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ABSTRACT

With the rising number of cores in mobile devices, the cache
hierarchy in mobile application processors gets deeper, and
the cache size gets bigger. However, the cacheline size re-
mained relatively constant over the last decade in mobile
application processors. In this work, we investigate whether
the cacheline size in mobile application processors is due for
a refresh, by looking at inefficiencies in the cache hierarchy
which tend to be exacerbated when increasing the cacheline
size: false sharing and cacheline utilization.

Firstly, we look at false sharing, which is more likely to
arise at larger cacheline sizes and can severely impact per-
formance. False sharing occurs when non-shared data struc-
tures, mapped onto the same cacheline, are being accessed
by threads running on different cores, causing avoidable in-
validations and subsequent misses. False sharing has been
found in various places such as scientific workloads and real
applications. We find that whilst increasing the cacheline
size does increase false sharing, it still is negligible when
compared to known cases of false sharing in scientific work-
loads, due to the limited level of thread-level parallelism in
mobile workloads.

Secondly, we look at cacheline utilization which measures
the number of bytes in a cacheline actually used by the
processor. This effect has been investigated under various
names for a multitude of server and desktop applications.
As a low cacheline utilization implies that very little of the
fetched cachelines was used by the processor, this causes
waste in bandwidth and energy in moving data across the
memory hierarchy. The energy cost associated with data
movements is much higher compared to logic operations, in-
creasing the need for cache efficiency, especially in the case
of an energy-constrained platform like a mobile device. We
find that the cacheline utilization of mobile workloads is low
in general, decreasing when increasing the cacheline size.
When increasing the cacheline size from 64 bytes to 128
bytes, the number of misses will be reduced by 10%-30%,
depending on the workload. However, because of the low
cacheline utilization, this more than doubles the amount of
unused traffic to the L1 caches.

Using the cacheline utilization as a metric in this way, il-
lustrates an important point. If a change in cacheline size
would only be assessed on its local effects, we find that this
change in cacheline size will only have advantages as the
miss rate decreases. However, at system level, this change
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will increase the stress on the bus and increase the amount
of wasted energy due to unused traffic. Using cacheline uti-
lization as a metric underscores the need for system-level
research when changing characteristics of the cache hierar-
chy.
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1. INTRODUCTION

The cache hierarchy forms an important part of a shared
memory multiprocessor and any inefficiencies will affect the
overall performance and power consumption of the architec-
ture.

In this work we take a closer look at the effect of an in-
crease in the cacheline size by first looking at false sharing
(Section 3). False sharing is a well-known problem in shared
memory multiprocessors and has been looked into for various
workloads and cases. With the advent of multicore in mo-
bile devices such as smartphones and tablets, we investigate
the occurrence of false sharing in mobile workloads. Under-
standing the severity of false sharing in mobile workloads
can help us decide whether there is a need to eliminate false
sharing via changes in the cache and interconnect designs,
compilers, and operating systems. Mobile devices featuring
quad-cores and even octa-cores are being more commonplace
now. While we focus on a dual-core system in this work, the
conclusions we draw holds for a higher core count as false
sharing only occurs between collaborating threads sharing a
common physical address space and research has shown that
such thread-level parallelism is quite low in mobile applica-
tions [8].

The methodology used to detect false sharing (Section
2) can also be used to look at how the individual memory
addresses in the cacheline are used. Multiple memory ad-
dresses are grouped into a cacheline to exploit spatial locality
and reduce the communication overhead. The cacheline uti-
lization captures how many bytes in the cacheline have been
touched when that cacheline gets removed from the cache.



A low cacheline utilization will have a double effect. Locally,
the total cache capacity was not efficiently used with parts
of the cacheline remaining untouched. Globally it indicates
that as part of the data brought into the caches was not
used, a proportion of the traffic on the bus was superfluous.
Writebacks of unused data to storage class memories will
reduce the endurance of those devices unnecessarily. With
communication being quite power consuming, cache utiliza-
tion is an important metric to consider. Whereas this has
been explored for other workloads, we wish to investigate
the cacheline utilization of mobile workloads (Section 4).

2. METHODOLOGY

2.1 Hardware based detection of false sharing

To detect false sharing we instrumented the full-system,
cycle-approximate simulator gemb [3]. This represents a
scheme which could be implemented in hardware, however
the hardware is not the focus of this paper.

Figure 1 gives a schematic reproduction of the complete
detection mechanism. To detect the sharing patterns, infor-
mation about the accesses to every cacheline will be kept at
a word granularity. Firstly, an access vector gets attached to
every cacheline. This access vector tracks the local accesses
to the individual words in the cacheline. To compare the
local and remote accesses, every message following a cache
miss will be extended so it also contains which words in the
cacheline have been requested exactly. This remote access
vector can then be compared with the local access vector to
detect false sharing. When any form of false sharing (Sec-
tion 3.3) is detected during an invalidation, the cacheline
address and the remote access vector causing the invalida-
tion will be added to a list called the false sharing map (FS
Map). Upon a cache miss, the false sharing map will be
checked to see whether the miss was caused by false shar-
ing. If the address is present in the false sharing map, the
miss can be classified according to Figure 2b. The cacheline
address will then be removed from the false sharing map as
every miss needs to be completed, upon which the cacheline
is no longer falsely invalidated. Every cache also contains a
second list, the false sharing histogram (F'S Histogram) used
to track statistics about past false invalidations and subse-
quent misses. It monitors the number of false sharing related
events per cacheline address and the virtual addresses map-
ping onto this cacheline. This detection method resembles
a hardware structure and as such will detect all false invali-
dations, without any false positives.

