where this form of registration is widespread this is possible by screwing markers into the skull

or bone, [Stefansic et al. (2000); Fried et al. (1997)]. In theory similar markers could attached to the

patient’s pelvis for urological surgery. This however makes the image guidance system quite invasive,

limiting its acceptance by the patient and/or surgeon. Fiducial markers attached to the skin could also
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be used. However as the skin moves during insufflation these may not be very accurate. We therefore

decided to avoid the use of fiducial markers, at least until any benefit they may or may not have can be

properly determined.

The alternative to the use of fiducial markers is to use a second imaging modality that can be

localised in theatre to image the patient’s anatomy directly. The intraoperative images can then be

registered to the preoperative images using an image to image registration method. There are several

imaging modalities that are suitable for use during the intervention. These include radiography and cone

beam CT [van de Kraats et al. (2005)], intraoperative MRI [Bharatha et al. (2001); Fei et al. (2003b);

Warfield et al. (2000a); Fei et al. (2003a)], or ultrasound [Penney et al. (2006); Aylward et al. (2002);

Porter et al. (2001); Leroy et al. (2004); Shao et al. (2006)]. Use of intraoperative CT or MRI requires

large equipment that simply would not fit into our operating theatre alongside thedaVinciTM robot.

Therefore they are not considered further here.

We elected to use tracked ultrasound to image the patient as the system is small in size and compati-

ble with thedaVinciTM . It is also known that the pelvic bone can be imaged with b-mode ultrasound and

registered to CT images of the bone [Penney et al. (2006)]. Hoogeman et al. (2004), Fei et al. (2003b)

and Bharatha et al. (2001) all discuss the fact that the prostate will move relative to other tissues under

various conditions. None deal with the specific conditions present on RARP and preoperative plan-

ning. However the point is that the position of the modelled prostate will not coincide with the observed

prostate in surgery. Whilst we know that the prostate will move in relation to the pelvic bone, we expect

that this movement will be small in comparison to our total system error. The apex of the prostate is

closely coupled to the pelvic bone, so should not move excessively. The rest of the prostate is known to

rotate about the apex based on the filling of the bladder and rectum. During prostatectomy these are both

empty, so providing the MRI is also taken at the empty stage, the preoperative and intraoperative posi-

tions should be close. The geometry of the pelvic bone is nearly ideal for localising the prostate. When

designing configurations of fiducial markers for registration the design goal it to have the clinical target at

the centroid of the fiducial markers with large moments of inertia about the centroid [West and Maurer Jr

(2004)]. With the prostate near its centre and iliac crests providing large moment arms the pelvic bone

meets these criteria.

Using a tracked b-mode ultrasound probe creates a series of slices and their measured location in

space. The pixels of each slice can be transformed into a set of points in three dimensional space relative

to the tracking device or an arbitrary reference usingTUI⇒O. These points can be regarded as an image

of the patient that can be registered to the preoperative data. As shown in Figure 1.3,TUI⇒O can be

broken into three separate transforms.TUI⇒UP andTUP⇒UT define the ultrasound probe and tracker.

They are analogous to the intrinsic and extrinsic parameters of a tracked endoscope and are similarly

found using a calibration procedure.TUT⇒O is the tracking transform and is found using a tracking

system. The next two sections discuss these transforms.



60 Chapter 2. Literature Review

Paper Method Results

Prager et al. (1998) Cross Wire Phantom 1.65 mm Reconstruction Error

Prager et al. (1998) Three Wire Phantom 2.67 mm Reconstruction Error

Prager et al. (1998) Single Wall Phantom 3.43 mm Reconstruction Error

Prager et al. (1998) Cambridge Phantom 2.17 mm Reconstruction Error

Barratt et al. (2006) Point Based Calibration 0.6 mm localisation error

Barratt et al. (2006) Registration TRE for whole Pelvis

with static Calibration

3.96 mm

Barratt et al. (2006) Registration TRE for whole Pelvis

with Optimised Calibration

2.17 mm

Barratt et al. (2006) Percent Reduction in TRE 45%

Penney et al. (2006) Registration TRE for whole Pelvis

with static Calibration

2.13 mm

Penney et al. (2006) Registration TRE for whole Pelvis

with Optimised Calibration

1.63 mm

Penney et al. (2006) Percent Reduction in TRE 23 %

Table 2.6: Three sets of published results for ultrasound calibration. The first four rows show that the

type of calibration phantom will impact the accuracy of the calibration. The results shown are based

on imaging the same point from a large range of angles. These results are not comparable with the 0.6

figure in row five as the methodology used to determine it was quite different. The large improvement

shown in the registration TRE in rows 6 to 8 is based on resultsfor the whole pelvic bone on 3 cadaver

data sets. The last 3 rows show similar work using self optimising ultrasound calibration, using the same

data set but different registration methods.

Ultrasound Calibration (TUI⇒UP andTUP⇒UT )

In order to create the 3D volume and register it to the patient, it is necessary to calibrate the ultrasound

probe with respect to the tracking infra red emitting diodes(IRED) attached to it. Numerous methods

exist for performing this calibration [Prager et al. (1998)]. Many groups have come up with ways of

performing calibrations using custom phantoms that are quicker/easier/more accurate etc. In general,

however, the calibration accuracy is of the order of 1 to 2 mm,see Table 2.6

Barratt et al. (2006) note that calibration methods that usea phantom to calibrate the probe prior to

use will suffer inaccuracy when applied to actual patients due to differences in the acoustic properties of

the fluid baths used to perform the calibration and the actualpatient anatomy. They demonstrate a method

to overcome this by building the calibration parameters into the registration optimisation. Penney et al.

(2006) implement a similar method by including a speed of sound scaling parameter into the registration

optimisation. Table 2.6 shows both their results based on the improvement in TRE over the whole pelvic

bone. These suggest that registration using the pelvic bonewill incur an error in the order of 1 mm due

to acoustic differences between the phantom and the patient. The discrepancy between the results of
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Penney et al. (2006) and Barratt et al. (2006) indicates thatthe exact size of this error will depend very

much on the registration method used.

Unfortunately the self calibration methods developed by Barratt et al. (2006) work under the as-

sumption that the error due to calibration parameters formsthe bulk of the registration error. The actual

registration is performed using manually segmented pointsand surfaces from CT. It is implicitly as-

sumed by Barratt et al. (2006) that the manual segmentation error is negligible in comparison to the er-

rors due to the incorrect acoustic parameters. Here we are proposing to use a model constrained method

for segmentation of pelvic bone from MRI, see Section 2.4.1.Based on the results shown in 2.4.1, we ex-

pect that the segmentation errors will not be negligible. Attempting to use the self calibration procedure

proposed by Barratt et al. (2006) may lead to incorrect acoustic parameters being fitted to accommodate

errors in the segmentation. This is not desirable. Penney etal. (2006) do not use a manual segmentation

of either the ultrasound or CT data. Both image sets are processed to ”bone edge probability” images,

effectively a probabilistic segmentation. They then optimise the acoustic parameters under the assump-

tion that there is negligible shape error in the bone edge probability images. As discussed above, this is

not the case for our segmentations.

Ultrasound Probe Tracking (TUT⇒O)

Numerous methods for tracking ultrasound probes have been reported in the literature, including;

• Optical tracking systems, [Barratt et al. (2006); Lalonde et al. (2003); State et al. (1994)].

• Electromagnetic systems, [Aylward et al. (2002)].

• Mechanical or kinematic tracking or control, [Leven et al. (2005); Porter et al. (2001); Taylor et al.

(2005); Shao et al. (2006)].

Electromagnetic systems can perform erratically when in the vicinity of metallic objects and electric

motors. Kwartowitz et al. (2009) reported poor results whenthey attempted to use one in conjunction

with a daVinciTM . Mechanical systems are generally used when the motion of the probe is quite

simple, for example TRUS systems where the probe moves in onedimension only. Construction of a

mechanical system for scanning the whole pelvis would be quite difficult. Optical tracking has been used

extensively for image guided surgery and are known to have good accuracy and reliability. [Penney et al.

(2006); Barratt et al. (2006); State et al. (1994); King et al. (1999); Barnes et al. (2007)]. Therefore such

a system will be used for tracking here. The accuracy of tracking using an optical tracking system will

vary with the system used and the conditions it is used under.Dey et al. (2002) quote mean tip localising

error of 1mm with a standard deviation of 0.3 mm. Housden et al. (2006) notes that the Polaris tracking

system suffers from low accuracy for small movements. Most papers quote an error in terms of the tip

or endoscope localisation error. As noted by Fitzpatrick etal. (1998) such an error depends not only

on the accuracy of the tracking system in tracking a specific marker but also on the geometry of the

markers with respect to the point of interest. For the Optotrak Certus system that will be used in this

study (because it meets the requirements above and one is available) three published sources have been

found that give an actual marker tracking error. These are shown in table 2.7. Barnes et al. (2007) gives
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Paper Method Result

King et al. (1999) Unknown 0.2 mm

Barnes et al. (2007) Tracking of IRED mounted on mi-

crometre stage

0.02 RMS

NDI (1992) Unknown (NDI system specifica-

tion)

0.2 mm RMS

Table 2.7: A selection of published figures for the tracking accuracy of the NDI Optotrak system.

a detailed account of how the error was determined. The figureshown in the table is the systems ability

to localise a static IRED. They reported a higher figure when the tracked object was moving, due to

the timing accuracy of the system. The range of motion and angles covered by the IRED they track is

however very small in comparison to the motion we will require (they move the IRED over1cm2. Whilst

Wiles et al. (2004) does not provide a quantitative value forthe tracking error they do demonstrate that

the IRED tracking error is anisotropic (it is larger along the direction normal to the lenses of the tracking

cameras) and dependent on the angle of the IRED to the lens’ normal and the position of the IRED within

the characterised volume of the Optotrak. This makes it likely that the errors we will experience will be

greater than those reported by Barnes et al. (2007).

If the IRED tracking errors are known then it will be possibleto estimate the tracking error at

the centre of the ultrasound slice, either using an isotropic formulation Fitzpatrick et al. (1998) or an

anisotropic formulation Wiles et al. (2008). Both papers also assume that the IRED tracking errors

are normally distributed and independent along each axis. However if the errors are dependent on the

position, angle and speed of the IRED then both these assumptions will be violated when IRED tracking

errors are sampled over a range of positions. In order to properly estimate the tracking error for the

ultrasound probe a better estimate of IRED tracking error than is available in the literature is required.

The effect of the assumptions made by Fitzpatrick et al. (1998) and Wiles et al. (2008) can then be tested

against numerical (Monte-Carlo) methods. This is dealt with in Chapter 5.

Using the above methods to determineTUI⇒O allows us to form a sparse ultrasound image of the

patient in the coordinate system of the tracking system. FindingTSM(nrr)⇒UI will now allow us to put

the preoperative MRI into the same coordinate system.

Throughout the above discussion the assumption has been made that the patient’s pelvic bone will

not move during the operation. This is based on observation of RARP procedures with our clinical

partner. If this turns out to not be the case a strategy to account for patient movement will also need to be

developed. This could be quite easily done by drawing markerpoints onto the patients skin and tracking

their motion periodically throughout the procedure.

Ultrasound to Preoperative Image Registration(TSM(nrr)⇒UI)

Image to image registration is the process of finding a transformation of one image to another that

maximises some measure of similarity between the two images. There are two broad classes of im-
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age to image registration methods in the literature, intensity based methods and feature based methods

[McLaughlin et al. (2005)]. Lying between methods that can be classified as pure intensity or feature

based there exists a range of methods that could be describedas hybrids of the two. Intensity based

methods have the advantage that they are generic, no knowledge is required of the actual image content.

However, it is necessary for a relationship to exist betweenthe intensity profiles of corresponding fea-

tures in each image. They are most effective when registering two images of the same modality, though

they will also often work on images from different modalities. Maes et al. (1997) demonstrate the use of

mutual information to perform rigid registration between MRI and CT images.

Feature based methods first extract a set of features from theeach of the two images. The im-

ages can then be aligned by minimising a distance measure between corresponding features. Assuming

corresponding features can be extracted from each image, this method is independent of the imaging

modalities used. The main drawback of feature based methodsis that the registration accuracy is limited

by the accuracy of with which the features can be found. For some image types this can be very low.

Furthermore, the features used will be specific to the anatomy being registered, requiring prior knowl-

edge of the type of features likely to be present. For example, Porter et al. (2001) extract tubular features

(urethra and seminal vesicles) from both MRI and ultrasound. Bharatha et al. (2001) use the prostate

centroid to rigidly register two MRI images.

For registering ultrasound slices to pelvic bones several authors have shown that the CT and ultra-

sound data can be registered directly using a simple transformation of the intensity values in both images,

[Penney et al. (2006); Leroy et al. (2004)]. For cases where the preoperative image is MRI based the ma-

jority of papers do not perform registration directly between the MRI and ultrasound images. The MRI

image is usually first segmented to create features that can be used for registration. We have effectively

done this in Section 2.4.1. Aylward et al. (2002) register ultrasound images to a preoperative model

showing segmented vascular anatomy, in this case they have segmented the anatomy from CT data, how-

ever, reference is made to performing the same procedure using MRI data. Porter et al. (2001) segment

tubular anatomy (urethra and seminal vesicles) from a phantom MRI, then register these to the same

anatomy segmented from ultrasound. Similarly, Lalonde et al. (2003) manually segment bone surfaces

from MRI and ultrasound and register these. Maurer et al. (1999) do similar, registering A-mode ultra-

sound to bone surfaces manually segmented from MRI. Shao et al. (2006) manually segment the inner

surface of the pelvis and register ultrasound data from a TRUS probe to this, they compare the use of

three different similarity measures to perform this registration. In contrast to methods requiring segmen-

tation of the MRI data, Penney et al. (2004) register ultrasound to MRI without requiring segmentation.

Both ultrasound and MRI images are preprocessed to give a “vessel probability image” which for the

case presented (liver) shows the probability of the voxel ofinterest containing a vessel. These probability

images are then registered, with some success.

We now have a proposed method for putting the MRI into the coordinates of the tracking system

(TM⇒O). This is made up of three discrete transforms. The method wehave chosen is very similar to

that of Penney et al. (2006) so it is reasonable to assume thatthe error in placing the MRI into the tracker
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Paper Method Result

Penney et al. (2006) Ultrasound to CT Cadaver Pelvis 1.63 mm Ave. RMS TRE

Barratt et al. (2006) Ultrasound to CT Cadaver Pelvis 2.17 mm Ave. RMS TRE

Aylward et al. (2002) Ultrasound to CT Phantom 2.3 Mean TRE

Lalonde et al. (2003) Manually segmented Ultrasound to

MRI on patient pelvic bones

2.6 mm Translation1.5◦ Rota-

tion

Maurer et al. (1999) Ultrasound to CT Phantom Skull 1.00 mm Mean TRE

Shao et al. (2006) Ultrasound to Manually Segmented

MRI Pelvis (inner pubis) Patient

Data

1.87 mm Mean Translation

2.55◦ degrees mean rotation er-

ror (compared with self registra-

tion)

Penney et al. (2004) Ultrasound to MRI Patient Liver

(moving)

3.66 RMS TRE

Table 2.8: Published results for registrations based on matching ultrasound data to preoperative images.

With the exception of the first two rows none of the results aredirectly comparable as the size of the

objects used for TRE calculation differs or different errormeasures are used. However it appears that for

pelvic registration using ultrasound, a TRE for the bone surface of less than 2 mm should be achievable.

coordinate system will be similar, around 2 mm. The next taskis to project the MRI onto the screen of

the endoscope usingTO⇒ES .

2.6.3 Endoscope Tracking and Calibration (TO⇒ES)

Transforming points from the tracking system’s coordinatesystem into points on the endoscope screen

involves two transformations found by endoscope calibrationTET⇒EL andTEL⇒ES and and endoscope

tracking transformationTO⇒ET . The next two sections deal first with the calibration procedure, then

with the tracking. Although thedaVinciTM endoscope is stereoscopic we have decided to treat only one

channel at present. In theory it should be possible to repeatthe calibration for the second channel to

achieve a stereoscopic projection.

Endoscope CalibrationTET⇒EL andTEL⇒ES

Endoscope calibration is a well studied procedure. Calibration can be achieved by viewing a calibration

object of known geometry, typically a grid of some description. The endoscope is typically modelled as

a pinhole with four intrinsic parameters (focal length in two directions and a principal point) together

with some radial and tangential distortions. ThedaVinciTM endoscope is corrected so does not suffer

from the large radial distortions seen in some endoscopes, however we have kept them in our model to

allow for generalisation to other endoscope types. Paul et al. (2005), Dey et al. (2002) and Shahidi et al.

(2002) each describe calibration procedures that could be utilised for this study. The method described

by Mourgues and Coste-Maniére (2002) applies the method developed by Zhang (1999) to the specific
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case of thedaVinciTM stereoscopic endoscope, extending the method to the stereocase and achieving an

error due to the intrinsic parameters of around half a pixel.In Chapter 5 we have used a fully automatic

formulation of Zhang (1999) method, freely distributed by Wengert et al. (2006). King et al. (1999)

show that camera calibration accounts for only a small amount of error in an image guidance system

with RMS errors around 0.3 mm. This is small compared to the likely errors in bone segmentation,

ultrasound based registration and tissue motion. For the RARP two endoscope lens are used, one is

straight and the other angles the lens at30o. Therefore two calibrations are required. It is also noted that

the surgeon occasionally adjusts the endoscope focal length during the procedure. Clearly this would

invalidate our determination ofTEL⇒ES . However, the adjustment made is small, so we believe that

the error induced will be small in comparison to other systemerrors. If this is shown not to be the case

then Stoyanov et al. (2005) propose a method for automatic recalibration of the endoscope during the

procedure to allow for changes in the endoscope focal lengthby the surgeon.

Endoscope tracking (TO⇒ET )

Two methods present themselves for tracking the endoscope.One is to use the same tracking system as

for the ultrasound tracking. This would involve attaching aset of IREDs to thedaVinciTM endoscope.

This won’t be discussed further here as tracking using the Optotrak has already been discussed in Section

2.6.2. We could find no literature discussing tracking thedaVinciTM endoscope in this way, though

tracking endoscopes in this way is commonplace [Shahidi et al. (2002)].

The more commonly used approach is to use thedaVinciTM in-built kinematic data [Leven et al.

(2005)]. This has the advantage that no IREDs are required tobe attached to the endoscope. However

it has two drawbacks. Firstly, as the MRI data has been placedin the coordinate system of the Opto-

trak, use of thedaVinciTM kinematic data would require an additional transform from the daVinciTM

coordinate system to the Optotrak coordinate system, introducing an additional source of error. The

second drawback is that based on the published literature the daVinciTM kinematics have limited accu-

racy. Mourgues and Coste-Maniére (2002) had limited success with this, with the error due to inaccurate

tracking of the endoscope being around 4 pixels on screen. Kwartowitz et al. (2009) present the best

results that we have found to date using thedaVinciTM kinematics (for tracking the instruments rather

than the endoscope). They realised that the bulk of the errors in the kinematic system result from the

passive joints that are adjusted manually during equipmentset up. By combining optical tracking of the

passive joints with kinematic tracking of the active jointsthey achieved errors at the tool tip of 1.39 mm.

It should be possible to achieve this error or less using justoptical tracking, so our intent is try and track

the endoscope using attached IRED. If this can’t be done for technical reasons we may investigate the

use of thedaVinciTM kinematic data.

2.7 Continuous Model Update

As mentioned in the previous section the soft tissues in the model are unlikely to be aligned with the

soft tissues of the patient due to non rigid motion in betweenthe preoperative MRI and the operation.

The system we are proposing does not account for this motion,the surgeon is required to mentally



66 Chapter 2. Literature Review

compensate for this motion. However there are methods in theliterature that could be used to update a

patient specific model to account for soft tissue deformation in near real time. We review some of these

methods here to see what directions our system could take in the future.

As discussed in Section 2.6.1 there are several methods for extracting surfaces from endoscopic

video, for example Mountney et al. (2006) and Hu et al. (2007). Another rich source of data may come

from simultaneously tracking thedaVinciTM end effectors, either using the endoscope vision or the

daVinciTM kinematics. Kuhnapfel et al. (1999) demonstrate how the motion of end effectors can be

used to predict tissue motion in a surgical trainer. Lin et al. (2005) demonstrate the use of the daVinci

kinematics to track the end effector motions and interpret the surgical action. Matching the two would

provide a prediction of the anatomical motion that can be compared with the anatomical motion observed

through the endoscope. A useful outcome of this process would be the existence of a surgical simulation

model in parallel to the actual procedure. Should the surgeon wish to test their next move prior to

executing it they could temporarily switch to operating only on the simulation.

The next step is to classify the visible surfaces based on thepreoperative model and deform the

model. The preoperative model could be continuously updated to reflect the observed position of rele-

vant anatomy during the procedure. Similar ideas have been presented by Warfield et al. (2000b). The

updating of the model will depend on the observed anatomy andon the material properties assigned to

the model components. These properties will vary throughout the model and throughout the operation.

Parts of the model will be very stiff and rigidly positioned (pelvic bone). The prostate itself will require

both a degree of elasticity and its allowed movements will change as it is excised. Initially it will be

fairly tightly connected to the inner surface of the pelvic bone, but as the operation progresses it will

become free to move. Material properties may also include expected visual appearance of organs based

on prior knowledge to aid in their classification.

An iterative process will be required to match the observed anatomy with the deforming model,

probably borrowing fast finite element modelling (FEM) solvers and graphics processing unit (GPU)

implementations from the field of surgical simulation [Bro-Nielsen (1996)].

2.8 Surgeon Interface / Surgeon
Presentation of the preoperative information and allowingthe surgeon to control what is displayed is

crucial to the acceptance of a surgical guidance system. A large body of literature exists looking at

different ways to present information to the surgeon. Some interesting papers are [Paul et al. (2005);

Dey et al. (2002); State et al. (1994)]. We have intentionally kept our interface and display as simple

as possible. More sophisticated interfaces could then be benchmarked against this. From studies for

surgical simulation we know that visual updating must be achieved at at least 30 Hz to be perceived

as smooth. It is possible that in the near future haptic feedback will become available on thedaVinci

[Guthart and Salisbury (2000)], if this was the case then thepossibility of using haptic signals to guide

the surgeon should also be explored. In this case the refreshrate required is much higher, around 500 Hz

[Goksel et al. (2005)].

Communication with the system could be achieved either via an auxiliary control pad, voice control,
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or using gestures on the existing end effectors. It will be necessary to selectively mask model anatomy,

depending on the stage of the operation. This could be determined prior to the procedure and/or interac-

tively defined by the surgeon during the procedure.

2.9 Summary
From the preceding discussion it is clear that there are manyopportunities for useful research in the field

of image guided surgery. Many groups have presented prototype systems that present nice overlays of

segmented anatomy. However these systems are not in use in practice and the clinical benefit of the

various components cannot be demonstrated. Our aim is to develop a basic guidance system that can

be used on a significant number of patients with minimal requirement for additional labour. Coupled to

developing the system we will develop a robust understanding of the system errors and the sources of

these errors.

The next three chapters deal with three separate error sources. Chapter 3 deals with errors due to

preprocessing the MRI, (findingTSM⇒M ). Chapter 4 deals with errors in registering the processed MRI

to the in theatre tracking system (findingTUI⇒O). Chapter 5 deals with errors in projecting the regis-

tered anatomy onto the endoscope screen (findingTO⇒ES). The combination of these three transforms

provides a minimalist guidance system, that if properly understood can form a building block for ever

more ambitious approaches. This is followed by a chapter detailing our experience of using the system

in practice. This focuses on the surgeons experience of the system and should be used to inform our next

steps.
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Chapter 3

Segmentation of Bone from MRI

3.1 Introduction

As discussed in the preceding chapters we are planning to register the preoperative MRI in theatre using

ultrasound images of the bone. In order to do this we plan to pre-process the MRI image to better delin-

eate the bone. In T2 weighted MRI images cortical bone is visible as a dark band around the trabecular

bone tissue. However the thickness of the band varies and there are other tissues that have similar in-

tensity. Segmentation of bone therefore requires analysisof not just individual voxel intensities but also

the surrounding voxels. In this chapter we detail our algorithm for warping a CT image from a second

patient to fit the MRI image of the prospective prostatectomypatient. The algorithm described is an inter-

patient, cross-modality, non-rigid registration for the pelvis. No published accounts of similar algorithms

have been found. The registration algorithm is constrainedusing a statistical shape model of the adult

male pelvis. The warped CT can either be converted to a bone segmentation using an intensity threshold

or used directly for registration to ultrasound images. In addition to describing the algorithm we have

attempted to quantify the registration error at the prostate due to using the algorithm as opposed to tak-

ing a CT scan of the prospective patient. Although the algorithm has been developed for image guided

surgery it could also be used for bone segmentation for osteoarthritis (Schmid and Magnenat-Thalmann

(2008)) or in radiotherapy planning (Boettger et al. (2008)).

By using a shape model we ensure that the fitted CT image represents a realistic pelvis, however

we expect there will be an error due to the difference betweenthe shapes allowed by the shape model

and the actual shape of the patient’s pelvis. We quantify this error in three ways. Firstly as a point to

closest point on surface distance. This is useful for comparison with other results. Secondly we use the

segmented bone shape in simulated registration experiments to estimate the error as a registration error

at the prostate surface. Finally we convert registration error at the prostate to an on screen error on the

surgeon’s console.

3.2 Segmentation Algorithm

Maes et al. (1997) demonstrate that by using a suitable imagesimilarity measure to drive the optimisation

it is possible to register MRI images to CT images with a rigid(6 degree of freedom (DOF)) transform

when the underlying anatomy is the same, that is rigid intra-subject registration. In our application we
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do not have CT data of the patient to register to the MRI. The algorithm we propose will register CT

from another patient to MRI image of the prospective RARP patient. To achieve a accurate match the

registration will be non rigid, allowing the CT data to warp to best match the MRI. Thus we have a non

rigid multi-modality inter patient registration. As it is multi-modal we will use NMI [Studholme et al.

(1999)] as the similarity measure to drive the registration. As discussed in Section 2.4.1 the non rigid and

inter patient nature of the segmentation means that strong regularisation is required to keep the fitted CT

realistic. Therefore we use shape constraints derived fromthe shape differences observed in a training

set of 21 adult male CT pelves, ie a statistical shape model.

3.2.1 Shape Model Construction

Data

CT scans of adult male pelves were available from a previous study in orthopaedic surgery. The patient

demographics for this study are similar to what would be expected for prostate surgery. Hence we have

used this data to build a shape model. The details of the 21 data sets used are given in Appendix A. Each

data set has been given a unique alphabetic identifier, from SM-A to SM-U.

Affine Registration

The 21 data sets were manually inspected. A data set that appeared to lie near the average shape was

chosen (SM-K1) and the remaining data sets were aligned to it. 9 degrees of freedom were used for the

alignment (6 rigid degrees of freedom and scaling in three directions). The alignment was done using a

using a gradient descent optimiser using NMI as the image similarity measure. As this registration was

intra modal (CT to CT) it was not strictly necessary to use NMIas the similarity measure. However, as

it is used later to perform inter modal registrations it was used here as well.

The volumes were tri-linearly interpolated to provide a common voxel size across all data sets.

Common voxel size is required due to the choice of registration algorithm used to define the correspon-

dences for the SDM. The deformation fields used to define the correspondences for the SDM must be

defined in the same coordinate system. The registration algorithm used, see below, defines the defor-

mation field per voxel. Therefore all the CT images must be thesame size and have the same voxel

dimensions.

Defining Correspondence

The SDM uses correspondence between the individual voxels of the training set images to define the

shape variation. The training set images were first transformed to a common coordinate system, using

the affine alignment described above. Voxel to voxel correspondences of the transformed images were

found using a voxel-wise non rigid registration algorithm.One of the training data sets (SM-U) was

chosen as the target image, and the remaining data sets were registered to it using a diffeomorphic non-

rigid registration algorithm [Crum et al. (2005)]. At this stage the accuracy of both the affine and non

rigid registrations were checked visually.

Data set SM-U was chosen as the target image because the models built with it gave the best seg-

1See Appendix A for details of the data used.
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mentation results when used in the leave one out testing thatfollows in this chapter. We do not know

why SM-U makes a better target image, though we assume that itis closer to the model average than the

others and so it is easier to register the remaining shapes toit. A more correct approach would to be to

create an average shape, then repeat the registrations using the average as the target image. We did not

do this here for the following reason. We are going to use leave one out testing to test the performance

of the model, that is, for each data set we are going to build a model with the remaining 20 data sets and

fit the model to the left out data set. As every model would havea slightly different average shape the

non rigid registrations used to build the model would also bedifferent, requiring us to manually check

420 non rigid registrations. By using the same target shape throughout only 21 non rigid registrations

require checking, allowing a practical validation. Furthermore, in the context of the system wide errors,

the accuracy gained by using the average shape for registration is very likely to be negligible.

The non rigid registration algorithm [Crum et al. (2005)] outputs a 3D deformation vector for every

voxel that defines how to warp the source to the target image. We concatenate the individual voxel

vectors into a single vector of dimension3 × Nvoxels. We have 21 such vectors, one of which is a zero

vector generated by registering the target image to itself.These 21 vectors form the basis of our SDM.

As we are only interested in the registration of the pelvic bone we apply a mask to these deformation

vectors so that any voxels that do not lie within 6mm of the pelvic bone are removed. The mask was

based on a manual segmentation of data set SM-U. The mask leaves over 1.7 million voxels active, so

each of the 21 vectors has over 5 million dimensions.

Principal Component Analysis

We now construct a statistical deformation model by finding the eigenvectors and corresponding eigen-

values of the covariance matrix of these masked deformationvectors. This would typically be done

using singular value decomposition. However the high dimension of the vectors makes it impractical

to perform singular value decomposition (SVD) on the resulting very large covariance matrix. For-

tunately an alternative method for finding the eigenvectorsis described by Cootes in Chapter 7 of

Baldock and Graham (2000). An average deformation vectorX̄ is first calculated. The average deforma-

tion vector is subtracted from each of the 21 deformation vectors (Xi). The 21 normalised deformation

vectors then form the columns of a 5170869 by 21 matrixD as in equation 3.1.

D = ((X1 − X̄), ..., (X21 − X̄)) (3.1)

Now define a matrixT , as in equation 3.2.

T =
1

21
DTD (3.2)

T is a 21 by 21 matrix, whose eigenvectors and eigenvalues can be found readily by SVD. Givenei, the

eigenvectors ofT , the 21 eigenvectors of the full covariance matrix are givenby Dei and the eigenvalues

are the same as those ofT .

The eigenvectors of the covariance matrix are ranked in descending order of their eigenvalues, and

these form a statistical model of the deformations observedin the training set. The 21 data sets used



72 Chapter 3. Segmentation of Bone from MRI

Figure 3.1: Shown here is a single slice of T2 weighted MRI. Three example profiles have been made

across the bone edge. The vertical lines across each profile indicate our estimate of where the bone edge

lies. Even within this single slice the intensity profiles across the edges are variable. Across the full

pelvic bone and between different patients we expect even greater variance. Hence our decision to use

shape constrained registration.

will not cover the full range of shapes possible for adult male pelves, so using this shape model for

segmentation will result in a segmentation error that will manifest as a registration error at the prostate

in the complete guidance system.

There are many strategies in the literature for modifying shape models to achieve higher segmen-

tation accuracies in spite of incomplete training data, Koikkalainen et al. (2008) being a good recent

example. However they all amount to a lessening of the shape regularisation provided by the model to

allow freer deformation. Another common approach is to use the shape model as an initialisation to a

free non rigid registration. This will work well in situations where the model is necessary to find the right

edges across the whole image, but boundaries are well definedlocally. When images are noisy or, as in

our case, the images to be matched are from different imagingmodalities this reduction in regularisation

can lead to a poorer registration as the free registration moves to the wrong edges. Figure 3.1 gives an

example of the intensity profiles across the bone edge in three positions on a single slice of T2 weighted

MRI. Even at this local level the intensity profile at the boneedge varies significantly across the image.

We believe therefore that trying to optimise the segmentation by relaxing the shape constraints will have

limited success.

A further danger of adding a relaxation stage occurs when, asin our case, a small number of

validation data sets is available. At present we are testingour algorithm on only four MRI data sets.

With enough variables in the algorithm it would be possible to optimise the algorithm to achieve better
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results than we report here. With only a small validation data set however this could be due to an over

optimisation of the segmentation parameters, rather than an improved algorithm. The results may not be

repeatable on a larger data set. Therefore rather than investigate ways to fine tune the model performance

we have instead tried to keep the model simple and to quantifythe size of the registration error due to

using the model. If this error is significant we could seek to improve the algorithm when we have a large

and more varied validation population.

