L!IX : i
|

An image-based approach to the
rendering of crowds in real-time

Franco Tecchia

A dissertation submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
of the

University of London.

Department of Computer Science
University College London
October 2006

UMI Number: U594430

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

Dissertation Publishing

UMI U594430
Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author.
Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against
unauthorized copying under Title 17, United States Code.

ProQuest

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346
Ann Arbor, Ml 48106-1346

DECLARATION

I, Franco Tecchia, confirm that the work presented in this thesis is my own. Where information has

been derived from other sources, I confirm that this has been indicated in the thesis.

An image-based approach to the rendering of crowds in real-time

A CKNOWLEDGMENTS

Firstly, I would like to thank Prof. Mel Slater, my supervisor, and Dr. Yiorgos Chrysanthou,
my second supervisor, for all of their patience, help, and advice. This work would not have

been possible without their continuous guidance and encouragement.

Secondly, I would like to thank Celine Loscos, that shared with me a large amount of time and

effort on this exciting research.

Finally, I would like to thank all my very precious friends. I would not have been able to get
through all this without their continuous support.

It has been an incredible and formative experience; this work is dedicated to all of you.

An image-based approach to the rendering of crowds in real-time

“CROWD”

"A large group of people who have gathered together"
Oxford English Dictionary

"A number of persons congregated or collected into a close body without order"
Webster's Revised Unabridged Dictionary

"A large number of things or people considered together"
WordNet 2.0 - Priceton University

"A group of people with something in common"
Encarta® World English Dictionary, North American Edition

"The lower orders of people; the populace; the vulgar; the rabble; the mob."
Webster's Revised Unabridged Dictionary

An imatge-based apb?ogéﬁ to tl;e?zhderil% of crowds in real-time

ABSTRACT

The wide use of computer graphics in games, entertainment, medical, architectural and
cultural applications, has led it to becoming a prevalent area of research. Games and
entertainment in general have become one of the driving forces of the real-time computer
graphics industry, bringing reasonably realistic, complex and appealing virtual worlds to the
mass-market. At the current stage of technology, an user can interactively navigate through
complex, polygon-based scenes rendered with sophisticated lighting, at times interacting with
Al-based synthetic characters or virtual humans. As the size and complexity of the
environments continuously increase, there is a growing need to add common real-life
phenomenons such as the presence of crowds. Rendering highly populated urban
environments requires a good synthesis of two partially overlapping problems: the
management of vast and detailed environments, and the visualisation of large-scale crowds.
While in the past a large amount of research has gone into the investigation of optimisation
strategies and speed-up methods dedicated to large and static polygonal models, real-time
visualisation of animated crowds poses novel challenges due to the computational power
needed to visualize a multitude of animated characters; scenarios where thousands of
characters are on-screen simultaneously can easily lead to polygon budgets exceeding millions
of triangles, that are hardly possible to render at interactive frame-rates even on the most
powerful graphics technology available today. The present thesis extensively investigates this
topic, and proposes the usage of an image-based data representation in order to speed-up
rendering of animated characters so to achieve interactive frame-rates even when crowds
composed by thousands of individuals are on-screen. We advance over the state of the art in
this field introducing a novel form of impostor rendering techniques for animated crowds, and
presenting methods that exploit this novel form of representation to handle also advanced
rendering effects such as crowd lighting and shadowing; we also discuss the important aspects
of compatibility of our new method with existing polygonal based scene-graphs architectures.
The results are showing that real-time crowd rendering is an application scenario where the
introduction of Image Based Rendering methods can truly be beneficial, making possible the
rendering of crowds composed by thousands of individual in real time in any e);isting

rendering software framework even on commodity hardware.

An image-based approach to the rendering of crowds in real-time

TaABLE oF CONTENTS

Chapter 1 - Introduction

Chapter 2 - Background and previous work

Chapter 3 - Crowd rendering using impostors

1.1 Crowds and Virtual Environments............cocevueerueuriernerienunenenseeeseneessesenseseesenaees
1.2 Computer Graphics and Human-Computer Interactioncocceeereevrcvernneen.
1.3 The challenges of real-time rendering.............c.covecereervrverrireeriereneneeeseeneneseneens
1.4 Real-time crowd renNderingccccocervirveiverrierrerenreeresreesressessessessessesseessessessessenes
1.5 Motivation and scope of this WOTK.........ccccevevuririiiiniiniecciceciee
1.6 Novel CONLTIDULIONS.cvereerrienccieieieinicterere sttt see e et s ere e sesesessasaesesaneens

1.7 Organization Of this thesiS........ccooeeetreeireerieieeee e

2.1 Real-time rendering using POlygOnS.........cocceerevuerircrernirscsineesetss e
2.2 Acceleration techniques for polygonal rendering............c.cocevvevenernencnerccnennncnnene
2.2.1 Visibility CullIng........coceviviiiiiiiiiiiicencecec e
2.2.2 Level of Detail management...........coccecevererereremrerersinesernessesessesvaessessensens
2.3 Alternative approaches to polygonal rendering..........cccccovvrverererveereesrerseenrenneens
2.4 Point based reNdering...........cocerevieeriesinrinenncemirecieneee ettt
2.5 Image based rendering............coccevreereviiereerncneeeceeret et
2.5.1 IMPOSLOrS TENAETING........coveviuiiiimicireiecnereterceeerereereresereecseeseeeeeseneseesenaseens
2.6 Drawbacks of the impoStors apProach............cceccerceerrrerrircerrneneneeseeresesessassaesnes
2.7 Real time rendering of CIOWAS...........cccevuvriiinirienienieneeertreestsresteesenenesneeseesnes
2.7.1 Modeling the human body..........ccccevrrerenirrierieeierrreeeeseree e seeseeeens

3.1 Rendering human - like characters using impoStors...........ccceeeereeenuecrerenunrenenes
3.2 Pros and cons of precomputed impPOStOTS.........cccoerveirerrereceneeresrsesesiesseessesseeeenes
3.3 Building the impostors database............cccoecrverreienrrieenrrennrernneneneereressessesesensennes
3.4 Impostors run - time rendering..........ccccevveeierrerrerrerserisresesensreeseesessesseesseesasasnens
3.5 Impostors and billboards...........cccececeriiiirrrnereserere e e eas

3.6 Visual artifacts caused by impOStOrS..........ccceeeeeeveeirrcrrnereeie e ieereeseesree e eeeenees

An image-based approach to the rendering of crowds in real-time

3.7 Optimal placement of the impostor plane............ccoeerereverinineniieieinsiniiee e
3.8 Colour modulation of the IMPOSLOTS........cceceeririnineniriii e
3.9 Interactive impostor IGhting..........ccocvceiiniiiininiiciniini et
3.10 Approximate dynamic Hghtingcccoeemminiiniiiiii s
3.11 Impostors per-pixel HGhting.........cccccveviniiiiniiiiniiretcecee s
3.12 Per-pixel lighting €qUAation............ccceuvuemiiiimiiniiiniiiriicre s