The structure as implemented in gemb assumes every cache-
line in the cache gets an access vector added as additional
meta-data. Every D-L1 cache also gets extended with a
false sharing probe, containing the FS Map and the FS His-
togram. If this were to be implemented as a real hardware
scheme, this would result in a rather high area footprint.
As this work focuses on false sharing detection and not the
actual implementation, we did not investigate schemes that
have a reduced area and complexity.

2.2 Usability for cache utilization measurements

The hardware used to detect false sharing can also be used
to detect cacheline utilization, as the access vectors already
track the accesses to the cacheline on a word granularity.
Cacheline utilization can then be measured by counting the
number of words that are touched (i.e. read or written) upon
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Figure 1: False sharing detection mechanism. The shaded
blocks in the access vectors indicate locally used words (1)
CPU 0 sends out a write request to a memory address in
word 2 in cacheline A. (2) The write request misses as the
cacheline is not in the exclusive state and a coherence mes-
sage is broadcast, requesting the invalidation of other copies
(3) The coherence message hits in D-L1 1 which invalidates
A’ (4) Before the invalidation, false sharing is detected by
comparing the remote access vector (brought in via the co-
herence message) and the local access vector. (5) The access
vector is stored in the F'S Map to detect future misses caused
by the false invalidations.
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the time of measurement, by a specialized cacheline utiliza-
tion probe. Utilization can be measured upon cacheline evic-
tion, cacheline invalidation or other specified moments.

2.3 Workloads

To investigate the presence of false sharing in mobile ap-
plications, we used four different benchmarks, each repre-
senting a different type of mobile application and together
encompassing a broad part of the mobile spectrum. BBench
[9] is a browser benchmark. The AngryBirds benchmark [19]
is based upon on the infamous game of the same name and
represents gaming on the Android platform. AndEBench
[21] is an open-source benchmark, aimed at Android mobile
devices with a focus on integer and floating point operations.
CaffeineMark [16] is a benchmark aimed at measuring Java
performance. More information about these benchmarks
can be found in Table II in [20]. We compared the values
obtained for these mobile benchmarks with the streamclus-
ter benchmark in the PARSEC suite [2], a benchmark with
known false sharing.

2.4 System architecture

In this work we investigated a dual-core system (ARM v7)
where every core has a private L1-D (2-way associative, 32
kB) and private L1-I (2-way associative, 32 kB). Both cores
share an L2 (8-way associative, 1 MB). To investigate the
presence of false sharing, a sweep over various cacheline size
(from 16 bytes to 256 bytes) is performed while these param-
eters are kept constant. These simulations are done using
the full system, cycle-approximate simulator gem5 [3]. We
use the ARM architectural models in gem5 which are stable



and allows us to boot Android Kitkat. gem5 provides vari-
ous types of architectural models: we use the atomic CPU
which is a functional yet fast model. The coherence protocol
used is a MOESI-based protocol. In mobile systems, screen
rendering will done by a specialized GPU. However, as gem5b
does not contain GPU models, software rendering is used.
In this case, the screen is rendered by running software ren-
dering code on the generic CPU. This is not realistic, as the
software rendering instructions and data might affect the
instructions and data of the actual threads, so some simula-
tions are repeated without any screen rendering, removing
the need for software rendering.

3. FALSE SHARING IN MOBILE WORK-
LOADS

In this section false sharing is defined. To allow a precise
quantification of the false sharing problem, we will also clas-
sify the various types of false sharing and subsequent misses.
This classification will help to determine an upper bound of
the gains that can be made if a false sharing-optimized ar-
chitecture were to be designed and used, such as [23].

3.1 Definition of false sharing

False sharing is a well-known problem in shared mem-
ory multiprocessors [22, 7]. Multiple memory addresses are
grouped together into one cacheline, to increase cache per-
formance as it allows to take advantage of spatial locality
and reduce the communication overhead per memory ad-
dress. However, in a chip multiprocessor where multiple
cores are collaborating in the same global address space,
grouping data at the cacheline granularity can have nega-
tive side-effects in the form of false sharing. When two or
more cores are working on the same cacheline, but not the
exact memory addresses in the cacheline, false sharing oc-
curs.

False sharing can lead to false invalidations, causing cache
lines to be needlessly invalidated. Imagine a thread wishing
to write to a memory address which is currently not write-
able in its local private cache (as it is not present or is not in
the correct coherence state to allow writes). If the cacheline
this memory address belongs to, is also privately cached by
another remote core, this copy needs to be invalidated to
keep the address space coherent and consistent. The inval-
idation of this cacheline is false as the remote core was not
sharing the exact same memory address as the one currently
causing the invalidation. This invalidation would not have
occurred if the cacheline size were smaller and it contained
only one memory address.

