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Abstract

This thesis describes an image guided surgery system fodwsag telemanipulator assisted radical
prostatectomy. The thesis is primarily concerned with mheiteing the system accuracy. We first defined
a method to present the component errors as an on-scre&ttgojerror in pixels. This allowed the
error due to each component to be compared and then summae #® gystem error.

An MRI image of the patient is transformed into the intragi®e coordinate system, defined by
the coordinate system of an optical tracking system. Thesoape is calibrated and tracked during
surgery, defining a transformation to the endoscope scrékis. transform is used to project the MRI
image onto the endoscope video display.

A novel algorithm for registering MRI to ultrasound imagdgelvic bone was used to transform
the MRI image to the intraoperative coordinate system. @lgsrithm localises the prostate to within 7
mm, giving an on-screen error of 28 pixels.

The on-screen error due to endoscope tracking was found 6 lpéxels. The high tracking error
is caused by a non-normally distributed marker trackingretrighlighting an important shortcoming
in the bulk of the image guided surgery literature. Due tohlgh tracking errors we implemented a
limited image guidance system that does not use endoscaglértg. The final part of the thesis details
our experience in implementing this system on 5 patients.

The main contributions of this thesis are:
e Arobust error analysis of an image guided endoscopic sysyetem.

e A novel algorithm for fitting inter patient CT data to an MRIage. The algorithm compares well

in with the state of the art for segmenting pelvic bone fromIMRages.

e A method to analyse the endoscope tracking error that doedepend on the assumption of

normally distributed, homogeneous marker tracking error.
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Chapter 1

Introduction

1.1 Aim

Image guided surgery has long been proposed as a method tovinpatient outcomes for various
surgical procedures. Systems are in place for surgery wheranatomy is largely rigid, for example
neurosurgery and orthopaedics. Image guided surgeryestdid surgeon to refer to preoperative images
of the patient in an intuitive way during surgery. Using tkample of neurosurgery, a preoperative image
of a sub surface tumour may be projected onto the surfaceedridin. In recent years there has been
a growing focus on applying image guided surgery to thoracid abdominal surgery. This thesis is
based on an attempt to design and implement an image guidgidalisystem for robot assisted radical

prostatectomy (RARP). The work has two key goals.
1. Develop and test in theatre an image guidance system T&FRA
2. Determine the accuracy that the system can achieve.

Successful completion of the first goal will give an enhanoederstanding of the clinical requirements.
Successful completion of the second goal will give an urtdaeding of the system’s capability. Com-
bining the two outputs will allow us to answer the questiowbiether the system is usable in theatre

and what areas to target for improvement.

1.2 Contributions

The thesis makes several important contributions to theé éiestudy.

1.2.1 Error Analysis

Understanding of the accuracy of an image guided surgetgisyis necessary so the surgeon can make
informed decisions about the reliability of the informatipresented. The main thrust of this thesis has
been not only the development of such a system but furthermoobust analysis of its errors. This has

shown that at present the accuracy is limited by the accwwittywhich the endoscope can be tracked.

1.2.2 Ultrasound to MRI Bone Registration

To enable registration of the preoperative magnetic resmmamaging (MRI) image to the patient in

theatre we developed a novel algorithm to register two imagfethe pelvic bone. The first image is
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the[MRI collected preoperatively. The second image is aastiund image collected intra operatively.
The method combines a noye[MRI to computed tomography (€Jistration algorithm, see next point,
and an existing ultrasound o _CT registration algorithm.e Tombined algorithm forms a novel and

interesting approach to the problem of registering preaiper images to the intraoperative scene.

1.2.3 MRIto CT Registration

As mentioned in the previous point we developed a novel #hyarfor fitting inter patienf.CIl data to
a[MRI image. This algorithm is functionally equivalent to_&RMbone segmentation algorithm. Bone
segmentation frofi MR is of great interest for orthopaedicli®s. The proposed algorithm compares
well with the state of the art in this area. The algorithm misp @rove useful in allowing radiotherapy

planning using MRI images instead[of ICT.

1.2.4 Tracking Error Analysis

We propose tracking the endoscope with a marker basedigaskstem. Such systems are well estab-
lished in the literature and used in commercial image gugiedery systems. Therefore the study of the
accuracy of these systems is of great importance to the projkerstanding of the accuracy of image
guided surgery systems. A common assumption used in tmatlire is that the error at each marker is
independent, homogeneous, and normally distributed. \Weddhat these assumptions do not hold in
our case. Therefore we proposed and tested a novel methodréxity model the error. We show that

the commonly help error assumptions significantly undarege the tracking error in our case.

1.2.5 Clinical Use

The system has been used in theatre on five occasions. We Ihawe ¢hat it is a practical system.
At present its utility is limited by a high endoscope traakigrror. Nonetheless the feed back from the

surgeon has been positive.

1.3 Summary

This thesis describes the development, analysis and ingplation of an image guided surgery plat-
form for[RARPB. The system implemented takes voxefs,( in 3D) of preoperativé MRI data and
projects them, using a series of transformations, to painthe endoscope screekifs, in 2D) so that
they appear to be coincident with the corresponding poifiteevisible patient anatomy. At present
the system is only implemented on one of teVvinci’™ video channels, so is monocular rather than
stereoscopic. Figufe 1.1 shows an example of the outputraf\arlay program, as seen by the surgeon
intraoperatively. A transver§e MRI plane is shown overtaida typical surgical scene. The surgeon has
the option of changing the opacity, slice, or slice diretid the overlay. The interface and display have
been kept very simple. This thesis is primarily concerneti @escribing the methods used to define the
transforms and robustly determining the errors at eaclesté¢hilst the implementation is specific to
[RARE using aaVinci™ telemanipulator we envisage that many of the componentbeapplied to

other guidance applications.
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Figure 1.1: An example of a transverse sliceE of MRI overlaididypical endoscopic scene. The overlay
software projects the MRI using a model of the endoscopeatdid MRI] appears to be coincident with
the visible anatomy. The projection software allows theean to change the opacity of the projection

or move through the MRI data in the transverse, sagittalpooral planes.

1.4 System Description and Structure of the Thesis

The system uses a novel MRI to ultrasound registration #hgorto transform the preoperatize MRI

(Xar) into the tracker’s coordinate systedi§) in theatre, using equatién1.1.
Xo =Tu=o0 x Xum (1.1)

With the[MRI placed in the tracking systems coordinate systerojection of th& MBI can be achieved
by equatiof T12.
Xgs =To=gs x Xo (1.2)

The aims of this thesis are twofold. Firstly it presents ahudtto determine the system wide
transform, equation 1.3. Secondly it presents an analysi®@ccuracy of the system based on analyses
of the system components.

Tyv=gs =To=Ees X Ty=o (1.3)

The system consists of the following steps.
1. Patient is selected and consented for image guided surger
2. Preoperative MRI scans are collected.
3. Pelvic bone is segmented automatically from scans.
4. Endoscope cameras are calibrated prior to surgery.
5. Tracked ultrasound is used to find the pelvic bone in teeatr

6. Registration algorithm matches ultrasound data to satgdepelvic bone.
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7. Endoscope is tracked during surgery.

8. Video stream frondaVinci’™ is captured and fed to monitor where the preoperative madel i

overlaid.

For the purposes of development and analysis the systemrakerhinto a set of subsystems. Each
of these systems is described and analysed in a separatercbithis thesis. Throughout the thesis we
treat the image guidance system as a series of transfomadtiom one coordinate system to another,
with the complete transforrfy;—. g5 being made up of a series of transforms. The precise defails o
how these transforms are determined, and the error in te&drmhination, forms the basis of this thesis
and will be discussed in detail in the relevant chapters.hénfollowing pages the transforms will be
introduced and briefly explained. This forms both an inticiahin and a reference to which we will refer
back to in later chapters.

In Chaptef ¥ we present a method for registering an ultrabauaage of the patient’s pelvic bone
to the patient'$ MRI image. As tHe MRI image does not show thieebedge clearly we developed an
algorithm to transform thE_MRI prior to registration. Thilgarithm is described in Chaptét 3. The
algorithm can be described as an inter-patient, inter-titgdiaon rigid registration. The algorithm takes
a[CT image from a different patient and warps it match theepés[MR] image. Figure 112 shows the
transformations used.

The patient’s pelvic bone can be imaged in theatre usingciedhultrasound probe. The ultrasound
image of the pelvic bone can be registered to the preoperhtine, using methods broadly similar to
Penney et all (2006). In Chaplér 4 a new implementation sfittdthod is described. The key difference
to the work of Penney et al. (2006) is that the ultrasound géstered to & CIT image from a different
patient. The inter patieff CT is first warped (usifigh;— »/) to approximate the shape of the patient’s
pelvic bone. Figure1]3 defines the transforms determiné&haptef#. At the conclusion of Chapfér 4
a transforml’,,—. o (6 degrees of freedom in 3D) has been found that transforenprgoperative MR
image into the coordinate system of a tracking system (ant@it Certus). The next stage is to calibrate
and track the endoscope to fifid . g5, completing the image guidance system.

Chaptefb details our methods to deternilipe, 5. Figure 1.4 details the transformations found in
Chaptefb. The proposed method is not novel, using an egistimera calibration method to determine
the projection parameters of the endoscope and a marked basking method to estimate the location
of the endoscope. However, we do present a novel method lysarthae tracking error, which used more
realistic marker error distributions, to yield a resultrsfgcantly closer to observed values for this case.
We show that the endoscope tracking error is, as a resultatgest error for the system and propose
methods to reduce the error.

Development of the methods presented in Chapler§ B to 5 @imgngnd has yet to yield a practical
image guidance system. In the mean time we have implementkdra bones” guidance system in
theatre, in order to assess some of the other factors invafven image guidance system. These factors
include how the data is presented to the surgeon and how themuinteracts with the display, and

assessing what anatomy is of importance to the surgeongdthin operation. This image guidance
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Chaptef B Segmentation of Bone from MRI

Tsy=—m =

Ts M (nd9)=nm [nr7] X Tsnr—nr[nd9)

SM Generic Shape Model
M Patient MRI

SM(nd9)| Shape Model Scaled
and Aligned to MRI
SM(nrr) | Shape Model Warped
to MRI

CSSM(nrr) =

CSsm X Tsp=m

Figure 1.2: The transforris;— s transforms voxels from the Coordinate System (CS) of a sepa-
rate patient's CIT image (effectively the mean shape of ashapdel) to the coordinate system of the
prospectivé RARP patient. A two stage process is used. Thémages are first brought into alignment
using a 9 degree of freedom transforfy {,—. »; [nd9], number of egrees of freedom =)9This trans-
form consists of rotation, translation, and scaling in ¢hil&ections. With the two images thus aligned a

non rigid transformationX(s y(,.49)= 1 [n7'7], NON 1igid registration) warps the CT image to the MRI.
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Chaptef# Registration of Ultrasound to Fitted Bone Image

Tyr=o =

Tur=0 X Typ=vr X TuI=UP

Tsy(nrry=0 =

Tui=o X Tsymrr)=UT

T]W:>O = TSM(nrr)éO

ul

uT

UP

Ultrasound Image
(2D)

Optical Tracker
Ultrasound Tracking
Collar

Ultrasound Probe

CSo =CSy xTy=o

Figure 1.3: As will be described in Chaplér 4 a 3 dimensioitahsound image of the patient’s bone is
first built from set of 2D slice images acquired using a traokkrasound probe. Pixels in the Coordinate
System (CS) of the ultrasound slice image (points in 2D) rmmesformed to 3D points in the coordinate
system of the ultrasound probe usifg;—.yp. These 3D points are transformed to 3D points in the
coordinate system of a tracking collar attached to the sdwad probe usingy p—yr, a rigid body
transform. FinallyIr— o transforms these points to points in the coordinate systetimeoOptotrak
tracking system used in theatre. This ultrasound imagegistexed to the preoperative model found in
Chaptef B to givel s i/ (nrry=u 1 @nd hencd sy n,ry= 0. As the model is fitted to tHe MRI daféy,—.o

is the same a%s s (nrr)=0-
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Chaptef’b Endoscope Calibration and Tracking using an &lpfiacker

To=pgs =

Ter=Es X Ter=pr X To=ET

ES Endoscope  Screen
(2D)

ET Endoscope Tracker

EL Endoscope Lens

CSgs = CSps x To=ks

Figure 1.4: In Chaptéd5 the transformatidib(. g5) between 3D points in the coordinate system (CS)
of the tracking system (Optotrak) and 2D points on the enalosscreen is found. The “intrinsic” pro-
jection parameters of the endoscope define the transfopp{ rs) between 3D points relative to the
endoscope lens and 2D points on the endoscope screen. TiiesieX parameters of the endoscope
define the rigid (6 degrees of freedom) transformatiBs;(_. ) from the coordinate system of a track-
ing collar attached to the endoscope to the coordinatersystéhe endoscope lens. Bally ;. gs and
Ter— g1 are found using a camera calibration algorithm. The Opitdi@cking system estimates the

position and pose of the tracking collar to giVe—. .
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Chaptef 6 Patient Trials

TMéO [live]

Figure 1.5: Chaptéd 6 presents a method we used to implensamipée image guidance system rapidly.
In this systeml’y;—. opive) IS found directly using the inner surface of the pubic archiol is visible

both in theeMRI] image and in some of the endoscopic video feardemanual alignment algorithm is
used to find a revised estimate Bf;—. o, referred to as’y;— ojive)- The manual alignment algorithm
allows each degree of freedom to be incremented until theitweges [MRI and endoscopic) of the

pubic arch are overlaid.

system is described in Chaplér 6. The system uses a direciain@gistration between the MRI image
and the endoscope image using surfaces visible in both snage FigurE_1l5 Chapfér 6 also presents

our experience in implementing the system in theatre onch 066 patients.

Preceding these chapters is a review of the existing liezatwhich has three aims. Firstly we
introduce radical prostatectomy and specifidally RARP. Mémtintroduce image guided surgery. Image
guided surgery can refer to a very great range of systemsegtefine what we mean by image guided
surgery for this application. We then define a generic enmflisimage guidance system consisting of
a set of interconnected components. We show that the tranafwns shown in Figurds 1.2[fo 1.5 are
core to any such system. Finally we look in depth at the sthteepart for determining each of the

transformations required for our system as defined in Fijli2 td 1.b.
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Data Set Number of Data Set$ Image Modalities Chapter(s),
SM-X 21 CT &M
Patient-XX 5 MR, ultrasound, video, & tracking &
XMR-XX 2 MRI B
Cadaver-XX 3 CT & ultrasound

Phantom 1 CT & ultrasound 4

Camera Calibration| 1 Video & tracking

Table 1.1: A summary of the data used in this thesis.

1.5 Data

Each of the experiments in this thesis rely on data. A tot@dflata sets are used in this thesis. Full
details of each data set are contained in Appehdix A. Theuafig is a brief introduction to the data
sets and how and where they are used.

21[CT images of adult male pelvis are used in Chdpter 3 to nmisind test a statistical shape
model (SSM) of the adult male pelvis. These images are dagdrEM-X, where X is a letter from A to
U. The aim of thé SSM is to perform bone segmentation fromIMiRddes, so four data sets containing
[MRIlimages were used to test the algorithm. Two of these wadtert from a previous study at Guy’'s
Hospital, using co-registerdd CT ahd MRI images. These seits are referred to as XMR-01 and
XMR-02. Only thelMRI] data was usefl._MRI scans from two prosipegrostatectomy patients were
also used, referred to as Patient-01 and Patient-02.

For Chaptel}, it was necessary to have data sets contaifimg€ultrasound images of the pelvic
bone, together with the transformations between the twe.akwrithm development and validation a
custom plastic anatomy phantom was built. The phantom stnef a life size plastic pelvic bone, a
spherical target representing the prostate, and eightifidwmarkers. The phantom was imaged in both a
[CT] scanner and with an ultrasound probe in a water bath. Thiksgandard transform between fhelCT
and ultrasound images was established using the eightdidueirkers. The phantom data set is referred
to by the prefix Phantom. The phantom is further describeaati®n[4.5.

As neither thé_CIT nor ultrasound images of the phantom wegnesentative of actual anatomical
images the algorithms were validated uding CT and ultradmages from cadavers. Three cadaver
data sets were used, denoted Cadaver-XX, where XX=01,02t@8images were taken from a previous
orthopaedic study. The gold standard transformation fratnasound td_CIl images was determined
using a set of bone implanted fiducial markers.

Chaptef uses tracking data collected during an in theatiteration of thedaVinci’ ™ endoscope,
together with images of the calibration grid.

Finally, in Chaptef6 data from 3 more prostatectomy pasieme introduced. These are denoted
Patient-03, Patient-04, and Patient-05. These data setaicfVIR] and ultrasound images, as well as

endoscope tracking data. Table]1.1 summarises the datasgetén this thesis.
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1.6 Measuring System Error and Summing Component Errors

As well as detailing the methods used by our surgical naiigatystem this report is largely concerned
with the quantification and analysis of the systems’ errtirill be useful therefore to define the error
measures used at the outset. We have used two measureg @f dreoreport. The first is the registration
error at the prostate. This is a measure of how far the pratipeimage of the prostate is from the actual
position of the patient’s prostate. We use this is Chapliersd4. The second measure is an on screen
error visible to the surgeon. This is intended to give thgsan an understanding of the system accuracy.
This is used at the conclusion of each chapter to visualsetiors found in the chapter. We will now

define how these errors are calculated.

1.6.1 Registration Error at Prostate

This is used when calculating the errors in the calculatib’g_.o. The registration error can be
quantified by first defining a point in space, transformingyittiee known correct’y; .o (GldStd) H and
the estimated’y,—.o(E'st.). The registration error is simply the magnitude of the ddfece (in three
dimensions) between the two transformed points. As we &eedsted primarily in the position of points
near the prostate we have used such points in our error neeg&iamilar error measures are widely used
in the literature and can be referred to as a target regmtratror (TRE). To allow direct comparison
between the various data sets used in the work the same siatdists in space were used for this
error measure. We refer to these as the “nominal” prostafepoints. The location of this was based
on the position of the prostate in the plastic phantom useduoh of the development work. Figure
[1.9 shows the six points used. Doing this simplifies the datmn of errors and should be reasonably
accurate as the position of the prostate does not vary signtfy. The effects of this assumption are

discussed further in Appendix D.

1.6.2 On Screen Error

From the surgeon’s point of view the error measure of intdeethe apparent error in the position of
the prostate shown on the endoscope screen. Therefore eackairce is ultimately converted to an
on screen error. To do this in a consistent manner we firstettfirpoint of interest in the preoperative
[MRIl We chose the apex of the prostate, as this is a landmatké#m be seen through the endoscope and
is clinically relevant. We then selected a frame of endogceigleo that shows the entire prostate and
in our clinical experience was a good frame to overlay. Thaaghof this frame placed the apex of the
prostate approximately 200 mm away from the lens, 20 mm ati@/@orizontal centre line and 5 mm
to the right of centre. The point is then projected onto théosgope screen using intrinsic parameters
found during a calibration of the endoscope, and detailetabie[I.2. To visualise the errors, various
errors are simulated in the projection process and the psaepeated many times to give a distribution

of on screen point§._1.7 gives an example of such an overlay.

1The gold standard transformati@; . o is the combination off's 57— 7 (GldStd) and Trr=0[nrr) (GldStd). Model
fitting errors are determined in Chapiér 3 using simulatiortheajold standard transform is known beforehand. In Chptee
ultrasound tracking and registration errors are determax@@rimentally using a plastic phantom and cadaver dateotimdases

the gold standard transforms are determined using sets ofdidnarkers.
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Figure 1.6: Definition of the six nominal prostate surfacentmused throughout to quantify the compo-

nent errors.

Name Horizontal Vertical
Focal Length 852.02 923.14
Principal Point 415.38 288.12
Second Order Radial Distortion -0.36

Forth Order Radial Distortion 1.16

Tangential Distortion 0.0085 0.0082
Sixth Order Radial Distortion 0.00

Screen Dimensions (pixels) 720 576

Table 1.2: The Intrinsic parameters of the endoscope usedrfor visualisation. The endoscope is

modelled as a pin hole camera with radial and tangentiabidish as peLI:I_eiKlea_and_S_'LIMH]_ﬂEJQ?).
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' Simulated Points

0,=11.64 Pixels (2.8 mm)
0,~13.18 Pixels (2.9 mm)

Figure 1.7: A landmark point (near the apex of the prostass) lleen chosen and projected onto the
endoscope screen under the influence of errors. The yellawspepresent the projected points. The
standard deviation of the point spread in the x and y dirastis calculated and shown in the text box at
the top right. Two ellipses are drawn on the image showingdLzastandard deviations. The principal

axes of the point distribution are also shown. To aid intetgtion a value in mm has also been calculated.

This is the pixel error back projected onto a plane 200 mm fiteerendoscope lens.
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Whilst we recognise that the resulting error values expreaseixels are very specific to our
application and endoscope geometry making comparisonathiter work more difficult, they are none
the less the most relevant to our application. To aid ing#gtion an error value in mm is also shown.
This is the on screen error in pixels back projected onto agpR00 mm distant from the endoscope
lens (near the prostate apex). Measuring the error in difteways is of course possible and where

appropriate we have done this also.

1.7 Ethics

Ethical approval for all studies involving prospective RARatients was obtained from the Research
Ethics Committee at Guy’s Hospital (Reference Number 080401). All prospective patients gave
informed consent for the use of their MRI and ultrasound dagavell as the use of the tracking system

during surgery.
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Chapter 2

Literature Review

This chapter is structured as follows. We first give a brigfdduction to prostate cancer and its treatment
usinglRARP. Following this we introduce the key conceptawdge guided surgery and explain where
our system sits in this very broad field. Having defined an inggjdance system as a connected group

of subsystems, we then examine the state of the art for theystdms.

2.1 Prostate Cancer and Radical Prostatectomy

In the UK prostate cancer is the most commonly diagnosedetanenen, |[Office of National Statistics
(2008)]. It is also the second most common cause of cancateckeath (after lung cancer) of men
in both the UK and USA. Over 10,000 men die from Prostate gasaeh in the United Kingdom,
[Kirby et all (2010)]. Around three quarters of men diagrtbsd| survive the disease beyond five years.
Many more men will have prostate cancer but remain undiaggho$ncidence will likely increase as
screening improves [Kirby et al. (2010)]. Autopsy studifgreslow et al. |(1977)] have found that up
to 80% of men in their seventies have prostate cancer. Utaaheliag the causes of and improving the

treatment of prostate cancer is therefore an importantesigs,

There are a wide range of treatments available for prostateer, these are listed in Talple]2.1.
Correct management of the symptoms is also of critical ingmme [Thompson et al. (2007)]. The choice
of treatment will depend on the stage of cancer (whethecitigined to the prostate gland, or has spread
beyond the prostate), the aggressiveness of the cancéfetbgpectancy of the patient and the patient’s
wishes. Radical prostatectomy may be used when the cansardiaget spread beyond the prostate
gland, but is likely to do so if left untreated, and the patienhealthy enough to undergo surgery.
The spread of the cancer is typically determined witli_anIMfins The aggressiveness of the cancer
is assessed using a prostate biopsy and quantified usingehsda score [Gleason (1977)]. Excision
biopsies taken from nearby lymph nodes can also be use tesabseaggressiveness of the cancer. There
are several approaches to radical prostatectomy. Radicatgbectomy removes the cancerous organ
and the attached seminal vesicles. Biopsies can also be taka the nearby lymph nodes allowing
accurate assessment of the spread of the cancer. The nadiedbthat control potency run very close to
the prostate. Depending on the location of the cancer witterprostate it is possible to attempt nerve

sparing prostatectomy so that the patient may remain poidtetrnatively a non nerve sparing procedure
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Established Techniques

Active Surveillance No treatment is undertaken, however the progress of the

cancer is monitored.

Radical prostatectomy The prostate is surgically removed.

External beam radiation therapy | Radiation is focused on the prostate from an external

source.

Brachytherapy Radioactive seeds are inserted into the prostate through

the perineum. Cancerous cells are destroyed by radiation.

Experimental Techniques

High frequency focused ultrasound Cancerous cells are ablated using sound energy fram a

trans-rectal probe

Cryogenic ablation Cooling fluid is passed through a needle to cool a target

region. The cold temperatures destroy cancerous tissue.

Table 2.1: Some of the options for the treatment of localgedtate cancer. The option used will depend

on the stage and aggressiveness of the cancer as well azthadbealth of the patient.

Oncological outcomes (positive margin rate and biochehf&# recurrence)
Time to and rate of urinary continence (Months, %)

Time to and rate of potency (if nerve sparing) (Months, %)

Unintended damage to surround anatomy (principally thieunex

Length of hospital stay (Days)

Patient post operative pain

Time under general anaesthetic (minutes)

Cost of Surgery£)

Table 2.2: Parameters that can be used to assess the suteepsostatectomy, allowing different
methods to be compared. To be successful any alteratior tsuttyical method needs to demonstrably

improve one of these.

can be performed. The success of a radical prostatectomlgecareasured by a number of parameters.
Table[2.2 lists parameters that can be used to measure tbessuar otherwise of a prostatectomy and

thus compare alternative surgical approaches and asses#dbtiveness of a proposed new method.

Traditionally, open surgery has been used, and this caardith done with a retro pubic approach
(incision through the abdomen) or via an incision through plerineum. More recently, first reported
in 1997 (Varkarakis et all (2005)) laparoscopic approadiza® been used. These reduce the patient’s
hospital stay and post operative pain. In the hands of aesl#iparoscopic surgeon laparoscopic surgery

can have the same outcomes for positive margins, and timentinence/potency. The cost of surgery
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is higher due to more expensive consumables and the rearitefor higher skilled surgeons. There
is also a long history of robotics in urology (Challacombeale{2006)) as surgeons and scientists have

strived to improve the available methods.

A more recent (since 2000, Takenaka etlal. (2006)) altermadi laparoscopic surgery is robot as-
sisted laparoscopic surgery. Here the standard laparwstagds are replaced with tools actuated re-
motely by the surgeon via th@aVinci’ ™ “robot” [Guthart and Salisbury (2000)]. By removing the
surgeon from direct control of the laparoscopic tools thiews the control interface to be designed
to mimic direct control of the surgical tools, as opposedht® iteversed control required for standard
laparoscopic surgery. In 2008 there were 70,000 prostateées performed with a@aVinci robot

worldwide, and there are now more than 1@R/inci’* systems worldwide [Tan et al. (2009)].

There is active debate over the benefits of tavinci’™ system, however there is evidence
[Tonet et al.|(2006)] that use of tlaVinci” allows surgeons without laparoscopic experience to per-
form to minimally invasive procedures, whilst tliaVinci’ * provides limited benefit to an already
skilled laparoscopic surgeon. Most trials show patientontes improving as the surgeon becomes
more adept at using treaVinc ™ [Dasgupta and Kirby (2009)]. With the exception of time tato

nence outcomes are at least as good open suigery [Dasgudgtarhy (2009)].

There is a need for randomised trials to assess the perfemadrthe various surgical approaches
(Dasgupta et al. (2006)). Robot assisted laparoscopiesuigthowever a recently developed procedure
and to date the procedure largely mimics standard lapapassorgery. It seems likely that as more
surgeons use the system and the product itself evolvedihadibot assisted procedure will diverge from
the standard laparoscopic procedure, taking advantadgedfitreased degrees of freedom available at
the end effectors, the ability to scale movements, theifigeof tremors, and the 3D endoscopic vision

available on thelaVinci™ .

2.1.1 Description of robot assisted radical prostatectomy

The following describes the robot assisted radical prestatny procedure currently in use at Guy's
Hospital. The patient is first prepared for surgery. A cahét inserted into the bladder, and six ports
are cut in the patient’s abdomen. A central port for tta/inci’® endoscope. A port on either side
for the two arms of thelaVinci”* and an additional three ports for laparoscopic tools cdletidy an
assistant. The patient can be insufflated with carbon de#ilough one of the three assistant ports.
After port cutting the patient is placed head down in the afittimy position. This position is necessary
to allow thedaVinci’ to be placed between the patients legs and gain access tattbetp abdomen.
At this stage the both the patient and thevinc’ ™ are locked in position and do not move until the
procedure is completed. The endoscope is inserted inteetiteat port and theaVinc ™ tools into the
side ports. Figurds 2.1 [0 2.9 give a pictorial step by steygmietion of the prostatectomy performed on
one of the studied patients. The use of medical terminolegbieen avoided to try and keep it accessible
to the layman. As an indication of the time taken for the pdoce the time elapsed since the start of

port cutting is shown at the bottom right of each image.
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vas deferens
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neurovascular bundl
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proximal neurovasculaLp B ihal vesicle
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Figure 2.1: The prostate and surrounding anatomy as seeugthrthe patient's mid sagittal plane
[courtes@S)] with modifications. The netigsues, shown in red are not actually located
on the mid plane but are slightly to the right and left of thedlmlane. The endoscope and surgical
tools are inserted through the abdominal wall into the rptrbic cavity, to the right of the picture. The

bladder is kept deflated during the first part of the procetiuedd access to the prostate.

S
Elapsed Time: 0:20:14 Elapsed Time: 0:23:58

Figure 2.2: On entry to the retropubic space the surgeonatas@e any relevant anatomy, though the
position of the prostate can be estimated from the curvatittee pubic arch. The first stage is to remove
a layer of fascia from the inner wall of the abdomen. This feenldone on the right, allowing the pubic

arch to be more clearly seen. The prostate, however, rerobgwired.
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Prostate

Figure 2.3: Tissue (membranes and fat) in front of the ptessaremoved to reveal the prostate, on left.
Incisions are made to along both sides of the prostate, sigktincision shown on right. The extent of

these incisions is limited to prevent damage to nerve fibres.

oy - Suture of veinal v
prostate apex
P .

*

4 X
Elapsed Time: 0:39:09 = Ela'psed Time: 0:42:36

Figure 2.4: On the left the prostate is now visible with a dnmaiision on either side. The blood supply
(the dorsal vein) at the apex of the prostate is then sutataibht) to limit bleeding.
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. étr‘etler Pulled Upwards

g between
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* Elapsed Time: 0:51:13 Elap8ed Time: 0:53:07

Figure 2.5: Dissection of the prostate from the neck of bémds started. Knowledge of the size of the
prostate’s medial lobe is useful here as this can extendliretdladder. For good continence results it
also important to minimise damage to the bladder neck. Omealissection is sufficiently advanced
the catheter can be pulled out of the urethra and pulled gsyaising an additional hook through the

patient’s abdomen, as shown on right. This pulls the prestptvards allowing access to the far side.

[
Clamping at Base
of Prostate

Elapsed Time: 0:58:48

Figure 2.6: After dissection of the bladder neck is compikésbase of the prostate can be freed. Clips
rather than cauterisation are used to prevent blood loswdhe proximity to the neuro-vascular bundles.
The left hand image shows a clip being applied to the left hsdd of the prostate. After the base has

been freed itis possible to reach under the prostate anthguideminal vesicles and vas deferens forward.
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Figure 2.7: With the seminal vesicles and prostate pulledangs the rear face of the prostate can be
dissected along the plane between the rectum and the pcosapsule. The depth of this incision is
dictated by the nerve sparing procedure in use. It is ofcaliimportance not to cut into the rectum

during this cut.

Figure 2.8: The prostate is now relatively mobile and canuidkeg to either side to allow the dissection
along the sides of the prostate to be completed. Dissectiomdan either include or exclude the neuro
vascular bundles depending on the nerve sparing plan imisgection moves from the base to the apex

of the prostate.
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N Elapsed Time: 1:47:42

Figure 2.9: The prostate is left attached only through thexamwhich is now severed, (on left). The
prostate is put in a specimen bag and withdrawn from the tipgréield. The surgeon is now left with

a gap between urethral sphincter and the bladder neck. @pisnyist be closed in order for the patient
to regain continence. This is done by pulling the bladdeknedthe urethral sphincter and suturing the

two together.

2.1.2 Drawbacks and Opportunities of Robot Assisted Radid&rostatectomy

Whether or not use of théaVinci™ robot improves patient out come is a subject of some debate in
urology. Some studies show an improvement in patient o )] others are more cau-
tious, while overall there seems little to pick between the . )]. It is our opinion that
given the relative immaturity of the approach, improversantpatient outcomes are more likely to be
gained using the RARP approach than remaining with an opgroaph. Most reports agree that laparo-
scopic procedures reduce the amount of time the patientstaystn hospital, thereby reducing hospital
bed costs. Whether or not the system is cost effective thereliepends on an individual hospitals cost
of a bed versus the additional cost of the equipment.

The main difficultly with ZRARP procedure is that the surgeounable to feel the tissue, reducing
the surgeon'’s ability to assess the spread of cancer. TthiEes the surgeon’s ability to make informed
decisions about the size of the margin to leave around thstageoand whether or not to attempt a
nerve sparing approach. There are two ways to adjust faor @i is to introduce a method of haptic
feedback for the surgeon, which is an area of active resdaranany groups. The other is what this
thesis is concerned with, which is introducing image guagato the procedure. This takes advantage of
the improving ability of preoperative imaging methods tbedéthe extent of cancer. If information on
the location and extent of the cancer captured preopehatie@ be sensibly overlaid onto the surgeons

vision, then this can take the place of the tactile feedb&elable in an open procedure.

2.2 Image Guided Surgery

Before we begin an introduction to image guided surgery westifinst define what we mean by the term

for the purposes of this report. We start with a broad definiti
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Image Guided Surgery 1 An intervention during which the surgeon’s view of the patie augmented

with images from a separate source.

In a typical[RARP the surgeon sees the patient through theseoge using visible light. We propose
adding information from preoperatite MRI, making the prdwe image guided. An alternative to using
preoperative MR is to supplement the visible anatomy withrdraoperative imaging method, such as
ultrasound |[[Ukimura et all (2006)]. Intraoperative ultasd is also used by Leven et al. (2005), but
here is laparoscopic and integrated with the surgeon’s theaugh the endoscope. Most modern defi-
nitions of image guided surgery, for example that in Petads@eary ((2008), imply that the additional
imaging modalities must be registered to the main modaldyas to appear in the same coordinate sys-
tem. Strictly speaking this is true, however it is wrong teswame that this must be done by some form
of tracking system and/or an overlaid display. It is alsosiue to display the two modalities separately
and allow the surgeon to implicitly align them mentally. éadl this was the case for what is generally
regarded as the first image guided surgery when a x-ray pestugsed to guide the surgeon during the
removal of a needle from a patients hand in 1896 [Brailsfdi@46)]. The surgeon mentally aligned
the x-ray to the visible anatomy of the patients hand and tised-ray to visualise the needle. Sim-
ilarly, lUkimura et al. [(2006) do not overlay the ultrasoumitathe endoscope view, but rather relies
on communication between the ultrasonographer and thesury place the ultrasound data into the
endoscope’s coordinate system. The new generatida\dhci’ ™ systems , thelaVinci S [Tan et al.
(2009)], allows image guided surgery with implicit regéton by the surgeon by placing preoperative
data on the machine’s console next to the intraoperativesampbe view.

Such systems become difficult to implement when the anatadsilyle in each modality differs. It
is also not possible to quantify the accuracy of such sysiadependently of the surgeon using them.
Image guidance using additional registration methodsgsttactic frames or fiducial markers) is most
frequently used in neurosurgery [Skrinjar et al. (2001 Y/l et al. (2000a)] where the surgical targets
may be deep in the brain and only a very small section of brafiase may be visible to the surgeon. This
has led to the development of equipment and algorithmsdaking surgical tools and registering multi-
modality images. The dominant registration method in udayas the point based fiducial registration
method. For rigid anatomy it is relatively easy to implemamd its accuracy is well studied [Wiles et al.
(2008),Fitzpatrick et all (1998)].

These methods lead to what is generally envisaged as thetage of image guided surgery. Pro-
totype image guided systems for digestive tract surgeriefSs al. (2004)], heart surgery [Szpala et al.
(2005)],[RARP [[Chen et all (2008)], urology surgery [Ukirawand Gill (2009)] , and microscope as-
sisted neurosurgery [Edwards et al. (2000)], all envisagelaying rendered projections of segmented
anatomy over the surgical scene. Figure P.10 gives an exaafphis, presenting the same data as in
Figure[1.1 but as rendered objects rather fhanIMRI slices.

Hawkes et al.|(2005) discuss the need to deform the overaidarings to account for intraopera-
tive motion. In theory, by extracting surfaces from the eswpic imagel[Visentini-Scarzanella et al.

(2009)], registering these to the segmented surface armrdiefy the segmented surface to match



44 Chapter 2. Literature Review

Figure 2.10: In contrast to the MRI overlay shown in figurd thd prostate and neuro-vascular bundles

have here been segmented from[fhe MRI and are presented as@&rings.

[Skrinjar . [(;Odl)l Cash et al._(LJ)OS)] it should be fussto use such systems for image guid-
ance in non rigid anatomy. Such systems are attractive gptlesent an intuitive representation of the
anatomy to the surgeon and would also allow integration witimning and simulation tools. A seg-
mented patient model aligned to the robots coordinate systeuld enable optimised port placement
[Adhami and Coste-Magére LO_QLB)]. Such a model would also allow preoperative itian of the pro-

cedure[LELo;Ni_els_elrl_(J_Q_bG)] using a patient specific moalétrnatively the surgeon could interactively
switch to a simulated patient mid operation in order to peaca difficult part of the procedure imme-

diately prior to performing it on the patient. Constraintaild also be placed on the operating tools to

prevent cutting into non target anatonLy [Davies $t al. (l)SJMmdﬁ_ih l(;odg)]. We present a

block diagram of such a system in Figlire 2.11

Whilst we agree that such a guidance system represents thédon future of image guidance in
urology surgery, we also realise that the implementatiosuch a system introduces risks and sources
of error to the operating theatre that may not be strictlyessary.

There are two issues with presenting rendered segmergaifahe anatomy to the surgeon. The
first is that regardless of the method used to segment theragdhere is an error inherent in doing this.
This error needs to be properly understood. The second isghat surgeons are experienced in the
interpretation of medical imagds (MRI.CT and ultrasourmd@vant to their speciality. So while rendered
surfaces may present a more intuitive image on screen ittisertain that they will give the surgeon a
better understanding of the anatomy than a more traditibineé plane projection offlaMRI volume.

The benefits of registering the auxiliary data to the patas need to be properly demonstrated.
As noted earlier, provided sufficient anatomy is visible shegeon is capable of mentally aligning the
multiple image types. Bringing automatic registratioroitthe operating theatre introduces algorithms

and or equipment that will have errors and may fail outrighterefore it must be demonstrated that
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Figure 2.11: Block diagram of proposed surgical image guidasystem. System is built from seven

discrete subsystems. These can be treated in isolatioruglhohto an integrated system when complete.

these methods bring a benefit to the patient before theodaottion.

What we propose is to implement a core system, focusing orichlragly registration between pre-
operativd MRIl and the intraoperative endoscope image.llthén be possible to compare the clinical
benefits (as measured by the parameters defined infable gnXRither a system that does not register
the data (ie thelaVinci’ ™ s) or a more sophisticated system that may warp the preogedsata to bet-
ter match the visible intraoperative anatomy. Alterndyiwee can investigate the benefits of presenting
the anatomy as rendered segmented bodies vefsusla MRIyoveuddhermore a more complex image
guidance system that uses endoscopic video data can ladiseiti by our system. Therefore it is im-
portant to understand the accuracy of our proposed systednif éhe accuracy is to be improved it is

important to understand the sources of error.

For completeness the remainder of this literature reviestrisctured in line with the system areas
defined in Figur€ 2.11. However the systems that deal witleohe transforms, see Table (2.3), are dealt
with in substantially greater depth.

2.3 Preoperative Knowledge

In order for an image guidance system to be useful it must ksiple to image the anatomy of interest
preoperatively. This section details what anatomy we htenimage and the methods available to do
so. The first part details methods to image the surroundiagpany of the prostate, while the second

section details methods to image prostate lesions.
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Transform Description Section

Tsnr—nr Fitting a pelvic bone to the patient MRI|/2.4.1
Segmentation of bone

Tsm(nrr)=0 Registration o8

Tsn(nrry=UT Image to Image Registration 2.6.2

Tovi=o Ultrasound calibration and tracking 2.6.2 and 2.6]2

To=Es Endoscope calibration and tracking [2.6.3 and 2.6]2

To=ET Tracking the endoscope 262

Trni=0nrr] Adjust model based on endoscope imagE.1

Table 2.3: Summary of the core transformation dealt withithis thesis (from Figurds 1.2 g 1.5) and

where they are in the literature review.