3.2.2 Model Fitting

With the model defined it can now be fitted to an individual dataset, referred to here as theTarget.

This is done as follows. TheTarget data set is first transformed to the shape model mean shape using

TSM⇒M [nd9]−1 from Figure 1.2, to giveTargetSM . The affine transformTSM⇒M [nd9]−1 translates,

rotates, and scales theTarget data set so thatTargetSM is aligned with the model average image. The

optimal alignment is found by optimising NMI betweenTargetSM and the shape model mean shape

using a gradient descent algorithm. We also also re-sampleTarget so thatTargetSM has the same

voxel dimensions as the shape model mean shape. This is not strictly necessary but was done to simplify

the algorithm. The shape model mean shape was compared toTargetSM visually to check that the

registration process was successful.

We now fit the model mean shape toTargetSM as follows. The shape model is fitted by varying a

set of model shape parametersb such that the image similarity betweenTargetSM and a model derived

imageS is optimised. Once again, NMI was used as the similarity measure.S is found by transforming

the model target image SM-U usingTSM(nd9)⇒M [nrr]. TSM(nd9)⇒M [nrr] is found using equation 3.3.

TSM(nd9)⇒M [nrr] = TModelTarget⇒ModelMean + bΦ (3.3)

TModelTarget⇒ModelMean is a row vector of 5170869 dimensions. It is a concatenation of 1723623 3

dimensional vectors that define the voxel to voxel deformations to transform SM-U to the mean of the

images used to make the shape model. The dimension of the row vectorb is the number of modes of the

shape model we choose to use,N . We test the effect of the number of modes used in the Section 3.3. Φ

is aN by 5170869 matrix of theN eigenvectors of the shape model. Fitting the shape model is done by

changing theN scalar values that make upb so as optimise the NMI betweenS andTargetSM .

Optimising the shape parametersb is done using a differential evolution algorithm, [Price etal.

(2005)]. This provides a robust optimisation that can be readily constrained. It also does not require the

computation of derivatives which could be very time consuming in this case.

Differential Evolution Algorithm

Differential evolution works by evolving a population of possible solutions by generating new solutions

based on weighted differences between existing solutions.The new solution is compared with an existing

solution, and if it is an improvement it replaces the existing solution in the population. The size of the

population (Np) remains constant. Over time the population of solutions converges. Once the diversity

of the population falls below a preset limit the algorithm can be halted, alternatively a limit can be placed

on the number of generations.
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Parameter Description

Value to be optimised Image similarity (NMI)

Convergence Limit When the standard deviation of the solution population fallsbelow this

limit the algorithm is halted.

Maximum Generations The algorithm is halted after this many populations regardless of conver-

gence.

Population Size (Np) The number of candidate solutions in a generation

Starting Population Bounds The values of the solution parameters in the first generationare con-

strained to fall between these limits.

Constraint Bounds It is also possible, but not essential, to constrain all subsequent solutions

to fall between preset limits.

Crossover Probability (cr) A floating point number between 0 and 1, controlling the degree of pa-

rameter mixing between candidate solutions

Weight (F ) A floating point number between 0 and 1, controlling the generation of

new candidate solutions.

Constraint Method Different methods were tested for constraining the solution.

Vector Generation Method

(Geneticist)

Different methods for creating new candidate solutions. See Table 3.2 for

details.

Crossover Implementation Binomial or Exponential

Table 3.1: The parameters used by a differential evolution solver.

Differential evolution has been shown to be capable of robustly optimising a variety of functions

and is fairly robust to the choice of optimiser parameters used [Price et al. (2005)]. Table 3.1 lists the

various parameters used by a differential evolution solver.

To start the solution process it is first necessary to generate a starting population ofNp solutions.

Each candidate solution is a potential value ofb from equation 3.3. We will refer to candidate solutions

for generation G asxi,G wherei is an integer from 1 toNp. Each candidate solutionxi.G is a row

vector of lengthN , the number of shape modes being used. Price et al. (2005) suggest generating the

starting populationxi,0 using random sampling from the range of allowable parametervalues using a

uniform probability distribution. For our application we want to constrain the solution based on what

was observed in the shape model training data. The eigenvalues of the covariance matrix determined in

Section 3.2.1 represent the observed variance along each principal direction of the training data. If the

training data is representative of the greater population and we assume a normal distribution then 99.7%

of all adult male pelves will fall within three standard deviations of the mean. Therefore we constrain the

shape parameters that make upb to fall within the range±3σ whereσ is the square root of the eigenvalue

corresponding to each of the eigenvectors inΦ. We have used the same constraints to limit the random

generation of candidate solutions for the first generation.
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At each generation a new set of trial solutions,vi,G+1 are generated and compared with the existing

solutions,xi,G. We have used a freely available C++ implementation of the differential evolution algo-

rithm2. This implementation allows five schemes for generating thetrial solutions. The five schemes

are detailed in Table 3.2. Two global parameters are used throughout the optimisation, the first is the

“weight” (F ) whose use is shown in the equations in Table 3.2. This is a floating point number between

0 and 1. A second parameter, the “Crossover Probability” (cr), allows the mixing of the individual shape

parameters between the trial solution and the existing solution to which it will be compared. This again is

a floating point number between 0 and 1. A crossover probability of 0.5 will result in each trial solution

having on average 6 shape parameters from the generated trial solution and 6 parameters from the exist-

ing solution. Price et al. (2005) recommend a crossover probability of 0.9 (so 90% of the trial solution

shape parameters will come from the generated solution on average) and a weight of 0.8 as suitable for

most optimisations.

Two methods of applying crossover are implemented in the algorithm we used. The first method,

referred to as exponential crossover randomly chooses a point along the shape vectorvi,G+1, then a

random number between 0 and 1 is sampled from a uniform distribution. If this is less thancr the

parameter is taken from the trial solution. A new random number between 0 and 1 is generated and if

this is less thancr then the next shape parameter along the vector is also taken from the trial solution.

This process is repeated until eithercr is exceeded or allN parameters of the vectorvi,G+1 have been

taken from the trial solution. An alternative implementation is binomial crossover where a uniform

random number between 0 and 1 is generated for every shape parameter and those parameters where this

is less thancr are swapped with the trial solution.

In addition to this, the standard differential evolution algorithm was modified for this application.

In its standard guise the algorithm will not constrain the solution. Whilst the starting population is

constrained to lie within 3 standard deviations of the modelmean, subsequent generations can lie beyond

these boundaries. For fitting a shape model it is desirable toconstrain the solution. This is easily done

for the differential evolution algorithm and Price et al. (2005) discusses several methods for doing this.

Three methods were implemented here. These are shown in Table 3.3

Once the differential evolution algorithm is halted, either when the population converges or when

a maximum number of generations is reached, the best solution is selected. The best solution is the

one that gives the highest value of NMI betweenS (the image derived from the shape model) and

TargetSM (the patient image). This solution givesb in equation 3.3, henceTSM(nd9)⇒M [nrr] is

determined.TSM⇒M [nd9]−1 is inverted to giveTSM⇒M [nd9]. TSM⇒M is shorthand for applying

TSM(nd9)⇒M [nrr] followed by TSM⇒M [nd9]. Applying TSM⇒M to the shape model target image,

SM-U, gives the shape model approximation (S) of the patient image (TargetSM ). S is a warped CT

image of the patients pelvic bone that can be used for in theatre registration.

The remainder of this chapter is divided into sections, eachreporting an experiment performed to

validate the algorithm. We first test the algorithm’s sensitivity to the various parameters used by the

2DESolver.h version 1.0 written by Lester E. Godwin, PushCorp, Inc.,Dallas, Texas, 972-840-0208 x102, god-

win@pushcorp.com
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ID Geneticist Cross

Over

Method

0 Best1 Expon. vi,G+1 = xbest,G + F × (xr1,G − xr2,G)

1 Rand1 Expon. vi,G+1 = xr1,G + F × (xr2,G − xr3,G)

2 RandToBest1 Expon. vi,G+1 = xi,G+F ×(xbest,G−xi,G)+F ×(xr1,G−xr2,G)

3 Best2 Expon. vi,G+1 = xbest,G + F × (xr1,G + xr2,G − xr3,G − xr4,G)

4 Rand2 Expon. vi,G+1 = xr1,G + F × (xr2,G + xr3,G − xr4,G − xr5,G)

5 Best1 Binom. vi,G+1 = xbest,G + F × (xr1,G − xr2,G)

6 Rand1 Binom. vi,G+1 = xr1,G + F × (xr2,G − xr3,G)

7 RandToBest1 Binom. vi,G+1 = xi,G+F ×(xbest,G−xi,G)+F ×(xr1,G−xr2,G)

8 Best2 Binom. vi,G+1 = xbest,G + F × (xr1,G + xr2,G − xr3,G − xr4,G)

9 Rand2 Binom. vi,G+1 = xr1,G + F × (xr2,G + xr3,G − xr4,G − xr5,G)

xbest,G is the best solution in the current generation, and

xr1,2,3,4,5,G are randomly chosen members of the current

generation.

Table 3.2: Table of methods used for generating the trial solution. Five different trial vector generation

algorithm are implemented by the standard differential evolution algorithm, together with 2 implemen-

tations of crossover. This gives a total of 10 possible methods for generating the trial solution vectors.

differential evolution solver and the number of shape modesused. We then test the algorithm on MRI

data and attempt to measure the error as an on screen projection error.

3.3 Effect of Number of Shape Model Modes on Error

3.3.1 Aim

When fitting a shape model to data the number of modes used is an important parameter. In shape models

where there are a large number of training sets in relation tothe dimension it is likely that the higher

order modes (those corresponding to the smallest eigenvalues) contain mostly noise rather than genuine

anatomical information, therefore there is a good argumentfor restricting the optimisation to the lower

modes only (those corresponding to the largest eigenvalues). For a given shape model it is possible to

plot the contribution of each mode to the shape space in termsof cumulative variance. In many examples

in the literature a cut off value of cumulative variance is then chosen, and only modes below this are used.

Often values of 90% or 95% are used.

More thorough methods have been developed to determine the number of modes to retain in order

for the shape model to best capture the training data. Mei et al. (2008) use a method that analyses

the convergence of models made with subsets of the training data to determine the number of modes

required and the number of samples required to build the model. They test their method on shape

models of up to 1581 dimensions (527 point correspondences in 3D). In an anatomical (face data) model
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ID Description

0 If any shape parameter in the trial solution vector is beyondthe constraint bound-

aries, the entire trial solution vector is discarded. The trial solution vector is re-

placed with a solution vector generated with the same algorithm used to make the

first generation, ie. uniform random sampling of the allowable solution space.

1 If a shape parameter in the trial solution vector is beyond the constraint boundaries,

this parameter only is clipped to the constraint boundaries.

2 If any shape parameter in the trial solution vector is beyondthe constraint bound-

aries, the entire trial solution vector is discarded. The trial solution vector is re-

placed with a new trial solution generated by repeating the procedure from Table

3.2 with different randomly selectedxr.

Table 3.3: Three strategies were trialled to constrain the solution. The first strategy will prevent the

population converging if the global maxima is beyond the constraints. Using it may reduce fine scale

searching for the global maxima. However it may be beneficialif the algorithm veers towards a local

maxima that lies beyond the constraints. The second strategy should not effect convergence in the same

way, however it is pointed out in Price et al. (2005) that it will reduce the diversity of the difference vector

population reducing the effectiveness of the optimiser. The third strategy is probably most compatible

with the unconstrained differential evolution algorithm,however it may fall into very long loops while it

searches for a new random trial solution that fits within the constraints.
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with 1500 dimensions they show that 70 modes should be used and approximately 150 samples are

necessary to build the model, that is 0.05 modes should be retained per dimension and 0.1 samples are

required per dimension. Whilst these figures cannot be directly applied to our case as the numbers will

depend on the anatomy being modelled, we can safely say we have insufficient training samples. In

all likelihood we are at least one order of magnitude away from having sufficient samples (we have

21) to build a complete model of the male pelvic bone. This is partly an artefact of the way we have

constructed our shape model. We have a very high dimensionalshape model because we have used voxel

to voxel correspondence, rather than the more common methodof segmenting surfaces and defining

point correspondences using a sparse point set on these surfaces. Alternatively we could use a b-spline

registrations algorithm [Rueckert et al. (1999)] and use the node points to define the correspondences

[Rueckert et al. (2001)]. Chan et al. (2004) do this for the pelvic bone, resulting in a 1185 dimensional

model. However it is clear that we still won’t have enough samples. Therefore we realise that our model

will give only an approximation of the variation in the adultmale pelvis. None the less the model as it

stands can still be used for our application, and we will showthat the results it gives compare well with

other published segmentation methods. The aim of this experiment is therefore not to determine how

many modes we need, rather to determine if changing the number of modes used within the range we

have available (0 to 20) has a significant effect on our results.

3.3.2 Data

Two tests were performed in this experiment. The first testedthe model performance on CT data using

the 21 adult male CT data sets SM-A to SM-U. This was followed by validation on MRI data, Patient-01,

Patient-02, XMR-01, and XMR-02. Details of all data can be found in Appendix A.

3.3.3 Method

Two tests were done. Firstly the CT data used to build the model was utilised. Each CT volume was

approximated by a model built from the remaining 20 data sets, as described in Section 3.2.1. The model

based approximations were repeated using different numbers of retained shape modes. 4, 8, 12, 16 and

19 modes were retained, 19 being the maximum number of modes possible for a shape model built from

20 data sets.

Approximating a Data Set with a Shape Model

Each data set (SM-X) from the shape model training data can beapproximated using a shape model built

from the remaining 20 data sets as per equation 3.4.

SM-X ≈ TSMApprox × SM-Target (3.4)

Rather than using the numerical optimisation detailed in Section 3.2.2 to estimateTSMApprox we

can use a direct analytic method, because we knowTNRR. TNRR is the transform found when building

the full shape model in Section 3.2.1. We can solve equation 3.5 for b using an analytic least squares

method. This prevents any errors induced by a failed optimisation affecting our results here.
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Figure 3.2: The slice distribution used for the registration algorithm. From left to right, 228 possible left

iliac slices, 175 pubis slices, and 247 Right iliac slices. Note that left and right refer to the patient’s left

and right.

TNRR ≈ TModelTarget⇒ModelMean + bΦ (3.5)

The value ofb found by solving equation 3.5 can then be used in equation 3.6to giveTSMApprox.

TSMApprox = TModelTarget⇒ModelMean + bΦ (3.6)

Manual segmentations of the shape model target image can then be propagated using both

TSMApprox andTNRR. We will refer to the two resulting segmentations of SM-X asSSMApprox and

SNRR respectively. Comparing the two segmentations produced gives a measure of the shape approx-

imation caused by using the shape model. By changing the length of the vectorb we can see how this

changes as we change the number of shape modes used.

We are interested in two measures of the error here. The first is the registration error at the prostate

first discussed in Section 1.6.1. As this cannot be calculated directly from the two segmentations but

relies on a separate registration algorithm we also presenta more direct measure of boundary error.

Prostate Registration Error due to Model Segmentation Error

The following method was used to estimate the registration error at the prostate. A set of simulated

“ideal” ultrasound slices are first generated by re-slicing(using tri-linear interpolation)SNRR. SNRR

contains the entire pelvic bone surface. However, only limited sections of the bone can be imaged

intraoperatively using b-mode ultrasound. Therefore before re-slicingSNRR we applied a mask to re-

move surfaces not visible to the ultrasound probe. Re-slicing was performed using physically realistic

ultrasound planes taken from the phantom registration experiment described in Chapter 4. These slice

locations are shown in Figure 3.2.

These simulated ultrasound slices were registered to the model basedSSMApprox segmentation

using a gradient descent registration algorithm. The algorithm is described in full in Chapter 4. In brief

it first converts the slice images to list of points in 3D space(usingTUI⇒O). Points with an intensity

below a threshold (in this case 1) are discarded. The result is a list of coordinates in 3D space and

corresponding intensities. These points are transformed using an estimate ofT−1
SM(nrr)⇒UI

and the

voxels ofSSMApprox sampled using nearest neighbour interpolation to find a matching model intensity
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value. The model intensity and ultrasound intensity are multiplied to give an intensity product. This is

done for all points in the ultrasound image and the intensityproducts summed. The value of this sum is

maximised by varying the estimate ofT−1
SM(nrr)⇒UI

. This is done using a gradient descent approach,

with multiple step sizes.

The registration algorithm is sensitive to the starting position of the registration and the precise

distribution of slices used. Therefore the registration was repeated many times from different starting

positions and with different randomly chosen ultrasound slices. The starting positions were randomly

and uniformly spread over a six dimensional (one dimension for each of the six degrees of freedom)

hypersphere of radius 10mm. (Rotations were scaled as1◦ ≈ 4mm)3 . The radius of this hypersphere

was chosen ensure that the registration algorithm reliablyconverges to the correct solution. The intent

here is to test the effect on registration accuracy, not the capture range of the registration algorithm.

The registration error was then measured as the TRE at six points on the surface of a “nominal”

prostate (see Figure 1.6) that was the same for all 21 data sets. A nominal prostate was used so the errors

for each data set were directly comparable. In reality the position of the prostate would be different for

each data set. The effect of this simplification is discussedin Section D.

Average Segmentation Boundary Error

SSMApprox andSNRR are binary segmentation images. Points on the bone surface have an intensity of

1 and all other points have an intensity of 0. Average boundary error was found by finding the nearest

surface voxel (with intensity 1) inSNRR for every surface voxel inSSMApprox. The mean value is

reported.

Validation on MRI Data Sets

To confirm the trends observed using the CT data, model based segmentation was repeated on four MRI

data sets. Here a shape model built from all 21 CT training data sets was fitted to each MRI data set using

the optimisation algorithm detailed in Section 3.2.2. Segmentation errors were calculated by comparing

the model based segmentations with manual segmentations ofthe MRI data. Only average boundary

errors were calculated. The process was repeated using 12 and 20 modes only, as the results from the

CT data showed minimal improvement when more than 12 modes were used.

3.3.4 Results

Fitting to CT Data

Figure 3.3 gives the results of the evaluation made using theCT data sets. A steady improvement in TRE

can be seen as the number of modes used is increased. This is inline with expectations as the model is

more able to fit the target shape. Using a more direct measurement of the model fitting accuracy, average

boundary error, also illustrates this point, however here the improvement is very small.

Figure 3.3 shows that the gain between using 12 modes and 19 modes is relatively minor, about

0.2mm, and there is no gain between 16 and 19 modes. We attribute the slight increase in TRE at the

3This was chosen so that over the pelvic region a step change ofrotation gave the same average displacement as a step change

in translations, see Chapter 4 for more details.
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Figure 3.3: Plots of the model cumulative variance, the TRE at the prostate and the the boundary error,

based on the CT data. It can be seen that the TRE steadily reduces in a similar trend to the model

variance. The average boundary error also reduces, though the gains are small in absolute terms. The

slight increase in the TRE at prostate from 16 to 19 modes, together with the slight decrease in boundary

error suggests that the gains in segmentation accuracy are masked by the accuracy of the registration

method used to assess the TRE at prostate.
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Data Set 12 Mode 20 Mode

NMI Ave BE NMI Ave BE

Patient-01 -1.017590 1.45 mm -1.018702 1.61 mm

Patient-02 -1.014382 3.08 mm -1.016171 3.17 mm

XMR-01 -1.022439 2.20 mm -1.022332 2.12 mm

XMR-02 -1.016674 1.70 mm -1.016611 1.59 mm

Table 3.4: Performance of the differential evolution modelfitting algorithm on four MRI data sets, in

terms of the optimisation similarity metric (NMI) and the average boundary error. Increasing the number

of modes used does improve the similarity metric for Patient-01 and Patient-02. For XMR-01 and XMR-

02 there is no improvement. In Section 3.6 we will show that repeated runs of the optimisation algorithm

with the same data give NMI values with a standard deviation of 6 × 10−5. This indicates the slight

degradation in NMI for XMR-01 and XMR-02 can be attributed tothe repeatability of the algorithm.

The changes in boundary error are less predictable, reflecting the fact that boundary error and NMI are

not well correlated, as will be discussed in Section 3.7.

prostate from 16 to 19 modes to the accuracy of the registration method we are using to estimate the

registration error. That is, even though we get a more accurate segmentation of the bone, as measured

by boundary error, using 19 modes, the limited accuracy of the registration method prevents this being

realised in TRE at the prostate.

Fitting MRI Data

Table 3.4 gives the results of model based segmentations of the four MRI data sets, when using 12 and

20 modes. We show the results as an average boundary error andalso show the optimised value of NMI

reached. Whilst allowing more modes to be used appears to allow a slightly better NMI to be reached

in two cases, this did not correlate with a reduced boundary error. In the other two cases the optimiser

was unable to achieve a higher NMI despite the additional modes being available.

Table 3.4, together with the CT results above suggests that even though using more modes in the

shape model can deliver a more accurate bone segmentation, the accuracy of both our optimisation

algorithm and our registration algorithm prevents this improved segmentation potential being converted

to a better TRE at the prostate above 12 modes.

3.4 Extrapolation of the Iliac Shape Using a Shape Model

3.4.1 Aim

It will be shown in Chapter 4 that in order to register the prostate to the patient accurately in theatre it is

necessary to register using data from both the iliac crests and the central pubic region. This conforms to

our expectations based on our understanding of fiducial marker configuration from Section 2.6.2. Figure

3.4 shows an example of the ultrasound slices used to register the model to the patient during the in

theatre trials discussed in Chapter 6. One advantage of using the CT based shape model to perform the
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Figure 3.4: An example set of ultrasound slices positioned on a pelvic bone segmentation from the

CT based shape model. Slices on both the iliac crests and pubis are necessary to accurately locate the

prostate.
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Figure 3.5: Full segmentation of pelvic bone with typical prostate MRI overlaid. This volume spanned

by this MRI volume was used as a mask when fitting the shape model to the CT data.

segmentation is that in cases where the complete bone surface is not visible on the MRI an estimated

bone surface can be extrapolated by fitting the model to the known data. The MRI volume shown in

Figure 3.5 is typical of the preoperative prostate MRI collected at Guy’s Hospital during this project.

As can be seen it does not cover the entire pelvic bone. One solution to this problem would be to alter

the MRI protocol to collect a more complete scan, however this cannot be done retrospectively. An

alternative is to fit the model to the available data, then build a full pelvis using the data present in the

model. This section aims to determine whether this is a validmethod for this application.

3.4.2 Data

This experiment used the 21 adult male CT data sets used to build the shape model. The MRI data from

Patient-01 was used to mask the CT data when fitting the shape models, so that only those regions visible

in the MRI were used for shape fitting.

3.4.3 Method

The same methodology as described in Section 3.3.3 was used to determine the model segmentation

error and the resulting TRE at the prostate. This process wasdone twice. Firstly with SM-X masked to

cover a region of 6mm around the entire pelvic bone, and secondly with SM-X masked to cover a region

of 6mm around the pelvic bone only in the volume defined by the available MRI data, see Figure 3.5.

As will be discussed in Chapter 4, the registration algorithm is sensitive to the spatial distribution

of ultrasound slices used, yielding best results when thereare comparatively more pubis slices. As it

would be expected that the pubis region should be more accurately approximated when the iliac regions

are masked out, the registration test was repeated with a uniform distribution of slices and one with more

pubis slices. In each case 100 repeat registrations of each data set were used to assess TRE.
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Figure 3.6: Histograms of the target registration errors atthe prostate surface using 2100 repeats of 4

different registration methods. On the left are registrations using the shape model fitted to the full pelvic

bone, on the right are registrations using the shape model fitted only to data inside a mask representing

a typical prostate MRI volume. In each case two different distributions of simulated ultrasound slices

were used, one placing more weight on data from the pubic region (Method B) than the other(Method A).

When using less pubic slices the masked segmentation performs substantially worse than the unmasked

(4.77 mm RMS vs 3.51 mm) segmentation. When more pubic slices are introduced there is a very small

but statistically significant improvement (2.81 mm RMS vs 2.88 mm RMS) in the registration errors.

Outliers have been removed from data shown. Outliers were defined as results where the TRE was

greater than 3 standard deviations away from the mean value.For the unmasked data method A had 83

(4.0%) outliers and method B 68(3.2%). For the masked data method A gave 55 (2.6%) outliers and

method B 60 (2.9%).

3.4.4 Results

TRE at Prostate Surface

Figure 3.6 presents histograms showing the TRE at the prostate for both the masked and unmasked

model based segmentations. In each case two distributions of ultrasound slices were used. Registrations

with a TRE greater than 3 standard deviations from the mean TRE for each method were rejected as

outliers. Comparing the corresponding results for the masked and unmasked model based segmentations

it can be seen that when using a larger number of pubic slices there is very little difference between using

the masked and unmasked data. As the results are not normallydistributed a Kolmogorov-Smirnov test

was used to test the significance of the difference between the masked and unmasked results. This gave

a p-value of 7.286e-09, suggesting that the improvement seen is statistically significant, however the

difference is clinically insignificant. (2.81 mm vs 2.88 mm).

Boundary Errors

Table 3.5 gives the boundary errors for the two methods of model based segmentation. For boundaries in

the iliac region the average boundary error is greater when using the masked model, while for boundaries

in the pubic region the average boundary error is less. The significance of these differences was tested

using Kolmogorov-Smirnov tests. It was found that the difference for the pubic region was statistically
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Method Iliac BE (Aver-

age mm)

Iliac BE (Std

Dev. mm)

Pubis BE (Av-

erage mm)

Pubis BE (Std

Dev. mm)

Full Pelvis 1.26 0.31 1.28 0.34

Masked Pelvis 1.82 0.50 1.25 0.33

Table 3.5: The average boundary errors over two regions of the pelvis for both the masked and unmasked

model fitting. Results are the average boundary error for each of the 21 segmentations averaged over the

21 segmentations and the corresponding standard deviation. In line with the results shown in Figure 3.6

the masked model has a substantially greater boundary erroron the iliac region and a slightly smaller

boundary error in the pubis region.

insignificant with a p-value of 0.987, while the differencesfor the iliac region were significant with a

p-value of 0.0054. The boundary error results indicate thatwhen the model is fitted using a mask that

excludes the iliac regions, the boundary error in the iliac regions is greater. The boundary error in the

pubic region is either unaffected or very slightly less, dueto the model being able to more accurately fit

the more limited data.

More usefully the TRE results show that for the application of image guided prostatectomy, a seg-

mentation based on a limited sample of the pelvis can be used without loss of registration accuracy. One

drawback should be noted however. The process we have just described determinedTSM(nd9)⇒M [nrr].

The full registrationTSM⇒M also requiresTSM⇒M [nd9]. We used an estimation ofTSM⇒M [nd9]

based on the unmasked volumes for the preceding results. We found that determiningTSM⇒M [nd9]

using the masked anatomy gave poorer, though still usable results, ie. the masked model does lead to a

lead to a loss of registration accuracy. We are looking at ways to overcome this by improving the process

to findTSM⇒M [nd9].

3.5 Results as TRE at the Prostate

3.5.1 Aim

As discussed in Section 1.6.1 it is our aim to present the results of this section as a TRE at the prostate.

The process for calculating this is provided in Section 3.3.3. This method registers simulated ultrasound

slices taken from a “gold standard” segmentation of the actual data to the model derived segmentation.

“Gold standard” segmentations of the iliac crests are available for the CT data. For the MRI data sets

the iliac crests are not imaged, so no gold standard segmentation is available for registration. At present

therefore we can only assess the MRI results as boundary errors in the region were MRI data is present.

The goal of this experiment is to determine if the error as prostate TRE can be predicted from the

boundary surface error. The resulting correlation may enable estimation of the TRE at the prostate for

the MRI data, as will be done in Section 3.7.
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Figure 3.7: TRE at prostate boundary versus Dice coefficientand RMS boundary error. For each of

the 21 data sets used in Section 3.4 three measures of error, the RMS TRE reported in Section 3.4,

Dice’s coefficient and the boundary surface error. By plotting these it is possible to see whether they

are correlated and thus whether it is possible to predict TREfrom either the Dice coefficient or from the

average boundary error. These plots show the data, a fitted linear regression and the±95% confidence

limits. The linear regression between boundary error and TRE has a Pearson’s correlation coefficient

of 0.57. The linear regression between Dice’s coefficient and TRE has a correlation coefficient of 0.47.

These linear regressions will be used in Section 3.7 to predict the TRE at the prostate for a given average

boundary error.

3.5.2 Method

We calculated boundary surface error in the central pubis region for the results from Section 3.4. We also

calculated Dices coefficient4 for the same data. Linear regressions were then fitted between boundary

error and prostate TRE and Dice’s coefficient and TRE.

3.5.3 Results

Figure 3.7 plots the three error measures. It is possible to estimate the RMS TRE at the prostate for a

given boundary error or Dices coefficient. Both measures arecorrelated with prostate TRE with correla-

tion coefficients of approximately 0.5 in both cases. It is clear from Figure 3.7 that such predictions will

not be highly accurate, nonetheless they will provide an indication of likely TRE.

3.6 Differential Evolution Optimiser

3.6.1 Aim

As discussed in Section 3.2.2 the differential evolution optimiser is set up with a number of parameters.

This experiment aims to see what effect, if any, varying these parameters has on the segmentation accu-

racy. From this we define the optimum parameters for our application. Furthermore we would like to

quantify the effect that failure to find the global optima mayhave on TRE at the prostate.

4 Dice’s coefficient [Dice (1945)] measures the degree of overlap between the shape model derived segmentation and a “gold

standard” segmentation.
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Variable Range

WeightF 0.10 0.28 0.46 0.64 0.82 1.00

Crossovercr 0.10 0.28 0.46 0.64 0.82 1.00

Geneticist 0 1 2 3 4 5 6 7 8 9

Constraint 0 1 2

Total Runs 6 × 6 × 10 × 3 = 1080

Table 3.6: Parameters tested for evaluation of differential evolution optimiser. Values for weight and

crossover were uniformly sampled from the range 0.1 to 1.0. Setting either of these to 0 will create an

unchanging population. Please refer to Tables 3.1, 3.2 and 3.3 for explanations of these parameters.

3.6.2 Data

MRI data from XMR-02 was used to test the effect of optimiser parameters. This data set appears repre-

sentative of the other three MRI data sets, so the results should be similar. As the results indicated that

the differential evolution algorithm was reasonably insensitive to the parameter values, it was decided

not to repeat the experiment on the remaining data sets.

3.6.3 Method

To evaluate the various selection and constraint strategies and the effect of varying weight and crossover

probability model fitting was repeated for different combinations of parameters, as shown in Table 3.6.

In all cases 12 shape modes and a populationNp of 60 were used.

The results of all optimisations were evaluated by comparing the optimum value of NMI achieved.

At present their is no time pressure on this part of the procedure, so parameter combinations that achieved

slow convergence and hence longer run times were not penalised.

Once the optimum parameters were identified, the repeatability of the algorithm was tested. By

default the starting population, whilst randomly generated, uses the same seed so the same starting

population was used for all runs. To test whether the resultsof the optimisation were dependent on the

starting population the optimisation was repeated 20 timeswith different random starting populations

using only the optimum parameters.

3.6.4 Results

Figure 3.8 plots NMI achieved for different values of the four parameters.

A predicted TRE is given on the right hand axis of each graph. This is calculated from the NMI

using a pair of linear regressions. The first converts boundary error to prostate TRE and was developed

in Section 3.5, see Figure 3.7. The second converts NMI to boundary error and was found by calculating

the boundary error for this data set using the method from Section 3.3.3, then fitting a linear correlation

to NMI. This will not provide a very accurate estimate of the TRE but it is included to help visualise the

likely system wide effects of using a suboptimal combination of solver parameters.