3.2 Effects of false sharing

False sharing in itself is harmless: if a cacheline is falsely
invalidated in a cache, but never used again by that cache,
false sharing does not affect performance. However, any
subsequent accesses to the falsely invalidated cacheline will
lead to a cache miss. Such cache misses lead to performance
degradation and poor scalability for multithreaded applica-
tions.

False sharing also leads to unnecessary data movements
which drain the battery of mobile devices. This becomes es-
pecially pronounced when both threads are trying to write
to the same cacheline at the same time (ping pong-like be-
haviour): upon a write by one the threads, the cacheline

currently residing in the other cache, gets invalidated and
transferred completely to the other cache. Upon the next
write by the other thread, the same process gets repeated
and the whole cacheline is again (needlessly) transferred to
the other cache.

The linear_regression benchmark in the Phoenix suite [18]
is known to have false sharing [14, 13]. As an example,
removing the false sharing present in linear_regression im-
proves performance by more than 12x [13] and 5.4x [14] on
Intel Xeon processors. We rerun the same linear_regression
benchmark on the Arndale Octa board that features the
ARM Cortex-Al5 [1], the performance of the application
improves by 73% and the energy consumption decreases by
64% after fixing false sharing.

3.3 Classification of false sharing and subse-
quent misses

Read/write requests from the CPU can span multiple words
in one cacheline, which means there can be a grey zone
where the locally requested memory addresses partially over-
lap with the remote memory addresses. To allow an exact
quantification of the false sharing problem, we define the
following types of invalidations (Figure 2a):

e True invalidation: the locally used memory addresses
in the cacheline and the remotely access completely
overlap

e Grey invalidation: there is some overlap between the
locally used memory addresses in the cacheline and the
remote write causing the invalidation.

e False invalidation: there is no overlap between the
locally used memory addresses in the cacheline and the
remote access causing the invalidation

To determine how many misses following a false invalida-
tion could be avoided by an optimisation, a similar classifi-
cation can be made of all misses (Figure 2b).

e True miss: the addresses causing the invalidation and
the currently requested addresses completely overlap.

e Grey miss: there is some overlap between the ad-
dresses causing the invalidation and the currently re-
quested addresses

e Strict miss: there is no overlap between the addresses
causing the invalidation and the currently requested
addresses

Only strict misses following false invalidations could be
avoided by any optimisation of the architecture. These strict
misses tie in with [7] where false sharing misses are defined
as non-essential misses: the invalidation leading to the miss
could have been ignored and the program would still execute
correctly.

3.4 Related work

False sharing has been investigated in various ways, for
multiple types of workloads as it can have a detrimental
effect on performance. In [14] false sharing is determined
by tracking the number of invalidations per instruction via
hardware counters, which might indicate false sharing. How-
ever, its hardware counter based first step does not distin-
guish between false and true sharing. When the number of
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Figure 2: False sharing terminology

invalidations exceeds a preset threshold, the next steps of the
process determine whether or not the contention is actually
due to false sharing. They ascertain the presence of false
sharing in the linear_regression benchmark of the Phoenix
suite [18] and streamcluster in the PARSEC suite [2]. They
also show the negative effect false sharing can have on per-
formance by measuring the increase in speedup when adding
more cores: by avoiding false sharing by remapping the ad-
dresses in linear_regression the speedup can increase by over
4x. PREDATOR [13] predicts false sharing based upon a
single execution. It does this via compiler instrumentation
that detects memory accesses. Once the number of writes
and invalidations to a cacheline exceed certain thresholds,
access information is tracked to allow for false sharing detec-
tion. PREDATOR detects false sharing in some benchmarks
in the Phoenix and PARSEC suites. It also detects false
sharing in real applications: MySQL and Boost. The Proto-
zoa work [23] proposes a coherence protocol in which the co-
herence granularity and actual storage and communication
granularity differ, to reduce unused data movement. They
also detected false sharing in some scientific workloads, as
a consequence of the coherence granularity being too large.
False sharing has also been detected in various other cases
such as the Java virtual machine [6] and the Linux kernel [4]
Unlike the software detection approaches, this work fo-
cuses on hardware based detection of false sharing in mo-
bile applications. As we track the accesses to the individual
words in the cacheline, we do not have any false positives in
contrast to [14]. The hardware detection scheme also avoids
any compiler instrumentation as used in [13]. The scheme
used in this work only detects false sharing and does not
involve any costly changes to the coherence protocol [23].

3.5 Results

In this section we will discuss whether false sharing is an
issue for mobile workloads. This will be done by discussing
three metrics and comparing the values obtained by the mo-
bile workloads with the values obtained by streamcluster, a
benchmark in the PARSEC benchmark suite with known
false sharing issues [14][13]. First we will look at the num-
ber of writes involved in causing a false invalidation and
subsequent miss, secondly we look at the effect of the false
invalidation misses and lastly, we investigate the exact ad-
dresses involved in the false invalidations.