2.3.1 Surrounding Anatomy

Chen et al..(2008) identify the prostate, urethra, rectmigal vescicles and surrounding nerve bundles
as anatomy that would be useful to locate on a prostate imaiglargce system. This agrees with the
description of nerve sparirig RARP given by Tewari etlal. £)00Understanding the position of the
neuro-vascular bundles is obviously important to avoidiegtthrough them. Similarly it is critical not

to cut into the rectum. As shown in figure P.6 the seminal Vesiand vas deference are located on the
far side of the prostate so must be pulled through and outeoivdy. Here it would be useful to know
their position and size. Locating the junction of the prtestand bladder prior to the dissection shown
in Figure[2.5 would also be useful as would a measure of tleedfithe medial lobe of the prostate and
its extension into the bladder. All this soft tissue anatamyisible on a T2 weighted MRI. Typically
the[MRI used has an in plane resolution around 0.7 mm andesbacing between 3 and 4 mm. This
places an upper limit on the accuracy of an image guidandersythat uses data. Of course if it can be
shown that higher resolution scans could improve the sakgjgidance then this could be gathered at

the expense of a longer scan time.

2.3.2 Prostate Pathology

Knowing where the cancerous lesions are within the prastatpsule allows the surgeon to make an
informed decision about the margin to leave around the grestThe decision on whether to attempt
a nerve sparing prostatectomy is generally made preopelsathowever as discussed in Section 2.1 it
is possible to alter the plan during the procedure. In the cdipen surgery this might be based on
palpation of the prostate, while for RARP it may be result digpsy [Tewari et al.[(2008)]. Provided
the cancer can be well imaged prior to the operation imageaeguie could greatly assist this process.
Cancerous cells are visible on T2 weighHied MRI to some extéoivever they are not used diagnos-
tically. The size and location of the tumor is generally deieed using needle biopsy. The resolution
of data from needle biopsies is limited by the number of hieptaken and the ability to determine the

position of each biopsy [Venugopal et al. (2005)].
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There is great deal of research into techniques for the neasive detection and characterisa-
tion of prostate lesions. Promising results have been shoyvgroups using fusion diEMRI and
[MRI spectroscopy. [Hricak (2005); Lee et al. (2005); Venualat al. (2005)]. Other groups have re-
ported promising results using sonoelastography [Taylatl2005)]. | Braeckman et al. (2007) and
Mohamed and Salama (2008) have developed systems usingjTRU

The above is not intended to be an exhaustive review, buerathhighlight that prostate cancer
detection is an area currently under intense researchirscrdt is likely that in the short term future
an accurate and reliable system for localising prostateeranill be clinically available. The primary
purpose of developing these systems is to assist in thetisglexf a treatment method, of which there
are many. In the case where radical prostatectomy is chastre areatment method, a good knowledge
of the precise location and extent of the cancer should ertakl surgeon to make informed decisions

about the surgical approach (nerve sparing or not) and taratsty judge the margins required.

2.4 Create Model ('spr— 1)

In addition to being able to image anatomy as in Sedfioh 2Beiwish to project renderings of seg-
mented anatomy to the surgeon as in Figure]2.10 then therapatust first be segmented from the
preoperative image. This section deals briefly with thisyéxer as discussed in Section]2.2 presenta-
tion of rendered anatomy is not the focus of this work. Asased in Chaptéd 1 our system uses the
pelvic bone as a registration frame. Therefore what is @veeice here is the processing required to al-
low this registration in theatre, this will be discussed @pth. As we are more interested in segmenting

the pelvic bone we will discuss this first.

2.4.1 Segmentation of Bone from MRI {sp/— /)

The following is a brief explanation of our in theatre regasion algorithm as an explanation of the re-
quirements of our pelvic bone segmentation algorithm. Aeremmplete description of the registration
algorithm will follow in Sectio 2.62. The registrationgalrithm will use a b-mode ultrasound probe
to image the patient’s abdominal region and these imagédwitegistered to the patients preopera-
tive data using a image based registration method. We knamv frast work|[Penney etlal. (2006) and
Barratt et al.|(2006)] that it is possible to accurately ségyi ultrasound images of the pelvic bongtd CT
images of the pelvic bone. Figure 2112 shows example] MR], &, ultrasound images of the pelvic
region. Figuré 2.113 shows the data shown in Fidurel2.12iceeshnd interpolated to match the ultra-
sound slice. This more clearly shows the correspondengesketthe data sets, when a slice to volume
registration algorithm is used. The ultrasound CT batlelstrong intensity gradients at the bone
edges. This indicates that computationally efficient sanity measures such as cross correlation can be
used to drive the in theatre registration. The appearanbertd iTMR]) however is quite different. The
cortical bone corresponding to the bright bone edges infth@sound appear as dark regions surround-
ing the brighter trabecular bone. ldentifying the bone a[ifiR] therefore requires reference to both
the individual voxel intensity and the intensity of surrdimg voxels. It is possible that using a multi-

modal similarity measure such as normalised mutual infiondNMI) might enable direct registration
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(a) MRI (b)CT (c) Ultrasound

Figure 2.12: Ultrasound (c) and CT (b) images of bone havadiycsimilar appearance, the bone edge
appears as a bright line on the image. On a T2 weighted MRh{ayé of the same anatomy the bone
edge does no appear as a bright line. The thick cortical bppeaas as a dark line around the perimeter
of the trabecular bone in the centre of the pelvic bone. Regg ultrasound to CT is a proven process.

Registering MRI to ultrasound for the pelvic bone is untried

of ultrasound t¢_"MRI, however no evidence of this having béene for pelvic bone was found in the
literature. The aim of this section therefore is to investiigmethods that could be used to process the
preoperative data to enable a robust and rapid registrafiinultrasound data. In short we require an
algorithm to segment the bone from {he MRI data.

We have discounted the use of manual segmentation by a egdiblfor the following reason.
Because of our unique application we are segmenting bonedrd2 weighted MRI image. This is not
a task that is of clinical use, and so is not a task that manglagists have done, nor is there a standard
way of doing it. Therefore, in addition to being very time saming (about 2 hours), the results of
manual segmentation would be expected to vary significdrgtyween radiologists. On the other hand
an automatic segmentation will be repeatable.

Several algorithms exist in the literature that aim to segnt®ne from MRI data, either in 2D
or 3D [Strzeleckil(2004); Carballido-Gamio et al. (2004ag0r et al.[(1998); Lorigo et al. (1998)] us-
ing only the available image intensities. Rather than wagkdirectly on the image voxel intensities,
these approaches process the image intensities to createrseasure of the local texture around each
pixel/voxel. This is based on the underlying assumptionuiiike in[CT data where each voxel of bony
anatomy is brighter than a voxel of soft tissue, a bony vax@[Rl may have similar intensity to a non
bony voxel, however they can be differentiated by lookinghat intensity distribution of surrounding
voxels. The consensus is that bone cannot be segmentedMiRBiiigtensity values alone due to over-
lapping intensities, intensity inhomogeneity over homugmis anatomy due to scanning artefacts, and
the lack of strong edges at the bone surface. Strzeleckid§2td Carballido-Gamio et al. (2004) use
texture information to segment bony structure in the ankié lawer spine respectively. Kapur ef al.
(1998) use region growing based on texture informatiorofedd by active contour smoothing to seg-

ment the femur and tibia. Lorigo etlal. (1998) use an activetaur directly to segment the femur and
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(&) MRI (b)CT (c) Ultrasound

Figure 2.13: This shows the same data sets as in Figuré il Beke the MRI and CT have been re-
sliced and interpolated to match the ultrasound. This nestthe registration procedure which matches
ultrasound slices to volume images. It should be noted Hnetethe ultrasound and CT come from the
same patient, while the MRI is from a separate patient thateen registered to the CT, hence the
match between these data sets is not perfect. They servesefw illustration nonetheless. In both
cases the bone edge imaged by the ultrasound at the rigstlisevas a bright line in the CT. In the MRI
the correspondence is not as straightforward, howeverghergl appearance is similar, suggesting that

registration using a multi-modal similarity measure hassa@hance of success.
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tibia.

These methods use different approaches to drive the segtioenthowever they all demonstrably
fail when the chosen measures of image texture become sifoildoone and surrounding tissue. In
situations where the appearance of bone and soft tissuetdaryooutside the segmentation thresholds
these methods will work. Segmentation of the pelvic bongdwer, is not such a situation. Due to the

large size of the pelvic bone and the variety of tissue typeaediately adjacent to it the appearance of

the bone / soft tissue interface will vary significantly a&sohe pelvis.

Failures in the appearance only algorithms are easilyspaoising an understanding of what shape
the bone should take. Building prior knowledge of the expedione shape into the segmentation al-
gorithm should therefore improve performance. This intieb the wide field of shape priors in seg-
mentation. A shape prior can range from a constraint on theatwre of the segmentation to statistical
population models for a given object or group of objects. dHaad Martel|(2002) introduce two shape
priors when segmenting bone frdm MRI in the lower spine. Thmgdel the spinal column as an el-
liptical column and mask data anterior to the spinal colu@aotes and Taylor (2004) mention the use
of an active appearance model of the knee basdd o MRI da&gtoent bonel Fripp etal. (2007)
use a shape model to segment knee bone MRI with somessuctieir shape model is based on
the active shape model (ASM) frame work introduced by Coeted. (1994). They use the minimum
description length (Davies etlal. (2002)) method to buikel tiodel. This works on the assumption that
the model that describes the variation in the training pajoah in the most compact way is the correct
model. Fripp et &l (2007) also demonstrate that both cdeaam be readily applied to multiple objects

in the same image.

The shape of the pelvis has been described using a stdtstagze model by Lamecker et al. (2004),
who used their model to accurately segment bone frorh CT imad@o and Taylor (2003) incorpo-
rate[CT intensity information into their pelvic bone mod€han et al.|(2004) and Barratt et al. (2008)
demonstrate the use of a pelVic]CT statistical shape modekgpstration using ultrasound. None of
these shape models have been used to segment bongfrom MRécker et al.| (2004) mention their
intention to extend their model f{o"MRI applications, howeme further published work on this was

found.

Two methods were found that attempt to automatically segrttem pelvic bone froni_MRI.
Boettger et &l.| (2008) presented their work on segmentatigoelvic bone fron_MRI for use in ra-
diation therapy planning. However their method requiregc#ic[MRI sequences and at present is not
giving very good results for the pelvis. Schmid and Magnéitetlmanh|(2008) introduce a shape model
based segmentation of T1 weighfed MRI data for adult femalees and femurs, driven by the need
to do this for diagnosis of osteoarthritis. It is useful hewecompare T1 and T2 weightéd MRI. In
general T1 weighting allows better delineation of bone.uFRgZ2. T4 compares a T1 and T2 image of
the same patient from our study. The T1 image on the left dbew s better defined cortical bone,
however it is still possible to see the bone on the T2 weiglteahe. In our study we are using T2

weighted scans as they show the soft tissues of surgicaksitmore clearly, so our results will not be
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(@T1 (b) T2

Figure 2.14: The same anatomy shown with a T1 (a) and T2 (lpmeiMR] image. The large circles
at either side of these images are the heads of the femursblatider and rectum are also prominent.
The cortical bone shows as a dark line around the boundatyedtfrabecular bone. This line is more

precisely delineated in the T1 image, though the differeacearginal.

Lm;é&ahough we should expect them to be
008) report a sagaion accuracy of 1.44 mm mean with

directly comparable wit

similar. i -
a standard deviation of 1.1 mm. Assuming this is a Gaussktnlaition this equates to an root mean
square (RMS) error of 1.81 mm. This is calculated as the miista&rror between points on the seg-
mented surface and points on a manually segmented goldssthsarface. This figure appears excellent
in comparison with othdr MRI bone segmentation algorithamg] in particular, referring to Table 2.5,

seems to outperform several shape models based on highkirti@s, higher contrasi, GT pelves. There

are several reasons to doubt the accuracy and generaltg piblished figure.

1. Results are published for 6 data sets out of a possibleif8ut explanation of why these 6 where

chosen.

2. The segmentations used to build the shape model and astgolthrds are based on “expert” man-
ual segmentations. No literature has been found examihim@dtcuracy of manual segmentation
of pelvic and femur bone fromMRI, and it is not validated héfke results may vary significantly
if the gold standards were prepared by a different expertveser this is a difficult problem to

solve for a niche application such as pelvic bone segmentati

3. Theresults presented appear to be averages acrossuiseapel 2 femurs. Itis possible that errors
are less on the relatively simple shapes of the femurs arftkhig areas of more complex shape

such as the pelvis.
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4. The method presented is multistage and multi-resoluwti¢im various tunable parameters at each
level. There is an initial image force (based on intensjitiessus a smoothing force. Then the po-
sition of the evolved surface within the model space is ceddkising the Mahalanobis distance)
and if it exceeds a certain threshold the mode coefficiemtsealed. This is repeated at different
model resolutions. Finally, thie S3M is discarded and theneegation is locally deformed assum-
ing that errors from the true shape form a Markov Random Fi&liis stage also has a tunable
smoothing and image force parameter. In total there are lamectunable parameters. This sug-
gests that while the method can be tuned to work in a giveimgattmay not perform reliably on

a larger, more diverse data set.

Tabled 2.# anf 2|5 summarize the relevant results from taliure. Tabl€ 214 covers the results that
deal just with segmentation BfMRI. The type of errors repdntaries from study to study, as they are
used for several different applications. As will be seeerla system that matches the results reported by
Fripp et al.|(2007) would provide a good result in the contéxhe proposed image guidance system. Ta-
ble[2.5 covers the results for pelvic shape models. The rdsthsed to construct the models are as varied
as are the results. The reported boundary errors are lasshibse reported by Carballido-Gamio et al.
(2004), suggesting that a pelvic shape model approach toesgind MR] will have the best chance of
success.

Automatic segmentation of bone is essential for the prapasstem. Based on the preceding
literature review a system that combines measures of ineagere with a statistical shape model would
be the best approach. The use of statistical shape modeldésspread in medical imageing and there
are many implementations. The following section servesastaoduction to statistical shape models

and describes the statistical deformation model (SDM) peethat we have chosen to implement.

2.4.2 Statistical Shape Modelling in Medical Image Segmentigin

Statistical shape models can be used to parametrize aylsttapes. The underlying assumption is that
the variation in shape seen across a population a sit objects (for example the adult male pelves)
can be described to a given precision by a/deparameters. If the shape of each member is defined by
a vector of lengtm, thenM << n. The number of description parameters will depend on thengéry
of the shapes being described. To give a trivial case as anggaany number of spheres centred at
the same point can be uniquely described a single parantieéeradius). In the case of medical images
where complex shapes are being described the number of pmamnequired will be higher.

Cootes et all(1994) were among the first to show how statlstltape models could be first con-
structed and then applied to the problem of image segmentdsince then there have been innumerable

publications on the use of shape models in medical imagimgeheral they share the following method-

ology.

e A training set of images (of siz®&) is first captured or artificially generated.

e A set ofn corresponding points between the training images is defined
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Paper Method Application Result
Strzeleckil(2004) Appearance Only | Ankle Bone | No Quantitative Result
Carballido-Gamio et al. Appearance Only | Spine 6.82 mm Boundary Error
(2004)
Kapur et al.|(1998) Appearance plus Knee No Quantitive result for bone only,
regulisation
Lorigo et al. (1998) Appearance only | Knee No Quantitive results
Hoad and Martel Simple shape mod} Spine 1.12 + 0.15 TRE for registration
(2002) els using segmentation
Cootes and Taylor Statistical Shape Knee No Results
(2004) Model
Fripp et al. (2007) Statistical Shape Knee Dice 0.94
Model
Zhan et al.|(2008) Appearance based Pelvis Poor
on combination of
2 MRI protocols
Schmid and| Shape Model plus Pelvis and fe-| 1.44+ 1.1 mm = 1.81 mm RMS
Magnenat-Thalmann | local deformation | mur
(2008)

Table 2.4: A summary of published results of bone segmemtdtom MRI. A minority the published

papers presented quantitative results.

Paper Method Application Result

Lamecker etal. | Statistical Shape Pelvis 0.8 mm RMS Boundary erroor with

(2004) Model source image in model , 2.4 mm
with out.

Yao and Taylor | Statistical model Pelvis 1.27 mm Average Boundary Error

(2003)

Chan et al. Statistical Model Pelvis 3.90 mm RMS Boundary Error

(2004)

Schmid and| Shape Model plus lo; Pelvis and fe-| 1.44+ 1.1 mm =1.81 mm RMS

Magnenat- cal deformation mur

Thalmann (2008)

Table 2.5: Results for published work using shape modelsédgmentation of the pelvic bone. These

are all based on CT data exceptlfor Schmid and Magnenat-Emalif2008) which iE MRI based.
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e The shape statistics are calculated. By far the most commproach is principal component

analysis (PCA), though other methods have been proposed.
e The last step is shape model fitting.

The goal of this thesis is not to examine the various methdd®mstructing and applying statistical
shape models. The following text is an attempt to explainjastify the shape modelling method that

was adopted.

Training Set Size

Statistical shape models are built on the shape variatisarebd across a training population. Therefore
the shape model can only be as informative as the trainingsset to build the model. In cases where
the shapes being modelled are simple, only a small trairehgs sequired. Returning to the example of
a sphere, the population could be fully parametrized usingiaing set of two spheres of different radii.
In the case of medical images where the shapes can be comlpleeanumber of training shapes will
be required to properly describe the population variancei. éflal. (2008) showed that in the case of 3D
face images, 150 training images were sufficient, whereaathéoleft ventricle of the brain, greater than
319 training images would have been required.

In practical cases the number of training images is genecalhstrained by the amount of data
available. There have been attempts (Cootes and TayloB) 8%l Koikkalainen et all (2008)) to arti-
ficially enlarge the training set using finite element aniglybnless these enlargement techniques have
a grounding in a physical phenomena, for example Hulet aD&P@here the shape model describes
mechanical deformation due to a trans rectal probe, thegarteent amounts to little more than a re-
laxation of the shape constraints. As we have no physicds basdeforming the pelvic bone, artificial

enlargement of the training set is not considered further.

Defining Correspondence

Each shape in the training population must now be definetwel® each of the other shapes. Typically
an ordered set of points is defined on the boundary of eacleskagh shape haspoints, with point;
defining the same point in each shape. For relatively sim@eas in 2D, as in (Cootes et al. (1994)), it
is practical to manually define a set of corresponding lan#lrpaints on the boundary of each shape in
the training population. As the shape becomes more compblger number of landmarks points)(is
required along with a larger numbeY§ of training images. This makes manual definition of coroesp

ing points impractical. Methods to automatically defineresponding are therefore an important area
of research for the development of practical shape modeiséalical imaging. One promising method
is the minimum description length approach presented byd3at al.|(2002). Using the minimum de-
scription length method automates the finding of correspmngoints, however it remains necessary to
segment the shapes of interest from the training populatlopromising alternative is the statistical
deformation model (SDM) (Rueckert et al. (2001)). Here thimpto point correspondences are defined
automatically without the need to segment the training iesag

The[SDM method uses the deformations required to map eacinyamage to a target image to
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define the correspondences. A registration algorithm id tséind the transformation of each training
image to a target image. Rueckert et al. (2001) use a b-spgistration algorithm| (Rueckert et al.
(1999)), though the_SDM method should work with any regtgiraalgorithm. Once an average image
has been found the registration process can be repeatad,thsimean image as the target, if desired.
The shape statistics are then calculated using the defiamsab define the correspondences, rather than

points, hence the term statistical deformation model.

Calculating Shape Statistics

Each shape in the training set (&f shapes) can now be represented by a ve&torin the following
we will only deal with the 3D case. For a model defined by poarrespondences as for Cootes et al.
(1994) wheren corresponding points are defined in 3D, edchwill be 3n units long. Similarly for a
model defined by deformation fields, each vector wilBheaunits long where: now refers to the number

of vectors in the deformation field. The mean shape or measrmetion field is first found, as;

1 X

X= ; X, (2.1)
For each shape, or deformation field, the deviation from teamis calculated as;

dX; = X; — X (2.2)

The covariance matrix for the training set can then be catedlas;

N
_ 1 T
S=% ;ddeXi (2.3)

The shape, or deformation field, variation seen in the tngirsiet can then be described by the eigen-
vectors of the covariance matrix. The eigenvectors can be ranked according to their corngbpg
eigenvalues. Eigenvectors with large eigenvalues coorespo modes of variation that account for a

significant part of the variation observed in the training se

Shape Model Fitting

Any member of the training population can now be described tgighted linear sum of the eigenvec-
tors. The coefficients of the weighted linear sum form a veBtoFor an arbitrary shape (the target), not
in the training population, the shape model is “fitted” by firgithe set of coefficients3, that produce a
shape that best matches the target, according to some raedsimilarity. It is common to truncate the
linear sum to only include a subset of eigenvectors, thotiethe largest eigenvalues. It is also possible
to set limits on the allowable coefficient values.

The shape model fitting forms an optimisation problem forchtthere are a great many different
solutions proposed in the literature. We elected to[use]NBfildholme et al. (1999)) as a similarity
measure due to its ability to compare images of differing atitids. We chose to use a differential
evolution optimiser/(Price et al. (2005)) to fit the model. Ya/e not attempted to benchmark these
methods against the other methods in the literature.

Some authors allow the fitted shape model to deform furthter ahape model fitting to fit local

edges, Schmid and Magnenat-Thalméann (2008) being one éxaifipe effectiveness of this approach
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will vary greatly depending on the information content of iimages being used. In general these ap-
proaches will have similar effects to the “training set egdement” methods (Koikkalainen et/ al. (2008))

discussed previously.

2.4.3 Segmentation of Soft Tissue Targets from MRI

Segmentation of soft tissues presents similar challermssgmentation of bone, along with the further
difficultly that soft tissues can deform. The bladder and thetum can change shape significantly
depending on their state of fill. The prostate itself has sawn to translate rigidly and non rigidly
deform depending on the patient position [Fei et al. (20D3#dogeman et all (2004) show that prostate
movement is about 2.4 mm if the general patient position tsradically changed and that prostate
position is dependent on the filling of the rectum. For thesssons, a preoperative segmentation of
these tissues from tihie MRI scan will only serve as a startitignate of their intraoperative location.
[MRI is generally acknowledged as a good modality for thergltion of soft tissue, studies by
Rasch et all (1999) indicate that the prostate is shown nooigrately il MRl than by CIT. This indicates
that the soft tissues can be manually segmented[fromi MR, theanext stage is to investigate whether
they can be segmented automatically. Freedman et al.|(22%8) shown some success using a patient
specific shape model to register the prostate and rectunseveral scans (allowing the propagation of
a manual segmentation), while Tsai et al. (2004) preserdradwork for the incorporation of several
interacting shapes (prostate, rectum, and obturator msijscito a single model. Both these studies
only use intra patient models and would need extension & jpiitient segmentation to be of use for
the proposed guidance system. Using the bone shape segiorefitam Sectiorl 2.4]1 to initialise a
shape model incorporating the relationship between stpsodt tissues [Tsai et al. (2004)] it should be
possible in the future to build a system that can automdfisgigment relevant soft tissue from patient
[MRIldata. This however is not considered further in this iieBhe detection of nerve fibres frdam MRI
has not been investigated yet. Literature exists for inmgerves, especially within the skull. It should
also be possible to present likely positions of nerve busbsed on the location of other segmented

anatomy.

2.5 Preoperative Planning

The existence of an accurate preoperative anatomical miapidiin the preoperative planning of the
procedure. Depending on the resolution of the preoperativdel it should be possible to draw the
surgeons’ attention to unusual anatomy such as very laaggies that may alter the surgeons planned
approachl[Tewari et al. (2008)]. Similarly, enlarged meéttibes have been highlighted as causing dif-
ficulty when cutting the prostate from the bladder. Wheredlesanges may affect the operation time
suitable provisions can be made ahead of time. Similarlyrtbdel could be used in a surgical simulator
to perform a trial run of the operation.

A popular research question in laparoscopic surgery is fitenal positioning of surgical tool
ports. In the case of th@aVinci’ ™ system three bulky arms are competing for space above the pa-

tient alongside the laparoscopic tools of two assistaritpoiits are not placed correctly situations can
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arise where the laparoscopic tools cannot access the patiatomy. For urology surgery there are
no bones in the way to constrain the placement of ports hawteeeport planning procedure is not
trivial. lAdhami and Coste-Magre (2003) demonstrate the use of existing robot planniftgvare for
daVinc™ based heart surgery, where the choice of port locationsnistiined by the rib cage. Their
method relies on an accurate model of the patient anatomyable simulation of the pivoting motion

of the various laparoscopic arms.

2.6 Registration (/- gs)

This section deals with several of the technologies thatare to an endoscope based image guided
surgery system. In essence our image guidance system tgbeistain the preoperative MRI and
projects it onto the endoscope screen udlhg.. ps. This section introduces various methods to de-
termine a transform from preoperative images to a videcescr&his can be done in one of two ways.
Firstly the transform can be determined directly using taatks visible in both the video image and the
preoperative image. Secondly the preoperative image cgrbirput into the coordinates of a tracking
system, using a transform equivalentligy_.o. The transformed points can then be projected onto the
video screen using a transform equivalert¢o. gs. The first approach requires that sufficient anatomy
is visible on the video screen to perform the registratios.WAll be seen there are several applications
where this is the case. In Chapfér 6 we also use this appr@sgtion the visible inner surface of the
pubic arch, which becomes visible reasonably early in tioeguiure, see Figute 2.3. However in order
for the system to be operational earlier than this we havetadahe second approach. The remainder
of this chapter is divided into three sections. The first bak direct methods to determifig;—. s,

the second at methods to determifig_. o, and the third section looks at ways to determiie. gs.
Although we refer to the Optotrak, MRI, and an endoscope irtramsformation definitions it should be

noted that we have not limited the literature review to systéhat use this hardware.

2.6.1 Direct Registration (['y/—gs)

Provided the intrinsic parameters of the endoscope are tkiamd the anatomy visible through the endo-
scope provides sufficient registration points it is posstblregister a preoperative model to the intraop-
erative endoscope view directly. This has the significamtathge that it does not require any tracking
of the endoscope, which as will be shown in Chapler 5 is a fsigmit source of errorl_Mari et al.
(2006) demonstrate this for a bronchoscopy (where the amaie well defined and largely static).
Skrinjar et al. [(2000) use a surface derived from a steregéntd the brain to register a preoperative
brain model. If the endoscope’s “intrinsic” projection cheteristics are known it is possible to track the
anatomy using either a set of visible landmarks, implantaéaicfal markers, or by extracting a surface.
Stefansic et all (2000), ahd Ukimura and |Gill (2009) bothiog#anted fiducial markers to track moving
tissue. The drawback of this approach is that if registratiopreoperative data is required the markers
must also be visible in the preoperative data. This woulessarily be an invasive procedure. Several
groups have demonstrated the tracking of surfaces usihgreitono or stereo endoscopes.[Hu éet al.

(2002),Visentini-Scarzanella et/al. (2009),Cash et &08)]. If these surfaces are also present on the
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(a) Not Aligned (b) Aligned

Figure 2.15: Once the inner surface of the pubic arch becoeisise it is possible to use it to manually
align the preoperative data to the visible anatomy. The fd@tes overlaid on these images represent a
set of points manually segmented on the pubic arch of thepprative data. The centre line is shown
and the most distant point matches the prostate apex. Rbtidht the starting estimate is reasonable

manual alignment can be achieved in less than a minute.

preoperative data then direct registration should be plessi

In Chapteil  we use a surface to surface registration proegduperform a direct registration.
Figure[2.15 shows the registration procedure using théleishner surface of the pubic arch. This is
not ideal as it prevents image guidance earlier on in theqolee, and is also difficult to estimate the

accuracy of this procedure. Therefore we have favouredjusiwo stage tracking approach.

2.6.2 RegistrationT);—.o

There are many ways to perform the registration of the pnextipe data to the intraoperative space, in
most cases two steps are required. The patient (or a setra§dtached to the patient) must be localised
in the intraoperative space, then the preoperative datalmuggistered to this.

The most widespread method for registration is the use otitdlunarkers. These are attached to
the patient prior to the preoperative imaging and kept icglduring the procedure. They define a set
of points that can be seen on both the preoperative and pdgrative data and can thus be registered.

The most commonly used registration method is the orthdgeno@ustes formulation and singular value

decomposition/ [Fi i 00)]. The main adege of this method is that an analytic solution

exists, enabling rapid and robust registration. Anothemaathge is that the accuracy of the method is

well studied [Fitzpatrick et gLII_(LQl)g),WiIes eII 4|. (2})p8uowing the likely error at the clinical target

to be estimated. However it requires that fiducial markerstmplaced in such a way that they do not

move in relation to the clinical targets between imaging andjery. In neurosurgery or orthopaedic

surgery where this form of registration is widespread thigdssible by screwing markers into the skull

or bone, [[_Sjeiaﬂsg;_ej_u (ZAO(JJ); Fried elt [. (1997)]. leaty similar markers could attached to the

patient’s pelvis for urological surgery. This however makiee image guidance system quite invasive,

limiting its acceptance by the patient and/or surgeon. ¢&aumarkers attached to the skin could also
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be used. However as the skin moves during insufflation thesemat be very accurate. We therefore
decided to avoid the use of fiducial markers, at least unjiltzemefit they may or may not have can be

properly determined.

The alternative to the use of fiducial markers is to use a skamaging modality that can be
localised in theatre to image the patient’'s anatomy diyecithe intraoperative images can then be
registered to the preoperative images using an image toeimegjstration method. There are several
imaging modalities that are suitable for use during therirgistion. These include radiography and cone
beam CT [[van de Kraats et/al. (2005)], intraoperafive MRIdEittha et al.| (2001); Fei etlal. (2003b);
Warfield et al. [(2000a); Fei etial. (2003a)], or ultrasounddifey et al.| (2006); Ayvlward etal. (2002);
Porter et al.|(2001); Leroy etial. (2004); Shao etlal. (2008)e of intraoperative GT &r MRI requires
large equipment that simply would not fit into our operatihgdtre alongside théaVinci”™ robot.

Therefore they are not considered further here.

We elected to use tracked ultrasound to image the patieheaystem is small in size and compati-
ble with thedaVinc? . Itis also known that the pelvic bone can be imaged with b-endttasound and
registered t@_CIT images of the bone [Penney et al. (2006)bgEiman et all (2004)), Fei etlgl. (2003b)
and Bharatha et al. (2001) all discuss the fact that the giestill move relative to other tissues under
various conditions. None deal with the specific conditionsspnt oi_RARP and preoperative plan-
ning. However the point is that the position of the modelleaspate will not coincide with the observed
prostate in surgery. Whilst we know that the prostate will movrelation to the pelvic bone, we expect
that this movement will be small in comparison to our totadteyn error. The apex of the prostate is
closely coupled to the pelvic bone, so should not move ekedgsThe rest of the prostate is known to
rotate about the apex based on the filling of the bladder artdrre During prostatectomy these are both
empty, so providing the_MRI is also taken at the empty staue pteoperative and intraoperative posi-
tions should be close. The geometry of the pelvic bone isyédeal for localising the prostate. When
designing configurations of fiducial markers for registratine design goal it to have the clinical target at
the centroid of the fiducial markers with large moments oftiaeabout the centroid [West and Maurer Jr
(2004)]. With the prostate near its centre and iliac crestgiging large moment arms the pelvic bone

meets these criteria.

Using a tracked b-mode ultrasound probe creates a seridises and their measured location in
space. The pixels of each slice can be transformed into d petrds in three dimensional space relative
to the tracking device or an arbitrary reference usipg-. o. These points can be regarded as an image
of the patient that can be registered to the preoperativee d& shown in Figure113[y,;—.0 can be
broken into three separate transforig.; -y p andTy p—pyr define the ultrasound probe and tracker.
They are analogous to the intrinsic and extrinsic pararsaita tracked endoscope and are similarly
found using a calibration procedur&yr— o is the tracking transform and is found using a tracking

system. The next two sections discuss these transforms.
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Paper Method Results

Prager et al! (1998) | Cross Wire Phantom 1.65 mm Reconstruction Error
Prager et al! (1998) | Three Wire Phantom 2.67 mm Reconstruction Error
Prager et al. (1998) | Single Wall Phantom 3.43 mm Reconstruction Error
Prager et al. (1998) | Cambridge Phantom 2.17 mm Reconstruction Error
Barratt et al.[(2006) | Point Based Calibration 0.6 mm localisation error

Barratt et al.|(2006) | Registration TRE for whole Pelvis 3.96 mm
with static Calibration
Barratt et al.|(2006) | Registration TRE for whole Pelvis 2.17 mm
with Optimised Calibration
Barratt et al.|(2006) | Percent Reduction in TRE 45%

Penney et all (2006) | Registration TRE for whole Pelvis 2.13 mm
with static Calibration
Penney et all (2006) | Registration TRE for whole Pelvis 1.63 mm
with Optimised Calibration
Penney et all (2006)| Percent Reduction in TRE 23 %

Table 2.6: Three sets of published results for ultrasoutiirasion. The first four rows show that the
type of calibration phantom will impact the accuracy of ttaditiration. The results shown are based
on imaging the same point from a large range of angles. Tlessdts are not comparable with the 0.6
figure in row five as the methodology used to determine it wate @lifferent. The large improvement
shown in the registration TRE in rows 6 to 8 is based on re$oittthe whole pelvic bone on 3 cadaver
data sets. The last 3 rows show similar work using self ogiimgiultrasound calibration, using the same

data set but different registration methods.

Ultrasound Calibration};;—.;p andTy p—y1)
In order to create the 3D volume and register it to the patieig necessary to calibrate the ultrasound
probe with respect to the tracking infra red emitting diol&ED) attached to it. Numerous methods
exist for performing this calibration [Prager et al. (1998Many groups have come up with ways of
performing calibrations using custom phantoms that arekguieasier/more accurate etc. In general,
however, the calibration accuracy is of the order of 1 to 2 see, Tablg 216

Barratt et al.|(2006) note that calibration methods thatauskantom to calibrate the probe prior to
use will suffer inaccuracy when applied to actual patients @ differences in the acoustic properties of
the fluid baths used to perform the calibration and the agiatant anatomy. They demonstrate a method
to overcome this by building the calibration parameters the registration optimisation. Penney et al.
(2006) implement a similar method by including a speed ohgacaling parameter into the registration
optimisation. Tablg2]6 shows both their results based emtiprovement il TRE over the whole pelvic
bone. These suggest that registration using the pelvic Wwihimcur an error in the order of 1 mm due

to acoustic differences between the phantom and the patfigr@ discrepancy between the results of
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Penney et all (2006) and Barratt et al. (2006) indicatestiieaexact size of this error will depend very
much on the registration method used.

Unfortunately the self calibration methods developed byr&aet al. (2006) work under the as-
sumption that the error due to calibration parameters fahmdpulk of the registration error. The actual
registration is performed using manually segmented paintssurfaces from GT. It is implicitly as-
sumed by Barratt et al. (2006) that the manual segmentationis negligible in comparison to the er-
rors due to the incorrect acoustic parameters. Here we apoging to use a model constrained method
for segmentation of pelvic bone frdm MRI, see Secfion 2.Bdsed on the results showr{in 2]4.1, we ex-
pect that the segmentation errors will not be negligiblée#ipting to use the self calibration procedure
proposed by Barratt et al. (2006) may lead to incorrect a@oparameters being fitted to accommodate
errors in the segmentation. This is not desirable. Pennaly 006) do not use a manual segmentation
of either the ultrasound or CT data. Both image sets are pseckto "bone edge probability” images,
effectively a probabilistic segmentation. They then ojg&rthe acoustic parameters under the assump-
tion that there is negligible shape error in the bone edgbahitity images. As discussed above, this is

not the case for our segmentations.

Ultrasound Probe Tracking(r-0)

Numerous methods for tracking ultrasound probes have legmmted in the literature, including;
e Optical tracking systems, [Barratt et al. (2006); Lalontlal=(2003)] State et al. (1994)].
e Electromagnetic systems, [Aylward et al. (2002)].

e Mechanical or kinematic tracking or contral, [Leven et!i@D05); Porter et al. (2001); Taylor et al.
(2005); Shao et al. (2006)].

Electromagnetic systems can perform erratically when énvicinity of metallic objects and electric
motors.| Kwartowitz et al. (2009) reported poor results whey attempted to use one in conjunction
with a daVinci”™ . Mechanical systems are generally used when the motioneoptbbe is quite
simple, for exampl€_ TRUS systems where the probe moves imdiomension only. Construction of a
mechanical system for scanning the whole pelvis would bedlifficult. Optical tracking has been used
extensively for image guided surgery and are known to haed gocuracy and reliability. [Penney et al.
(2006); Barratt et all (2006); State et al. (1994); King e{H99) Barnes et al. (2007)]. Therefore such
a system will be used for tracking here. The accuracy of tracksing an optical tracking system will
vary with the system used and the conditions it is used ui@®r.et al. (2002) quote mean tip localising
error of Imm with a standard deviation of 0.3 mim. Housden.dR@06) notes that the Polaris tracking
system suffers from low accuracy for small movements. Magieps quote an error in terms of the tip
or endoscope localisation error. As noted by Fitzpatrickle(1998) such an error depends not only
on the accuracy of the tracking system in tracking a specificker but also on the geometry of the
markers with respect to the point of interest. For the Opioertus system that will be used in this
study (because it meets the requirements above and ondlabéelpthree published sources have been

found that give an actual marker tracking error. These avevshin tabld 2.17. Barnes etlal. (2007) gives
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Paper Method Result
King et al. (1999) Unknown 0.2 mm
Barnes et all (2007) | Tracking of IRED mounted on mi+ 0.02 RMS

crometre stage
NDI (1992) Unknown (NDI system specifica- 0.2 mm RMS

tion)

Table 2.7: A selection of published figures for the trackinguaacy of the NDI Optotrak system.

a detailed account of how the error was determined. The figlupe/n in the table is the systems ability
to localise a statiE IREDD. They reported a higher figure whenttacked object was moving, due to
the timing accuracy of the system. The range of motion andeargpvered by the TRED they track is
however very small in comparison to the motion we will regyihey move theIRED ovediem?. Whilst
Wiles et al. [(2004) does not provide a quantitative valuehiertracking error they do demonstrate that
the[IRED tracking error is anisotropic (it is larger along thirection normal to the lenses of the tracking
cameras) and dependent on the angle dithe IRED to the lemeahand the position of tHe IRED within
the characterised volume of the Optotrak. This makes itik®at the errors we will experience will be
greater than those reportediby Barnes et al. (2007).

If the IRED tracking errors are known then it will be possiliteestimate the tracking error at
the centre of the ultrasound slice, either using an isotrégimulation Fitzpatrick et al! (1998) or an
anisotropic formulation Wiles et al. (2008). Both papersoahssume that tHe TRED tracking errors
are normally distributed and independent along each axisveder if the errors are dependent on the
position, angle and speed of fhe TRED then both these asmmaptill be violated wheTRED tracking
errors are sampled over a range of positions. In order togplpgstimate the tracking error for the
ultrasound probe a better estimaté of [RED tracking erranftis available in the literature is required.
The effect of the assumptions made by Fitzpatrick et al. 1 88d Wiles et al!l (2008) can then be tested
against numerical (Monte-Carlo) methods. This is dealitChapte[b.

Using the above methods to determifig;—. o allows us to form a sparse ultrasound image of the
patient in the coordinate system of the tracking systemdiR@T's y/ ()= /r Will now allow us to put
the preoperative MRI into the same coordinate system.

Throughout the above discussion the assumption has been thetdhe patient’s pelvic bone will
not move during the operation. This is based on observatidRARP procedures with our clinical
partner. If this turns out to not be the case a strategy touatdor patient movement will also need to be
developed. This could be quite easily done by drawing markets onto the patients skin and tracking

their motion periodically throughout the procedure.

Ultrasound to Preoperative Image Registrationf ,,»)—uvr)

Image to image registration is the process of finding a tmansition of one image to another that

maximises some measure of similarity between the two imadéere are two broad classes of im-
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age to image registration methods in the literature, intgmssed methods and feature based methods
[McLaughlin et al. [(2005)]. Lying between methods that canclassified as pure intensity or feature
based there exists a range of methods that could be desaibbybrids of the two. Intensity based
methods have the advantage that they are generic, no krgsviedequired of the actual image content.
However, it is necessary for a relationship to exist betwtberintensity profiles of corresponding fea-
tures in each image. They are most effective when regigfénn images of the same modality, though
they will also often work on images from different modalititMaes et al! (1997) demonstrate the use of

mutual information to perform rigid registration betwéeREand CT images.

Feature based methods first extract a set of features froradtte of the two images. The im-
ages can then be aligned by minimising a distance measusedetcorresponding features. Assuming
corresponding features can be extracted from each imagemtthod is independent of the imaging
modalities used. The main drawback of feature based methdiigt the registration accuracy is limited
by the accuracy of with which the features can be found. Foresionage types this can be very low.
Furthermore, the features used will be specific to the anatoeing registered, requiring prior knowl-
edge of the type of features likely to be present. For exaniaeer et al. (2001) extract tubular features
(urethra and seminal vesicles) from b&th MRI and ultrasouBlaratha et al! (2001) use the prostate

centroid to rigidly register twb MRI images.