Based on the results in Figure 3.8 the parameters values shown in Table 3.7 were used for further
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Figure 3.8: The results of varying the four parameters of theoptimisation algorithm. The error bars

represent±1 standard deviation of all the results at that level. These are generally large as for each

parameter the remaining parameters continue to play a significant role. Based on these charts, Geneticist

ID 5 was selected as the best solution generation method, andconstraint method 0 (replacement with

random solutions) was used. Both the continuous variables,(weight and crossover) show minima in the

range 0.6 to 0.8. More points could be tested in this range, giving an unambiguous minima, however

as the curves appear fairly flat in this range this would probably not yield a significant improvement in

results. Therefore the weight value was rounded to 0.8 and the crossover used was 0.64. The predicted

TREs are given on the right hand axes to help interpretation.Conversion form NMI to boundary error

was done by fitting a linear regression between the two based on the data here. Then boundary error

was converted to prostate TRE using the regression from Section 3.5. The resulting formula isTRE =

661.99 + 651.07×NMI. It is not expected that this will be a very accurate prediction of TRE however

it allows the systems sensitivity to these parameters to be visualised.
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Parameter Value

Similarity Measure NMI

Convergence Limit (Population Standard Deviation) 0.001

Maximum Generations 100

Population Size 60

Starting Population Bounds± Standard Deviations 3

Constraint Bounds± Standard Deviations 3

Crossover Probability 0.64

Weight 0.80

Constraint Method 0 - Replace with random solution

Vector Generation Method (Geneticist) Best1

Crossover Implementation Binomial

Table 3.7: The optimal set of parameters for running the differential evolution algorithm in this applica-

tion.

optimisations. It appears however that apart from extreme values of the crossover probability or a low

weight, the choice of parameters does not have a large influence on our system results.

The choice of constraint strategy prevents the algorithm’sconvergence criteria from being met as

each time a solution falls outside the constraint boundaries a new random solution is created. The new

solution will almost certainly be far from the existing population. Therefore the algorithm generally

runs to 100 generations before being halted. On current equipment this takes around 12 hours, which

is sufficient for the application when the MRI is taken well inadvance of the surgery. If run time was

added as a performance metric to be balanced against similarity measure achieved then the results of this

experiment would be substantially different.

The algorithm was now rerun 20 times with these parameters unchanged, but with different ran-

domly generated starting populations. Figure 3.9 plots theNMI achieved on each run together with the

Mahalanobis distance from the solution with the best NMI. Plotting the Mahalanobis distance enables

a visualisation of the 12 dimensional solution space. It is clear that the algorithm does not find a true

global minima on each run, however the difference in terms ofpredicted TRE is negligible (TRE standard

deviation of 0.04 mm, NMI standard deviation is 0.000066).

3.7 Fitting the CT shape model to MRI Data

3.7.1 Aim

The aim of this experiment is to determine how accurately theCT statistical shape model can be fitted

to MRI data. This requires optimisation of the shape vector to best fit the available MRI data.
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Figure 3.9: By defining the solution with the optimal NMI mutual information as the origin of a 12

dimensional parameter space, it is possible to plot each other solution based on its Mahalanobis distance

from the origin. This together with the solution’s NMI givesan idea of the shape of the solution space.

The fact that there are many solutions with high NMI near the optimal solution indicates that there are

many local minima near the global minimum. When using the bestoptimiser parameters the algorithm

appears stable, consistently getting near the best solution. The effect on predicted TRE is negligible, the

standard deviations of the repeat solutions being 0.04 mm TRE.



92 Chapter 3. Segmentation of Bone from MRI

Data Set Registered To Attempts

Patient-01 SM-Average 1

Patient-02 SM-T 2

XMR-01 SM-K 1

XMR-02 SM-K 1

Table 3.8: The MRI data sets were aligned to the CT shape modelusing a gradient descent optimiser

working on normalised mutual information. The quality of these affine alignments was checked visually.

In cases where the alignment appeared poor the alignment wasrepeated, either from a different starting

position or using a different data set from the shape model training set. The table shows which data set

each MRI set was successfully registered to and how many target data sets were used.

3.7.2 Data

Four MRI data sets (Patient-01, Patient-02, XMR-01, XMR-02) were used to validate the model, details

of these are provided in Appendix A.

3.7.3 Method

For each data set a model based segmentation was compared to agold standard segmentation. As the

data sets do not contain the full pelvic bone it is not possible to perform a simulated ultrasound to bone

registration as in other experiments, slicing the gold standard segmentations in the iliac regions gives

empty slices. Therefore the segmentation accuracy was measured using boundary errors, as described in

Section 3.3.3. The TRE at the prostate can be estimated usingthe linear regression from Section 3.5.

Gold Standard Segmentations

The four MRI data sets were manually segmented, by the author, by fitting a spline to points on the bone

soft tissue boundary for each slice. This was not done by a radiologist as there is no accepted protocol

to do this. For data set XMR-01 and data set XMR-02 matching CTdata was available, so this was was

used as a reference to inform the manual segmentation process.

Model Based Segmentation

Each data set was first aligned to the shape model with a 9 DOF affine transform (TSM⇒M [nd9]−1).

This registration was optimised using a gradient descent optimiser using NMI as a similarity measure

between the two images.

As all the images in the shape model have already been placed into affine alignment, the same

affine transform can be used to put the MRI into alignment withany of the shape model data sets. This

is useful if the first attempt at the affine alignment fails. After the affine alignment the aligned data set

is compared with the average shape of the shape model by a manual visual inspection. If the alignment

is poor the registration can be repeated to a different shapein the model training set. Table 3.8 shows

which data sets from the shape model each MRI set was aligned to.

Once the MRI image had been aligned to the mean shape of the model, the model was fitted to the
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Data Set Patient-01 Patient-02 XMR-01 XMR-02

Average Boundary Error (mm) 1.45 3.08 2.20 1.70

Table 3.9: Average boundary errors for shape model based segmentation versus manual segmentation of

MRI data

Figure 3.10: Example slices from each of the four MRI data sets. The manual segmentations are shown

in grey, while the shape model propagated segmentations areshown in white. Patient-02 is notably worse

than the others. It is also interesting that all data sets fail in the same region to the top right of slice 100,

suggesting that this region is not well described by the shape model.

MRI using the differential evolution optimiser as per Section 3.2.2

3.7.4 Results

Each of the four data sets was segmented using the shape model. Error was measured in terms of

boundary error across the pubic region. Table 3.9 presents the boundary error results for the four data

sets. Figure 3.10 presents pictorial results of example slices for the segmentation.

The results presented indicate that the segmentation method works well. The boundary errors are
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Data Set Predicted TRE Lower 95 Percent

Confidence TRE

Upper 95 Percent

Confidence TRE

Patient-01 3.38 2.65 4.11

Patient-02 8.14 4.64 11.63

XMR-01 5.56 3.67 7.45

XMR-02 4.11 3.06 5.16

Average 5.29 3.50 7.08

Table 3.10: Predicted TRE at the prostate surface for the four data sets based on fitting a linear regression

for TRE vs pubic boundary error for results obtained using full pelvic CT data. Upper and lower limits

of the predicted values are also given for a 95% confidence interval

slightly larger than those observed for the CT data in Section 3.4. This may be chance or more likely

there is a small optimisation error added to the shape modelling error.

The boundary error results can be converted to prostate TREsusing the linear regression from

Section 3.5. The results of this are shown in Table 3.10.

3.8 Projection of Prostate TRE to on Screen Error

3.8.1 Aim

Our goal is to present the error due to segmentation as an on screen error. Here we project the prostate

TRE onto the screen.

3.8.2 Method

The projection method described in Section 1.6.2 is used to project a point at the apex of the prostate

onto the endoscope screen. The apex point is perturbed in twoways, firstly by an isotropic Gaussian

distribution with an RMS of 5.29 mm as per Table 3.10. This assumes that the registration errors are

isotropic and normally distributed. As the figure of 5.29 mm is based on an extrapolation of our results

we cannot test the effect of this assumption directly. However we can test the effect of this assumption

using our results from Section 3.4. Here we have both an RMS error figure and the estimates ofTSM⇒M

used to generate this. By comparing a projection of the prostate apex perturbed by a normally distributed

error with those of the prostate apex transformed by the various estimates ofTSM⇒M we can test whether

the assumption of a normally distributed registration gives a valid projection error. We used the results

of Method B for the masked anatomy for this (an RMS error of 2.81mm).

3.8.3 Results

Figure 3.11 shows the result of projecting an isotropic Gaussian with RMS error of 5.29 mm onto the

screen. Figure 3.12 compares the isotropic normally distributed error assumption with our actual results.

Figure 3.12 indicates that our assumption of an isotropic normally distributed registration may cause an

underestimation of the on screen error. It is possible however that this is due to the limited size of our
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Simulated Points
1 σ
2 σ

σx=13.94 Pixels (3.3 mm)
σy=14.99 Pixels (3.3 mm)

Figure 3.11: A landmark point (near the apex of the prostate)has been chosen and perturbed by a random

Gaussian error in 3D equivalent to the bone segmentation error (5.29mm) 1000 times. The resulting

projections give an indication of the on screen error due to this error source.

Simulated Points
1 σ
2 σ

σx=6.94 Pixels (1.7 mm)
σy=7.54 Pixels (1.7 mm)

Simulated Points
1 σ
2 σ

σx=7.66 Pixels (1.8 mm)
σy=12.03 Pixels (2.6 mm)

Figure 3.12: On the left a landmark point (near the apex of theprostate) has been chosen and perturbed

by a random Gaussian error in 3D equivalent to the bone segmentation error (2.8mm) from Section 3.4

2100 times. On the right the 2100 estimates ofTSM⇒M used to estimate the segmentation error have

been used to perturb the point directly. It is apparent that the two methods yield substantially different

results.
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data set. What is shown on the right of Figure 3.12 is not a projection of a single distribution of 2100

samples. Rather it is a superposition of 21 distributions, each of 100 samples, representing the 21 data

sets used to build the shape model. If the anisotropy is caused largely by the model fitting error, then

the results in Figure 3.12 are based on an effective data sizeof 21. It is possible that this has caused

the distribution to appear more anisotropic than it actually is. The addition of more data may reduce the

anisotropy. We cannot, however, rule out the possibility that the segmentation and registration methods

cause an anisotropic TRE at the prostate. In the absence of more data this must be left as future work. For

the purposes of this thesis we will assume that the error due to the segmentation of the of MRI images

with a shape model can be modelled as an isotropic normally distributed error with standard deviation

5.3 mm.

3.9 Discussion

3.9.1 Comparison of Pelvic Shape Model with Results from the Literature

Using the linear regressions between Dice’s coefficient andprostate TRE and boundary error and prostate

TRE from Section 3.5 it is possible to compare our results with those from the literature. When doing

this it should be remembered that the correlations are not strong (with correlation coefficients approx-

imately 0.5), so the comparisons must be treated with caution. Taking the Dice data in Figure 3.7 and

extrapolating the result for a Dice coefficient of 0.94 as achieved on knee MRI by Fripp et al. (2007)

gives an RMS TRE very near zero. In reality there is a lower limit of around 0.6 mm to the TRE that can

be achieved due to the registration algorithm, which is discussed in detail in the next chapter. This sug-

gests that (for the knee at least) model based segmentation of MRI is accurate enough to render manual

segmentation or a separate CT scan unnecessary. However there are two significant differences between

Fripp et al. (2007) and the work here, firstly the knee (more specifically the distal end of the femur) is

a less complex shape than the pelvis, and secondly the MRI acquisition protocol used was better suited

to bone delineation. Schmid and Magnenat-Thalmann (2008) quote a boundary error of 1.44 mm for a

shape model based pelvic bone segmentation from MRI, which would yield a TRE of 3.4 mm, slightly

better than our results. Redrawing Table 2.5 with equivalent results for this study yields Table 3.11. The

results presented here are all boundary surface errors, calculated by searching through the shape model

derived boundary surface segmentation for boundary points, then locating the nearest boundary point in

the corresponding gold standard segmentation. The published results are similar to those found using

the shape model.

3.9.2 Correlation of Optimisation Metric with Boundary Error

For the optimiser to work well three things must occur. Firstly the pelvic shapes seen in the MRI data

must be somewhere in the shape space of the statistical shapemodel, this was tested in Section 3.4.

Secondly the differential evolution optimiser must effectively optimise the similarity metric (NMI), this

was tested is Section 3.6. Lastly, the similarity measure must correlate well with the boundary error

measure used for evaluation.

To see how well NMI correlates with boundary error for our MRIdata the optimisation process was
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Paper Result from Literature Our Result

Lamecker et al. (2004) 2.4 mm RMS Boundary Error

without source in model

2.43 mm

Yao and Taylor (2003) 1.27 mm Average Boundary

Error.

1.64 mm

Chan et al. (2004) 3.90 mm RMS Boundary Error 2.43 mm

Schmid and Magnenat-Thalmann

(2008)

1.81 mm RMS Boundary Error 2.43 mm

Table 3.11: Comparison of shape model results with published studies using shape models on pelvic CT

data, except for Schmid and Magnenat-Thalmann (2008), based on MRI and including a local deforma-

tion step. Given the very different methodologies used to construct and fit the shape models, the broad

agreement between them is encouraging.

Data Set Pearson Correlation

Coefficient

Boundary Error

Patient-02 -0.292 3.08

XMR-01 0.574 2.20

XMR-02 0.790 1.70

Patient-01 0.844 1.45

Table 3.12: Data sets arranged in order of correlation between the image similarity measure and the

average boundary error. The degree of positive correlationhas a dominant effect on the final error

measure.

monitored to see the progress in similarity measure and boundary error. The differential evolution algo-

rithm works by progressively breeding a population of 60 candidate solutions to improve the similarity

measure. By also evaluating the boundary error metric for each of the candidate solutions, it is possible

to plot how both metrics change during optimisation. Figure3.13 presents these plots for each MRI

data set. From Figure 3.13 it can be seen that in each case the optimisation algorithm steadily improves

the NMI . In three cases the boundary error metric improves alongside the image similarity measure.

For Patient-02 however the boundary error increases. The correlation between NMI and boundary error

varies between data sets. The strength and direction of the correlation between the two metrics was

measured using Pearson’s correlation coefficient. Table 3.12 indicates that the sign and magnitude of the

correlation between NMI and boundary error is a good predictor of the boundary error achieved.

Understanding the reasons for this variation in correlation between data sets could yield a more

effective segmentation algorithm, or an improved similarity measure for MRI to CT registration. The

quality of the manual segmentation being used as a gold standard will have a significant effect on our

results. If the manual segmentation is wrong the correlation would appear worse as the optimiser would
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Figure 3.13: Plots showing the image similarity measure being optimised (normalised mutual informa-

tion) and the evaluation metric (average boundary error in the pubic region) over the course of optimisa-

tion for the four data sets used. In all cases there is a correlation between the image similarity measure

and the boundary error, this is negative for Patient-02. Table 3.12 gives the correlation coefficients for

these correlations.
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Error Source RMS TRE (mm)

Optimisation 4.48

Shape Not in Model 2.81

Registration Algorithm 0.23

Table 3.13: Summary of RMS TRE at prostate surface due to the three errors in using a shape model

based segmentation algorithm.

move the segmentation to a more correct value. It would be worth repeating these manual segmentations

and comparing them between multiple users before looking for other causes of the variable correlation

coefficients.

3.9.3 Result Summary

Table 3.13 summarises the key results from this chapter. Theaverage predicted TRE shown in Table 3.10

is made up of three components. The registration algorithm error, the optimisation error, and the error

induced by the shape model. The registration algorithm error is the performance of the registration algo-

rithm when matching identical images. This was determined by repeating the experiment from Section

3.4, but registering the simulated ultrasound to the gold standard segmentation, rather than a model de-

rived segmentation. The RMS TRE for this was 0.23mm. This registration error can be subtracted from

the TRE squared error to give an error due to segmentation alone of
√

5.292 − 0.232 = 5.29mmRMS.

The shape model error can be taken from the Section 3.4 and is 2.81 mm. Again this can be

subtracted from the total error to yield the error due to shape model optimisation.
√

5.292 − 2.812 =

4.48mmRMS

3.10 Conclusion
We have presented a novel cross-modality, inter-patient, non rigid registration algorithm. The method

uses a shape model to constrain the allowable deformations.We have shown that using this algorithm

it is possible to fit pelvic CT from a separate patient to pelvic MRI. Doing this as opposed to a manual

segmentation of the MRI or taking a separate CT scan induces aregistration error observable at the

prostate surface. This error has been quantified here at 5.29mm RMS. This error would appear to the

surgeon as shown in Figure 3.14

Whether the error of 5.29 mm is small enough for for clinical use is unknown. A system of this

accuracy would certainly be useful for showing the surgeon the general location of specific tumours.

Based on this the surgeon could decide on the size of the margin around each side of the prostate.

Similarly it may help the surgeon locate important anatomy such as the neuro-vascular bundles. The

surgeon could not rely on the system when making incisions however, and would instead have to base

their decision on the visible anatomy. If it were shown that this error was significant in the overall system

it may be possible to reduce it by improving the shape model. In the first instance this could be done by

adding more data sets to the training set.
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Simulated Points
1 σ
2 σ

σx=13.94 Pixels (3.3 mm)
σy=14.99 Pixels (3.3 mm)

Figure 3.14: A landmark point (near the apex of the prostate)has been chosen and perturbed by a random

Gaussian error in 3D equivalent to the bone segmentation error (5.29mm) 1000 times. The resulting

projections give an indication of the on screen error due to this error source.



Chapter 4

Registration of Ultrasound to Fitted Bone

Image

This chapter details the methods used to register the preoperative MRI data to the patient in theatre, that

is determiningTM⇒O (see Figure 1.3). The method we use for this is an image to image registration

using ultrasound images of the patient gathered with the patient in the operating position. As discussed is

Chapter 2, rather than attempting to register the ultrasound images directly to the MRI image we register

the ultrasound to a CT image from a second patient (the shape model) that has been warped, using

TSM⇒M determined in Chapter 3, to the fit the MRI image. Therefore weactually findTSM(nrr)⇒O in

this chapter, which is identical toTM⇒O as the model is fitted to the MRI image.

As discussed in Chapter 2, registration of ultrasound images of bone to CT images of bone has been

done previously by several authors. The method we use is derived from that of Penney et al. (2006),

however there are several key differences. Whereas Penney etal. (2006) register to a CT image of the

patient, so the anatomy being imaged by the CT and ultrasoundis identical, we register to CT from a

second patient that has been warped. This results in a pseudoCT image that is not a perfect match for

the anatomy being imaged with the ultrasound probe.

We have also implemented the registration algorithm in a waythat minimises the image processing

required in theatre. We have a limited time period to do the registration in theatre (approximately 25

minutes), so we have attempted to streamline the algorithm as much as possible. The key difference

is that rather than storing the ultrasound images as a set of discrete slices, the ultrasound images are

first converted to a point cloud. By discarding points below aset intensity threshold it is possible to

significantly reduce the computational load.

As discussed in Chapter 1, calculation ofTSM(nrr)⇒O is broken into two stages. Individual ultra-

sound images are first converted to point clouds usingTUI⇒O. The fitted model is then registered to the

ultrasound point cloud to calculateTSM(nrr)⇒UI . In this chapter we first describe the algorithms and

equipment used for these two steps. We then perform a series of experiments using the algorithms, with

the aim of determining the accuracy with whichTSM(nrr)⇒O can be found.
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Figure 4.1: A typical ultrasound slice collected in theatre, as output from the ultrasound scanner and

captured via a frame grabber. Image size is 720 by 576 pixels,the ultrasound data is in grey-scale with

pixel intensity from 0 to 255. The dashed line around the dataframe shows where the image is cropped

in the first stage of image preprocessing. The face of the ultrasound probe is at the top of the image.

4.1 Ultrasound Image Acquisition and Processing

4.1.1 Ultrasound Image Acquisition

Ultrasound images of the patient’s pelvic bone were acquired using a Phillips HDI5000 ultrasound scan-

ner. The machine’s default settings for musculoskeletal imaging of the hip were used. The images were

captured using a frame grabber. This frame grabber outputs interlaced images 720 pixels wide by 576

pixels high, with pixel intensities from 0 to 255. An exampleof one of these images is shown in Figure

4.1.

The position of the slice relative to the optical tracking systemTUI⇒O is determined using a set of

IREDs, shown in Figure 4.2. The tracking data from the Optical tracking system is saved alongside the

corresponding ultrasound image. There is a lag of approximately 375 ms between the tracking informa-

tion being recorded and the image being captured. Thereforeevery effort was made to capture images

while the probe was stationary. However the probe is hand held, so some movement is unavoidable.

4.1.2 Ultrasound Image Pre-Processing

Once the image has been acquired the following processing isperformed. The images are first cropped

leaving only the data window, shown on Figure 4.1. The 3 mm of tissue closest to the transducer face

is also removed to prevent artefacts due to skin coupling. The image is now converted to a “bone edge

probability” image, this is based on the work of Penney et al.(2006). We do this for two reasons, both
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Figure 4.2: The ultrasound probe, attached tracking cross and the Optotrak tracking system. 20 IREDs

are attached to the cross.
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due to our need for a fast running image to image registrationalgorithm. The first is that as image

processing has been used to enhance the same features (the bone edges) the registration is closer to

being an intra-modal problem. It should therefore be possible to use computationally efficient similarity

measures to drive the registration. To understand the second reason an understanding of our registration

algorithm is required. This will be introduced in full in Section 4.4, but the key points are outlined here.

After processing the ultrasound image will be stored not as aset of slices but as a set of 3D points

with corresponding intensity values. To calculate the image similarity measure the algorithm reads

through every point in the ultrasound derived bone edge probability (BEP) image, transforms it to the

BEP image derived from the MRI image using an estimate ofT−1
SM(nrr)⇒UI

and finds the intensity of

the nearest voxel in the MRI derived BEP image. The ultrasound and MRI derived BEPs are multiplied

together and the sum of these products is used as the similarity measure. Points in the ultrasound image

with a BEP of zero will have no effect on the registration process, the BEP product will be zero regardless

of the value of the matching corresponding voxel in the MRI derived BEP image. Therefore to reduce

computational time all pixels with zero intensity value arediscarded during the preprocessing of the

ultrasound image. Converting the images to bone edge probability images greatly reduces the number

of non zero pixels. Based on the data for Cadaver-01, see Appendix A, the reduction is as follows. The

cropped ultrasound images have288 × 413 = 118944 pixels. On average 25400 (21%) of these are non

zero. After converting to a bone edge probability image eachimage has an average of 3312 (3% of the

original) non zero pixels. These reductions in the number ofnon zero points will translate directly into a

faster registration process.

The conversion to bone edge probability images follows the procedure laid out by Penney et al.

(2006). This is described below and shown pictorially in Figure 4.3. Figure 4.3 shows the procedure on

two data sets, one taken from a plastic pelvis scanned in a water bath (the phantom data) and one taken

from a patient scanned in theatre.

An “artefact threshold” intensity value is first defined. Howto choose the threshold value will be

discussed later in this chapter, see Section 4.4.3. The ultrasound image is scanned column by column

upwards from the bottom of the image (distant from the transducer face). At the first pixel that exceeds

the value of the artefact threshold the scan is stopped and the row number (NArt,i) recorded, wherei is

the column number and row number 0 corresponds to the top of the image. If no pixels in the column

exceed the threshold thenNArt,i is set to zero. Two images are now created. The first is a “distance

to artefact” image (row 2 of Figure 4.3). The intensity of each pixel in this image is equal toNArt,i

for the corresponding column minus the pixels own row. Pixels with a negative value for the distance

to artefact are set to zero. The term artefact is used to indicate that pixels more distant from the scan

face than the bright pixels so detected are likely to be due toscanning artefacts rather than echoes off

genuine anatomy. This is due to the almost total reflection ofultrasound from the bone surface. The

second image is a masked and blurred version of the raw intensity image. The raw ultrasound image is

first smoothed with a Gaussian kernel to reduce speckle artefacts, then pixels with a distance to artefact

of 0 value are set to 0. The result of this is two metrics for every pixel in the image. These metrics are
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used to convert the images to bone edge probability images using a 2D lookup table.

The look up table is produced beforehand using a training setof manually segmented images,

representative of the images to be processed in theatre. Ourlook table is constructed using 32 images

taken from the phantom data set. The images are first manuallysegmented by picking a set of points

along the bone surface. A spline is fitted to the points and pixels falling on the spline are assigned an

edge probability of 1. This forms a binary segmentation image with pixels not on the the edge having

pixel intensity of 0 and those on it a pixel intensity of 255. We then blur the this segmentation image.

We do this because we do not expect our manual segmentation tobe perfect, therefore it is realistic to

say that a pixel near the manually segmented edge has a higherprobability of being the edge than a pixel

distant to the edge. Blurring the manual segmentation also has the effect of increasing the number of

pixels used in building the look up tables, allowing fewer manually segmented images to be used to build

the look up tables.

To build the look up tables the raw ultrasound image is now processed using the procedure shown

in Figure 4.3. Each pixel in the image now has three metrics associated with it, the distance to artefact,

the masked and blurred intensity, and the bone edge probability derived from the manual segmentation.

The lookup table is simply a 2 dimensional histogram of the edge probabilities. We used 32 bins each

for the distance to artefact and intensity when constructing the look up tables. Figure 4.4 shows two

example look up tables made using manual segmentations of the plastic phantom data. These are the

look up tables used in Figure 4.3.

4.2 Ultrasound Image to 3D Points

The ultrasound images are now stored as 2D pixel coordinateswith corresponding bone edge proba-

bilities. The next stage is to transform these 2D points to 3Dpoints in the coordinate system of the

Optotrak. This is done usingTUI⇒O from Figure 1.3. As detailed in Figure 1.3TUI⇒O is the product

of the ultrasound calibration transforms (TUI⇒UP andTUP⇒UT ) and the ultrasound tracking transform

(TUT⇒O). As the tracking transform is required by the calibration algorithm we will first detail the

ultrasound tracking process. Following this we detail the ultrasound calibration process.

4.2.1 Ultrasound Probe Tracking

The ultrasound probe is tracked using a set of 20 IREDs rigidly attached to the use probe on an alu-

minium cross. This is shown in Figure 4.5. The optical tracking system triangulates the position of each

of the 20 IREDs and outputs them to a computer. The 20 IRED positions captured for a given ultrasound

frame (i) can be registered to the IRED positions for any other frame (j) using well established point to

point registration methods. Here we use an orthogonal Procustes formulation and find the best fit regis-

tration using singular value decomposition [Fitzpatrick et al. (2000)]. This gives a rigid body transform

from one point set to the other,TFramei⇒Framej
. In order to transform the points into the Optotrak’s

coordinate system it is necessary to know the rigid body transform from one set of IRED coordinates

to the Optotrak’s coordinate system, we call this frame the reference frame,FrameRef , and use it to

define the tracking rigid body’s coordinate system.TUT⇒O can then be defined as in Equation 4.1.
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Method Phantom Data Patient Data

Cropped Ultrasound Slice

The image is scanned upwards

column by column. The dis-

tance to artefact is the row

number of the first pixel that

exceeds the artefact threshold

minus the pixels row number.

Pixels with zero distance to

artefact are masked and the re-

maining unmasked pixels are

blurred.

The blurred intensities and dis-

tance to artefact values are

sorted into 32 bins each and

combined using a look table,

see Figure 4.4, to give an edge

probability image, shown here.

Figure 4.3: Details of the processing steps used to convert an ultrasound slice to a bone edge probability

image. The ultrasound transducer face is at the top of the images.
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Figure 4.4: The probability look up tables used in the processing of the ultrasound slices seen in Table

4.3. Both tables use the same set of manually segmented images of the plastic phantom. By changing the

artefact threshold used we can get very different look up tables. The table on the right uses an artefact

threshold of 40, while the one on the left uses an artefact threshold of 220. The table on the left does

a good job of segmenting the phantom data, where the bone edges were very bright and there were no

reflections from soft tissue. The table on the right works better for segmenting patient data where the

bone edges are not as bright and there are significant amountsof soft tissue.
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Figure 4.5: Geometry of the tracking cross used to localise the ultrasound slices.
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TUT⇒O[Framei] = TUT⇒O[FrameRef ] × TFramei⇒FrameRef
(4.1)

We defineTUT⇒O[FrameRef ] as the identity matrix, thenTUT⇒O becomes simplyTFramei⇒FrameRef

Defining the Reference Frame

How we define the reference object will impact on the trackingaccuracy of the system. Though it

would seem trivial to define the reference object using an arbitrary frame, as being a rigid body the

geometry of the IREDs should not change, this may not yield accurate results. The apparent position of

an IRED tracked using the Optotrak will vary depending on itsposition and angle relative to the tracking

cameras’ len’s surface normals, [Wiles et al. (2004)]. In order to maximise tracking range the IREDs

on the tracking cross are arranged at a range of different angles. Therefore the apparent geometry of

the tracking cross will vary as the cross moves in relation tothe Optotrak camera unit. A reference

object defined with the cross front on to the tracking camera may give poor results when the cross is at a

different angle to cameras. To attempt to overcome this we used the following procedure.

In order to quantify the performance of a reference object wedefine the IRED registration error

(IRE), this is analogous to the fiducial registration error (FRE) [Fitzpatrick et al. (1998)] commonly

used in image guided interventions. Equation 4.2 defines theIRE.

IRE =

√

√

√

√

1

N

N
∑

j=1

|TFramei⇒FrameRef
× Xi,j − XRef,j |2 (4.2)

WhereN is the number of IREDs (20 in this case),Xi,j is the position of IREDj in frame i and

XRef,j the position of IREDj in the reference frame.Xi,j andRef,j are both 3D position vectors. Next

we collect tracking data for a set of frames that are representative of the range of positions and angles

seen during the tracking application (ie. representative of scanning a patient’s pelvic bone). These

are registered to a reference frame and an average value of IRE for all frames is calculated. We now

make the assumption that a reference object that gives a lower average IRE will necessarily give better

tracking results. This assumption will not be correct in allsituations, though we think it is valid for this

application. We can now create an optimised reference object for our application as follows.

1. Collect a sample of frames representative of the trackingtask.

2. Register all frames to a starting estimate of the reference frame.

3. Compute the IRE for each frame using equation 4.2 and take the average.

4. Transform all the IREDsXi,j to the reference coordinate system using the estimated values of

TFramei⇒FrameRef
.

5. Find the average position of each of the transformed IREDs.

6. Use these average positions as a revised estimate ofXRef,j

7. Repeat steps 2 to 5 using the new estimate of the reference frame. The average IRE will be

reduced.
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8. Repeat step 6 until the value of IRE converges.

For each frame of ultrasound data we can now defineTFramei⇒FrameRef
. This is a rigid body

transform that we represent as a4×4 matrix. These can be used together with the calibration transforms

to locate a pixel in an ultrasound slice image in 3D space. Before we move onto our calibration method

we will first discuss our use of a slice rejection test.

Slice Rejection Test

The accuracy with which the singular value decomposition algorithm can findTFramei⇒FrameRef
will

vary from frame to frame. This will depend on two factors. Firstly how accurately the Optotrak can

localise a given IRED, referred to as the IRED localisation error (ILE) and analogous to the fiducial

localisation error (FLE) for a fiducial registration system[Fitzpatrick et al. (1998)]. The second factor is

the number and the geometry of the IREDs that are tracked. Typically this will vary from frame to frame

as some IREDs are obscured or at too great an angle to the camera to be tracked. The goal of a slice

rejection test is to identify ultrasound images that are poorly tracked and discard them, to prevent them

biasing the calibration routine or later on the registration algorithm.

For the purposes of this slice rejection test we have assumedthat the ILE is an isotropic normally

distributed error with constant standard deviation for allIREDs. The effects of this assumption are dealt

with in greater depth in Chapter 5.

Our slice rejection test checks two parameters. The first of these is the IRE for the frame. It has

been shown that the IRE for an individual frame cannot be usedto predict the accuracy of the estimated

transform for that frame (TFramei⇒FrameRef
) by Fitzpatrick (2009). Very high values of IRE would

nonetheless make us question whether an equipment failure has created an erroneous measurement. The

expected value of the IRE can be determined using a result by Sibson by way of Fitzpatrick et al. (1998).

This is shown in Equation 4.3.

〈IRE2〉 = (1 − 2

N
)〈ILE2〉 (4.3)

If we assume that the IRE is a half normal distribution, (the absolute value of a normal distribution with

mean 0 and standard deviationσ) then Equation 4.4 can be used to estimate its standard deviation.

σIRE =
〈|IRE|〉

√

2
π

(4.4)

If the tracking system is functioning correctly 99.7 % of allvalues of IRE should be less that3σIRE . We

will reject any slices with a IRE greater than this. This is conservative and will cause a small number of

good slices to be rejected, but this is preferable to including erroneous data.

The second parameter is the number and distribution of visible IREDs. Fitzpatrick et al. (1998)

provide an analytic method (equation 4.5) to estimate the expected value TRE given the expected value

of FLE (analogous to ILE) and the configuration of visible fiducial markers (IREDs here).dk is the

distance of the target point from thekth principal axis of the fiducial configuration.fk is the RMS

distance of the fiducial markers from thekth principal axis. TRE is simply the error at a specified point

when the estimated transformTFramei⇒FrameRef
is applied. Therefore for our purposes the TRE can

be used as a proxy for the error in determiningTFramei⇒FrameRef
.
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Figure 4.6: Best and worst case TRE per ILE versus number of IREDs visible for the ultrasound tracking

cross. These were calculated using Equation 4.5 for all possible IRED configurations then sorted into

best and worst case TREs.