3.5.1 False invalidations

We define a new metric to measure the amount of false
invalidations per benchmark: number of writes per false
invalidation. This indicates the number of local write ac-
cesses before a false invalidation will be caused in a re-
mote cache. This metric however does not indicate how
the false invalidations will affect cache performance as not
every false invalidation will cause a miss. To investigate the
effect of false invalidations on performance we define num-
ber of writes per miss caused by false invalidation. Figure
3a shows the number of write accesses needed before a false
invalidation will be caused in a remote cache. Increasing
the cacheline size increases false sharing as the number of
writes needed to cause a false invalidation decreases. The
figure also indicates there are major differences between the
various mobile benchmarks: when the cacheline size is set to
64 bytes it takes around 700 writes in AndEBench to cause
a remote false invalidation. In BBench, however, this takes
over 50,000 writes.

Of all mobile workloads, only AndEBench seems to have a
tendency towards false sharing. However, if we compare this
value to the value we obtained for streamcluster, it becomes
clear the false sharing behaviour of AndEBench is limited:
in the case of streamcluster 45 writes are enough to cause a
false invalidation. This is a 16X decrease.

Looking at Figure 3b it becomes clear that not every false
invalidation will result in a miss. Taking AndEBench as an
example, while it only takes around 700 writes to cause a
false invalidation, it takes over 2000 writes to cause a miss
because of a false invalidation. Comparing this with stream-
cluster where it takes only 55 writes to cause a false inval-
idation miss, confirms the hypothesis that false sharing is
not problematic in mobile workloads.

Another interesting point in Figure 3b is that while most
mobile benchmarks show similar behaviour when it comes
to the number of writes per false invalidation, they do differ
in the number of writes it takes to actually cause a miss.
This shows that it is important to take the cache accesses
after a false invalidation into account as a false invalidation
might not always be problematic if the invalidated cacheline
is never referenced again.

3.5.2  Effect of false sharing on miss rate
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Figure 3: False sharing in mobile workloads

The following section will examine the various types of
false invalidation misses occurring and their effect on the
overall miss rate. Figure 4 shows the proportion of all misses
that are caused by false invalidations. For most benchmarks
this proportion is relatively small: at most 1% of all misses
are related to false invalidations. However, in the case of An-
dEBench, a substantial number of misses are caused by false
invalidations as up to 14% of all misses originate from false
invalidations. The proportion of false invalidation misses
decreases when increasing the cacheline size past 128 bytes.
This is due to the fact that, even though the absolute num-
ber of false invalidation related misses increases, the overall
number of misses increases more dramatically. The propor-
tion of misses caused by false invalidations is similar in the
case of streamcluster and AndEBench. There are some dif-
ferences though: in the case of streamcluster, less misses can
be attributed to false invalidations which might be explained
by its inherently high miss rate (Figure 5b).

To investigate the effect a hypothetical architecture op-
timization could have, we look into the miss rate of An-
dEBench. The full line in Figure 5a shows the normal miss
rate of AndEBench. An architecture optimization focused
on avoiding false invalidations and the subsequent misses
would only be able to remove a subset of all false invalida-
tion misses. Only strict false invalidation misses caused by
a false invalidation as depicted in Figure 2 can be avoided,
as in those cases there is absolutely no overlap between the

“-BBench
CaffeineMark
16

Proportion of 14
misses caused 12

“*AndEBench
“*streamcluster

=Angry Birds

by false 10
invalidations 8
(comparedto 6
total misses) 4

[%] 2
0

16 32 64 128 256
Cacheline size [B]

Figure 4: Proportion of all misses that can be attributed to
false invalidations

access pattern causing the invalidation and the newly re-
quested access pattern. Luckily, almost all false invalidation
misses belong to this category: in the case of AndEBench
with a cacheline size of 64 bytes, over 99% of all false inval-
idation misses are strict misses and thus avoidable.

By removing all avoidable misses and recalculating the
miss rate, we can get an estimation of the effect an optimiza-
tion would have. This corrected miss rate for AndEBench is
depicted in Figure 5a with a dotted line. The corrected and
real miss rate both stay under 1% and are not too different.
The costs of applying an optimization, whether this be in
software by for example remapping the virtual addresses or
in hardware by a change in the coherence protocol as pro-
posed in [23], might outweigh this slight decrease in miss
rate. Correcting for misses due to false invalidations in the
case of streamcluster does not change the miss rate signif-
icantly (Figure 5b), which again might be due to the high
miss rate.

Overall, AndEBench shows similar behaviour to stream-
cluster which might indicate false sharing could be an issue.
However, correcting for misses due to false invalidations does
not alter the miss rate significantly and might indicate false
sharing is not an issue for AndEBench.

3.5.3 Addresses involved in false sharing

To confirm the hypothesis that false sharing in mobile
workloads is harmless, we look into the exact addresses in-
volved in false sharing. If there are only a few addresses
involved in the false invalidations, this might indicate a con-
tested data structure. To detect this, we kept a histogram
of all physical and associated virtual addresses involved in
false invalidations. The ten most invalidated physical ad-
dresses only account for 4% of all false invalidations which
indicates there are no contested data structures. The distri-
bution of the number of false invalidation across these ten
most invalidated addresses confirms this as it is also quite
uniform.

Comparing this to streamcluster gives some stark differ-
ences: the ten most falsely invalidated addresses account
for over 99% of all false invalidations. The distribution of
false invalidations among these ten addresses is not uniform
either: four addresses account for almost all invalidations.
This clearly indicates there are some contested data struc-
tures in streamcluster.