For registering ultrasound slices to pelvic bones severthlaas have shown that the CT and ultra-
sound data can be registered directly using a simple tremsaton of the intensity values in both images,
[Penney et al. (2006); Leroy etlal. (2004)]. For cases whHer@teoperative imagelis MRI based the ma-
jority of papers do not perform registration directly beemehd MRl and ultrasound images. The MRI
image is usually first segmented to create features thateasdd for registration. We have effectively
done this in Sectioh 2.4.1. _Avlward et al. (2002) registdrasound images to a preoperative model
showing segmented vascular anatomy, in this case they bgueenited the anatomy frdm CT data, how-
ever, reference is made to performing the same procedung[MiR] datal Porter et al. (2001) segment
tubular anatomy (urethra and seminal vesicles) from a pmai¥RI, then register these to the same
anatomy segmented from ultrasound. Similarly, Lalondd.€P803) manually segment bone surfaces
from[MRI and ultrasound and register these. Maurer et aB9)1 8o similar, registering A-mode ultra-
sound to bone surfaces manually segmented MRI._Shdo(@086) manually segment the inner
surface of the pelvis and register ultrasound data frdm a3 Rtbbe to this, they compare the use of
three different similarity measures to perform this regiton. In contrast to methods requiring segmen-
tation of thd' MR date, Penney et al. (2004) register ulmasictd MR] without requiring segmentation.
Both ultrasound andMRI images are preprocessed to give ss&vgrobability image” which for the
case presented (liver) shows the probability of the vox@ltefrest containing a vessel. These probability

images are then registered, with some success.

We now have a proposed method for putting[the MRI into the dinates of the tracking system
(Tv=0)- This is made up of three discrete transforms. The methodave chosen is very similar to

that of Penney et al. (2006) so it is reasonable to assuméhthetror in placing the MRI into the tracker
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Paper Method Result

Penney et al! (2006)| Ultrasound to CT Cadaver Pelvis | 1.63 mm Ave. RMS TRE
Barratt et al.|(2006) | Ultrasound to CT Cadaver Pelvis | 2.17 mm Ave. RMS TRE
Aviward et al. (2002)| Ultrasound to CT Phantom 2.3 Mean TRE

Lalonde et al.[(2003), Manually segmented Ultrasound 102.6 mm Translationl.5° Rota-
MRI on patient pelvic bones tion

Maurer et al.|(1999) | Ultrasound to CT Phantom Skull | 1.00 mm Mean TRE

Shao et al. (2006) Ultrasound to Manually Segmented1.87 mm Mean Translation

MRI Pelvis (inner pubis) Patient 2.55° degrees mean rotation er

Data ror (compared with self registrg

tion)
Penney et al (2004)| Ultrasound to MRI Patient Liver 3.66 RMS TRE

(moving)

Table 2.8: Published results for registrations based ochirad ultrasound data to preoperative images.
With the exception of the first two rows none of the resultsdirectly comparable as the size of the
objects used fdr TRE calculation differs or different emmgasures are used. However it appears that for

pelvic registration using ultrasound,_aTIRE for the bonéemar of less than 2 mm should be achievable.

coordinate system will be similar, around 2 mm. The next task project thé MRI onto the screen of

the endoscope usirith— .

2.6.3 Endoscope Tracking and Calibration {o— g5s)

Transforming points from the tracking system’s coordirgtstem into points on the endoscope screen
involves two transformations found by endoscope calibréfizr— g, andTs - s and and endoscope
tracking transformatiofo— gr. The next two sections deal first with the calibration prageg then

with the tracking. Although theaVinci”™ endoscope is stereoscopic we have decided to treat only one
channel at present. In theory it should be possible to regheatalibration for the second channel to

achieve a stereoscopic projection.

Endoscope Calibratiohg;— g, andTg;— gs

Endoscope calibration is a well studied procedure. Calitmaan be achieved by viewing a calibration
object of known geometry, typically a grid of some descdptiThe endoscope is typically modelled as
a pinhole with four intrinsic parameters (focal length irotdirections and a principal point) together
with some radial and tangential distortions. Tdavinci”™ endoscope is corrected so does not suffer
from the large radial distortions seen in some endoscomege\ver we have kept them in our model to
allow for generalisation to other endoscope types. Paul é2@05), Dey et al. (2002) and Shahidi et al.
(2002) each describe calibration procedures that coulditiged for this study. The method described

by[Mourgues and Coste-Mani (2002) applies the method developed by Zhang (1999ktsphcific
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case of thelaVinci’ stereoscopic endoscope, extending the method to the s&se@nd achieving an
error due to the intrinsic parameters of around half a pixeChaptef’s we have used a fully automatic
formulation ofl Zhang!(1999) method, freely distributed| beMiert et al.| (2006)|_King et al. (1999)
show that camera calibration accounts for only a small amotierror in an image guidance system
with errors around 0.3 mm. This is small compared to tkelyi errors in bone segmentation,
ultrasound based registration and tissue motion. Fof ThEBIRAvo endoscope lens are used, one is
straight and the other angles the len8@t Therefore two calibrations are required. Itis also nobed t
the surgeon occasionally adjusts the endoscope focalHehging the procedure. Clearly this would
invalidate our determination dfg;—. gs. However, the adjustment made is small, so we believe that
the error induced will be small in comparison to other sysegrors. If this is shown not to be the case
then| Stovanov et al. (2005) propose a method for automatadibeation of the endoscope during the

procedure to allow for changes in the endoscope focal lemgthe surgeon.

Endoscope trackinglp— 1)

Two methods present themselves for tracking the endos€pe s to use the same tracking system as
for the ultrasound tracking. This would involve attachinged o IREDs to thelaVinci’* endoscope.
This won't be discussed further here as tracking using thettgk has already been discussed in Section
[2.6.2. We could find no literature discussing tracking da&/inci” endoscope in this way, though
tracking endoscopes in this way is commonplace [Shahidi ¢2@02)].

The more commonly used approach is to usedh®inc ™ in-built kinematic data [Leven et al.
(2005)]. This has the advantage thattno TREDs are requirbe tttached to the endoscope. However
it has two drawbacks. Firstly, as the MRI data has been placéte coordinate system of the Opto-
trak, use of thadaVinci’™ kinematic data would require an additional transform fréradaVvinci”
coordinate system to the Optotrak coordinate system,datiimg an additional source of error. The
second drawback is that based on the published literaterattinci’  kinematics have limited accu-
racy.. Mourgues and Coste-M#&né (2002) had limited success with this, with the error duaaccurate
tracking of the endoscope being around 4 pixels on screenarifwitz et al. [(2009) present the best
results that we have found to date using tla/inci” kinematics (for tracking the instruments rather
than the endoscope). They realised that the bulk of theseinathe kinematic system result from the
passive joints that are adjusted manually during equiprsetiip. By combining optical tracking of the
passive joints with kinematic tracking of the active joittisy achieved errors at the tool tip of 1.39 mm.
It should be possible to achieve this error or less usinggpstal tracking, so our intent is try and track
the endoscope using attachied IRED. If this can’t be doneefdhrtical reasons we may investigate the

use of thedaVinct™ kinematic data.

2.7 Continuous Model Update

As mentioned in the previous section the soft tissues in thdeahare unlikely to be aligned with the
soft tissues of the patient due to non rigid motion in betweenpreoperativE  MRI and the operation.

The system we are proposing does not account for this matiensurgeon is required to mentally
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compensate for this motion. However there are methods ifitdrature that could be used to update a
patient specific model to account for soft tissue defornmaitionear real time. We review some of these
methods here to see what directions our system could take ifuture.

As discussed in Sectidn 2.6.1 there are several methodfti@céng surfaces from endoscopic
video, for exampleé Mountney etlal. (2006) and Hu etlal. (20@Fother rich source of data may come
from simultaneously tracking théaVinci”™ end effectors, either using the endoscope vision or the
daVvinci’™ kinematics.|_Kuhnapfel et al. (1999) demonstrate how theianatf end effectors can be
used to predict tissue motion in a surgical trainer. Lin £{2005) demonstrate the use of the daVinci
kinematics to track the end effector motions and intergretsurgical action. Matching the two would
provide a prediction of the anatomical motion that can begamad with the anatomical motion observed
through the endoscope. A useful outcome of this processdimithe existence of a surgical simulation
model in parallel to the actual procedure. Should the surgeish to test their next move prior to
executing it they could temporarily switch to operatingyooh the simulation.

The next step is to classify the visible surfaces based ompitheperative model and deform the
model. The preoperative model could be continuously upbimteeflect the observed position of rele-
vant anatomy during the procedure. Similar ideas have bezsepted by Warfield et al. (2000b). The
updating of the model will depend on the observed anatomyoarttie material properties assigned to
the model components. These properties will vary througtimumodel and throughout the operation.
Parts of the model will be very stiff and rigidly positionguk{vic bone). The prostate itself will require
both a degree of elasticity and its allowed movements widingie as it is excised. Initially it will be
fairly tightly connected to the inner surface of the pelvank, but as the operation progresses it will
become free to move. Material properties may also inclugeebed visual appearance of organs based
on prior knowledge to aid in their classification.

An iterative process will be required to match the observeat@ny with the deforming model,
probably borrowing fast finite element modelling (FEM) smiw and graphics processing unit (GPU)

implementations from the field of surgical simulation [Bx¥ielsen (1996)].

2.8 Surgeon Interface / Surgeon

Presentation of the preoperative information and allovihrey surgeon to control what is displayed is
crucial to the acceptance of a surgical guidance system.rge laody of literature exists looking at
different ways to present information to the surgeon. Somterésting papers are [Paul et al. (2005);
Dey et al. [(2002);_State etlal. (1994)]. We have intentignkdipt our interface and display as simple
as possible. More sophisticated interfaces could then hehmearked against this. From studies for
surgical simulation we know that visual updating must beiead at at least 30 Hz to be perceived
as smooth. It is possible that in the near future haptic faeklbvill become available on thdaVinci
[Guthart and Salisbury (2000)], if this was the case therptisibility of using haptic signals to guide
the surgeon should also be explored. In this case the refagshequired is much higher, around 500 Hz
[Goksel et al.|(2005)].

Communication with the system could be achieved eitherviailiary control pad, voice control,
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or using gestures on the existing end effectors. It will beaissary to selectively mask model anatomy,
depending on the stage of the operation. This could be detedhprior to the procedure and/or interac-

tively defined by the surgeon during the procedure.

2.9 Summary

From the preceding discussion it is clear that there are roppgrtunities for useful research in the field
of image guided surgery. Many groups have presented ppeatystems that present nice overlays of
segmented anatomy. However these systems are not in usadticprand the clinical benefit of the
various components cannot be demonstrated. Our aim is &lafea basic guidance system that can
be used on a significant number of patients with minimal nespént for additional labour. Coupled to
developing the system we will develop a robust understandirthe system errors and the sources of
these errors.

The next three chapters deal with three separate erroremu@hapter]3 deals with errors due to
preprocessing tHe MRI, (findirBs ;- 7). Chaptef¥ deals with errors in registering the procelssBd M
to the in theatre tracking system (findifigy;—.o). Chaptefb deals with errors in projecting the regis-
tered anatomy onto the endoscope screen (finding s). The combination of these three transforms
provides a minimalist guidance system, that if properlyamstbod can form a building block for ever
more ambitious approaches. This is followed by a chapteilied our experience of using the system
in practice. This focuses on the surgeons experience of/giera and should be used to inform our next

steps.
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Chapter 3

Segmentation of Bone from MRI

3.1 Introduction

As discussed in the preceding chapters we are planning isteethe preoperatiie MRI in theatre using
ultrasound images of the bone. In order to do this we plandeppocess the MRRI image to better delin-
eate the bone. In T2 weighted MRI images cortical bone iblésas a dark band around the trabecular
bone tissue. However the thickness of the band varies ame #re other tissues that have similar in-
tensity. Segmentation of bone therefore requires anatysist just individual voxel intensities but also
the surrounding voxels. In this chapter we detail our atbamifor warping 4 CIr image from a second
patient to fit th€ MRl image of the prospective prostatectgaiyent. The algorithm described is an inter-
patient, cross-modality, non-rigid registration for tredvis. No published accounts of similar algorithms
have been found. The registration algorithm is constrairsidg a statistical shape model of the adult
male pelvis. The warpdd CT can either be converted to a bagymesgation using an intensity threshold
or used directly for registration to ultrasound images. ddition to describing the algorithm we have
attempted to quantify the registration error at the prestiate to using the algorithm as opposed to tak-
ing a[CT scan of the prospective patient. Although the algorihas been developed for image guided
surgery it could also be used for bone segmentation for astattis (Schmid and Magnenat-Thalmann
(2008)) or in radiotherapy planning (Boettger et al. (2008)

By using a shape model we ensure that the fliietl CT image misea realistic pelvis, however
we expect there will be an error due to the difference betwkershapes allowed by the shape model
and the actual shape of the patient’s pelvis. We quantify e¢nior in three ways. Firstly as a point to
closest point on surface distance. This is useful for commparwith other results. Secondly we use the
segmented bone shape in simulated registration expesn@estimate the error as a registration error
at the prostate surface. Finally we convert registratioareat the prostate to an on screen error on the

surgeon’s console.

3.2 Segmentation Algorithm

Maes et al.[(1997) demonstrate that by using a suitable isiagkarity measure to drive the optimisation
it is possible to registér MRI images[fo CT images with a ri@fidlegree of freedom (DOF)) transform

when the underlying anatomy is the same, that is rigid istriaject registration. In our application we
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do not havé_CIT data of the patient to register to[the MRI. Tlgerithm we propose will registér CT

from another patient to MRI image of the prospecfive RARRep&t To achieve a accurate match the
registration will be non rigid, allowing tHe_ G T data to wagpktest match the MRI. Thus we have a non
rigid multi-modality inter patient registration. As it isutti-modal we will us€ NMI [Studholme et al.

(1999)] as the similarity measure to drive the registratisdiscussed in Section 2.4.1 the non rigid and
inter patient nature of the segmentation means that stemgarisation is required to keep the fitted CT
realistic. Therefore we use shape constraints derived frenshape differences observed in a training

set of 21 adult male_QT pelves, ie a statistical shape model.

3.2.1 Shape Model Construction

Data

scans of adult male pelves were available from a previtudysn orthopaedic surgery. The patient
demographics for this study are similar to what would be etguéfor prostate surgery. Hence we have
used this data to build a shape model. The details of the 21sé#t used are given in Appendik A. Each
data set has been given a unique alphabetic identifier, fidrA$o SM-U.

Affine Registration

The 21 data sets were manually inspected. A data set thatigub®® lie near the average shape was
chosen (SM-K) and the remaining data sets were aligned to it. 9 degrees@ddm were used for the
alignment (6 rigid degrees of freedom and scaling in threectibns). The alignment was done using a
using a gradient descent optimiser uding NMI as the imagéasity measure. As this registration was
intra modal [CT t¢_CT) it was not strictly necessary to luse Nigllthe similarity measure. However, as
it is used later to perform inter modal registrations it wasdihere as well.

The volumes were tri-linearly interpolated to provide a coom voxel size across all data sets.
Common voxel size is required due to the choice of regisinaigorithm used to define the correspon-
dences for theE_SDM. The deformation fields used to define thegpondences for tlie SDM must be
defined in the same coordinate system. The registrationitigoused, see below, defines the defor-
mation field per voxel. Therefore all the TT images must bestme size and have the same voxel

dimensions.

Defining Correspondence

The[SDM uses correspondence between the individual vofdlsedraining set images to define the
shape variation. The training set images were first trangfdrto a common coordinate system, using
the affine alignment described above. Voxel to voxel cowadpnces of the transformed images were
found using a voxel-wise non rigid registration algorith@ne of the training data sets (SM-U) was
chosen as the target image, and the remaining data setseggstered to it using a diffeomorphic non-
rigid registration algorithm_[Crum et al. (2005)]. At thitsage the accuracy of both the affine and non
rigid registrations were checked visually.

Data set SM-U was chosen as the target image because thesmbadeWith it gave the best seg-

1See AppendikA for details of the data used.
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mentation results when used in the leave one out testingdhaivs in this chapter. We do not know
why SM-U makes a better target image, though we assume ieatdser to the model average than the
others and so it is easier to register the remaining shapiesAanore correct approach would to be to
create an average shape, then repeat the registratiomgsthsiaverage as the target image. We did not
do this here for the following reason. We are going to usedame out testing to test the performance
of the model, that is, for each data set we are going to build@deiwith the remaining 20 data sets and
fit the model to the left out data set. As every model would hegéightly different average shape the
non rigid registrations used to build the model would alsdalifferent, requiring us to manually check
420 non rigid registrations. By using the same target shlamaighout only 21 non rigid registrations
require checking, allowing a practical validation. Furthere, in the context of the system wide errors,
the accuracy gained by using the average shape for regstiatvery likely to be negligible.

The non rigid registration algorithm [Crum et al. (2005)}jouts a 3D deformation vector for every
voxel that defines how to warp the source to the target image. cdvicatenate the individual voxel
vectors into a single vector of dimensiBrx N,,..;s.- We have 21 such vectors, one of which is a zero
vector generated by registering the target image to it3dlése 21 vectors form the basis of Gur SDM.
As we are only interested in the registration of the pelviadae apply a mask to these deformation
vectors so that any voxels that do not lie within 6mm of thersjpebone are removed. The mask was
based on a manual segmentation of data set SM-U. The madsleser 1.7 million voxels active, so

each of the 21 vectors has over 5 million dimensions.

Principal Component Analysis

We now construct a statistical deformation model by findimg @igenvectors and corresponding eigen-
values of the covariance matrix of these masked deformasators. This would typically be done
using singular value decomposition. However the high dsiemof the vectors makes it impractical
to perform singular value decomposition (SVD) on the résglivery large covariance matrix. For-
tunately an alternative method for finding the eigenvectsrdescribed by Cootes in Chapter 7 of
Baldock and Graham (2000). An average deformation ve¥tirfirst calculated. The average deforma-
tion vector is subtracted from each of the 21 deformatioriors(X;). The 21 normalised deformation
vectors then form the columns of a 5170869 by 21 maffrias in equatioh 3]1.

D = ((Xl - X)v ) (X21 - X)) (3.1)

Now define a matrix’, as in equatiop 3]2.
r=1pmp (3.2)
21 '

T is a 21 by 21 matrix, whose eigenvectors and eigenvaluesefound readily by SVD. Given;, the
eigenvectors df’, the 21 eigenvectors of the full covariance matrix are glvgie; and the eigenvalues
are the same as those’Bf

The eigenvectors of the covariance matrix are ranked inatheling order of their eigenvalues, and

these form a statistical model of the deformations obseiwvebe training set. The 21 data sets used
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Figure 3.1: Shown here is a single slice of T2 weighted MRkeEhexample profiles have been made
across the bone edge. The vertical lines across each prafitate our estimate of where the bone edge
lies. Even within this single slice the intensity profilesass the edges are variable. Across the full
pelvic bone and between different patients we expect eveatgr variance. Hence our decision to use

shape constrained registration.

will not cover the full range of shapes possible for adult enpélves, so using this shape model for
segmentation will result in a segmentation error that wiimfiest as a registration error at the prostate

in the complete guidance system.

There are many strategies in the literature for modifyingpghmodels to achieve higher segmen-

tation accuracies in spite of incomplete training d i I 8) being a good recent
example. However they all amount to a lessening of the shegudarisation provided by the model to
allow freer deformation. Another common approach is to hgeshape model as an initialisation to a
free non rigid registration. This will work well in situatis where the model is necessary to find the right
edges across the whole image, but boundaries are well déficaity. WWhen images are noisy or, as in
our case, the images to be matched are from different imagouglities this reduction in regularisation
can lead to a poorer registration as the free registratiovesto the wrong edges. Figurel3.1 gives an
example of the intensity profiles across the bone edge ie fwsitions on a single slice of T2 weighted
Even at this local level the intensity profile at the bauge varies significantly across the image.
We believe therefore that trying to optimise the segmeaniaty relaxing the shape constraints will have

limited success.

A further danger of adding a relaxation stage occurs wherin ar case, a small number of
validation data sets is available. At present we are testimgalgorithm on only fou MBI data sets.

With enough variables in the algorithm it would be possibl@ptimise the algorithm to achieve better
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results than we report here. With only a small validatioradsgt however this could be due to an over
optimisation of the segmentation parameters, rather thamproved algorithm. The results may not be
repeatable on a larger data set. Therefore rather thartigaesways to fine tune the model performance
we have instead tried to keep the model simple and to quahifsize of the registration error due to
using the model. If this error is significant we could seekipiiove the algorithm when we have a large

and more varied validation population.

3.2.2 Model Fitting

With the model defined it can now be fitted to an individual deg referred to here as théurget.
This is done as follows. Th&arget data set is first transformed to the shape model mean shapge usi
Tspr—ar[nd9)~t from Figurd 12, to givd arget 5. The affine transformi’s -y, [nd9]~! translates,
rotates, and scales th&rget data set so thafargets,, is aligned with the model average image. The
optimal alignment is found by optimisiig NIM| betwe&trgetsy; and the shape model mean shape
using a gradient descent algorithm. We also also re-saffipiget so thatTargetgy, has the same
voxel dimensions as the shape model mean shape. This igiotlystecessary but was done to simplify
the algorithm. The shape model mean shape was compar€drigets,, visually to check that the
registration process was successful.

We now fit the model mean shapefargetsys as follows. The shape model is fitted by varying a
set of model shape parametérsuch that the image similarity betwe@largetsy, and a model derived
imagesS is optimised. Once again, NMI was used as the similarity meas' is found by transforming

the model target image SM-U USifi@ / (nd9)= a1 [777]. Tsr1(nao)= s [nrr] is found using equatidn 3.3.

TShf(ndQ)éM[nrr] = TModelTargetﬁkfodelMean + b® (33)

TModelTarget=ModelMean 1S @ FOW vector of 5170869 dimensions. It is a concatenatfati’@3623 3
dimensional vectors that define the voxel to voxel deforomatito transform SM-U to the mean of the
images used to make the shape model. The dimension of theaar¥ is the number of modes of the
shape model we choose to ugé, We test the effect of the number of modes used in the Sdcirb3
is aN by 5170869 matrix of théV eigenvectors of the shape model. Fitting the shape modehis by
changing theV scalar values that make és0 as optimise tHe NI betweehandTargets .
Optimising the shape parametérss done using a differential evolution algorithm, [Priceaét
(2005%)]. This provides a robust optimisation that can bditg@onstrained. It also does not require the

computation of derivatives which could be very time consugrin this case.

Differential Evolution Algorithm

Differential evolution works by evolving a population ofggible solutions by generating new solutions
based on weighted differences between existing solutibims new solution is compared with an existing
solution, and if it is an improvement it replaces the exggtiolution in the population. The size of the
population (V,) remains constant. Over time the population of solutions/emes. Once the diversity
of the population falls below a preset limit the algorithnm ¢ee halted, alternatively a limit can be placed

on the number of generations.
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Parameter Description
Value to be optimised Image similarity (NMI)
Convergence Limit When the standard deviation of the solution population fadllow this

limit the algorithm is halted.

Maximum Generations The algorithm is halted after this many populations regesslof conver-
gence.
Population Sizel{,) The number of candidate solutions in a generation

Starting Population Bounds | The values of the solution parameters in the first generaiencon-
strained to fall between these limits.

Constraint Bounds It is also possible, but not essential, to constrain all sgbsent solutions
to fall between preset limits.

Crossover Probabilityc() A floating point number between 0 and 1, controlling the degrepa-
rameter mixing between candidate solutions

Weight (F) A floating point number between 0 and 1, controlling the gatien of
new candidate solutions.

Constraint Method Different methods were tested for constraining the satutio

Vector Generation Method Different methods for creating new candidate solutiong Bbld 3.P for

(Geneticist) details.

Crossover Implementation Binomial or Exponential

Table 3.1: The parameters used by a differential evolutidves.

Differential evolution has been shown to be capable of ripuptimising a variety of functions
and is fairly robust to the choice of optimiser parameteedyfrice et al.[(2005)]. Table 3.1 lists the

various parameters used by a differential evolution solver

To start the solution process it is first necessary to gemeratarting population a¥, solutions.
Each candidate solution is a potential valué fom equatiorhi 313. We will refer to candidate solutions
for generation G as; ¢ wheres is an integer from 1 taV,. Each candidate solutiop; ¢ is a row
vector of lengthlV, the number of shape modes being used. Price et al.|(200§gsugenerating the
starting populatior; o using random sampling from the range of allowable parameitieres using a
uniform probability distribution. For our application weawt to constrain the solution based on what
was observed in the shape model training data. The eigewalithe covariance matrix determined in
Sectior 3.2 represent the observed variance along eaudipal direction of the training data. If the
training data is representative of the greater populatimhvee assume a normal distribution then 99.7%
of all adult male pelves will fall within three standard detns of the mean. Therefore we constrain the
shape parameters that makebup fall within the ranget3c whereo is the square root of the eigenvalue
corresponding to each of the eigenvector®inWe have used the same constraints to limit the random

generation of candidate solutions for the first generation.
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At each generation a new set of trial solutionsg; , , are generated and compared with the existing
solutions,z; . We have used a freely available C++ implementation of tfferéintial evolution algo-
rithnH. This implementation allows five schemes for generatingttila¢ solutions. The five schemes
are detailed in Table_3.2. Two global parameters are usedighout the optimisation, the first is the
“weight” (F) whose use is shown in the equations in Tablé 3.2. This is &rfgppoint number between
0 and 1. A second parameter, the “Crossover Probability); @llows the mixing of the individual shape
parameters between the trial solution and the existingisaolto which it will be compared. This again is
a floating point number between 0 and 1. A crossover prolabili0.5 will result in each trial solution
having on average 6 shape parameters from the generalesbtuition and 6 parameters from the exist-
ing solution.| Price et all (2005) recommend a crossoverghitity of 0.9 (so 90% of the trial solution
shape parameters will come from the generated solution erage) and a weight of 0.8 as suitable for
most optimisations.

Two methods of applying crossover are implemented in therdlgn we used. The first method,
referred to as exponential crossover randomly choosesrd gluing the shape vectef 1, then a
random number between 0 and 1 is sampled from a uniform lisiton. If this is less thamr the
parameter is taken from the trial solution. A new random nentietween 0 and 1 is generated and if
this is less thamr then the next shape parameter along the vector is also tatemtfie trial solution.
This process is repeated until eitheris exceeded or alV parameters of the vector ¢, have been
taken from the trial solution. An alternative implementatiis binomial crossover where a uniform
random number between 0 and 1 is generated for every shagnagiar and those parameters where this
is less tharer are swapped with the trial solution.

In addition to this, the standard differential evolutiogaiithm was modified for this application.
In its standard guise the algorithm will not constrain théugon. Whilst the starting population is
constrained to lie within 3 standard deviations of the maodehn, subsequent generations can lie beyond
these boundaries. For fitting a shape model it is desiraldernstrain the solution. This is easily done
for the differential evolution algorithm and Price et alo(®) discusses several methods for doing this.
Three methods were implemented here. These are shown ie[32bl

Once the differential evolution algorithm is halted, eitisen the population converges or when
a maximum number of generations is reached, the best soligtieelected. The best solution is the
one that gives the highest value [0f NMI betwegnthe image derived from the shape model) and
Targetsy (the patient image). This solution givésin equation[3.8, henc@s(,q9)= 1 [n77] IS
determined. Tsys— s [nd9] ! is inverted to givels s ar[nd9]). Tsar—ar is shorthand for applying
Ts 0 (nd9)y—n [nrr] followed by Tsas— ar[nd9]. Applying Tsy— v to the shape model target image,
SM-U, gives the shape model approximatidf) of the patient imageT(argetsas). S is a warped CIT
image of the patients pelvic bone that can be used for inrheagistration.

The remainder of this chapter is divided into sections, eaprting an experiment performed to

validate the algorithm. We first test the algorithm’s sewisjt to the various parameters used by the

2DESolver.h version 1.0 written by Lester E. Godwin, PusihCoinc.,Dallas, Texas, 972-840-0208 x102, god-

win@pushcorp.com
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ID | Geneticist Cross Method
Over

0 Bestl EXpon. | v, g41 = Zpest.c T F X (2, ¢ — 20y 0)

1 Rand1 Expon. | v, g1 =2, ¢+ F x (2,6~ 2,,0)

2 | RandToBestl Expon. | v, g1 = 2; g HE X (Zpest.c —Zig) HE X (2.6~ 20y )

3 | Best2 Expon. | v; g1 = Zpesr,o + F X (20, ¢+ Zpy 6 — Loy 0 — Try )

4 | Rand2 Expon. | v, g1 =2, ¢ +F X (2, 6+ Lo, 0 = Zr, 0 — Zry )

5 | Bestl Binom. | v, 611 = Zpessc + F X (2,6 — 20y 0)

6 | Randl Binom. | v, g1 =2, ¢+ F X (2,6~ 2,0)

7 | RandToBestl Binom. | v, g1 =2, ¢+ F X (Zpest.c —Zig) HE X (2, 6~ 20y )

8 | Best2 Binom. | v; o1 = Zpesr,o + F X (2, ¢ + 206 — Loy 0 — Zry )

9 | Rand2 Binom. | v; g1 =2, ¢+ F X (2, 0+ 2,6~ Lry0 — L, 0)
Zpest, 1S the best solution in the current generation, and
Ty yyasc AT randomly chosen members of the currgent
generation.

Table 3.2: Table of methods used for generating the triaitsml. Five different trial vector generation
algorithm are implemented by the standard differentialgi@n algorithm, together with 2 implemen-

tations of crossover. This gives a total of 10 possible nagHor generating the trial solution vectors.

differential evolution solver and the number of shape made=i. We then test the algorithm [on MRI

data and attempt to measure the error as an on screen [ojeator.

3.3 Effect of Number of Shape Model Modes on Error

3.3.1 Aim

When fitting a shape model to data the number of modes usedngamtant parameter. In shape models
where there are a large number of training sets in relatigha@adimension it is likely that the higher
order modes (those corresponding to the smallest eigessjatontain mostly noise rather than genuine
anatomical information, therefore there is a good argurfamiestricting the optimisation to the lower
modes only (those corresponding to the largest eigenvall@s a given shape model it is possible to
plot the contribution of each mode to the shape space in tefisiemulative variance. In many examples
in the literature a cut off value of cumulative variance isrtithosen, and only modes below this are used.
Often values of 90% or 95% are used.

More thorough methods have been developed to determinauthber of modes to retain in order
for the shape model to best capture the training data. Médi ¢2608) use a method that analyses
the convergence of models made with subsets of the trairate to determine the number of modes
required and the number of samples required to build the modlkey test their method on shape

models of up to 1581 dimensions (527 point correspondencgd). In an anatomical (face data) model
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ID Description

0 If any shape parameter in the trial solution vector is beythedconstraint boundr

aries, the entire trial solution vector is discarded. Tla 8olution vector is re-

1

placed with a solution vector generated with the same dlguorused to make the

first generation, ie. uniform random sampling of the allolgawlution space.

1 If a shape parameter in the trial solution vector is beyordctinstraint boundaries,

this parameter only is clipped to the constraint boundaries

2 If any shape parameter in the trial solution vector is beytedconstraint boundr
aries, the entire trial solution vector is discarded. Tl Bolution vector is re-

placed with a new trial solution generated by repeating tloequure from Table

[3.2 with different randomly selecteq..

Table 3.3: Three strategies were trialled to constrain ttetisn. The first strategy will prevent the
population converging if the global maxima is beyond thestiints. Using it may reduce fine scale
searching for the global maxima. However it may be benefitidle algorithm veers towards a local
maxima that lies beyond the constraints. The second syratemuld not effect convergence in the same
way, however itis pointed out in Price et al. (2005) that it véiduce the diversity of the difference vector
population reducing the effectiveness of the optimisere Trird strategy is probably most compatible
with the unconstrained differential evolution algorithinowever it may fall into very long loops while it

searches for a new random trial solution that fits within thestraints.
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with 1500 dimensions they show that 70 modes should be usgdpproximately 150 samples are
necessary to build the model, that is 0.05 modes should bmeet per dimension and 0.1 samples are
required per dimension. Whilst these figures cannot be dirapplied to our case as the numbers will
depend on the anatomy being modelled, we can safely say weihsufficient training samples. In
all likelihood we are at least one order of magnitude awaynftwaving sufficient samples (we have
21) to build a complete model of the male pelvic bone. Thisaglp an artefact of the way we have
constructed our shape model. We have a very high dimensbapke model because we have used voxel
to voxel correspondence, rather than the more common methedgmenting surfaces and defining
point correspondences using a sparse point set on theseesirfAlternatively we could use a b-spline
registrations algorithm _[Rueckert et &l. (1999)] and useribde points to define the correspondences
[Rueckert et al.| (2001)]._ Chan etlal. (2004) do this for thivipdone, resulting in a 1185 dimensional
model. However it is clear that we still won't have enough ples. Therefore we realise that our model
will give only an approximation of the variation in the adoiale pelvis. None the less the model as it
stands can still be used for our application, and we will skiwat the results it gives compare well with
other published segmentation methods. The aim of this @rpet is therefore not to determine how
many modes we need, rather to determine if changing the nuailleodes used within the range we

have available (0 to 20) has a significant effect on our result

3.3.2 Data

Two tests were performed in this experiment. The first tetednodel performance ¢n CT data using
the 21 adult male dT data sets SM-A to SM-U. This was followgsddlidation o MRl data, Patient-01,
Patient-02, XMR-01, and XMR-02. Details of all data can berfd in AppendixXA.

3.3.3 Method

Two tests were done. Firstly the CT data used to build the inwde utilised. Each GOT volume was
approximated by a model built from the remaining 20 data, setdescribed in Sectign 3.2.1. The model
based approximations were repeated using different nisdieetained shape modes. 4, 8, 12, 16 and
19 modes were retained, 19 being the maximum number of mamesitybe for a shape model built from
20 data sets.

Approximating a Data Set with a Shape Model

Each data set (SM-X) from the shape model training data cappeximated using a shape model built

from the remaining 20 data sets as per equafioh 3.4.

SM-X = Tgar Approz X SM-Target (3.4)

Rather than using the numerical optimisation detailed ictiSe[3.Z.2 to estimat&’s s .4ppros We
can use a direct analytic method, because we Kfigwr. Tn rr is the transform found when building
the full shape model in Sectién 3.2.1. We can solve equéiBrid b using an analytic least squares

method. This prevents any errors induced by a failed op#itinis affecting our results here.
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Figure 3.2: The slice distribution used for the registrattgorithm. From left to right, 228 possible left
iliac slices, 175 pubis slices, and 247 Right iliac slicestéd\that left and right refer to the patient’s left
and right.

TNRrR = TModelTarget= ModelMean + b® (3.5)

The value ob found by solving equatidn 3.5 can then be used in equitidtoZ&e T's v approq -

TS]\/prpTOJJ = TModelTarget:> ModelMean + b® (36)

Manual segmentations of the shape model target image can hkbepropagated using both
Tsn approe aNdTnrr. We will refer to the two resulting segmentations of SM-X%sv 4ppro. and
Snrr respectively. Comparing the two segmentations producessg measure of the shape approx-
imation caused by using the shape model. By changing théHexfghe vectorn we can see how this
changes as we change the number of shape modes used.

We are interested in two measures of the error here. Theditiseiregistration error at the prostate
first discussed in Sectidn 1.6.1. As this cannot be caladldieectly from the two segmentations but

relies on a separate registration algorithm we also preserdre direct measure of boundary error.

Prostate Registration Error due to Model Segmentation Error

The following method was used to estimate the registratioor et the prostate. A set of simulated
“ideal” ultrasound slices are first generated by re-slidiaging tri-linear interpolationSyrr. Svrr
contains the entire pelvic bone surface. However, onlytéchisections of the bone can be imaged
intraoperatively using b-mode ultrasound. Therefore fgefe-slicingSy rr We applied a mask to re-
move surfaces not visible to the ultrasound probe. Rengjieias performed using physically realistic
ultrasound planes taken from the phantom registrationraxeet described in Chaptel 4. These slice
locations are shown in Figure B.2.

These simulated ultrasound slices were registered to trehb@asedSs s appro. SEgMENtation
using a gradient descent registration algorithm. The &hlyoris described in full in Chaptét 4. In brief
it first converts the slice images to list of points in 3D sp@egEingTy—0). Points with an intensity
below a threshold (in this case 1) are discarded. The resuitlist of coordinates in 3D space and
corresponding intensities. These points are transfornsiyuan estimate of ;! and the

SM(nrr)=UI
voxels of Ssarappror SAMpled using nearest neighbour interpolation to find amraanodel intensity



80 Chapter 3. Segmentation of Bone from MRI

value. The model intensity and ultrasound intensity aretiplidd to give an intensity product. This is
done for all points in the ultrasound image and the intenmitgducts summed. The value of this sum is

maximised by varying the estimate iﬁ‘gﬂz( This is done using a gradient descent approach,

nrr)=UI"
with multiple step sizes.

The registration algorithm is sensitive to the startingifias of the registration and the precise
distribution of slices used. Therefore the registratiors wgpeated many times from different starting
positions and with different randomly chosen ultrasouncesl The starting positions were randomly
and uniformly spread over a six dimensional (one dimensireich of the six degrees of freedom)
hypersphere of radius 10mm. (Rotations were scalekf as 4mm)i . The radius of this hypersphere
was chosen ensure that the registration algorithm reliabhyerges to the correct solution. The intent
here is to test the effect on registration accuracy, not épeure range of the registration algorithm.

The registration error was then measured a$ thel TRE at sitspon the surface of a “nominal”
prostate (see Figute1.6) that was the same for all 21 data/sebminal prostate was used so the errors
for each data set were directly comparable. In reality theitipm of the prostate would be different for

each data set. The effect of this simplification is discuss&gctior{ D.

Average Segmentation Boundary Error

Ssm approe @aNAS Ny rr are binary segmentation images. Points on the bone suréseean intensity of
1 and all other points have an intensity of 0. Average boundemor was found by finding the nearest
surface voxel (with intensity 1) it¥yrr for every surface voxel itbsas approz. The mean value is

reported.

Validation on MRI Data Sets

To confirm the trends observed using fhe CT data, model basgdentation was repeated on four MR
data sets. Here a shape model built from al[21 CT training slets was fitted to eaCh MRI data set using
the optimisation algorithm detailed in Sectlon 3]2.2. Segtation errors were calculated by comparing
the model based segmentations with manual segmentatiahe[@flR] data. Only average boundary
errors were calculated. The process was repeated usingdl20amodes only, as the results from the

[CTl data showed minimal improvement when more than 12 modes wged.

3.3.4 Results
Fitting to CT Data

Figure 3.3 gives the results of the evaluation made usin@ihdata sets. A steady improvemenfin TRE
can be seen as the number of modes used is increased. Thimeswith expectations as the model is
more able to fit the target shape. Using a more direct measunteshthe model fitting accuracy, average
boundary error, also illustrates this point, however hkegitnprovement is very small.

Figure[3.8 shows that the gain between using 12 modes and @@ relatively minor, about

0.2mm, and there is no gain between 16 and 19 modes. We #dtiiei slight increase I TRE at the

3This was chosen so that over the pelvic region a step changeation gave the same average displacement as a step change

in translations, see Chapfdr 4 for more details.
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Figure 3.3: Plots of the model cumulative variance [tThe [TRtBe prostate and the the boundary error,
based on the CT data. It can be seen tha{ihel TRE steadilye®gdu@ similar trend to the model

variance. The average boundary error also reduces, thtwaghatins are small in absolute terms. The
slight increase in the TRE at prostate from 16 to 19 modegtiag with the slight decrease in boundary
error suggests that the gains in segmentation accuracy askeah by the accuracy of the registration

method used to assess the TRE at prostate.
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Data Set 12 Mode 20 Mode

NMI Ave BE NMI Ave BE
Patient-01 -1.017590 1.45 mm -1.018702 1.61 mm
Patient-02 -1.014382 3.08 mm -1.016171 3.17 mm
XMR-01 -1.022439 2.20 mm -1.022332 2.12 mm
XMR-02 -1.016674 1.70 mm -1.016611 1.59 mm

Table 3.4: Performance of the differential evolution mditéhg algorithm on fouf MRl data sets, in
terms of the optimisation similarity metric (NMI) and thesmmge boundary error. Increasing the number
of modes used does improve the similarity metric for PatEnand Patient-02. For XMR-01 and XMR-
02 there is no improvement. In Sect[on]3.6 we will show thpesged runs of the optimisation algorithm
with the same data gife_ NMI values with a standard deviatio 8 10~°. This indicates the slight
degradation il NMI for XMR-01 and XMR-02 can be attributedthe repeatability of the algorithm.
The changes in boundary error are less predictable, refigtie fact that boundary error and NMI are

not well correlated, as will be discussed in Seclion 3.7.

prostate from 16 to 19 modes to the accuracy of the registratiethod we are using to estimate the

registration error. That is, even though we get a more atewegmentation of the bone, as measured
by boundary error, using 19 modes, the limited accuracy @fégistration method prevents this being

realised i TRE at the prostate.