〈TRE2〉 ≈ 〈FLE2〉
N

(

1 +
1

3

3
∑

k=1

d2
k

f2
k

)

(4.5)

Two implementations of the tracking software have been usedin this thesis. The more recent

of these provides a list of which IREDs are visible together with TFramei⇒FrameRef
. This enables

〈TRE2〉 to be calculated for each frame directly. Frames with〈TRE2〉 above a present threshold were

discarded. The earlier implementation of the tracking software only reported the number of visible

IREDs visible, not their configuration. Therefore we performed the following analysis to determine a

threshold number of visible IREDs below which frames would be discarded.

The ratio of〈|TRE|〉 to 〈|ILE|〉 was determined for every possible combination of visible IREDs

using equation 4.5. For a rigid body with 20 IREDs there are220 possible combinations. To calculate

the TRE we have assumed a target point at the centre of the ultrasound slice. For each number of visible

IREDs we then found the worst and best case ratio of〈|TRE|〉 to 〈|ILE|〉, and plotted them in Figure

4.6. We elected to reject any frames with less than 11 IREDs, as below this the worst case errors become

large. The relatively large increase in worst case error between 11 to 10 IREDs is due to the geometry

of the cross. The tracking accuracy reduces substantially when IREDs are visible on only 2 of the four

points of the cross.

Use of a Reference Rigid Body

In cases where the object being scanned (ie. the patient or the plastic phantom in this study) may move in

relation to the Optotrak camera system, using the Opotrak’scoordinate system for registration will lead

to errors. These can be overcome by attaching a tracked “reference” rigid body to the object or patient to

be scanned. Figure 4.7 shows a reference body attached to a plastic phantom pelvis. In this caseTM⇒O
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Figure 4.7: Geometry of the reference object used in acquisition of ultrasound slices from the phantom.

andTUT⇒O are replaced withTM⇒R andTUT⇒R. TUT⇒R is found using equation 4.6.

TUT⇒R = TUT⇒O × T−1
R⇒O (4.6)

The calculation ofTR⇒O uses the same method as described above for the calculation of TUT⇒O. The

same approach to slice rejection was used. Slices with a reference body IRE greater than3σIRE were

discarded. Figure 4.8 shows the results of a similar analysis of 〈|TRE|〉 to 〈|ILE|〉 ratio vs visible

IREDs as was done for the ultrasound tracking cross. This assumed that a 6 IRED reference body was

positioned as shown in Figure 4.7 and the target point was thecentroid of the prostate. Based on 4.8 we

discarded any slices with less than 5 IREDs visible on the reference body.

We could not attach a reference rigid body to the patient during surgical trials. Therefore we assume

that the patient does not move in relation to the Optotrak during surgery. During development work we

used data from a plastic phantom data set and three cadaver data sets1. It was desirable to be able to

move these objects relative to the Optotrak cameras, so reference rigid bodies were used.

4.2.2 Ultrasound Calibration

Ultrasound calibration was performed using an invariant point method detailed by Barratt et al. (2006).

In the case of the phantom experiment we repeatedly imaged a pin head attached to the phantom and

submerged in the same water bath as used for data collection.Figure 4.9 shows the location of the

pinhead on the phantom.

The transformTUI⇒UP was first estimated using the ultrasound machine’s own measurement func-

tion. This allows two points to be selected on screen and the distance between the two points measured.

This is shown at the left of Figure 4.10. This gives a pixel to mm scaling which together with a definition

of the image origin (in this case the top left corner of the image) definesTUI⇒UP . TUI⇒UP converts the

1Details of data sets Phantom, Cadaver-01, Cadaver-02, and Cadaver-03 can be found in Appendix A.
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were calculated using Equation 4.5, using a target point at the prostate centroid. All possible IRED

configurations (26) were tested then sorted into best and worst case TRE s.

Figure 4.9: Photograph showing the pinhead object used for ultrasound calibration. Note the position

relative to the reference object. The actual pinhead used for calibration is not visible in this image as it

is too small. The object used was the cut off end of the pin to give small point. The visible pinhead is a

plastic sphere and gave a poor ultrasound signal that was notusable for calibration.
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Figure 4.10: On the left is an example of the measurement usedto determineTUI⇒UP . The ultrasound

image shows a distance which can be used to determine a pixel to mm value. The origin of the image

is defined as the top left corner. On the right is a typical ultrasound image of the pinhead, with a cross

indicating its manually segmented position.

pinhead coordinates in pixels to pinhead coordinates in millimetres relative to an arbitrary point defined

on the probe.

The pinhead is now manually segmented from the ultrasound images, Figure 4.10 shows a typical

ultrasound image of the pinhead in the water bath with a crossindicating the manual segmentation.

Images that failed our previously described slice rejection test or in which the pinhead could not be

properly defined were not used in the calibration. ForN calibration images we now haveN sets of 2D

points (Xi) in mm relative to the probe face, andN estimates ofTFramei⇒FrameRef
. We define the

unchanging position of the pinhead (XPH ) as the origin of a “World” coordinate system. Equation 4.7

can be written for every frame.

XPH = TOptotrak⇒World × TUT⇒O[Framei] × TUP⇒UT × Xi (4.7)

From equation 4.7 we generate a system of3N non linear equations from which we estimate the

parameters ofTOptotrak⇒World andTUP⇒UT using a Levenberg-Marquardt algorithm implemented in

MATLABR©.

Speed of Sound Error

As formulated aboveTUP⇒UT depends on on the speed of sound in the calibration medium. Ifthe speed

of sound in the calibration medium is not the same as that in the tissue to be imaged then there will be

an error in the measured position of the bone surface. The magnitude of this will depend on the size of

the speed of sound mismatch and the amount of tissue that the ultrasound has to pass through to image

the bone. Both Barratt et al. (2006) and Penney et al. (2006) account for this error by optimising the

calibration parameters alongside the registration parameters. Their approaches rely on the assumption

that the underlying anatomy being imaged is identical, so that shape variation between the two data sets

will be due primarily to the this speed of sound error. In our case this is not true, as the preoperative data
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Figure 4.11: Pre-Processing of the CT image to a bone edge probability image. The image on the left is

the CT image. On the right it has been converted to a bone edge probability image, using a Sobel filter,

a local maximum filter, and a look up table.

is only an approximation of the shape of the patient’s pelvicbone. The difference in bone shape in the two

data sets will be a combination of shape modelling error and ultrasound imaging error due to the speed of

sound error. Optimising the ultrasound calibration parameters to minimise the shape error will therefore

yield an incorrect registration. Therefore we do no not attempt to implement these methods here. Our

focus will be on minimising the speed of sound mismatch by controlling the calibration medium.

4.2.3 Transforming the Ultrasound Data

The transformTUI⇒O has now been defined for each frame of the ultrasound data. Pixels with a bone

edge probability value greater than 0 are transformed to 3D points in the Optotrak’s coordinate system

usingTUI⇒O. Zero value pixels are discarded. The remaining points are stored as a list of 3D points and

corresponding bone edge probabilities. In comparison Penney et al. (2006) store the images as a group

of 2D points for each slice and the correspondingTUI⇒O for each slice. Using our method we avoid the

need to applyTUI⇒O during the registration algorithm.

4.3 CT Image Pre-Processing

Our registration method matches the ultrasound image formed in the preceding section with a CT image

that has been warped to fit the patients MRI data using the methods in Chapter 3. We follow the same

methodology as Penney et al. (2006) by converting this CT image into a bone edge probability image

prior to registration. The method used is similar to that used for the ultrasound images. For every voxel

of the ultrasound image two metrics are calculated from the CT image. Then a look up table trained on

manual bone segmentation is used to convert to the two metrics to a bone edge probability. The first

metric is the edge gradient intensity found using a Sobel filter applied the CT image. The second metric

is the maximum intensity found within a3×3 voxel neighbourhood around each voxel of the CT image.

We used the same look up table as Penney et al. (2006) for the conversion from these two metrics to the

bone edge probability. Figure 4.11 gives an example of this image pre-processing.
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4.4 Image to Image Registration
We use an image to image registration to determineTSM(nrr)⇒UI . The registration used to determine

TSM(nrr)⇒UI is an intra patient registration using images of similar modality (both images have been

processed to bone edge probabilities). We have therefore kept the registration algorithm simple. We first

define a similarity measure to be optimised, then the optimisation algorithm. We implemented in C++.

4.4.1 Similarity Measure

The similarity measure is calculated for every point (XUS [i]) in the ultrasound image (stored as a list

of N points). The corresponding point (XCT [i]) in the CT image is first found.XUS [i] is transformed

by the current estimate ofT−1
SM(nrr)⇒UI

to give a coordinate in the CT image. Nearest neighbour in-

terpolation is used to return the bone edge probability (BEPCT [i]) of the voxel nearest to this point.

Interpolation of the CT image is required as the resolution of the ultrasound image is much higher than

that of the CT image (0.088 mm versus 0.7 mm in plane). We tested the effect of using tri-linear interpo-

lation instead of nearest neighbour interpolation on registration accuracy. Using tri-linear interpolation

did not improve registration accuracy and has a computational cost. Therefore we used nearest neighbour

interpolation. If the coordinate is outside the bounds of the CT image a zero value is returned.

The image similarity is then defined as a simple cross correlation in equation 4.8.

SimCC =

∑N
i=1 BEPCT [i] × BEPUS [i]

N
(4.8)

We chose this similarity measure because it can be calculated rapidly, requiring a single loop through

the ultrasound points. Using this measure there is no normalisation for overlapping ultrasound points. If

the point cloud ultrasound image contains a high proportionof points from a particular region then the

registration will be weighted to that region. Therefore thevalue of the similarity measure depends on

both the number and distribution of ultrasound slices. Thisfeature can be used to our advantage. Section

4.6 will detail an experiment that examines the effect of different ultrasound slice distributions on the

registration accuracy.

4.4.2 Optimisation Algorithm

We elected to use a basic gradient descent optimisation algorithm. This is a well established optimiser for

rigid registration of medical images. We used a similar algorithm for the determination ofTSM⇒M [nd9]

in Chapter 3. We start with an estimate ofTSM(nrr)⇒UI and use this to calculateSimCC . Gradients

are then determined numerically in each of the 6 degrees of freedom (3 translations and 3 rotations)

by perturbingTSM(nrr)⇒UI by a predetermined step size (dx,y,z,α,β,γ) and recalculatingSimCC . This

gives 12 new estimates ofTSM(nrr)⇒UI . The estimate with the highest value ofSimCC is used as the

new estimate ofTSM(nrr)⇒UI and the process is repeated until a maxima ofSimCC is found. The step

size (dx,y,z,α,β,γ) is then halved and the process repeated until a new maxima isfound. The step size

if halvedNStepHalve times. This process requires an initial step size to be defined. We found through

trial and error that an initial step size of 4mm for the translation components (dx,y,z) gave good results

for our application. The ratio (slightly less than 0.25 degrees per mm) between rotation step size and

translation step size was chosen so that over the region of interest (the pelvic bone) a rotation step would
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give the same average displacement as a translation step. Applying this ratio to the 4mm initial step size

gives an initial rotation step size of 0.98 degrees (fordα,β,γ).

Target Blurring

Two versions of the preoperative image were used. For large step sizes a blurred image was used (the

edge probabilities were blurred with a 4 mm Gaussian kernel). After NStepHalve

2 step size reductions the

edge probability image was used without blurring.

Registration Initialisation

An initial estimate ofTSM(nrr)⇒UI is required to start the registration process. For pelvic anatomy

Penney et al. (2006) describe a practical method involving atracked pointer and the picking of skin

landmarks. This may not be necessary in our case as the position of the patient’s pelvis in adaVinciTM

based prostatectomy is constrained by the practicalities of fitting all the equipment in the room. Therefore

an estimate ofTSM(nrr)⇒UI can be taken from a past operation. If this is not sufficientlyaccurate it

could be refined rapidly using suitable visualisation software, eg VTK. This will be investigated further

in 6.

Registration Termination

In practice the optimisation algorithm may not always converge on the global maximum. The following

experiments will determine how reliable the optimisation algorithm is. To allow for the occurrence

of failed optimisation in theatre we propose running the algorithm from multiple, randomly perturbed

estimates ofTSM(nrr)⇒UI and checking for convergence of the result. To check for convergence we

define a “Transformation Distance”D. D is a measure of the size of the transform and is defined by

equation 4.9.[XY Z]trans are the translations in mm and[XY Z]rot are the rotations in degrees. The

constantC is used to convert degrees to mm and is set so that a one degree rotation causes an average

translation of 1 mm over the region of interest (the pelvis).We have used a value of4.08mm
◦

.

Distance =
√

X2
trans + Y 2

trans + Z2
trans + (CXrot)2 + (CYrot)2 + (CZrot)2 (4.9)

In theatre we propose running the following procedure. We start with an initial estimate of

TSM(nrr)⇒UI [init]. If this corresponds to a local maxima in the image similarity (equation 4.8) then

running the registration optimiser will have no effect. Therefore we perturbTSM(nrr)⇒UI by a random

transform of distanceDperturb. The process for generating this random transform will be described be-

low. The registration optimiser is then run from this perturbed starting position. This process is repeated

Nreg times, to giveNreg new estimates ofTSM(nrr)⇒UI . The distance of each of these transforms from

TSM(nrr)⇒UI [init] is calculated using equation 4.9. IfTSM(nrr)⇒UI [init] is near the global maxima

we would expect the RMS distance to be near zero. We set a threshold valueDthreshold. If the RMS

distance of the estimated transforms fromTSM(nrr)⇒UI [init] is less thanDthreshold we consider the

registration to have converged at the global maximum. If notwe repeat the process with a new estimate

of TSM(nrr)⇒UI [init]. The new estimate ofTSM(nrr)⇒UI [init] is chosen from theNreg calculated es-

timates ofTSM(nrr)⇒UI on the basis of their optimised similarity measure values. The transform which

gives the highest similarity measure is used.
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The number of repeatsNreg is a function of the failure rate of the optimisation algorithm. The

perturbation distanceDperturb is a function of the capture range of the algorithm. The threshold distance

Dthreshold is a function of the accuracy of the optimisation algorithm.We will attempt to quantify these

values in the following sections in order to design a robust registration process. We now describe a

process for the perturbation ofTSM(nrr)⇒UI [init].

Perturbation of Rigid Transforms

We wish to define a method for randomly perturbing a rigid transform by a set distanceD. These random

perturbations will be used to check for convergence of the registration algorithm.

The distanceDperturb (equation 4.9) defines a six dimensional hypersphere of radius D. The

intent here is to randomly sample from points uniformly spread on the surface of this hypersphere.

We use the following method to do this. Values of each of the transformation parameters (3 trans-

lations and 3 rotations) are independently randomly sampled from a normal distribution with mean

zero and standard deviation 1.0 to give[XY Z]normal
trans and [XY Z]normal

rot . Equation 4.9 is then used

with C = 1.0 to calculateDnormal. The transformation parameters are then scaled usingDperturb

Dnormal , ie.

Xtrans = Xnormal
trans × Dperturb

Dnormal . Finally the rotational components are divided byC = 4.08.

4.4.3 Summary of Registration Parameters

The registration algorithm as described has many parameters and their selection will influence the suc-

cess of the algorithm. The parameters are summarised in Table 4.1.

The performance of the proposed registration algorithm used will depend on the value used for the

parameters listed in Table 4.1. The remainder of this Chapter is divided into 5 experiments. The first four

investigate the sensitivity of the algorithm to four of the parameters , ultrasound processing, number and

distribution of ultrasound slices, number of step size reductions, and the capture range. The chapter is

concluded with an experiment to validate the performance ofthe complete algorithm on 4 sets of data.

4.5 Selection of Ultrasound Image Processing Parameters

4.5.1 Aim

Preprocessing of the ultrasound image from ultrasound intensity to bone edge probability requires the se-

lection of two parameters. These are the artefact intensitythreshold and the degree of blurring applied to

the ultrasound image. This experiment seeks to determine what effect the value of these two parameters

has on registration accuracy.

4.5.2 Data

For testing of the registration algorithm we designed and constructed a phantom. Figure 4.12 shows the

phantom. The phantom consists of a plastic pelvic bone and prostate rigidly mounted on a thick plastic

base. 8 fiducial markers are also rigidly attached to the perimeter of the rigid base. We collected a CT

image of the phantom and 654 ultrasound slices of the phantomimmersed in a water bath. Details of the

data collected are given in Appendix A. The fiducial markers were locating in both the CT image and in

the coordinates of the Optotrak camera. A tracked pointer was used to locate the fiducial markers in the
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Ultrasound Processing

Artefact Distance Threshold 3mm

Artefact Intensity Threshold 0 to 250

Ultrasound Blur Radius 0 to 8 mm

Edge Probability Threshold -1 , 0

Slice Rejection IRED threshold 11 (ultrasound cross) / 5 (Ref-

erence)

Calibration Matrix Fixed

CT Model Processing (Adapted with change from Penney et al. (2006)

Sobel Filter On

Maximum Value Mask Size 3 × 3

Registration

Number of Ultrasound Slices 10 to 600

Distribution of Ultrasound Slices Even or Weighted

Initial Step Size 4mm

Number Of Step Size Reductions 4 to 10

Ultrasound In Plane Resolution 0.088 mm

CT In Plane Resolution 0.7 mm

CT Image Interpolation Nearest Neighbour

CT Blurring 4 mm Gaussian Kernel

CT Out of Plane Resolution 2 mm

Registration Starting Distance 10 to 60 mm

Degrees to mm Conversion 0.25◦/mm

Convergence / Termination Criteria Yes

Similarity Measure Cross Correlation

Table 4.1: Summary of the parameters used by the registration algorithm.
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Figure 4.12: The plastic phantom constructed for registration experiments. A plastic pelvis and prostate

are rigidly mounted on a thick plastic base. 8 fiducial markers are also rigidly attached to the plastic

base. The fiducial markers are used for gold standard registrations between different image sets (CT and

ultrasound). The reference rigid body clamped on is removedfor CT imaging. Its purpose is to track

motion occurring during ultrasound scanning.
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Optotrak coordinate system. A point based registration between the two point sets was then used to get a

gold standard version ofTSM(nrr)⇒O[GS]. The 8 fiducial markers are located so that their centroid is at

the prostate, to minimise errors in the gold standard transform. To allow for movement of the phantom

during ultrasound scanning a reference body was attached tothe phantom.

Ultrasound and CT images of the phantom were used for this experiment. 32 of the ultrasound

images were manually segmented and these were used for building the look tables used by the ultrasound

processing algorithm.

4.5.3 Method

Two experiments were performed. The first was to look at the effect of artefact intensity threshold and

blur radius on TRE at the prostate. The second was to try and compare the automatic image processing

with a manual segmentation.

TRE at Prostate

The CT data was processed to a bone edge probability image (BEPCT ) as per Section 4.3. The pro-

cessing of the ultrasound data was performed as described inSection 4.1 to give an ultrasound derived

bone edge probability image (BEPUS). This is a cloud of 3D points in Optotrak coordinates found

usingTUI⇒O. Ultrasound probe calibration was performed on a pinhead attached to the phantom and

immersed in the same water bath, so there should be no speed ofsound error present inTUI⇒O. Ul-

trasound image processing was repeated using different values of artefact intensity threshold and blur

radius. Blur radius was varied from 0 to 8 mm in 1 mm steps and artefact intensity threshold was varied

from 0 to 250 in steps of 10, ie26 × 9 = 234 versions ofBEPUS were tested. The ultrasound images

are 256 level grey scale images so the maximum possible artefact intensity threshold is 255. A threshold

of 255 would result in all ultrasound data being discarded.

The registration algorithm detailed in Section 4.4 was usedto register each version ofBEPUS to

BEPCT . The CT was put into the Optotrak’s coordinate system usingTSM(nrr)⇒O[GS]. The ultra-

sound imagesBEPUS were then perturbed using a random transform of distance 8 mmas described in

Section 4.4.2. The registration algorithm was then used to get an estimate ofTSM(nrr)⇒UI and hence

TSM(nrr)⇒O[Estimate]. The RMS distance between the nominal prostate points (see section 1.6.1)

defined byTSM(nrr)⇒O[GS] andTSM(nrr)⇒O[Estimate] was then calculated.

Comparison with Manual Segmentation

An alternative to using the automatic processing of the ultrasound image would be to manually segment

the ultrasound images. It would be interesting to know how our method compares with registration using

a manual segmentation. Rather than manually segmenting allthe ultrasound images (over 600) to find

the TRE directly, we attempt here to find it indirectly by correlating the TRE with a separate image

similarity metric. This is done using only the 32 images for which we have a manual segmentation.

For each of the 32 manually segmented images (USi) a look up table for bone edge probability

is constructed from the other 31 images (ie. leave one out testing). This look up table is then used to

process the imageUSi to a bone edge probability imageBEPi as per Section 4.1. This bone edge prob-
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ability image is then compared to the manual segmentationMANi using a normalised cross correlation

similarity measure, defined by Equation 4.10.N is the number of pixels in each image,MANi[j] refers

to thejth pixel of the manual segmentation of theith image.BEPi[j] refers to the corresponding pixel

in the bone edge probability image.

Similarity =

∑N
j=1 MANi[j] × BEPi[j]

√

∑N
j=1 MANi[j]2 ×

∑N
j=1 BEPi[j]2

(4.10)

An average value of image similarity for all 32 images is calculated. Calculation of the average image

similarity is repeated for the values of artefact thresholdand blur radius as in the preceding experiment.

The average similarity can then be plotted against the TRE calculated in the preceding experiment. As

the similarity metric will be one if the images are identicalthen it may be possible to extrapolate a TRE

for a theoretical manual segmentation of the ultrasound image.

4.5.4 Results

Figure 4.13 shows the TRE at the prostate versus artefact threshold and blur radius. For the phantom data

it can be seen that the selection of the artefact threshold can cause the TRE to vary significantly, (by up

to 1.24 mm). Selection of blur radius does not have any significant effect on the registration accuracy. As

larger blur radii require longer processing time it therefore makes sense to use little or no blurring. The

minimum value for TRE occurs at 240. Above this limit the TRE increases dramatically, presumably as

there is insufficient bone surface left to perform a registration.

Figure 4.14 shows the image similarity metric plotted against the TRE calculated at the prostate.

Each data point represents a look up table using a particularcombination of blur radius and artefact

threshold. The TRE is calculated as above, by registering the processed ultrasound to the CT image.

The image similarity measure is calculated by comparing theprocessed individual slices to a manual

segmentation of the slice. It was found that the relationship between the image similarity metric and the

TRE depended on the artefact threshold used. Therefore the individual data points have been grouped

depending on their artefact threshold.

For artefact threshold below 150, increasing the artefact threshold tends to increase the image sim-

ilarity metric and reduce the TRE. For artefact thresholds above 150, increasing the artefact threshold

continues to reduce the TRE, however the image similarity metric reduces. For this reason it was not

possible to extrapolate a TRE for a similarity of 1.

The change in the correlation direction raises the questionof whether a segmentation using a high

artefact threshold will outperform a manual segmentation.Using a high threshold will exclude all but

the strongest bone edges, whereas a manual segmentation will include weaker edges due to the human

operator extrapolating a surface between two obvious surfaces. In cases where many ultrasound slices

are available (as is the case here) rejection of all but the strongest edges may lead to better registration

results.

There is some evidence that this may be the case. A comparisonbetween the results of Penney et al.

(2006) and Barratt et al. (2006), see Table 2.6. These papersused the same data sets, Penney et al. (2006)
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Figure 4.13: Plots of the registration TRE measured at the prostate surface, for a range of artefact

threshold intensities and blur radii. In each case the errorbars show 1 standard deviation of the results

at that point, ie for the threshold value plot the error bars represent the variation in TRE due to the blur

radius at that point. It is clear that for the phantom data theselection of the right artefact threshold is

important, while the blur radius has no significant effect onthe results. The minimum TRE was achieved

using an artefact threshold of 240. At a threshold of 250 the TRE increased dramatically (to over 5mm),

therefore this was not plotted. The following registrationparameters were used: initial step size 4 mm,

Terminal step size 0.25 mm, Registration start distance 8 mm.
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Figure 4.14: Registration TRE versus image similarity for phantom data. Below an artefact threshold

of 150 there is a correlation between TRE and image similarity. TRE reduces as the similarity measure

increases. Above this threshold the correlation changes direction, with TRE reducing as the similarity

measure reduces. Results for thresholds greater than 240 are not plotted as they give a very high TRE.

used automatic segmentation while Barratt et al. (2006) used manually segmented data. The results were

presented as registration TRE across the entire pelvic bonerather than just at the prostate. Penney et al.

(2006) give an error of 1.63 mm, while Barratt et al. (2006) get an error of 2.17 mm, ie. automatic

segmentation outperforms manual segmentation in this case. It should be noted that there are other

differences in their approaches that will also contribute to their differences in the error metric. A more

detailed comparison of the two methods on the cadaver data may make for interesting future work.

4.6 Number and Distribution of Ultrasound Slices

4.6.1 Aim

The ultrasound derived bone edge probability imageBEPUS is defined as a set of discrete points. By

including more points from some regions of the pelvis than from others it is possible to weight the

similarity metric described by equation 4.8. This experiment aims to show what effect both the number

of ultrasound slices used and their distribution will have on the registration accuracy.

4.6.2 Data

The CT image of the phantom (described in Section 4.5) was used here. Rather than registering the

ultrasound data to this we generated “simulated” ultrasound data. Using the real ultrasound data would

introduce tracking and calibration errors present in the determination ofTUI⇒O. To avoid this we
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created simulated ultrasound by re-slicing and interpolating the CT data along the planes defined by the

ultrasound data, transformed using the known gold standardtransformTSM(nrr)⇒O[GS]−1. The result

is two different representations of the same image, one is a voxel based image, while the other is a point

cloud.

4.6.3 Method

A slice classification algorithm was first used to classify the simulated ultrasound slices into regions.

We manually defined three regions of the pelvis as 3D ellipsoids. These regions are defined in the

coordinate system of the CT data. The simulated ultrasound slices are transformed to the CT image

usingTSM(nrr)⇒O[GS]−1 and classified based on which ellipsoid their centre point falls within. We

started with 654 ultrasound slices, 175 of these were classified as pubis slices, 228 were from the left

iliac, and 247 were from the right iliac. 4 slices did not fallwithin any of the classification ellipsoids so

were discarded.

The total number of ultrasound slices used was varied from 20to 600. The slices used were ran-

domly selected from the available slices. Three slice selection methods were used. The first randomly

selected slices from all subgroups of slices. The second used only slices drawn from the iliac regions.

The third used slices drawn only from the pubic region.

The CT and simulated ultrasound data were brought into alignment usingTSM(nrr)⇒O[GS]−1.

The ultrasound data was then perturbed using a random transform of size 10 mm as defined in Section

4.4.2. The registration algorithm described in Section 4.4was then used to estimateTSM(nrr)⇒UI and

henceTSM(nrr)⇒O[est.]−1. TSM(nrr)⇒O[est]−1 andTSM(nrr)⇒O[GS]−1 were used to measure TRE

at the prostate for each data point. The registration optimisation was repeated 20 times for each data

point.

4.6.4 Results

Figure 4.15 shows the relationship between the number of slices used, their distribution and the resulting

TRE at the prostate.

Registration using a subset of slices from across the pelvisis successful providing more than 100

slices are used. Registration using just iliac slices yields notably poorer results, they also show an

increase in TRE as the number of slices is reduced. The results using just pubis data were very poor,

with TRE around 20 mm. For this reason they are not shown in Figure 4.15.

4.7 Number of Step Size Reductions

4.7.1 Aim

The registration algorithm defined in Section 4.4 proceeds by halving the step size each time a local

maxima is found. This experiment seeks to determine what effect the number of step size reductions

(and hence the terminal step size for a constant initial stepsize of 4mm) has on the accuracy of the

registration algorithm.
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Figure 4.15: Registration of CT to simulated CT data. TRE calculated at points on prostate surface. For

each number of slices the registration was repeated 20 times. Registrations with TRE greater than 2 mm

were classed as failures and rejected. (This gave 3 failuresat All pelvis 60 slices, 2 at All Pelvis 40 slices,

Otherwise no data point had more than 1 outlier). The averageand standard deviation of the remaining

TREs were computed. The error bars represent +/- 1 standard deviation of the successful registrations.

When using slices spread across the pelvis (All Pelvis) the result appears fairly stable as long as more

than 100 slices are used. Below this and the TRE steadily climbs. Registration using just the iliac data

appears to work but gives a worse result than using all data. Registration using just the pubis data is not

shown as the TREs were very high, averaging 20 mm.
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Figure 4.16: Effect of number of step size reductions on registration accuracy. Registration TRE of

points on prostate surface using synthetic (ideal) data. For each number of reductions, the registration

was repeated 10 times. Failed registrations (with a TRE greater than 2 mm) were removed (1 failed

registration at 4 step size reductions). The average and standard deviation of the remaining TREs was

computed. The error bars represent +/- 1 standard deviationof the remaining data. Beyond 8 step size

reductions there is no improvement in average result (around 0.075 mm), however the standard deviation

continues to reduce.

4.7.2 Data

The phantom data was used with simulated ultrasound, as per Section 4.6.

4.7.3 Method

The simulated ultrasound was registered to the CT using all available ultrasound slices and different

numbers of step size reductions, from 4 to 14. At each data point the registration was repeated from

different random starting points using the same process as in 4.6.

4.7.4 Results

Figure 4.16 shows the results. More step size reductions will give a better registration. The improvement

(in reduction of standard deviation, rather than average) continues beyond 8 step size reductions. It is

interesting to compare the terminal step size with the resolution of the CT image used (0.9 × 0.9 ×
0.5mm3). The CT image resolution is not having a significant effect on the registration accuracy in

this case. The terminal step size has a larger effect. The benefits gained by using more than 8 step size

reductions are marginal in the context of the system error. As there is a computational cost in using more

step size reductions we only propose to use 8 step size reductions in practice.
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4.8 Optimiser Capture Range

4.8.1 Aim

The experiments to date have only used registrations from starting estimates ofTSM(nrr)⇒UI close to

the known gold standard registration. We have not yet determined how close our initialisation estimate

of TSM(nrr)⇒UI will be in theatre, this will be discussed more in Chapter 6. For a similar problem

Penney et al. (2006) used an initial estimate ofTSM(nrr)⇒UI based on picking three skin surface points.

They generated starting estimateforTSM(nrr)⇒UI based on the assumption that these skin points were

localised with an error of 20 mm. We measured the distance (see equation 4.9) of 300 of their starting

estimates from the known gold standard value ofTSM(nrr)⇒UI . The average starting distance was 30

mm. If we assume that we will achieve similar initialisationthen our algorithm must be able to reach the

global maximum from initialisations at the this distance. The aim of this experiment is to determine the

capture range of the algorithm.

4.8.2 Data

The same “simulated ultrasound” method as used in Sections 4.6 and 4.7 was used to generate ultrasound

slices from voxel based CT images. In this case rather than using the phantom data sets we used the 21

CT data sets used in Chapter 3. These were first registered to the phantom so that the ultrasound slice

positions from the phantom scan could be used to re-slice thedata. The CT images were first processed

to bone edge probability images using the method in section 4.3. This gave 21 data sets of voxel CT

images and corresponding slice based images of the same data.

4.8.3 Method

The registration algorithm described in Section 4.4 was used to register the simulated ultrasound to the

matching CT data from starting estimatesTSM(nrr)⇒UI [init]. The starting estimates were generated

by perturbing the known gold standardTSM(nrr)⇒UI [GS] by a distanceDinit. The value ofDinit was

varied from 10 to 60 mm. At each distance the registration wasrepeated 10 times for each of the 21 data

sets. The convergence checking termination criteria described in Section 4.4 was used with the following

parameters.Nreg was 10,Dperturb was 10 mm, andDthresh was 2 mm. The method for perturbing

the transformations is described in Section 4.4. The results were measured as a registration failure rate

(the percentage of registrations with a TRE at the prostate greater than 2mm) and as the RMS TRE for

successful registrations. TRE and failure rate were calculated both for individual runs of the gradient

descent optimiser and for the global optimiser which uses repeat runs of the gradient descent optimiser.