Chapter 4 - Placing crowds in Virtual Environments
4.1 Using animated impostors in a polygonal SCENario............ccceeireemruererereinnrsisessesnnnnns
4.2 Illumination of @ CrOWded SCENE..........coviiiiniiniii s s s sse e
4.3 Ambient lighting for a crowded Virtual Environment............cccoovomvienrineicineinceninae
4.4 ShadOWING.........coveerereereirieieinieniet ettt st sas b a e e b s an s s s s s basaenenns
4.5 Shadows in populated Virtual ENvironment..............cooviviiininiereennennnieseeinsnsnenens
4.6 Casting shadows on the surrounding enviroNMENLt.............cocevvuerivmreeeinneernersessseennssens

4.6.1 Using fake ShadOWS..........ccccviviviiiirniinniiiiniiicsss st
4.6.2 Using ShadOWIAPSceccreererermermiinririniniienniisessisisisisssessssessessssesssssssssssassens
4.7 Shadowing effects of the environment on the Crowd.............cccoovveereiiiiiennneneenenne.
4.8 Visibility COMPULALION........cccovmiiiiriitiiiiiciiicesr et a s saans
4.9 Beyond renderingcccceeriniimeniiiiinmnininnieiiseesss et
4.9.1 Path finding and obstacles avoidance.............c..cceuevereiiininieeinninieeene
4.9.2 Approximate and fast collision detection for crowd navigationcccoeeevuenee.
4.9.3 Height map generation.............cccooeveeuiiemiuinnirncsrninieiesnie e sseesssssssesessssessssenes

4.9.4 Collision detection and aVOIJAINCE.ccevevmeerreiirirrieererersertereeerasssresessensssrssnresenss

Chapter 5 - The crowd rendering system

5.1 General UIAELINES.........c.corureriieniieiniintrc e
5.2 Creation of the impoStor databasec.cccecererriereniiiiicninrinenniie et
5.3 MEMOIY MANAEMENL........ccccveeeererenreucneesisesercssisesssesisassessssesessssensesesssssssssessesssssnsssssssens
5.3.1 OpenGL memory management............cccoveruceivesieninieeiesiesiesesiessessessessessssessasaassesens
5.3.2 Using OpenGL texture COMPIESSIONcecvueveiirinrrisrniiinseiessnisesesesassssssssssesenes
5.3.3 Tight packing of the impoStor iMAZEScccorereririirinriiiriinreiereeeeeers s, .
5.4 Organisation of the texture WOTKING SEtccccovrmeimrininisinieieeese s

An image-based approach to the rendering of crowds in real-time 7

5.5 Efficient run-time impoStors MAaNAgemMEeNnLt.............cceceeeruerreeereererieestesneseeresseresersessesens 99

5.6 Taking distance into CONSIAEIAtION...........cceeeveirrerreirerieceeeere e e eee e re e eeseebe s ennenas 101
5.7 Visibility COMPULALION.covevrrerrreriereiereintreereeeeesesseesesesessseeseesessssesessssesesesen 104
5.7.1 Occluder selection and building of the occlusion treeccoccceeveecveereceereenenen. 106
5.8 Approximate shadowing of animated imPOStOTS..........ceceevererrererrererrerereneeieeeereseeanenes 107
5.8.1 Shadow texture coordinate COMPULALIONccoceeererereruerererreennnaeressesesseseeeseanns 109
5.9 SUMMATY......ccoiiiiiieercrte ettt et estesa s sae e s s et e s e sae s anasaessasaennns 110
Chapter 6 - Performance analysis 111
6.1 Thesis Objectives ReVISIted..........cccvueivirriinneiiniieneretnesseseresissesessese s ssssesesesaenns 112
6.2 Methods Of ASSESSINENL..........c.ccceveeriireeniiieririeerenteeertsee et eresee et esesassesenesaesnssessssens 112
6.3 Scenarios and characters MOdelS............cccevuevieierirennieniniereee et eaesaenees 113
6.4 TESE SYSIEIMS......c.cemeeenireeireeneeeeeeeeeseeetstesteneresseaseseesassesessastesassassesssseseansessssarsassesensan 115
6.5 Factors influencing impostor rendering performance...........c..ccoeevevernecnsevenresenannens 116
6.6 Test1: Speed and scalability of the basic approach.............ccocevuevrcecievicericveneceeennne. 117
6.7 Test 2: The multi-pass colouring approach.............cccoveeevereverinrerennerenieereneesesnenes 119
6.8 Test 3: Hybrid polygonal - impostor rendering............coeceeeerereerierreeseeesreeceeernseeseenns 120
6.9 Test 4: Speed comparison against LODs rendering...........cccccceueeeruecerieieieereseeseereenenes 125
6.10 Test S: Increasing the number of SAMPIESccoververeinrecereriiececeeeeceee e, 128
6.11 Advanced impoStors ffects..........ccecirrromrirnireeieireeee e 130
6.11.1 Test 6: Approximate dynamic lighting..............ccceceeurerrerereerveeererreeereae e 130
6.11.2 Test 7: Per-pixel impostor Lighting..............cccoeeeivernenennniescnesiensseneeesiesnnens 131
6.11.3 Test 8: Ambient lighting.........c.cccovevuiiinineniiiiiinenrcenese e 133
6.11.4 Test 9: Shadowing effects...........ccorueieenirininecenere e 134
6.11.5 Test 10: Occlusion culling performed on crowd...........ccoceveveerereevenereeereenennnn 136
6.12 DISCUSSION......c.covuiirieierectriecieestreetete et sresatesesessesessesssessesasassassssssansessssesessessssesesenes 137
6.13 SUMMATLY.....ceoriiiirieieieereeeertesessee st st estesresaestessse e s resaeseesse s assesaesesssassesnsessasssersans 138
Chapter 7 - Conclusions 139
7.1 SUIMIMNATY.....cc.couiereierereertrieristentesteeesestestestesassesaesessessesassssessesansessesessessessessessessensesessons 140
7.2 REVIEW Of QIINS.....cceecieuiuiririieienienreitnrresieetsteeseseseer e ese e ase e sese e besessessesessssesansrsns 140
7.3 SUMMATY Of CONLIBULONS.coovvveeeveeereeeesesenesesesssesessssessssesessessssssssssssssesesssesesaenes 141
7.4 Implications Of this WOTK.........cccccieriicirerieiieinesieecte ettt ere e ere et eseenesnnens 142
7.5 CritiCAl TEVIEW......cccoveuirriireeenrreenirieientsseseiese e aesesasesassssessesesessesassesassesansssesasnssesenens 142

