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Abstract Here we introduce a model of solid tumour

growth coupled with a multiscale biomechanical de-

scription of the tumour microenvironment, which facil-

itates the explicit simulation of fibre-fibre and tumour-

fibre interactions. We hypothesise that such a model,

which provides a purely mechanical description of tumour-

host interactions, can be used to explain experimen-

tal observations of the effect of collagen micromechan-

ics on solid tumour growth. The model was specified

to mouse tumour data and numerical simulations were

performed. The multiscale model produced lower stresses

than an equivalent continuum-like approach, due to a

more realistic remodelling of the collagen microstruc-

ture. Furthermore, solid tumour growth was found to

cause a passive mechanical realignment of fibres at the

tumour boundary from a random to a circumferential

orientation. This is in accordance with experimental

observations, thus demonstrating that such a response

can be explained as purely mechanical. Finally, peritu-

moural fibre network anisotropy was found to produce

anisotropic tumour morphology. The dependency of tu-

mour morphology on the peritumoural microstructure
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was reduced by adding a load-bearing non-collagenous

component to the fibre network constitutive equation.
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1 Introduction

The tumour microenvironment is now widely accepted

as being an important factor in the development, pro-

gression and invasion of cancerous cells (Liotta and

Kohn, 2001). Whilst historically the focus of cancer re-

search has been on studying the relationship between

intrinsic genomic properties and extrinsic chemical stim-

uli, observed epigenetic effects of force transmission be-

tween cells and their microenvironment have established

the idea of a mechanical phenotype (Butcher et al, 2009);

that is, a pathological dependence on cell and tissue

biomechanical properties (Jain et al, 2014). This de-

pendence is mediated by mechanochemical systems —

such as transmembrane adhesion receptors (eg. inte-

grins) and cytoskeletal networks — which translate me-

chanical cues from the microenvironment to the cell nu-

cleus (Janmey, 1998) and are hence expressed variously

as changes in shape (Yeung et al, 2005), motility (Pel-

ham and Wang, 1997), proliferation (Paszek et al, 2005),

differentiation (Discher et al, 2005) and apoptosis (Chen

et al, 1997).

These processes occur at multiple length scales: from

the tissue (macroscopic) to cell (microscopic) and molec-

ular (nanoscopic). At the macroscopic scale, studies of

the effects of solid stress (i.e. the stress of the solid com-

ponents of the tumour) at the outer tumour bound-

ary have shown that the mechanical interaction be-

tween cells and the extracellular matrix (ECM) plays
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an important role in regulating cell proliferation (Helm-

linger et al, 1997; Cheng et al, 2009). Furthermore, mi-

crostructural properties of the ECM — such as col-

lagen fibre structure and density — have been impli-

cated in cancerous growth and invasion (Provenzano

et al, 2006). Specifically, the authors identified three

principal fibre alignments with respect to the tumour

boundary: random, parallel and perpendicular, which

corresponded to tumour initiation, growth and inva-

sion. This is an example of tumour mediated ECM

remodelling, which has been associated with invasive-

ness by histopathologic analysis of human cancer cell

lines (Conklin and Keely, 2012).

The physical mechanisms producing these mechani-

cal phenotypes are currently unknown, thus motivating

the development of a physiologically accurate mathe-

matical model to compare with experimental data and

hence identify the fundamental constituent processes.

In particular, it is desirable to separate active from

passive processes as they involve very different cell be-

haviour. The field of mathematical tumour growth mod-

elling is vast (Byrne, 2010; Cristini and Lowengrub,

2010; Frieboes et al, 2011; Kam et al, 2012), from its

origins in coupled integro-differential equations to more

complex descriptions involving two or more interact-

ing constituents (multiphase models), continuum, dis-

crete and multiscale solid mechanics characterisation

of multicellular tumour spheroids (mechanical models)

and stochastic formulations of cell-cell and cell-ECM in-

teractions (agent-based models), to highlight only the

broader schools of thought.