Fitting MRI Data
Table[3.4 gives the results of model based segmentatioie doulMRI data sets, when using 12 and

20 modes. We show the results as an average boundary erratsanshow the optimised value[of NMI
reached. Whilst allowing more modes to be used appears t allightly bettef NMI to be reached
in two cases, this did not correlate with a reduced boundany.eln the other two cases the optimiser
was unable to achieve a higlier NMI despite the additionalesdgting available.

Table[3.4, together with tHe CT results above suggests Weat though using more modes in the
shape model can deliver a more accurate bone segmentdtmmcturacy of both our optimisation
algorithm and our registration algorithm prevents thisiioyed segmentation potential being converted

to a bette[ TRE at the prostate above 12 modes.

3.4 Extrapolation of the lliac Shape Using a Shape Model
34.1 Am

It will be shown in Chaptdrl4 that in order to register the pasto the patient accurately in theatre it is
necessary to register using data from both the iliac creststee central pubic region. This conforms to
our expectations based on our understanding of fiducial enadnfiguration from Sectidn 2.6.2. Figure
3.4 shows an example of the ultrasound slices used to regfiemodel to the patient during the in

theatre trials discussed in Chagdiér 6. One advantage af t#CT based shape model to perform the
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Figure 3.4: An example set of ultrasound slices positionedi@elvic bone segmentation from the
CT based shape model. Slices on both the iliac crests and pubinecessary to accurately locate the

prostate.
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Figure 3.5: Full segmentation of pelvic bone with typicabgtate MRI overlaid. This volume spanned

by this MRI volume was used as a mask when fitting the shape Inmtlee CT data.

segmentation is that in cases where the complete bone sigfamt visible on the MRI an estimated
bone surface can be extrapolated by fitting the model to tlevkrdata. Thé_ MRI volume shown in
Figure[35 is typical of the preoperative prostaie MRI atibel at Guy’s Hospital during this project.
As can be seen it does not cover the entire pelvic bone. Onéaoto this problem would be to alter
the[MRI protocol to collect a more complete scan, howeves tainnot be done retrospectively. An
alternative is to fit the model to the available data, themdoaifull pelvis using the data present in the

model. This section aims to determine whether this is a vathod for this application.

3.4.2 Data

This experiment used the 21 adult malgl CT data sets usedltbthaishape model. Tihe MRI data from
Patient-01 was used to mask CT data when fitting the shagels) so that only those regions visible
in the[MRI were used for shape fitting.

3.4.3 Method

The same methodology as described in Sedfion]3.3.3 was as#égtérmine the model segmentation
error and the resulting TRE at the prostate. This processimas twice. Firstly with SM-X masked to
cover a region of 6mm around the entire pelvic bone, and sigaovith SM-X masked to cover a region
of 6mm around the pelvic bone only in the volume defined by ttadlablelMR] data, see Figuke 3.5.
As will be discussed in ChaptEl 4, the registration algariik sensitive to the spatial distribution
of ultrasound slices used, yielding best results when thezecomparatively more pubis slices. As it
would be expected that the pubis region should be more aetyiepproximated when the iliac regions
are masked out, the registration test was repeated witHfaromdistribution of slices and one with more

pubis slices. In each case 100 repeat registrations of edatsdt were used to assess TRE.
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Figure 3.6: Histograms of the target registration errorthatprostate surface using 2100 repeats of 4
different registration methods. On the left are registradiusing the shape model fitted to the full pelvic
bone, on the right are registrations using the shape mot fiinly to data inside a mask representing
a typical prostate MRI volume. In each case two differentriigtions of simulated ultrasound slices
were used, one placing more weight on data from the pubiong@ilethod B) than the other(Method A).
When using less pubic slices the masked segmentation perfarbstantially worse than the unmasked
(4.77 mm RMS vs 3.51 mm) segmentation. When more pubic slieeimtmoduced there is a very small
but statistically significant improvement (2.81 mm RMS v82mm RMS) in the registration errors.
Outliers have been removed from data shown. Outliers wefieatkbas results where the TRE was
greater than 3 standard deviations away from the mean vabrethe unmasked data method A had 83
(4.0%) outliers and method B 68(3.2%). For the masked dathadeA gave 55 (2.6%) outliers and
method B 60 (2.9%).

3.4.4 Results

TRE at Prostate Surface
Figure[3.6 presents histograms showing [fhe TTRE at the peofia both the masked and unmasked

model based segmentations. In each case two distributfaris@sound slices were used. Registrations
with a[TRE greater than 3 standard deviations from the rhedf Té& each method were rejected as
outliers. Comparing the corresponding results for the masid unmasked model based segmentations
it can be seen that when using a larger number of pubic shege ts very little difference between using
the masked and unmasked data. As the results are not nomligtlijpputed a Kolmogorov-Smirnov test
was used to test the significance of the difference betwemtsked and unmasked results. This gave
a p-value of 7.286e-09, suggesting that the improvement sestatistically significant, however the

difference is clinically insignificant. (2.81 mm vs 2.88 mm)

Boundary Errors

Table[3.5 gives the boundary errors for the two methods ofehisaked segmentation. For boundaries in
the iliac region the average boundary error is greater wkerguhe masked model, while for boundaries
in the pubic region the average boundary error is less. Tgrfigiance of these differences was tested

using Kolmogorov-Smirnov tests. It was found that the dédfece for the pubic region was statistically
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Method lliac BE (Aver- | lliac BE (Std | Pubis BE (Av-| Pubis BE (Std
age mm) Dev. mm) erage mm) Dev. mm)
Full Pelvis 1.26 0.31 1.28 0.34
Masked Pelvis 1.82 0.50 1.25 0.33

Table 3.5: The average boundary errors over two regionsegi¢hvis for both the masked and unmasked
model fitting. Results are the average boundary error fdn ethe 21 segmentations averaged over the
21 segmentations and the corresponding standard devi&tidine with the results shown in Figure 8.6
the masked model has a substantially greater boundary @mrtire iliac region and a slightly smaller

boundary error in the pubis region.

insignificant with a p-value of 0.987, while the differendes the iliac region were significant with a

p-value of 0.0054. The boundary error results indicate Wietn the model is fitted using a mask that
excludes the iliac regions, the boundary error in the iliegions is greater. The boundary error in the
pubic region is either unaffected or very slightly less, tluthe model being able to more accurately fit

the more limited data.

More usefully thé TRE results show that for the applicatibintage guided prostatectomy, a seg-
mentation based on a limited sample of the pelvis can be ughdwiloss of registration accuracy. One
drawback should be noted however. The process we have jiloied determine@’s ay (na9)— ar[177].
The full registrationT s ;- s also requiressys - [nd9]. We used an estimation @fs s ps[nd9)
based on the unmasked volumes for the preceding results.olvil that determining’s ps— as [nd9)]
using the masked anatomy gave poorer, though still usabldtseie. the masked model does lead to a
lead to a loss of registration accuracy. We are looking aswayvercome this by improving the process

to find Tspi—m [nd9] .

3.5 Results as TRE at the Prostate

3.5.1 Aim

As discussed in Sectidn 1.6.1 it is our aim to present thdteesfithis section as[@a TRE at the prostate.
The process for calculating this is provided in Secfion®.Fhis method registers simulated ultrasound
slices taken from a “gold standard” segmentation of theaatata to the model derived segmentation.
“Gold standard” segmentations of the iliac crests are ab#élfor thd_CT data. For tie MRI data sets
the iliac crests are not imaged, so no gold standard segtimmnizmavailable for registration. At present

therefore we can only assess fhe MRI results as boundamgénrthe region were MRI data is present.

The goal of this experiment is to determine if the error ass@ie[ TRE can be predicted from the
boundary surface error. The resulting correlation may kneftimation of the TRE at the prostate for
the[MRI data, as will be done in Sectibn13.7.
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Figure 3.7: TRE at prostate boundary versus Dice coeffi@adt RMS boundary error. For each of
the 21 data sets used in Sectfon] 3.4 three measures of éreORMI[TRE reported in Sectign B.4,
Dice’s coefficient and the boundary surface error. By phgttihese it is possible to see whether they
are correlated and thus whether it is possible to prédicilfrea either the Dice coefficient or from the
average boundary error. These plots show the data, a fittedrlregression and thed5% confidence
limits. The linear regression between boundary error[anfl iRs a Pearson’s correlation coefficient
of 0.57. The linear regression between Dice’s coefficied{BRE has a correlation coefficient of 0.47.
These linear regressions will be used in Sedtioh 3.7 to prétk TRE at the prostate for a given average

boundary error.

3.5.2 Method

We calculated boundary surface error in the central pulgisnefor the results from Sectign 3.4. We also
calculated Dices coefﬁcithfor the same data. Linear regressions were then fitted batheendary

error and prostale TRE and Dice’s coefficient and TRE.

3.5.3 Results

Figure[3.Y plots the three error measures. It is possiblstimate thé RMIE TRE at the prostate for a
given boundary error or Dices coefficient. Both measuresamelated with prostafe TRE with correla-
tion coefficients of approximately 0.5 in both cases. It eaclfrom Figuré_3]7 that such predictions will

not be highly accurate, nonetheless they will provide arcattn of likely[TRE.

3.6 Differential Evolution Optimiser

3.6.1 Aim

As discussed in Sectign 3.2.2 the differential evolutiotimjser is set up with a number of parameters.
This experiment aims to see what effect, if any, varying ¢élgarameters has on the segmentation accu-
racy. From this we define the optimum parameters for our egidin. Furthermore we would like to

guantify the effect that failure to find the global optima ntewe o TRE at the prostate.

4 Dice’s coefficient|[Dicel(1945)] measures the degree of apebetween the shape model derived segmentation and a “gold

standard” segmentation.
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Variable Range
Weight F 0.100.28 0.46 0.64 0.82 1.00
Crossoverr 0.100.28 0.46 0.64 0.82 1.00
Geneticist 0123456789
Constraint 012
Total Runs 6 x 6 x 10 x 3 =1080

Table 3.6: Parameters tested for evaluation of differéetialution optimiser. Values for weight and
crossover were uniformly sampled from the range 0.1 to 1€dtirfy either of these to 0 will create an

unchanging population. Please refer to Tableb[3.1, 3.2 ghfbBexplanations of these parameters.

3.6.2 Data

[MRIdata from XMR-02 was used to test the effect of optimisagoneters. This data set appears repre-
sentative of the other thrée MRI data sets, so the resultddibe similar. As the results indicated that
the differential evolution algorithm was reasonably irgtve to the parameter values, it was decided

not to repeat the experiment on the remaining data sets.

3.6.3 Method

To evaluate the various selection and constraint stragegid the effect of varying weight and crossover
probability model fitting was repeated for different corrddions of parameters, as shown in Tdbl€ 3.6.
In all cases 12 shape modes and a populaigmf 60 were used.

The results of all optimisations were evaluated by compgttie optimum value ¢ NMI achieved.
At present their is no time pressure on this part of the proredo parameter combinations that achieved
slow convergence and hence longer run times were not pedalis

Once the optimum parameters were identified, the repeiyabilthe algorithm was tested. By
default the starting population, whilst randomly genatateses the same seed so the same starting
population was used for all runs. To test whether the residitse optimisation were dependent on the
starting population the optimisation was repeated 20 timiés different random starting populations

using only the optimum parameters.

3.6.4 Results

Figure[3.8 plot§ NMI achieved for different values of therfparameters.

A predicted TRE is given on the right hand axis of each graphis i calculated from thie NMI
using a pair of linear regressions. The first converts bogyneiaor to prostate TRE and was developed
in Sectior 3.b, see Figure 8.7. The second conlerid NMI tadiary error and was found by calculating
the boundary error for this data set using the method froni®€8.3.3, then fitting a linear correlation
to[NMI] This will not provide a very accurate estimate of fH€H but it is included to help visualise the
likely system wide effects of using a suboptimal combinatd solver parameters.

Based on the results in Figure 3.8 the parameters valuesnsinovable[3.¥ were used for further
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Figure 3.8: The results of varying the four parameters ofdpemisation algorithm. The error bars
representt1 standard deviation of all the results at that level. Thegseganerally large as for each
parameter the remaining parameters continue to play aisigmi role. Based on these charts, Geneticist
ID 5 was selected as the best solution generation method¢c@metraint method 0 (replacement with
random solutions) was used. Both the continuous variaphesght and crossover) show minima in the
range 0.6 to 0.8. More points could be tested in this rangéngjian unambiguous minima, however
as the curves appear fairly flat in this range this would pobpaot yield a significant improvement in
results. Therefore the weight value was rounded to 0.8 amdnbssover used was 0.64. The predicted
[TRBEs are given on the right hand axes to help interpretat@omversion forni NMI to boundary error
was done by fitting a linear regression between the two basdtieodata here. Then boundary error
was converted to prostdie TRE using the regression fromdBE€E8. The resulting formula FRE =
661.99 + 651.07 x NMTI. Itis not expected that this will be a very accurate predicHf[TRE however

it allows the systems sensitivity to these parameters tasalised.
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Parameter Value
Similarity Measure NMI
Convergence Limit (Population Standard Deviation) | 0.001
Maximum Generations 100
Population Size 60
Starting Population Bounds Standard Deviations 3
Constraint Bounds: Standard Deviations 3
Crossover Probability 0.64
Weight 0.80
Constraint Method 0 - Replace with random solution
Vector Generation Method (Geneticist) Bestl
Crossover Implementation Binomial

Table 3.7: The optimal set of parameters for running thetffitial evolution algorithm in this applica-

tion.

optimisations. It appears however that apart from extreatees of the crossover probability or a low

weight, the choice of parameters does not have a large ircuem our system results.

The choice of constraint strategy prevents the algoritheaisvergence criteria from being met as
each time a solution falls outside the constraint boundaiaew random solution is created. The new
solution will almost certainly be far from the existing pdption. Therefore the algorithm generally
runs to 100 generations before being halted. On currenpewiit this takes around 12 hours, which
is sufficient for the application when the MRI is taken wellaidvance of the surgery. If run time was
added as a performance metric to be balanced against siyniterasure achieved then the results of this

experiment would be substantially different.

The algorithm was now rerun 20 times with these parametethanged, but with different ran-
domly generated starting populations. Figurd 3.9 plotf\R&|achieved on each run together with the
Mahalanobis distance from the solution with the iest NMbtiilg the Mahalanobis distance enables
a visualisation of the 12 dimensional solution space. Ifesicthat the algorithm does not find a true
global minima on each run, however the difference in ternpedicted TRE is negligiblé (TRE standard
deviation of 0.04 mn{_NMI standard deviation is 0.000066).

3.7 Fitting the CT shape model to MRI Data

3.7.1 Aim

The aim of this experiment is to determine how accuratel§Gfiestatistical shape model can be fitted

to[MRI data. This requires optimisation of the shape veaidrest fit the available MRI data.
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Figure 3.9: By defining the solution with the optimlal NMI matunformation as the origin of a 12
dimensional parameter space, it is possible to plot eaddr sthiution based on its Mahalanobis distance
from the origin. This together with the solutiol’s NMI givas idea of the shape of the solution space.
The fact that there are many solutions with High IMI near thneal solution indicates that there are
many local minima near the global minimum. When using the bp8imiser parameters the algorithm
appears stable, consistently getting near the best solufiee effect on predictdd TRE is negligible, the
standard deviations of the repeat solutions being 0.04 mB. TR
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Data Set Registered To Attempts
Patient-01 SM-Average 1
Patient-02 SM-T 2
XMR-01 SM-K 1
XMR-02 SM-K 1

Table 3.8: The MRI data sets were aligned to the CT shape muiled a gradient descent optimiser
working on normalised mutual information. The quality oésle affine alignments was checked visually.
In cases where the alignment appeared poor the alignmernewaated, either from a different starting
position or using a different data set from the shape modeiitrg set. The table shows which data set

each MRI set was successfully registered to and how mangttdega sets were used.

3.7.2 Data

FourfMRI data sets (Patient-01, Patient-02, XMR-01, XMR-@2re used to validate the model, details
of these are provided in AppendiX A.

3.7.3 Method

For each data set a model based segmentation was compargwlth standard segmentation. As the
data sets do not contain the full pelvic bone it is not possiblperform a simulated ultrasound to bone
registration as in other experiments, slicing the gold daath segmentations in the iliac regions gives
empty slices. Therefore the segmentation accuracy wasureshgsing boundary errors, as described in

Sectior 3.33. The TRE at the prostate can be estimated tsripear regression from Section13.5.

Gold Standard Segmentations

The fouMR] data sets were manually segmented, by the guifditting a spline to points on the bone
soft tissue boundary for each slice. This was not done by ialoaggist as there is no accepted protocol
to do this. For data set XMR-01 and data set XMR-02 matchingl&td was available, so this was was

used as a reference to inform the manual segmentation groces

Model Based Segmentation

Each data set was first aligned to the shape model with-a 9 Dfdfe afansform Ts - a7 [nd9]~1).
This registration was optimised using a gradient descetiingger usind NMI as a similarity measure
between the two images.

As all the images in the shape model have already been platedffine alignment, the same
affine transform can be used to put fhe MRI into alignment it of the shape model data sets. This
is useful if the first attempt at the affine alignment fails tekfthe affine alignment the aligned data set
is compared with the average shape of the shape model by aamaswal inspection. If the alignment
is poor the registration can be repeated to a different shmafiee model training set. Table 3.8 shows
which data sets from the shape model dachIMRI set was aligned t

Once thé MRI image had been aligned to the mean shape of thel nioel model was fitted to the
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Data Set Patient-01 | Patient-02 | XMR-01 XMR-02
Average Boundary Error (mm) 1.45 3.08 2.20 1.70

Table 3.9: Average boundary errors for shape model basedesggtion versus manual segmentation of
MRI data

4

Patient 01, Slice 080

‘oo

Patient 01, Slice 090

<

Patient 02, Slice.090

Gl

Patient 02, Slice 100

Patient 11, Slice 080 Patient 11, Slice 100~

Patient 12, Slice 080 Patient 12, Slice 090 Patient 12, Slice 100

Figure 3.10: Example slices from each of the our MRI data.sEihe manual segmentations are shown
in grey, while the shape model propagated segmentatiorshaven in white. Patient-02 is notably worse
than the others. It is also interesting that all data set&nféie same region to the top right of slice 100,

suggesting that this region is not well described by the simapdel.

[MRIlusing the differential evolution optimiser as per SeoiB.2.2

3.7.4 Results

Each of the four data sets was segmented using the shape.mbBdel was measured in terms of
boundary error across the pubic region. Tablé 3.9 preskatbdundary error results for the four data
sets. Figur&3.10 presents pictorial results of exampteslior the segmentation.

The results presented indicate that the segmentation ohetbks well. The boundary errors are
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Data Set Predicted TRE Lower 95 Percent Upper 95 Percent
Confidence TRE Confidence TRE

Patient-01 3.38 2.65 411

Patient-02 8.14 4.64 11.63

XMR-01 5.56 3.67 7.45

XMR-02 4.11 3.06 5.16

Average 5.29 3.50 7.08

Table 3.10: Predicted TRE at the prostate surface for thredfaia sets based on fitting a linear regression
for TRE vs pubic boundary error for results obtained usirdpdelvic CT data. Upper and lower limits

of the predicted values are also given for a 95% confideneevial

slightly larger than those observed for thelCT data in Se@id. This may be chance or more likely
there is a small optimisation error added to the shape nindedtror.

The boundary error results can be converted to probtaid TRIgg the linear regression from
Sectiorf3.b. The results of this are shown in Table]3.10.

3.8 Projection of Prostate TRE to on Screen Error
3.8.1 Aim

Our goal is to present the error due to segmentation as anrearserror. Here we project the prostate

[TRE onto the screen.

3.8.2 Method

The projection method described in Section 1.6.2 is useddjeg a point at the apex of the prostate
onto the endoscope screen. The apex point is perturbed invays, firstly by an isotropic Gaussian
distribution with arf RMS$ of 5.29 mm as per Table 3.10. Thisuasss that the registration errors are
isotropic and normally distributed. As the figure of 5.29 nmibased on an extrapolation of our results
we cannot test the effect of this assumption directly. Haveve can test the effect of this assumption
using our results from Sectigén 8.4. Here we have bofh anlRMS figure and the estimates 6§ /. as
used to generate this. By comparing a projection of the atestpex perturbed by a normally distributed
error with those of the prostate apex transformed by theuarestimates &fs ;- 1 We can test whether
the assumption of a normally distributed registration gigevalid projection error. We used the results
of Method B for the masked anatomy for this (an BMS error ol th&).

3.8.3 Results

Figure[3.11L shows the result of projecting an isotropic Geuswith(RMS error of 5.29 mm onto the
screen. Figure3.12 compares the isotropic normally Bisteeid error assumption with our actual results.
Figure[3.1? indicates that our assumption of an isotropicnadly distributed registration may cause an

underestimation of the on screen error. It is possible hewthat this is due to the limited size of our
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' Simulated Points

0,~=13.94 Pixels (3.3 mm)
0,~14.99 Pixels (3.3 mm)

Figure 3.11: A landmark point (near the apex of the prostas)been chosen and perturbed by a random
Gaussian error in 3D equivalent to the bone segmentatiar &r29mm) 1000 times. The resulting

projections give an indication of the on screen error duditdrror source.

0,=6.94 Pixels (1.7 mm) ‘ . b2 - 0,=7.66 Pixels (1.8 mm)
0,=7.54 Pixels (1.7 mm) - - 0,=12.03 Pixels (2.6 mm)
B = N . - - 5

Figure 3.12: On the left a landmark point (near the apex optiestate) has been chosen and perturbed
by a random Gaussian error in 3D equivalent to the bone segtimmerror (2.8mm) from Sectidn 3.4
2100 times. On the right the 2100 estimated9f;— »s used to estimate the segmentation error have
been used to perturb the point directly. It is apparent thatwo methods yield substantially different

results.
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data set. What is shown on the right of Figlire .12 is not a ptioje of a single distribution of 2100
samples. Rather it is a superposition of 21 distributioasheof 100 samples, representing the 21 data
sets used to build the shape model. If the anisotropy is dalasgely by the model fitting error, then
the results in Figure_3.12 are based on an effective dataoéi2é. It is possible that this has caused
the distribution to appear more anisotropic than it acyuall The addition of more data may reduce the
anisotropy. We cannot, however, rule out the possibilit the segmentation and registration methods
cause an anisotrofdiC TIRE at the prostate. In the absencerefdata this must be left as future work. For
the purposes of this thesis we will assume that the error atieet segmentation of the Rf MRI images
with a shape model can be modelled as an isotropic normatyildited error with standard deviation

5.3 mm.

3.9 Discussion

3.9.1 Comparison of Pelvic Shape Model with Results from the lierature

Using the linear regressions between Dice’s coefficienpmostat€ TRE and boundary error and prostate
[TRE from Sectioh 315 it is possible to compare our resulth wibse from the literature. When doing
this it should be remembered that the correlations are nmgt(with correlation coefficients approx-
imately 0.5), so the comparisons must be treated with cauffaking the Dice data in Figufe_3.7 and
extrapolating the result for a Dice coefficient of 0.94 asieddd on knee MRI by Fripp et al. (2007)
gives a RM$ TRE very near zero. In reality there is a loweitloharound 0.6 mm to the TRE that can
be achieved due to the registration algorithm, which iswdised in detail in the next chapter. This sug-
gests that (for the knee at least) model based segmentdfidRIdis accurate enough to render manual
segmentation or a separfe]lCT scan unnecessary. Howeseatkewo significant differences between
Fripp et al. (2007) and the work here, firstly the knee (moecHjzally the distal end of the femur) is

a less complex shape than the pelvis, and secondly thé MRisiiton protocol used was better suited
to bone delineation._Schmid and Magnenat-Thalmann (2008)cga boundary error of 1.44 mm for a
shape model based pelvic bone segmentation MRI, whalidwield a TRE of 3.4 mm, slightly
better than our results. Redrawing Tdbld 2.5 with equivatesults for this study yields Taldle 3]11. The
results presented here are all boundary surface errocsilatdd by searching through the shape model
derived boundary surface segmentation for boundary pdims locating the nearest boundary point in
the corresponding gold standard segmentation. The pallisdsults are similar to those found using

the shape model.

3.9.2 Correlation of Optimisation Metric with Boundary Error

For the optimiser to work well three things must occur. Wrtiie pelvic shapes seen in the MRI data
must be somewhere in the shape space of the statistical shage, this was tested in Sectibnl13.4.
Secondly the differential evolution optimiser must effeglly optimise the similarity metric (NMI), this
was tested is Sectidn_3.6. Lastly, the similarity measurstroarrelate well with the boundary error
measure used for evaluation.

To see how we[[NMI correlates with boundary error for bur Mfaka the optimisation process was
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Paper Result from Literature Our Result

Lamecker et all (2004) 2.4 mm RMS Boundary Errof 2.43 mm
without source in model

Yao and Taylor/(2003) 1.27 mm Average Boundary 1.64 mm
Error.

Chan et al.|(2004) 3.90 mm RMS Boundary Errof 2.43 mm

Schmid and Magnenat-Thalmanh 1.81 mm RMS Boundary Errof 2.43 mm
(2008)

Table 3.11: Comparison of shape model results with puldistedies using shape models on pelvic CT
data, except far Schmid and Magnenat-Thalmann (2008) dbas®IR| and including a local deforma-
tion step. Given the very different methodologies used twstoict and fit the shape models, the broad

agreement between them is encouraging.

Data Set Pearson Correlation Boundary Error
Coefficient

Patient-02 -0.292 3.08

XMR-01 0.574 2.20

XMR-02 0.790 1.70

Patient-01 0.844 1.45

Table 3.12: Data sets arranged in order of correlation betwbe image similarity measure and the
average boundary error. The degree of positive correldtas a dominant effect on the final error

measure.

monitored to see the progress in similarity measure anddayrerror. The differential evolution algo-
rithm works by progressively breeding a population of 60didate solutions to improve the similarity
measure. By also evaluating the boundary error metric foln @& the candidate solutions, it is possible
to plot how both metrics change during optimisation. FigBre3 presents these plots for edch MRI
data set. From Figuie 3.13 it can be seen that in each casetih@sation algorithm steadily improves
the[NMI] . In three cases the boundary error metric improvesgside the image similarity measure.
For Patient-02 however the boundary error increases. Titelabon betweeh NMI and boundary error
varies between data sets. The strength and direction ofdhelation between the two metrics was
measured using Pearson’s correlation coefficient. Tali2iBdicates that the sign and magnitude of the
correlation betweeln NI and boundary error is a good prediut the boundary error achieved.
Understanding the reasons for this variation in corretabetween data sets could yield a more
effective segmentation algorithm, or an improved simijameasure for MRI t@ CIT registration. The
quality of the manual segmentation being used as a gold atdmdll have a significant effect on our

results. If the manual segmentation is wrong the correfatiould appear worse as the optimiser would
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Figure 3.13: Plots showing the image similarity measuradpeptimised (normalised mutual informa-
tion) and the evaluation metric (average boundary errdnempubic region) over the course of optimisa-
tion for the four data sets used. In all cases there is a ediwalbetween the image similarity measure
and the boundary error, this is negative for Patient-02.|eM@H2 gives the correlation coefficients for

these correlations.
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Error Source RMS TRE (mm)
Optimisation 4.48
Shape Not in Model 2.81
Registration Algorithm 0.23

Table 3.13: Summary of RMS TRE at prostate surface due tohttee terrors in using a shape model

based segmentation algorithm.

move the segmentation to a more correct value. It would béhwepeating these manual segmentations
and comparing them between multiple users before lookingtwer causes of the variable correlation

coefficients.

3.9.3 Result Summary
Table[3.IB summarises the key results from this chapteraVémge predictdd TRE shown in Table 3.10
is made up of three components. The registration algorithror,ehe optimisation error, and the error
induced by the shape model. The registration algorithnr ésrtne performance of the registration algo-
rithm when matching identical images. This was determinetepeating the experiment from Section
[3.4, but registering the simulated ultrasound to the gadddrd segmentation, rather than a model de-
rived segmentation. Thie RMS TRE for this was 0.23mm. Thisstegfion error can be subtracted from
the[TRE squared error to give an error due to segmentatioe ab,/5.292 — 0.232 = 5.29mmRM S.
The shape model error can be taken from the Se¢fionh 3.4 an@lisn2Zm. Again this can be
subtracted from the total error to yield the error due to shayodel optimisation./5.292 — 2.812 =
4.48mmRM S

3.10 Conclusion

We have presented a novel cross-modality, inter-patient, rigid registration algorithm. The method
uses a shape model to constrain the allowable deformatidashave shown that using this algorithm
it is possible to fit pelvi€ CIT from a separate patient to peMRIl Doing this as opposed to a manual
segmentation of the"MRI or taking a separaig CT scan inducegistration error observable at the
prostate surface. This error has been quantified here anm@®MS. This error would appear to the
surgeon as shown in Figure 3114
Whether the error of 5.29 mm is small enough for for clinicag issunknown. A system of this

accuracy would certainly be useful for showing the surgdmngeneral location of specific tumours.
Based on this the surgeon could decide on the size of the margund each side of the prostate.
Similarly it may help the surgeon locate important anatomghsas the neuro-vascular bundles. The
surgeon could not rely on the system when making incisiomgekier, and would instead have to base
their decision on the visible anatomy. If it were shown thdg error was significant in the overall system
it may be possible to reduce it by improving the shape moaehé first instance this could be done by

adding more data sets to the training set.



100 Chapter 3. Segmentation of Bone from MRI

' Simulated Points
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Figure 3.14: A landmark point (near the apex of the prostae)een chosen and perturbed by a random
Gaussian error in 3D equivalent to the bone segmentatian &r29mm) 1000 times. The resulting

projections give an indication of the on screen error duditérror source.



Chapter 4

Registration of Ultrasound to Fitted Bone

Image

This chapter details the methods used to register the pram@MRI data to the patient in theatre, that
is determiningly;—o (see Figuré_1]3). The method we use for this is an image toémagjstration
using ultrasound images of the patient gathered with themah the operating position. As discussed is
Chaptef 2, rather than attempting to register the ultrasémages directly to tHe MRRI image we register
the ultrasound to B_QT image from a second patient (the shapilinthat has been warped, using
Tsn v determined in Chaptét 3, to the fit the MRI image. Thereforeawteially findTs u/ (nrry—o0 i

this chapter, which is identical th,,_.o as the model is fitted to thie MRI image.

As discussed in Chapter 2, registration of ultrasound irmafeone t@ CTr images of bone has been
done previously by several authors. The method we use igedkefiom that of Penney etlal. (2006),
however there are several key differences. Whereas Penaéy(2006) register to @ GT image of the
patient, so the anatomy being imaged by[thé CT and ultrasisuidgntical, we register o GT from a
second patient that has been warped. This results in a pE&llitmage that is not a perfect match for

the anatomy being imaged with the ultrasound probe.

We have also implemented the registration algorithm in ativayminimises the image processing
required in theatre. We have a limited time period to do tlggsteation in theatre (approximately 25
minutes), so we have attempted to streamline the algorithmch as possible. The key difference
is that rather than storing the ultrasound images as a sesaofete slices, the ultrasound images are
first converted to a point cloud. By discarding points beloaeaintensity threshold it is possible to

significantly reduce the computational load.

As discussed in Chaptgl 1, calculationofy ., =0 is broken into two stages. Individual ultra-
sound images are first converted to point clouds ugimg. o. The fitted model is then registered to the
ultrasound point cloud to calculai® ;... In this chapter we first describe the algorithms and
equipment used for these two steps. We then perform a sémaperiments using the algorithms, with

the aim of determining the accuracy with whi€B; (., -0 can be found.
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Figure 4.1: A typical ultrasound slice collected in theats output from the ultrasound scanner and
captured via a frame grabber. Image size is 720 by 576 pitteds ltrasound data is in grey-scale with
pixel intensity from 0 to 255. The dashed line around the ffatae shows where the image is cropped

in the first stage of image preprocessing. The face of thaadtmd probe is at the top of the image.

4.1 Ultrasound Image Acquisition and Processing

4.1.1 Ultrasound Image Acquisition

Ultrasound images of the patient’s pelvic bone were acduiggng a Phillips HDI5000 ultrasound scan-
ner. The machine’s default settings for musculoskeletabjimg of the hip were used. The images were
captured using a frame grabber. This frame grabber outptéddaced images 720 pixels wide by 576
pixels high, with pixel intensities from 0 to 255. An examplieone of these images is shown in Figure
4.1.

The position of the slice relative to the optical trackingteynTy ;- o is determined using a set of
[REDSs, shown in Figure~412. The tracking data from the Optigerking system is saved alongside the
corresponding ultrasound image. There is a lag of appraeim&75 ms between the tracking informa-
tion being recorded and the image being captured. Theref@gy effort was made to capture images

while the probe was stationary. However the probe is hard kelsome movement is unavoidable.

4.1.2 Ultrasound Image Pre-Processing

Once the image has been acquired the following processipgriermed. The images are first cropped
leaving only the data window, shown on Figlire]4.1. The 3 mnissiie closest to the transducer face
is also removed to prevent artefacts due to skin coupling ifffage is now converted to a “bone edge

probability” image, this is based on the workl.of Penney e(2006). We do this for two reasons, both
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Figure 4.2: The ultrasound probe, attached tracking croddtze Optotrak tracking system. PO TREDs

are attached to the cross.
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due to our need for a fast running image to image registralgorithm. The first is that as image
processing has been used to enhance the same features rithedges) the registration is closer to
being an intra-modal problem. It should therefore be pdssibuse computationally efficient similarity
measures to drive the registration. To understand the deeason an understanding of our registration

algorithm is required. This will be introduced in full in SEm[4.4, but the key points are outlined here.

After processing the ultrasound image will be stored not sst&f slices but as a set of 3D points
with corresponding intensity values. To calculate the ienagnilarity measure the algorithm reads
through every point in the ultrasound derived bone edgeahitity (BEP) image, transforms it to the
BER image derived from tHe MRI image using an estimat@“sq@(mrbm and finds the intensity of
the nearest voxel in tHe MRI derived BEP image. The ultradam{MR] derived BEPs are multiplied
together and the sum of these products is used as the stgniteeasure. Points in the ultrasound image
with a[BEP of zero will have no effect on the registration @ss, th€ BEP product will be zero regardless
of the value of the matching corresponding voxel in[the MRiwa=[BEP image. Therefore to reduce
computational time all pixels with zero intensity value aiscarded during the preprocessing of the
ultrasound image. Converting the images to bone edge pititpamages greatly reduces the number
of non zero pixels. Based on the data for Cadaver-01, seensipdd], the reduction is as follows. The
cropped ultrasound images ha2&8 x 413 = 118944 pixels. On average 25400 (21%) of these are non
zero. After converting to a bone edge probability image éawge has an average of 3312 (3% of the
original) non zero pixels. These reductions in the numberoof zero points will translate directly into a

faster registration process.

The conversion to bone edge probability images follows tteegdure laid out by Penney et al.
(2006). This is described below and shown pictorially inFej4.3. Figuré 413 shows the procedure on
two data sets, one taken from a plastic pelvis scanned inerWwath (the phantom data) and one taken

from a patient scanned in theatre.

An “artefact threshold” intensity value is first defined. Heavchoose the threshold value will be
discussed later in this chapter, see Sediion ¥.4.3. Thasolind image is scanned column by column
upwards from the bottom of the image (distant from the transdface). At the first pixel that exceeds
the value of the artefact threshold the scan is stopped @&t number 4V 4, ;) recorded, whereis
the column number and row number O corresponds to the topedfithge. If no pixels in the column
exceed the threshold the¥ia,. ; is set to zero. Two images are now created. The first is a ‘fuista
to artefact” image (row 2 of Figufle"4.3). The intensity of legixel in this image is equal t&V 4, ;
for the corresponding column minus the pixels own row. Rixeith a negative value for the distance
to artefact are set to zero. The term artefact is used toatelithat pixels more distant from the scan
face than the bright pixels so detected are likely to be duseémning artefacts rather than echoes off
genuine anatomy. This is due to the almost total reflectionltvAsound from the bone surface. The
second image is a masked and blurred version of the raw ityémsmge. The raw ultrasound image is
first smoothed with a Gaussian kernel to reduce speckleaattefthen pixels with a distance to artefact

of 0 value are set to 0. The result of this is two metrics fomgyaxel in the image. These metrics are
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used to convert the images to bone edge probability imadgeg a2D lookup table.

The look up table is produced beforehand using a trainingpsetanually segmented images,
representative of the images to be processed in theatreloGkitable is constructed using 32 images
taken from the phantom data set. The images are first marsgdiynented by picking a set of points
along the bone surface. A spline is fitted to the points andlgifalling on the spline are assigned an
edge probability of 1. This forms a binary segmentation ienagth pixels not on the the edge having
pixel intensity of 0 and those on it a pixel intensity of 255e Wien blur the this segmentation image.
We do this because we do not expect our manual segmentatimnperfect, therefore it is realistic to
say that a pixel near the manually segmented edge has a pigieility of being the edge than a pixel
distant to the edge. Blurring the manual segmentation adsattie effect of increasing the number of
pixels used in building the look up tables, allowing fewemmally segmented images to be used to build
the look up tables.

To build the look up tables the raw ultrasound image is nove@ssed using the procedure shown
in Figure[4.3. Each pixel in the image now has three metriss@ated with it, the distance to artefact,
the masked and blurred intensity, and the bone edge prdapatskived from the manual segmentation.
The lookup table is simply a 2 dimensional histogram of thgeeprobabilities. We used 32 bins each
for the distance to artefact and intensity when constrgdtire look up tables. Figufe 4.4 shows two
example look up tables made using manual segmentation® gfléistic phantom data. These are the

look up tables used in Figure 4.3.

4.2 Ultrasound Image to 3D Points

The ultrasound images are now stored as 2D pixel coordinatascorresponding bone edge proba-
bilities. The next stage is to transform these 2D points top®ihts in the coordinate system of the
Optotrak. This is done using;—o from Figure[1.8. As detailed in Figute 173;;_.c is the product
of the ultrasound calibration transforni& (;—.y p andTy p—. 1) and the ultrasound tracking transform
(Tur=0). As the tracking transform is required by the calibratidgoathm we will first detail the

ultrasound tracking process. Following this we detail thesound calibration process.

4.2.1 Ultrasound Probe Tracking

The ultrasound probe is tracked using a set of 20 IREDs sigatlached to the use probe on an alu-
minium cross. This is shown in Figure #.5. The optical tragksystem triangulates the position of each
of the 200REDs and outputs them to a computer. THe 20 IREDipaosicaptured for a given ultrasound
frame ¢) can be registered to the IRED positions for any other frajheging well established point to
point registration methods. Here we use an orthogonal Btesdormulation and find the best fit regis-
tration using singular value decomposition [Fitzpatritkk (2000)]. This gives a rigid body transform
from one point set to the oth€f'r;qme; = Frame;- 1N order to transform the points into the Optotrak’s
coordinate system it is necessary to know the rigid bodysfaam from one set df IRED coordinates
to the Optotrak’s coordinate system, we call this frame #&ference framef'rameg.r, and use it to

define the tracking rigid body’s coordinate systéfy.r—.o can then be defined as in Equationl4.1.
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Method Phantom Data Patient Data

Cropped Ultrasound Slice

The image is scanned upwar

column by column. The dis;

tance to artefact is the roy
number of the first pixel tha
exceeds the artefact thresho

minus the pixels row number.

Pixels with zero distance t
artefact are masked and the 1
maining unmasked pixels ar

blurred.

The blurred intensities and dis-
tance to artefact values are
sorted into 32 bins each and

combined using a look table

1 . .
. .

see Figuré 4]4, to give an edge

probability image, shown hers.