An image-based approach to the rendering of crowds in real-time 8

7.6 FULUTE QITECHIONS.ooueeueieiieeiet it eeeeeeeeeeeeaessteesteeseseseessenssesssessessseenssssenssssessssesssos 143

7.6.1 Vertex and pixel Shaders........cooeoieueueeierioiiieeiecececeeec et eee e e 143

7.6.2 Dynamical impoStOrs GENEration............eeeveueerrererererereseseeeseseeeeeeeseesesesesesesesennne 144

7.6.3 IMPOSLOrS CIUSLETINE.cveveceererirreerieieiieeeeeeetete e seesesesesseseseseseesenesessnseseanas 144

7.7 CONCIUSIONS........cccoteurieeuceenrienecreteteese e neaes et se s s s ssseseas s bs e seseseseetesesesenensnsnnens 145
References 146

An image-based approach to the rendering of crowds in real-time 9

List oF FIGURES

Figure 1.1 - Crowd are a common phenomenon in many real life situations. 14
Figure 1.2 - A CG generated army from 'The Fellowship of the Ring' (New Line Cinema — 2001). 15
Figure 1.3 - The presence of a crowd increases the realism of urban environments. 18
Figure 1.4 - Using crowds in virtual urban environments. 19
Figure 1.5 - High-performance crowd rendering using textured impostors. 20
Figure 2.1 - A scene from the movie 'Star Wars Episode II: attack of the clones' (Lucasfilms — 2002). 22
Figure 2.2 - Representing objects geometry using polygons. 23
Figure 2.3 - A simple rendering pipeline. 23
Figure 2.4 - The Visibility Culling process. 26
Figure 2.5 - Multiple LODs can be used to approximate the shape of distant objects. 27
Figure 2.6 - Progressive Meshes. 28
Figure 2.7 - Point based rendering at various resolutions of a generic 3D object. 31
Figure 2.8 - Warping of panoramic images to compensate perspective distortion. 32
Figure 2.9 - Embedding images in a polygonal scenario: the impostor. 34
Figure 2.10 - A complex object is replaced by a single, texturised, quadrilateral 34
Figure 2.11 - Impostors warping using image layers. 35
Figure 2.12 - Incorrect visibility due to impostor lack of depth information. 36
Figure 2.13 - Reproducing the human shape needs a large polygon budget. 37
Figure 2.14 - Simplification of polygonal characters. 38
Figure 2.15 - Polygonal crowd used to populate a 3D model. 39
Figure 2.16 — Rendering an army using polygons. 40
Figure 2.17 - Rendering animated characters using points 40
Figure 2.18 - Crowd rendering using points. 41
Figure 2.19 - Using impostors for crowd rendering 42
Figure 2.20 - Aubel's dynamic impostors performing a 'Mexican wave'. 42
Figure 3.1 - A scene from the movie 'Troy' (Warner Bros. - 2004). 44
Figure 3.2 - Impostors can be used to replace the complex geometry of a human character. 45
Figure 3.3 - A key-framed walking sequence can be captured using multiple impostors. 46
Figure 3.4 - Taking a discrete set of images of a polygonal character. 48
Figure 3.5 - Conceptualization of the impostors run-time rendering pipeline. 50
Figure 3.6 - Billboards (a) and impostors (b) are conceptually different. 51
Figure 3.7 - Projecting points on the impostor plane 52
Figure 3.8 - Different choices for the impostor projection plane 54
Figure 3.9 - Simulating variety using colour modulation. 56
Figure 3.10 - Fine-control of the impostor colours. . 57
Figure 3.11 - Effect of the random colouring of different body parts. 58
Figure 3.12 - Global illumination effects can increase the realism of a scene. 59

An image-based approach to the rendering of crowds in real-time 10

Figure 3.13 - Simulating the effects of a (white) local light source. 61
Figure 3.14 - Simulating the effects of multiple coloured light sources. 61
Figure 3.15 - Storing per-pixel normal information in the impostors image samples. 63
Figure 3.16 - The standard OpenGL lighting equation. 64
Figure 3.17 - Impostor per-pixel lighting. 65
Figure 3.18 - Final effects of per-pixel lighting on an impostor-based crowds. 66
Figure 4.1 - An image from the movie 'Shrek’ (Dreamwork — 2004). 68
Figure 4.2 - High-performance crowd rendering using textured impostors.. 69
Figure 4.3 - Global illumination effects on crowd. 71
Figure 4.4 - An urban scenario and the resulting light intensity map. 72
Figure 4.5 - The light intensity modulation at work on the impostors 73
Figure 4.6 - The fake shadows technique applied to impostor rendering. 77
Figure 4.7 - An early version of our rendering system: crowd casting (fake) shadows on the scenario. 79
Figure 4.8 - Simulating shadows on the impostors. 80
Figure 4.9 - Example of the visual produced by our shadowing algorithm. 81
Figure 4.10 - Similarly to the static geometry, buildings can be very effective occluders. 82
Figure 4.11 - Visibility Culling: our system detects occlusion caused by building on the crowd 82
Figure 4.12 - Crowd navigating in the web of streets of a city. 84
Figure 4.13 - A simple urban model and its corresponding height-map (below, in grey scale). 86
Figure 4.14 - A simple collision avoidance strategy using cells elevation. 87
Figure 5.1 - A scene from the movie 'The Fellowship of the Ring' (New Line Cinema — 2001) 89
Figure 5.2 — Two examples of urban environments rendered in real-time in our system. 90
Figure 5.3 — Using impostors can be subdivided in two macro phases: 91
Figure 5.4 - Storing impostors data. 93
Figure 5.5 - A simplification of the rendering pipeline. 94
Figure 5.6 - Packing impostor together. 97
Figure 5.7 - Some elevations of the camera needs a larger variety of samples to be rendered. 98
Figure 5.8 - The Lookup, Selection and Rendering phases of the crowd rendering pipeline. 100
Figure 5.9 - The three stages of memory involved in the rendering process. 101
Figure 5.10 - Using less samples for the distant characters. 102
Figure 5.11 - Subdividing textures to optimise memory management. 103
Figure 5.12 - The complete run-time crowd rendering pipeline. 104
Figure 5.13- Subdivision of the scenarios' occluders. 105
Figure 5.14 - Computing visibility. 107
Figure 5.15 - Height Map (a) and Shadow Volume Map (b) computed for the same scenario. 108
Figure 5.16 - Filtering the values of adjacent cells to produce smooth shadow transitions. 109
Figure 6.1 - A scene from the movie 'Troy' (Warner Bros. - 2004) 111
Figure 6.2 - Test Scenario 1: a simple urban-like scenario (3,216 triangles). 113
Figure 6.3 - Test Scenario 2: the Garibaldi Square model (43,866 triangles). 113
An image-based approach to the rendering of crowds in real-time 11