4.8.4 Results

Figure 4.17 plots the results in terms of TRE and failure rateat start distances up to 60mm. On the left is

shown the performance of the gradient descent optimiser on its own. This only operates reliably at a start

distance of 10mm or less. This is unlikely to be possible in practice. On the right the performance of

the full algorithm described in Section 4.4 is shown. By repeating the gradient descent optimisation and

checking for convergence of the resulting transforms it is possible to get satisfactory registration results

up to a start distance of 40mm. This is probably adequate for our application.
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Figure 4.17: Registration TRE (left axes) and number of failed registrations (right axes) for start dis-

tances up to 60 mm using re-sliced CT data. For each starting distance registration using the repeated

run and convergence check algorithm was performed on 21 different CT data sets. The chart on the left

shows the performance of individual registration optimisations using the gradient descent optimiser. On

the right is the performance of the full algorithm which repeats the registration 10 times and checks for

convergence of the results. A failed registration was defined as having a TRE greater than 2 mm.

4.9 Registration Using Real Ultrasound Data

4.9.1 Aim

With the registration parameters determined as in the preceding sections, the algorithm is now tested on

real ultrasound and CT data, both on its own and in combination with the shape model fitting presented

in Chapter 3. This experiment determines the accuracy with which theTM⇒O, see Figure 1.3, can be

found. In addition the experiment confirms the effects of theerror inTSM⇒M on registration accuracy.

4.9.2 Data

Four data sets were used (Phantom, Cadaver-01, Cadaver-02,and Cadaver-03, see Appendix A). These

have CT data for the pelvis and matching ultrasound slices. For each data set a gold standard registration

between the two modalities was established using fiducial markers. In the case of the cadaver data, the

gold standard registrations were determined using bone implanted fiducial markers, see Penney et al.

(2006) for details. For the phantom data the gold standard registration was performed using a set of eight

fiducial markers around the pelvic bone, described in Section 4.5.

4.9.3 Method

The ultrasound data was first transformed to the CT data, using the known gold standard transforms

T−1
SM(nrr)⇒UI

. All data sets were then transformed into the coordinate system of the shape model from

Chapter 3. For each of the four data setsTSM⇒M [nd9]−1 was found by aligning the CT data to one

of the pelves (SM-K) used in the shape model building in Chapter 3. TSM⇒M [nd9]−1 was then used

to transform both the CT and ultrasound data to the model’s coordinate system. The CT image was

re-sampled to the voxel sizes of the shape model using tri-linear interpolation. The ultrasound data set

did not require interpolation as the data is stored as coordinates in 3D space.
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Region Phantom Cadaver-01 Cadaver-02 Cadaver-03

Total Slices Collected 721 282 482 342

Used for LookUp Table Construc-

tion

32 N/A N/A N/A

Rejected Due to Lack of visible

IREDs

35 81 164 10

Pubis 175 82 81 39

Left Iliac 228 70 176 152

Right Iliac 247 46 59 140

Not Classified 4 3 2 1

Total Good 650 198 316 331

Table 4.2: The results of slice rejection and classificationof the four data sets used. Slices with less

than 11 IRED s visible on the ultrasound cross or less than 5 IRED s visible on the reference object were

rejected. Slices were then classified into regions based on the position of their centres relative to regions

manually defined on the Phantomdata set. Slices that fell outside all regions are listed as Not Classified

and were not used.

Conversion of the phantom ultrasound data to probability images was done using an artefact thresh-

old of 240 and a blur radius of 1 pixel as suggested by the analysis in Section 4.5. Conversion of the

cadaver data was done using the same parameters and lookup tables as Penney et al. (2006). The ultra-

sound data for each data set was classified into regions basedon the position of the slice centres relative

to the regions manually defined in the phantom data set. Table4.2 shows the results of this slice classi-

fication. Conversion of CT images to bone edge probability images was done using a Sobel filter and a

local maximum as described by Penney et al. (2006).

For each data set, the ultrasound data was registered to the CT data using the algorithm described

in Section 4.4. Four different variations were trialled. Two methods of processing the CT data and two

different distributions of ultrasound slices were used.

The CT data was first transformed to bone edge probability images directly. The registration error

resulting from this comes from the registration method only, ie. it is an estimate of the accuracy with

which we can estimateTSM(nrr)⇒O. However we can also fit a shape model to each of the four data sets

using the methods outlined in Chapter 3. This fitted model canthen also be transformed to a bone edge

probability image. Registering the ultrasound data to thisshape model derived bone edge probability

image gives an estimate of the combined error in estimatingTSM⇒M and TSM(nrr)⇒O, and hence

TM⇒O.

The three cadaver data sets used here are from female cadavers. Similar data for male cadavers was

not available. The shapes of the male and female pelvis is similar enough that the registration errors

(error in TSM(nrr)⇒O) should be very nearly the same as those for a male pelvis. Hence the use of
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female pelves to estimate this error is valid. Whether it is also valid to estimateTSM⇒M by fitting the

male shape model to the female data is a more complex question. This subject is discussed further in

Appendix B. To account for this here we relaxed the shape constraints of the model, allowing the shape

parameters to fall beyond the 3 standard deviation limit used when fitting to male MRI data. The shape

model fitting here is intra-modal (CT model to CT patient) rather than inter-model (CT model to MRI)

patient. In this case it was found that it was not necessary toconstrain the shape model in order to achieve

good results.

As shown in Section 4.6 the number and distribution of ultrasound slices used will impact on the

registration results. The number and distribution of slices was therefore controlled. Two alternative

strategies were tried, one used slices evenly spread acrossthe pelvis, the other used relatively more slices

from the central pubic region. During development of the registration method it was noted that weighting

the algorithm to fit the pubic region more accurately gave a lower TRE at the prostate on average. This

weighting can be done quite simply by using more slices from the pubic region, as classified in Table 4.2.

Similarly it was noted in Section 4.6 that slices from the iliac regions were necessary for a successful

registration. In practice it will be necessary to implementa system to control the distribution of slices

used for registration in theatre. This will be discussed further in Chapter 6.

Here 2 distributions of slices are compared, one has an approximately even distribution of slices

with 168 slices from each iliac region, and 84 from the pubis,whilst the other weights the registration to

the pubis by having 180 pubis slices and 120 slices from each iliac region. In each case the same total

number of slices (420) was used. The actual ultrasound slices used were randomly chosen at the start

of each registration. In cases where the number of slices used was greater than the available slices (see

Table 4.2) some slices (randomly chosen) were used multipletimes as necessary. Whilst this will not

add new information to the registration it will still weightthe registration to that region.

For each data set, each CT processing method, and each ultrasound slice distribution the ultrasound

to CT registration was repeated 100 times using the parameters shown in Table 4.3. Random selection

of ultrasound slices was performed for each repeat registration. Each registration was started using an

initial estimate forTSM(nrr)⇒O that was based on perturbing the known gold standardTSM(nrr)⇒O by

a random transform of distance 10 mm (as defined by equation 4.9).

For each registration the error was determined by calculating the distance error at the “nominal

prostate” points defined in Section 1.6.1. They were first transformed to the Optotrak’s coordinate sys-

tem using the known gold standard transformTSM(nrr)⇒O[GS]. The transform estimated using the

registration algorithm was then used, and the difference inthe point positions measured. Registrations

giving a TRE at the prostate greater than 10 mm were classed asregistration failures. The results are

presented as the RMS TRE at the prostate for successful registrations and the percentage of failed regis-

trations.

4.9.4 Results

The results, expressed as the RMS TRE for successful registrations and a failure (TRE greater than

10mm) are shown in Table 4.4. These results are for individual runs of the gradient descent optimiser,
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Parameter Phantom Cadaver-01 Cadaver-02 Cadaver-03

Number Of Ultrasound Slices 650 198 316 331

Number Of Non Zero Bone Edge

Probabilities

7547242 931274 4281129 1802785

Initial Step Size 4 mm 4 mm 4 mm 4 mm

Ultrasound Slice Resolution (In

Plane)

0.088 mm 0.12 mm 0.12 mm 0.12 mm

CT XY Resolution 0.70 mm 0.70 mm 0.70 mm 0.70 mm

CT Z Resolution 2 mm 2 mm 2 mm 2 mm

Registration Start Distance 10 mm 10 mm 10 mm 10 mm

Degrees to mm 0.25

Deg/mm

0.25

Deg/mm

0.25

Deg/mm

0.25

Deg/mm

Table 4.3: Parameters used for registration used in validation experiments.

Data Set

Method Slice Distri-

bution

Cad. 01 Cad. 02 Cad. 03 All Cads. Phantom

Reg. Only 168:84:168 3.64 (10%) 3.19 (25%) 6.71 (17%) 4.79 (17%) 1.62 (0%)

Reg. Only 120:180:120 3.70 (8%) 4.44 (34%) 6.54 (18%) 5.03 (20%) 1.70 (0%)

Reg. & Mod. 168:84:168 7.85 (56%) 7.08 (31%) 7.85 (30%) 7.57 (39%) 4.32 (0%)

Reg. & Mod. 120:180:120 7.42 (30%) 7.68 (25%) 6.99 (15%) 7.35 (23%) 3.96 (0%)

Model Only
√

R42 − R22

120:180:120 6.43 6.27 2.47 5.36 3.56

Table 4.4: The registration results for the 4 data sets usingbone edge images derived from the actual

CT data (Registration Only) and a shape model fitted to the CT data, model (Registration and Model).

The figures are expressed as a RMS TRE in mm at a nominal prostate and a failure rate in percent (RMS

TRE greater than 10mm). These results are for individual runs of the gradient descent optimiser, not the

repeated run and convergence check method discussed in Section 4.4. The final row is an estimate of the

error induced by using a shape model to segment the pelvic bone.

not the repeated run and convergence check method discussedin Section 4.4.

The last row of Table 4.4 is an estimate of the registration error caused by segmenting the data with

a shape model. In Chapter 3 we predicted that this error wouldbe normally distributed with an RMS

error of 5.3 mm. The results in the last row of Table 4.4 agree with this estimate.

Weighting the registration to the pubic region had variableresults for the registration error only

tests. When using the shape model however the pubic weightingwas generally beneficial.
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4.10 Discussion

4.10.1 Optimiser Performance and Registration Run Time

The results in table 4.4 indicate that when used on real data the gradient descent registration optimisation

algorithm will fail 23% of the time. To allow for this in theatre we propose running the algorithm

repeatedly and checking for convergence of the result, as discussed in Section 4.4. Based on our results

it is likely that the optimiser will have to be run 20 to 30 times. At present the optimisation algorithm has

an average run time of approximately 10 minutes on a desktop PC. Therefore we would require up to 300

minutes to perform the registration. To be used in theatre the algorithm must run in less than 20 minutes.

For clinical implementation it will be necessary to increase the speed of the algorithm. This can be done

in two ways. Firstly we will investigate faster and/or more robust optimisation algorithm. Using a more

robust optimiser would reduce the need to run repeated registrations. Secondly, we could reimplement

the algorithm in parallel take advantage of either a multi-processor machine or a graphics processing

unit. Though the speed increase required is very large, the algorithm as currently implemented is very

simplistic, so it is likely that using these approaches could yield a sufficiently fast registration method.

4.10.2 Registration Error

Two errors can be determined from the experiment in Section 4.9. One is due to the performance of

the registration algorithm used on images with well defined bone edges and no ultrasound calibration

errors. This is the TRE for the registration only Phantom data in Table 4.4. However, the bone edges

in the ultrasound images of the phantom (a plastic/water interface) are significantly better defined than

they are in ultrasound images of human pelves (a bone/soft-tissue interface). Therefore the bone edge

probability images from the cadaver data are less accurate than from the phantom data. Refer back to

Figure 4.3 for an example of this. Furthermore there is an additional error due to the speed of sound

mismatch between the ultrasound calibration medium and human tissue. The registration error shown

in rows 1 and 2 of Table 4.4 for all phantom data (4.79 and 5.03 mm) is a combination of three errors.

These are the registration algorithm accuracy, the error inconverting the ultrasound images to bone edge

probability images, and finally the the speed of sound mismatch for the ultrasound calibration. This is

the error we would expect to achieve in theatre, using our current methods.

4.10.3 Conclusion

In this chapter we have detailed our implementation of an ultrasound to CT registration algorithm. The

algorithm has been optimised to account for the fact that theCT image is an approximation. The CT

image is formed by warping another patient’s CT to fit the prospective RARP patient’s MRI. The algo-

rithm requires significant optimisation before it will be ready for clinical use. We have also assessed the

registration error for the algorithm and determined the accuracy of the transformTM⇒O.

The error due to ultrasound to CT image registration (5.03 mm) can be projected on screen using

the procedure outlined in Section 1.6.2. Figure 4.18 provides a visualisation of this error overlaid on a

typical surgical scene.
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Simulated Points
1 σ
2 σ

σx=13.86 Pixels (3.3 mm)
σy=13.93 Pixels (3.1 mm)

Figure 4.18: A landmark point (near the apex of the prostate)has been chosen and perturbed by a random

Gaussian error in 3D equivalent to the registration error (5.03 mm) 1000 times. The resulting projections

give an indication of the on screen error due to this error source.
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Chapter 5

Endoscope Calibration and Tracking using an

Optical Tracker

The preceding two chapters have placed the patient’s preoperative image into the coordinate system of

the Optotrak system. To complete the image guided surgical system we now find the transforms to put the

image onto the endoscope screen,TO⇒ES from Figure 1.4.TO⇒ES is the product of three transforms.

The endoscope’s intrinsic projection charateristicsTEL⇒ES , the tracked endoscope’s extrinsic transform

TET⇒EL, and the endoscope’s tracking matrixTO⇒ET .

In this chapter we first define our methods for estimating eachof these transforms. We then present a

novel method for determining the error in estimating each ofthese transforms. Following this we present

the results of our endoscope calibration and a series of experiments to test potential improvements in the

tracking system.

5.1 Endoscope TrackingTO⇒ET

ThedaVinciTM endoscope is tracked using tracking markers (IREDs) mounted on the endoscope and

the same Optotrak Certus tracking system as was used in the registration of the preoperative data in the

preceding chapter. The Optotrak was used in preference to the daVinciTM ’s own kinematic data for

three reasons. Firstly it avoids the need for an additional transform from thedaVinciTM ’s coordinate

system to the Optotrak’s coordinate system, avoiding an additional calibration step and the accompa-

nying errors. Secondly the system remains independent of the daVinciTM and could be applied to any

endoscopic system. Finally, results in the literature for endoscope tracking using thedaVinciTM kine-

matics [Mourgues and Coste-Maniére (2002)] are not encouraging.

Figures 5.1 and 5.2 show the tracking collar used and the Optotrak Certus system in theatre. The

Optotrak is used to triangulate the position of each IRED on the tracking collar. The IRED positions

define a rigid body which can be registered to a reference tracking collar rigid body to determineTO⇒ET .

The tracking problem is formulated as a Procustes point alignment and the optimum transform found

using SVD. This is the same method as was used for the ultrasound cross, described in Section 4.2.1. As

described by West and Maurer Jr (2004) the design goal of sucha tracking system is to place as many

tracking points as possible, spread as far apart as possible, and with their centroid positioned at the point
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Figure 5.1: The tracking collar mounted on thedaVinciTM endoscope and the Optotrak camera system

in theatre.

to be tracked. The on screen error due to the endoscope tracking accuracy will depend on the position

of the object being viewed and the projection characteristics of the endoscope. This makes it difficult to

compare different results from the literature. One of the simplest ways to model the endoscope tracking

error is to use an anatomical point beyond the end of the endoscope as the target point. The TRE for

this point can be determined using Equation 5.1 from Fitzpatrick et al. (1998). This approach was used

by Shahidi et al. (2002). Here we can use the same “prostate apex” point introduced in Section 1.6.2.

The geometry of the resulting tracking system is shown in Figure 5.2. The design shown in Figure 5.2

fails to meet this design goal for several reasons. The number of IREDs is restricted by the quantity

of wiring required to be routed over the endoscope. The spread of the IREDs around the axis of the

scope is restricted by the need to maintain clearance to thedaVinciTM arm. The most significant design

problem is the distance from the tracking IREDs to the targetpoint along the axis of the endoscope. This

is necessary to maintain a line of sight on the IREDs from the Certus cameras.

The relative performance of the tracking set up can be determined by using equation 5.1

[Fitzpatrick et al. (1998)].FLE refers to to the localisation error of a single IRED,TRE is the er-

ror at the target point,dk is the distance of the target point from thekth principal axis of the visible

IREDs, andfk is the moment of the visible IREDs about that axis.

〈TRE2(r)〉
〈FLE2〉 ≈ 1

N

(

1 +
1

3

3
∑

k=1

d2
k

f2
k

)

(5.1)

The same method as in Section 4.2.1 of calculating the ratio of expected TRE to expected FLE for all

possible combinations of visible IREDs and plotting the best and worst cases was used to generate Figure

5.3. Provided at least 10 IREDs are visible this ratio is lessthan 7. This can be compared with the same



5.1. Endoscope TrackingTO⇒ET 137

Endoscope tracking geometry
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Figure 5.2: A schematic of the tracking collar and endoscopeshowing the approximate dimensions.
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Figure 5.3: Ratio of the expected values of the absolute TRE and FLE for the endoscope tracking system.

The ratio is calculated for all possible combinations of visible IREDs using equation 5.1. The best and

worst case values are shown for each number of visible IREDs.

plot for the ultrasound tracking cross used in the precedingchapter, see Figure 5.3, where values closer

to 2 were the norm.

If we were to assume (as is commonly done in the literature [Shahidi et al. (2002),King et al.

(1999)]), that the expected value of the FLE is 0.2 mm (from the Optotrak specification, NDI (1992))

then the expected value of the TRE will be somewhere between 2and 6 mm, assuming that at least six

IREDs remain visible1. This error is similar to the registration error of 5 mm identified in the preceding

chapter, corresponding to an on screen error of around 18 pixels (see Figure 4.18). If we were to be

optimistic and use the figure of 0.02 mm FLE from Barnes et al. (2007), then the expected TRE would

be less than 0.6 mm. It will be shown in this chapter that both these figures are significantly less than the

1It was found that in practice many of the 14 IREDs were obscuredby wiring and surgical equipment. The assumption of six

IREDs is based on our experience in theatre
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errors seen in practice. Equation 5.1 assumes anisotropic,homogeneous, and normally distributed error,

which is not the case when using an optical tracking system.

Defining the Reference Tracking Body

As discussed for the case of the ultrasound cross in Section 4.2.1, the apparent shape of the tracking

collar (the positions of the IREDs) will vary across the tracking volume due to the effect of IRED angle

on tracking accuracy. Therefore a reference tracking collar defined “front on” to the Optotrak cameras

may not perform well in practice, when the collar will be at various angles to the Optotrak. To allow for

this the same iterative method for defining the reference frame as in Section 4.2.1 was used. For a given

sequence of tracking frames, the reference IRED pattern wasfound by registering all frames to the first

frame in the sequence, then averaging the registered IRED positions. This average frame was used as a

new estimate of the reference frame. This process is repeated until the average RMS registration error

converges.

5.1.1 Calibration - Calculation of TEndoTrkToEndoLens and TIntrinsic

Endoscope Model

The endoscope camera was modelled as a pinhole camera, basedon the model of Heikkila and Silven

(1997). A point defined in the 3D coordinate system of the Optotrak (XOptotrak) is first transformed into

a coordinate system with an origin at the endoscope lens and zaxis along the central ray (XEndoLens).

This transformation uses the tracking transform and the endoscope’s extrinsic matrix, equation 5.2.

XEndoLens = TET⇒EL × TO⇒ET × XOptotrak (5.2)

The normalised image projection is now defined as Equation 5.3.

Xn =





x

y



 =





xEndoLens

zEndoLens

yEndoLens

zEndoLens



 (5.3)

Radial and tangential lens distortion up to 4th order even radial terms were modelled, the normalised

coordinates after distortion are given by Equation 5.4.

Xd =





xd

yd



 = (1 + Drad(1)r2 + Drad(2)r4)Xn + Dtan

where r2 = x2 + y2

and Dtan =





2Dtan(1)xy + Dtan(2)(r2 + 2x2)

Dtan(1)(r2 + 2y2) + 2Dtan(2)xy





(5.4)

whereDrad(1, 2) are the radial distortion coefficients andDtan(1, 2) the tangential distortion coeffi-

cients. The distortion corrected normalised points are then projected to on screen pixel coordinates using

Equation 5.5.
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(5.5)

wherefc(1, 2) are the endoscope focal lengths andcc(1, 2) the principal points. This gives an intrinsic

camera model with 8 parameters plus a 6 dimensional extrinsic transform for each view.
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Figure 5.4: An example of the endoscope poses and calibration grid used for calibration.

Endoscope Calibration

Calculation of the endoscope’s intrinsic and extrinsic parameters was done using a set of images of a reg-

ular grid designed by Wengert et al. (2006). This is visible in Figure 5.4. Determination of the extrinsic

matrix is as proposed by Tsai and Lenz (June 1989) and was doneusing aMATLABR©implementation

made available by Wengert et al. (2006). For accurate calibration the images of the grid must be taken

from a range of view points. For tracking thedaVinciTM endoscope the possible range of views is lim-

ited by the possible motion of the endoscope and by the field ofview (or characterised volume) of the

Optotrak camera system. Figure 5.4 shows an (ideal) exampleof the pattern of endoscope orientations

used for calibration. They are evenly spread on a grid spanning an angle of 60 degrees.

An automatic feature extraction algorithm supplied by Wengert et al. (2006) is first used to extract

the grid points on each image. Optimisation of the global intrinsic parameters is then performed using

a gradient descent algorithm, implemented inMATLABR© in the “Camera Calibration Toolbox”, freely

available on line. ForN calibration images this algorithm outputs the global (common to all images) in-

trinsic parameters (TEL⇒ES) andN transforms (TGrid⇒Lens[i]). These transforms are estimated based

on the visible orientation of the grid. For each image we alsohave the tracking transform (TO⇒ET [i])

determined from the measured IRED positions. Equation 5.6 defines the relationship between these

matrices.

TGrid⇒Lens[i] = TET⇒EL × TO⇒ET [i]−1 × TGrid⇒Optotrak (5.6)

These form a set ofN equations which can be solved forTET⇒EL andTGrid⇒Optotrak. A MATLABR©
implementation (Wengert et al. (2006)) of the method proposed by Tsai and Lenz (June 1989) was used

to solve this.
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5.2 Determination of Calibration and Tracking Errors

The accuracy of the preceding endoscope calibration can be assessed by measuring the back projection

errors. The back projection error is the average difference(in pixels) between the location of a point

on the calibration grid determined using the estimated transformsTO⇒ES andTGrid⇒Optotrak and the

point on screen measured from the image. The average back projection error however does not provide an

estimate of the tracking or calibration error. If only a small number of views are used for the calibration

it is possible to have a low back projection error even if the estimates ofTEL⇒ES andTET⇒EL are

incorrect. The optimisation algorithm can find a solution that minimises the back projection errors

for the limited views used in calibration but is in fact not valid for other views. This problem can

be detected in practice by using additional views that were not used in the calibration to measure the

back projection error. The back projection error found willbe a function of three errors. The tracking

error (error inTO⇒ET ), the intrinsic calibration error (error inTEL⇒ES) and the extrinsic calibration

error (error inTET⇒EL). To properly understand the performance of the image guidance system it is

necessary to estimate these errors individually. Estimation of these errors can be done if the endoscope

calibration is performed on an endoscope where the four transforms (the three endoscope transforms

plusTGrid⇒Optotrak) are known. This cannot realistically be done for thedaVinciTM endoscope, hence

we propose a Monte Carlo simulation of endoscope calibration and tracking.

5.2.1 Monte Carlo Modelling of Calibration

We start with the assumption that there will be three main sources of error in the endoscope calibration

procedure. These are the endoscope tracking error due to theerror in localising the individual IREDs,

the point extraction error for determining the on screen location of the calibration grid centres, and

potentially a scaling error in the printing of the calibration grid. We have not attempted to model any non

rigid motion between the endoscope lens and the tracking collar. Examination of the endoscope suggests

that this non rigid motion should be negligible, but this hasnot been proven. Modelling of the calibration

process is then done as follows.

A set ofN versions ofTO⇒ET [i] are created. It is important that these are representative of endo-

scope poses that can be achieved in practice. In our case we used transforms recorded during an actual

endoscope calibration. A set of grid pointsXGrid are first defined in 3D space. We use a grid of 51 by

51 points with a centre distance of 4mm, which is the same as the grid used for calibration as shown

in Figure 5.4. If a scaling error is being modelled the grid isfirst scaled as necessary. This is to model

any inaccuracy in printing the grid. In our case we are printing the grid using a standard office laser

printer so it is unlikely to be error free. The grid measures 200 by 200 mm, and we can measure its

size to within 1mm easily. Therefore it makes sense to model scaling errors of±0.5%. The grid points

are transformed to Optotrak coordinates usingTGrid⇒Optotrak, then to the endoscope lens coordinate

system usingTO⇒ET andTET⇒EL. We used values for these three transforms taken from an actual

calibration of the endoscope.TEL⇒ES is then used to transform the points to on screen points. At

this point we can add an error corresponding to the error in detecting the centre of the on screen grid

point. Shahidi et al. (2002) cite a sub-pixel point extraction error for a similar point extraction algorithm.
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Therefore we add normally distributed point extraction error with a standard deviation of up to 1 pixel

at this point. The point extraction algorithm used [Wengertet al. (2006)] does not successfully extract

every visible point, so some points are also removed at this stage. The removal of points is based on

that achieved during an actual calibration. This gives a setof on screen points for each simulated image.

These are then passed, along with unscaled points in 3D, to the calibration algorithm which estimates

TEL⇒ES andTGrid⇒Lens[i]. The next stage is to generate a matching set of estimates forTO⇒ET [i].

TO⇒ET [i] is estimated for each view as follows. The reference versionof the tracking collar IREDs

are first put into Optotrak coordinates using the known gold standard transformsTO⇒ET [i]−1. As shown

in Figure 5.3 the tracking error will depend on the number andconfiguration or IREDs visible. There-

fore some of the IREDs are now removed. The removal of IREDs isbased on the IRED visibility states

observed during an actual calibration procedure. The remaining IREDs are now perturbed by an er-

ror function. The perturbed IREDs are registered back to thereference frame to give an estimate of

TO⇒ET [i]. The error function used for the perturbation of the IREDs will have a great impact upon the

the results. Determining an appropriate error function is akey part of the novelty of this work and is

discussed now.

5.3 Determination of IRED Localisation Error
The ILE for an Optotrak tracking system is known to be anisotropic and dependent on the position and

orientation of the individual IREDs [Wiles et al. (2004)]. It has also been shown to markedly increase

when tracking moving IREDs [Barnes et al. (2007)]. For endoscope calibration the endoscope is held

static during data collection, so the error due to IRED motion can be ignored. Wiles et al. (2008) present

an analytic method for modelling the accuracy of a point based registration with anisotropic normally

distributed error. However the ILE is correlated to IRED position and IRED angle. The calibration

process uses a set of discrete views with the IREDs in different orientations and positions so it is unlikely

that the ILE will be normally distributed. Therefore we require a method to model the ILE that does not

assume a normal distribution. We do not know at this stage what the distribution of ILE will be, so

we propose a method to measure the ILE that occurs in an actualcalibration process. After the ILE

is estimated we can attempt to fit an analytic model to it. However, this is not necessary as long as

the IRED positions and angles used to estimate the ILE are representative of those encountered in the

tracking process to be simulated. In this case we can use the measured ILEs directly as a look up table

in the simulation.

The obvious method for determining ILE is to track the IREDs with a separate, more accurate

system, such as is done by Barnes et al. (2007). The IRED positions measured by the Optotrak can then

be compared to a set of known gold standard IRED positions. For the Optotrak system however this

method has a major shortcoming. As the ILE is dependent on theposition and orientation of the IREDs

the measurement must be representative of the positions occurring in use. In general this is not practical.

We therefore propose a method that estimates the ILE using the IRED positions recorded in use.

A set of measured marker locationsXm[i] are collected from an actual endoscope calibration. Di-

rect measurement of the marker localisation error vectorsEML[i] is not possible as the actual marker
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locations remain unknown. However, their position can be estimated using the remaining markers on the

rigid body. These can be registered to a reference rigid body, in this case using the orthogonal Procustes

formulation and singular value decomposition, Fitzpatrick et al. (2000). The inverse of the registration

transform can then be used to give an estimated position vector XR[i] for the marker. The measured

error vectorEm[i] is defined by equation 5.7.

Em[i] = Xm[i] − XR[i] (5.7)

The marker positionXR[i] estimated by registration, however, is not the actual marker position, which

remains unknown. The measured error is therefore the combination of the ILE (EILE [i]) and the marker

registration errorER[i], equation 5.8.

Em[i] = EILE [i] + ER[i] (5.8)

ER[i] is unknown, however it is analogous to the TRE which has been studied by Fitzpatrick et al. (1998)

and was used in equation 5.1. Equation 5.1 however assumes isotropic, normally distributed ILE. A more

recent method by Wiles et al. (2008) allows anisotropic, though still normally distributed, ILE. Equation

5.9 presents a method for calculating the covariance matrixof the expected value of TRE for anisotropic

normally distributed ILE. Whilst this will not be entirely accurate in this application, we rely on the

assumption that the estimated value ofTRE is small in comparison to the measured value ofEm, so the

error due to the assumption of normally distributed error issmall.
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Where

• ΣTRE Is the covariance matrix of the expected value of TRE (orER).

• σ Is the covariance matrix of the expected value of FLE (orILE).

• N Is the number of IREDs visible.

• Λ Are the eigenvalues of the SVD of the covariance matrix of theremaining visible IREDs. A

function of the geometry of the remaining visible IREDs (Xrb).

• r Are the distances of the target IRED to the principal axes of the IRED configuration

• δ Is the Kronecker Delta.

• K is the dimension, in this case 3.

This determines the expected value ofER rather than the actual value for an individual measurement as

in equation 5.7. We cannot therefore calculate the individual ILEs using equation 5.9, however we can

determine the expected value of ILE for a number of frames as in equation 5.10.〈|ER|〉 is equivalent to
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(ΣTRE)ij from equation 5.9.XR[i] andXm[i] are known. Therefore〈|EML|〉 can be determined, with

equation 5.10 whereN is the number of IREDs sampled.

〈|EML|〉 =

N
∑

i=1

|XR[i] − Xm[i]|
N

− 〈|ER|〉 (5.10)

However,〈|ER|〉 is a function of〈|EML|〉 as well as the geometry of the remaining visible IREDs,

(Xrb). Therefore we use an iterative process to determine〈|EML|〉 as in equation 5.11. Herek is the

iteration step.

〈|EML|〉k+1 =
N

∑

i=1

|XR[i] − Xm[i]|
N

− 〈|ER|〉 where 〈|ER|〉 = F(〈|EML|〉k,Xrb) (5.11)

An isotropic ILE with an expected value of 0.2 mm was used as anestimate for〈|EML|〉0 and ap-

proximately 20 iterations were required before〈|EML|〉k+1 = 〈|EML|〉k to machine accuracy, typically

taking less than a minute. To simplify the calculation we assumed that〈|EML|〉i was the same for all

markers in the sample. This will not be strictly true as〈|EML|〉 will depend on marker position and ori-

entation. For greater accuracy a different estimate of〈|EML|〉 should be used when calculating〈|ER|〉
for each marker. It should be noted that each marker point will still have a different value of〈|ER|〉 as

Xrb varies.

Frames with less than 7 visible markers were not used. Below this threshold a few extremely

high values of〈|ER|〉 could cause〈|EML|〉k+1 to become negative, halting the iteration process. Badly

registered frames were detected and discarding by comparing the root mean square registration error

with 3(1 − (2〈EML〉2)/N , whereN is the number of IREDs used for registration.

The next stage is to use the expected values of ILE to build a model that can be used for simulation

of the endoscope calibration or tracking process. As the resulting errors did not follow any analytic

statistical distribution we elected to use the measured errors to build a look up table that could be ran-

domly sampled during the simulation process. Equation 5.12defines how this was done, withN being

the number of markers in the data set. Lower case is used to denote that this was done in each direction

independently.

eML[i] = em[i] − 〈|eR[i]|〉 × |em[i]|
em[i]

for i = 1 to N (5.12)

The resulting values ofeML should not be used as an actual measure of error for a given marker, as the

actual value ofeR remains unknown. However, for Monte-Carlo simulation where a large number of

repeats are used the errors will average out, so the expectedvalue ofeML will be correct.

A second look up table of marker visibility states was also created. In our application individual

markers are not always visible. To enable accurate modelling the same marker visibility states as ob-

served in practice must be used in the Monte-Carlo modelling. To enable this, each possible combination

of visible markers was represented as a 14 bit binary number and the number of occurrences of this IRED

combination in the sample recorded. This was then divided bythe total number of samples, to give a

probability of a particular state occurring.