Here we focus on mechanical models, based on the

assumption that ECM remodelling is dependent on the

material properties of the tumour and peritumoural

stroma and their mechanical interaction. Furthermore,

such models allow for the simulation of growth-induced

solid stresses, which have an effect on cell prolifera-

tion (Helmlinger et al, 1997), apoptosis and vessel com-

pression (Stylianopoulos et al, 2012). Motivated by these

observations, (Netti et al, 2000) investigated the role of
the ECM in interstitial fluid transport in tumours using

a bi-phasic viscoelastic model. They found that colla-

gen density influences the tissue resistance to macro-

molecular transport and hence drug efficacy. Based on

the same observations, (Ambrosi and Mollica, 2004)

proposed an elastic model of the tumour and agarose,

with growth accommodated by a multiplicative decom-

position of the deformation gradient. Through numeri-

cal simulations and assuming spherical symmetry, they

qualitatively reproduced the experimental observations

of radial displacement over time and investigated the

effect of residual stress. The assumption of a linearly

elastic material was dropped by (Kim et al, 2011), who

developed a three-dimensional hypoelastic continuum

model of tumour growth and qualitatively reproduced

observations of anisotropic growth into a heterogeneous

media.

To account for an extracellular fluid component,

(Ambrosi and Preziosi, 2009) proposed a multiphase

formulation of the tumour and its environment. This

model was able to account for a number of complex

interactions, such as stress-dependent growth, cell re-

organisation and the formation of a capsule around

the tumour boundary. The effects of residual and yield

stresses were further examined in (Preziosi et al, 2010),

where an elasto-visco-plastic model was employed to de-

scribe the dual nature of cellular aggregates: solid-like

under small stress and liquid-like under large stress. A

similar approach was utilised by (Stylianopoulos et al,

2013; Mpekris et al, 2015), who included a fluid com-

ponent via Darcy’s law and extended the formulation

to account for residual tissue stresses. They found that

growth-induced and externally applied stresses can af-

fect cancer cell growth by compressing the cells and

deforming blood vessels. In all these studies the focus

has been on modelling the tumour itself.

To our knowledge, there are currently no models

that account explicitly for microstructural components

of the tumour microenvironment. This work focuses

on developing a numerical methodology to simulate an

avascular spherical tumour expanding into a collagen

fibre network, which we use to gain insight into the rela-

tionship between tumour growth and peritumoural mi-

crostructure. The novelty lies in the coupling — rather

than the individual components — of macroscopic tu-

mour growth with the microscopic description of the

ECM, and the numerical implementation. The hypoth-

esis we aim to test is whether such a model, which has a

purely mechanical description of tumour-host interac-

tions, can be used to explain experimental observations

of the effect of solid tumour growth on its microenvi-

ronment and vice versa.

Following the work of both (Chandran and Barocas,

2007) and (Stylianopoulos and Barocas, 2007), a three-

dimensional structural characterisation of the collagen

networks is employed, allowing for explicit calculations

of fibre-fibre and tumour-fibre force exchange. The fibre

scale is coupled with the tissue scale via the application

of volume averaging theory, which casts macroscopic

quantities in terms of their averaged microscopic prop-

erties. Following (Ambrosi and Mollica, 2002) and (Kim

et al, 2011), tumour growth is incorporated through a

multiplicative decomposition of the deformation gradi-

ent and driven by the concentration of oxygen. To mo-

tivate the multiscale approach, peritumoural collagen

fibre network deformation and reorientation for affine



Multiscale modelling of solid tumour growth: the effect of collagen micromechanics 3

T

PTS

ECM

Fig. 1: Schematic representation of the analysed three-
dimensional domain, from inside out: tumour (T), peritu-
moural stroma (PTS) and extracellular matrix (ECM).

and non-affine fibre kinematics are compared. In addi-

tion, experiments are performed to specify the model

and determine parameter values. Details of the math-

ematical formulation, experimental procedure, numer-

ical methodology and application are presented in the

following sections.

2 Mathematical model

The cubic domain of interest is split into three subdo-

mains: a sphere representing the tumour mass, an outer

shell representing the peritumoural stroma (PTS), and

a surrounding region representing the ECM. The tu-

mour and ECM are treated as hyperelastic continua,

while the PTS is represented by a multiscale (micro-

macro) model of collagen networks. In principle all re-

gions could be treated as multiscale but the focus of this

analysis is mainly on the microstructural behaviour of

the PTS.