Figure 6.4 - Test Scenario 3: the town model (41,260 triangles). 114
Figure 6.5 - The character models used in the tests. 115
Figure 6.6 - Representing the impostor rendering pipeline as a sequence of 4 functional blocks. 116
Figure 6.7 - Rendering a crowd with the basic impostor algorithm 118
Figure 6.8 - Average time to renderer a frame against the number of impostors. 118
Figure 6.9 - Introducing variety using colour modulation. 119
Figure 6.10 - Average time to renderer a frame against the number of impostors. 120
Figure 6.11 - Mixing polygonal characters and impostors. 121
Figure 6.12 - Mixing polygonal characters and impostors (Test Scenario 1). 121
Figure 6.13 - The camera trajectory used for Test 3. 122
Figure 6.14 - Measuring how the introduction of impostors affects the rendering speed of large crowds. 123
Figure 6.15 - Mixing polygonal characters and impostors. 124
Figure 6.16 - Measuring the benefit of impostors when they replace simpler polygonal models. 125
Figure 6.17 - Using multiple LODs for crowd visualisation. 126
Figure 6.18 - Using static polygonal LODs to render a crowd. 126
Figure 6.19 - Populating Test Scenario 1 with a LODs - based polygonal crowd . 127
Figure 6.20 - Measuring rendering time in the LODs - based system. 128
Figure 6.21 - Measuring rendering speed for different amount of impostor data (Test System Low). 129
Figure 6.22 - Measuring rendering speed for different amount of impostor data (Test System High). 130
Figure 6.23 - Dynamic illumination of a crowd using a variety of local lights configurations. 131
Figure 6.24 - Testing dynamic lighting. 131
Figure 6.25 - Impostors per-pixel lighting. Testing speed and scalability of the method. 132
Figure 6.26 - Testing per-pixel lighting. 132
Figure 6.27 - Taking in account ambient light intensity in the Garibaldi Square scenario. 133
Figure 6.28 - Testing ambient lighting. 134
Figure 6.29 - Testing speed and scalability of our shadow methods in the Test Scenario 3. 135
Figure 6.30 - Testing shadowing effects. 135
Figure 6.31 - Performing real-time occlusion culling on the crowd (Test Scenario 3). 136
Figure 6.32 - Testing crowd occlusion culling. 137
Figure 7.1 - A scene from the movie 'Star Wars Episode I1I: attack of the clones' (Lucasfilms — 2002). 139
An image-based approach to the rendering of crowds in real-time 12

CHAPTER 1 - INTRODUCTION

omputer graphics is concerned with rendering a visual representation of a synthetic

3D environment on a display, a task that has attracted a great deal of scientific

research in the past 50 years. A commonly accepted taxonomy differentiates
techniques and algorithms for off-line content creation, where the time needed to create a
single computer graphics (CG) image is relatively unimportant, and for on-line content
creation, where a sequence of images needs to be generated quickly enough in order to
guaranty a target frame-rate. The ability to render highly populated scenes using computer
generated crowds can be desirable for both on-line and off-line content creation. In particular,
Virtual Environments applications (and other real-time applications such as games) may use
crowds to breathe life into otherwise static scenes, with the goal of enhancing the overall
believability of the scenario. Due to the large amount of computational resources needed to
perform this task, the simulation of crowded scenes is best accomplished through the use of
special dedicated techniques, that only recently started to be investigated in the context of
real-time computer graphics. A major goal of this thesis is to show that real-time crowd
rendering is best supported through a particular approach to computer graphics known as
image-based rendering. It will be shown that thousands of virtual characters can be made to
populate and move through a virtual environment in real-time, and that the approach is
flexible enough to support many facilities such as illumination and shadowing previously

considered to be incompatible with real-time image based graphics.

An image-based approach to the rendering of crowds in real-time

CHAPTER 1 - INTRODUCTION

1.1 Crowds and Virtual Environments

Crowds are a very common phenomenon in our everyday life. We can see crowds when using
many forms of public transport, attending sporting events, going to the cinema or at a concert
or just shopping around. We spend a large part of our life as members of some crowd, as this

is an intrinsic characteristic of any society.

Figure 1.1 - Crowds are a common phenomenon in many real life situations.

With crowds being such a familiar element of everyday life, it comes with no surprise that the
ability to simulate and visualise large crowds is interesting for both off-line and on-line
Computer Graphics research. The current trend in Cinema industry acknowledges this
importance, and more and more feature films present situations were crowds are important, to
such an extent that often they become an essential element of a film plot: the clash between
large armies in films such as Troy, or the reproduction of historical crowd gatherings as in the
Gladiator's Colosseum, are some good examples of situations where their presence plays an
important role. In some cases crowds can even become the distinguishing element of a movie:

the battles between massive armies composed by thousands of animated characters in the Lord

77Anrz:r7r71&;gé-basec;';179;f57cz>7ch 1o the rendering of crowds in real-time 14

CHAaPTER 1 - INTRODUCTION

of the Rings Trilogy are amongst the most awe-inspiring moments of the movie. With the
costs of modern film production, scenes involving thousands of moving individuals have
become prohibitively expensive without the development and use of computer-generated
crowds. Also, dangerous situations, like for example the sinking scene of the movie Titanic,

would have been impossible or too dangerous to film using a multitude of real actors.

Figure 1.2 - A CG generated army from 'The Fellowship of the Ring' (New Line Cinema — 2001).

Even if increasingly frequently used in the Cinema industry, the importance of crowds in CG
is not at all confined to the world of off-line content generation. Many Virtual Environment
applications could benefit by their presence. As the size and complexity of the 3D scenarios
presented in these applications continuously increases, there is a growing need to populate
them with more than just a few interacting characters. For instance, when simulating complex
urban scenarios, the believability of any Virtual Environment application is diminished by the
general absence of crowds, and models of large cities cannot appear realistic if they are not
populated by a large number of individuals. Unfortunately, visualising large crowds using
computer graphics is not an easy task. Programmers of any VE application need to deal with
having limited rendering resources available to compose each frame, and with many hundreds
or thousands of potentially visible individuals forming a crowd, many traditional optimisation
techniques cannot help achieving interactive frame-rates. As a consequence, new and
dedicated approaches to the rendering, animation and behaviour control of the crowds are

needed.