We have now presented a method for calibration and tracking the endoscope together with a method

to estimate the ILE to enable simulation of calibration and tracking. The remainder of this chapter is
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divided into sections detailing experiments to validate these methods. We first present the results of an

actual endoscope calibration.

5.4 In Theatre Calibration of Endoscope

5.4.1 Aim

Here we perform a calibration of thedaVinciTM endoscope. In addition to determining the accuracy of

the calibration we also seek to use the data gathered to estimate the ILE

5.4.2 Method

The calibration method used was as defined in Section 5.1.1. Acalibration grid image as in Figure 5.4

was placed on a table in theatre. The endoscope was moved intovarious positions to view the grid. The

intent was to spread the views as widely as possible, while still allowing sufficient IREDs to be tracked.

The endoscope was held static at each view point and approximately 60 frames of video (approximately

8 seconds) captured. Both the video image and the IRED positions were averaged over the collected

frames. The average IRED positions were used to determine estimates ofTO⇒ET for the collected

views. The averaged images and the estimates ofTO⇒ET were used to estimateTET⇒EL, TEL⇒ES ,

andTGrid⇒Optotrak. The average back projection error was measured.

5.4.3 Results

Number and Location of Views

24 views were used. 3 of these were discarded as they were not adequately tracked. 5 more were not

used as the automatic point extraction algorithm failed to determine the location of the grid points. This

left 16 frames for calibration. Figure 5.5 shows the endoscope positions used. The endoscopes lens

was between 156 and 52 mm from the grid, with an average distance of 102 mm. The angle from the

horizontal plane was between 27 and -23 degrees, with a mean angle of 4 degrees. The angle from

the vertical plane was between 26 and -22 degrees, with a meanangle of -4 degrees. The Optotrak

Certus specifies a “characterised volume” which defines the volume in which the tracking accuracy of

the machine has been checked prior to leaving the factory. Figure 5.6 shows the positions of the centroids

of the IREDs for each frame used in the calibration process, along with the characterised volume of the

Optotrak. All IREDs fall within the characterised volume.

Calibration Results

Equation 5.13 and Table 5.1 present the estimated endoscopeparameters.

TET⇒EL =

















−0.9401 −0.3401 −0.0228 8.2053

0.3402 −0.9404 −0.0011 5.4197

−0.0210 −0.0088 0.9997 561.30

0.0000 0.0000 0.0000 1.0000

















(5.13)

The average back projection error for the calibration was 73.63 pixels. Figure 5.7 shows three examples

of the collected calibration images and the grid points projected onto the images using the estimated
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Figure 5.5: The 16 endoscope positions used for endoscope calibration.
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Figure 5.6: The centroids of the IREDs for the frames used in endoscope calibration. The measured

IRED positions all fall within the characterised volume of the Optotrak.
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fc(1) fc(2) cc(1) cc(2) Drad(1) Drad(2) Dtan(1) Dtan(2)

839.36 908.55 428.60 257.94 -0.2743 0.6165 0.0038 0.0109

Table 5.1: The calculated intrinsic parameters for the endoscope.

calibration parameters. The back projection error achieved is very high when compared to the on screen

errors due to registration calculated in Chapters 3 and 4. This indicates that for the image guidance

system to function, further work is required here. The remainder of this chapter aims to determine the

cause of the back projection error and hence methods to reduce it.

Calculation of IRED Visibility and IRED Localisation Error

Figure 5.8 shows the proportion of frames for which of the 14 IREDs were visible during the calibration

process. Tracking of the IREDs on the top and bottom of the collar was only successful around 50 % of

the time.

The method outlined in Section 5.3 was used to estimate the ILE occurring during the calibration

process. After the rejection of frames with less than 7 visible IREDs, 5027 measurements of individual

IRED positions were available. An isotropic error of 0.2 mm was used as a starting estimate for the ILE

and an iterative process as per equation 5.11 used to find the expected values of the ILE. 24 iterations

were required before the ILE converged, taking approximately 30 seconds. The expected values in each

direction were〈|EML|〉x = 0.053, 〈|EML|〉y = 0.047 and〈|EML|〉z = 0.150. Equation 5.12 was then

used to create an estimate ofeml for each frame. These estimates for each direction are shownin Figure

5.9. It is clear from Figure 5.9 that the errors are anisotropic, being particularly high in the z direction,

and irregularly distributed. The irregular distribution is caused by the fact the sample is based on 16

discrete views.

IRED Localisation Error Versus Position and Angle

Wiles et al. (2004) note that the magnitude of the ILE is dependent on the position and angle of the

IREDs relative to the Optotrak camera. They do not however define this dependence. Because of this

dependence the ILE shown in Figure 5.9 can only be used to model endoscope views that are similar to

those used during calibration. A more useful result would beto determine a relationship between the

ILE and the position and/or angle of the IRED relative to the Optotrak. To this end the values ofeML

plotted in figure 5.9 were plotted against the position and angle of the IRED in Optotrak coordinates.

Rather than plotting the individual directional errors theerror magnitude (
√

emlX2 + emlY 2 + emlZ2)

was plotted. Figure 5.10 plots the error magnitude versus the X,Y,Z position and the angle from the

Optotrak camera lens normal (the Z axis). Based on Figure 5.10 it was decided not to pursue this further.

The limited sample size at each position/angle limits the reliability of the results.
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(a)

(b)

(c)

Figure 5.7: Three examples of the calibration images (imagewith extracted points on left) and the

projected grid points (on right). Figure (a) shows the effect of a specular reflection on the automatic

point extraction algorithm. Figure (b) shows a case where the automatic point extraction algorithm has

failed to extract a large number of points. Figure (c) shows acase at the closest approach to the grid.
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Figure 5.8: The Proportion of total frames that each IRED wasvisible during the calibration process.

5.5 Estimation of Error Due to Calibration

5.5.1 Aim

The preceding experiment determined the accuracy for a single calibration of thedaVinciTM endoscope.

In practice the endoscope would require recalibration prior to each procedure. Therefore we are not

particularly interested in the result of a single calibration. We want to repeat the calibration many times

to get an expected value for the errors due to calibration. Asthe actual values of the intrinsic and extrinsic

parameters for the preceding experiment are unknown, the actual errors due to calibration also remain

unknown. We cannot calculate the error in estimatingTET⇒EL andTEL⇒ES from the average back

projection error. We need to repeat the experiment using an endoscope for which these two transforms

are known. The aim of this experiment is to measure the error due to calibration for repeated calibrations.

The error can be measured as an on screen projection error in line with Section 1.6.2 by projecting a

single point onto the screen using the values ofTET⇒EL andTEL⇒ES estimated by the calibration

process.

5.5.2 Method

The calibration simulation method was described in Section5.2. The simulated calibration was repeated

100 times. The average back projection errors were calculated for each calibration. To account for the

fact that in Section 5.4 the IRED positions were averaged over a number of frames, the values ofXm[i]

used to build the look up tables foreML were averaged over 30 frames.2 A normally distributed grid

2The effect of averaging the values ofXm[i] was tested over averaging periods from 1 to 60 frames, and was found to be

negligible. This is because the ILE is due not to random errorfor a static IRED, but rather the change in apparent IRED position as

the IRED is imaged in different locations and angles. Becausethe effects of averaging are negligible we have not discussed them

further in this thesis.
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Figure 5.9: The measured marker errors (em) and the estimated marker localisation errors (eml) in each

direction for the data collected during calibration. Equation 5.12 is used to estimateeml using em.

Equation 5.12 slightly reduces the measured errors to account for the error in the registration process

used to estimate the actual marker positions.
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Figure 5.10: Examples of the IRED tracking error versus IREDposition and angle. The irregular sam-

pling and measurement noise in the data means that though correlations exist, they are of limited predic-

tive value.
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Figure 5.11: A histogram of the average back projection error for 100 simulated calibrations.

point extraction error with a standard deviation of 0.8 pixels was used.

5.5.3 Data

The values ofeML determined in Figure 5.9 were used to perturb the IREDs. The intrinsic and extrinsic

parameters and the position of the calibration grid found inSection 5.4 were used. The endoscope poses

shown in Figure 5.5 were used.

5.5.4 Results

Figure 5.11 shows a histogram of the average back projectionerror for the 100 simulations. The average

back projection error for the actual calibration (Section 5.4) was 73.63 pixels. This falls within the

expected range shown in Figure 5.11, indicating that the simulation may be a plausible model of the

actual calibration. Without further real calibrations it is not possible to disprove this hypothesis.

Calibration Error

It is possible to model the on screen error due to calibrationas per Section 1.6.2. The nominal prostate

apex point is here projected onto the screen using the 100 different estimates ofTET⇒EL andTEL⇒ES

found through simulation. This gave an on screen error of 42.87 pixels, as shown in Figure 5.12. The

error in estimatingTEL⇒ES contributed only 2.89 pixels, while the error in estimatingTET⇒EL con-

tributed 42.26 pixels.

Figure 5.13 is a scatter plot of the calibration back projection error versus the actual error due to the

calibration. The calibration back projection error cannotbe used as a predictor of the actual error due to

calibration.

5.5.5 Comparison of Actual Versus Simulated Errors

The accuracy of the Monte-Carlo simulation of the calibration process can be validated by comparing

the distribution of marker errors, in this caseem. We make the assumption that if the distribution ofem

for the simulated data appears similar to the actual distribution ofem then the Monte-Carlo model should

be realistic. Figure 5.14 shows overlays ofem in each of the x, y and z directions for the actual data in
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Simulated Points
1 σ
2 σ

σx=26.46 Pixels (6.3 mm)
σy=33.73 Pixels (7.4 mm)

Figure 5.12: The on screen projection error due to the error in determiningTET⇒EL andTEL⇒ES ,

based on 100 simulated calibrations.
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Figure 5.13: A scatter plot of the calibration back projection error versus the actual error due to the
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Figure 5.14: Plots of the measured marker errorem in the x, y and z directions. The grey background is

the distribution of errors measured in the actual data (fromSection 5.4). The black line is the distribution

of em for a simulated calibration.

Section 5.4 and the simulated data generated during a simulation of the calibration process. Quantitative

comparison of the overlaid distributions is very difficult do to their irregular nature. Qualitatively the

simulated error distribution appears to be a smoothed version of the actual errors.
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Simulated Points
1 σ
2 σ
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Figure 5.15: The on screen error due to tracking the endoscope. The errors are large and anisotropic.

5.6 Estimation of On Screen Error due to IRED Tracking Error

5.6.1 Aim

To use the ILEs determined in Section 5.4 to determine the tracking error of the system.

5.6.2 Method

The same ILEs used for the calibration can be used to perturb the IREDs for projection of on screen error

using the simulation method outlined in Section 1.6.2 to determine the on screen error due to the ILE.

5.6.3 Data

The ILEs shown in Figure 5.9 are used to perturb the IREDs.

5.6.4 Results

The tracking errors and their distribution are shown overlaid on a typical surgical scene in Figure 5.15.

The errors are very large in comparison to the on screen errors due to MRI segmentation determined in

Chapter 3 and ultrasound to MRI registration determined in Chapter 4. It is clear that unless this tracking

error is reduced the image guided surgery system will be of very limited use.

5.7 Effect of Errors on Calibration Accuracy

5.7.1 Aim

In Section 5.5 we defined three main sources of calibration error. These are the grid point extraction error

in pixels, the error due to a misprinted calibration grid andthe ILE. This experiment aims to determine

the effect of these errors on the calibration accuracy.
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5.7.2 Method

Grid Point Extraction Error

In Section 5.5 we assumed that the algorithm that finds the centre of grid points on screen has a normally

distributed error with a standard deviation of 0.8 pixels. This was based on published results for a similar

algorithm [Shahidi et al. (2002)] claiming a sub pixel accuracy. We have not measured the accuracy of

the algorithm used here. Here we see what effect this error may have on calibration accuracy. The

method in Section 5.5 was repeated with extraction errors of0.0, 0.5, 1.0, 1.5 and 2.0 pixels standard

deviation. Calibration simulation at each extraction error was repeated 20 times. The calibration error

was measured using the projection method from Section 5.5. The average projection error was then

plotted against grid point extraction error.

Grid Scaling Error

In Section 5.5 we assumed that the calibration grid was perfectly printed, so that the distance between

grid centres was exactly 4.0 mm. However we have not used a perfectly printed grid, rather we have

printed the grid using a commercial laser printer, so the actual grid centres may not be exactly 4.0mm

apart. We can check for scaling errors by measuring the printed grid. The grid is 200 by 200 mm, and

we can measure it easily to within 1mm. Therefore it is possible that the actual grid point centres may be

between 3.98 mm and 4.02 mm. To test the effect of this error the calibration simulation was repeated

with actual grid centre distances of 3.98, 3.99, 4.00, 4.01,and 4.02 mm. The simulation was repeated 20

times at each grid size and the results as projection error plotted against actual grid size.

IRED Tracking Error

To see what reducing the IRED tracking error will have on the calibration accuracy the calibration simu-

lation from Section 5.5 was repeated with reduced IRED tracking errors. To preserve the anisotropic and

irregular distribution of the ILE the same look up table as inSection 5.5 was used to perturb the IRED,

however a scaling constantS was added to equation 5.12 to give equation 5.14.

eML[i] = S(em[i] − 〈|eR[i]|〉 × |em[i]|
em[i]

) for i = 1 to N (5.14)

S was varied from 0.0 to 1.0 in steps of 0.1. At each step the calibration simulation was repeated 20

times. The results are plotted as projection error due to calibration versusS.

5.7.3 Results

Grid Point Extraction Error

Figure 5.16 shows the effect of changing the grid point extraction error. Changing the grid point ex-

traction error has a significant effect on calibration error. We used an off the shelf algorithm for grid

point extraction, the results in figure 5.16 suggest that it would be worthwhile to further investigate the

performance of this algorithm.

Grid Scaling Error

Figure 5.17 shows the effect of grid scaling errors over the range that is likely to occur in practice. The

effect shown in Figure 5.17 is minimal, indicating that little is to be gained by more accurate printing of
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Figure 5.16: The projection error due to calibration versusthe error in the automatic grid point extraction

algorithm. The grid point extraction error has a significanteffect on the accuracy of the calibration.
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Figure 5.17: The projection error due to calibration versusthe scaling error in printing the grid. Over

the range likely to occur in practice the grid scaling error does not have a significant effect on calibration

accuracy.

the calibration grid.

IRED Tracking Error

Figure 5.18 shows the effect of reducing the IRED tracking error. The calibration error reduces signifi-

cantly as the tracking error reduces. Investigation of methods to improve the tracking during calibration

should yield an improved calibration.

5.8 Improvement Of Tracking Error Using Motion Constraints

5.8.1 Aim

It is clear from the preceding experiments that the error dueto tracking the endoscope is the most signif-

icant source of error in our proposed image guided surgical system. Here we investigate how repeating
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Figure 5.18: The projection error due to calibration versusthe IRED tracking error. Reducing the IRED

tracking error leads to a significant improvement in calibration accuracy.

the experiment in Section 5.6 building in prior knowledge about the allowable endoscope movement can

significantly reduce the tracking error.

5.8.2 Method

The endoscope tracking method used in Section 5.6 registerstwo IRED sets under the assumption that

one set is moving freely in space. In general, however, an endoscope does not move freely in space,

it is constrained in its motion. We investigate two modes of constraint, the first is that the endoscope

must pass through a fixed pivot point (the trocar) which is relevant to endoscopes in general. The second

mode is rotation about a single axis of thedaVinciTM robot. Figure 5.19 shows the trocar point of the

daVinciTM robot and an axis of rotation of one of its joints.

Use of a Trocar Constraint

Here it is assumed that the endoscope is constrained to pivotabout a known trocar point. This point can

be added to the measured IRED positions in the SVD based registration used to track the endoscope. A

trocar point is first defined in the coordinate system of the Optotrak. In practice it would be necessary

to measure the location of the trocar, for example with a tracked pointer. To allow the endoscope to

slide along the endoscope’s axis through the trocar an iterative closest point on line algorithm is used.

A starting estimate of the endoscope’s axis is found using only the measured IRED positions. The point

in this axis closest to the trocar point is then found. The registration is then repeated including this

point, this gives a new estimate of the axis location, and hence a new point closest to the trocar. This is

repeated until the position of the trocar point converges. As there will be an error either in localising the

trocar in Optotrak coordinates or in the assumption that thetrocar is fixed in space we added a normally

distributed error to the trocar position. The value of this error is varied and the on screen tracking error

in pixels is plotted against it.
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Figure 5.19: Two example motion constraints. In one case theendoscope is constrained to pass through

a fixed trocar point (with sliding along the endoscope axis allowed). Although this does not appear to

be the case for thedaVinciTM , it may be useful for other endoscopic systems. The second constraint

allows motion around one axis of thedaVinciTM only. Such a constraint could be implemented using

thedaVinciTM kinematic information.
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Figure 5.20: Using knowledge of how the endoscope motion is constrained can improve the tracking

accuracy. However as the accuracy of this knowledge reducesthe improvement in tracking accuracy is

reduced.

Use of an Axis Of Rotation Constraint

An alternative to constraining the endoscope to pass through a trocar is to constrain the endoscope based

on the known degrees of freedom of thedaVinciTM system. In practice thedaVinciTM will be moving

through several axes simultaneously, here however we investigate the case in which the endoscope is

moving through a single axes. If the centre of rotation of this axes is known (through a prior measurement

and interrogation of thedaVinciTM application programming interface (API)) then this centreof rotation

can be added as an additional point in the SVD registration method. Similarly to using a trocar constraint

there will be an error in localising the centre of rotation. The tracking error is thus plotted against this

localisation error.

5.8.3 Results

Figure 5.20 shows the tracking error (in pixels) versus constraint localisation error for a trocar constraint

and a centre of rotation constraint. Applying the trocar constraint yields dramatic improvement in track-

ing accuracy if the trocar can be accurately localised. The improvement reduces rapidly as the error in

localising the trocar reduces. The gains using a center of rotation constraint are less dramatic, but also

less sensitive to an increase in the error in localising the centre of rotation.

5.9 Using Normally Distributed IRED Tracking Error

5.9.1 Aim

The calibration back projection error found in Section 5.4 and the tracking error estimated in Section

5.6 are significantly greater than would be expected if the data in Figure 5.3 was correct. The formula

used to construct Figure 5.3 assumed isotropic normally distributed ILE. This experiment aims to test

the effect of this assumption.

5.9.2 Methods

The calibration simulation from Section 5.5 was repeated twice. Rather than perturbing the IREDs with

actual values ofeML taken from a look up table, values ofeML were randomly sampled from normal
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x y z

〈|EML|〉 0.053 0.047 0.150

Anisotropic Errors N (0, 0.067) N (0, 0.059) N (0, 0.199)

Isotropic Errors N (0, 0.120) N (0, 0.120) N (0, 0.120)

Table 5.2: The IRED localisation error modelled as isotropic and anisotropic normal distributions

N (µ, σ) with meanµ and standard deviationσ

distributions. In the first case an anisotropic error was used and in the second an isotropic error was used.

In Section 5.4 we estimated the expected values ofeML in each direction, giving〈|EML|〉x = 0.053,

〈|EML|〉y = 0.047 and〈|EML|〉z = 0.150. If EML were normally distributed with mean zero, equation

5.15 can be used to find the standard deviation.

σEML
=

〈|EML|〉 ×
√

(π)√
2

(5.15)

In the anisotropic case normal distributions with mean zeroand standard deviations (σx,y,z) calculated

using equation 5.15 were used to perturb the IREDs. In the isotropic case equation 5.16 was used to

calculate an isotropic standard deviation that gives the same magnitude error when all three directions

are summed.

σ =

√

σ2
x + σ2

y + σ2
z

3
(5.16)

Table 5.2 defines the normal distributions that were sampledto perturb the IREDs in each case. In both

cases the expected value of the total error is the same as whenusing the look tables from Section 5.4.

In each case the calibration simulation was repeated 100 times and histograms of the average calibration

back projection errors plotted, similarly to Figure 5.11.

The tracking error experiment from Section 5.6 was also repeated under the influence of anisotropic

and isotropic ILE. As well as presenting the on screen error similarly to Figure 5.15, the TRE at the

projected point was also calculated for the isotropic case.This should agree with Figure 5.3.

5.9.3 Results

Calibration Simulation

Figure 5.21 shows histograms of the back projection errors for 100 repeat calibrations for both isotropic

and anisotropic normally distributed ILE. In both cases theback projection errors are significantly less

than for calibration using non normally distributed data, see Figure 5.11. The calibration back projection

error achieved in practice (73.63 pixels, see Section 5.4),is very unlikely to have been randomly drawn

from either of the two distributions shown in Figure 5.21.

Tracking Error

Figure 5.22 shows the on screen error for the two models of normally distributed ILE. In both cases the

on screen error is significantly less than was seen in Figure 5.15. Table 5.3 compares the on screen error
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Figure 5.21: Histograms of the average back projection error for 100 simulated calibrations using nor-

mally distributed IRED localisation errors. The histogramon the left assumes anisotropic errors, the

histogram on the right assumes isotropic errors.

Simulated Points
1 σ
2 σ

σx=37.43 Pixels (8.9 mm)
σy=27.25 Pixels (6.0 mm)

Simulated Points
1 σ
2 σ

σx=25.23 Pixels (6.0 mm)
σy=18.10 Pixels (4.0 mm)

Figure 5.22: The on screen error due to tracking the endoscope, assuming normally distributed IRED

localisation error. The plot on the left assumes anisotropic error, the plot on the right assumes isotropic

tracking error.
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x y Magnitude

Anisotropic Non Normal (Section 5.6) 51.82 39.91 65.41

Anisotropic Normal 37.43 27.25 46.30

Isotropic Normal 25.23 18.10 31.06

Table 5.3: The on screen errors for 3 different models of IREDlocalisation error. The first model allows

arbitrary errors based on look up tables generated from actual data. The second row is an isotropic

normally distributed error and the third row is an isotropicnormally distributed error.

from Section 5.6 with the errors assuming normally distributed error. Modelling the errors as normal

distributions significantly underestimates the on screen error.

To check the method and the applicability of equation 5.1 theTRE at a point approximately cor-

responding to the prostate apex point projected in Figure 5.22 was measured for the isotropic case.

This gave a TRE of 2.59 mm. The magnitude of the isotropic normally distributed error used is
√

3 × 0.122 = 0.21 mm. This gives an expected value of 0.16 mm, so the ratio of TREto ILE is

approximately 16. As the simulation uses multiple patternsof visible IREDs exact comparison of this

number with Figure 5.3 is not possible, however it does fall within the range of expected values for the

error ratio. This suggests that 5.1 gives a correct estimateof endoscope tracking error if the assumption

of normally distributed isotropic IRED error is correct. However in our case the ILE is neither normally

distributed nor isotropic.

5.10 Discussion

At the start of this Chapter, (see Figure 5.3) we presented a method that has been used in the image guided

surgery literature [Shahidi et al. (2002)] to estimate the tracking accuracy of an endoscope tracked with

optical markers. Using this method, assuming an isotropic,normally distributed ILE with an expected

value of 0.2 mm gave an estimated tracking accuracy at a point200mm from the endoscope tip of

approximately 4mm. Using the projection method from Section 1.6.2 this would yield an on-screen

error of the order of 18 pixels. However when we tried to calibrate the endoscope ourselves in Section

5.4 we found that the errors we measured were much higher thanwould be expected if this were the case.

Using a novel method to estimate the actual ILE rather than assuming normally distributed error

we demonstrated in Section 5.6 that the actual tracking error is approximately 60 pixels. This is not

due to an underestimation of the magnitude of the ILE, ratherto an incorrect assumption about its

distribution. In Section 5.9 we modelled the ILE with normaldistributions, that had the same expected

values as the measured ILE. The on-screen error for the normally distributed errors was significantly

less than achieved in practice. The disparity between the measurements of on-screen tracking error is

due the assumption of isotropic, normally distributed error, which is not appropriate in this case. Optical

tracking systems do not provide isotropic error. The presence of anisotropic error has been addressed by

Wiles et al. (2008). The problem of non-normally distributed error has not been addressed. The method
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we have presented allows the correct estimation of trackingerror without requiring that the actual ILE

fits any particular statistical distribution.

The tracking and calibration errors estimated (approximately 60 and 40 pixels respectively) over-

whelm the registration errors determined in the preceding chapters. The calibration error could be im-

proved significantly by improving the calibration process.In light of the result in Section 5.8 it would

seem that constraining the endoscope to pass through a trocar during calibration could yield signifi-

cant improvements. Based on the results in Section 5.7 it would also be worthwhile to investigate the

automatic grid point extraction algorithm.

The tracking errors however are more problematic. At present we have no way of reducing the

tracking error in theatre. In section 5.8 we introduced and tested via simulation a novel method of

constrained tracking that appears to have the potential to reduce the tracking error to acceptable levels.

Implementation of these methods is left as future work.

We made the decision at the start of the chapter to track the endoscope using the optical tracker.

The more common alternative to this is to use thedaVinciTM kinematics to track the endoscope. There

were two reasons for using the Optotrak to track the endoscope. The first was that as the preoperative

data has already been transformed to the Optotrak’s coordinate system in the preceding chapter, tracking

the endoscope using the Optotrak avoids the need for a registration between thedaVinciTM kinematic

data and the Optotrak. The second reason was that published results for tracking using thedaVinciTM

kinematics were not very encouraging. Here we attempt to test the validity of the second reason by com-

paring our results with the best result from the literature for tracking using thedaVinciTM kinematics.

The best published result fordaVinciTM tool tracking is 1.39 mm by Kwartowitz et al. (2009) using a

mix of optical tracking and thedaVinciTM kinematics. This is the error at the tip of end effectors rather

than the endoscope. We can compute an equivalent error for the simulated tracking data used in Section

5.6. A target point is defined approximately 360 mm from the tracking collar, which would correspond

approximately to the tool tip for adaVinciTM end effector. The estimated tracking transformsTO⇒ET

are used to perturb this point and the position compared withthat found using the known gold standard

tracking transform. This gives a mean TRE at a point near the tool tip of 2.172mm. This is significantly

higher than the figure determined by Kwartowitz et al. (2009). However if we assume a linear relation-

ship between TRE and on-screen error, a TRE of 1.39 mm would correspond to an on-screen error of 38

pixels. Still very high in comparison to the other system errors. This suggests that the solution to our

endoscope tracking problem does not lie in switching to using thedaVinciTM kinematics.

5.11 Error Summation
The preceding two chapters and this chapter have isolated and quantified the four main sources of errors

in the proposed surgical guidance system. These are summarised in Table 5.4.

The task now is to combine them. It is assumed they are independent. The shape modelling and reg-

istration errors can be added to the Monte Carlo simulation by first perturbing the 3D point by a normally

distributed random error of the appropriate standard deviation. Assuming that shape modelling and reg-

istration errors are independent and normally distributed, then the standard deviation of the combined
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Error Reference X Err. (Pix.) Y Err. (Pix.) Magnitude

(Pix.)

Shape Modelling Error Figure 3.11 13.94 14.99 20.47

Registration Error Figure 4.18 13.86 13.93 19.65

Endo. Calibration Error (Intrinsic) Section 5.5 2.03 2.05 2.89

Endo.Calibration Error (Extrinsic) Section 5.5 25.91 33.38 42.26

Endo. Calibration Error (Total) Figure 5.12 26.46 33.73 42.87

Endo.Tracking Error Figure 5.15 51.82 39.91 65.41

Total Error Figure 5.23 59.73 50.42 78.17

Table 5.4: A summary of the system errors. The total system error is dominated by the endoscope

tracking error.

Simulated Points
1 σ
2 σ

σx=59.73 Pixels (14.2 mm)
σy=50.42 Pixels (11.1 mm)

Figure 5.23: The total system error as an on-screen pixel error.

error will be
√

5.32 + 5.032 = 7.3mm in 3D. The resulting point can be projected on the screen under

the influence of the tracking error and calibration errors asin Sections 5.5 and 5.6 give the total system

error as shown in Figure 5.23. The total system error is dominated by the endoscope tracking error.

Improvements in the other component errors will yield minimal improvements without first addressing

the endoscope tracking error.



Chapter 6

Patient Trials

6.1 Introduction

The preceding three chapters have described our proposed image guidance system and determined its

likely accuracy. At present the system has not been implemented in full for two reasons. The first is

that the ultrasound to CT registration algorithm, see Chapter 4, takes too long to be used in-theatre. The

second is that the endoscope cannot be tracked accurately enough to be clinically useful, see Chapter

5. Work on both these algorithms is ongoing, with good reasonto expect they will result in a practical

system. In parallel to this development we have implementeda basic image guidance system. This

system aligns the MRI to the endoscope screen directly usingthe visible pubic bone surface. The sys-

tem described in this chapter has been developed over the course of five RARP procedures. During

development we have also gathered a significant amount of data (MRI, tracked ultrasound, and tracked

endoscopic video) for later analysis.

Up to this point this thesis has primarily focused on understanding the accuracy of the image guid-

ance system. By implementing the image guidance system described in this chapter we have been able

to assess some of the other factors important to the functioning of the system. These primarily relate to

how the guidance system fits into the surgical routine and howthe clinical staff interact with the system.

Being able to show the surgeon an overlay image during surgery, albeit one of limited accuracy, has

enabled two important outcomes. Firstly it was possible to better understand the surgeon’s expectations

of the system. Secondly the surgeon was better able to understand the capabilities of an image guid-

ance system. To enable the display of overlaid images we havebuilt a minimal user interface which has

allowed us to experiment with different ways of presenting the MRI images.

This chapter first details our experience of gathering data in-theatre, summarising our data acqui-

sition methods and the data gathered. Following this is an analysis of the endoscope tracking accuracy

during the procedure, using the methods developed in Chapter 5. We found that tracking the endoscope

during surgery was more difficult than during the calibration process described in Chapter 5. The track-

ing accuracy achieved was significantly less than that shownin Figure 5.15. The last part of this chapter

describes the direct alignment algorithm we developed for image to image registration and the projection

algorithm used to present overlays to the surgeon. The results of this are encouraging.
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Patient Image Descrip-

tion

Size (Vox.) Resolution

(mm)

Slice Spac-

ing (mm)

Acquisition Times

(Days Before Surgery)

01 T2 Transverse 320:320:23 0.59:0.59:3.2 3.84 127

02 T2 Transverse 384:384:24 0.65:0.65:3 3.9 21

03 T2 Transverse 320:320:23 0.59:0.59:3.2 3.84 106

04 T2 Transverse 256:256:23 0.63:0.63:3 3.3 177

05 T2 Transverse 512:512:30 0.35:0.35:3.5 3.84 101

Table 6.1: Details of the T2 weighted MRI slices that were used for overlay images in theatre.

6.2 MRI Data

As currently implemented the system does not require additional MRI acquisitions. We have used exist-

ing MRI images for overlay. Table 6.1 summarises the MRI dataused for overlay for each patient. Full

details of the data gathered for each patient can be found in Appendix A. For in-theatre overlay we used

the transverse T2 weighted images as these show the prostatein greatest detail.

All MRI acquisitions were supine scans and no attempt was made to control the patient’s bladder

or rectal filling. Furthermore there was a significant time gap between image acquisition and surgery.

Therefore we would expect significant motion of the prostatebetween the image and the surgical posi-

tion. For ongoing work it would be useful to acquire the MRI ata time closer to the surgery, with the

bladder and colon empty. For registration using the pelvic bone it would also be useful to acquire a T1

weighted image of the entire pelvic bone. This is not howevernecessary for the early stage evaluations

presented here.

6.3 Ultrasound Data Capture

Ultrasound data was collected for each of the 5 patients. Ultrasound images were captured using a frame

grabber attached to the video output of the ultrasound machine. Ultrasound tracking data was written to

a separate tracking file that recorded the IRED positions foreach slice. As discussed in Chapter 4 two

pieces of software were used for collecting the tracking data in theatre. The first version of the tracking

code was used for Patients 1 and 2, while Patients 3 to 5 used the newer code. The earlier code did

not record individual IRED positions, only the estimated tracking matrixTUT⇒O along with the RMS

IRED registration error. The later code recorded the individual IRED positions allowing a more accurate

estimation of the tracking error.