2.1 Tumour growth

To model tumour growth, the deformation gradient,

Fij , is first decomposed into passive (elastic), F pik, and

growth (inelastic), F gkj , components: Fij = F pikF
g
kj (Ro-

driguez et al, 1994). This can be thought of as a passive

deformation operator which enforces continuity upon

the deformed grown state. The growth component is

driven by the concentration of a single chemical, c, and

moderated by the mean mechanical stress (hydrostatic

pressure), p, at the tumour-ECM boundary:

Eg =


g(t)c

c+ k
(1− p

B
), if p ≤ B

0, if p > B

(1)

Where Eg is the nominal Green strain due to growth,

c is the concentration of oxygen, g(t) is a Gompertzian

function of time described in Section 4.2, and k and

B are constants taken from the literature (Kim et al,

2011). Here we enforce 0 ≤ p ≤ B, such that growth

approaches zero as p → B. The expression assumes a

Michaelis-Menten form, which is a physically-derived

model for enzyme kinetics which has been shown to ap-

ply to tumour cell oxygen consumption (Casciari et al,

1992). Here we assume that the concentration of oxy-

gen is constant across the domain, with the nutrient-

dependent limit on tumour size captured by the exper-

imentally derived variable g(t). The deformation gra-

dient due to growth is then returned by first calculat-

ing the corresponding volumetric stretch, λ (Malvern,

1977):

λ =
√

2Eg + 1 (2)

Hence, assuming isotropic cancer mass growth (Am-

brosi and Mollica, 2002; Lubarda and Hoger, 2002):

F gij = λδij (3)

Finally, the mechanical strains of the tissues are cal-

culated from the constitutive equation provided by the

elastic deformation gradient tensor, F pij :

F pij = Fik(F gkj)
−1 (4)

To enable an anisotropic description of tumour growth,

Equation 3 can be adapted to include off-diagonal el-

ements. However, a simple growth model is utilised as

the focus of this work is on the multiscale response of

the ECM to growth-induced stress, and how ECM mi-

crostructure influences tumour morphology.

2.2 Macroscopic problem

The conservation of linear momentum in a continuum,

assuming zero inertia, is expressed as:

Sij,i −Qj = 0 (5)

Where Sij is the 2nd Piola-Kirchoff stress tensor

and Qj represents body forces and source terms. Vis-

cous effects are ignored due to the small growth rate

under consideration: an approximately 3 mm increase

in radius per week. Making use of the principle of vir-

tual work, the weak form of the balance equation reads

(Hughes, 2000):

−
∫
ω

δui,jSijdV +

∫
∂ω

δuiSijNjdS +

∫
ω

δujQjdV = 0

(6)

Where δui is a virtual displacement, Ni is the out-

ward boundary normal and Qj is a source term in do-

main ω. The second term vanishes if the boundary, ∂ω,
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is assumed traction-free. This equation can then be dis-

cretised using the Galerkin finite element (FE) method,

using Lagrange polynomials as basis functions (Bathe,

1996). Depending on the domain, the constitutive be-

haviour is determined by either a compressible hyper-

elastic continuum, a microscopic volume averaged con-

tinuum, or a combination of both. In the foremost case,

the 2nd Piola-Kirchoff stress is given by (Malvern, 1977):

Sij = 2
∂W

∂Cpij
(7)

Where Cpij is the right Green-Cauchy “passive” de-

formation tensor. For all macroscopic tissues, the fol-

lowing strain-energy density function has been adopted:

W = µ/2 (I1−3)+K/2 (J−1)2, where for small deforma-

tions the material coefficients µ and K correspond to

the shear and bulk modulus, respectively, while I1 is the

trace of Cpij , I1 = tr(F pkiF
p
kj), and J is the determinant

of F pij .

2.3 Microscopic problem

Following (Stylianopoulos and Barocas, 2007), collagen

networks are modelled using the representative volume

element (RVE) concept. An RVE is defined as being

the smallest possible unit that is representative of the

heterogeneous material under the assumption of statis-

tical homogeneity (Hori and Nemat-Nasser, 1999). As

shown in Figure 2, each RVE is centred on the Gauss

integration points of the macroscopic FE.

Network generation proceeds like collagen fibrilloge-

nesis (Veis, 1982): first, a random distribution of nodes

is defined within a cube. At each node two lines are in-

cremented outwards along random vectors in opposite

directions; upon meeting another line or the boundary,

another node is created and line expansion stops. Net-

works can also be created with a preferred initial orien-

tation by rotating the nodes about the origin according

to an input prior rotation matrix, with the process it-

erated until the RVE averaged orientation tensor falls

within a given tolerance of the prior.