Figure 4.3: Details of the processing steps used to conmariteasound slice to a bone edge probability

image. The ultrasound transducer face is at the top of thgema
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Look up Table Artifact Theshold 220, Blur Radius 1 Look up Table Artifact Theshold 40, Blur Radius 1
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Figure 4.4: The probability look up tables used in the precgsof the ultrasound slices seen in Table
[4.3. Both tables use the same set of manually segmentedsroaties plastic phantom. By changing the
artefact threshold used we can get very different look ufegabThe table on the right uses an artefact
threshold of 40, while the one on the left uses an artefaestiold of 220. The table on the left does
a good job of segmenting the phantom data, where the bone edge very bright and there were no
reflections from soft tissue. The table on the right worksdsebr segmenting patient data where the

bone edges are not as bright and there are significant amoistt tissue.
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Figure 4.5: Geometry of the tracking cross used to localisaittrasound slices.
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TUT:>O [Framei] = TUT:>O [FTameRef] X TFTamei:>FrameRef (41)
We defin€lyr— o [Frameres] as the identity matrix, thefyr—. o becomes simpl¥'r,ame, = Framenr. ;

Defining the Reference Frame
How we define the reference object will impact on the trackimguracy of the system. Though it
would seem trivial to define the reference object using aitrarp frame, as being a rigid body the
geometry of th€ IREDs should not change, this may not yietdiate results. The apparent position of
an[IRED tracked using the Optotrak will vary depending ompdsition and angle relative to the tracking
cameras’ len’s surface normals, [Wiles et al. (2004)]. ldeorto maximise tracking range the TREDs
on the tracking cross are arranged at a range of differedeang herefore the apparent geometry of
the tracking cross will vary as the cross moves in relatiothto Optotrak camera unit. A reference
object defined with the cross front on to the tracking cameast give poor results when the cross is at a
different angle to cameras. To attempt to overcome this wd tige following procedure.

In order to quantify the performance of a reference objecdefne the IRED registration error
(IRE), this is analogous to the fiducial registration errBRE) [Fitzpatrick et al.|(1998)] commonly
used in image guided interventions. Equafion 4.2 definefRRe

N
1
TRE = N Z |TFT‘1mei:>FTam€Ref X Xiaj - XRef,j 2 (4'2)

j=1
Where N is the number of IREDs (20 in this caseY; ; is the position of IRED; in frame: and
XRey,; the position of IRED) in the reference frameX; ; and . ; are both 3D position vectors. Next
we collect tracking data for a set of frames that are reptatiee of the range of positions and angles
seen during the tracking application (ie. representativecanning a patient’s pelvic bone). These
are registered to a reference frame and an average valueEbotRall frames is calculated. We now
make the assumption that a reference object that gives a koveeagé TRE will necessarily give better
tracking results. This assumption will not be correct insitiiations, though we think it is valid for this

application. We can now create an optimised reference pfgjeour application as follows.
1. Collect a sample of frames representative of the tradkislg.
2. Register all frames to a starting estimate of the referdraome.
3. Compute thETRE for each frame using equdtioh 4.2 and tekaverage.

4. Transform all thé IREDsX; ; to the reference coordinate system using the estimateevaiii

TFTame,- =Frameprey-*
5. Find the average position of each of the transforimed IREDs
6. Use these average positions as a revised estimafgof ;

7. Repeat steps 2 to 5 using the new estimate of the refereacef The averade TRE will be

reduced.
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8. Repeat step 6 until the value[of IRE converges.

For each frame of ultrasound data we can now deling. e, = Framer.,- This is a rigid body
transform that we represent ad a 4 matrix. These can be used together with the calibratiorsfeeims
to locate a pixel in an ultrasound slice image in 3D spaceoi®efve move onto our calibration method

we will first discuss our use of a slice rejection test.

Slice Rejection Test

The accuracy with which the singular value decompositige@thm can findl'rame; = Framer., Will
vary from frame to frame. This will depend on two factors. sBir how accurately the Optotrak can
localise a give IRED, referred to as the IRED localisatiome(ILE) and analogous to the fiducial
localisation error (FLE) for a fiducial registration systfffitzpatrick et al.|(1998)]. The second factor is
the number and the geometry of the IREDs that are trackedca@Wypthis will vary from frame to frame
as somé& JREDs are obscured or at too great an angle to theaémlee tracked. The goal of a slice
rejection test is to identify ultrasound images that arerlydoacked and discard them, to prevent them
biasing the calibration routine or later on the registrattgorithm.

For the purposes of this slice rejection test we have asstina¢dhe ILE is an isotropic normally
distributed error with constant standard deviation fofREDs. The effects of this assumption are dealt
with in greater depth in Chapter 5.

Our slice rejection test checks two parameters. The firshedd is th€ IRE for the frame. It has
been shown that tie TRE for an individual frame cannot be ts@dedict the accuracy of the estimated
transform for that framel(r,ame, = Framer. ;) DY [Fitzpatrick (2009). Very high values bf IRE would
nonetheless make us question whether an equipment fadsrerbated an erroneous measurement. The
expected value of tHe TRE can be determined using a resultispSby way of Fitzpatrick et al. (1998).
This is shown in Equation4.3.

2\ __ 2 2
(IRE?) = (1— J)(ILE?) 4.3)

If we assume that tHe TRE is a half normal distribution, (theaute value of a normal distribution with
mean 0 and standard deviatieihthen Equation 414 can be used to estimate its standardtidevia
(HRE))

OIRE = (44)

2

s

If the tracking system is functioning correctly 99.7 % ofwdlues of IRE should be less tttat; . We

will reject any slices with &1RE greater than this. This imservative and will cause a small number of

good slices to be rejected, but this is preferable to inclgdirroneous data.
i

The second parameter is the number and distribution ofl@iBREDS. | Fitzpatrick et al. (1998)
provide an analytic method (equationl4.5) to estimate tipeeted valuE TRE given the expected value
of ELE (analogous t@ ILE) and the configuration of visible fithi markers[(IREDs here)d,, is the
distance of the target point from thé" principal axis of the fiducial configurationf; is the[RMS
distance of the fiducial markers from th& principal axis[TRE is simply the error at a specified point
when the estimated transforfr; e, = Framer., 1S applied. Therefore for our purposes fhe TRE can

be used as a proxy for the error in determinig.ome, = Framer. ; -
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Expected Error Ratio for Reduced Number of Visible IREDs
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Figure 4.6: Best and worst cdse TIRE [perlILE versus numtierloDBvisible for the ultrasound tracking
cross. These were calculated using Equdiioh 4.5 for alliipe$lRED configurations then sorted into
best and worst cage TRES.

3
(TRE?) ~ Lﬁ (1 + % 3 ;f%) (4.5)
k=1"F

Two implementations of the tracking software have been usadlis thesis. The more recent
of these provides a list of whidh IREDs are visible togeth&hW'raime, = Framer.,- 1hiS enables
(TRE?) to be calculated for each frame directly. Frames Witk £2) above a present threshold were
discarded. The earlier implementation of the trackingveaffeé only reported the number of visible
visible, not their configuration. Therefore we pemfied the following analysis to determine a
threshold number of visible TREDs below which frames woubddiscarded.

The ratio of(|TRE|) to (|ILE|) was determined for every possible combination of vidibIEIR
using equatiofi 415. For a rigid body with POTREDs there Zfepossible combinations. To calculate
the[TRE we have assumed a target point at the centre of tesaolind slice. For each number of visible
we then found the worst and best case ratiBRE|) to (|ILE|), and plotted them in Figure
[4.8. We elected to reject any frames with less thaln TT TRE®kebow this the worst case errors become
large. The relatively large increase in worst case erravéen 11 to 10 IREDs is due to the geometry
of the cross. The tracking accuracy reduces substantiddgnidREDs are visible on only 2 of the four

points of the cross.

Use of a Reference Rigid Body

In cases where the object being scanned (ie. the patient pidbtic phantom in this study) may move in
relation to the Optotrak camera system, using the Opotradsdinate system for registration will lead
to errors. These can be overcome by attaching a trackedérefe” rigid body to the object or patient to

be scanned. Figufe 4.7 shows a reference body attacheddsti hantom pelvis. In this ca%g;—.o
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Figure 4.7: Geometry of the reference object used in adtqpnsdf ultrasound slices from the phantom.

andTyr—o are replaced witly,— r andTyr— r. Tyr— g is found using equatidn 4.6.
Tur—r =Tvr=0 x Trt o (4.6)

The calculation off'z—. o uses the same method as described above for the calcul&tion-0.o. The
same approach to slice rejection was used. Slices with eerefe bod{ TRE greater thaw;zr were
discarded. Figure~4.8 shows the results of a similar arelys{|TRE|) to (|[ILE|) ratio vs visible
as was done for the ultrasound tracking cross. Thisnaesg that a 6 IRED reference body was
positioned as shown in Figure #.7 and the target point waseh#oid of the prostate. Based[onl4.8 we
discarded any slices with less thabh 5 TREDs visible on theresfce body.

We could not attach a reference rigid body to the patienngdwsurgical trials. Therefore we assume
that the patient does not move in relation to the Optotrakndusurgery. During development work we
used data from a plastic phantom data set and three cadaeesals. It was desirable to be able to

move these objects relative to the Optotrak cameras, skerefe rigid bodies were used.

4.2.2 Ultrasound Calibration

Ultrasound calibration was performed using an invarianttpmethod detailed LB_a.LLaII_e_LHL_(ZSl)OG).
In the case of the phantom experiment we repeatedly imagéd laepd attached to the phantom and

submerged in the same water bath as used for data colledfigure[4.9 shows the location of the
pinhead on the phantom.

The transforniy ;. p was first estimated using the ultrasound machine’s own meamnt func-
tion. This allows two points to be selected on screen andittartte between the two points measured.
This is shown at the left of Figute 4]10. This gives a pixel tm staling which together with a definition

of the image origin (in this case the top left corner of thedeledefined ;v p. Tyr—v p COnverts the

1Details of data sets Phantom, Cadaver-01, Cadaver-02, atai/€a03 can be found in Appendi} A.
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Expected Error Ratio for Reduced Number of Visible IREDs
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Figure 4.8: Best and worst cdse TIRE versus numbEr of IREDilseifor the reference object. These
were calculated using Equatién 1.5, using a target poinheiprostate centroid. All possidle IRED

configurations Z°) were tested then sorted into best and worst casd TRE s.

Figure 4.9: Photograph showing the pinhead object usedlti@sound calibration. Note the position
relative to the reference object. The actual pinhead usecklibration is not visible in this image as it
is too small. The object used was the cut off end of the pinte gmall point. The visible pinhead is a

plastic sphere and gave a poor ultrasound signal that wassabte for calibration.
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Figure 4.10: On the left is an example of the measurementtosgeterminel; ;. ;. The ultrasound
image shows a distance which can be used to determine a pirahntvalue. The origin of the image
is defined as the top left corner. On the right is a typicaksitund image of the pinhead, with a cross

indicating its manually segmented position.

pinhead coordinates in pixels to pinhead coordinates itimatres relative to an arbitrary point defined
on the probe.

The pinhead is now manually segmented from the ultrasouadés, Figure 4.10 shows a typical
ultrasound image of the pinhead in the water bath with a cidisating the manual segmentation.
Images that failed our previously described slice rejectest or in which the pinhead could not be
properly defined were not used in the calibration. Rocalibration images we now havg sets of 2D
points (X;) in mm relative to the probe face, aid estimates off v, ame, = Framer.,- We define the
unchanging position of the pinheadl £7;) as the origin of a “World” coordinate system. Equation 4.7

can be written for every frame.

Xpua = Toptotrak=worid X Tur=o[Frame;| x Typ=ur X X; 4.7)

From equatio 417 we generate a systen3 &fnon linear equations from which we estimate the
parameters of optotrak=woria aNdTy p=yr USING @ Levenberg-Marquardt algorithm implemented in
MATLABR.

Speed of Sound Error

As formulated abov@y .y depends on on the speed of sound in the calibration mediuime Hpeed

of sound in the calibration medium is not the same as thatdnifisue to be imaged then there will be
an error in the measured position of the bone surface. Thaitoag of this will depend on the size of
the speed of sound mismatch and the amount of tissue thatttheaund has to pass through to image
the bone. Both Barratt etial. (2006) and Penney let al. (200&)umt for this error by optimising the
calibration parameters alongside the registration pat@msie Their approaches rely on the assumption
that the underlying anatomy being imaged is identical, ap shape variation between the two data sets

will be due primarily to the this speed of sound error. In casethis is not true, as the preoperative data
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Figure 4.11: Pre-Processing of the CT image to a bone eddmlpitity image. The image on the left is
the[CT image. On the right it has been converted to a bone edbelpility image, using a Sobel filter,

a local maximum filter, and a look up table.

is only an approximation of the shape of the patient’s pddwice. The difference in bone shape in the two
data sets will be a combination of shape modelling error dindsound imaging error due to the speed of
sound error. Optimising the ultrasound calibration par@nseto minimise the shape error will therefore
yield an incorrect registration. Therefore we do no notrafieto implement these methods here. Our

focus will be on minimising the speed of sound mismatch bytrmdimg the calibration medium.

4.2.3 Transforming the Ultrasound Data

The transformiy ;- o has now been defined for each frame of the ultrasound datelsRixth a bone
edge probability value greater than 0 are transformed to @bt in the Optotrak’s coordinate system
usingTy - o. Zero value pixels are discarded. The remaining pointstaredas a list of 3D points and
corresponding bone edge probabilities. In comparison &eahal. [(2006) store the images as a group
of 2D points for each slice and the correspondiiag—. o for each slice. Using our method we avoid the

need to appy 77— o during the registration algorithm.

4.3 CT Image Pre-Processing

Our registration method matches the ultrasound image fimthe preceding section wit{a CT image
that has been warped to fit the patidnts MRI data using theadstim Chaptelr]3. We follow the same
methodology as Penney et al. (2006) by converting[thik CTgeriato a bone edge probability image
prior to registration. The method used is similar to thatluee the ultrasound images. For every voxel
of the ultrasound image two metrics are calculated froni_fhien@age. Then a look up table trained on
manual bone segmentation is used to convert to the two radtria bone edge probability. The first
metric is the edge gradient intensity found using a Sobelfipplied the CIT image. The second metric
is the maximum intensity found withindax 3 voxel neighbourhood around each voxel offthé CT image.
We used the same look up table as Penney|et al. {(2006) for tiversion from these two metrics to the

bone edge probability. Figure 4111 gives an example of thige pre-processing.
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4.4 Image to Image Registration

We use an image to image registration to deterndigg (., ;. The registration used to determine
Tsnrnrry=u1 IS @n intra patient registration using images of similar alig (both images have been
processed to bone edge probabilities). We have therefptdte registration algorithm simple. We first

define a similarity measure to be optimised, then the opétite algorithm. We implemented in C++.

4.4.1 Similarity Measure

The similarity measure is calculated for every poifft(s[i]) in the ultrasound image (stored as a list
of N points). The corresponding poinK¢r[é]) in the[CT image is first foundXy s[i] is transformed
by the current estimate GFEJ\Z(WT):»UI to give a coordinate in tHe_CT image. Nearest neighbour in-
terpolation is used to return the bone edge probabil?yrPcr[i]) of the voxel nearest to this point.
Interpolation of thé_CIT image is required as the resolutibthe ultrasound image is much higher than
that of thd CT image (0.088 mm versus 0.7 mm in plane). Wedékteeffect of using tri-linear interpo-
lation instead of nearest neighbour interpolation on tegfion accuracy. Using tri-linear interpolation
did notimprove registration accuracy and has a computaiticost. Therefore we used nearest neighbour
interpolation. If the coordinate is outside the bounds ef@l image a zero value is returned.

The image similarity is then defined as a simple cross cdioelin equatiorh 4.18.

SN | BEPgr[i] x BEPysli]
N

Simcc = (48)

We chose this similarity measure because it can be calcutatgdly, requiring a single loop through
the ultrasound points. Using this measure there is no nasatan for overlapping ultrasound points. If
the point cloud ultrasound image contains a high propomiopoints from a particular region then the
registration will be weighted to that region. Therefore tladue of the similarity measure depends on
both the number and distribution of ultrasound slices. Téagure can be used to our advantage. Section
[4.9 will detail an experiment that examines the effect ofedént ultrasound slice distributions on the

registration accuracy.

4.4.2 Optimisation Algorithm

We elected to use a basic gradient descent optimisationiégo This is a well established optimiser for
rigid registration of medical images. We used a similar athm for the determination df's p;— ps [ d9]

in Chaptei B. We start with an estimate®§y;,,-»)—v; and use this to calculatgimcc. Gradients
are then determined numerically in each of the 6 degreeseeflirm (3 translations and 3 rotations)
by perturbingl’s y;(nrry—u 1 DY @ predetermined step sizé. (, - ,5,,) and recalculatingimcc. This
gives 12 new estimates @ ;(,,r)—v - The estimate with the highest value $fmcc is used as the
new estimate of s /(-1 and the process is repeated until a maximaohcc is found. The step
size {@..y,2,0,3,~) IS then halved and the process repeated until a new maxificarsl. The step size
if halved Ngiepmaive times. This process requires an initial step size to be difiliée found through
trial and error that an initial step size of 4mm for the tratisih componentsd; , .) gave good results
for our application. The ratio (slightly less than 0.25 asg per mm) between rotation step size and

translation step size was chosen so that over the regiotesést (the pelvic bone) a rotation step would
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give the same average displacement as a translation stepyigthis ratio to the 4mm initial step size

gives an initial rotation step size of 0.98 degrees (fog ).

Target Blurring
Two versions of the preoperative image were used. For laagesizes a blurred image was used (the
edge probabilities were blurred with a 4 mm Gaussian keradler Ns’% step size reductions the

edge probability image was used without blurring.

Registration Initialisation

An initial estimate ofT'sys (.= v IS required to start the registration process. For pelviat@ny
Penney et al. (2006) describe a practical method involvirtigaeked pointer and the picking of skin
landmarks. This may not be necessary in our case as thegposftthe patient’s pelvis in daVinci’
based prostatectomy is constrained by the practicalififitting all the equipment in the room. Therefore
an estimate of’'s /(.= vr Can be taken from a past operation. If this is not sufficieatgurate it
could be refined rapidly using suitable visualisation safey eg VTK. This will be investigated further
in[gl.

Registration Termination

In practice the optimisation algorithm may not always cageeon the global maximum. The following
experiments will determine how reliable the optimisatidgoaithm is. To allow for the occurrence
of failed optimisation in theatre we propose running theodthm from multiple, randomly perturbed
estimates ofl’s;(,,»r)—ur @and checking for convergence of the result. To check for eayence we
define a “Transformation Distance). D is a measure of the size of the transform and is defined by
equatio 4.P.[XY Z];.ans are the translations in mm and'Y Z],.., are the rotations in degrees. The
constant”' is used to convert degrees to mm and is set so that a one degméen causes an average

translation of 1 mm over the region of interest (the pelwsg have used a value @f08 2™,

Distance = \/Xt2rans + }/t%ans + Zt27'ans + (CX7'Ot)2 + (CYT'Ot)Q + (CZ’V'Ot)2 (49)

In theatre we propose running the following procedure. Wetswith an initial estimate of
Tsn(nrry=ur[init]. If this corresponds to a local maxima in the image simiyaféquatior{ 4.8) then
running the registration optimiser will have no effect. Tefere we perturlf’s ;)= by @ random
transform of distancé,.+,-». The process for generating this random transform will keedeed be-
low. The registration optimiser is then run from this pepent starting position. This process is repeated
Ny times, to giveN,.., new estimates df ()7 The distance of each of these transforms from
Tsrr(nrry=urlinit] is calculated using equation #.9. T v (.- 1 [init] is near the global maxima
we would expect the_ RMS distance to be near zero. We set ehtlidegalue D, csn01q. If the[RMS
distance of the estimated transforms fr@ ,,r = v 7[init] is less thanDyp.esnora We consider the
registration to have converged at the global maximum. lfwetepeat the process with a new estimate
of Tsrs(nrry=urlinit]. The new estimate &Fg s (,rr)— o1 [init] is chosen from thev,.., calculated es-
timates ofT’s y/(nr)— /1 ON the basis of their optimised similarity measure valuég ffansform which

gives the highest similarity measure is used.
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The number of repeat®,.., is a function of the failure rate of the optimisation algonit. The
perturbation distanc®,.,+.r is a function of the capture range of the algorithm. The thotbdistance
Dynreshola s a function of the accuracy of the optimisation algorithive will attempt to quantify these
values in the following sections in order to design a robegistration process. We now describe a

process for the perturbation @k r/ (,ry— v r[init].

Perturbation of Rigid Transforms

We wish to define a method for randomly perturbing a rigidéfarm by a set distancB. These random
perturbations will be used to check for convergence of thesteation algorithm.

The distanceD,,.,...» (equation[4.0) defines a six dimensional hypersphere ofisafli The
intent here is to randomly sample from points uniformly spren the surface of this hypersphere.
We use the following method to do this. Values of each of tla@gformation parameters (3 trans-
lations and 3 rotations) are independently randomly sadnfiiem a normal distribution with mean
zero and standard deviation 1.0 to gi&Y Z|permal and [ XY Z|rnermal, Equation[4.D is then used

with C' = 1.0 to calculateD™ ™%, The transformation parameters are then scaled u%ﬂa*gﬁ—cj ie.

Xirans = Xrormal o g?,’;jf:;g’;. Finally the rotational components are divided®@y= 4.08.

trans

4.4.3 Summary of Registration Parameters

The registration algorithm as described has many paramatet their selection will influence the suc-
cess of the algorithm. The parameters are summarised ie[#ahl

The performance of the proposed registration algorithnd wgl depend on the value used for the
parameters listed in Taldle 4.1. The remainder of this Chaptivided into 5 experiments. The first four
investigate the sensitivity of the algorithm to four of therameters , ultrasound processing, number and
distribution of ultrasound slices, number of step size ofidas, and the capture range. The chapter is

concluded with an experiment to validate the performande@tomplete algorithm on 4 sets of data.

4.5 Selection of Ultrasound Image Processing Parameters
45.1 Aim

Preprocessing of the ultrasound image from ultrasoundéitieto bone edge probability requires the se-
lection of two parameters. These are the artefact intettgigghold and the degree of blurring applied to
the ultrasound image. This experiment seeks to determira effect the value of these two parameters

has on registration accuracy.

4.5.2 Data

For testing of the registration algorithm we designed antstracted a phantom. Figure 4112 shows the
phantom. The phantom consists of a plastic pelvic bone amstate rigidly mounted on a thick plastic
base. 8 fiducial markers are also rigidly attached to thevpsr of the rigid base. We collecte@alCT
image of the phantom and 654 ultrasound slices of the phaimonersed in a water bath. Details of the
data collected are given in AppendiX A. The fiducial markeesenocating in both the @T image and in

the coordinates of the Optotrak camera. A tracked pointerwsad to locate the fiducial markers in the
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Ultrasound Processing

Artefact Distance Threshold 3mm

Artefact Intensity Threshold 0 to 250

Ultrasound Blur Radius 0to8 mm

Edge Probability Threshold -1,0

Slice Rejection IRED threshold 11 (ultrasound cross) / 5 (Re
erence)

Calibration Matrix Fixed

CT Model Processing (Adapted with change from Penney e2@0f)

Sobel Filter Oon

Maximum Value Mask Size 3x3

Registration

Number of Ultrasound Slices 10 to 600
Distribution of Ultrasound Slices Even or Weighted
Initial Step Size 4mm

Number Of Step Size Reductions 410 10

Ultrasound In Plane Resolution 0.088 mm

CT In Plane Resolution 0.7 mm

CT Image Interpolation Nearest Neighbour
CT Blurring 4 mm Gaussian Kernel
CT Out of Plane Resolution 2mm

Registration Starting Distance 10 to 60 mm
Degrees to mm Conversion 0.25° /mm
Convergence / Termination Criteria Yes

Similarity Measure Cross Correlation

Table 4.1: Summary of the parameters used by the registralirithm.
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Figure 4.12: The plastic phantom constructed for registnagxperiments. A plastic pelvis and prostate
are rigidly mounted on a thick plastic base. 8 fiducial maslame also rigidly attached to the plastic
base. The fiducial markers are used for gold standard ratiisis between different image sdis{CT and
ultrasound). The reference rigid body clamped on is remdeefCT] imaging. Its purpose is to track

motion occurring during ultrasound scanning.
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Optotrak coordinate system. A point based registratiowéet the two point sets was then used to get a
gold standard version dfs s (nrr—0[GS]. The 8 fiducial markers are located so that their centroid is a
the prostate, to minimise errors in the gold standard toansf To allow for movement of the phantom
during ultrasound scanning a reference body was attachiée fghantom.

Ultrasound and_dT images of the phantom were used for thisrerpnt. 32 of the ultrasound
images were manually segmented and these were used faniguthe look tables used by the ultrasound

processing algorithm.

45.3 Method

Two experiments were performed. The first was to look at tfecebf artefact intensity threshold and
blur radius ol TRE at the prostate. The second was to try ampare the automatic image processing

with a manual segmentation.

TRE at Prostate
The[CT data was processed to a bone edge probability imna@&¢r) as per Section 4.3. The pro-

cessing of the ultrasound data was performed as descrikfgeciior 4.1 to give an ultrasound derived
bone edge probability imageBE Pys). This is a cloud of 3D points in Optotrak coordinates found
usingTy—o- Ultrasound probe calibration was performed on a pinhettta¢d to the phantom and
immersed in the same water bath, so there should be no spesedid error present iy 7—.o. Ul-
trasound image processing was repeated using differemésalf artefact intensity threshold and blur
radius. Blur radius was varied from 0 to 8 mm in 1 mm steps atefaut intensity threshold was varied
from 0 to 250 in steps of 10, 26 x 9 = 234 versions ofBE Py ¢ were tested. The ultrasound images
are 256 level grey scale images so the maximum possibleeatiefensity threshold is 255. A threshold
of 255 would result in all ultrasound data being discarded.

The registration algorithm detailed in Sectlonl4.4 was useggister each version @ E Py s to
BEPcr. The[CT was put into the Optotrak’s coordinate system ugigg ,,.»y—o[GS]. The ultra-
sound image® E Py s were then perturbed using a random transform of distance &sdescribed in
Sectior{ 4.4.2. The registration algorithm was then usedtag estimate df’s y;(n,r—ur and hence
Tsn(nrry=o[Estimate]. The[RM$ distance between the nominal prostate points seeos[1.6.1)

defined bYT's rs (nrry=0[GS] @ndT s s (nrry=o0 [Estimate] was then calculated.

Comparison with Manual Segmentation

An alternative to using the automatic processing of thestiund image would be to manually segment
the ultrasound images. It would be interesting to know homnoethod compares with registration using
a manual segmentation. Rather than manually segmentitigeallltrasound images (over 600) to find
the[TRE directly, we attempt here to find it indirectly by adating the_ TRE with a separate image
similarity metric. This is done using only the 32 images fdrnieh we have a manual segmentation.

For each of the 32 manually segmented imadés;{ a look up table for bone edge probability
is constructed from the other 31 images (ie. leave one otih¢ds This look up table is then used to

process the imagg.S; to a bone edge probability imadeF P; as per Section 4l1. This bone edge prob-
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ability image is then compared to the manual segmentatiohV; using a normalised cross correlation
similarity measure, defined by Equation 4.10is the number of pixels in each imag¥, A N;[j] refers
to thej*" pixel of the manual segmentation of tié image. BE P;[j] refers to the corresponding pixel

in the bone edge probability image.

I MAN;[j] x BEP]))
VI MAN(j2 x YL, BER[j]?

An average value of image similarity for all 32 images is oldted. Calculation of the average image

Similarity =

(4.10)

similarity is repeated for the values of artefact threstanid blur radius as in the preceding experiment.
The average similarity can then be plotted againsiihel TR&leded in the preceding experiment. As
the similarity metric will be one if the images are identitan it may be possible to extrapolate a TRE

for a theoretical manual segmentation of the ultrasoundjéna

454 Results

Figure4.18 shows tHe TRE at the prostate versus artefasttald and blur radius. For the phantom data
it can be seen that the selection of the artefact threshold@aase thE TRE to vary significantly, (by up
to 1.24 mm). Selection of blur radius does not have any siaifieffect on the registration accuracy. As
larger blur radii require longer processing time it therefmakes sense to use little or no blurring. The
minimum value fof TRE occurs at 240. Above this limit fhe TRIEEreases dramatically, presumably as
there is insufficient bone surface left to perform a regtiira

Figure[4. 1% shows the image similarity metric plotted agiathe TRE calculated at the prostate.
Each data point represents a look up table using a particolabination of blur radius and artefact
threshold. Thé_TRE is calculated as above, by registeriagotbcessed ultrasound to the]CT image.
The image similarity measure is calculated by comparingptioeessed individual slices to a manual
segmentation of the slice. It was found that the relatignbleitween the image similarity metric and the
[TRE depended on the artefact threshold used. Thereforadhedual data points have been grouped
depending on their artefact threshold.

For artefact threshold below 150, increasing the artefaeshold tends to increase the image sim-
ilarity metric and reduce tHe TRE. For artefact thresholasva 150, increasing the artefact threshold
continues to reduce tlie TIRE, however the image similaritfrimeeduces. For this reason it was not
possible to extrapolatefa TRE for a similarity of 1.

The change in the correlation direction raises the questiovhether a segmentation using a high
artefact threshold will outperform a manual segmentatideing a high threshold will exclude all but
the strongest bone edges, whereas a manual segmentatiamciuifle weaker edges due to the human
operator extrapolating a surface between two obvious sesfaln cases where many ultrasound slices
are available (as is the case here) rejection of all but iomgést edges may lead to better registration
results.

There is some evidence that this may be the case. A compérédaeen the results bf Penney et al.

(2006) and Barratt et al. (2006), see Tdblé 2.6. These papedsthe same data sets, Penneylet al. (2006)
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Figure 4.13: Plots of the registration TRE measured at tlostpte surface, for a range of artefact
threshold intensities and blur radii. In each case the draog show 1 standard deviation of the results
at that point, ie for the threshold value plot the error bapgesent the variation in TRE due to the blur
radius at that point. It is clear that for the phantom datastiection of the right artefact threshold is

important, while the blur radius has no significant effecttomresults. The minimulm TRE was achieved
using an artefact threshold of 240. At a threshold of 250#R& Thcreased dramatically (to over 5mm),

therefore this was not plotted. The following registratarameters were used: initial step size 4 mm,

Terminal step size 0.25 mm, Registration start distance 8 mm
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Figure 4.14: Registration TRE versus image similarity foaptom data. Below an artefact threshold
of 150 there is a correlation between TRE and image simjlafiRE reduces as the similarity measure
increases. Above this threshold the correlation changestin, with TRE reducing as the similarity

measure reduces. Results for thresholds greater than @4@plotted as they give a very high TRE.

used automatic segmentation while Barratt et al. (2006) osmnually segmented data. The results were
presented as registratibn TRE across the entire pelvic kather than just at the prostate. Penney et al.
(2006) give an error of 1.63 mm, while Barratt et al. (2006) ge error of 2.17 mm, ie. automatic
segmentation outperforms manual segmentation in this. cisghould be noted that there are other
differences in their approaches that will also contribatéhieir differences in the error metric. A more

detailed comparison of the two methods on the cadaver datamake for interesting future work.

4.6 Number and Distribution of Ultrasound Slices

46.1 Aim

The ultrasound derived bone edge probability im&yeP s is defined as a set of discrete points. By
including more points from some regions of the pelvis thanrfrothers it is possible to weight the
similarity metric described by equatibn ¥.8. This experitr&ms to show what effect both the number

of ultrasound slices used and their distribution will havetloe registration accuracy.

4.6.2 Data

The[CT image of the phantom (described in Sectioh 4.5) wad heee. Rather than registering the
ultrasound data to this we generated “simulated” ultradalata. Using the real ultrasound data would

introduce tracking and calibration errors present in theemeination of 7y ;—.o. To avoid this we
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created simulated ultrasound by re-slicing and interpuahelCT data along the planes defined by the
ultrasound data, transformed using the known gold standandformT’y M(mrbo[GS]‘l. The result
is two different representations of the same image, one txalbased image, while the other is a point

cloud.

4.6.3 Method

A slice classification algorithm was first used to classifg #imulated ultrasound slices into regions.
We manually defined three regions of the pelvis as 3D ellgsoiThese regions are defined in the
coordinate system of tie_CT data. The simulated ultrasolicessare transformed to the CT image
usingTL.;M(mnr):m[GS]—1 and classified based on which ellipsoid their centre poilta faithin. We
started with 654 ultrasound slices, 175 of these were ¢iadsas pubis slices, 228 were from the left
iliac, and 247 were from the right iliac. 4 slices did not falthin any of the classification ellipsoids so
were discarded.

The total number of ultrasound slices used was varied fronoBD0. The slices used were ran-
domly selected from the available slices. Three slice sieleenethods were used. The first randomly
selected slices from all subgroups of slices. The second aisly slices drawn from the iliac regions.

The third used slices drawn only from the pubic region.

The[CT and simulated ultrasound data were brought into milégnt usingTSM(mrbo[GS]*l.
The ultrasound data was then perturbed using a random aramsff size 10 mm as defined in Section
[4.4.2. The registration algorithm described in Sedfioiwiaé then used to estimal& y;(,,r)—v 7 and
hencels i (nrry=olest] ™ . Tsarnrm=olest] ' andTsy(nrr=o[GS]~ were used to measure TRE
at the prostate for each data point. The registration op#tiin was repeated 20 times for each data

point.

4.6.4 Results

Figure[4.15 shows the relationship between the numberagsiised, their distribution and the resulting

[TRE at the prostate.

Registration using a subset of slices from across the pmhdaccessful providing more than 100
slices are used. Registration using just iliac slices gigidtably poorer results, they also show an
increase iM_TRE as the number of slices is reduced. The sassilig just pubis data were very poor,
with[TRE around 20 mm. For this reason they are not shown inreig.15.

4.7 Number of Step Size Reductions

4.7.1 Aim

The registration algorithm defined in Sectionl4.4 procegdfdiving the step size each time a local
maxima is found. This experiment seeks to determine whatefhe number of step size reductions
(and hence the terminal step size for a constant initial sisp of 4mm) has on the accuracy of the

registration algorithm.
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Figure 4.15: Registration 6f CT to simula{edICT data. TREwalted at points on prostate surface. For
each number of slices the registration was repeated 20.tiRegstrations with TREE greater than 2 mm
were classed as failures and rejected. (This gave 3 faibudl pelvis 60 slices, 2 at All Pelvis 40 slices,

Otherwise no data point had more than 1 outlier). The avesagestandard deviation of the remaining
TREs were computed. The error bars represent +/- 1 stanéardtidn of the successful registrations.
When using slices spread across the pelvis (All Pelvis) theltrappears fairly stable as long as more
than 100 slices are used. Below this and the TRE steadilybslirRegistration using just the iliac data
appears to work but gives a worse result than using all daggisRation using just the pubis data is not

shown as the TRESs were very high, averaging 20 mm.
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Figure 4.16: Effect of number of step size reductions onstegfion accuracy. Registration TRE of
points on prostate surface using synthetic (ideal) data.ekoh number of reductions, the registration
was repeated 10 times. Failed registrations (with a TREtgrehan 2 mm) were removed (1 failed
registration at 4 step size reductions). The average andatad deviation of the remaining TREs was
computed. The error bars represent +/- 1 standard deviatithre remaining data. Beyond 8 step size
reductions there is no improvement in average result (ar@uBI’5 mm), however the standard deviation

continues to reduce.

4.7.2 Data

The phantom data was used with simulated ultrasound, asgetipa4.6.

4.7.3 Method

The simulated ultrasound was registered to[thé CT usingvallable ultrasound slices and different
numbers of step size reductions, from 4 to 14. At each datat plo¢ registration was repeated from

different random starting points using the same processiéa$i

4.7.4 Results

Figure[4.16 shows the results. More step size reductiongiwé a better registration. The improvement
(in reduction of standard deviation, rather than averagajicues beyond 8 step size reductions. It is
interesting to compare the terminal step size with the el of the[CT image used @ x 0.9 x
0.5mm?). The[CT image resolution is not having a significant effetttioe registration accuracy in
this case. The terminal step size has a larger effect. Thefibegained by using more than 8 step size
reductions are marginal in the context of the system errsth&re is a computational cost in using more

step size reductions we only propose to use 8 step size fedsi@h practice.
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4.8 Optimiser Capture Range
4.8.1 Aim

The experiments to date have only used registrations frantirgg estimates of’s;(n,r)—v 1 Close to

the known gold standard registration. We have not yet déteainhow close our initialisation estimate
of Tsp1(nrr=u 1 Will be in theatre, this will be discussed more in Chapier @r & similar problem
Penney et all (2006) used an initial estimat@'of;(,.. v based on picking three skin surface points.
They generated starting estimate®y; (.- based on the assumption that these skin points were
localised with an error of 20 mm. We measured the distaneadgaation 419) of 300 of their starting
estimates from the known gold standard valu€'ef; (.. The average starting distance was 30
mm. If we assume that we will achieve similar initialisatitwen our algorithm must be able to reach the
global maximum from initialisations at the this distanc&eTaim of this experiment is to determine the

capture range of the algorithm.

4.8.2 Data

The same “simulated ultrasound” method as used in Se¢ti6rew 4.7 was used to generate ultrasound
slices from voxel basdd T T images. In this case rather thiag tise phantom data sets we used the 21
[CTl data sets used in Chapkér 3. These were first registerde fghantom so that the ultrasound slice
positions from the phantom scan could be used to re-slicdatee Thé_ CIl images were first processed
to bone edge probability images using the method in seLii@n Bhis gave 21 data sets of voXellCT

images and corresponding slice based images of the same data

4.8.3 Method

The registration algorithm described in Secfion 4.4 wasl iseegister the simulated ultrasound to the
matchind CT data from starting estimat&s;,,,y—[init]. The starting estimates were generated
by perturbing the known gold stand&fW y;(,,,r)— v 1[G'S] by a distanceD;,.;;. The value ofD;,;; was
varied from 10 to 60 mm. At each distance the registrationn@psated 10 times for each of the 21 data
sets. The convergence checking termination criteria desttin Sectiofi 4}4 was used with the following
parameters.N,., was 10,Dpcriur Was 10 mm, andyp.s, Wwas 2 mm. The method for perturbing
the transformations is described in Secfiod 4.4. The resudre measured as a registration failure rate
(the percentage of registrations with a TRE at the prostaatgr than 2mm) and as the RIMS TRE for
successful registration§._TIRE and failure rate were cated|both for individual runs of the gradient

descent optimiser and for the global optimiser which uspsatruns of the gradient descent optimiser.

4.8.4 Results

Figure[4.17 plots the results in termdof TIRE and failure aatgtart distances up to 60mm. On the left is
shown the performance of the gradient descent optimisés@win. This only operates reliably at a start
distance of 10mm or less. This is unlikely to be possible axctice. On the right the performance of
the full algorithm described in Sectién 4.4 is shown. By wpey the gradient descent optimisation and
checking for convergence of the resulting transforms itisgible to get satisfactory registration results

up to a start distance of 40mm. This is probably adequateufioapplication.
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Registration Results for Single Runs Registration Results using Repeated Runs and Convergence Check
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Figure 4.17: Registration TRE (left axes) and number otthilegistrations (right axes) for start dis-
tances up to 60 mm using re-slidedICT data. For each startstgnde registration using the repeated
run and convergence check algorithm was performed on 24rdiff CT data sets. The chart on the left
shows the performance of individual registration optirticgas using the gradient descent optimiser. On
the right is the performance of the full algorithm which rafsethe registration 10 times and checks for

convergence of the results. A failed registration was ddfamhaving a TRE greater than 2 mm.

4.9 Registration Using Real Ultrasound Data
49.1 Am

With the registration parameters determined as in the giegesections, the algorithm is now tested on
real ultrasound arld CT data, both on its own and in combinatith the shape model fitting presented
in Chapteif B. This experiment determines the accuracy wticlwtheT,,_. o, see Figuré_ 113, can be

found. In addition the experiment confirms the effects ofaher inTs,,— 5 ON registration accuracy.

49.2 Data

Four data sets were used (Phantom, Cadaver-01, CadavendZadaver-03, see Appenfik A). These
have CT data for the pelvis and matching ultrasound slicesse&ch data set a gold standard registration
between the two modalities was established using fiduciakens. In the case of the cadaver data, the
gold standard registrations were determined using bondairtgd fiducial markers, see Penney et al.
(2006) for details. For the phantom data the gold standaidtration was performed using a set of eight

fiducial markers around the pelvic bone, described in Segiib.