=#=Miss rate AndEBench  <>¢ Corrected miss rate AndEBench

Miss rate [%]

16 32 64 128 256
Cacheline size [B]

(a) D-L1 miss rate for AndEBench

=#=Miss rate streamcluster > Corrected miss rate streamcluster
14
12

=
o

Miss rate [%]

o N B O

16 32 64 128 256
Cacheline size [B]

(b) D-L1 miss rate for streamcluster

Figure 5: Miss rates. The dotted line indicates the case
where all strict false invalidation misses are removed. This
signifies an architecture where a hypothetical optimization
has removed these avoidable misses.

3.5.4 Effect of software rendering

In all mobile simulations software rendering was used as
gem) currently does not simulate GPU’s. This is an un-
realistic scenario as normally the screen rendering gets off-
loaded to a specialized GPU. This could affect the false shar-
ing results as both the data used by the software rendering
threads and the ’actual’ threads will reside in the same D-
L1. The software rendering data could turn false invalida-
tion misses into conflict or capacity misses. However, we
argue that the effect of software rendering is minimal. Ad-
ditional simulations without any screen rendering and hence
no software rendering indicate software rendering does ar-
tificially increase the miss rate as it increases the working
set. However, the software rendering data shows high spa-
tial locality which makes that the first access might miss and
push a cacheline belonging to the actual benchmark out of
the D-L1 but subsequent accesses will hit the same cache-
line and not cause further harm. The benchmarks with the
most active software rendering threads (because of their con-
tinuously changing screens), BBench and AngryBirds, show
such a negligible amount of false sharing that, even when
accounting for the artificial reduction of false sharing, the
amount of false sharing in a realistic simulation would still
be inconsequential. We conclude that software rendering
might artificially decrease the number of observed false shar-

ing events but this does not change the overall conclusion
that false sharing is limited in mobile benchmarks.

Based upon the small impact the removal of false invalida-
tion misses has on the miss rate, the uniform distribution of
false invalidations and the high number of writes needed to
cause a false invalidation related miss, we can conclude that
any false sharing occurring in mobile workloads is acciden-
tal and not related to contested data structures. This ties
in with the work in [8] which states there is limited thread
level parallelism in mobile workloads. Overall, we come to
the conclusion that false sharing is not an issue for mobile
workloads.

We analysed these mobile workloads on a dual core sys-
tem. However, as most mobile applications use less than two
cores on average [8], we conclude that false sharing will not
form an issue either at higher core counts.

3.6 Conclusions

By implementing a hardware based method to detect false
sharing, we show that false sharing is not an issue for most
mobile workloads. The workloads that do exhibit false shar-
ing do so to a very limited extent, when compared to sci-
entific workloads known for false sharing. The absence of
false sharing in mobile workloads ties in with the low level
of thread-level parallelism in these workloads. We set out
to find whether an increase in the cacheline size will affect
certain inefficiencies in the cache hierarchy: in the case of
false sharing, we conclude that while the increase in cache-
line size will result in a higher amount of false sharing, false
sharing remains negligible in mobile workloads and should
not be taken into account when deciding upon a change in
the cacheline size.

4. CACHELINE UTILIZATION IN MOBILE
WORKLOADS

The infrastructure used to detect false invalidations and
subsequent misses can also be used to track the utilization
of cachelines. To measure utilization, the number of individ-
ual memory addresses in a cacheline that have actually been
used, will be counted, when the cacheline reaches the end of
its life in the cache. This can be due to two reasons: in the
most common case, the cacheline gets evicted to make space
for another cacheline. In a limited number of cases however,
cachelines gets invalidated: because of a coherence transac-
tion initiated by a remote cache for example, the local cache
is not allowed to hold on to its copy of the cacheline.

In the previous section on false sharing we only considered
the D-L1 as false sharing cannot occur in the I-L1. In this
section we will consider the I-L1 as well though. To make
the figures more clear we have averaged the utilization of
three mobile workloads (AndEBench, BBench and Caffeine-
Mark), with error bars to denote the maximal and minimal
utilization over all workloads.

4.1 Definition and related work

Cacheline utilization can be an important metric when as-
sessing the efficiency of the L1 caches. We define cacheline
utilization as the number of bytes in the cacheline that have
actually been used (read or write) by the CPU upon time
of measurement. When the CPU requests an address, the
complete cacheline will be brought into to the cache, to ex-
ploit spatial locality. However, those bytes in the cacheline



that were never referenced will not only have a negative ef-
fect on the cache itself but also on the communication fabric.
A low cacheline utilization means that the storage capacity
available in the cache was not optimally exploited. The sec-
ond effect, on the communication fabric, might be even more
severe because of the increased power consumption of com-
munication [15]: all unused bytes have been brought into
the cache, thereby consuming power and wasting commu-
nication bandwidth. When writing back evicted cachelines,
those unused bytes are transmitted a second time, thereby
consuming power and bandwidth a second time.