This specifies a scaffold of one-dimensional truss ele-

ments connected at nodes, allowing for translations and

rotations. The microscopic boundary value problem is

then posed by interpolating the macroscopic nodal dis-

placements to the RVE boundary nodes. This process

is explained in more detail in Section 4.

Following the work of (Chandran and Barocas, 2007),

we require the resulting residual forces on internal nodes,

ri, to be zero:

ri =
∑

fi (8)

Fig. 2: Example hexahedral FE with RVEs centred at its
quadrature points. The RVEs are scaled up for visual pur-
poses.

Where summation is over every fibre sharing the

same node, and fi is the force due to the n−th fibre

acting on the node. The fibre constitutive equation as-

sumes an exponential form (Billiar and Sacks, 2000b),

which reflects experimental observations that fibres are

initially in a slack rest-state then rapidly stiffen under

uniaxial extension (Billiar and Sacks, 2000a). Further-

more, a negative phase is included to account for fibre

buckling; that is, near-zero negative stress under com-

pression:

fi = α(eβE − 1)nfi (9)

Here fi is the force along the fibre, α and β are con-

stants, E is the Green-Lagrange strain and nfi is the

fibre unit vector. Specifically, α =
EfAf

β , where Ef is

the fibre elastic modulus, Af the fibre cross-sectional

area and β a dimensionless nonlinearity parameter. As

such α can be thought of as defining the magnitude of

the force response, which can be derived from experi-

mental data.

2.4 Scale coupling

Volume averaging theory is used to couple the micro

and macroscopic scales (Hori and Nemat-Nasser, 1999).

Based on the principle that measured effective proper-

ties are averages of heterogeneous microscopic fields, it

defines macroscopic fields as volume averages of their

microscopic counterpart. Accordingly, the macroscopic

stress, Sij , can be expressed in terms of the microscopic

stress tensor at the RVE surface, sij , as:

Sij =
1

V

∫
ξ

sijdV (10)

Where V is the volume of the RVE and the integral

is over the RVE surface, ξ. The microscale stress tensor
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is expressed in terms of the fibre force on the boundary:

sij = nfi n
b
j |f | (11)

Where nfi is the fibre unit vector, nbj is the outward

unit vector at the intersection point of a fibre with the

RVE boundary, ∂ω, and f is given by Equation 9. As-

suming microscopic equilibrium and via the application

of the divergence theorem, Equation 10 can be redefined

in terms of the RVE boundary node position, xi, and

net force, fi, in a discrete manner as:

Sij =
1

V

∑
xifj (12)

Where the sum is over RVE boundary nodes. Again

following (Chandran and Barocas, 2007), the macro-

scopic source term, Qj , can be expressed in terms of the

difference between the micro- and macroscopic stress,

respectively, as:

Qj =
1

V

∫
∂ω

(sij − Sij)uk,inkdS (13)

Here ui is the RVE boundary displacement and nk is

the outward unit normal vector to ∂ω. This term arises

from the correlation between RVE boundary node dis-

placements and the macroscale stress field (see (Chan-

dran and Barocas, 2007) for details of the derivation).

This representation establishes a boundary value prob-

lem with conditions defined at the macroscopic scale.

For the average to be a meaningful representation

of local material behaviour, it is necessary for the size

of the RVE to be larger than the volume over which

the microfield gradient varies but smaller than the cor-

responding volume over which the macrofield gradient

varies (Chandran and Barocas, 2007). This is ensured

here by employing a material RVE with boundary de-

formation prescribed by interpolating the macroscopic

displacement field. As such, the distances over which fi-

bre interactions are correlated can become large enough

to preclude a homogeneous macroscopic deformation.

As a final comment, volume averaging theory was

chosen over homogenisation theory due to its relative

ease of application. While homogenisation theory pro-

vides higher order calculations, to first order the two

theories are approximately equivalent (Hori and Nemat-

Nasser, 1999). Given that this analysis does not require

precision calculations, volume averaging theory is an

appropriate choice.