An image—basedrapproach to the rendering of crowds in real-time 1

CHuprER 1 - INTRODUCTION

1.2 Computer Graphics and Human-Computer Interaction

Computer graphics was born from the use of CRT and pen devices early in the history of
computers; many Computer Graphics techniques date from Sutherland’s Sketchpad PhD.
thesis (1963) that essentially marked the beginning of computer graphics as a discipline
[Suth63]. Human-Computer Interaction, intended as the discipline concerned with the design,
evaluation and implementation of interactive computing systems for human use, arose as a
field with intertwined roots in operating systems, human factors, ergonomics, industrial
engineering, cognitive psychology, and the systems part of computer science [Cox99]. Some
of the research performed in Computer Graphics combined with the HCI natural interest in
interactive graphics (e.g., how to manipulate solid models in a CAD/CAM system), generated
the field of Virtual Environments, where concepts and procedures coming from both fields are
mixed together. In 1965 Sutherland stated that one of the biggest challenges in Computer
Graphics was to allow the user to be able to look at the display device as a window into a
virtual world and to make such virtual world appear realistic. Thanks to the advances in
computer algorithms, processing power, memory, and graphics display systems, this goal is
getting closer every year. Modern Virtual Environments research focuses on accomplishing
and expanding the initial Sutherland vision with the goal to fully immerse people into
computer generated environments that they can interact with, and expose them to situations

that could be impossible or very difficult to replicate in the real world.

1.3 The challenges of real-time rendering

While off-line CG is focused on the quality, the realism, and the detail of the generated
images, on-line CG pursues mainly the goal of interactivity: images must be generated in a
rapid succession to represent the ongoing state of a synthetic and evolving scenario that the
user can interact with, reason why it is often called interactive graphics. Time is here the
critical resource, and the accurate simulation of visual phenomena, albeit always desirable,
becomes less important than rendering speed. Achieving a trade-off between visual fidelity
and computation time becomes important and, as many algorithmic efforts are spent to
achieve the maximum possible image quality respecting the tight time boundaries of two
consecutive frames, the word “realism” assumes new connotations. The computer-based
generation of images under this time constraints is called Real-Time Computer Graphics.

Virtual Environments applications are an example of this kind of graphics, where the essential

An image-based approach to the rendering of crowds in real-time 16

CHAPTER 1 - INTRODUCTION

requisite for the rendering activity is to take place at an "interactive frame-rate". A widely
accepted measure of an application interactivity is a minimal image generation rate of about
20 Hz: in these conditions there is at most S0 milliseconds of time to fully generate a single
frame of a rendering sequence. The modern rules of interactivity push these limits even
further, and frame rates of 60 Hz (or more) are not uncommon in these days.

Due to its robustness and relatively simple hardware implementation, polygonal rendering has
become the most widely adopted approach to Virtual Environments visualisation: to compose
any element in the scene a multitude of basic graphics primitives such as point, lines and
trianglés are used. As the complexity and the realism of the presented scenarios continues to
grow, the brute force approach of representing any visual object using a multitude of small
triangles can become problematic. Noticeable computation delays appear between frames
when the visual complexity reaches a critical threshold, decreasing the quality of the
visualization and the ability of the user to interact with the application, and not even the most
advanced hardware technology can offer enough raw speed to handle every possible scenario
at interactive frame rates. This is why heuristics and methods to optimise the use of available
rendering resources are a well-studied research topic, with literally hundreds of algorithms
proposed to handle many different (and specific) situations. Traditional optimisation
algorithms generally address the task of rendering large static models, as this is the most
common example where the rendering activity can be rationalised; for example, visibility
culling is generally an effective acceleration technique for the static part of urban scenes
because of the intrinsic heavy occlusions that these environments present. Being frequently
geared to large static scenarios, some optimisation approaches cannot be used for dynamic
situations, making them unusable in some cases. Crowd rendering, a relatively recent topic in
this context, is an example of a complex non-static rendering scenario where a multitude of
animated entities navigate around the environment, a situation that VE developers may try to
avoid due to the technical challenges that this presents. Their dynamic nature makes crowd
rendering a very special activity, something that cannot be addressed in the same way that the
rendering of large and static polygonal scenarios is carried out. Still crowds are very
important: in spite of simulated virtual worlds appearing increasingly realistic, unless these
complex synthetic worlds are populated in a similar way to what we commonly experience in
our everyday life it is not really possible for the user to achieve the suspension of disbelief

ideally required by many Virtual Environments applications.

An image-based approach to the rendering of crowds in real-time 17

CHaPTER 1 - INTRODUCTION

1.4 Real-time crowd rendering

The introduction of crowds into virtual environments poses non-trivial technical challenges,
as the restrictions imposed by the constraint of real-time rendering imposes severe limitations
to the overall computation resources available for their visualisation. The main technical
difficulty comes from the fact that the human body has an elaborate shape and a resulting
complex polygonal mesh is usually needed to represent each individual. Situations where
thousands of characters are on-screen simultaneously (Figures 1.3 and 1.4) can then easily
lead to polygon budgets exceeding millions of triangles, making it difficult or impossible to

render the scene in real-time without the use of some special, dedicated technique.

Figure 1.3 - The presence of a crowd increases the realism of urban environments.

We claim that from a general point of view, when dealing with the visualisation of large-scale
crowds many traditional optimisation approaches are either not applicable or lead to non-
optimal results. Radically different methods are better suited to provide the speed boost
needed in order to achieve an interactive frame rate even with thousands of individuals in the

scene.

1.5 Motivation and scope of this work

The research described in this thesis was motivated by the need to populate complex urban
models used in several Virtual Environments applications with crowds composed of a very
large number of animated characters, with the goal to enhance the overall realism of the
resulting scene thanks to the simulation of a dynamic population of computer-managed
individuals. The focus of this work is on the rendering aspects of the problem, where specific

An imagé-based a‘bﬁroach to the rendering of crowds in real-time 18

CHAPTER 1 - INTRODUCTION

techniques will be proposed to handle the otherwise overwhelming rendering needs of real-
time crowd visualisation. In particular, the thesis proposes the use of an image-based
representation of data in order to speed-up the rendering process, and it discusses the ability of
such representation to handle additional graphical tasks such as lighting, shadowing and

visibility computation, and to coexist with traditional polygonal rendering-based scene graphs.

Figure 1.4 - Using crowds in virtual urban environments.

The EU Project CREATE — A populated Garibaldi Square model (Nice-France).