We record the cacheline utilization using the same struc-
ture used for the detection of false sharing. The access vector
tracks the references to the cacheline on a word granular-
ity. In the ARM v7 architecture however, requests can be
shorter than one word: they can span a byte or a half word
(2 bytes). Because of this, the recorded cacheline utilization
will be higher than the effective cacheline utilization as a
half word access for example will only use 2 bytes but will
be recorded as a full word, hence 4 bytes. This makes the
cacheline utilization as measured here an upper limit.

Investigating cacheline utilization allows for more precise
trade-offs to be made, with regards to cacheline size for ex-
ample (Section 4.4). Cacheline utilization, as defined above,
has been investigated in multiple works, albeit with slightly
different terminology sometimes. Some authors refer to cache-
line usage [5] or cache noise [17]. Though the exact terminol-
ogy might differ, most of the works below look at cacheline
utilization to reduce power consumption. In [12] cacheline
utilization is investigated to argue for a variable cacheline
size. By looking at various benchmarks from the SPEC2006
and PARSEC suites, Java and commercial workloads, it be-
comes clear cacheline utilization varies both across work-
loads but also over the runtime of workloads. The average
utilization is quite low: only 50% of all words in the cache-
line are used when the cacheline is evicted, when assuming
a cacheline size of 64 bytes. [5] looks at the SPEC2006
benchmarks in more details in the context of spatial pattern
prediction. They compare the utilization across cacheline
size and increasing the cacheline size from 64 bytes to 256
bytes decreases the unreferenced data in the cacheline from
45% to 66%. In [17] cacheline utilization is predicted so
only words that are predicted to be used will be brought
into the cache based upon utilization history. They mea-
sure the cacheline utilization in the SPEC 2K benchmarks,
with a cacheline size of 32 bytes. On average, the inte-
gers benchmarks exhibit a lower utilization (42%) than the
floating point benchmarks (72%) as the latter show more
sequential accesses and use more doubles which occupy con-
secutive words in the cacheline. On average, the cacheline
utilization is quite poor (57%), even for a relatively small
cacheline size. The work in [11] investigates cacheline uti-
lization as a way to reduce dynamic power consumption in
the network on chip for chip multiprocessors. They find that
in the PARSEC benchmarks unused words are, on average,
responsible for 35% of the dynamic power consumption. In
the case of the fluidanimate benchmark, this increases up to
55%.

However, none of these works investigated cacheline uti-
lization in a mobile environment where power consumption
is an even more stringent constraint. We aim to character-
ize cacheline utilization of mobile workloads and see whether
the previous trends exist as well in the mobile setting.
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Figure 6: Life of a cacheline in the L1 caches

4.2 Utilization over cacheline lifetime

Figure 6 shows the life of a cacheline in an L1 and how the
various possible end-of-life causes are related to the cacheline
utilization measurements.

4.2.1 Utilization upon eviction

As shown in Figure 6 an eviction occurs when a new cache-
line gets fetched for which there is currently no space in this
cache. The life of the cacheline is determined by a local
event. Measuring the cacheline utilization at the time of
eviction gives the cacheline utilization upon eviction. Figure
7 shows the utilization upon eviction, averaged over multiple
mobile workloads, for both the D-L1 and I-L1, where the er-
ror bars denote the maximum and minimum value obtained
by individual benchmarks. In general the utilization of in-
struction cachelines is higher and shows less variation across
workloads, indicating good spatial locality. However, the
utilization is still relatively low. Around 60% of an evicted
data cacheline is never used when the cacheline gets evicted,
in the case of an evicted instruction cacheline this decreases
to around 45%. This indicates there is a lot of unused traf-
fic: bytes are transmitted across the bus and brought into
the cache, but are never used.

It needs to be noted that only taking cacheline utilization
upon eviction into account might skew conclusions, for ex-
ample, the utilization of data cachelines in the case of An-
dEBench is quite low compared to the other benchmarks.
This is due to hot lines: these lines do not get evicted regu-
larly and their high utilization will not appear in the cache-
line utilization upon eviction, giving the skewed impression
that cacheline utilization is poor. The presence of hot cache-
lines can be ascertained by looking at the utilization of all
valid cachelines on a regular basis. This is marked in Figure
6 as periodic utilization. If this periodic utilization is higher
than the utilization upon eviction, hot cachelines are present
in the cache.

The utilization of a data cacheline can affect the traffic
twice: upon a fetch, unused data is brought into the cache.
When a dirty cacheline is evicted, the complete cacheline
will be written back to a lower level cache, transmitting
those unused memory addresses again. Figure 8 shows the
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Figure 8: Cacheline utilization upon eviction and dirty evic-
tion, averaged over various mobile workloads. The dirty
evictions are a subset of the overall evictions.

utilization of dirty cachelines. Dirty cachelines have a higher
utilization, as most writes follow a series of reads. However,
between 30% and 60% of the writeback data was never used
by the D-L1.

4.2.2  Utilization upon invalidation

Eviction of a cacheline is in a sense the natural end of life
of a cacheline: the cacheline gets removed because of events
in the local cache. Figure 6 shows the possible causes of an
invalidation. Some invalidations are caused by local events
like cache flushing instructions. Most invalidations however
are caused by events in a remote cache, e.g. a false invali-
dation. It is to be expected that the cacheline utilization of
invalidated lines will be lower than that of an evicted line as
cachelines cannot reach their 'natural’ end of life and have
not built up utilization. This is confirmed in Figure 9: on
average the utilization upon invalidation is 10% lower than
the utilization upon eviction, at 64 bytes. This difference
can increase up to 44% for BBench. Luckily, invalidations
are very rare in comparison to evictions: at 256 bytes, which
has the highest chance of invalidations, less than 1% of all
cacheline removals is because of an invalidation.