In order to simplify the numerical procedure (dis-

cussed in the following section), RVEs are defined in

the FE parametric space. Therefore, to map between

the parametric space — where calculations at the mi-

croscale are performed — and physical space — where

calculations at the macroscale are performed — it is

necessary to define the Jacobian, J , of the transform,

S′ij = JSij , where the prime indicates a physical stress:

J =
θ0V

RVE

LAf
(14)

As per (Stylianopoulos and Barocas, 2007), we ex-

press the Jacobian in terms of the collagen volume frac-

tion in the RVE, θ0, the RVE parametric volume, V RVE,

the total parametric fibre length in the RVE, L, and the

physical collagen fibre cross-sectional area, Af . Note

that Sij initially has units of force due to the fibre con-

stitutive equation (Equation 9). The same transforma-

tion is performed to dimensionalise the source term,

Qj .

3 Experimental procedure

To bestow the simulations with biologically represen-

tative material and kinematic parameters, data from

studies of mouse tumour growth were utilised. Details

of how these data were acquired are given in the follow-

ing sections.

3.1 Cell culture and in vivo models

The human breast cancer cell line MCF10CA1a, de-

rived from in vivo passaging of H-Ras transformed

MCF10A cells (Santner et al, 2001) was used in the cur-

rent study. Cells were cultured in DMEM F/12 medium

supplemented with 5% horse serum, 10 µg/ml insulin,

20 ng/ml EGF, 0.1 µg/ml hydrocortisone and 0.5 µg/ml

cholera toxin (Papageorgis et al, 2010) and were main-

tained under standard conditions (37◦C, 5% CO2 and

95% humidity) until 75-80% confluent. Cultures were

then trypsinised, washed twice and resuspended in serum-

free media. Tumours were prepared by implanting 0.5-

1.0 million MCF10CA1a cells suspended in 100 µl serum-

free media into the third mammary fat pad of immun-

odeficient 6-week old CD1 nude female mice.

Tumour growth was monitored and its planar di-

mensions (x, y) were measured with a digital caliper.

Tumour volume was measured from the planar dimen-

sions using the volume of an ellipsoid and assuming that

the third dimension, z, is equal to
√
xy (Voutouri et al,

2014). Therefore, the volume was given by the equation:

V = 4π
3
xyz
8 , which yields V =

π
√
xy3/2

6 . When tumours

reached approximately 10 mm (520 mm3) in size, mice

were sacrificed via NO inhalation and tumours were ex-

cised for the mechanical characterisation measurement.

Eight animals/tumours were used (n = 8). The exper-

iments were conducted in strict accordance with the
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MACROSCOPIC LEVEL
(i) Explicit Total Lagrangian FEM

Evaluate nodal displacements

(ii) Downscale:
Interpolate macro displacements
to micro boundary RVE nodes

MICROSCOPIC LEVEL
(iii) Implicit Total Lagrangian FEM
Evaluate boundary node net forces

(iv) Upscale:
Calculate average stress and

source term by volume averaging

Fig. 3: Multiscale algorithm structure.

animal welfare regulations and guidelines of the Re-

public of Cyprus and the European Union under a li-

cense acquired by the Cyprus Veterinary Services (No

CY/EXP/PR.L1/2014), the Cyprus national authority

for monitoring animal research.

3.2 Mechanical testing of tumour specimens

Stress relaxation experiments under unconfined com-

pression were performed in tumour specimens to mea-

sure the mechanical response of the tissues. An Instron

high precision mechanical testing system was used (In-

stron 5944, Norwood, MA). Following tumour excision,

the specimens were cut in orthogonal shapes with ap-

proximate dimension 5 × 5 × 3 mm (length × width

× thickness) and placed between two parallel platens.

The experimental protocol consisting of four cycles of

5% compression of 1 minute duration followed by a 10

minute hold, which was determined sufficient time for

the transient, poroelastic response of the material to

vanish and the equilibrium stress at each strain inter-

val to be recorded. The 1st Piola-Kirchhoff stress was

calculated by dividing the measured force by the initial

cross sectional area of the specimen. Stress-strain curves

were constructed by plotting the equilibrium stress as

a function of strain.

4 Numerical methodology

4.1 Algorithm

The algorithmic structure is presented in Figure 3 and

performed as follows:

1. At the first stage the macroscopic boundary value

problem is posed and solved via an explicit Total La-

grangian finite element method (FEM) solver. The

outer surfaces of the macroscopic domain are pre-

scribed as having zero displacement, ui = 0.