49.3 Method

The ultrasound data was first transformed to[thé CT datagubie known gold standard transforms
Tsjl\ld(nrr)bUI' All data sets were then transformed into the coordinateesy®f the shape model from
ChaptefB. For each of the four data s€ts,/— 1/[nd9]~! was found by aligning the"GT data to one
of the pelves (SM-K) used in the shape model building in CédBt T's /- s [nd9]~* was then used
to transform both theE_GQT and ultrasound data to the modebtsdinate system. THe CT image was
re-sampled to the voxel sizes of the shape model usingheati interpolation. The ultrasound data set

did not require interpolation as the data is stored as coatds in 3D space.
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Region Phantom Cadaver-01 | Cadaver-02 | Cadaver-03
Total Slices Collected 721 282 482 342
Used for LookUp Table Construg- 32 N/A N/A N/A
tion
Rejected Due to Lack of visible 35 81 164 10
IREDs
Pubis 175 82 81 39
Left lliac 228 70 176 152
Right lliac 247 46 59 140
Not Classified 4 3 2 1
Total Good 650 198 316 331

Table 4.2: The results of slice rejection and classificatibthe four data sets used. Slices with less
than 11TRED s visible on the ultrasound cross or less tharERDIR visible on the reference object were
rejected. Slices were then classified into regions baseleopdsition of their centres relative to regions
manually defined on the Phantomdata set. Slices that fedldritll regions are listed as Not Classified

and were not used.

Conversion of the phantom ultrasound data to probabilityges was done using an artefact thresh-
old of 240 and a blur radius of 1 pixel as suggested by the aisaly Sectiori 4]5. Conversion of the
cadaver data was done using the same parameters and loblepda Penney etlal. (2006). The ultra-
sound data for each data set was classified into regions bagbe position of the slice centres relative
to the regions manually defined in the phantom data set. aBlshows the results of this slice classi-
fication. Conversion df T images to bone edge probabilitgges was done using a Sobel filter and a

local maximum as described by Penney et al. (2006).

For each data set, the ultrasound data was registered [ioltiiat@ using the algorithm described
in Sectior 4.4. Four different variations were trialled. ofmethods of processing the ICT data and two
different distributions of ultrasound slices were used.

The[CT data was first transformed to bone edge probabilitgasalirectly. The registration error
resulting from this comes from the registration method pidy it is an estimate of the accuracy with
which we can estimatés ;(,,»r)—o. However we can also fit a shape model to each of the four deta se
using the methods outlined in Chafiér 3. This fitted modeltban also be transformed to a bone edge
probability image. Registering the ultrasound data to shiape model derived bone edge probability
image gives an estimate of the combined error in estimafing - »s and T'sps(nrr)—o0, and hence
Thi=o0-

The three cadaver data sets used here are from female cad8irailar data for male cadavers was
not available. The shapes of the male and female pelvis idasienough that the registration errors

(error inTsar(nrry=0) should be very nearly the same as those for a male pelvisceHtiie use of
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female pelves to estimate this error is valid. Whether it$® afalid to estimat&s,,— s by fitting the
male shape model to the female data is a more complex questhia subject is discussed further in
AppendiXB. To account for this here we relaxed the shapetm@ints of the model, allowing the shape
parameters to fall beyond the 3 standard deviation limitlwgleen fitting to mal& MBI data. The shape
model fitting here is intra-moddl (CT model[fa ICT patienthetthan inter-mode[{GT model fo MRRI)
patient. In this case it was found that it was not necessargrstrain the shape model in order to achieve
good results.

As shown in Sectioh 416 the number and distribution of utival slices used will impact on the
registration results. The number and distribution of slieeas therefore controlled. Two alternative
strategies were tried, one used slices evenly spread abmpslvis, the other used relatively more slices
from the central pubic region. During development of thagtegtion method it was noted that weighting
the algorithm to fit the pubic region more accurately gavenelfTRE at the prostate on average. This
weighting can be done quite simply by using more slices frloerpubic region, as classified in Tablel4.2.
Similarly it was noted in Section 4.6 that slices from thadliregions were necessary for a successful
registration. In practice it will be necessary to implemargystem to control the distribution of slices
used for registration in theatre. This will be discussethierrin Chaptell6.

Here 2 distributions of slices are compared, one has an =ippaitely even distribution of slices
with 168 slices from each iliac region, and 84 from the pubisi/st the other weights the registration to
the pubis by having 180 pubis slices and 120 slices from daahregion. In each case the same total
number of slices (420) was used. The actual ultrasoundsslised were randomly chosen at the start
of each registration. In cases where the number of slicedwas greater than the available slices (see
Table[4.2) some slices (randomly chosen) were used multtipkes as necessary. Whilst this will not
add new information to the registration it will still weigtite registration to that region.

For each data set, edchICT processing method, and eacloultceslice distribution the ultrasound
to[CT] registration was repeated 100 times using the parasngttewn in Tablé 4]13. Random selection
of ultrasound slices was performed for each repeat retjmtraEach registration was started using an
initial estimate forl’s ;)= o that was based on perturbing the known gold stan@gsd ;.o by
a random transform of distance 10 mm (as defined by equa@)n 4.

For each registration the error was determined by calogatie distance error at the “nominal
prostate” points defined in Sectibn 116.1. They were firsisfarmed to the Optotrak’s coordinate sys-
tem using the known gold standard transfofin .- o[GS]. The transform estimated using the
registration algorithm was then used, and the differenddérpoint positions measured. Registrations
giving a[TRE at the prostate greater than 10 mm were classesbasration failures. The results are
presented as the RMS TRE at the prostate for successfulregins and the percentage of failed regis-

trations.

49.4 Results

The results, expressed as fhe RMS TRE for successful r&iipsts and a failure (TRE greater than

10mm) are shown in Table 4.4. These results are for individues of the gradient descent optimiser,



4.9. Registration Using Real Ultrasound Data

Parameter Phantom Cadaver-01 | Cadaver-02 | Cadaver-03
Number Of Ultrasound Slices 650 198 316 331
Number Of Non Zero Bone Edgg 7547242 931274 4281129 1802785
Probabilities
Initial Step Size 4 mm 4 mm 4 mm 4 mm
Ultrasound Slice Resolution (IN0.088 mm | 0.12 mm 0.12 mm 0.12 mm
Plane)
CT XY Resolution 0.70 mm 0.70 mm 0.70 mm 0.70 mm
CT Z Resolution 2mm 2mm 2mm 2 mm
Registration Start Distance 10 mm 10 mm 10 mm 10 mm
Degrees to mm 0.25 0.25 0.25 0.25
Deg/mm Deg/mm Deg/mm Deg/mm

Table 4.3: Parameters used for registration used in vadidaperiments.

Data Set
Method Slice Distri- | Cad. 01 Cad. 02 Cad. 03 All Cads. | Phantom
bution

Reg. Only 168:84:168 | 3.64 (10%)| 3.19 (25%)| 6.71 (17%)| 4.79 (17%)| 1.62 (0%)
Reg. Only 120:180:120 3.70 (8%) | 4.44 (34%)| 6.54 (18%)| 5.03 (20%)| 1.70 (0%)
Reg. & Mod. | 168:84:168 | 7.85 (56%)| 7.08 (31%)| 7.85 (30%)| 7.57 (39%)| 4.32 (0%)
Reg. & Mod. | 120:180:120 7.42 (30%)| 7.68 (25%)| 6.99 (15%)| 7.35 (23%)| 3.96 (0%)
Model Only | 120:180:120 6.43 6.27 2.47 5.36 3.56

VvV R42 — R22

131

Table 4.4: The registration results for the 4 data sets usomg edge images derived from the actual
data (Registration Only) and a shape model fitted td _the &&,dnodel (Registration and Model).
The figures are expressed ds a BMS TTRE in mm at a nominal grastdta failure rate in percefi (RMS

[TRHE greater than 10mm). These results are for individuas nfrihe gradient descent optimiser, not the

repeated run and convergence check method discussed iorf@ét The final row is an estimate of the

error induced by using a shape model to segment the pelvie.bon

not the repeated run and convergence check method disdnsSedtio{ 4.4.

The last row of Tablg4]4 is an estimate of the registratiooreraused by segmenting the data with
a shape model. In Chapfer 3 we predicted that this error woldormally distributed with an RMS

error of 5.3 mm. The results in the last row of Tablg 4.4 agritk this estimate.

Weighting the registration to the pubic region had variaeleults for the registration error only

tests. When using the shape model however the pubic weiglvisgyenerally beneficial.
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4.10 Discussion

4.10.1 Optimiser Performance and Registration Run Time

The results in table 4.4 indicate that when used on real Hatgradient descent registration optimisation
algorithm will fail 23% of the time. To allow for this in the we propose running the algorithm
repeatedly and checking for convergence of the result,sasigised in Sectidn 4.4. Based on our results
it is likely that the optimiser will have to be run 20 to 30 timé\t present the optimisation algorithm has
an average run time of approximately 10 minutes on a deskiof Rerefore we would require up to 300
minutes to perform the registration. To be used in theatr@lforithm must run in less than 20 minutes.
For clinical implementation it will be necessary to incredise speed of the algorithm. This can be done
in two ways. Firstly we will investigate faster and/or moobdust optimisation algorithm. Using a more
robust optimiser would reduce the need to run repeatedtratiims. Secondly, we could reimplement
the algorithm in parallel take advantage of either a muitieessor machine or a graphics processing
unit. Though the speed increase required is very large,lgogitom as currently implemented is very

simplistic, so it is likely that using these approaches dgigld a sufficiently fast registration method.

4.10.2 Registration Error

Two errors can be determined from the experiment in Se€fifin @ne is due to the performance of
the registration algorithm used on images with well definedebedges and no ultrasound calibration
errors. This is th€ TRE for the registration only PhantonadatTabld 4.1. However, the bone edges
in the ultrasound images of the phantom (a plastic/waterfiate) are significantly better defined than
they are in ultrasound images of human pelves (a bonelssfte interface). Therefore the bone edge
probability images from the cadaver data are less accunateftom the phantom data. Refer back to
Figure[4.8 for an example of this. Furthermore there is artiaddl error due to the speed of sound
mismatch between the ultrasound calibration medium andanuissue. The registration error shown
in rows 1 and 2 of Tablg_4l.4 for all phantom data (4.79 and 5.68 e a combination of three errors.
These are the registration algorithm accuracy, the erroomverting the ultrasound images to bone edge
probability images, and finally the the speed of sound mism#éidr the ultrasound calibration. This is

the error we would expect to achieve in theatre, using ouectimethods.

4.10.3 Conclusion

In this chapter we have detailed our implementation of arasttund t@_CIT registration algorithm. The
algorithm has been optimised to account for the fact thaldllémage is an approximation. The CT
image is formed by warping another patieft’s|CT to fit the peasivelRARP patients MRI. The algo-
rithm requires significant optimisation before it will beady for clinical use. We have also assessed the
registration error for the algorithm and determined theusacy of the transforr’y;—.o.

The error due to ultrasound flo CT image registration (5.03 wen be projected on screen using

the procedure outlined in Sectibn 116.2. Figure ¥.18 pewia visualisation of this error overlaid on a

typical surgical scene.
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y Simulated Points

0,=13.86 Pixels (3.3 mm)
 0,~13.93 Pixels (3.1 mm)

Figure 4.18: A landmark point (near the apex of the prostae)een chosen and perturbed by a random
Gaussian error in 3D equivalent to the registration errd3%nm) 1000 times. The resulting projections

give an indication of the on screen error due to this errorcau
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Chapter 5

Endoscope Calibration and Tracking using an

Optical Tracker

The preceding two chapters have placed the patient’s pratpeimage into the coordinate system of
the Optotrak system. To complete the image guided surgists we now find the transforms to put the
image onto the endoscope scre€p,.. g5 from Figurd 1.4.To—. g5 is the product of three transforms.
The endoscope’s intrinsic projection charateristigs —. 5, the tracked endoscope’s extrinsic transform
Ter— gL, and the endoscope’s tracking matfiy—. 7.

In this chapter we first define our methods for estimating edttese transforms. We then present a
novel method for determining the error in estimating eadhe$e transforms. Following this we present
the results of our endoscope calibration and a series ofiexgets to test potential improvements in the

tracking system.

5.1 Endoscope Trackinglp— gr

ThedaVinci’™ endoscope is tracked using tracking markers (IREDs) mdumtethe endoscope and
the same Optotrak Certus tracking system as was used ingisération of the preoperative data in the
preceding chapter. The Optotrak was used in preferencestdatinci’™ 's own kinematic data for
three reasons. Firstly it avoids the need for an additiamaisform from thedaVinci” ™ 's coordinate
system to the Optotrak’s coordinate system, avoiding aitiaddl calibration step and the accompa-
nying errors. Secondly the system remains independeneafakinci ™ and could be applied to any
endoscopic system. Finally, results in the literature fatascope tracking using tlaVvinci” ™ kine-
matics [Mourgues and Coste-Mé&né (2002)] are not encouraging.

Figured 511 anf 512 show the tracking collar used and thet@gt@ertus system in theatre. The
Optotrak is used to triangulate the position of each TREDHanttacking collar. ThETRED positions
define a rigid body which can be registered to a referenckitrgcollar rigid body to determin€o— 7.
The tracking problem is formulated as a Procustes poinhalgnt and the optimum transform found
using SVD. This is the same method as was used for the ultndsmoss, described in Section 412.1. As
described by West and Maurer Jr (2004) the design goal of audcking system is to place as many

tracking points as possible, spread as far apart as posaitdevith their centroid positioned at the point
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=\ Tracking Collagsems ==

Figure 5.1: The tracking collar mounted on tt&\Vinci” endoscope and the Optotrak camera system

in theatre.

to be tracked. The on screen error due to the endoscopertgaakcuracy will depend on the position
of the object being viewed and the projection charactessif the endoscope. This makes it difficult to
compare different results from the literature. One of timepdést ways to model the endoscope tracking
error is to use an anatomical point beyond the end of the eogesas the target point. The TRE for
this point can be determined using Equafiod 5.1 flgqm_Eum_e_r_ad L’I_B_Q_LS). This approach was used
byLShahidj_el_Jl.L(zo_(l)Z). Here we can use the same “prostae’ gpint introduced in Section 1.6.2.
The geometry of the resulting tracking system is shown iufés.2. The design shown in Figlrels.2

fails to meet this design goal for several reasons. The nuiERED:S is restricted by the quantity
of wiring required to be routed over the endoscope. The spoédhe[IREDs around the axis of the
scope is restricted by the need to maintain clearance tdaWmci’* arm. The most significant design
problem is the distance from the tracklng IREDs to the tapgétt along the axis of the endoscope. This
is necessary to maintain a line of sight onfhe TREDs from theu® cameras.

The relative performance of the tracking set up can be détednby using equatiofi 3.1
dELth_aLLLQK_e_t_a' [(19_48)].FLE refers to to the localisation error of a single IREDRE is the er-
ror at the target pointd;, is the distance of the target point from thg, principal axis of the visible
[REDSs, andf; is the moment of the visib[eIRBDs about that axis.

TRE(r 1 1 d2
( <FLE(2>)> ~ (1 +s 3 f_z;) (5.1)

The same method as in Sectlon 412.1 of calculating the ratxpected TRE to expectéd FLE for all

possible combinations of visif[ETREDs and plotting thetla@sl worst cases was used to generate Figure

B.3. Provided at least IO0TREDs are visible this ratio is thag 7. This can be compared with the same
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Figure 5.2: A schematic of the tracking collar and endosabhmeving the approximate dimensions.
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Figure 5.3: Ratio of the expected values of the abs@luie TRIEEAE for the endoscope tracking system.
The ratio is calculated for all possible combinations ofblsIREDS using equatidn 3.1. The best and

worst case values are shown for each number of vigible IREDs.

plot for the ultrasound tracking cross used in the precedivapter, see Figute .3, where values closer
to 2 were the norm.

If we were to assume (as is commonly done in the literaturafgh et al. [(2002),King et al.
(1999)]), that the expected value of fhe FLE is 0.2 mm (from @ptotrak specification, NDI (1992))
then the expected value of the TRE will be somewhere betwesdZ mm, assuming that at least six
remain visib@ This error is similar to the registration error of 5 mm idéatl in the preceding
chapter, corresponding to an on screen error of around Xsp{zee Figure_4.18). If we were to be
optimistic and use the figure of 0.02 nim BLE from Barnes ei28107), then the expectéd TRE would

be less than 0.6 mm. It will be shown in this chapter that blodis¢ figures are significantly less than the

LIt was found that in practice many of the IZTREDs were obscbsediring and surgical equipment. The assumption of six

[RED:Ss is based on our experience in theatre
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errors seen in practice. Equat{on]5.1 assumes anisottapicpgeneous, and normally distributed error,

which is not the case when using an optical tracking system.

Defining the Reference Tracking Body

As discussed for the case of the ultrasound cross in Seciibfi, 4he apparent shape of the tracking
collar (the positions of tHe TREDs) will vary across the kiag volume due to the effect 6fIRED angle
on tracking accuracy. Therefore a reference tracking cdidined “front on” to the Optotrak cameras
may not perform well in practice, when the collar will be atigas angles to the Optotrak. To allow for
this the same iterative method for defining the referenaadras in Section 4.2.1 was used. For a given
sequence of tracking frames, the referdnce TRED patterrfovasl by registering all frames to the first
frame in the sequence, then averaging the registeredlIREE@w. This average frame was used as a
new estimate of the reference frame. This process is rapeatd the average RMS registration error

converges.
5.1.1 Calibration - Calculation of T EndoTrkToEndoLens and Trntrinsic

Endoscope Model

The endoscope camera was modelled as a pinhole camera,dratiezl model of Heikkila and Silven
(1997). A point defined in the 3D coordinate system of the @ako(X o ptotrak) IS first transformed into
a coordinate system with an origin at the endoscope lens analong the central rayX(gndoLens)-

This transformation uses the tracking transform and thescmpe’s extrinsic matrix, equatipbn b.2.

XE’rLdoLens = TETbEL X TO=>E'T X XOptotrak‘ (52)

The normalised image projection is now defined as Equhti@n 5.

T LEndoLens
— — ZEndoLens
X, = _ (5.3)
y YEndoLens
ZEndoLens

Radial and tangential lens distortion up to 4th order evdiatéerms were modelled, the normalised

coordinates after distortion are given by Equalion 5.4.

Zd 2 4
Xd = = (1 + Drad(l)r + Drad(2)T )Xn + Dtan
Ya
where 1% =22 + 3?2 (5.4
2Dan(1)2y + Dyan(2)(r? + 22%)
and Dign =

Dian(1)(r? + 2y?) + 2Dyan (2) 2y
where D,..4(1,2) are the radial distortion coefficients at},,,(1,2) the tangential distortion coeffi-
cients. The distortion corrected normalised points are gitejected to on screen pixel coordinates using
Equatiori5.b.

L EndoScreen fc(l) 0 CC(l) Tq
YEndoScreen = 0 fc(2) CC(Q) Yd (55)
1 0 0 1 1

wherefc(1,2) are the endoscope focal lengths anfll, 2) the principal points. This gives an intrinsic

camera model with 8 parameters plus a 6 dimensional exdriresisform for each view.
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Figure 5.4: An example of the endoscope poses and calibrgtid used for calibration.

Endoscope Calibration

Calculation of the endoscope’s intrinsic and extrinsi@pagters was done using a set of images of a reg-
ular grid designed by Wengert et al. (2006). This is visibl&igure[5.#. Determination of the extrinsic
matrix is as proposed hy Tsai and Lenz (June 1989) and wasding aMATLABRImplementation
made available by Wengert et al. (2006). For accurate eaidr the images of the grid must be taken
from a range of view points. For tracking tdaVinci’ ™ endoscope the possible range of views is lim-
ited by the possible motion of the endoscope and by the fieldewf (or characterised volume) of the
Optotrak camera system. Figlirel5.4 shows an (ideal) exaofiplee pattern of endoscope orientations

used for calibration. They are evenly spread on a grid spareni angle of 60 degrees.

An automatic feature extraction algorithm suppliec_by Weet al. (2006) is first used to extract
the grid points on each image. Optimisation of the globainstc parameters is then performed using
a gradient descent algorithm, implementedMATLABR) in the “Camera Calibration Toolbox”, freely
available on line. FolV calibration images this algorithm outputs the global (camrto all images) in-
trinsic parametersi(z ;. gs) andN transforms Tarid= Lens|i]). These transforms are estimated based
on the visible orientation of the grid. For each image we &lsee the tracking transfornTo_, gr[i])
determined from the measurBd IRED positions. Equdiioh Bfthels the relationship between these

matrices.

ToridsrLens[i] = Ter=rr X Tospr[i] ™" X Taridsoptotrak (5.6)

These form a set oV equations which can be solved 07— g1 andTgrid=optotrak- A MATLABR)
implementation/(Wengert etlal. (2006)) of the method prepdsyl Tsai and Lenz (June 1989) was used

to solve this.
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5.2 Determination of Calibration and Tracking Errors

The accuracy of the preceding endoscope calibration cassessed by measuring the back projection
errors. The back projection error is the average differdirc@ixels) between the location of a point
on the calibration grid determined using the estimatedst@ms’o— gs andTGyrig=optotrak and the
point on screen measured from the image. The average bgek{wa error however does not provide an
estimate of the tracking or calibration error. If only a shmaimber of views are used for the calibration
it is possible to have a low back projection error even if teéneates ofi'gr—. s andTer— g, are
incorrect. The optimisation algorithm can find a solutioattiminimises the back projection errors
for the limited views used in calibration but is in fact notlidafor other views. This problem can
be detected in practice by using additional views that weteused in the calibration to measure the
back projection error. The back projection error found w#l a function of three errors. The tracking
error (error inTo— gr), the intrinsic calibration error (error iz, gs) and the extrinsic calibration
error (error inTgr— ). To properly understand the performance of the image gaielaystem it is
necessary to estimate these errors individually. Estonaif these errors can be done if the endoscope
calibration is performed on an endoscope where the fousfibams (the three endoscope transforms
PlusTcrid=optotrak) @re known. This cannot realistically be done for tt/inci’ ™ endoscope, hence

we propose a Monte Carlo simulation of endoscope calibvatial tracking.

5.2.1 Monte Carlo Modelling of Calibration

We start with the assumption that there will be three maincesiof error in the endoscope calibration
procedure. These are the endoscope tracking error due &rirein localising the individud[ TREDs,
the point extraction error for determining the on screeration of the calibration grid centres, and
potentially a scaling error in the printing of the caliboatigrid. We have not attempted to model any non
rigid motion between the endoscope lens and the trackingrc&8xamination of the endoscope suggests
that this non rigid motion should be negligible, but this hasbeen proven. Modelling of the calibration
process is then done as follows.

A set of N versions ofl o, gr|[i] are created. It is important that these are representdtizedn-
scope poses that can be achieved in practice. In our caseeadrassforms recorded during an actual
endoscope calibration. A set of grid pointg;,.;4 are first defined in 3D space. We use a grid of 51 by
51 points with a centre distance of 4mm, which is the sameagtid used for calibration as shown
in Figure[5.4. If a scaling error is being modelled the gridirst scaled as necessary. This is to model
any inaccuracy in printing the grid. In our case we are pnoptihe grid using a standard office laser
printer so it is unlikely to be error free. The grid measur8® By 200 mm, and we can measure its
size to within 1mm easily. Therefore it makes sense to margirg errors oft0.5%. The grid points
are transformed to Optotrak coordinates usigiqi— optotrak, then to the endoscope lens coordinate
system usindlo—. gr andTrr— ;. We used values for these three transforms taken from amlactu
calibration of the endoscopel’s ;- g5 is then used to transform the points to on screen points. At
this point we can add an error corresponding to the error faatieég the centre of the on screen grid

point.|Shahidi et al! (2002) cite a sub-pixel point extracterror for a similar point extraction algorithm.
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Therefore we add normally distributed point extractioroewith a standard deviation of up to 1 pixel
at this point. The point extraction algorithm used [Wengeil. (2006)] does not successfully extract
every visible point, so some points are also removed at thges The removal of points is based on
that achieved during an actual calibration. This gives @feh screen points for each simulated image.
These are then passed, along with unscaled points in 3Detodlibration algorithm which estimates
Trr—gs andTgrid=Lens[i]. The next stage is to generate a matching set of estimat&% fogr[i].

To- gr|i] is estimated for each view as follows. The reference versidine tracking collarTREDs
are first put into Optotrak coordinates using the known gtaddard transform&,—. g7[i] ~*. As shown
in Figure[5.3 the tracking error will depend on the number emfiguration of TREDs visible. There-
fore some of thETREDs are now removed. The removalof IREDssed on the TRED visibility states
observed during an actual calibration procedure. The mem@ilREDs are now perturbed by an er-
ror function. The perturbed TREDs are registered back toré¢tierence frame to give an estimate of
To- prli]. The error function used for the perturbation of fhe TREDK ave a great impact upon the
the results. Determining an appropriate error function kg part of the novelty of this work and is

discussed now.

5.3 Determination of IRED Localisation Error

ThellLE for an Optotrak tracking system is known to be aniguitr and dependent on the position and
orientation of the individud TREDs [Wiles etlal. (2004)k Has also been shown to markedly increase
when tracking moving IREDs [Barnes ei al. (2007)]. For ermdpg calibration the endoscope is held
static during data collection, so the error duefo TRED motian be ignored. Wiles etlal. (2008) present
an analytic method for modelling the accuracy of a point basgistration with anisotropic normally
distributed error. However tHe TlLE is correlatedfo TRED ifios and[IRED angle. The calibration
process uses a set of discrete views witi the IREDs in diffeméentations and positions so it is unlikely
that the ILE will be normally distributed. Therefore we réga method to model tHe TILE that does not
assume a normal distribution. We do not know at this stage Wieadistribution of ILE will be, so
we propose a method to measure [fhelILE that occurs in an amiibiation process. After tHe IlE
is estimated we can attempt to fit an analytic model to it. H@#ethis is not necessary as long as
the[IRED positions and angles used to estimate thé ILE areseptative of those encountered in the
tracking process to be simulated. In this case we can useé¢hsured ILEs directly as a look up table
in the simulation.

The obvious method for determining ILE is to track {he TREDishva separate, more accurate
system, such as is done lby Barnes et al. (2007)[ The IRED@usineasured by the Optotrak can then
be compared to a set of known gold standard TRED positions.tHeoOptotrak system however this
method has a major shortcoming. As fRellLE is dependent opdbigion and orientation of tie IREDs
the measurement must be representative of the positionsroagin use. In general this is not practical.
We therefore propose a method that estimateE the ILE usaiiREED positions recorded in use.

A set of measured marker locatiofs,, [:] are collected from an actual endoscope calibration. Di-

rect measurement of the marker localisation error vediyg, [¢] is not possible as the actual marker
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locations remain unknown. However, their position can liereged using the remaining markers on the
rigid body. These can be registered to a reference rigid,bodkis case using the orthogonal Procustes
formulation and singular value decomposition, Fitzp&tgtal. (2000). The inverse of the registration
transform can then be used to give an estimated positiomwvégt[i] for the marker. The measured

error vectorE,, [4] is defined by equatidn 3.7.
Epli] = Xmli] — Xrli] (5.7)

The marker positioX i [i] estimated by registration, however, is not the actual mgsksition, which
remains unknown. The measured error is therefore the catibinof thd ILE E; 1, z[:]) and the marker

registration errozz i, equatio 5.8.
E,.[i] = ErLgli] + Erli] (5.8)

Erli] is unknown, however it is analogous to [he TRE which has beeties] by Fitzpatrick et al. (1998)
and was used in equatibn b.1. Equafiod 5.1 however assuatiexpie, normally distributed ILE. A more
recent method by Wiles etlal. (2008) allows anisotropicygiostill normally distributed, ILE. Equation
5.9 presents a method for calculating the covariance matttixe expected value bf TRE for anisotropic
normally distributed ILE. Whilst this will not be entirely agrate in this application, we rely on the
assumption that the estimated valud@® E is small in comparison to the measured valud’gf, so the

error due to the assumption of normally distributed erranisll.

K K
E ] 62 & _|_ _ TkTm\I/() _
(Brre)y ( N ,§ m% (A3, +A%) (A% +A2,)

5.9
where (5-9)

Uy = Aik(skmaij — Aik(ikjm;m - A?icsimakj + A?Z-(S,;jcrkm
Where
e YrrE Is the covariance matrix of the expected value of TREHg).
e o Is the covariance matrix of the expected value of FLEI(bFE).
e N Is the number of IREDs visible.

e A Are the eigenvalues of the SVD of the covariance matrix ofrdmaining visible IREDs. A

function of the geometry of the remaining visibIle IRED$, ).
e 1 Are the distances of the target IRED to the principal axebefiRED configuration
e 0 Is the Kronecker Delta.
e K is the dimension, in this case 3.

This determines the expected valueryf rather than the actual value for an individual measurement a
in equatiori 5.J7. We cannot therefore calculate the ind®iflLEs using equatioh 5.9, however we can

determine the expected valuelof ILE for a number of frames agjuatio 5.70(| Er|) is equivalent to
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(X1rE)i; from equatioh 519X z[i] and X, [:] are known. Thereforé E,, 1 |) can be determined, with
equatior 5.10 wher8/ is the number df IREDs sampled.

N . .
(Barl) = 3 Ll (510

However,(|Er|) is a function of(| Es 1. |) as well as the geometry of the remaining vislble IREDs,
(X,»). Therefore we use an iterative process to deterniifg, |} as in equation 5.11. Hereis the
iteration step.

N . .
(Barsless = > Pl ) where (1Bl = F(IBw b X)  6.1)

An isotropidILE with an expected value of 0.2 mm was used asstimate for| Erz|)o and ap-
proximately 20 iterations were required befdf&,..|)r+1 = (| Ear|)x to machine accuracy, typically
taking less than a minute. To simplify the calculation weuassd that(| £y, |); was the same for all
markers in the sample. This will not be strictly true(@&,,,|) will depend on marker position and ori-
entation. For greater accuracy a different estimatéBf,.|) should be used when calculatifiz|)
for each marker. It should be noted that each marker pointstill have a different value of| Er|) as
X, varies.

Frames with less than 7 visible markers were not used. Behisvthreshold a few extremely
high values of| Er|) could caus€|E|)x+1 to become negative, halting the iteration process. Badly
registered frames were detected and discarding by congp#renroot mean square registration error
with 3(1 — (2(Ex)°)/N, whereN is the number dFIREDs used for registration.

The next stage is to use the expected valués of ILE to builddeitbat can be used for simulation
of the endoscope calibration or tracking process. As theltieg errors did not follow any analytic
statistical distribution we elected to use the measureat®to build a look up table that could be ran-
domly sampled during the simulation process. Equdiion] 8efihes how this was done, wifki being
the number of markers in the data set. Lower case is used tialtrat this was done in each direction

independently.
|em [d]|
emld]

The resulting values af,;;, should not be used as an actual measure of error for a givdtemas the

emrli] = enlt] — (|er[i]]) x fori=1to N (5.12)

actual value ok remains unknown. However, for Monte-Carlo simulation veharlarge number of
repeats are used the errors will average out, so the expeatieelofe , ;, will be correct.

A second look up table of marker visibility states was alssated. In our application individual
markers are not always visible. To enable accurate modetiia same marker visibility states as ob-
served in practice must be used in the Monte-Carlo modellingenable this, each possible combination
of visible markers was represented as a 14 bit binary nunrigkttee number of occurrences of thisTRED
combination in the sample recorded. This was then dividethbytotal number of samples, to give a
probability of a particular state occurring.

We have now presented a method for calibration and trackimgmhdoscope together with a method

to estimate th€TILE to enable simulation of calibration aredking. The remainder of this chapter is
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divided into sections detailing experiments to validatesthmethods. We first present the results of an

actual endoscope calibration.

5.4 In Theatre Calibration of Endoscope

54.1 Aim

Here we perform a calibration of thaaVinci’ ™ endoscope. In addition to determining the accuracy of

the calibration we also seek to use the data gathered toagsttivd TLE

5.4.2 Method
The calibration method used was as defined in SeLfion]5.1caliBration grid image as in Figuke 5.4

was placed on a table in theatre. The endoscope was movedanibos positions to view the grid. The
intent was to spread the views as widely as possible, whil@lbowing sufficientTREDs to be tracked.
The endoscope was held static at each view point and appatedyr60 frames of video (approximately
8 seconds) captured. Both the video image andthe IRED opnpsitivere averaged over the collected
frames. The averade IRED positions were used to determiimaatss ofTp—, g for the collected
views. The averaged images and the estimate&of g+ were used to estimatEgr— g1, TEL—ES,

andTgrid=optotrak- 1he average back projection error was measured.

5.4.3 Results

Number and Location of Views

24 views were used. 3 of these were discarded as they werelequately tracked. 5 more were not
used as the automatic point extraction algorithm failedei@dnine the location of the grid points. This
left 16 frames for calibration. Figufe 5.5 shows the endpscpositions used. The endoscopes lens
was between 156 and 52 mm from the grid, with an average distah102 mm. The angle from the
horizontal plane was between 27 and -23 degrees, with a nregla af 4 degrees. The angle from
the vertical plane was between 26 and -22 degrees, with a aregle of -4 degrees. The Optotrak
Certus specifies a “characterised volume” which defines theme in which the tracking accuracy of
the machine has been checked prior to leaving the factoguréfs.6 shows the positions of the centroids
of the[IREDs for each frame used in the calibration procdesgawith the characterised volume of the
Optotrak. AITREDs fall within the characterised volume.

Calibration Results

Equatiorf 5.8 and Table 5.1 present the estimated endopanpeeters.

—0.9401 —-0.3401 —0.0228 8.2053
0.3402 —0.9404 —0.0011 5.4197

Ter=pL = (5.13)
—0.0210 —0.0088 0.9997 561.30

0.0000  0.0000  0.0000 1.0000

The average back projection error for the calibration waéJBixels. Figuré 517 shows three examples

of the collected calibration images and the grid pointsguigd onto the images using the estimated
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Figure 5.5: The 16 endoscope positions used for endoscdipeatian.
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Figure 5.6: The centroids of the IREDs for the frames usechitoecope calibration. The measured

[RED positions all fall within the characterised volume lb&tOptotrak.
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fe(1) fe(2) ce(1) cc(2) Dyqa(1) Dy0d(2) | Dian(1) | Dian(2)
839.36 908.55 428.60 257.94 -0.2743 0.6165 0.0038 0.0109

Table 5.1: The calculated intrinsic parameters for the sodpe.

calibration parameters. The back projection error aclkiéveery high when compared to the on screen
errors due to registration calculated in Chapiérs 3[And 4s ifidicates that for the image guidance
system to function, further work is required here. The remer of this chapter aims to determine the

cause of the back projection error and hence methods toegtduc

Calculation of IRED Visibility and IRED Localisation Error

Figure[5.8 shows the proportion of frames for which of th€REDs were visible during the calibration
process. Tracking of tHe TREDs on the top and bottom of thkacelas only successful around 50 % of

the time.

The method outlined in Secti¢n 5.3 was used to estimate TBeoticurring during the calibration
process. After the rejection of frames with less than 7 \eIREDSs, 5027 measurements of individual
positions were available. An isotropic error of 0.2 mmsmsed as a starting estimate for{thel ILE
and an iterative process as per equafion]5.11 used to finkgieeted values of tHe TIE. 24 iterations
were required before theTLE converged, taking approxiip@e seconds. The expected values in each
direction were(|Er|). = 0.053, (|Eal)y = 0.047 and(|Earr]). = 0.150. Equatio 5.I2 was then
used to create an estimateepf; for each frame. These estimates for each direction are shrokigure
E.3. Itis clear from Figure 519 that the errors are anisdtrdpeing particularly high in the z direction,
and irregularly distributed. The irregular distributiondaused by the fact the sample is based on 16

discrete views.

IRED Localisation Error Versus Position and Angle

Wiles et al. [(2004) note that the magnitude of Ehe]lLE is dejeeh on the position and angle of the
relative to the Optotrak camera. They do not howevéneehis dependence. Because of this
dependence tHeIllE shown in Figlirel5.9 can only be used tolreadescope views that are similar to
those used during calibration. A more useful result wouldddetermine a relationship between the
[CE]and the position and/or angle of the TRED relative to thedirak. To this end the values ef;,
plotted in figurd 5.0 were plotted against the position angleanf the[IRED in Optotrak coordinates.

Rather than plotting the individual directional errors &veor magnitudey/e,; X2 + €, Y2 + €,y Z?)
was plotted. Figur&5.10 plots the error magnitude versasxily,Z position and the angle from the
Optotrak camera lens normal (the Z axis). Based on Flgu@itvias decided not to pursue this further.

The limited sample size at each position/angle limits thialdity of the results.
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@)

(b)

(©

Figure 5.7: Three examples of the calibration images (imaijle extracted points on left) and the
projected grid points (on right). Figure (a) shows the dffefca specular reflection on the automatic
point extraction algorithm. Figure (b) shows a case wheeeatitomatic point extraction algorithm has

failed to extract a large number of points. Figure (c) showase at the closest approach to the grid.
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Figure 5.8: The Proportion of total frames that each TRED wisible during the calibration process.

5.5 Estimation of Error Due to Calibration

55.1 Aim

The preceding experiment determined the accuracy for destagjbration of thedaVinci’ ™ endoscope.

In practice the endoscope would require recalibrationrgnoeach procedure. Therefore we are not
particularly interested in the result of a single calilmatiWe want to repeat the calibration many times
to get an expected value for the errors due to calibratiorth@sactual values of the intrinsic and extrinsic
parameters for the preceding experiment are unknown, ttualaerrors due to calibration also remain
unknown. We cannot calculate the error in estimafifig-—. r;, andTg; - gs from the average back
projection error. We need to repeat the experiment usinghdoseope for which these two transforms
are known. The aim of this experiment is to measure the etretalcalibration for repeated calibrations.
The error can be measured as an on screen projection eriioeiwith Sectiorl 1.6]2 by projecting a
single point onto the screen using the valued gf-—. g;, andTg - s estimated by the calibration

process.

5.5.2 Method

The calibration simulation method was described in Se@idn The simulated calibration was repeated
100 times. The average back projection errors were califar each calibration. To account for the
fact that in Sectioh 5l4 tHe TRED positions were averaged aveimber of frames, the values &f,, [7]
used to build the look up tables fer,; were averaged over 30 fran%sﬁ.\ normally distributed grid

2The effect of averaging the values &f,, [i] was tested over averaging periods from 1 to 60 frames, and auasl fto be
negligible. This is because theTl E is due not to random dama stati¢ IRED, but rather the change in apparenf IRE Dtjpwsas
the[lRED is imaged in different locations and angles. Bec#useffects of averaging are negligible we have not disalitsem

further in this thesis.
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Measured Error and Marker Localisation Error (x)
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Figure 5.9: The measured marker erratg ) and the estimated marker localisation errers;§ in each

direction for the data collected during calibration. Edquaf5.12 is used to estimatg,,; usinge,,.

Equation 5.1P slightly reduces the measured errors to atdouthe error in the registration process

used to estimate the actual marker positions.
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Figure 5.10: Examples of the IRED tracking error versus IREDRItion and angle. The irregular sam-
pling and measurement noise in the data means that thoughatans exist, they are of limited predic-

tive value.
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Calibration Back Projection Error using ILE Lookup Tables
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Figure 5.11: A histogram of the average back projectionrdmo100 simulated calibrations.

point extraction error with a standard deviation of 0.8 {Exeas used.

5.5.3 Data
The values ot determined in Figure 5.9 were used to perturdihe IREDs. fitnimsic and extrinsic
parameters and the position of the calibration grid founBéotior{ 5.4 were used. The endoscope poses

shown in Figuré5J]5 were used.

5.5.4 Results

Figure[5.11 shows a histogram of the average back projeetion for the 100 simulations. The average
back projection error for the actual calibration (Secfiod)5vas 73.63 pixels. This falls within the
expected range shown in Figure 3.11, indicating that theulsiion may be a plausible model of the

actual calibration. Without further real calibrationsstriot possible to disprove this hypothesis.

Calibration Error
It is possible to model the on screen error due to calibraa®per Sectioh 1.6.2. The nominal prostate
apex point is here projected onto the screen using the 1 etit estimates dfgr— g, andTer—Es
found through simulation. This gave an on screen error d#pixels, as shown in Figute 5]12. The
error in estimatind’’r; . gs contributed only 2.89 pixels, while the error in estimatifig;—. g, con-
tributed 42.26 pixels.

Figure[5.138 is a scatter plot of the calibration back pragecerror versus the actual error due to the
calibration. The calibration back projection error canpetused as a predictor of the actual error due to

calibration.

5.5.5 Comparison of Actual Versus Simulated Errors

The accuracy of the Monte-Carlo simulation of the calitmatprocess can be validated by comparing
the distribution of marker errors, in this casg. We make the assumption that if the distributioregf

for the simulated data appears similar to the actual digidh ofe,,, then the Monte-Carlo model should

be realistic. Figure5.14 shows overlaysegf in each of the x, y and z directions for the actual data in
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Figure 5.12: The on screen projection error due to the errateterminingl’gr—gr andTe— g5,

based on 100 simulated calibrations.
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Figure 5.13: A scatter plot of the calibration back projesterror versus the actual error due to the

calibration.
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Figure 5.14: Plots of the measured marker egrpiin the x, y and z directions. The grey background is

the distribution of errors measured in the actual data (fBatiori 5.4). The black line is the distribution

of e,, for a simulated calibration.

