Erratum: Observational constraints on the ultrahigh energy cosmic neutrino flux from the second flight of the ANITA experiment [Phys. Rev. D 82 022004 (2010)]

P. W. Gorham,¹ P. Allison,¹ B. M. Baughman,² J. J. Beatty,² K. Belov,³ D. Z. Besson,⁴ S. Bevan,⁵ W. R. Binns,⁶ C. Chen,⁷
P. Chen,⁷ J. M. Clem,⁸ A. Connolly,⁵ M. Detrixhe,⁴ D. De Marco,⁸ P. F. Dowkontt,⁶ M. DuVernois,¹ E. W. Grashorn,²
B. Hill,¹ S. Hoover,³ M. Huang,⁷ M. H. Israel,⁶ A. Javaid,⁸ K. M. Liewer,⁹ S. Matsuno,¹ B. C. Mercurio,² C. Miki,¹
M. Mottram,⁵ J. Nam,⁷ R. J. Nichol,⁵ K. Palladino,² A. Romero-Wolf,¹ L. Ruckman,¹ D. Saltzberg,³ D. Seckel,⁸
R. Y. Shang,⁷ G. S. Varner,¹ A. G. Vieregg,³ and Y. Wang⁷
¹Department of Physics and Astronomy, University of Hawaii, Manoa, Hawaii 96822, USA
²Department of Physics, Ohio State University, Columbus, Ohio 43210, USA
³Department of Physics and Astronomy, University of California Los Angeles, California 90095, USA

⁴Department of Physics and Astronomy, University of Kansas, Lawrence, Kansas 66045, USA

⁵Department of Physics and Astronomy, University Of Kansus, Edwience, Kansus 60045, USA

⁶Department of Physics, Washington University in St. Louis, Missouri 63130, USA

⁷Department of Physics, National Taiwan University, Taipei, Taiwan 10617

⁸Department of Physics, University of Delaware, Newark, Delaware 19716, USA

⁹Jet Propulsion Laboratory, Pasadena, California 91109, USA

(Received 30 November 2011; published 6 February 2012)

DOI: 10.1103/PhysRevD.85.049901

PACS numbers: 98.70.Sa, 95.55.Vj, 95.85.Ry, 99.10.Cd

In a recent article [1,2] we reported a limit on a cosmic neutrino flux from the second flight of the ANITA experiment. The limit was based on observing 2 events passing all cuts on a background of 0.97 ± 0.42 . This article corrects the previous article down to 1 surviving event. The limit on cosmic neutrinos becomes correspondingly stronger.

One of the first steps in the analysis procedure was inserting several calibration events at undisclosed random times to mimic a neutrino signal. These events were produced during flight by an antenna buried 97 m below the ice surface and were driven by an autonomous pulser. These inserted events would be removed upon unblinding the analysis. This was one

FIG. 1 (color online). ANITA-II limit for 28.5 days livetime. The blue curve is the new limit, based on the one surviving candidate. Other limits are from AMANDA, RICE, Auger, HiRes, and a revised limit from ANITA-I. The Berezinsky and Zatsepin (Greisen, Zatseptin and Kuzmin) neutrino model range is determined by a variety of models. Full citations for the table and figure are given in the original article.

Model and references	Predicted N_{ν}	C.L.%
Baseline models:		
Various	0.3-1.1	
Strong source evolution models:		
Aramo et al. 2005	2.4	85
Berezinsky 2005	5.1	98
Kalashev et al. 2002	5.6	99
Barger, Huber, and Marfatia 2006	3.5	93
Yuksel and Kistler 2007	1.7	74
Models that saturate all bounds:		
Yoshida et al. 1997	32	>99.999
Kalashev et al. 2002	20	>99.999
Aramo et al. 2005	17	99.999
Waxman-Bahcall fluxes:		
Waxman, Bahcall 1999, evolved sources	1.5	•••
Waxman, Bahcall 1999, standard	0.52	

TABLE I. Expected numbers of events N_{ν} from several cosmogenic neutrino models, and confidence level for exclusion by ANITA-II observations when appropriate. Full citations are given in the original article. Some values of N_{ν} have changed slightly since the original publication due only to small changes in numerical integration.

of two procedures we employed to have a blind analysis. After publication, we subsequently determined that due to a clerical error one of the two surviving events, Event 8 381 355, was actually one of the inserted calibration events. The fact that this event survived its subsequent scrutiny we consider as a demonstration that the blinding procedure was truly valid.

The net result is that ANITA-II observed 1 event on a background of 0.97 ± 0.42 . Including systematic uncertainties, that corresponds to reducing the Feldman-Cousins upper bound from 4.95 to 3.41 events. The new, 31% stronger, limit is shown in Fig. 1. Now the actual limit is essentially the same as the expected limit so we no longer show both curves. The ANITA-II 90% confidence level integral flux limit on a pure E^{-2} spectrum for 10^{18} eV $\leq E_{\nu} \leq 10^{23.5}$ eV is $E_{\nu}^2 F_{\nu} \leq 1.4 \times 10^{-7}$ GeV cm⁻² s⁻¹ sr⁻¹. An updated evaluation of representative models is given in Table I. Citations were given in the original article.

We take this space to note that two additional analyses [3,4] have reached the same conclusions as our published result, but using complementary techniques which hold promise for future analyses.

- [3] R.-Y. Shang, master's thesis, National Taiwan University, 2011, http://www.phys.hawaii.edu:8080/anita_notes/494.
- [4] M. Mottram, Ph.D. dissertation, University College London, 2011, http://www.phys.hawaii.edu:8080/anita_notes/498

^[1] P. Gorham et al., Phys. Rev. D 82, 022004 (2010).

 ^[2] A.G. Vieregg, Ph.D. dissertation, University of California, 2010, http://proquest.umi.com/pqdweb?did=2316792181&sid= 1&Fmt=2&clientId=48051&RQT=309&VName=PQD.