2. The resulting displacement field is interpolated from

the macroscopic FE nodes to the RVE boundary

nodes (“downscaled”) via:

ui =
∑

Uiφ (15)

Here ui is the n−th RVE boundary node displace-

ment, Ui is the N−th FE node displacement and

φ is the corresponding interpolation function. Since

the RVE is defined in the FE parametric space, only

a single mapping between it and the physical space

is necessary.

3. With the node displacements prescribed on the RVE

boundary, the microscopic boundary value problem

is posed (Equation 8) and solved using a fully-implicit

Total Lagrangian FEM. To ensure numerical sta-

bility of the algorithm, a damped Newton-Raphson

scheme is implemented. Specifically, a diagonal ma-

trix, with magnitude iteratively optimised to the

necessary degree of damping, is added to the tan-

gent stiffness matrix. The resulting internal node

displacements are then used to evaluate the net force

on the boundary nodes (Equation 9) and hence the

microscale stress field, sij (Equation 11).

4. Finally, the macroscale stress (Equation 12) and

source term (Equation 13) are calculated from the

microscale stress field by volume averaging theory.

The computed fields are then used to assemble the

internal force and source terms of the unbalanced

forces’ rhs vector. The explicit system is solved and

the solution is advanced in time.

The above procedure is repeated until termination of

the tumour growth.

The algorithm was implemented in C++ in an open-

source, parallelised finite element solver framework de-

veloped by the authors1, which incorporates various

open-source scientific computing libraries: libMesh (Kirk

et al, 2006), PETSc (Balay et al, 1997), blitz++, GSL

and MPICH.

4.2 Material Parameters

The material parameters presented in Table 1 are used

in all simulations unless stated otherwise. Growth pa-

rameter g(t) is given by a Gompertz-type function of

the form: g(t) = a exp(−b exp(−γt)), fitted to data

(Figure 4) from the in vivo mouse tumour studies de-

scribed previously. In order to render g(t) dimension-

less, parameter a is normalised. Data from the same ex-

periments were used to determine the tumour material

1 FEB3: Finite Element Bioengineering in 3D, pub-
licly available from https://bitbucket.org/vasvav/feb3-finite-
element-bioengineering-in-3d
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Table 1: Material parameters used in simulations.
Parameter Description Value Source

a Growth rate parameter 1.0 This work
b Growth rate parameter 12.8 This work
γ Growth rate parameter 0.126 day−1 This work
k Growth rate parameter 8.3 ×10−3mol/m3 (Casciari et al, 1992)
B Stress feedback term 11 kPa (Kim et al, 2011)
c O2 concentration 0.2 mol/m3 (Kim et al, 2011)
µT Tumour shear modulus 1.45 kPa This work
KT Tumour bulk modulus 14.01 kPa This work
µECM ECM shear modulus 1.42 kPa This work
KECM ECM bulk modulus 3.08 kPa This work
Ef Fibre elastic modulus 10 MPa (Silver et al, 2001)
Af Fibre cross-sectional area 1963 nm2 (Stylianopoulos and Barocas, 2007)
β Fibre nonlinearity parameter 1.0 (Stylianopoulos and Barocas, 2007)
θ0 RVE fibre volume fraction 0.3 (Stylianopoulos and Barocas, 2007)
V RVE RVE volume 0.076 This work
L RVE total fibre length [15,21] This work

Fig. 4: Mouse tumour volume as a function of time. Standard
errors and fit coefficients are provided.

Fig. 5: Example mouse tumour stress-strain graph.

properties, assuming a Poisson’s ratio of ν = 0.45; an

example stress-strain graph is shown in Figure 5. The

collagen material properties were set to a typical or-

der of magnitude for type I collagen under small strain.

The ECM material properties were chosen to produce

a similar elastic modulus as an 2 mg/ml agarose gel

comprised of type I collagen.