Sectior 5.4 and the simulated data generated during a sionut# the calibration process. Quantitative

comparison of the overlaid distributions is very difficutt tb their irregular nature. Qualitatively the

simulated error distribution appears to be a smoothedomisithe actual errors.
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Figure 5.15: The on screen error due to tracking the endesddpe errors are large and anisotropic.

5.6 Estimation of On Screen Error due to IRED Tracking Error

5.6.1 Aim

To use thé I Es determined in Sect[onl5.4 to determine thkitng error of the system.

5.6.2 Method

The sam&TILEs used for the calibration can be used to peheREDSs for projection of on screen error
using the simulation method outlined in Section 1.6.2 t@deine the on screen error due to fRelILE.
5.6.3 Data

The[ILHEs shown in Figurg 5.9 are used to perturffThe IREDs.

5.6.4 Results

The tracking errors and their distribution are shown overta a typical surgical scene in Figure 5.15.
The errors are very large in comparison to the on screensediee td MRI segmentation determined in
ChaptefB and ultrasoundfo MRI registration determinediagief#. Itis clear that unless this tracking

error is reduced the image guided surgery system will be iof kmited use.

5.7 Effect of Errors on Calibration Accuracy

57.1 Aim

In Sectiori 5.6 we defined three main sources of calibratimr.eFhese are the grid point extraction error
in pixels, the error due to a misprinted calibration grid &me[TLH. This experiment aims to determine

the effect of these errors on the calibration accuracy.
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5.7.2 Method

Grid Point Extraction Error

In Sectiori 5.b we assumed that the algorithm that finds theeecehgrid points on screen has a normally
distributed error with a standard deviation of 0.8 pixelBisiwas based on published results for a similar
algorithm [Shahidi et all (2002)] claiming a sub pixel aamy. We have not measured the accuracy of
the algorithm used here. Here we see what effect this errgrmage on calibration accuracy. The
method in Sectiofi 515 was repeated with extraction erro&®f0.5, 1.0, 1.5 and 2.0 pixels standard
deviation. Calibration simulation at each extraction emwas repeated 20 times. The calibration error
was measured using the projection method from Seéfidn 5He average projection error was then

plotted against grid point extraction error.

Grid Scaling Error

In Section5.b we assumed that the calibration grid was giyfprinted, so that the distance between
grid centres was exactly 4.0 mm. However we have not usedfaqlgrprinted grid, rather we have
printed the grid using a commercial laser printer, so thaaarid centres may not be exactly 4.0mm
apart. We can check for scaling errors by measuring theqatigtid. The grid is 200 by 200 mm, and
we can measure it easily to within mm. Therefore it is pdeghat the actual grid point centres may be
between 3.98 mm and 4.02 mm. To test the effect of this erecétibration simulation was repeated
with actual grid centre distances of 3.98, 3.99, 4.00, 404,4.02 mm. The simulation was repeated 20

times at each grid size and the results as projection erotiepl against actual grid size.

IRED Tracking Error

To see what reducing the TRED tracking error will have on thiécation accuracy the calibration simu-

lation from Section 5J5 was repeated with redUced TRED tragkrrors. To preserve the anisotropic and
irregular distribution of thETLE the same look up table aSecttior 5.6 was used to perturb fhe TRED,
however a scaling constaftwas added to equati@n 5112 to give equaion]5.14.

emrli] = S(emli] — (|er[d]]) x |zmm|) fori=1to N (5.14)

S was varied from 0.0 to 1.0 in steps of 0.1. At each step thélon simulation was repeated 20

times. The results are plotted as projection error due ibredion versuss.
5.7.3 Results

Grid Point Extraction Error

Figure[5.16 shows the effect of changing the grid point exima error. Changing the grid point ex-
traction error has a significant effect on calibration erndfe used an off the shelf algorithm for grid
point extraction, the results in figure 5116 suggest thabitile be worthwhile to further investigate the

performance of this algorithm.

Grid Scaling Error
Figure[5.1¥ shows the effect of grid scaling errors over #mge that is likely to occur in practice. The

effect shown in Figure’5.17 is minimal, indicating thatléitis to be gained by more accurate printing of
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Projection Error versus Grid Extraction Error (Pixels)
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Figure 5.16: The projection error due to calibration vetkeserror in the automatic grid point extraction

algorithm. The grid point extraction error has a significafféct on the accuracy of the calibration.

Projection Error versus Grid Scale Error (%)
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Figure 5.17: The projection error due to calibration vergsscaling error in printing the grid. Over
the range likely to occur in practice the grid scaling erroesinot have a significant effect on calibration

accuracy.

the calibration grid.

IRED Tracking Error
Figure[5.18 shows the effect of reducing [Re TRED trackingrefThe calibration error reduces signifi-

cantly as the tracking error reduces. Investigation of mastto improve the tracking during calibration

should yield an improved calibration.

5.8 Improvement Of Tracking Error Using Motion Constraints
5.8.1 Aim

Itis clear from the preceding experiments that the errortdueacking the endoscope is the most signif-

icant source of error in our proposed image guided surgiabs. Here we investigate how repeating
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Back Projection Error versus IRED Localisation Error Scale
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Figure 5.18: The projection error due to calibration vetsesiRED tracking error. Reducing the IRED

tracking error leads to a significant improvement in calibraaccuracy.

the experiment in Sectidn 5.6 building in prior knowledgeutithe allowable endoscope movement can

significantly reduce the tracking error.

5.8.2 Method

The endoscope tracking method used in Se¢fioh 5.6 registeflRED sets under the assumption that
one set is moving freely in space. In general, however, ansrape does not move freely in space,
it is constrained in its motion. We investigate two modes arigtraint, the first is that the endoscope
must pass through a fixed pivot point (the trocar) which isvaht to endoscopes in general. The second
mode is rotation about a single axis of tt@Vinci”* robot. Figurd 5.19 shows the trocar point of the

daVinc™ robot and an axis of rotation of one of its joints.

Use of a Trocar Constraint

Here it is assumed that the endoscope is constrained togidertt a known trocar point. This point can
be added to the measufed IRED positions il the SVD basedmaiia used to track the endoscope. A
trocar point is first defined in the coordinate system of théo®gk. In practice it would be necessary
to measure the location of the trocar, for example with ak&egointer. To allow the endoscope to
slide along the endoscope’s axis through the trocar artiteralosest point on line algorithm is used.
A starting estimate of the endoscope’s axis is found usirtyg tthe measured IRED positions. The point
in this axis closest to the trocar point is then found. Thedstegtion is then repeated including this
point, this gives a new estimate of the axis location, anc@ennew point closest to the trocar. This is
repeated until the position of the trocar point convergesthiere will be an error either in localising the
trocar in Optotrak coordinates or in the assumption thatrter is fixed in space we added a normally
distributed error to the trocar position. The value of thi®eis varied and the on screen tracking error

in pixels is plotted against it.
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Figure 5.19: Two example motion constraints. In one casetid@scope is constrained to pass through
a fixed trocar point (with sliding along the endoscope axisnad). Although this does not appear to
be the case for thdaVinci’ , it may be useful for other endoscopic systems. The seconstreont
allows motion around one axis of tlaVinci’ ™ only. Such a constraint could be implemented using

thedaVinci™ kinematic information.
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Tracking Error vs Error in Localising Trocar Tracking Error vs Error in Localising Center of Rotation
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Figure 5.20: Using knowledge of how the endoscope motiomisirained can improve the tracking
accuracy. However as the accuracy of this knowledge redheeasnprovement in tracking accuracy is

reduced.

Use of an Axis Of Rotation Constraint

An alternative to constraining the endoscope to pass tliraugpcar is to constrain the endoscope based
on the known degrees of freedom of tth@Vinci” system. In practice théaVinci”® will be moving
through several axes simultaneously, here however wetigeds the case in which the endoscope is
moving through a single axes. If the centre of rotation of thies is known (through a prior measurement
and interrogation of thdaVinci” application programming interface (API)) then this cemtireotation

can be added as an additional point in[the $VD registratichode Similarly to using a trocar constraint
there will be an error in localising the centre of rotatiorheTtracking error is thus plotted against this

localisation error.

5.8.3 Results

Figure[5.20 shows the tracking error (in pixels) versus trairg localisation error for a trocar constraint
and a centre of rotation constraint. Applying the trocarstrint yields dramatic improvement in track-
ing accuracy if the trocar can be accurately localised. Tigrdovement reduces rapidly as the error in
localising the trocar reduces. The gains using a centertafiom constraint are less dramatic, but also

less sensitive to an increase in the error in localising érgre of rotation.

5.9 Using Normally Distributed IRED Tracking Error
5.9.1 Aim

The calibration back projection error found in Section 5xl éhe tracking error estimated in Section
are significantly greater than would be expected if tha daFigurd 5.8 was correct. The formula
used to construct Figufe .3 assumed isotropic normallyilisedICE. This experiment aims to test

the effect of this assumption.

5.9.2 Methods

The calibration simulation from Sectién 5.5 was repeatddegwRather than perturbing the TREDs with

actual values o€, taken from a look up table, values of;;, were randomly sampled from normal
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X y z
(IEneLl) 0.053 0.047 0.150

Anisotropic Errors | A/(0,0.067) N(0,0.059) N(0,0.199)
Isotropic Errors N(0,0.120) N(0,0.120) N(0,0.120)

Table 5.2: The IRED localisation error modelled as isottopid anisotropic normal distributions

N (1, o) with meanu and standard deviation

distributions. In the first case an anisotropic error waslasel in the second an isotropic error was used.
In Sectioni 5.4 we estimated the expected values,pf in each direction, givingd|Exs|). = 0.053,
(|EmLl)y = 0.047 and(|Epsp|) . = 0.150. If Epr, were normally distributed with mean zero, equation
can be used to find the standard deviation.

OEMmL \/§

In the anisotropic case normal distributions with mean zem standard deviations{ , .) calculated
using equatiof 5.15 were used to perturb[ihe TREDs. In theoisiz case equation 516 was used to

calculate an isotropic standard deviation that gives tieesaagnitude error when all three directions

2+ 2_|_ 2
o=y I (5.16)

Table[5.2 defines the normal distributions that were samipl@erturb th€ JREDs in each case. In both

are summed.

cases the expected value of the total error is the same aswsliremnthe look tables from Sectifn b.4.
In each case the calibration simulation was repeated 1@tand histograms of the average calibration
back projection errors plotted, similarly to Figlire 3.11.

The tracking error experiment from Sectlon]5.6 was alsoatgueunder the influence of anisotropic
and isotropi¢ TCE. As well as presenting the on screen eiiroilaly to Figure[5.15, thé TRE at the

projected point was also calculated for the isotropic c@bés should agree with Figuke.3.

5.9.3 Results

Calibration Simulation

Figure[5.21l shows histograms of the back projection enar&®0 repeat calibrations for both isotropic
and anisotropic normally distributéd TLE. In both caseslihek projection errors are significantly less
than for calibration using non normally distributed date Figuré 5.111. The calibration back projection
error achieved in practice (73.63 pixels, see Se¢tioh B4kry unlikely to have been randomly drawn
from either of the two distributions shown in Figlre §.21.

Tracking Error

Figure[5.2P shows the on screen error for the two models ahally distributedILE. In both cases the

on screen error is significantly less than was seen in Figdfe Fabld 5.8 compares the on screen error
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Calibration Back Projection Error using Anisotropic Normally Distributed ILE Calibration Back Projection Error using Isotropic Normally Distributed ILE
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Figure 5.21: Histograms of the average back projectiorr éorol00 simulated calibrations using nor-
mally distributed IRED localisation errors. The histogram the left assumes anisotropic errors, the

histogram on the right assumes isotropic errors.
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Figure 5.22: The on screen error due to tracking the endes@gsuming normally distributed IRED
localisation error. The plot on the left assumes anisotrepior, the plot on the right assumes isotropic

tracking error.
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X y Magnitude
Anisotropic Non Normal (Sectidn3.6) | 51.82 39.91 65.41
Anisotropic Normal 37.43 27.25 46.30
Isotropic Normal 25.23 18.10 31.06

Table 5.3: The on screen errors for 3 different models of IR&dalisation error. The first model allows
arbitrary errors based on look up tables generated fromahdata. The second row is an isotropic

normally distributed error and the third row is an isotropazmally distributed error.

from Sectior 5.6 with the errors assuming normally disteluerror. Modelling the errors as normal
distributions significantly underestimates the on screeor.e

To check the method and the applicability of equafion 5.1TR& at a point approximately cor-
responding to the prostate apex point projected in Figu?8 Bias measured for the isotropic case.
This gave d TRE of 2.59 mm. The magnitude of the isotropic rdlgmdistributed error used is
V3% 0.122 = 0.21 mm. This gives an expected value of 0.16 mm, so the ratio_of] TREE] is
approximately 16. As the simulation uses multiple patteigisible[[REDs exact comparison of this
number with Figur€ 5]3 is not possible, however it does féthin the range of expected values for the
error ratio. This suggests tHat b.1 gives a correct estimfaaadoscope tracking error if the assumption
of normally distributed isotropic IRED error is correct. Wever in our case tHe TlIE is neither normally

distributed nor isotropic.

5.10 Discussion

At the start of this Chapter, (see Figlrel5.3) we presenteethad that has been used in the image guided
surgery literature [Shahidi et al. (2002)] to estimate tlagking accuracy of an endoscope tracked with
optical markers. Using this method, assuming an isotramanally distributed ILE with an expected
value of 0.2 mm gave an estimated tracking accuracy at a p@dtnm from the endoscope tip of
approximately 4mm. Using the projection method from Sedfics.2 this would yield an on-screen
error of the order of 18 pixels. However when we tried to aalib the endoscope ourselves in Section
we found that the errors we measured were much highemtbald be expected if this were the case.
Using a novel method to estimate the acfualllLE rather thaorasg normally distributed error
we demonstrated in Sectign b.6 that the actual tracking érapproximately 60 pixels. This is not
due to an underestimation of the magnitude of[fhe] ILE, ratbean incorrect assumption about its
distribution. In Section 5]9 we modelled the JLE with norndidtributions, that had the same expected
values as the measured ILE. The on-screen error for the tigrdistributed errors was significantly
less than achieved in practice. The disparity between tresarements of on-screen tracking error is
due the assumption of isotropic, normally distributed emdich is not appropriate in this case. Optical
tracking systems do not provide isotropic error. The preserfi anisotropic error has been addressed by

Wiles et al. [(2008). The problem of non-normally distritdiror has not been addressed. The method
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we have presented allows the correct estimation of trac&ingr without requiring that the actUal Tl E
fits any particular statistical distribution.

The tracking and calibration errors estimated (approxétyas0 and 40 pixels respectively) over-
whelm the registration errors determined in the precedhapters. The calibration error could be im-
proved significantly by improving the calibration processlight of the result in Section 5.8 it would
seem that constraining the endoscope to pass through a ttodag calibration could yield signifi-
cant improvements. Based on the results in Se¢fioh 5.7 itdvalso be worthwhile to investigate the
automatic grid point extraction algorithm.

The tracking errors however are more problematic. At presenhave no way of reducing the
tracking error in theatre. In sectién 5.8 we introduced astetd via simulation a novel method of
constrained tracking that appears to have the potentigdoce the tracking error to acceptable levels.
Implementation of these methods is left as future work.

We made the decision at the start of the chapter to track tHeseope using the optical tracker.
The more common alternative to this is to use da&inci’ kinematics to track the endoscope. There
were two reasons for using the Optotrak to track the end@scdpe first was that as the preoperative
data has already been transformed to the Optotrak’s caardgystem in the preceding chapter, tracking
the endoscope using the Optotrak avoids the need for anaipst between theaVinci’ ™ kinematic
data and the Optotrak. The second reason was that publishetisrfor tracking using théaVinci” ™
kinematics were not very encouraging. Here we attempt tdtiesvalidity of the second reason by com-
paring our results with the best result from the literatumetfacking using thelaVvinci’ ™ kinematics.
The best published result faiaVinci’*  tool tracking is 1.39 mm by Kwartowitz et al. (2009) using a
mix of optical tracking and thdaVinci™ kinematics. This is the error at the tip of end effectorseath
than the endoscope. We can compute an equivalent errordairtiulated tracking data used in Section
B.8. A target point is defined approximately 360 mm from tlaeking collar, which would correspond
approximately to the tool tip for daVinci’™ end effector. The estimated tracking transfoffas. 1
are used to perturb this point and the position comparedtWithfound using the known gold standard
tracking transform. This gives a mean TIRE at a point neardbktip of 2.172mm. This is significantly
higher than the figure determined by Kwartowitz et al. (20@®wever if we assume a linear relation-
ship betweeh TRE and on-screen err@r, alTRE of 1.39 mm woutdsmond to an on-screen error of 38
pixels. Still very high in comparison to the other systenoesr This suggests that the solution to our

endoscope tracking problem does not lie in switching toguliedaVinci” kinematics.

5.11 Error Summation

The preceding two chapters and this chapter have isolattduantified the four main sources of errors
in the proposed surgical guidance system. These are susgdani Tablé 514.

The task now is to combine them. Itis assumed they are indigmenThe shape modelling and reg-
istration errors can be added to the Monte Carlo simulatydiirét perturbing the 3D point by a normally
distributed random error of the appropriate standard deviaAssuming that shape modelling and reg-

istration errors are independent and normally distributieen the standard deviation of the combined



164 Chapter 5. Endoscope Calibration and Tracking usingpic& Tracker
Error Reference | X Err. (Pix.) | Y Err. (Pix.) | Magnitude
(Pix.)
Shape Modelling Error Figure[3.11 | 13.94 14.99 20.47
Registration Error Figure[4.18 | 13.86 13.93 19.65
Endo. Calibration Error (Intrinsic) | Sectiof5.b | 2.03 2.05 2.89
Endo.Calibration Error (Extrinsic) | Sectiois.b | 25.91 33.38 42.26
Endo. Calibration Error (Total) Figure[5.1D | 26.46 33.73 42.87
Endo.Tracking Error Figure[5.1b | 51.82 39.91 65.41
Total Error Figure[5.2B | 59.73 50.42 78.17

Table 5.4: A summary of the system errors. The total systewr & dominated by the endoscope

tracking error.

Figure 5.23: The total system error as an on-screen pixef.err

error will be v/5.3%2 + 5.032 = 7.3mm in 3D. The resulting point can be projected on the screenmunde
the influence of the tracking error and calibration errorimna8ection§ 56 and 5.6 give the total system
error as shown in Figule 5.23. The total system error is datathby the endoscope tracking error.

Improvements in the other component errors will yield miainmprovements without first addressing

the endoscope tracking error.

" 0,=59.73 Pixels (14.2 mm
'g,=50.42 Pixels (11.1 mm

-—_




Chapter 6

Patient Trials

6.1 Introduction

The preceding three chapters have described our proposagkiguidance system and determined its
likely accuracy. At present the system has not been implézden full for two reasons. The first is
that the ultrasound {o QT registration algorithm, see Givédpttakes too long to be used in-theatre. The
second is that the endoscope cannot be tracked accurataigletno be clinically useful, see Chapter
B. Work on both these algorithms is ongoing, with good reasaexpect they will result in a practical
system. In parallel to this development we have implemeatédsic image guidance system. This
system aligns the_ MRI to the endoscope screen directly ubmgisible pubic bone surface. The sys-
tem described in this chapter has been developed over theecofi five[RARP procedures. During
development we have also gathered a significant amount af{i##l, tracked ultrasound, and tracked

endoscopic video) for later analysis.

Up to this point this thesis has primarily focused on underding the accuracy of the image guid-
ance system. By implementing the image guidance systemmibledan this chapter we have been able
to assess some of the other factors important to the funotjaf the system. These primarily relate to
how the guidance system fits into the surgical routine andthevelinical staff interact with the system.
Being able to show the surgeon an overlay image during syrg#eit one of limited accuracy, has
enabled two important outcomes. Firstly it was possiblegitds understand the surgeon’s expectations
of the system. Secondly the surgeon was better able to uaddrthe capabilities of an image guid-
ance system. To enable the display of overlaid images welhaitea minimal user interface which has

allowed us to experiment with different ways of presentimgR] images.

This chapter first details our experience of gathering datheatre, summarising our data acqui-
sition methods and the data gathered. Following this is atyais of the endoscope tracking accuracy
during the procedure, using the methods developed in CHEpt#e found that tracking the endoscope
during surgery was more difficult than during the calibmawocess described in Chagiér 5. The track-
ing accuracy achieved was significantly less than that shiowigure[5.15. The last part of this chapter
describes the direct alignment algorithm we developediiaige to image registration and the projection

algorithm used to present overlays to the surgeon. Thetsesiuhis are encouraging.



166 Chapter 6. Patient Trials

Patient | Image Descrip-| Size (Vox.) | Resolution Slice Spac-| Acquisition Times
tion (mm) ing (mm) (Days Before Surgery)

01 T2 Transverse | 320:320:23| 0.59:0.59:3.2 | 3.84 127

02 T2 Transverse | 384:384:24| 0.65:0.65:3 3.9 21

03 T2 Transverse | 320:320:23| 0.59:0.59:3.2 | 3.84 106

04 T2 Transverse | 256:256:23| 0.63:0.63:3 3.3 177

05 T2 Transverse | 512:512:30| 0.35:0.35:3.5 | 3.84 101

Table 6.1: Details of the T2 weighted MR slices that wereduee overlay images in theatre.

6.2 MRI Data

As currently implemented the system does not require adf@iiMRI acquisitions. We have used exist-
ing[MRIimages for overlay. Table 8.1 summarises[fhe MRI datzd for overlay for each patient. Full
details of the data gathered for each patient can be founghpeAdiXA. For in-theatre overlay we used
the transverse T2 weighted images as these show the privsteatest detail.

All MRIacquisitions were supine scans and no attempt wasentaaontrol the patient’s bladder
or rectal filling. Furthermore there was a significant time ga&tween image acquisition and surgery.
Therefore we would expect significant motion of the proskegtisveen the image and the surgical posi-
tion. For ongoing work it would be useful to acquire fhe MRlaaime closer to the surgery, with the
bladder and colon empty. For registration using the pelaicebit would also be useful to acquire a T1
weighted image of the entire pelvic bone. This is not howesmessary for the early stage evaluations

presented here.

6.3 Ultrasound Data Capture

Ultrasound data was collected for each of the 5 patientsagbtind images were captured using a frame
grabber attached to the video output of the ultrasound machiltrasound tracking data was written to
a separate tracking file that recorded[the TRED positiongémh slice. As discussed in Chagter 4 two
pieces of software were used for collecting the tracking dtatheatre. The first version of the tracking
code was used for Patients 1 and 2, while Patients 3 to 5 ugedetlier code. The earlier code did
not record individual IRED positions, only the estimateatking matrixTyr—.o along with thd RM$S
registration error. The later code recorded the intligiIRED positions allowing a more accurate
estimation of the tracking error.

A bug in the earlier code caused it to crash after 100 slicesheen collected. Therefore for
Patients 1 and 2 we attempted to collect fewer ultrasound@sn®ut ensured that all images were of
good quality. The ultrasound probe was first positionedfodlyeto get a good image of the patient’s
pelvic bone. It was then held static and a trigger presse@ptuce a single image. This was a time
consuming (approximately 15 seconds per image) procedqrering two operators, one with the probe
and another at the workstation. The new code did not suffen this limitation, allowing images to be

obtained continuously. For Patients 3 to 5 therefore weect#ld many more images, but many do not
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Patient (Old/New) Code Number Of Slices
01 Oold 43

02 Oold 38

03 New 4338

04 New 10185

05 New 2064

Table 6.2: The number of Ultrasound slices collected fohesdc¢he five patients.

show the pelvic bone clearly, so sorting will be requirecioethey are used for registration. For Patients
3 to 5 the following acquisition method was used. The traglsioftware was started, then the ultrasound
probe was moved slowly over the patient’s pelvis. At possiavhere the pelvic bone could be seen
clearly the probe was momentarily held static. This procedvas quicker (taking about 5 minutes in
total) than using the old code and could be completed by desimgerator controlling the ultrasound
probe.

The result of this is that for patients 1 and 2 less than 5@siiund images were collected, (much
fewer than were found necessary for registration in ChéfjteHowever the individual images are all
usable. For patients 3 to 5 many more images were collectezt @000), however the majority of
these do not show the pelvic bone well. In order to use thaseistration a sorting algorithm will be
necessary. Images with poor tracking accuracy (calculasety the measurdd IRED positions) should
first be discarded. It may also be necessary to discard inthgedo not show the pelvic bone well using
some sort of image processing. However these images shothedory be removed when the images
are converted to bone edge probability images. The reguitimber of ultrasound images collected for

each patient are shown in tablel6.2.

6.3.1 Patient Positioning During Imaging

The original intent was to capture the ultrasound imagebkepatient immediately prior to surgery with
the patient in the operative position, so that no patientionabccurred between imaging and surgery.
In practice however this was not possible. The patient coolidbe imaged after the cutting of the
surgical ports due to the presence of sterile drapes. Ttrasaolind images were therefore collected prior
to cutting of the ports. The port cutting was done with thagudthorizontal, the patient is then tilted
to enable docking with thdaVinci? . For these reasons we adopted the following procedure when
gathering ultrasound data.

The patient was positioned on the operating table and tbg# ¢élevated to the operative position.
The table was then tilted (1 degree of freedom motion), tigdeeof the table recorded, and the ultrasound
images collected. Figufe 6.1 shows the patient in the heat gosition with the probe positioned near
the pelvic bone.The table was returned to the horizontalthadoort cutting and further preparation
completed. The table was then tilted to the same angle asuneghpreviously and thdaVinci”

docked. This introduces the real possibility that the paitieill move in between ultrasound imaging
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Figure 6.1: The patient is positioned head down in the ojwerabsition and ultrasound images of the

pelvic bone collected using a tracked ultrasound probe.

and surgery. Further work is required to assess the effd¢lotodnd determine a solution. One possibility
would be to place skin markers on the patient during surg&fyhave not attempted this yet, however,

for reasons that will be discussed in Secfion 6.3.2.

6.3.2 Processing of Ultrasound Data

The original intention for the in-theatre work was to use tifteasound to bone registration algorithm
(ChaptergBB anld 4) to firifl,;—. 0. The accuracy of this would then be assessed using theesjsilsiition

of the pubic arch on the endoscopic images @pd. x5 estimated as per Chapfér 5. However, contrary
to our expectations, it became apparent that the errorimashg 7 —. gs would be significantly larger
than the error iy, o, see Chaptdil5 for details. Therefore the approach of \aliglthe registration
method using the visible anatomy cannot be used. At preseriherefore have no way of testing the
accuracy of our estimate @f,— o. With limited time available it was decided to put the ultrasd data
aside for possible future analysis and concentrate ingirdachplementing a direct endoscope image to

[MRIregistration algorithm, to be described in Secfiod 6.6.

6.4 Acquisition of Video Data

The same software as was used for collecting the ultrasauades (for Patients 3 to 5) was used for
collecting the endoscopic video data. Switching from gitand images to endoscopic images was
done by connecting the frame grabber to the video output efafrthedaVinci’ assistant consoles.

Video data was captured at approximately 7 frames per se&ach frame is matched to tracking data
taken from the Optotrak. The video capture software was outhie entirety of the procedure. During

capture of data for Patients 1, 3, and 4 a significant numbfauofes were lost due to overheating of the
frame grabber. These problems did not occur for Patient@ aamore reliable frame grabber was used

for Patient 5, preventing re-occurrence. Tdbld 6.3 listsrthmber of video frames captured for each
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Patient Number Of Endo-| Elapsed Time T | Proportion Lost
scope Framed/ (h:mm) DataP,,s:

01 33637 1:53 0.31

02 74315 2:40 0.00

03 61206 2:31 0.06

04 39764 1:50 0.16

05 78631 3:01 0.00

Table 6.3: The number of endoscopic video frames collecieddch of the five patients.

procedure. The average frame rafe {n frames per second) was calculated using the data fonfeafe
and 5, where the frame grabber functioned continuously tveelapsed time. In both casgswas 7.2
frames per second. The proportion of frames lost due to teeheating frame grabber for the remaining
patients was calculated using equafiod 6.1. Whéiis the number of frames captured dfids the time

elapsed from the first frame to the last frame. Valueg,gf; for each patient are shown in Tablel6.3.

N

Pas =1-
fost T x fr

(6.1)

Similarly to Figurd 5.6 we checked how the tracked positioiithe endoscope collar during surgery
were distributed in relation to the characterised voluméhefOptotrak. Figure 612 shows the results.

All tracked positions fall within the characterised volunfehe Optotrak.

6.5 Estimation of Tracking Error for a Moving Endoscope
6.5.1 Aim

In Section 5.B we presented a method for estimating the 1R#Blikation error for the tracked endo-
scope. This was based on static data captured in an uneldittervironment. A further complication
is the presence of sterile drapes betweer the IREDs andatidgrig camera. Figufe 8.3 demonstrates
some of these challenges. Many of these challenges coulddreame relatively easily. The surgical
assistants could move to the side during image overlay ardfar could be made to better control the
cable routing. Despite these challenges enough trackitegvaas collected to repeat the analyses from
Sectior[ 5.6. Two factors, in addition to those present irti6e.3, may lead to an increased tracking
error for the surgical data. The first of these are motion@&thdoscope, which could be avoided by only
using the overlay when the endoscope is stationary. Thenddsdhe presence of optically transparent
sterile surgical drapes. Here we attempt to quantify thecefdf these additional factors on the TRED

tracking error.

6.5.2 Data

We only used the tracking data from Patient 02 for the inileedata. Patient 02 was used as it provided

a full record of the in-theatre tracking. Initial analysistioe data from the remaining patients indicates
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Figure 6.2: The positions of the tracking collar recordedrdydata acquisition on Patient 02. All

tracked locations fall within the characterised volumehaf ©ptotrak

5 IREDs Visible

Figure 6.3: The view of the IREDs from the Optotrak cameradesys The presence of the two surgi-
cal assistants, the anaesthetist, surgical drapes and-ousneontrol and data cables makes endoscope

tracking very difficult.
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Direction Patient 02 Static (Sectiof 5]4)
X 0.204 0.053
Y 0.135 0.047
z 0.445 0.150
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Table 6.4: The expected values of the IRED localisationrdsased on the data collected from Patient

02. The static tracking values from Section]5.4 are also sifowcomparison.

that the data from Patient 02 is representative of the data the other patients. There is no reason to
expect that the Patient 02 data is not representative otk data sets. A full analysis of the remaining
data has not yet been completed. In addition to this we recbadseparate sequence of tracking data
with the endoscope moving but without the presence of sakdi@pes. This was to test the effect of the

surgical drapes on the result.

6.5.3 Method

The method was the same as employed in SeEfidn 5.3, sumohaga@ here. The measured positions
of a given[IRED was compared with the TRED position estimdtech the measured positions of the

remainind IREDs on the tracking collar. An adjustment wasleng account for the registration error.

This gives a distribution of estimatéd IRED localisationoes that can be used as a look-up table for
Monte-Carlo simulation of the tracking accuracy. To enabtect comparison of the tracking results

with those in Sectioh 516 we used the sdame TRED visibilityestdor this simulation.

6.5.4 Results

Estimated IRED Localisation Errors

Table[6.4 presents the expected values of the estirhated] IB&lisation errors. The results for the
static tracking performed in Sectibn b.4 are also incluaeddference. It is clear that the errors seen in
theatre are significantly (between 3 and 4 times) greater tthen those observed during the endoscope
calibration in Sectiofh 5]4. Figufe .4 shows the distrimutf the estimateld IRED localisation errors.

6.5.5 Estimated Tracking Error

Using the same method as described in Se€tidn 5.6, the éstabdtions shown in Figurle 6.4 were used
to perturb thé TREDs during a simulation of tracking erragufe[6.5 shows the results as an on screen
tracking error. The magnitude of the error standard dewiatishown in Figure 6.5 is 164 pixels. By
comparison, in Sectidn 8.6 (for static endoscope trackimg)nagnitude of the error standard deviations
was found to be 65 pixels. Two factors could explain thiséase. The first is the effect of endoscope
motion. The second is the use of surgical drapes. To testftbet ® endoscope motion without the
presence of surgical drapes a further data set was collettad tracking collar moving but without the
presence of surgical drapes. The tracking error for thia dais nearly identical to that shown in Figure
[6.8. This suggests that the increas€In IRED tracking efosewved here is due exclusively to motion

of the endoscope. Further work is required to determine theige effects of the moving endoscope
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Figure 6.4: The measured marker erratg) and the estimated marker localisation errets;f in each
direction for the data collected during surgery on PatiéntEjuation 5.112 is used to estimatg; using
em- Equation5.1R slightly reduces the measured errors taust¢or the error in the registration process

used to estimate the actual marker positions.
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Figure 6.5: The on screen error due to tracking the endostageg surgery on Patient 02. The errors

are significantly larger than those seen for static endastragking in Figur€5.15.

and the surgical drapes. The increase in tracking error fopeing endoscope agrees with the results
of[Barnes et AIJ_(;@?) who observed significant loss of amyuwhen the Optotrak was used to track a

moving target.

6.5.6 Discussion

In attempting to test whether the TRED localisation erronsnid in Sectiofi 514 are applicable in-theatre
we have highlighted an important short coming of the Opto@artus system. The Optotrak system is
significantly less accurate when tracking a dynamic tatgBespite this it may still prove practical track

the moving endoscope by applying the methods proposed tib8&c8. Work in this area is ongoing.

6.6 Direct Alignment of the MRI Image to the Endoscope Image

Due to the inability to validate the ultrasoundfo MRI regasion in theatre we elected to concentrate
solely on developing an algorithm to align the endoscopewitnage directly to the_MRI data.. The
need for this algorithm was realised after analysis of tiseilte for Patients 01 and 02. Development
commenced and deployment was attempted on Patients 03 t&/8%xontinued to collect ultrasound
data for later analysis, though no attempt has yet been nogatectess this data.

Alignment is based on the fact that the inner surface of thg Ipabic arch can be seen in both the
endoscopic images and the MRI images. The first stage is toaflgmpick points on the inner surface
of thelMRI. Dedicated software was implemented in C++ usipg@5L. A screen shot of this is shown

in Figure[6.6. Points are picked in transverse planes of tRé Mith 7 points picked over 6 slices, plus

1The apparent dynamic tracking error will be further increlisg any synchronisation error between the video and trackin

signals, discussed in Appendix C.
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7 points per slice picked along
inner surface of the pubic arch.

Coordinates output here.

[phd/data/Exp03_0i.ratient/Patient0S/MRIGIPL
2l

Figure 6.6: 43 points on the inner surface of the pubic arelmaanually picked from the preoperative

[MRIlimage. Using purpose built software this task can be deted in less than 5 minutes.

Figure 6.7: Manually selected points along the inner serfatof the pubic arch are projected onto the
endoscopic image. The keyboard is used to increment thsftnan7’,,—. o in each the six degrees of
freedom. The image on the left shows the two images priorigmalent. The image on the right shows

the two images after alignment.

an estimate of the prostate apex. Using our dedicated sefttiis can be done in less than 5 minutes,
at any point in time betwedn MRI acquisition and surgery.

The points picked are used to form a wire-frame model of tmerrsurface of the pubic arch.
This wire-frame model is projected onto the endoscope scuséng initial estimates of the various
transforms that make upy;— gs. At this stage the distortion model of the endoscope is netl &s it
significantly slows the projection algorithm, especiaflgame points are off screen. This projection is

shown in Figur€ 6]7. The estimate'Bf;_. g5 is interactively updated by varying the estimdte_, 1.
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Figure 6.8: The direct alignment routine can be applied gtpaint in the surgery where the pubic arch
is visible to some extent. The error in the alignment will €iegh on the extent to which the pubic arch
can be discerned. We have attempted in each case here tonpéntoregistration using our estimate of

the position of the pubic arch. We have no method at preseddlidate the accuracy of the results.

To- gr iSincremented in each of its 6 degrees of freedom (3 trdoskaind 3 rotations) using keyboard
commands. Two increment sizes are implementer’)(mm) and+10(°)(mm), allowing course to

fine registration. A skilled user can perform this registratfrom an arbitrary starting position in less
than 5 minutes. With a good initial estimate b6f;— g5 registration can be performed in under 30
seconds. We have not implemented an intuitive user interfse at present the alignment algorithm is

not suitable for use by clinicians.

This rigid alignment algorithm was successfully used fotig?ds 4 and 5 to provide the surgeon
with an image showing the patienfSTMRI overlaid on the stagscene, during surgery. Due to the
poor endoscope tracking accuracy the alignment routing bmusepeated at each static location of the
endoscope used for overlay. In figlirel6.7 we performed tgamient on an image frame where the inner
surface of the pubic arch is clearly visible. If necessaeydlignment can be performed on frames where
the pubic arch is not so clearly visible. This will lead to adeccurate registration, however when used

for the overlay of MRIl the effect still appears visually acaie.

6.7 Display of MRI Overlaid on Endoscope Screen

With T, g5 estimated we can projeci MRI data onto then endoscope scvéeeveloped software
in C++ using OpenGL to perform this projection. This softevavas successfully used for Patient 05

to display the overlay in theatre. The overlay in this case static with the back ground image being



176 Chapter 6. Patient Trials

a static frame captured from the endoscope. Since then ftvease has been developed to allow the
endoscope image and the estimat&'gf.. ps to be updated at up to 8 frames per second, ie. it can keep
pace with the images being captured by the frame grabberatisygdof 7, ps is done by updating
To- g1 based on the tracking data from the OptotraKl’/fnanual IS the estimate of o, g1 for frame

n as estimated manually using the method detailed in Sect@raBdT,, optotrak IS the corresponding
estimate oflo g1 using the Optotrak theffp— gr[i] can be estimated for an arbitrary frathéy
equatiof 6.R.

, -1
TO:>ET[Z] = Ti,Optotrak X Tn,Optotrak X Tn,Manual (62)

The revised estimate &fo—. gr[i] can be used to calculate a new estimat&'gf. g5 and this is
used to project thie MIRI data. If an estimatéldb piotrax IS Unavailable (due to insufficieht IREDs being
visible, then the last known version ©b pcotrak IS Used instead. When this occurs an on-screen marker
changes from green to red to alert the surgeon that the empl@s$ not being tracked. We have not yet
used this live update in theatre. Shortly we will presents@xample images that provide a qualitative

assessment of the tracking accuracy. Prior to this we willlidescription of the algorithm.

6.7.1 Projection Model

The[MRI image is first loaded into memory. The image is therppead to show a particular region
of interest, for example the prostate. Each remaining voxéhe[MRI image is first transformed to

Optotrak coordinates usirffj/—.o. Projection to on screen pixel coordinates is then perfdrogng

To=gsli].

MRI Interpolation

Unless thé MRI image is very far from the screen this will feBularge spaces between the projected
pixels, as shown at the left in Figure 6.9. To prevent thifiilimage is first interpolated. The amount
of interpolation can be controlled interactively, depemdon the distance if tHe_ MRI image from the
endoscope lens. More interpolation is necessary to getlistreamage when the MRl is close to the
lens, however there is a direct trade off in projection spesdwe aim to keep interpolation to the
minimum required. To the right of Figute 6.9 we show the dftéaividing each voxel in thEEMRI into
64 (4 times interpolation).

The quickest interpolation method is nearest neighboerpatiation. The result of this is shown
at the left of Figuré 6.710. The resulting image is somewhatky. This can be reduced by using tri-
linear interpolation. The overlay on the right of Figlre® dhows the same overlay using tri-linear
interpolation. The image is effectively blurred, giving @ma attractive overlay but with a slight trade

off in projection speed.

Overlay Opacity

The interface allows the opacity of the overlay image to lsedmented in steps of 10% from 0 to 100%.

Figure[6.11 shows an example of changing the slice opacity.
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™ Frame 20098, Direction z, Slice 10, Opacity 80, Zoom 4. Interpalate On, Not Flipped About X Axis  [|[a][x]

|-][o][x]

™ Frame 20065, Direction z, Slice 10, Opacity 80, Zoom 1. Interpolate Off. Not Flipped About X Axis

Figure 6.9: In order to show the MRI on screen as a coheremwf getints it in necessary to interpolate
the MRI image. On the left tHe MRI is projected without intelgtion resulting in a sparse set of pixels.
On the right th€ MRI image has been interpolated, placingditiadial data points between each voxel
vertex. The projected image is starting to fill in. The ingtirgg fill pattern is an artefact of the distortion

model used.