A bug in the earlier code caused it to crash after 100 slices had been collected. Therefore for

Patients 1 and 2 we attempted to collect fewer ultrasound images but ensured that all images were of

good quality. The ultrasound probe was first positioned carefully to get a good image of the patient’s

pelvic bone. It was then held static and a trigger pressed to capture a single image. This was a time

consuming (approximately 15 seconds per image) procedure requiring two operators, one with the probe

and another at the workstation. The new code did not suffer from this limitation, allowing images to be

obtained continuously. For Patients 3 to 5 therefore we collected many more images, but many do not
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Patient (Old/New) Code Number Of Slices

01 Old 43

02 Old 38

03 New 4338

04 New 10185

05 New 2064

Table 6.2: The number of Ultrasound slices collected for each of the five patients.

show the pelvic bone clearly, so sorting will be required before they are used for registration. For Patients

3 to 5 the following acquisition method was used. The tracking software was started, then the ultrasound

probe was moved slowly over the patient’s pelvis. At positions where the pelvic bone could be seen

clearly the probe was momentarily held static. This procedure was quicker (taking about 5 minutes in

total) than using the old code and could be completed by a single operator controlling the ultrasound

probe.

The result of this is that for patients 1 and 2 less than 50 ultrasound images were collected, (much

fewer than were found necessary for registration in Chapter4). However the individual images are all

usable. For patients 3 to 5 many more images were collected (over 2000), however the majority of

these do not show the pelvic bone well. In order to use these for registration a sorting algorithm will be

necessary. Images with poor tracking accuracy (calculatedusing the measured IRED positions) should

first be discarded. It may also be necessary to discard imagesthat do not show the pelvic bone well using

some sort of image processing. However these images should in theory be removed when the images

are converted to bone edge probability images. The resulting number of ultrasound images collected for

each patient are shown in table 6.2.

6.3.1 Patient Positioning During Imaging

The original intent was to capture the ultrasound images of the patient immediately prior to surgery with

the patient in the operative position, so that no patient motion occurred between imaging and surgery.

In practice however this was not possible. The patient couldnot be imaged after the cutting of the

surgical ports due to the presence of sterile drapes. The ultrasound images were therefore collected prior

to cutting of the ports. The port cutting was done with the patient horizontal, the patient is then tilted

to enable docking with thedaVinciTM . For these reasons we adopted the following procedure when

gathering ultrasound data.

The patient was positioned on the operating table and their legs elevated to the operative position.

The table was then tilted (1 degree of freedom motion), the angle of the table recorded, and the ultrasound

images collected. Figure 6.1 shows the patient in the head down position with the probe positioned near

the pelvic bone.The table was returned to the horizontal andthe port cutting and further preparation

completed. The table was then tilted to the same angle as measured previously and thedaVinciTM

docked. This introduces the real possibility that the patient will move in between ultrasound imaging
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Figure 6.1: The patient is positioned head down in the operative position and ultrasound images of the

pelvic bone collected using a tracked ultrasound probe.

and surgery. Further work is required to assess the effect ofthis and determine a solution. One possibility

would be to place skin markers on the patient during surgery.We have not attempted this yet, however,

for reasons that will be discussed in Section 6.3.2.

6.3.2 Processing of Ultrasound Data

The original intention for the in-theatre work was to use theultrasound to bone registration algorithm

(Chapters 3 and 4) to findTM⇒O. The accuracy of this would then be assessed using the visible position

of the pubic arch on the endoscopic images andTO⇒ES estimated as per Chapter 5. However, contrary

to our expectations, it became apparent that the error in estimatingTO⇒ES would be significantly larger

than the error inTM⇒O, see Chapter 5 for details. Therefore the approach of validating the registration

method using the visible anatomy cannot be used. At present we therefore have no way of testing the

accuracy of our estimate ofTM⇒O. With limited time available it was decided to put the ultrasound data

aside for possible future analysis and concentrate insteadon implementing a direct endoscope image to

MRI registration algorithm, to be described in Section 6.6.

6.4 Acquisition of Video Data

The same software as was used for collecting the ultrasound images (for Patients 3 to 5) was used for

collecting the endoscopic video data. Switching from ultrasound images to endoscopic images was

done by connecting the frame grabber to the video output of one of thedaVinciTM assistant consoles.

Video data was captured at approximately 7 frames per second. Each frame is matched to tracking data

taken from the Optotrak. The video capture software was run for the entirety of the procedure. During

capture of data for Patients 1, 3, and 4 a significant number offrames were lost due to overheating of the

frame grabber. These problems did not occur for Patient 2, and a more reliable frame grabber was used

for Patient 5, preventing re-occurrence. Table 6.3 lists the number of video frames captured for each
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Patient Number Of Endo-

scope FramesN

Elapsed Time T

(h:mm)

Proportion Lost

DataPlost

01 33637 1:53 0.31

02 74315 2:40 0.00

03 61206 2:31 0.06

04 39764 1:50 0.16

05 78631 3:01 0.00

Table 6.3: The number of endoscopic video frames collected for each of the five patients.

procedure. The average frame rate (fr in frames per second) was calculated using the data for Patients 2

and 5, where the frame grabber functioned continuously overthe elapsed time. In both casesfr was 7.2

frames per second. The proportion of frames lost due to the overheating frame grabber for the remaining

patients was calculated using equation 6.1. WhereN is the number of frames captured andT is the time

elapsed from the first frame to the last frame. Values ofPlost for each patient are shown in Table 6.3.

Plost = 1 − N

T × fr
(6.1)

Similarly to Figure 5.6 we checked how the tracked positionsof the endoscope collar during surgery

were distributed in relation to the characterised volume ofthe Optotrak. Figure 6.2 shows the results.

All tracked positions fall within the characterised volumeof the Optotrak.

6.5 Estimation of Tracking Error for a Moving Endoscope

6.5.1 Aim

In Section 5.3 we presented a method for estimating the IRED localisation error for the tracked endo-

scope. This was based on static data captured in an uncluttered environment. A further complication

is the presence of sterile drapes between the IREDs and the tracking camera. Figure 6.3 demonstrates

some of these challenges. Many of these challenges could be overcome relatively easily. The surgical

assistants could move to the side during image overlay and aneffort could be made to better control the

cable routing. Despite these challenges enough tracking data was collected to repeat the analyses from

Section 5.6. Two factors, in addition to those present in Section 5.3, may lead to an increased tracking

error for the surgical data. The first of these are motion of the endoscope, which could be avoided by only

using the overlay when the endoscope is stationary. The second is the presence of optically transparent

sterile surgical drapes. Here we attempt to quantify the effect of these additional factors on the IRED

tracking error.

6.5.2 Data

We only used the tracking data from Patient 02 for the in-theatre data. Patient 02 was used as it provided

a full record of the in-theatre tracking. Initial analysis of the data from the remaining patients indicates
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Figure 6.2: The positions of the tracking collar recorded during data acquisition on Patient 02. All

tracked locations fall within the characterised volume of the Optotrak

Figure 6.3: The view of the IREDs from the Optotrak camera system. The presence of the two surgi-

cal assistants, the anaesthetist, surgical drapes and numerous control and data cables makes endoscope

tracking very difficult.
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Direction Patient 02 Static (Section 5.4)

X 0.204 0.053

Y 0.135 0.047

Z 0.445 0.150

Table 6.4: The expected values of the IRED localisation error based on the data collected from Patient

02. The static tracking values from Section 5.4 are also shown for comparison.

that the data from Patient 02 is representative of the data from the other patients. There is no reason to

expect that the Patient 02 data is not representative of the other data sets. A full analysis of the remaining

data has not yet been completed. In addition to this we recorded a separate sequence of tracking data

with the endoscope moving but without the presence of surgical drapes. This was to test the effect of the

surgical drapes on the result.

6.5.3 Method

The method was the same as employed in Section 5.3, summarised again here. The measured positions

of a given IRED was compared with the IRED position estimatedfrom the measured positions of the

remaining IREDs on the tracking collar. An adjustment was made to account for the registration error.

This gives a distribution of estimated IRED localisation errors that can be used as a look-up table for

Monte-Carlo simulation of the tracking accuracy. To enabledirect comparison of the tracking results

with those in Section 5.6 we used the same IRED visibility states for this simulation.

6.5.4 Results

Estimated IRED Localisation Errors

Table 6.4 presents the expected values of the estimated IREDlocalisation errors. The results for the

static tracking performed in Section 5.4 are also included for reference. It is clear that the errors seen in

theatre are significantly (between 3 and 4 times) greater than than those observed during the endoscope

calibration in Section 5.4. Figure 6.4 shows the distribution of the estimated IRED localisation errors.

6.5.5 Estimated Tracking Error

Using the same method as described in Section 5.6, the error distributions shown in Figure 6.4 were used

to perturb the IREDs during a simulation of tracking error. Figure 6.5 shows the results as an on screen

tracking error. The magnitude of the error standard deviations shown in Figure 6.5 is 164 pixels. By

comparison, in Section 5.6 (for static endoscope tracking)the magnitude of the error standard deviations

was found to be 65 pixels. Two factors could explain this increase. The first is the effect of endoscope

motion. The second is the use of surgical drapes. To test the effect of endoscope motion without the

presence of surgical drapes a further data set was collectedof the tracking collar moving but without the

presence of surgical drapes. The tracking error for this data was nearly identical to that shown in Figure

6.5. This suggests that the increase in IRED tracking error observed here is due exclusively to motion

of the endoscope. Further work is required to determine the precise effects of the moving endoscope
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Figure 6.4: The measured marker errors (em) and the estimated marker localisation errors (eml) in each

direction for the data collected during surgery on Patient 02. Equation 5.12 is used to estimateeml using

em. Equation 5.12 slightly reduces the measured errors to account for the error in the registration process

used to estimate the actual marker positions.
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Figure 6.5: The on screen error due to tracking the endoscopeduring surgery on Patient 02. The errors

are significantly larger than those seen for static endoscope tracking in Figure 5.15.

and the surgical drapes. The increase in tracking error for amoving endoscope agrees with the results

of Barnes et al. (2007) who observed significant loss of accuracy when the Optotrak was used to track a

moving target.

6.5.6 Discussion

In attempting to test whether the IRED localisation errors found in Section 5.4 are applicable in-theatre

we have highlighted an important short coming of the Optotrak Certus system. The Optotrak system is

significantly less accurate when tracking a dynamic target.1 Despite this it may still prove practical track

the moving endoscope by applying the methods proposed in Section 5.8. Work in this area is ongoing.

6.6 Direct Alignment of the MRI Image to the Endoscope Image

Due to the inability to validate the ultrasound to MRI registration in theatre we elected to concentrate

solely on developing an algorithm to align the endoscope video image directly to the MRI data.. The

need for this algorithm was realised after analysis of the results for Patients 01 and 02. Development

commenced and deployment was attempted on Patients 03 to 05.We continued to collect ultrasound

data for later analysis, though no attempt has yet been made to process this data.

Alignment is based on the fact that the inner surface of the bony pubic arch can be seen in both the

endoscopic images and the MRI images. The first stage is to manually pick points on the inner surface

of the MRI. Dedicated software was implemented in C++ using OpenGL. A screen shot of this is shown

in Figure 6.6. Points are picked in transverse planes of the MRI, with 7 points picked over 6 slices, plus

1The apparent dynamic tracking error will be further increased by any synchronisation error between the video and tracking

signals, discussed in Appendix C.
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Figure 6.6: 43 points on the inner surface of the pubic arch are manually picked from the preoperative

MRI image. Using purpose built software this task can be completed in less than 5 minutes.

Figure 6.7: Manually selected points along the inner surface on of the pubic arch are projected onto the

endoscopic image. The keyboard is used to increment the transformTM⇒O in each the six degrees of

freedom. The image on the left shows the two images prior to alignment. The image on the right shows

the two images after alignment.

an estimate of the prostate apex. Using our dedicated software this can be done in less than 5 minutes,

at any point in time between MRI acquisition and surgery.

The points picked are used to form a wire-frame model of the inner surface of the pubic arch.

This wire-frame model is projected onto the endoscope screen using initial estimates of the various

transforms that make upTM⇒ES . At this stage the distortion model of the endoscope is not used as it

significantly slows the projection algorithm, especially if some points are off screen. This projection is

shown in Figure 6.7. The estimate ofTM⇒ES is interactively updated by varying the estimateTO⇒ET .
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Figure 6.8: The direct alignment routine can be applied at any point in the surgery where the pubic arch

is visible to some extent. The error in the alignment will depend on the extent to which the pubic arch

can be discerned. We have attempted in each case here to perform the registration using our estimate of

the position of the pubic arch. We have no method at present tovalidate the accuracy of the results.

TO⇒ET is incremented in each of its 6 degrees of freedom (3 translations and 3 rotations) using keyboard

commands. Two increment sizes are implemented,±1(◦)(mm) and±10(◦)(mm), allowing course to

fine registration. A skilled user can perform this registration from an arbitrary starting position in less

than 5 minutes. With a good initial estimate ofTM⇒ES registration can be performed in under 30

seconds. We have not implemented an intuitive user interface, so at present the alignment algorithm is

not suitable for use by clinicians.

This rigid alignment algorithm was successfully used for Patients 4 and 5 to provide the surgeon

with an image showing the patient’s MRI overlaid on the surgical scene, during surgery. Due to the

poor endoscope tracking accuracy the alignment routine must be repeated at each static location of the

endoscope used for overlay. In figure 6.7 we performed the alignment on an image frame where the inner

surface of the pubic arch is clearly visible. If necessary the alignment can be performed on frames where

the pubic arch is not so clearly visible. This will lead to a less accurate registration, however when used

for the overlay of MRI the effect still appears visually accurate.

6.7 Display of MRI Overlaid on Endoscope Screen

With TM⇒ES estimated we can project MRI data onto then endoscope screen. We developed software

in C++ using OpenGL to perform this projection. This software was successfully used for Patient 05

to display the overlay in theatre. The overlay in this case was static with the back ground image being
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a static frame captured from the endoscope. Since then the software has been developed to allow the

endoscope image and the estimate ofTM⇒ES to be updated at up to 8 frames per second, ie. it can keep

pace with the images being captured by the frame grabber. Updating ofTM⇒ES is done by updating

TO⇒ET based on the tracking data from the Optotrak. IfTn,manual is the estimate ofTO⇒ET for frame

n as estimated manually using the method detailed in Section 6.6, andTn,Optotrak is the corresponding

estimate ofTO⇒ET using the Optotrak thenTO⇒ET [i] can be estimated for an arbitrary framei by

equation 6.2.

TO⇒ET [i] = Ti,Optotrak × T−1
n,Optotrak × Tn,Manual (6.2)

The revised estimate ofTO⇒ET [i] can be used to calculate a new estimate ofTM⇒ES and this is

used to project the MRI data. If an estimate ofTi,Optotrak is unavailable (due to insufficient IREDs being

visible, then the last known version ofTOptotrak is used instead. When this occurs an on-screen marker

changes from green to red to alert the surgeon that the endoscope is not being tracked. We have not yet

used this live update in theatre. Shortly we will present some example images that provide a qualitative

assessment of the tracking accuracy. Prior to this we will finish description of the algorithm.

6.7.1 Projection Model

The MRI image is first loaded into memory. The image is then cropped to show a particular region

of interest, for example the prostate. Each remaining voxelin the MRI image is first transformed to

Optotrak coordinates usingTM⇒O. Projection to on screen pixel coordinates is then performed using

TO⇒ES [i].

MRI Interpolation

Unless the MRI image is very far from the screen this will result in large spaces between the projected

pixels, as shown at the left in Figure 6.9. To prevent this theMRI image is first interpolated. The amount

of interpolation can be controlled interactively, depending on the distance if the MRI image from the

endoscope lens. More interpolation is necessary to get a realistic image when the MRI is close to the

lens, however there is a direct trade off in projection speed, so we aim to keep interpolation to the

minimum required. To the right of Figure 6.9 we show the effect of dividing each voxel in the MRI into

64 (4 times interpolation).

The quickest interpolation method is nearest neighbour interpolation. The result of this is shown

at the left of Figure 6.10. The resulting image is somewhat blocky. This can be reduced by using tri-

linear interpolation. The overlay on the right of Figure 6.10 shows the same overlay using tri-linear

interpolation. The image is effectively blurred, giving a more attractive overlay but with a slight trade

off in projection speed.

Overlay Opacity

The interface allows the opacity of the overlay image to be incremented in steps of 10% from 0 to 100%.

Figure 6.11 shows an example of changing the slice opacity.
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Figure 6.9: In order to show the MRI on screen as a coherent setof points it in necessary to interpolate

the MRI image. On the left the MRI is projected without interpolation resulting in a sparse set of pixels.

On the right the MRI image has been interpolated, placing 3 additional data points between each voxel

vertex. The projected image is starting to fill in. The interesting fill pattern is an artefact of the distortion

model used.

Figure 6.10: The effect of using nearest neighbour interpolation (on the left) or tri-linear interpolation

(on the right).
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Figure 6.11: The opacity of the overlay can be varied interactively between 0 and 100%. Here the same

overlay is shown at 20% opacity (at left) and 50% opacity (at right).

Figure 6.12: It is also possible to overlay Coronal (at left)or Sagittal (at right) slices. In this case these

are re-sampled from a stack of transverse MRI slices.

Slice Orientation

The orientation of the projection slice can also be changed interactively. We have generally used trans-

verse slices as these provide the most intuitive overlay, however it is possible to also show sagittal and

coronal slices, see Figure 6.12.

Moving Through the Slice Stack

Difference slices in the MRI volume can be selected interactively. Figure 6.13 shows projection of two

different transverse slices from the same MRI volume.

6.7.2 Motion Tracking

Figure 6.14 shows the movement of the overlay image as the endoscope undergoes motion. The direct

alignment method described in Section 6.6 was first used to align the MRI with the endoscopic data with

the endoscope static in the pose shown in image 1 of Figure 6.14. The endoscope remained static in this
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Figure 6.13: Different slices from the MRI can be selected interactively. The image at right shows a

slice 8 slices further away (inferior) to the image at the left

position for a prolonged period (about a minute) during which time the tracking data remained reasonably

steady, with the overlay moving less than 5 pixels over the image. This represents random jitter in the

IRED position measurement. In image 2 the overlay image begins to move before the endoscope video

image, due to the frame grabber lag (see Appendix C). During motion, images 2 to 4, the position of the

overlay image moves about very unpredictably, in line with the tracking error shown in Figure 6.5. Once

endoscope motion has stopped, images 5 and 6, the overlay position settles into a new steady position,

which is slightly wrong (based on the visible position of theprostate apex) compared to the position in

image 1. This is in line with the static tracking error seen inFigure 5.15.

6.8 Clinical Experience

The aim of this chapter is not to validate the work of the preceding chapters in theatre. This cannot be

done as no way of validating the results against a gold standard value is available. The aim of this chapter

was to get some form of image guidance up and running in theatre, so that the clinicians could interact

with it. To that end we have had some success. We present here the clinical outcomes of the 5 patients

involved in the trial. The system as implemented does not involve any invasive procedure in addition to

the prostatectomy, for example the use of fiducial markers. We have also taken care to ensure that the

surgeon does not use the overlaid images to make clinical decisions yet. Therefore we would not expect

any negative outcomes. However the implementation to date has also not been sufficient to show any

positive outcome.

The reports of the clinicians involved were positive. The impact of being able to refer to the preop-

erative MRI in an intuitive way during surgery was seen as positive. No formal evaluation, for example

using a questionnaire, of surgeons’ experience of the system has been done yet. Significantly more work

is required to demonstrate any real positive impact of the system.



180 Chapter 6. Patient Trials

Figure 6.14: A series of overlay images (non consecutive) shows tracking of the endoscope during

motion. TO⇒ET is first estimated using the method from Section 6.6 on image 1. Subsequent overlays

use estimates ofTO⇒ET calculated using equation 6.2. The green dot in the top rightcorner of each

image indicates that the Optotrak succeeding tracking eachof these frames. When insufficient IREDs

are visible this is replaced with a red dot. Frames 3 and 4 showsignificant blurring of the video image

due to endoscope motion. The striations are an artefact of the interlacing used by the frame grabber.
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Age Preop

PSA

Stage Grade Margins Post-Op

PSA

8 Week Conti-

nence

67 9.8 pT2a 3+3 negative < 0.03 Good, no pads

58 6.1 pT3b 3+4 negative < 0.03 Good, no pads

68 11.2 pT2c 3+4(+5) negative < 0.03 1 pad/day

58 7.2 pT2c 3+4 negative < 0.03 1 pad/day for

security

57 3.8 pT3a 3+4 apex +ve < 0.03 Good no pads

Table 6.5: Clinical outcomes for the five patients. There is no reason to believe that the system as

implemented would have affected clinical outcomes.

6.9 Conclusions
The implementation of the image guidance system shown in this chapter is quite different to what was

envisioned at the start of this thesis. This change was necessitated by the high tracking errors found

in Chapter 5 and restated in Section 6.5. None the less we implemented an image guidance system in

theatre which was found to be useful by the clinical staff. The system as shown can be implemented

in theatre without the need for Optotrak system or the ultrasound probe. Direct registration and overlay

can be done on a laptop attached thedaVinciTM assistant console. Some work on improving the user

interfaces of the alignment and overlay software is required, but apart from that the system works for the

limited case of static overlay.
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Chapter 7

Conclusions and Further Work

7.1 Summary of Results

At the start of this thesis we proposed a method for incorporating preoperative images into the intra-

operative endoscope image. At the core of this system is the transformationTM⇒ES which transforms

individual voxels of the MRI image to on-screen coordinates. The method we proposed to findTM⇒ES

was to break it into to two fundamentally separate transformations, firstly we transform the MRI image

to the coordinate system of the Optotrak tracking system, using TM⇒O, then we project the MRI image

onto the screen usingTO⇒ES . This methodology for image guided surgery is well established in the

literature, Birkfellner et al. (2002), Shahidi et al. (2002), and King et al. (1999) all present similar sys-

tems. In these cases transforms equivalent toTM⇒O were determined using fiducial markers, whereas

we present a method (in Chapters 3 and 4) that allows determination ofTM⇒O with out the need for fidu-

cial markers. We invested considerable effort into developing this method and quantifying its accuracy,

with significant successes.

In Chapter 3 we presented a novel algorithm for fitting inter patient CT pelvic bone to an MRI scan.

As it is relatively easy to segment bone from CT we can treat this algorithm as a bone segmentation from

MRI algorithm. On its own this algorithm compares well to thestate of the art in literature, with RMS

boundary errors only 0.6 mm greater than that achieved by Schmid and Magnenat-Thalmann (2008)

(see table 3.11). It should be noted that Schmid and Magnenat-Thalmann (2008) used MRI images

better suited to bone imaging and optimised their method to achieve a low RMS boundary error. In

comparison we used MRI more suited to imaging the soft tissueand optimised our method to achieve a

low registration error at the prostate.

In Chapter 4 we presented a method for registering ultrasound slices to the pseudo CT image gen-

erated in Chapter 3. By storing the ultrasound image as a set of non zero points rather than a set of slices

we reduced the computational time required for registration in comparison with Penney et al. (2006),

who used a similar method. We also optimised our method for use on the pseudo CT, which presents

a slightly inaccurate CT image of the patient as opposed to the actual CT used by Penney et al. (2006).

We showed that due to the use of the pseudo CT the distributionof ultrasound slices used for registration

had a strong influence on the registration accuracy. We also suggested a method for checking the con-

vergence of the registration algorithm in-theatre, by repeating the registration from randomly perturbed
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starting estimates. The method appeared robust, however atpresent its run-time is excessive (300 min-

utes). Finally we computed the overall error in estimatingTM⇒O. We found this error to be 7.3 mm

RMS, corresponding to an on-screen error of roughly 30 pixels. To determine the effect of this error we

now needed to calculateTO⇒ES and take the system into the theatre.

The decision to concentrate on estimatingTM⇒O was based on the assumption that the determina-

tion of TO⇒ES would be trivial and the resulting errors would be small in comparison to the error in esti-

matingTM⇒O. We based this assumption partly on the results of Birkfellner et al. (2002), Shahidi et al.

(2002), and King et al. (1999), but more so on a model of the endoscope tracking using the method of

Fitzpatrick et al. (1998). For this model we assumed that theerror in localising each IRED would be

isotropic, normally distributed and homogeneous. We also were optimistic in our estimate of how many

IREDs would be visible on the tracking collar at a given pointin time. We didn’t have a good estimate of

the IRED tracking error so we looked at best and worst case possibilities. In the best case we assumed a

IRED tracking error of 0.02 mm from Barnes et al. (2007), which resulted in negligible tracking error. In

the worst case we assumed a IRED tracking error of 0.2 mm, fromNDI (1992), which gave significant

errors, but these were still less than the error in estimating TM⇒O. However, when we started to test

the system in-theatre it became clear, primarily from our attempts to calibrate the endoscope, that the

tracking error achieved in practice was significantly greater than predicted.

In Chapter 5 we analysed the calibration and tracking errors. We first presented a novel method

to estimate the IRED localisation error using the IRED location estimated by rigid body registration of

the remaining IREDs. Using this we modelled the calibrationand tracking of the endoscope. We came

to the following conclusions. The assumption of isotropic,homogeneous, normally distributed error

does not hold for optical tracking using the Optotrak Certus. This agrees with Wiles et al. (2004). We

found that the expected value of the magnitude error was approximately 0.2 mm, agreeing with NDI

(1992). However the error was anisotropic, non-homogeneous, and non-normally distributed. By using

the estimated marker errors as a look-up table for Monte-Carlo simulation we quantified the effect of our

erroneous initial assumptions, see Table 5.3. The actual tracking errors (65 pixels) are more than double

that found assuming normally distributed, isotropic, homogeneous error (31 pixels1). We are not the first

to show the effect of error anisotropy (see Wiles et al. (2008)). To our knowledge, however, we are the

first to model the effect of non-normally distributed and non-homogeneous IRED localisation error. The

effect is quite dramatic, and may explain the trend towards image guided surgery systems using direct

alignment of the visible anatomy with the endoscopic image,rather than trying to track the endoscope.

For a recent example see Su et al. (2009). In our case the very high endoscope tracking errors meant that

it would not be possible to use the in-theatre data to assess the accuracy in findingTM⇒O, as we had

initially hoped.

The preceding work demonstrated that the image guidance system we had initially envisioned would

1In this case the error assuming normally distributed, isotropic, homogeneous error is also higher than we expected and actually

roughly the same as the registration error from Chapter 4. This is due to the difficultly we had in tracking the IREDs. We found in

practice that it was common to be tracking the endoscope with 5 or less IREDs, whereas we had assumed that at least 10 IREDs

would be visible.
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not function until endoscope tracking errors ware addressed. In the meantime, however, we wanted to

implement image guidance in-theatre to get an appreciationof the surgeon’s reaction and interaction

with it along with an understanding of an acceptable alignment error. We presented this in Chapter 6.

The tracking errors were significantly larger as we did not filter the data to include only static data.

The errors in tracking a moving endoscope were very large (around 170 pixels, approx three times the

static error). This agrees with the results of Barnes et al. (2007). With the impracticality of in-theatre

endoscope tracking established we limited our overlay system to showing overlays of the MRI based

on a manual image to MRI registration using a wireframe imageof the inner surface of the pubic arch.

We implemented an overlay projection algorithm and user interface using OpenGL. It has not been

possible to make any quantitative analysis of this method. However the feedback from the surgeon has

been very encouraging, with the availability of MRI images during surgery aiding decision making and

communication within the surgical team.

7.2 Future Work

There are several areas where future work could be directed,we will discuss these separately.

7.2.1 Shape Model Fitting

The results presented in Chapter 3 are quite promising. However the validation of them has been very

limited. The availability of a larger data set of MRI pelvic data, ideally with matching CT data (or expert

bone segmentations) would enable the algorithm to be properly validated. It is very unlikely that such a

data set will be available for work on radical prostatectomy. There are two alternative applications for the

algorithm we developed in Chapter 3. The first is orthopaedics, as per Schmid and Magnenat-Thalmann

(2008). The second is radiotherapy planning from MRI as per Boettger et al. (2008). Seeking an oppor-

tunity to apply the algorithm in one of these areas may provide some useful results, both to validate the

method and as a useful method for each application.

7.2.2 Registration Using Ultrasound

We did not complete a practical ultrasound registration algorithm. For the method to work in-theatre

a substantially faster and more robust optimiser should be implemented. Two obvious choices are the

widely used Levenberg-Marquardt algorithm [Levenberg (1944)] and the differential evolution algorithm

we used in Chapter 3 [Price et al. (2005)]. With this done it may be worthwhile to further analyse the

ultrasound data we collected in-theatre.

7.2.3 Endoscope Tracking

In Chapter 5 we proposed two methods to drastically improve the endoscope tracking accuracy. One was

to assume (or physically enforce) a sliding pivot constraint at the trocar. The second was to constrain

the motion using known motion axes taken from thedaVinciTM API. The promising results presented

in Figure 5.20 were based on simulations and need to be confirmed with experimental results.

Throughout Chapter 5 we used a point base registration algorithm (SVD) that itself assumes

isotropic normally distributed error. It would be worthwhile to repeat the various experiments in Chapter
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5 using a point registration algorithm that does not requirethese assumptions, see Chu and Trendafilo

(1998) or Batchelor and Fitzpatrick (2000).

Alternatively, investigation of hybrid tracking systems could be worthwhile. The optical tracking

data could be supplemented with data from magnetic tracking, as per Birkfellner et al. (1998), or the

daVinciTM kinematics [Kwartowitz et al. (2009)].

Our modelling of the IRED tracking errors was done by sampling measured errors, rather than

building a predictive model of IRED tracking errors. If a predictive model of IRED tracking errors was

developed, it should enable some of the systematic trackingerrors to be adjusted for. Such an adjustment

could significantly improve the endoscope tracking accuracy. A further useful experiment would be to

compare our method with the model of optical tracking systems presented by Sielhorst et al. (2007).

7.2.4 Clinical Implementation

In Chapter 6 we presented a limited image guidance system, that only allowed overlay for certain static

positions. Nonetheless the feedback from clinicians was very encouraging. It would be very worthwhile

to continue implementing this system on a larger cohort of patients. As it does not require endoscope

tracking or ultrasound acquisition this could be done with minimal additional work. If some effort

was investing in implementing an intuitive user interface this system could be used by the clinicians

themselves.

7.3 Conclusions

At the start of this thesis we set two goals. Firstly to develop and test in theatre an image guided surgery

system. Secondly, to determine the accuracy of the system and to identify the key contributors to the

system error. Section 7.1 detailed how these goals were met.We can now combine these results to

answer the question of whether the system is clinically useful, and if so what steps to take to improve

the system.

Repeating Table 5.4 here, this time with the pixel errors converted to errors in mm, we can put the

system performance into context. Table 7.1 shows these results. The results shown in Table 7.1 raise the

question of what an error of 18.0 mm means clinically.

7.3.1 Defining Clinical Utility

In this section we start with the assumption that as the system becomes more accurate it becomes more

useful to the surgeon. For the purposes of visualisation we can define a measure of clinical utility. If

the system has no effect on the clinical outcome the clinicalutility is zero. If the system has no error

the clinical utility is one. A real system will fall somewhere between these two points.2 By estimating

clinical utility values for errors greater than zero, we canfit an approximate curve to show how the

system error effects clinical utility. Figure 7.1 shows a plot of clinical utility versus system error in mm.

The first intermediate point defined is the current system accuracy. As discussed in Chapter 6 the

2A negative clinical utility could occur if the system has a negative effect on clinical outcome. This may be the case if the

system has a high error but the error has been underestimated.The obvious need to avoid this situation is the reason this thesis has

placed such high importance on measuring the system error.
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Error Reference X Err. (mm) Y Err. (mm) Magnitude

(mm)

Shape Modelling Error Figure 3.11 3.3 3.3 4.7

Registration Error Figure 4.18 3.3 3.1 4.5

Endo. Calibration Error (Intrinsic) Section 5.5 0.5 0.5 0.7

Endo.Calibration Error (Extrinsic) Section 5.5 6.2 7.3 9.6

Endo. Calibration Error (Total) Figure 5.12 6.3 7.4 9.7

Endo.Tracking Error Figure 5.15 12.3 8.8 15.2

Total Error Figure 5.23 14.2 11.1 18.0

Table 7.1: A summary of the system errors. The total system error is dominated by the endoscope

tracking error. The errors in this table are the same as in Table 5.4 but have been converted to mm by

back projecting them onto a plane 200 mm from the endoscope lens.
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Figure 7.1: Clinical utility versus system error in mm. Clinical utility is an imprecise figure based on

the assumption that at zero error the system is as good as possible, so clinical utility is one. If the system

has no effect on clinical outcome then clinical utility is zero. Intermediate points have been estimated

based on estimates of what the system could be used for at different accuracies.
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system is useful at this accuracy. The surgeon can refer to MRI to see the general location (which side of

the prostate) the tumours are located. A clinical utility of0.2 was assigned to this point. At an error of

10 mm the system may be useful for showing the shape of the prostate at the interface with the bladder.