RVE volume, V RVE, and total fibre length, L, are

determined at the pre-processing stage, when RVE net-

work generation is executed. The volume is chosen such

that the RVE, which is centred on a quadrature point,

remains within the FE parametric space, [-1,1]. As such,

it depends on the quadrature rule used to perform the

integration: all calculations presented here use an eight-

point Gauss-Legendre quadrature rule. Since networks

were randomly generated, the total fibre length and

number of fibres varied between RVEs and simulations:

Fig. 6: FE mesh with domains corresponding to Figure 1;
from centre out: tumour, PTS and ECM. The radius of the
tumour is 0.1mm, the thickness of the PTS is 0.15mm, and
the thickness of the ECM is 1.25mm.

the former from approximately 200-300 and the latter

from 15-21.

The FE mesh used in all simulations is shown in

Figure 6 and represents an octant comprised of 620

hexahedral elements, with a total of 877 nodes. All sim-

ulations were performed on a single 1.2 MHz desktop

machine with 16 CPUs operating Linux, with a wall

time of less than 10 minutes for the affine simulations

and approximately 24 hours for the non-affine simula-

tions. The difference between these cases is described

in the following section.

5 Results

5.1 Affine versus non-affine models

To justify the theoretical and computational expense

of employing a multiscale model, Figure 7 compares

the stress-stretch relationships as a result of tumour

growth for non-affine and affine network modelling of

the elements at the tumour-PTS boundary. Here we de-

fine (non-)affine as the (non-)affine displacement of the

internal RVE nodes with respect to the macroscale gra-

dient. Therefore in the affine model no force balance

is solved at the microscale; instead, the macroscopic

nodal displacement is interpolated to every node in the

RVE according to Equation 15. This results in each fi-

bre deforming in a manner continuous with the macro-

scopic deformation. As such this modelling approach

is equivalent to a conventional continuum model with

an anisotropic fibre component (see for example Kroon

and Holzapfel 2008), with the fibres unable to rearrange

at their cross-links to minimise the stress. This is re-

flected in the affine model displaying a larger negative

stress than the non-affine model, an observation that is

in accordance with comparisons of network kinematics
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Fig. 7: Principal stress versus principal stretch for affine and
non-affine network models.

Fig. 8: Clockwise from left: final state solid stress and defor-
mation due to tumour growth into a multiscale PTS and a
continuum ECM; tumour volume against time; tumour prin-
cipal stretch against time; tumour principal stress against
time.

performed by (Chandran and Barocas, 2006). Further-

more, the non-affine model permits a larger maximum

tumour volume; this can be reasoned in terms of net-

work rearrangement accommodating for the compres-

sive stress to find a minimum residual. The kink in the

tail of the non-affine graph is due to some of the RVE

networks collapsing, and is discussed in the next sec-

tion.

5.2 Effect of tumour growth on peritumoural

microstructure

To investigate the effect of tumour growth on peritu-

moural microstructure, the tumour was allowed to grow

to over 3 times its initial volume. The final state mesh

deformation, solid stress distribution and graphs of the

tumour growth and principal stress against principal

stretch are shown in Figure 8. The tumour experiences

a compressive pressure from the PTS and ECM, as ex-

pected. Growth follows the prescribed Gompertz func-

Fig. 9: PTS domain. Simulated initial (top) and final (bot-
tom) RVE network deformation. The radial displacement is
given at the macroscopic scale.

tion, with a corresponding increase in the tumour prin-

cipal stretch. The principal stress increases negatively,

but begins to increase positively near the maximum

time. This is due to elements adjacent to the tumour

boundary being either almost or completely collapsed

by the growth. At the microscale this effect is explained

by the networks inside the elements being unable to

support large compression, as shown in Figure 9: net-

works close to the boundary collapse, while those in the

next layer can support the compression.

Examining the microscale further, Figure 10 shows

the principal eigenvector of each averaged RVE orien-

tation tensor, Ωi, defined as (Barocas and Tranquillo,

1997):

Ωi =

∑
l2i /l∑
l

(16)

Where li is the projection of fibre n of length l in the

i−direction, and the sum is over all fibres in the RVE.

As quantified in the histograms, the networks have an

initially random alignment with respect to the tumour

boundary. In the final state the networks nearest the

boundary realign to a parallel orientation, represent-

ing a passive mechanical response to tumour growth

(see Jackson and Byrne 2002). This qualitatively re-
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Fig. 10: RVE network alignment for elements at the tumour-
PTS boundary in the initial (top) and final (bottom) states.
A value of 1 indicates radial alignment; a value of 0 indicates
circumferential alignment.

produces part of the in vitro observations made by

(Provenzano et al, 2006).