[ Fclinl= 29982 Blipasticnay slio= e Nel o dn sz gy I e g m e e = b te e i MIENEl| [ Frame 20118, Direction z, Slice 10, Opacity 80, Zoom 8, Interpolate On, Not Flipped About X Axis  [=][a][x]]

=

Figure 6.10: The effect of using nearest neighbour inteah (on the left) or tri-linear interpolation

(on the right).
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| Frame 20195, Direction 2, Slice 10, Opacity 20, Zoom 8, Interpolate On, Not Flipped About X Axis  [-][8][x]| | Frame 20144, Direction 2, Slice 10, Opacity 50, Zoom 8, Interpolate On, Not Flipped About X Axis  [-|[a][x]

= =

Figure 6.11: The opacity of the overlay can be varied intarely between 0 and 100%. Here the same
overlay is shown at 20% opacity (at left) and 50% opacity iit).

™ Frame 20403, Direction y, Slice 192, Opacity 80, Zoom 27, Interpolate Gn, Not Flipped About X Axis [=|[al[x]| [l =m0

Figure 6.12: It is also possible to overlay Coronal (at leftBagittal (at right) slices. In this case these

are re-sampled from a stack of transvérse MRI slices.

Slice Orientation

The orientation of the projection slice can also be changetactively. We have generally used trans-
verse slices as these provide the most intuitive overlaygeher it is possible to also show sagittal and

coronal slices, see Figure 6112.

Moving Through the Slice Stack

Difference slices in theEEMRI volume can be selected intéralst Figure[6.18 shows projection of two
different transverse slices from the sdme MRI volume.

6.7.2 Motion Tracking

Figure[6.1%# shows the movement of the overlay image as thesende undergoes motion. The direct
alignment method described in Sectionl 6.6 was first usedgn tielMR] with the endoscopic data with

the endoscope static in the pose shown in image 1 of Figu# GHe endoscope remained static in this
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Slice 13, Opacity 80, Zoom 8, Interpolate O About X Axis [=][8][®]| [ Frame 20227, Dir

Slice 21, Opacity 80, Zoom 8, Interpolate On, Not Flipped About X Axis  [=][8][¥]

Figure 6.13: Different slices from tie MRI can be selectedrinctively. The image at right shows a

slice 8 slices further away (inferior) to the image at thé lef

position for a prolonged period (about a minute) during ahime the tracking data remained reasonably
steady, with the overlay moving less than 5 pixels over thagien This represents random jitter in the
position measurement. In image 2 the overlay imagenseg move before the endoscope video
image, due to the frame grabber lag (see Appentlix C). Duriogiom, images 2 to 4, the position of the

overlay image moves about very unpredictably, in line whigtracking error shown in Figure 6.5. Once
endoscope motion has stopped, images 5 and 6, the overldippa®ttles into a new steady position,

which is slightly wrong (based on the visible position of firestate apex) compared to the position in

image 1. This is in line with the static tracking error seefkigure[5.15.

6.8 Clinical Experience

The aim of this chapter is not to validate the work of the pdéng chapters in theatre. This cannot be
done as no way of validating the results against a gold stdn@due is available. The aim of this chapter
was to get some form of image guidance up and running in thesdrthat the clinicians could interact
with it. To that end we have had some success. We presentheeddiriical outcomes of the 5 patients
involved in the trial. The system as implemented does nathre/any invasive procedure in addition to
the prostatectomy, for example the use of fiducial markers.h@le also taken care to ensure that the
surgeon does not use the overlaid images to make clinicedidaes yet. Therefore we would not expect
any negative outcomes. However the implementation to dadealso not been sufficient to show any

positive outcome.

The reports of the clinicians involved were positive. Theaot of being able to refer to the preop-
erativdeMR] in an intuitive way during surgery was seen astjyas No formal evaluation, for example
using a questionnaire, of surgeons’ experience of the sylsts been done yet. Significantly more work

is required to demonstrate any real positive impact of tistesy.
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[=] (][]

= Frama 30355, Diraction 2. Shce 10, Opacity £0. Zaom 8, rterpolata On, Not Fliaped Abaut X ixis

[Zim)x]| [ Frame 30409, Twection 7, Skca 19, Dpachy £0, Zoom 8, terpolzta On, Not Fioped Abat X Axs

Figure 6.14: A series of overlay images (hon consecutivejvshtracking of the endoscope during
motion. To— g7 is first estimated using the method from Secfiod 6.6 on imadgeubsequent overlays
use estimates dfp— g7 calculated using equatién 6.2. The green dot in the top dghter of each

image indicates that the Optotrak succeeding tracking ehtiese frames. When insufficidnf IREDs
are visible this is replaced with a red dot. Frames 3 and 4 stigmificant blurring of the video image

due to endoscope motion. The striations are an artefaceahthrlacing used by the frame grabber.
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Age Preop Stage Grade Margins Post-Op | 8 Week Conti-
PSA PSA nence
67 9.8 pT2a 3+3 negative < 0.03 Good, no pads
58 6.1 pT3b 3+4 negative < 0.03 Good, no pads
68 11.2 pT2c 3+4(+5) negative < 0.03 1 pad/day
58 7.2 pT2c 3+4 negative < 0.03 1 pad/day for
security

57 3.8 pT3a 3+4 apex +ve < 0.03 Good no pads

Table 6.5: Clinical outcomes for the five patients. Thereasr@ason to believe that the system as

implemented would have affected clinical outcomes.

6.9 Conclusions

The implementation of the image guidance system shown gnctmapter is quite different to what was

envisioned at the start of this thesis. This change was sitag=] by the high tracking errors found

in Chaptei b and restated in Section]6.5. None the less weeingited an image guidance system in

theatre which was found to be useful by the clinical staffe Bystem as shown can be implemented

in theatre without the need for Optotrak system or the uiad probe. Direct registration and overlay

can be done on a laptop attached tla/inci”® assistant console. Some work on improving the user

interfaces of the alignment and overlay software is reqiipeit apart from that the system works for the

limited case of static overlay.
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Chapter 7

Conclusions and Further Work

7.1 Summary of Results

At the start of this thesis we proposed a method for incotpaygoreoperative images into the intra-
operative endoscope image. At the core of this system iséimsformatioril’,,— g5 which transforms
individual voxels of th& MRI image to on-screen coordinafeése method we proposed to fifid;— g5
was to break it into to two fundamentally separate transétions, firstly we transform tHe MRI image
to the coordinate system of the Optotrak tracking systeingus,;—.o, then we project the MRI image
onto the screen usinflp_. gs. This methodology for image guided surgery is well estéiglisin the
literature, Birkfellner et al. (2002), Shahidi et al. (2)0and King et all.|(1999) all present similar sys-
tems. In these cases transforms equivaleffto, o were determined using fiducial markers, whereas
we present a method (in Chaptels 3 Bhd 4) that allows detetimimof T, —. o with out the need for fidu-
cial markers. We invested considerable effort into develphis method and quantifying its accuracy,
with significant successes.

In ChaptefB we presented a novel algorithm for fitting inttign{CT pelvic bone to dn MRI scan.
As it is relatively easy to segment bone fromICT we can trdataigorithm as a bone segmentation from
[MRTlalgorithm. On its own this algorithm compares well to 8tate of the art in literature, wifh RMS
boundary errors only 0.6 mm greater than that achieved bynftcand Magnenat-Thalmann (2008)
(see tablé_3.11). It should be noted that Schmid and Magfimmann [(2008) used MRI images
better suited to bone imaging and optimised their methodcloese a low RM$ boundary error. In
comparison we uséd MRI more suited to imaging the soft tissweoptimised our method to achieve a
low registration error at the prostate.

In Chaptet ¥ we presented a method for registering ultrasslices to the pseudo CT image gen-
erated in Chaptéd 3. By storing the ultrasound image as & sehazero points rather than a set of slices
we reduced the computational time required for registratiocomparison with Penney et al. (2006),
who used a similar method. We also optimised our method feramsthe pseudo GT, which presents
a slightly inaccurate_ QT image of the patient as opposede@ttiual CT used by Penney et al. (2006).
We showed that due to the use of the psdudb CT the distribotioltrasound slices used for registration
had a strong influence on the registration accuracy. We alggested a method for checking the con-

vergence of the registration algorithm in-theatre, by atipg the registration from randomly perturbed
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starting estimates. The method appeared robust, howepeesnt its run-time is excessive (300 min-
utes). Finally we computed the overall error in estimating—.o. We found this error to be 7.3 mm
[RMS, corresponding to an on-screen error of roughly 30 pix&b determine the effect of this error we
now needed to calculafg,—. g5 and take the system into the theatre.

The decision to concentrate on estimatifig_.o was based on the assumption that the determina-
tion of To— g5 would be trivial and the resulting errors would be small img@rison to the error in esti-
matingTh;—o. We based this assumption partly on the results of Birkéglt al. (2002), Shahidi etlal.
(2002), and King et all (1999), but more so on a model of thestabe tracking using the method of
Fitzpatrick et al.[(1998). For this model we assumed thatetier in localising each IRED would be
isotropic, normally distributed and homogeneous. We alsevptimistic in our estimate of how many
would be visible on the tracking collar at a given pdirtime. We didn’t have a good estimate of
the[IRED tracking error so we looked at best and worst cassilibes. In the best case we assumed a
[RED tracking error of 0.02 mm from Barnes et al. (2007), vihiesulted in negligible tracking error. In
the worst case we assumed @ IRED tracking error of 0.2 mm, [M&(1992), which gave significant
errors, but these were still less than the error in estimgdfip—.o. However, when we started to test
the system in-theatre it became clear, primarily from oterapts to calibrate the endoscope, that the
tracking error achieved in practice was significantly gee#ttan predicted.

In Chaptel’b we analysed the calibration and tracking errdvs first presented a novel method
to estimate thE TRED localisation error using fhe TRED l@raestimated by rigid body registration of
the remaining IREDs. Using this we modelled the calibratiod tracking of the endoscope. We came
to the following conclusions. The assumption of isotrofiomogeneous, normally distributed error
does not hold for optical tracking using the Optotrak Cerflisis agrees with Wiles et al. (2004). We
found that the expected value of the magnitude error wasoappately 0.2 mm, agreeing with NDI
(1992). However the error was anisotropic, non-homogesieand non-normally distributed. By using
the estimated marker errors as a look-up table for MontéeGamulation we quantified the effect of our
erroneous initial assumptions, see Tablé 5.3. The actehitrg errors (65 pixels) are more than double
that found assuming normally distributed, isotropic, hgereous error (31 pixai3. We are not the first
to show the effect of error anisotropy (see Wiles etial. (3N0B0 our knowledge, however, we are the
first to model the effect of non-normally distributed and #rmmogeneoUs IRED localisation error. The
effect is quite dramatic, and may explain the trend towamtksge guided surgery systems using direct
alignment of the visible anatomy with the endoscopic imagther than trying to track the endoscope.
For a recent example see Su etlal. (2009). In our case the igtrghdoscope tracking errors meant that
it would not be possible to use the in-theatre data to askesaccuracy in findindy;— o, as we had
initially hoped.

The preceding work demonstrated that the image guidantemsyge had initially envisioned would

1in this case the error assuming normally distributed, isattdmmogeneous error is also higher than we expected anallgctu
roughly the same as the registration error from Chdpter 4 iShdue to the difficultly we had in tracking the IREDs. We fdun
practice that it was common to be tracking the endoscope withiésd IREDs, whereas we had assumed that at ledsi 10 IREDs

would be visible.



7.2. Future Work 185

not function until endoscope tracking errors ware addkstethe meantime, however, we wanted to
implement image guidance in-theatre to get an appreciatidhe surgeon’s reaction and interaction
with it along with an understanding of an acceptable aligninezror. We presented this in Chagiér 6.
The tracking errors were significantly larger as we did naeffithe data to include only static data.
The errors in tracking a moving endoscope were very largautat 170 pixels, approx three times the
static error). This agrees with the results of Barnes leR&I07). With the impracticality of in-theatre
endoscope tracking established we limited our overlayesysb showing overlays of tHe MRI based
on a manual image fo MRl registration using a wireframe imafge inner surface of the pubic arch.
We implemented an overlay projection algorithm and usesrfate using OpenGL. It has not been
possible to make any quantitative analysis of this methaalvéver the feedback from the surgeon has
been very encouraging, with the availabilitylof MRI imagesidg surgery aiding decision making and

communication within the surgical team.

7.2 Future Work

There are several areas where future work could be dirested;ill discuss these separately.

7.2.1 Shape Model Fitting

The results presented in Chagiér 3 are quite promising. Hemtae validation of them has been very
limited. The availability of a larger data setlof MRI pelviatd, ideally with matching JT data (or expert

bone segmentations) would enable the algorithm to be plsopalidated. It is very unlikely that such a

data set will be available for work on radical prostatectoiityere are two alternative applications for the
algorithm we developed in Chapfér 3. The first is orthopagedis per Schmid and Magnenat-Thalmann
(2008). The second is radiotherapy planning flom MRI as meter et al.[(2008). Seeking an oppor-
tunity to apply the algorithm in one of these areas may pmeioime useful results, both to validate the

method and as a useful method for each application.

7.2.2 Registration Using Ultrasound

We did not complete a practical ultrasound registratioromtigm. For the method to work in-theatre
a substantially faster and more robust optimiser shouldrieimented. Two obvious choices are the
widely used Levenberg-Marquardt algorithm [Levenbergi)Pand the differential evolution algorithm
we used in Chaptérd 3 [Price et al. (2005)]. With this done iyrha worthwhile to further analyse the

ultrasound data we collected in-theatre.

7.2.3 Endoscope Tracking

In Chaptefb we proposed two methods to drastically imprbeesndoscope tracking accuracy. One was
to assume (or physically enforce) a sliding pivot constrairthe trocar. The second was to constrain
the motion using known motion axes taken from tr@vinci’ ™ [API. The promising results presented
in Figure[5.20 were based on simulations and need to be catfimith experimental results.
Throughout Chaptel]l5 we used a point base registration itdgor(SVD) that itself assumes

isotropic normally distributed error. It would be worthwéto repeat the various experiments in Chapter
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using a point registration algorithm that does not reqthiesse assumptions, see Chu and Trendafilo
(1998) or Batchelor and Fitzpatrick (2000).

Alternatively, investigation of hybrid tracking systemsutd be worthwhile. The optical tracking
data could be supplemented with data from magnetic trackiagper Birkfellner et all (1998), or the
daVvinci”™ kinematics|[Kwartowitz et al. (2009)].

Our modelling of thé TRED tracking errors was done by sangphmeasured errors, rather than
building a predictive model ¢f IREID tracking errors. If a gigtive model of IRED tracking errors was
developed, it should enable some of the systematic traekimgs to be adjusted for. Such an adjustment
could significantly improve the endoscope tracking acourécfurther useful experiment would be to

compare our method with the model of optical tracking systpmnesented by Sielhorst et al. (2007).

7.2.4 Clinical Implementation

In Chaptef® we presented a limited image guidance systemnothy allowed overlay for certain static
positions. Nonetheless the feedback from clinicians wag eecouraging. It would be very worthwhile
to continue implementing this system on a larger cohort ¢éiepgs. As it does not require endoscope
tracking or ultrasound acquisition this could be done witimimal additional work. If some effort
was investing in implementing an intuitive user interfabis tsystem could be used by the clinicians

themselves.

7.3 Conclusions

At the start of this thesis we set two goals. Firstly to depedad test in theatre an image guided surgery
system. Secondly, to determine the accuracy of the systeioaidentify the key contributors to the
system error. Sectidn_1.1 detailed how these goals were Wyetcan now combine these results to
answer the question of whether the system is clinicallyulsefhd if so what steps to take to improve
the system.

Repeating Table 5.4 here, this time with the pixel errorsreced to errors in mm, we can put the
system performance into context. Tablel 7.1 shows theségeFhe results shown in Taldle 7.1 raise the

question of what an error of 18.0 mm means clinically.

7.3.1 Defining Clinical Utility

In this section we start with the assumption that as the sybecomes more accurate it becomes more
useful to the surgeon. For the purposes of visualisationaredefine a measure of clinical utility. If
the system has no effect on the clinical outcome the clinitiity is zero. If the system has no error
the clinical utility is one. A real system will fall somewlebetween these two poin%By estimating
clinical utility values for errors greater than zero, we daran approximate curve to show how the
system error effects clinical utility. Figuke 7.1 shows atpif clinical utility versus system error in mm.

The first intermediate point defined is the current systenuraay. As discussed in Chapfér 6 the

2A negative clinical utility could occur if the system has ayative effect on clinical outcome. This may be the case if the
system has a high error but the error has been underestinfdteabvious need to avoid this situation is the reason tleisisthas

placed such high importance on measuring the system error.
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Error Reference | X Err. (mm) | Y Err. (mm) | Magnitude
(mm)

Shape Modelling Error Figure[3.11 | 3.3 3.3 4.7
Registration Error Figure[4.18 | 3.3 3.1 4.5

Endo. Calibration Error (Intrinsic) | Sectiofis.b | 0.5 0.5 0.7
Endo.Calibration Error (Extrinsic) | Sectiof5.b | 6.2 7.3 9.6

Endo. Calibration Error (Total) Figure5.12 | 6.3 7.4 9.7
Endo.Tracking Error Figure5.1b | 12.3 8.8 15.2

Total Error Figure[5.28 | 14.2 11.1 18.0

Table 7.1: A summary of the system errors. The total systewr & dominated by the endoscope
tracking error. The errors in this table are the same as iteTaB but have been converted to mm by

back projecting them onto a plane 200 mm from the endoscase le

Clinical Utility vs Back Projected Error (mm)

1 Locate NVB/
Cutting Planes
08 | ()Avoid Rectum
2
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Current Performance
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Back Projected Error (mm)

Figure 7.1: Clinical utility versus system error in mm. Gdial utility is an imprecise figure based on
the assumption that at zero error the system is as good ablposs clinical utility is one. If the system
has no effect on clinical outcome then clinical utility is@e Intermediate points have been estimated

based on estimates of what the system could be used for etadiffaccuracies.
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system is useful at this accuracy. The surgeon can refer iid/$ee the general location (which side of
the prostate) the tumours are located. A clinical utility0d? was assigned to this point. At an error of
10 mm the system may be useful for showing the shape of thégpecst the interface with the bladder.

At this point the surgeon is often unsure of the size and sbéfiee medial lobe of the prostate. Being

able to show this anatomy would increase the clinical ytilt an error of 5 mm the system may be

useful for defining the size of the margins around the prestapsule. At errors of less than 5 mm the
system could be used to show fine anatomy, like the nuerolaadmindles and the cutting planes around
the rectum.

Clearly the values of clinical utility and hence the chawsh in Figurd 7.1l are somewhat arbitrary
at present. The values will also vary from patient to pati&ht only way to accurately populate Figure
[Z1 is to perform a significant number of procedures usingante systems of known accuracies. At
present Figure 711 merely provides a roadmap by which futopeovement can be measured. The next

stage is to create a similar plot detailing the feasibilitachieving a given accuracy.

7.3.2 Defining And Improving Accuracy

Table[7.1 gives the current system accuracy for the varioogponents. Strategies for reducing errors
were discussed in Sectibnl7.2. To visualise this processawassign a feasibility value to various error
levels and plot them. Similarly to the preceding discussinmlinical utility, limits on feasibility can be
set at the current known levels. A system with a total errdr®60 is entirely feasible, hence a feasibility
of 1.0. Similarly a system with an error of zero is impossilblence a feasibility of zero. Intermediate
points can be plotted with good accuracy based on the wodepted in this thesis. Figure V.2 shows a
plot of feasibility versus system error.

Some improvements are relatively easy to implement. Aagucauld be significantly improved
by calibrating the endoscope in a fixture, so that its pasitiould be measured more accurately. Whilst
various approaches could be used to improve the accurabg pfoposed ultrasoundfo MRI registration
process, it may be more feasible to utilise fiducial mark&ast this point the feasibility of proposed
improvement drops. It seems quite likely that the endost@oéing accuracy could be improved by al-
lowing for systematic tracking errors and/or constrairtimgallowable motion of the endoscope. Beyond

this any improvement would rely on methods we have not yaighoof.

7.3.3 Combining Feasibility and Utility

Combining FigureE 712 and Figuffes]7.1 we can gain an unaelisgof where the current system stands,
and what should be possible with further development. Asgméthe system is useful, but only in a
general way. There is a clear roadmap to reduce the systentearound 5mm, which would make the
system significantly more useful. At this level the systenyina used to help define surgical margins.
We have not specified a method to improve the system beyosddtcuracy here. However it is likely
that a method would be found at some point in the future. THg way to properly understand the

clinical utility of such changes is to implement the systemacsignificant number of patients.
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Feasibility vs Back Projected Error (mm)
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Figure 7.2: The feasibility of a given system versus its amcyl Limits can be set at a feasibility of 1
for the current system accuracy of 18.0 mm, and zero for &systith zero error. Various strategies for
reducing the total system error can then be applied. Sommare easily applied than others, so have

been assigned different feasibility scores. The effectamuigcy is based on the values shown in Table

1.
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A.1 Shape Model Patient A

Adult male pelvis

Name SM-A

Description Adult Male Pelvis
Modality CT

Size (Voxels) 512x512x100
Voxel Dimensions (mm) 0.783x0.783x3.200

0 1.00 x 401.00 xM339.90. mf)
] mm .
. 0,00 mm

= Intensity: 1124




Adult male pelvis

A.2. Shape Model Patient B

A.2 Shape Model Patient B

209

Res:

Coordin

> Voxel O

> Intensit
> Intensity:

Name SM-B

Description Adult Male Pelvis
Modality CT

Size (Voxels) 512x512x109
Voxel Dimensions (mm) 0.865x0.865x3.200

0,00, 62,13 mm

G8 to
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A.3 Shape Model Patient C

Adult male pelvis

Name SM-C
Description Adult Male Pelvis
Modality CT

Size (Voxels) 512x512x100

Voxel Dimensions (mm)

0.762x0.762x3.200

w323 A0, M) «0.18

Zoom: 1

d range: 68 to 276




Adult male pelvis

A.4. Shape Model Patient D

A.4  Shape Model Patient D

211

Name SM-D
Description Adult Male Pelvis
Modality CT

Size (Voxels) 512x512x103

Voxel Dimensions (mm)

> Voxel O
> Intensit
» Intensity: 99

0.779x0.779x3.200

G.00, 51.50 (

; Displayed range: 68 to
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A.5 Shape Model Patient E

Adult male pelvis

Dim: 5

Name SM-E

Description Adult Male Pelvis
Modality CT

Size (Voxels) 512x512x173
Voxel Dimensions (mm) 0.738x0.738x2.000

.00, 0,00, O.00 mm




A.

6. Shape Model Patient F

A.6 Shape Model Patient F

Adult male pelvis

213

= Voxel 02546,
= Intensity
> Intensity

Name SM-F

Description Adult Male Pelvis

Modality CT

Size (Voxels) 512x512x148
0.879x0.879x2.000

1 150.00 x 450.00 xM3g6.90. AA)
x 2.000 mm ¥
0,00 mmu

256,00, 74.00

95; Displaved range: G8
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A.7 Shape Model Patient G

Adult male pelvis

Name SM-G
Description Adult Male Pelvis
Modality CT

Size (Voxels) 512x512x158

Voxel Dimensions (mm)

0.732x0.732x2.000

T
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A.8 Shape Model Patient H

Adult male pelvis

Name SM-H

Description Adult Male Pelvis
Modality CT

Size (Voxels) 512x512x138
Voxel Dimensions (mm) 0.701x0.701x2.000

. Elé X 138 0 X 3
®x 0.701 2
Coordinate; 0.00, 0,00, 0.00 mm

> Intensity rang
> Intensity: 1060
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A.9 Shape Model Patient |

Adult male pelvis

Name SM-I

Description Adult Male Pelvis
Modality CT

Size (Voxels) 512x512x105
Voxel Dimensions (mm) 0.789x0.789x3.000

105 (404.00 x 404.00 xMB35.00.@M) xC
00 mm !
0,00 rmm

: ]:]'lTE]'LE-iT"_:": 1044
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A.10 Shape Model Patient J

Adult male pelvis

Name SM-J

Description Adult Male Pelvis
Modality CT

Size (Voxels) 512x512x153
Voxel Dimensions (mm) 0.703x0.703x2.000

Dim: 512 x 2 x 153 00 x 360,00 xM386 .00, thm) 3
' Loom:

0,00 mm

= Voxel 0258,
> Intensity
> Intensity: 1070
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A.11 Shape Model Patient K

Adult male pelvis

Name SM-K

Description Adult Male Pelvis
Modality CT

Size (Voxels) 512x512x163
Voxel Dimensions (mm) 0.703x0.703x2.000

1 D0 x 360.00 xMBE6.00. i)
] mm Zo
, 94,11 mm

Dim: 5

=nsity Tan
= Intensity;:
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A.12 Shape Model Patient L

Adult male pelvis

Name SM-L

Description Adult Male Pelvis
Modality CT

Size (Voxels) 512x512x166
Voxel Dimensions (mm) 0.703x0.703x2.000

A MR AT ek @A T L
00 x 360.00 xM38Z.00.

> Intensity: 1072
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A.13 Shape Model Patient M

Adult male pelvis

Name SM-M

Description Adult Male Pelvis
Modality CT

Size (Voxels) 512x512x160
Voxel Dimensions (mm) 0.723x0.723x2.000

160 0,00 x
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A.14 Shape Model Patient N

Adult male pelvis

Name SM-N

Description Adult Male Pelvis
Modality CT

Size (Voxels) 512x512x150
Voxel Dimensions (mm) 0.768x0.768x2.000

L, 00 xMBH0 .80, bmy =0.17

Zoom: 1
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A.15 Shape Model Patient O

Adult male pelvis

Name SM-O

Description Adult Male Pelvis
Modality CT

Size (Voxels) 512x512x158
Voxel Dimensions (mm) 0.703x0.703x2.000

¥ 360,00 x336.00, dm,) >

92 mm

> Voxel D258,
= Intensity T
> Intensity:
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A.16 Shape Model Patient P

Adult male pelvis

Name SM-P

Description Adult Male Pelvis
Modality CT

Size (Voxels) 512x512x141
Voxel Dimensions (mm) 0.719x0.719x2.000

t:l i-I'II : : 1

Coordinate: 0.00, 0,00, 0.00 mm
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A.17 Shape Model Patient Q

Adult male pelvis

Name SM-Q

Description Adult Male Pelvis
Modality CT

Size (Voxels) 512x512x139
Voxel Dimensions (mm) 0.746x0.746x2.000

Dim: &
Loom!

0,00, O.00 mm

> Voxel 0256,

> Intens
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A.18 Shape Model Patient R

Adult male pelvis

225

Name SM-R

Description Adult Male Pelvis
Modality CT

Size (Voxels) 512x512x162
Voxel Dimensions (mm) 0.703x0.703x2.000

> Intensity
> Intensity:

?2 v 167 0,00 x

5.00, 13 (
; Display
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A.19 Shape Model Patient S

Adult male pelvis

Name SM-S

Description Adult Male Pelvis
Modality CT

Size (Voxels) 512x512x150
Voxel Dimensions (mm) 0.738x0.738x2.000

.00 x 378.00 xM380 .80, tm)
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A.20 Shape Model Patient T

Adult male pelvis

Name SM-T

Description Adult Male Pelvis
Modality CT

Size (Voxels) 512x512x154
Voxel Dimensions (mm) 0.703x0.703x2.000

¢ 154 0.00 x 360,00 xM388 . 00.tm,) =0.1;
: 00 rmm 7 '
, 0,00 mm

= Voxel 0256,
> Intensity ra
» Intensity: 1068
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A.21 Shape Model Patient U

Adult male pelvis

Name SM-U
Description Adult Male Pelvis
Modality CT
Size (Voxels) 512x512x150
Voxel Dimensions (mm) 0.738x0.738x2.000
Dim: 512 X 00 wMB3A0 00, i)

Res: 2,0 Zo

37, 409,20 mm

= Voxel 0256, 0048,
> Intensity range:
> Intensity: G8




A.22. Prostatectomy Patient 01

A.22 Prostatectomy Patient 01

Patient for Radical Prostatectomy

229

Image Description Size Resolution Slice Spacing | Image date (Daysg
Before Surgery)

t2 Sagittal 512:512:13 0.49:0.49:5 6 127

t2 Transverse 320:320:30 1.19:1.19:5 6.25 127

t1 Sagittal (Oblique) 512:512:28 0.72:0.72:5 55 127

t1 Transverse 320:320:23 0.63:0.63:3 3.45 127

t2 Transverse 320:320:23 0.59:0.59:3.2 | 3.84 127

t2 Coronal 512:512:23 0.59:0.59:5 5.75 127

Name Patient-01 Anatomy

Description

Modality T2 MRI

Size (Voxels) 320x320x23

Voxel Dimensions (mm)

Coordinate:

u--ur_ ¥

> Intensity: 137

0.594x0.0.594x3.840

s T
o0 » 190.00 %

Ba
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A.23 Prostatectomy Patient 02

Patient for Radical Prostatectomy

Image Description Size Resolution Slice Spacing | Image date (Days
Before Surgery)

t2 Sagittal 512:512:25 0.78:0.78:10 15 21

Diffusion Weighted 128:128:125 1.95:1.95:6 7.2 21

t1 Transverse 512:512:30 0.49:0.49:6 7.2 21

t2 Axial (Transverse) 384:384:24 0.65:0.65:3 3.9 21

t2 Coronal 384:384:20 0.52:0.52:3 3.6 21

Name Patient-02 Anatomy

Description

Modality T2 MRI

Size (Voxels) 384x384x24

Voxel Dimensions (mm)

Dim
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A.24 Prostatectomy Patient 03

Patient for Radical Prostatectomy

Image Description Size Resolution Slice Spacing | Image date (Days
Before Surgery)

t2 Sagittal 512:512:13 0.49:0.49:5 6 106

t2 Transverse 320:320:30 1.19:1.19:5 6.25 106

t2 Coronal 512:512:26 0.59:0.59:5 5.75 106

t2 Transverse 320:320:23 0.59:0.59:3.2 | 3.84 106

t1 Transverse 320:320:23 0.63:0.63:3 3.45 106

t1 Sagittal (Oblique) 512:512:28 0.72:0.72:5 55 106

Name Patient-03 Anatomy

Description

Modality T2 MRI

Size (Voxels) 320x320x23

Voxel Dimensions (mm) 0.59x0.59x3.8

Dam: X ( 0 x 180,00

00, 160,00, 11.50 (95 - 44 .16 nm)
Jisplayved range: -13.41% 7

> Intensity: 104
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A.25 Prostatectomy Patient 04

Patient for Radical Prostatectomy

Image Description Size Resolution Slice Spacing | Image date (Days
Before Surgery)

Sagittal 256:256:23 0.70:0.70:3 3 177

t1 Axial 512:512:39 0.68:0.68:5 55 177

t1 Coronal 512:512:23 0.74:0.74:5 6.05 177

t2 Coronal 256:256:23 0.70:0.70:3 3.3 177

t2 Transverse 256:256:23 0.63:0.63:3 3.3 177

Name Patient-04 Anatomy

Description

Modality T2 MRI

Size (Voxels) 256x256x23

Voxel Dimensions (mm) 0.63x0.63x3.3

Dam: X | x 16 X 75,90 nmm)
3 |
0,00 rrm

121.07, 11.50 ( 5,67, 37.95 nm)
d range: 0 to :

» Intensity: 0
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A.26 Prostatectomy Patient 05

Patient for Radical Prostatectomy

T1 Transverse 512:512:32 0.78:0.78:6 7.2 101
T2 Sagittal 512:512:30 0.39:0.39:3.5 | 3.84 101
T2 Transverse 512:512:30 0.35:0.35:3.5 | 3.84 101
T2 Coronal 512:512:50 0.35:0.35:3.5 | 3.84 101
Name Patient-05 Anatomy
Description
Modality T2 MRI
Size (Voxels) 512x512x30
Voxel Dimensions (mm) 0.35x0.35x3.8

Dirm: 517 x &

.64, 15.00 (54

ved range: 0 to 3

> Intensity: &
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A.27 Brachytherapy Patient 01

Patient for Prostate Brachytherapy

Name XMR-01

Description Structural MRI of prostate and surrounds
Modality

Size (Voxels) 256x256x20

Voxel Dimensions (mm) 0.703x0.703x3.300

00 x 180,00 x WM&z 00xtmd 7,
mrm Zo

0010 1. o, 0, 10.00 (90,00,

0 to 511; Displaved range: 0 to 441.&3{
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A.28 Brachytherapy Patient 02

Patient for Prostate Brachytherapy

Name XMR-02

Description Structural MRI of prostate and surrounds
Modality

Size (Voxels) 256x256x25

Voxel Dimensions (mm) 0.703x0.703x3.850

0 x 180,00 x
mrm

r— —
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A.29 Cadaver Patient 01

Adult Female Pelvis

Name Cadaver-01
Description Adult Female Pelvis
Modality CT

Size (Voxels) 441x252x114

Voxel Dimensions (mm) 0.715x0.715x2.000
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A.30 Cadaver Patient 02

Adult Female Pelvis

Name Cadaver-02
Description Adult Female Pelvis
Modality CT

Size (Voxels) 373x222x111

Voxel Dimensions (mm) 0.793x0.793x2.000
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A.31 Cadaver Patient 03

Adult Female Pelvis

Name Cadaver-03
Description Adult Female Pelvis
Modality CT

Size (Voxels) 373x203x119

Voxel Dimensions (mm) 0.793x0.793x2.000
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A.32 Plastic Anatomy Phantom

Plastic Adult Male Pelvis

Name Phantom

Description Plastic Adult Male Pelvis
Modality CT

Size (Voxels) 373x137x776

Voxel Dimensions (mm) 0.914x0.914x0.5
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Appendix B

Fitting a Male Shape Model to a Female Pelvis

The cadaver data used in Chagier 4 was for female pelvesgdie obvious question of whether a
model based on male pelves can be applied to a female pelwie bbthe pelves are registered with a
9[DOR affine transform prior to the model being applied, sodifference in general size should not
affect the model performance. To assess whether the modefinging suitable shapes for the female
pelves the component coefficients for each of the twelvecipat components were compared against
the component coefficients found by fitting the shape modile¢analé CT data used to build the shape
model (on a leave one out basis) data, see Chhpter 3. HKiglirevBrlays the component coefficients
for the three cadavers and the phantom with the distribwifanaining set parameters (approximately
normal). The same data is quantitatively examined in TableuBing a Kolmogorov-Smirnov test to
examine the hypothesis that the coefficients for the cadiatarare drawn from the same distribution as
the results of the male pelves in the model.

For the most part the cadavers and data sets conform to tleetexpmodel shape. The results for
mode 3 are significantly different. The results for mode b alspear unusual. These modes may capture
some shape information separating male from female pelves.

As the optimisation algorithm allows the generation of aiioh outside the model space it seems
likely that a reasonable solution will be generated for #mmdle data, however further investigation is

required to validate this.
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Figure B.1: The solution component coefficients found fer 3hcadaver and 1 phantom data sets, over-
laid on histograms of the component coefficients from theendalta sets used to build the model. The

phantom falls within the expected model shape. As shownlife[&.1, the female cadavers do not.
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Mode KS Test Stat. (D) P-Value Accept Null at 5 %?
0 0.2643 0.9576 Yes
1 0.6643 0.07795 Yes
2 0.5214 0.2909 Yes
3 0.8786 0.003961 No
4 0.281 0.9315 Yes
5 0.5071 0.3227 Yes
6 0.5024 0.3337 Yes
7 0.2929 0.9076 Yes
8 0.6024 0.1449 Yes
9 0.5143 0.3066 Yes
10 0.3381 0.7699 Yes
11 0.5048 0.3282 Yes
All 0.1871 0.1636 Yes

Table B.1: The results of a Kolmogorov-Smirnov to test weetthe observed values of model mode
coefficients for the cadavers come from the same distribug®that of the 420 points tested using the
model training data. The null hypothesis is that the obskpadaver coefficients (3 for each mode)
are drawn from the same distribution observed for the madelihg data (420 for each mode). The p
value is the probability that the KS test statistic value ldaaccur if the null hypothesis is true. Except
for mode 3 the null hypothesis is not rejected at a signifiedagel of 5%. This raises the interesting

possibility that mode 3 contains information that diffeiates male from female pelves.
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Appendix C

Estimating the Tracking Synchronisation

Error Using Image Information

C.l1 Aim

Using the method described in Chagier 5 there will be a trackinchronisation error due to the pro-
cessing time of the frame grabber versus the processingofithe Optotrak. The frame times of images
grabbed by the frame grabber will not match those reportad the Optotrak. For tracking of static en-
doscope poses this should not be an issue, unless the lag lange, which would require the endoscope
to be held still for a prolonged period before image overlammenced. The aim here is to quantify this
lag and its stability. If the lag is stable then it should beiat to adjust for it by adjusting the recorded

times. Here we quantify the lag by recording tracked videthefworkstation’s own internal clock. We

also present a method for estimating the frame lag usingeatth data by correlating two estimates of

the endoscope tip speed, one based on the tracking dataeaathér based on the image data.

C.2 Method

The frame synchronisation error is here quantified by takidgo images of the workstation’s internal
clock and comparing the times shown with those reported &yrttking system.

An alternative to this is to estimate the lag by measuringctiveelation of two estimates of the en-
doscope tip speed, one based on the tracking data and theotthe image information. The endoscope
speed was first estimated from the tracking data by calagjdlie displacement at the endoscope tip and
dividing it by the frame rate to get an estimate of endoscpeed. Each image in the endoscopic video
was then compared with the image preceding it usSingINMI. éf @inatomy being imaged is relatively
static (ie only the endoscope is moving) then the valle ofINMiuld be an indicator of endoscope tip
speed. This gives two one dimensional signals for the emgeasiip speed. By moving the image derived
signal back and forwards through time relative to the tnagldata derived signal it is possible to find

the point at which they are maximumly correlated. This sHadrrespond to the frame lag.

C.3 Data

A dedicated video of the workstation clock was used for th& finethod. See Figute C.1. Dynamic
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12:50:19 . 265

Time from Tracking file 12:50:19.640
Difference 0.375

Figure C.1: A video frame of the workstation clock overlaihithe corresponding frame time recorded

by the tracking software.
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Figure C.2: A histogram of the frame lags recorded using esayf the workstations own clock.

video data of a plastic phantom was used for the second agiproa

C.4 Results

Using the data from the workstation clock gave a frame lag7& @is with a standard deviation of 34
ms. Figurd_ CP shows a histogram of the recorded frame lalgs.rdsolution of the workstation clock
was 5 ms, while the resolution of the tracking clock was 1 ris interesting that Figule Q.2 indicates
that the measured frame lag is quantised in units of rougblyn®. Presumably this is related to the
performance of either the frame grabber or the tracking\aott.

Figurd C.B shows the correlation coefficient of the two endps tip speed signals. Peak correlation
occurs at a frame lag of 369 ms, which is very close to the figtiB¥8 determined using the clock. This

suggests that this method may be useful for estimating ftaqeetrospectively for in theatre data. This
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Figure C.3: The correlation coefficient of the two estimatesndoscope tip speed for the video data of

the static phantom.

may be complicated by the presence of moving objects (anasmh end effectors) in the surgical data.



248 Appendix C. Estimating the Tracking SynchronisatioroEtsing Image Information



Appendix D

Error due to using a Nominal Prostate

As discussed in Sectidn 1.6.1 the RMS errors at the prossatace referred to throughout this report
do not in fact refer to the actual error for a given data sets Thbecause rather than using the actual
prostate location for a given data set, a nominal prostatgilon was used for all data sets to allow direct
comparison of the results. The potential effect of this @éadisation on the actual error for a given data
set is discussed here.

The degree to which the actial TRE is under or overestimaitdi@pend on where the actual
prostate lies in relation to the nominal prostate and whaattiual TRE is. Fdr TRE s in the range 0.8 to
4 mm it was found experimentally that the RMS errof In TRE dumts-positioning of the prostate was
as shown in Figure Dl 1. At present the typical distanceseéttual prostates from the nominal prostate
are unknown. This could be determined relatively quicklpwéver, it is likely to be significantly less
than 50 mm as the data sets are all rigidly aligned and scalathtch. Therefore the mismatch caused
by using the nominal prostate should be significantly lesa th4 mm, which is negligable compared to

the expected system error.
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Figure D.1: Errors in prostate position due to the use of mammiather than actual prostate surface
points. This is based on a set of data files With RIMS TTRE s betv@e® and 4 mm. At present the
distance error for the prostate is unknown, however it ghbalsignificantly less than 50 mm. Therefore

it is assumed that the error due to using the nominal prostat®all compared to the overall error.
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