4.3 Effect of software rendering on cacheline
utilization

To look at the effect of software rendering on cacheline uti-

lization, we look at BBench and AndEBench, running with

and without software rendering, as they capture two ends of

the spectrum. BBench, being a browser benchmark requires

H Eviction A \nvalidation

100%

80% !

60% |

40%
20%

0%
16 32 64 128 256
Cacheline size [B]

Used bytes in cacheline [%]

Figure 9: Cacheline utilization upon invalidation in D-L1,
averaged over various mobile workloads.

much more software rendering than AndEBench which has a
fixed screen on which only a couple of variables are updated.

Figure 10a shows software rendering artificially decreases
the I-LL1 miss rate as the rendering code is quite repetitive.
However, as Figure 1la the utilization of the instruction
cachelines is slightly higher in the more realistic case. This
could be due to the fact that the software rendering instruc-
tions are competing with the workload instructions which
prevents them from building up utilization before eviction.

The D-L1 miss rates as depicted in Figure 10b show that
software rendering increases the miss rate as it increases
the working set: both the data needed by the software ren-
dering threads and the workload threads now needs to fit
in the D-L1. Figure 11b shows AndEBench and BBench
exhibit different behaviour when it comes to cacheline uti-
lization. In the case of BBench, where software rendering is
more prominent, the more realistic simulation shows a lower
utilization. This could be explained by the repetitive data
usage in software rendering, which artificially increased the
utilization. In the case of AndEBench, the cacheline utiliza-
tion is higher when disabling software rendering. This ties in
with the change in miss rate: as the miss rate is lower with-
out software rendering, the cachelines remain in the D-L1
longer and can build up cacheline utilization.

In general though, while the quantitative results might
differ, the qualitative conclusions hold: overall, the cacheline
utilization of mobile workloads is quite low, indicating most
of the data brought into the caches remains unused.

4.4 Miss rate versus traffic trade-off based upon
cacheline utilization

Knowing the cacheline utilization allows to make more
detailed trade-offs at design time as it gives an idea of the
amount of unused data brought into the L1 caches. As the
power consumption associated with communication is quite
significant, the cacheline utilization will also affect the over-
all power consumption. [15] looks at the cost of data move-
ment in a mobile environment by measuring the power con-
sumption of a Samsung Galaxy S3 smartphone, when run-
ning micro-benchmarks with known cache behaviour. They
find that the energy cost of a LD operation which hits in
the L1 is equal to 1.83 ADD operations. If however, the
same LD request misses in the L1 and needs to be fetched
from the L2, the LD operation will now be equivalent to
7.65 ADD operations. This shows the need for efficient data
movements.
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Figure 10: Effect of software rendering on L1 miss rates

Section 4.2 showed that cacheline utilization decreases
when increasing the cacheline size. However, in general, in-
creasing the cacheline size will decrease the L1 miss rate
because of spatial locality. This will continue until the ever
larger cachelines will contend over space in the cache and the
L1 miss rate will start increasing again [10]. In this section
we will look at the effect of increasing the cacheline size on
traffic. Increasing the cacheline size will (initially) decrease
the miss rate and reduce the number of cachelines that need
to be fetched whilst, at the same time, the cachelines become
larger and more parts remain unused, which will affect the
amount of unused traffic on the bus. As traffic can be see as
a stand-in for energy consumption, this allows us to make
an (albeit simple) trade-off between a better missrate and
a higher energy consumption when choosing cacheline size.
We do this analysis for both BBench and AndEBench, with-
out software rendering.

Figure 12a shows the effect of increasing the cacheline
size on the number of cache misses, compared to the pre-
vious cacheline size. This shows that for both benchmarks,
increasing the cacheline size up to 128 bytes will have a pos-
itive effect on the number of cache misses as the number of
misses is lower than at a smaller cacheline size. However,
increasing the cacheline size beyond 128 bytes will increase
the number of misses, due to conflict and/or capacity misses.
Figure 12b looks at how this affects the amount of unused
traffic on the bus. We define unused traffic as the amount
data brought into the L1 caches which will remain unused
over the lifetime of the cacheline. To calculate this, we as-
sume every miss in the L1 is due to the cacheline not being
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Figure 11: Effect of software rendering on cacheline utiliza-
tion

present in the cache and will require the complete cacheline
to be brought in. The majority of these cachelines will be
evicted, a minority will be either be invalidated or remain in
the cache. This allows us to calculate the amount of unused
traffic by using the following formula:

Unused traffic = L1 misses X cacheline size
—[# Evictions x Util. upon eviction

+ # Invalidations x Util. upon invalidation
+ # Hot cachelines x Util. of hot lines]

In reality though this formula is imperfect: some of the
misses in the D-L1 will be coherence misses which will not
require a data message but a shorter control message e.g. a
write to an already present cacheline, currently in the shared
state, will require other sharers to acknowledge the invali-
dation of their local copy, via a control message (upgrade).
However, for AndEBench the proportion of coherence misses
compared to the overall number of misses is below 18% for
all cacheline sizes. For BBench this number is even lower:
less than 1% of all misses in the D-L1 are coherence misses.
A second imperfection lies in the fact that in the case of an
out-of-order core with non-blocking caches multiple subse-
quent read misses can be aggregated into one fetch, if they
hit in the Miss Status Handling Register. In this work how-
ever, we assume an in-order core.