To examine the effect of peritumoural microstruc-

ture on tumour morphology, the final state tumour di-

mensions were examined for two types of initial per-

itumoural collagen alignment: random and aligned in

the z−direction. In both cases the tumour grew ap-

proximately 5% more in a single direction (z for the

aligned case). This demonstrated a dependency of tu-

mour morphology on initial network orientation: if a

given network was arranged with a strong radial compo-

nent, more fibres were aligned with the axis of compres-

sion and hence buckled as the tumour expanded. It is

interesting to note that the same simulations performed

with an affine fibre deformation produced anisotropy at

the 10% level in the aligned case and approximately 7%

in the random case. Comparing the final fibre alignment

distributions for the two deformation types showed that

this effect was due to the non-affine deformation per-

mitting internal fibre reorientation, and hence a re-

duced dependency on the initial orientation.

Fig. 11: Clockwise from left: final state solid stress and de-
formation due to tumour growth into a multiscale, two-
component PTS and a continuum ECM; tumour volume
against time; tumour principal stretch against time; tumour
principal stress against time.

5.3 Two-component model

The preceding model demonstrated the influence of col-

lagen networks in tumour-stroma interactions, where

peritumoural tissue is modelled as a scaffold of collagen

fibres. However, this is not biologically representative;

in vivo, the collagen is embedded in a non-collagenous

matrix. To reflect this an additional component, treated

as a hyperelastic solid, was added to the PTS constitu-

tive equation. Hence, Sij is computed as the superposi-

tion of the collagen derived mechanical stresses inherent

from the microstructure (Equation 12) and the biome-

chanical response of the stroma matrix (Equation 7).

The material parameters were set equal to those of the

ECM and the simulation was performed with exactly

the same growth function as in the previous section.

As can be seen in Figure 11, the resulting deformation

is reduced, giving a more symmetric expansion of the

cancer region. Furthermore, the final state volume and

principal stretch are reduced. As a result, network re-

orientation was observed but to a lesser degree than the

single component model.

6 Conclusions

In this paper we have presented a computational model

of solid tumour growth coupled with a multiscale biome-

chanical description of the tumour periphery. The math-

ematical formulation facilitates the explicit calculation

of fibre-fibre and tumour-fibre interactions, enabling

the relationship between growth and microstructural

remodelling to be examined. The aim was to demon-

strate that such a model, which considers only mechan-

ical interactions, could be used to explain experimental
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observations of the effects of solid tumour growth on its

microenvironment and vice versa.

Data-driven growth simulations were performed and

compared to experimental observations. As an initial

proof-of-concept, affine and non-affine network models

were compared. The resulting stress-stretch relation-

ship qualitatively reproduced previous findings (Chan-

dran and Barocas, 2006), indicating that a non-affine

approach is necessary to capture the internal reorgani-

sation of collagen networks under strain.

The model qualitatively replicates the passive reori-

entation of collagen fibres at the tumour-ECM interface

from a random to parallel alignment with respect to the

tumour boundary (Provenzano et al, 2006). This con-

firms the hypothesis that this process can be explained

purely in terms of near-field collagen network compres-

sion.

The effect of initial network orientation on tumour

morphology was also investigated, with simulations in-

dicating that an anisotropic distribution of networks

produces anisotropic growth at the 5% level. This de-

pendency was found to be reduced when an additional

component — representing the non-fibrous part of the

stroma — was added to the biomechanical model of

the peritumoural stroma. As such, we propose that it is

the non-collagenous component that permits non-load-

bearing (ie. perpendicular) collagen alignments at the

tumour boundary.

The model described here has many simplifications

with respect to in vivo conditions, to name a few: only

solid mechanics is considered, growth is described by

the uptake of a single nutrient, and there are no stro-

mal cells that remodel the intra-tumour collagen fibres

(eg. fibroblasts). Another simplification is the domain

dependent application of the multiscale model. How-

ever, this can be justified when considering that col-

lagen remodelling was shown to occur predominantly

in the first layer of elements adjacent to the tumour.

Furthermore, given that the stresses inside the tumour

are compressive, during growth the collagen networks

would collapse and there would be little benefit in mod-

elling inter-tumour fibre interactions.
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