The overall organisation of the work reported in this thesis was arranged to demonstrate that,
using the right form of representation, crowd rendering is one of the situations where the
introduction of IBR methods does not require a radical re-engineering of existing scene-graph
frameworks, while at the same time can lead to substantial improvement in rendering speed
compared to the use of polygonal rendering. Nevertheless a very similar image quality can be
attained, and the same (or better) flexibility in terms of interactive lighting of the resulting

scenario.

1.6 Novel contributions
The fundamental kernel of the present thesis is based on a specific type of Image Based

Rendering technique, known under the name of impostors rendering: as described in detail in
Chapter 2, an impostor is a 2D image embedded inside a 3D scenario to replace one or more
geometrical objects (see Figure 1.5). Despite having many desirable qualities, the use of
impostors for the specific task of crowd rendering was underdeveloped prior to the present

work: impostors were normally used to replace non-animated geometry (very different with

An image-based approach to the rendering of crowds in real-time 19

CH4PTER 1 - INTRODUCTION

the case of crowds). Also this technique was considered rather inflexible, as normally
impostors cannot provide a fine control on the visual appearance of the object they represent.
Finally, they were considered too memory consuming to represent a large variety of objects
and, mostly for this reason, normally computed at run time (dynamic impostors) and only used

in small numbers, as the generation process can be time consuming.

Figure 1.5 - High-performance crowd rendering using textured impostors.

Polygonal characters (left picture) can be replaced by image-based impostors (right picture).

Here a novel set of techniques that overcome or reduce these limitations are introduced,
making it possible to render at interactive frame-rate crowds composed of thousands of
individuals on commodity hardware using the technique called impostors rendering. The
results show that impostor rendering can bring concrete advantages in many cases of real-time

crowd visualisation. In particular this thesis reports on the following original contributions:

- A technique for rendering thousands of individuals in real time using precomputed
unstructured impostors;

- A multi-pass algorithm that offers fine control on the colour of different parts of the
impostor images;

- Approximate and per-pixel lighting algorithms suitable for crowd visualisation;

- Multiple approaches to crowd shadows generation and other global illumination effects;

- Visibility culling applied to crowd.

Also, some work on side aspects such as collision detection and navigation of crowds inside

the Virtual Environments was performed through the work, with some material resulting in

An imajgé:based app?oach to the rel;z;’ering of crowds in real-time 20

CHapTER 1 - INTRODUCTION

scientific publications: where relevant, this material is also presented in the thesis chapters. It

must be noted that, while we focused our work on the specific task of crowd rendering, the

proposed techniques have a more general applicability, and could be used for a broader class

of real-time visualisation problems.

1.7 Organization of this thesis

The thesis is composed by 7 chapters, organised as follows:

Chapter 2 provides a detailed overview of the previous background and related work for
real-time rendering methods, focusing in particular on the methods that are suitable for
crowd rendering. For every approach (polygonal, point based, image-based) existing work
on crowd visualisation is reported and discussed.

Chapter 3 proposes the principle of using unstructured animated impostors for the
visualisation of crowds in real-time, showing also how similar in flexibility to polygonal
rendering impostors rendering can be in this case.

Chapter 4 discusses how an impostor based representation of a crowd can be embedded in
polygonal-based environments and how the two representations can interact flawlessly
even for global effects such as shading and shadowing. Crowd visibility computation will
also be discussed, and a simple but effective image-based collision detection algorithm will
be proposed to deal with the problem of navigation of the crowd in the environment.
Chapter 5 describes the representations and techniques that are needed to simulate large-
scale crowds in a practical implementation. The successful integration of the method into
an urban environment system is described, along with the main aspects for optimisation of
performance.

Chapter 6 analyses and formalises the performance of the crowd system, and shows the
rendering performance that can be expected out of such a system.

Chapter 7 summarizes the results and achievements of the present research and reports the

final conclusions. Finally, future directions of the proposed approach are presented.

An image-based approach to the rendering of crowds in real-time 2]

CHAPTER 2 - BACKGROUND AND PREVIOUS WORK

Figure 2.1 - A scene from the movie 'Star Wars Episode II: attack of the clones’ (Lucasfilms — 2002).

he time-critical nature of Virtual Environments dominates the research field of Real-

Time Computer Graphics. The available computing power is never sufficient for

brute-force visualisation of complex scenarios, and there is a constant tension
between trying to achieve a satisfactory frame-rate and visual realism of the generated image.
Even with the most powerful graphics technology available today, very good care needs to be
taken to handle the overwhelming complexity of Virtual Environment scenarios. The optimal
management of the rendering process has been extensively analysed in the past 30 years, and
numerous techniques to accelerate it have been proposed. In this context, the unique
characteristics of highly populated urban environments add to the complexity of this general
problem, requiring additional resources and dedicated approaches. The present chapter
reviews the relevant research in the field, reporting, when possible, existing examples related

to the challenging task of real-time crowd visualisation.

An image-based approach to the rendering of crowds in real-time

CHAPTER 2 - BACKGROUND AND PREVIOUS WORK

2.1 Real-time rendering using polygons

Figure 2.2 - Representing object geometry using polygons.

As real-time display of arbitrary geometry is mainly achieved with dedicated graphics
hardware, model representation is generally limited to the graphics primitives supported by
these architectures. To simplify on-chip implementation of the rasterization algorithms,
graphics accelerators are usually optimized to handle simple graphical primitives such as
points, lines and triangles (Figure 2.2). A multitude of arbitrarily small flat polygons is then
by far the most common way to approximate any arbitrary surface. The standard method to
achieve real-time rendering in Virtual Environments applications is to use a sequential
rendering pipeline: in order to obtain a two-dimensional image starting from the initial three-
dimensional representation, graphics primitives undergo a sequence of operations that can be

summarized as in Figure 2.3.

Transformatnon r Shading [Setup [Rasterization I

Figure 2.3 - A simple rendering pipeline.

Following this simple data-flow, vertices of the polygons are transformed into eye space and

clipped to the extent of the viewing frustum, lighting effects are computed and finally the

An image-based approach 0 the rendering of crowds in real-time 23

CHAPTER 2 - BACKGROUND AND PREVIOUS WORK

mapping to the viewport is followed by the rasterization of the resulting primitives in order to
display them as a collection of pixels on the raster device. These operations are carried out
sequentially for every image to be generated, obtaining one of the frames in the smooth
sequence of images displayed to the user. An in-depth review of a modern rendering pipeline
can be found in any computer graphics book (e.g. [Watt99]).

Aside from requiring simpler dedicated hardware, there are other good reasons why planar
facets, and in particular triangles, are so ubiquitous in computer graphics: creating polygonal
objects is a straightforward process (at least for simple objects), and simple but visually
effective algorithms exist to produce shaded versions of objects represented in this way.
Gourad [Gouraud71] proposed a method for linearly interpolating a colour across a polygon’s
surface to achieve smooth lighting, giving a polygonal mesh a more smooth appearance. As a
result of its visual quality and its modest computational demands (since lighting calculations
are performed per-vertex and not per-pixel), it is still the predominant shading method used in
3-D graphics hardware, even thought more complex methods have also been proposed
([Phong75, Debevec02]) over time.