At this point the surgeon is often unsure of the size and shapeof the medial lobe of the prostate. Being

able to show this anatomy would increase the clinical utility. At an error of 5 mm the system may be

useful for defining the size of the margins around the prostate capsule. At errors of less than 5 mm the

system could be used to show fine anatomy, like the nuerovascular bundles and the cutting planes around

the rectum.

Clearly the values of clinical utility and hence the chart shown in Figure 7.1 are somewhat arbitrary

at present. The values will also vary from patient to patient. The only way to accurately populate Figure

7.1 is to perform a significant number of procedures using guidance systems of known accuracies. At

present Figure 7.1 merely provides a roadmap by which futureimprovement can be measured. The next

stage is to create a similar plot detailing the feasibility of achieving a given accuracy.

7.3.2 Defining And Improving Accuracy

Table 7.1 gives the current system accuracy for the various components. Strategies for reducing errors

were discussed in Section 7.2. To visualise this process we can assign a feasibility value to various error

levels and plot them. Similarly to the preceding discussionon clinical utility, limits on feasibility can be

set at the current known levels. A system with a total error of18.0 is entirely feasible, hence a feasibility

of 1.0. Similarly a system with an error of zero is impossible, hence a feasibility of zero. Intermediate

points can be plotted with good accuracy based on the work presented in this thesis. Figure 7.2 shows a

plot of feasibility versus system error.

Some improvements are relatively easy to implement. Accuracy could be significantly improved

by calibrating the endoscope in a fixture, so that its position could be measured more accurately. Whilst

various approaches could be used to improve the accuracy of the proposed ultrasound to MRI registration

process, it may be more feasible to utilise fiducial markers.Past this point the feasibility of proposed

improvement drops. It seems quite likely that the endoscopetracking accuracy could be improved by al-

lowing for systematic tracking errors and/or constrainingthe allowable motion of the endoscope. Beyond

this any improvement would rely on methods we have not yet thought of.

7.3.3 Combining Feasibility and Utility

Combining Figures 7.2 and Figures 7.1 we can gain an understanding of where the current system stands,

and what should be possible with further development. At present the system is useful, but only in a

general way. There is a clear roadmap to reduce the system error to around 5mm, which would make the

system significantly more useful. At this level the system may be used to help define surgical margins.

We have not specified a method to improve the system beyond this accuracy here. However it is likely

that a method would be found at some point in the future. The only way to properly understand the

clinical utility of such changes is to implement the system on a significant number of patients.
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reducing the total system error can then be applied. Some aremore easily applied than others, so have

been assigned different feasibility scores. The effect on accuracy is based on the values shown in Table

7.1.
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Glossary

API application programming interface. 159, 185

ASM active shape model. 50

BEP bone edge probability. 104

CT computed tomography. 22, 24, 25, 29, 44, 47, 48, 50, 51, 56, 59, 61, 63, 69, 70, 75, 78, 80, 82, 84,

86, 90, 92, 94, 96, 97, 99, 101, 114, 115, 117, 119–121, 123–132, 165, 183, 185, 241

DOF degree of freedom. 69, 92, 241

FEM finite element model. 66

FLE fiducial localisation error. 109, 136, 137

FRE fiducial registration error. 108

GPU graphics processing unit. 66

ILE IRED localisation error. 109, 110, 141–144, 146, 148, 154, 155, 159, 160, 162, 163

IRE IRED registration error. 108, 109, 111

IRED infra red emitting diodes. 60, 62, 65, 102, 103, 105, 108–112, 129, 135–146, 148, 151, 154–157,

159, 160, 162, 166, 167, 169, 171, 173, 176, 179, 180, 184, 186

MRI magnetic resonance imaging. 21–26, 28–30, 33, 35, 43–48, 50–53, 56, 57, 59, 61–65, 67, 69, 70,

72, 76, 78, 80, 82, 84, 86, 88, 90, 92, 93, 96, 97, 99, 101, 104, 114, 130, 132, 154, 165, 166, 168,

173–179, 183, 185, 188

NMI normalised mutual information. 47, 55, 70, 73, 75, 82, 88–92, 96, 97, 245

PCA principal component analysis. 54

RARP robot assisted radical prostatectomy. 21, 22, 25, 28, 33, 35, 42, 43, 46, 59, 62, 65, 70, 132, 165



192 Glossary

RMS root mean square. 51, 65, 87, 94, 96, 99, 109, 116, 120, 127, 130, 131, 138, 166, 183, 184, 249,

250

SDM statistical deformation model. 52, 54, 55, 70, 71

SSM statistical shape model. 29, 52

SVD singular value decomposition. 71, 135, 157, 159, 185

TRE target registration error. 30, 60, 64, 80–82, 84–92, 94, 96,99, 109, 110, 112, 120–125, 127,

130–132, 136, 137, 142, 160, 162, 163, 249, 250

TRUS trans-rectal ultrasound. 47, 61, 63
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Mourgues, F. and Coste-Maniére, E. (2002), Flexible Calibration of Actuated Stereoscopic Endoscope

for Overlay in Robot Assisted Surgery,in Medical Image Computing and Computer Aided Interven-

tions, Vol. 2488 ofLNCS, Springer, pp.25–34.

NDI (1992), Optotrak Certus Specifications, NDI, Ontario, 103 Randall Drive. Waterloo, Ontario,

Canada, N2V 1C5.

Office of National Statistics (2008), Cancer Registration Statistics England 2008, Technical Report,

Office of National Statistics,, http://www.statistics.gov.uk/.

Paul, P., Fleig, O. and Jannin, P. (2005), Augmented virtuality based on stereoscopic reconstruction in

multimodal image-guided neurosurgery: methods and performance evaluation,IEEE Transactions on

Medical Imaging24(11), 1500–1511.

Penney, G. P., Barratt, D. C., Chan, C. S. K., Slomczykowski,M., Carter, T. J., Edwards, P. J. and

Hawkes, D. J. (2006), Cadaver validation of intensity-based ultrasound to CT registration,Medical

Image Analysis10, 385–395.

Penney, G. P., Blackall, J. M., Hamady, M. S., Sabharwal, T.,Adam, A. and Hawkes, D. J. (2004),

Registration of freehand 3D ultrasound and magnetic resonance liver images.,Medical Image Analysis

8(1), 81–91.

Peters, T. and Cleary, K. (eds.) (2008),Image-Guided Interventions, Springer, ISBN: 978-0-387-73856-

7.



200 BIBLIOGRAPHY

Porter, B. C., Rubens, D. J., Strang, J. G., Smith, J., Totterman, S. and Parker, K. J. (2001), Three-

dimensional registration and fusion of ultrasound and MRI using major vessels as fiducial markers,

IEEE Transactions on Medical Imaging20(4), 354–359.

Prager, R. W., Rohling, R. N., Gee, A. H. and Berman, L. (1998), Rapid calibration for 3D freehand

ultrasound.,Ultrasound in Medicine and Biology24(6), 855–869.

Price, K., Storn, R. and Lampinen, J. (2005),Differential Evolution - A Practical Approach to Global

Optimization, Springer, ISBN: 3-540-20950-6.

Rasch, C., Barillot, I., Remeijer, P., Touw, A., van Herk, M.and Lebesque, J. V. (1999), Definition of the

prostate in CT and MRI: a multi-observer study.,International Journal of Radiation Oncology Biol.

Phys.43(1), 57–66.

Rueckert, D., Frangi, A. F. and Schnabel, J. A. (2001), Automatic Construction of 3D Statistical Defor-

mation Models Using Non-rigid Registration,in Medical Image Computing and Computer Assisted

Intervention, Vol. 2208 ofLNCS, Springer, pp.77–84.

Rueckert, D., Sonoda, L. I., Hayes, C., Hill, D. L. G. and Leach, M. O. (1999), Nonrigid registra-

tion using free-form deformations: Application to breast MR images,IEEE Transactions on Medical

Imaging18, 712–721.

Schmid, J. and Magnenat-Thalmann, N. (2008), MRI Bone Segmentation Using Deformable Models

and Shape Priors,in Medical Imaging Computing and Computer Aided Interventions, Vol. 5241 of

LNCS, Springer, pp.119–126.

Shahidi, R., Bax, M. R., Maurer, C. R., Johnson, J. A., Wilkinson, E. P., Wang, B., West, J. B., Citardi,

M. J., Manwaring, K. H. and Khadem, R. (2002), Implementation, calibration and accuracy testing of

an image-enhanced endoscopy system.,IEEE Transactions on Medical Imaging21(12), 1524–1535.

Shao, W., Wu, R., Ling, K. V., Thng, C. H., Ho, H. S. S., Cheng, C. W. S. and Ng, W. S. (2006),

Evaluation on similarity measures of a surface-to-image registration technique for ultrasound images,

in R. Larsen, M. Nielsen and J. Sporring (eds.),Medical Image Computing and Computer Assisted

Intervention, Vol. 4191 ofLNCS, Springer, pp.742–749.

Sielhorst, T., Baur, M., Wenisch, O., Klinker, G. and Navab,N. (2007), Online Estimation of the Target

Registration Error for n-Ocular Optical Tracking Systems,in Medical Image Computing and Com-

puter Aided Interventions, Vol. 4792 ofLNCS, Springer, pp.652–659.

Skrinjar, O., Nabavi, A. and Duncan, J. (2001), A stereo-guided biomechanical model for volumetric

deformation analysis,in IEEE Workshop on Mathematical Methods in Biomedical Image Analysis,

pp.95–102.

Skrinjar, O., Tagare, H. and Duncan, J. (2000), Surface growing from stereo images,in Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition., Vol. 2, pp.571–576.



BIBLIOGRAPHY 201

Soler, L., Nicolau, S., Schmid, J., Koehl, C., Marescaux, J., Pennec, X. and Ayache, N. (2004), Virtual

Reality and Augmented Reality in Digestive Surgery,in Proceedings of the third IEEE and ACM

international Symposium on Mixed and Augmented Reality, pp.278–279.

State, A., Chen, D. T., Tector, C., Brandt, A., Chen, H., Ohbuchi, R., Bajura, M. and Fuchs, H. (1994),

Observing a volume rendered fetus within a pregnant patient, in IEEE Conference on Visualization,

Vol. CP41, pp.364–368.

Stefansic, J. D., Herline, A. J., Shyr, Y., Chapman, W. C., Fitzpatrick, J. M., Dawant, B. M. and Galloway,

R. L. (2000), Registration of physical space to laparoscopic image space for use in minimally invasive

hepatic surgery,IEEE Transactions on Medical Imaging19(10), 1012–1023.

Stoyanov, D., Darzi, A. and Yang, G.-Z. (2005), Laparoscopeself-calibration for robotic assisted mini-

mally invasive surgery,in Medical Image Computing and Computer Assisted Intervention, Vol. 3750

of LNCS, Springer, pp.114–121.

Strzelecki, M. (2004), Texture boundary detection using network of synchronised oscillators,Electronics

Letters40(8), 466–467.

Studholme, C., Hill, D. L. G. and Hawkes, D. J. (1999), An Overlap Invariant Entropy Measure of 3D

Medical Image Alignment,Pattern Recognition32(1), 71–86.

Su, L., Vagvolgyi, B. P., Agarwal, R., Reiley, C. E., Taylor,R. H. and Hager, G. D. (2009), Aug-

mented Reality During Robot-assisted Laparoscopic Partial Nephrectomy: Toward Real-Time 3D-CT

to Stereoscopic Video Registration,Urology73, 896–900.

Szpala, S., Wierzbicki, M., Guiraudon, G. and Peters, T. (2005), Real-Time Fusion of Endoscopic

Views With Dynamic 3-D Cardiac Images: A Phantom Study,IEE Transactions on Medical Imag-

ing 24(9), 1207–1215.

Takenaka, A., Leung, R. A., Fujisawa, M. and Tewari, A. K. (2006), Anatomy of autonomic nerve

component in the male pelvis: the new concept from a perspective for robotic nerve sparing radical

prostatectomy.,World Journal of Urology24(2), 136–143.

Tan, G. Y., , Goel, R. K., Kaouk, J. H. and Tewari, A. K. (2009),Technological Advances in Robotic-

Assisted Laparoscopic Surgery,Urologic Clinics of North America36(2), 237–249.

Taylor, L. S., Rubens, D. J., Porter, B. C., Wu, Z., Baggs, R. B., di Sant’Agnese, P. A., Nadasdy,

G., Pasternack, D., Messing, E. M., Nigwekar, P. and Parker,K. J. (2005), Prostate cancer: three-

dimensional sonoelastography for in vitro detection.,Radiology237(3), 981–985.

Tewari, A., Rao, S., Martinez-Salamanca, J. I., Leung, R., Ramanathan, R., Mandhani, A., Vaughan,

E. D., Menon, M., Horninger, W., Tu, J. and Bartsch, G. (2008), Cancer control and the preservation

of neurovascular tissue: how to meet competing goals duringrobotic radical prostatectomy.,British

Journal of Urology International101(8), 1013–1018.



202 BIBLIOGRAPHY

Thompson, J. C., Wood, J. and Feuer, D. (2007), Prostate cancer: palliative care and pain relief.,British

Medical Bulletin83, 341–354.

Tonet, O., Focacci, F., Piccigallo, M., Cavallo, F., Uematsu, M., Megali, G. and Dario, P. (2006), Com-

parison of control modes of a hand-held robot for laparoscopic surgery,in Medical Image Computing

and Computer Assisted Intervention, Vol. 4190 ofLNCS, Springer, pp.429–436.

Tsai, A., Wells, W., Tempany, C., Grimson, E. and Willsky, A.(2004), Mutual information in coupled

multi-shape model for medical image segmentation.,Medical Image Analysis8(4), 429–445.

Tsai, R. Y. and Lenz, R. K. (June 1989), A New Technique for Fully Autonomous and Efficient 3D

Robotics Hand/Eye Calibration,IEEE Transactions on Robotics and Automation,5(3), 345–358.

Tsaitgaist (2008), http://commons.wikimedia.org/wiki/File:Male anatomyen.svg, Electronic.

Ukimura, O. and Gill, I. S. (2009), Image-Fusion, AugmentedReality, and Predictive Surgical Naviga-

tion, Urologic Clinics of North America36(2), 115–123.

Ukimura, O., Magi-Galluzzi, C. and Gill, I. S. (2006), Real-time transrectal ultrasound guidance during

laparoscopic radical prostatectomy: impact on surgical margins.,Journal of Urology175(4), 1304–

1310.

van de Kraats, E. B., Penney, G. P., van Walsum, T. and Niessen, W. J. (2005), Multispectral MR to

X-ray registration of vertebral bodies by generating CT-like data.,in J. S. Duncan and G. Gerig (eds.),

Medical Image Computing and Computer Assisted Intervention, Vol. 3750 ofLNCS, Springer, pp.911–

918.

Varkarakis, I. M., Rais-Bahrami, S., Kavoussi, L. R. and Stoianovici, D. (2005), Robotic surgery and

telesurgery in urology.,Urology65(5), 840–846.

Venugopal, N., McCurdy, B., Hnatov, A. and Dubey, A. (2005),A feasibility study to investigate

the use of thin-plate splines to account for prostate deformation., Physics in Medicine & Biology

50(12), 2871–2885.

Visentini-Scarzanella, M., Mylonas, G. P., Stoyanov, D. and Yang, G. Z. (2009), i-BRUSH: A gaze-

contigent virtual paintbruch for dense 3d reconstruction in robotic assisted surgery,in Medical Image

Computing and Computer Aided Surgery, Vol. 5761 ofLNCS, Springer, pp.353–360.

Warfield, S. K., Ferrant, M., Gallez, X., Nabavi, A., Jolesz,F. A. and Kikinis, R. (2000a), Real-

Time Biomechanical Simulation of Volumetric Brain Deformation for Image Guided Neurosurgery,

in ACM/IEEE Conference on Supercomputing, pp.23–23.

Warfield, S. K., Nabavi, A., Butz, T., Tuncali, K., Silverman, S. G., Black, P., Jolesz, F. A. and Kikinis, R.

(2000b), Intraoperative segmentation and nonrigid registration for image guided therapy,in Medical

Image Computing and Computer Assisted Intervention, Vol. 1935 ofLNCS, Springer-Verlag, London,

UK, pp.176–185.



BIBLIOGRAPHY 203
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A.1 Shape Model Patient A

Adult male pelvis

Name SM-A

Description Adult Male Pelvis

Modality CT

Size (Voxels) 512x512x100

Voxel Dimensions (mm) 0.783x0.783x3.200
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A.2 Shape Model Patient B

Adult male pelvis

Name SM-B

Description Adult Male Pelvis

Modality CT

Size (Voxels) 512x512x109

Voxel Dimensions (mm) 0.865x0.865x3.200
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A.3 Shape Model Patient C

Adult male pelvis

Name SM-C

Description Adult Male Pelvis

Modality CT

Size (Voxels) 512x512x100

Voxel Dimensions (mm) 0.762x0.762x3.200
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A.4 Shape Model Patient D

Adult male pelvis

Name SM-D

Description Adult Male Pelvis

Modality CT

Size (Voxels) 512x512x103

Voxel Dimensions (mm) 0.779x0.779x3.200
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A.5 Shape Model Patient E

Adult male pelvis

Name SM-E

Description Adult Male Pelvis

Modality CT

Size (Voxels) 512x512x173

Voxel Dimensions (mm) 0.738x0.738x2.000
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A.6 Shape Model Patient F

Adult male pelvis

Name SM-F

Description Adult Male Pelvis

Modality CT

Size (Voxels) 512x512x148

Voxel Dimensions (mm) 0.879x0.879x2.000
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A.7 Shape Model Patient G

Adult male pelvis

Name SM-G

Description Adult Male Pelvis

Modality CT

Size (Voxels) 512x512x158

Voxel Dimensions (mm) 0.732x0.732x2.000
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A.8 Shape Model Patient H

Adult male pelvis

Name SM-H

Description Adult Male Pelvis

Modality CT

Size (Voxels) 512x512x138

Voxel Dimensions (mm) 0.701x0.701x2.000
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A.9 Shape Model Patient I

Adult male pelvis

Name SM-I

Description Adult Male Pelvis

Modality CT

Size (Voxels) 512x512x105

Voxel Dimensions (mm) 0.789x0.789x3.000
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A.10 Shape Model Patient J

Adult male pelvis

Name SM-J

Description Adult Male Pelvis

Modality CT

Size (Voxels) 512x512x153

Voxel Dimensions (mm) 0.703x0.703x2.000
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A.11 Shape Model Patient K

Adult male pelvis

Name SM-K

Description Adult Male Pelvis

Modality CT

Size (Voxels) 512x512x163

Voxel Dimensions (mm) 0.703x0.703x2.000
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A.12 Shape Model Patient L

Adult male pelvis

Name SM-L

Description Adult Male Pelvis

Modality CT

Size (Voxels) 512x512x166

Voxel Dimensions (mm) 0.703x0.703x2.000
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A.13 Shape Model Patient M

Adult male pelvis

Name SM-M

Description Adult Male Pelvis

Modality CT

Size (Voxels) 512x512x160

Voxel Dimensions (mm) 0.723x0.723x2.000
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A.14 Shape Model Patient N

Adult male pelvis

Name SM-N

Description Adult Male Pelvis

Modality CT

Size (Voxels) 512x512x150

Voxel Dimensions (mm) 0.768x0.768x2.000
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A.15 Shape Model Patient O

Adult male pelvis

Name SM-O

Description Adult Male Pelvis

Modality CT

Size (Voxels) 512x512x158

Voxel Dimensions (mm) 0.703x0.703x2.000
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A.16 Shape Model Patient P

Adult male pelvis

Name SM-P

Description Adult Male Pelvis

Modality CT

Size (Voxels) 512x512x141

Voxel Dimensions (mm) 0.719x0.719x2.000
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A.17 Shape Model Patient Q

Adult male pelvis

Name SM-Q

Description Adult Male Pelvis

Modality CT

Size (Voxels) 512x512x139

Voxel Dimensions (mm) 0.746x0.746x2.000
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A.18 Shape Model Patient R

Adult male pelvis

Name SM-R

Description Adult Male Pelvis

Modality CT

Size (Voxels) 512x512x162

Voxel Dimensions (mm) 0.703x0.703x2.000
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A.19 Shape Model Patient S

Adult male pelvis

Name SM-S

Description Adult Male Pelvis

Modality CT

Size (Voxels) 512x512x150

Voxel Dimensions (mm) 0.738x0.738x2.000
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A.20 Shape Model Patient T

Adult male pelvis

Name SM-T

Description Adult Male Pelvis

Modality CT

Size (Voxels) 512x512x154

Voxel Dimensions (mm) 0.703x0.703x2.000
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A.21 Shape Model Patient U

Adult male pelvis

Name SM-U

Description Adult Male Pelvis

Modality CT

Size (Voxels) 512x512x150

Voxel Dimensions (mm) 0.738x0.738x2.000
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A.22 Prostatectomy Patient 01

Patient for Radical Prostatectomy

Image Description Size Resolution Slice Spacing Image date (Days

Before Surgery)

t2 Sagittal 512:512:13 0.49:0.49:5 6 127

t2 Transverse 320:320:30 1.19:1.19:5 6.25 127

t1 Sagittal (Oblique) 512:512:28 0.72:0.72:5 5.5 127

t1 Transverse 320:320:23 0.63:0.63:3 3.45 127

t2 Transverse 320:320:23 0.59:0.59:3.2 3.84 127

t2 Coronal 512:512:23 0.59:0.59:5 5.75 127

Name Patient-01 Anatomy

Description

Modality T2 MRI

Size (Voxels) 320x320x23

Voxel Dimensions (mm) 0.594x0.0.594x3.840
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A.23 Prostatectomy Patient 02

Patient for Radical Prostatectomy

Image Description Size Resolution Slice Spacing Image date (Days

Before Surgery)

t2 Sagittal 512:512:25 0.78:0.78:10 15 21

Diffusion Weighted 128:128:125 1.95:1.95:6 7.2 21

t1 Transverse 512:512:30 0.49:0.49:6 7.2 21

t2 Axial (Transverse) 384:384:24 0.65:0.65:3 3.9 21

t2 Coronal 384:384:20 0.52:0.52:3 3.6 21

Name Patient-02 Anatomy

Description

Modality T2 MRI

Size (Voxels) 384x384x24

Voxel Dimensions (mm) 0.651x0.651x3.900
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A.24 Prostatectomy Patient 03

Patient for Radical Prostatectomy

Image Description Size Resolution Slice Spacing Image date (Days

Before Surgery)

t2 Sagittal 512:512:13 0.49:0.49:5 6 106

t2 Transverse 320:320:30 1.19:1.19:5 6.25 106

t2 Coronal 512:512:26 0.59:0.59:5 5.75 106

t2 Transverse 320:320:23 0.59:0.59:3.2 3.84 106

t1 Transverse 320:320:23 0.63:0.63:3 3.45 106

t1 Sagittal (Oblique) 512:512:28 0.72:0.72:5 5.5 106

Name Patient-03 Anatomy

Description

Modality T2 MRI

Size (Voxels) 320x320x23

Voxel Dimensions (mm) 0.59x0.59x3.8
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A.25 Prostatectomy Patient 04

Patient for Radical Prostatectomy

Image Description Size Resolution Slice Spacing Image date (Days

Before Surgery)

Sagittal 256:256:23 0.70:0.70:3 3 177

t1 Axial 512:512:39 0.68:0.68:5 5.5 177

t1 Coronal 512:512:23 0.74:0.74:5 6.05 177

t2 Coronal 256:256:23 0.70:0.70:3 3.3 177

t2 Transverse 256:256:23 0.63:0.63:3 3.3 177

Name Patient-04 Anatomy

Description

Modality T2 MRI

Size (Voxels) 256x256x23

Voxel Dimensions (mm) 0.63x0.63x3.3
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A.26 Prostatectomy Patient 05

Patient for Radical Prostatectomy

T1 Transverse 512:512:32 0.78:0.78:6 7.2 101

T2 Sagittal 512:512:30 0.39:0.39:3.5 3.84 101

T2 Transverse 512:512:30 0.35:0.35:3.5 3.84 101

T2 Coronal 512:512:50 0.35:0.35:3.5 3.84 101

Name Patient-05 Anatomy

Description

Modality T2 MRI

Size (Voxels) 512x512x30

Voxel Dimensions (mm) 0.35x0.35x3.8
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A.27 Brachytherapy Patient 01

Patient for Prostate Brachytherapy

Name XMR-01

Description Structural MRI of prostate and surrounds

Modality

Size (Voxels) 256x256x20

Voxel Dimensions (mm) 0.703x0.703x3.300
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A.28 Brachytherapy Patient 02

Patient for Prostate Brachytherapy

Name XMR-02

Description Structural MRI of prostate and surrounds

Modality

Size (Voxels) 256x256x25

Voxel Dimensions (mm) 0.703x0.703x3.850
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A.29 Cadaver Patient 01

Adult Female Pelvis

Name Cadaver-01

Description Adult Female Pelvis

Modality CT

Size (Voxels) 441x252x114

Voxel Dimensions (mm) 0.715x0.715x2.000
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A.30 Cadaver Patient 02

Adult Female Pelvis

Name Cadaver-02

Description Adult Female Pelvis

Modality CT

Size (Voxels) 373x222x111

Voxel Dimensions (mm) 0.793x0.793x2.000
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A.31 Cadaver Patient 03

Adult Female Pelvis

Name Cadaver-03

Description Adult Female Pelvis

Modality CT

Size (Voxels) 373x203x119

Voxel Dimensions (mm) 0.793x0.793x2.000
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A.32 Plastic Anatomy Phantom
Plastic Adult Male Pelvis

Name Phantom

Description Plastic Adult Male Pelvis

Modality CT

Size (Voxels) 373x137x776

Voxel Dimensions (mm) 0.914x0.914x0.5
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Appendix B

Fitting a Male Shape Model to a Female Pelvis

The cadaver data used in Chapter 4 was for female pelves, raising the obvious question of whether a

model based on male pelves can be applied to a female pelvic bone. The pelves are registered with a

9 DOF affine transform prior to the model being applied, so thedifference in general size should not

affect the model performance. To assess whether the model was finding suitable shapes for the female

pelves the component coefficients for each of the twelve principal components were compared against

the component coefficients found by fitting the shape model tothe male CT data used to build the shape

model (on a leave one out basis) data, see Chapter 3. Figure B.1 overlays the component coefficients

for the three cadavers and the phantom with the distributionof training set parameters (approximately

normal). The same data is quantitatively examined in Table B.1 using a Kolmogorov-Smirnov test to

examine the hypothesis that the coefficients for the cadaverdata are drawn from the same distribution as

the results of the male pelves in the model.

For the most part the cadavers and data sets conform to the expected model shape. The results for

mode 3 are significantly different. The results for mode 1 also appear unusual. These modes may capture

some shape information separating male from female pelves.

As the optimisation algorithm allows the generation of a solution outside the model space it seems

likely that a reasonable solution will be generated for the female data, however further investigation is

required to validate this.
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Figure B.1: The solution component coefficients found for the 3 cadaver and 1 phantom data sets, over-

laid on histograms of the component coefficients from the male data sets used to build the model. The

phantom falls within the expected model shape. As shown in Table B.1, the female cadavers do not.
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Mode KS Test Stat. (D) P-Value Accept Null at 5 %?

0 0.2643 0.9576 Yes

1 0.6643 0.07795 Yes

2 0.5214 0.2909 Yes

3 0.8786 0.003961 No

4 0.281 0.9315 Yes

5 0.5071 0.3227 Yes

6 0.5024 0.3337 Yes

7 0.2929 0.9076 Yes

8 0.6024 0.1449 Yes

9 0.5143 0.3066 Yes

10 0.3381 0.7699 Yes

11 0.5048 0.3282 Yes

All 0.1871 0.1636 Yes

Table B.1: The results of a Kolmogorov-Smirnov to test whether the observed values of model mode

coefficients for the cadavers come from the same distribution as that of the 420 points tested using the

model training data. The null hypothesis is that the observed cadaver coefficients (3 for each mode)

are drawn from the same distribution observed for the model training data (420 for each mode). The p

value is the probability that the KS test statistic value would occur if the null hypothesis is true. Except

for mode 3 the null hypothesis is not rejected at a significance level of 5%. This raises the interesting

possibility that mode 3 contains information that differentiates male from female pelves.
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Appendix C

Estimating the Tracking Synchronisation

Error Using Image Information

C.1 Aim

Using the method described in Chapter 5 there will be a tracking synchronisation error due to the pro-

cessing time of the frame grabber versus the processing timeof the Optotrak. The frame times of images

grabbed by the frame grabber will not match those reported from the Optotrak. For tracking of static en-

doscope poses this should not be an issue, unless the lag is very large, which would require the endoscope

to be held still for a prolonged period before image overlay commenced. The aim here is to quantify this

lag and its stability. If the lag is stable then it should be trivial to adjust for it by adjusting the recorded

times. Here we quantify the lag by recording tracked video ofthe workstation’s own internal clock. We

also present a method for estimating the frame lag using in theatre data by correlating two estimates of

the endoscope tip speed, one based on the tracking data and the other based on the image data.

C.2 Method

The frame synchronisation error is here quantified by takingvideo images of the workstation’s internal

clock and comparing the times shown with those reported by the tracking system.

An alternative to this is to estimate the lag by measuring thecorrelation of two estimates of the en-

doscope tip speed, one based on the tracking data and the other on the image information. The endoscope

speed was first estimated from the tracking data by calculating the displacement at the endoscope tip and

dividing it by the frame rate to get an estimate of endoscope speed. Each image in the endoscopic video

was then compared with the image preceding it using NMI. If the anatomy being imaged is relatively

static (ie only the endoscope is moving) then the value of NMIshould be an indicator of endoscope tip

speed. This gives two one dimensional signals for the endoscope tip speed. By moving the image derived

signal back and forwards through time relative to the tracking data derived signal it is possible to find

the point at which they are maximumly correlated. This should correspond to the frame lag.

C.3 Data

A dedicated video of the workstation clock was used for the first method. See Figure C.1. Dynamic
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Figure C.1: A video frame of the workstation clock overlaid with the corresponding frame time recorded

by the tracking software.
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Figure C.2: A histogram of the frame lags recorded using images of the workstations own clock.

video data of a plastic phantom was used for the second approach.

C.4 Results

Using the data from the workstation clock gave a frame lag of 378 ms with a standard deviation of 34

ms. Figure C.2 shows a histogram of the recorded frame lags. The resolution of the workstation clock

was 5 ms, while the resolution of the tracking clock was 1 ms. It is interesting that Figure C.2 indicates

that the measured frame lag is quantised in units of roughly 20 ms. Presumably this is related to the

performance of either the frame grabber or the tracking software.

Figure C.3 shows the correlation coefficient of the two endoscope tip speed signals. Peak correlation

occurs at a frame lag of 369 ms, which is very close to the figureof 378 determined using the clock. This

suggests that this method may be useful for estimating framelag retrospectively for in theatre data. This
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Figure C.3: The correlation coefficient of the two estimatesof endoscope tip speed for the video data of

the static phantom.

may be complicated by the presence of moving objects (anatomy and end effectors) in the surgical data.
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Appendix D

Error due to using a Nominal Prostate

As discussed in Section 1.6.1 the RMS errors at the prostate surface referred to throughout this report

do not in fact refer to the actual error for a given data set. This is because rather than using the actual

prostate location for a given data set, a nominal prostate location was used for all data sets to allow direct

comparison of the results. The potential effect of this standardisation on the actual error for a given data

set is discussed here.

The degree to which the actual TRE is under or overestimated will depend on where the actual

prostate lies in relation to the nominal prostate and what the actual TRE is. For TRE s in the range 0.8 to

4 mm it was found experimentally that the RMS error in TRE due to mis-positioning of the prostate was

as shown in Figure D.1. At present the typical distances of the actual prostates from the nominal prostate

are unknown. This could be determined relatively quickly. However, it is likely to be significantly less

than 50 mm as the data sets are all rigidly aligned and scaled to match. Therefore the mismatch caused

by using the nominal prostate should be significantly less then 0.4 mm, which is negligable compared to

the expected system error.
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Figure D.1: Errors in prostate position due to the use of nominal rather than actual prostate surface

points. This is based on a set of data files with RMS TRE s between 0.8 and 4 mm. At present the

distance error for the prostate is unknown, however it should be significantly less than 50 mm. Therefore

it is assumed that the error due to using the nominal prostateis small compared to the overall error.
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