As Figure 12b shows increasing the cacheline size will al-
ways increase the amount of unused traffic on the bus. How-
ever, by combining both Figure 12a and 12b it is possible
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Figure 12: These figures show the effect of increasing the
cacheline size on both the number of misses and the traffic
on the bus. The bars indicate the change in respectively
cache misses or unused traffic, compared to the previous
value of the cacheline size. A value above 100% indicates an
increase compared to the previous value of the cacheline size
(a) In the case of BBench, changing the cacheline size from
64 bytes to 128 bytes for example will make that the number
of misses in the L1 at 128 bytes is equal to 90% of the misses
at 64 byte (b) However, this will cause the unused traffic at
128 bytes to be 216% of the unused traffic at 64 bytes.

to make a more precise trade-off. In the case of BBench,
increasing the cacheline size from 64 bytes to 128 bytes will
result in only 90% of the misses occurring. However, there
will 216% more unused traffic on the bus. In the case of An-
dEBench, the same increase in cacheline size will result in
only 74% of the misses at the cost of 243% of unused traffic
on the bus.

This example makes clear that while a large cacheline size
will reduce the number of misses and increase cache per-
formance, the price to pay for this is steep: the amount of
unused traffic and hence energy wasted in superfluous data
movements will more than double.

4.5 Conclusion

We find that mobile workloads show low cacheline utiliza-
tion in general. Instruction cachelines are utilized more than
their data counterparts and show more uniform behaviour
across benchmarks. If the life of a cacheline gets cut short by
a false invalidation for example, the cacheline utilization will
lower significantly. By comparing the cacheline utilization
of simulations with and without software rendering, we find
that whilst software rendering does change the quantitative
results, the qualitative results remain: the cacheline utiliza-
tion is low, indicating the majority of the data brought into
the L1 caches remains unused.

It also needs to be noted that the cacheline utilization
as measured here is an upper limit as the utilization was
tracked on a word granularity, even though accesses could
be made to single bytes or half words. This makes the sit-
uation as presented here is in reality even more dire: when
increasing the cacheline size, the miss rate will decrease (up
to a certain point) but as the cacheline utilization lowers,
the efficiency of the cache hierarchy decreases. This was
exemplified by looking at a miss rate versus unused traffic
trade-off, showing that cacheline utilization, in contrast to
false sharing, is an important metric when looking at cache-
line size optimizations in a mobile environment.

S. OVERALL CONCLUSIONS

The number of cores in mobile chip multiprocessors has
steadily increased over the last decade. Meanwhile, the
cacheline size however remained quite constant. We have
investigated whether the cacheline size might be ready for
a refresh by looking at sources of inefficiency in the cache
hierarchy, affected by cacheline size.

A first form of inefficiency is false sharing, which has been
shown to have a severe impact on performance in the case of
scientific and other workloads. While an increase in cache-
line size would increase the amount of false sharing in mo-
bile workloads, the amount of false sharing is still negligible
when compared with known cases of false sharing. This ties
in with the low amount of thread level parallelism present
in mobile workloads. Overall, we can exclude false sharing
as a source of concern when changing the cacheline size in a
mobile environment.

Secondly, we look at cacheline utilization. Similar to scien-
tific and other workloads, the cacheline utilization of mobile
workloads is quite low. Whilst this has implications for the
caches themselves (inefficient use of cache capacity for exam-
ple), the effect on the system is far graver. When changing
the cacheline size from 64 bytes to 128 bytes, the number
of misses will reduce by 10%-30%. However, the amount of
unused traffic on the bus will be more than double. This
shows a change in cacheline size will have system-wide ram-
ifications: apart from the redesign of the caches themselves,
other system characteristics will need to adapt to this change
as well.

If a change in cacheline size would only be assessed by
looking at the caches themselves, the direct consequences
become clear: while initially the spatial locality favours an
increase in cacheline size, eventually the conflict and/or ca-
pacity misses start playing up. However, by looking at a
metric like cacheline utilization, it becomes clear that there
are many indirect consequences: the bus, for example, whilst
it might need to be redesigned from a purely hardware-based
perspective to adapt to a change in the cacheline size, the
amount of traffic it will handle will increase significantly as
well, which also needs to be taken into account.

In this work we have only looked at the cacheline size as
the initial parameter to change and assessed its effect on
inefficiencies such as false sharing and cacheline utilization.
However, the choice for a cacheline size will in its turn, be
affected by other system characteristics such as the size of
the memory bursts etcetera.

The parameter sweep, as presented here, across various
cacheline sizes where the focus lies solely on cacheline uti-
lization, shows how cacheline size affects and in turn, is af-
fected by other system characteristics, emphasizing the need



for system-level research.
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