Advances in the throughput of rendering hardware are however continually challenged by the
need to render more and more complex scenes and objects, and VEs consisting of tens or even
hundreds of millions of polygons are becoming increasingly common. As the complexity of
the scene increases, the brute-force polygonal approach to rendering reveals major limitations:
standard tessellation does not take into consideration the size the final mesh will have on
display, nor that different parts of a very large object could in theory need different resolutions
depending to the distance from the user viewpoint, or that a large portion of primitives could
result to be occluded by objects close to the user viewpoint. To be rendered in real-time,
complex VEs need the use of special techniques and management strategies for their geometry

data base, such as the ones reported in the rest of this Chapter.

2.2 Acceleration techniques for polygonal rendering

Sending all the triangles comprising a model down the rendering pipeline obviously produces
a correct final image (presuming that transforming, clipping and depth-buffering is applied
correctly). However, this is far from optimal considering the following characteristics of

perspective projection:

An image-based approach to the rendering of crowds in real-time 24

CHAPTER 2 - BACKGROUND AND PREVIOUS WORK

- only a portion of the model lies within the current field of view
- objects are obscured by other objects closer to the point of view

- distant objects appear smaller exhibiting less visual detail

It is inefficient to transform objects lying outside the current field of view to image space
because in the end they are clipped away. Similarly, rendering objects obscured by other
objects consumes transformation, lighting and some rasterization resources and does not
contribute to the final image because those objects will be discarded at the end of pipeline by
the visibility test algorithm [Catmu74]. Furthermore, for the way rasterised images are
generated on modern graphics workstations, most of the details present in distant object
models will not be visible in the final image, while on the contrary this makes proper filtering
of the final image a tough problem [Shoup73]. Cleverly designed algorithms can be used to
discard early from the pipeline those primitives that will not contribute to the final image.
Similarly, it is possible to select the appropriate level of detail of the geometric models which
will be visible in each frame; these are all effective ways to improve rendering speed and

produce little or no degradation in term of the images final quality.

2.2.1 Visibility culling

Avoiding the processing of the geometry of the environment that will not contribute to the
final image was the first optimization approach investigated in Real-Time Computer Graphics
and is known as visibility computation. What makes visibility very important is that, for large
scenes, the number of visible fragments is often much smaller than the total size of the input
geometry (Figure 2.4). The traditional approach to visibility culling involves various kinds of
geometrical operation performed on the scenario polygonal database and targeted to identify
the polygons that are occluded by other obstacles or do not lie in the field of view. The aim is
to avoid rendering of objects which are not visible and thus will not contribute to the final
image. The most common form of visibility culling is view-frustum culling: in this technique.
the viewing frustum is delimited by six planes in three-dimensional space. Single points can
be classified as lying within or outside the viewing frustum by intersecting the half-spaces
described by the six planes. Only points which lie in this intersection lie within the viewing
frustum. Similarly points can be rejected if they lie outside any of the half-spaces. In order to

classify more complex geometry with respect to the viewing frustum, bounding volumes

An image-based approach to the rendering of crowds in real-time 25

CHAPTER 2 - BACKGROUND AND PREVIOUS WORK

enclosing the geometry as axis aligned boxes or spheres can been used. (see [Tesch05] for

details and classifications of more complex bounding volumes).

Figure 2.4 - The Visibility Culling process (image - J. Bittner).

The parts of the scene represented in wireframe are either not in the field of view of the user
or occluded by objects in the foreground. Note that the occlusion test is conservative and that

it considers the presence of doors inside the view-frustum.

When rendering large static scenarios, objects which are outside the view frustum can be
quickly identified using a hierarchical view volume culling method [Clark76]. Sub-linear
effort culling tests can be constructed with bounding volume hierarchies or hierarchical space
partitioning data structures (k-d-trees, bsp-trees, octrees) [Cohe95][Naylor90][Samet90] .
Even if view frustum culling rationalises and reduces the total amount of geometry that needs
to be processed, it still does not avoid the rendering of those objects that are partially or totally
occluded by other objects placed in front of the viewer even though they are inside the view-
frustum. Occlusion culling algorithms aim at quickly discarding objects that are hidden from
the view by other objects. Building interiors were the first application of such methods
[Airey90], [Teller91], [Luebke95] since they have some well defined properties that can be

exploited (high occlusion and well defined occluders mostly rectilinear). Other more general

An image-based approach to the renderzTnZg of crowds in real-time 26

CHAPTER 2 - BACKGROUND AND PREVIOUS WORK

methods appeared later [Greene93], [Zhang97], where the culling is done by hierarchically
comparing the scene against the image area occupied by the rendering of the occluders. A
special case of VEs are urban environments models, where it is normally possible to apply
'customized' algorithms; when walking along the streets of a city, even though it can be a huge
city with thousands of buildings, at any given moment we never see more than a few. Also the
majority of these buildings extend from the ground upwards with vertical walls. Thus they can
be considered to be 2.5D objects (2D + height) which allows for much simpler and efficient
algorithms [Wonka99].

2.2.2 Level of Detail management

Even with culling to the viewing frustum and
potential visibility sets, image generation may
not be fast enough to result in interactive
frame-rates. Further improvements are
possible by observing that the remaining
geometry can often be simplified; with
perspective projection distant objects only

project onto small regions in image space

and, as a result, any fine detail in the models

Figure 2.5 - Multiple LODs can be used to approximate of these objects is lost because of the discrete
the shape of distant objects (image SGI).

sampling of a rasterized image. In an effort to
optimise rendering speed one would like not to render any detail at all which does not
contribute to this final image, as proposed by Clark [Clark76]. When, instead of one model
per object at full resolution, several models of an object are available which approximate the
object’s geometry at several levels of detail (LODs), one of these LODs can be selected
depending on how large the object will project onto the image (Figure 2.5). Other LOD
selection factors that can be used are screen distance, priority, and perceptual factors. Even if
the LOD principle is simple, a great deal of research has been carried out both on how to
better approximate the shape and how to construct more flexible data structures to represent it.
Since the work of Clark, the literature on geometric LOD has become quite extensive. It has
been used since the early days of flight simulators, and has later been incorporated in

walkthrough systems for complex environments ([Funkhouser92], [Maciel94]). In order to

An image-based approach to the rendering of crowds in real-time 27

CHAPTER 2 - BACKGROUND AND PREVIOUS WORK

have several LODs available per object, methods are needed to generate them. When
generated manually, the addition of LODs multiplies the effort to model an object. Several
automatic methods are available, some of which come very close to the quality of human-
generated LODs at the cost of considerable processing complexity, but these automatic
methods are not equally applicable to all kinds of models.

A more sophisticated form of the LODs technique are continuous LODs, also called
progressive meshes [Hoppe97] (Figure 2.6). These continuous LOD algorithms have been
presented to overcome the two major problems of discrete LOD algorithms: increased storage
requirements and fidelity discontinuities both in time and space. These approaches build a
hierarchy on top of the vertexes in the model which describes how vertexes can be slowly

removed to create a simpler model.

Figure 2.6 - Progressive Meshes.

The algorithm generates a long sequence of decimated meshed, resulting in smooth transitions between LODs

In addition to “vertex removals” (or equivalently “edge collapses”), the changes to the triangle
mesh containing the vertexes are recorded and used to update the triangle mesh to the required
fidelity. As a result only one data structure is built without replication of data in several
discrete LODs. Moreover the geometry can be approximated to varying degrees of fidelity in
different parts of the geometric model. The historical drawback of progressive meshes is
represented by their lack of compatibility with hardware representation. The rigid and highly
optimized pipeline of graphics hardware architectures is better suited to deal with a static
vertex buffer than with a variable amount of vertex data. The continuous flushing of the
pipeline and geometric cache-misses caused by progressive meshes nature could result in
inferior performance compared to the use of the static data in the original form. Later work

has shown that it is possible to have continuous and hardware friendly meshes [ForsythO1].

An imag;-b?sed abpr(;zch to the rendering of crowds in real-time 28

CHAPTER 2 - BACKGROUND AND PREVIOUS WORK

What is still missing is an accepted standard for continuous meshes and the ability for the
graphical hardware to directly compute the transition between different levels, a task still
demanding for the relatively slow CPU.

2.3 Alternative approaches to polygonal rendering

If most of the initial work on real-time graphics for VEs has involved rationalising the data
management process, nowdays even the choice of which graphics primitives is best suited to
represent geometrical surfaces is under question. This has a very strong motivation: in the
pursuit of photo-realism in conventional polygon-based computer graphics, models have
become so complex that most of the polygons are smaller than one pixel in the final image.
Formerly, when models were simple and the triangle primitives were large, the ability to
specify large, connected regions with only three points offered a considerable efficiency in
storage and computation, but now that models contain nearly as many primitives as pixels in
the final image, we should rethink the use of geometric primitives to describe complex
environments. Citing from [Watt98] 'In many ways modeling and representation is an
unsolved problem in the computer image. The most popular way of representing an object -
by approximating it with a set of planar facets - has many disadvantages when the object is
complex and detailed. In mainstream computer graphics the number of polygons in an object
representation can be anything from a few tens to hundreds of thousands. This has serious
ramifications in rendering time and object creation cost and in the feasibility of using such
objects in an animation or virtual reality environment.' As complexity increases, coherence
decreases, and beyond some threshold level, the time saved through the evaluation of
coherence does not justify its expense, and when the number of polygons in the object exceeds
the number of pixels on the screen, coherence becomes almost useless. This is why one of the
most important single advances in the realism of computer imagery came with the
development of texture mapping that associating a tabular two-dimensional array of intensity
values with each geometric primitive, allows the visual complexity to far exceed the shape
complexity.

Expanding these considerations, approaches emerged to deal with extremely complex
scenarios using alternative forms of objects representation. One possibility is the adoption of a
higher level of representation to specify an object shape using, for instance, surface functions

and introducing the concept of dynamic tessellation: one of the benefits of using parametric

An image-based approach to the rendering of crowds in real-time 29

CHAPTER 2 - BACKGROUND AND PREVIOUS WORK

equations would then be that the number of triangles dedicated to approximate the various
surface regions of an object could at run-time be adapted to the projected size of that region
on the screen. Despite this and others potential advantages, the use of surfaces in real-time
rendering is not widely supported by rendering hardware, due to difficulties inherent in this
type of representation. Controlling the continuity of a surfaces proved to be particularly
problematic, often leading to shading artifacts that are hard to be avoided. Also, higher order
primitives are not suitable as a universal form of representation: irregular shapes are
inherently difficult to be represented using smooth curves. Finally, while geometrically
defined primitives, curves or surfaces are an efficient means for describing man-made
environments, in nature there are many objects and phenomena that are not readily modeled
using classical surface elements. Terrain, foliage, clouds and fire are examples in this class.

Radically different approaches to CG rendering have been proposed lately with the
introduction of Point-Based Rendering and Image-Based Rendering, that are at present the
most notable alternative to polygons, and those principles are resumed in the following
paragraphs; what makes these techniques very interesting in our case is the fact that they can

be successfully applied to the case of real-time crowd rendering.

2.4 Point based rendering

In certain situations even points can be used as an alternative graphics primitive to the
triangles. For instance, it has been shown that points are good primitives for the modeling of
intangible objects. Csuri [Csuri79] successfully used points to model smoke, while Blinn has
used points to model the shading of clouds [Blinn82] and Reeves to model fire and trees
[Reeves83]. While all of these efforts treated classes of objects that could not be modeled
using classical geometries, this is not, however, a necessary restriction; points are highly
versatile and a wide class of geometrically defined objects, including both flat and curved
surfaces, can be converted into points. The general use of a point based representation to
represent 3D objects was suggested for the first time in [Levoy85], where the authors showed
that as the complexity of computer generated scenes increases, triangles as display primitives
become less and less attractive compared to points. Later Max and Ohsaki used point samples
obtained from orthographic views and stored with colour, depth and normal information to
model and render trees [Max95]. The fundamental challenge of point sample rendering is the

reconstruction of continuous surfaces. While in polygon rendering continuous surfaces are

An image-based approach to the rendering of crowds in real-time 30

CHAPTER 2 - BACKGROUND AND PREVIOUS WORK

represented closely with polygons and displayed to high accuracy using scan conversion, point
sample rendering can only represent surfaces as a collection of points which are forward
mapped into the destination image. It is entirely possible for some pixels to be ‘missed’,
causing gaps to appear in surfaces (Figure 2.7). It is therefore necessary to somehow fix these
surface holes in a manner that does not seriously impact rendering speed. Rendering

primitives larger than a single point (called splats) is a typical approach to this problem.

7963 points 2050 points 525 points

Figure 2.7 - Point based rendering at various resolutions of a generic 3D object (image M. Wand).

A secondary challenge of point based rendering is the automatic generation of efficient point
sample representations for objects. The problem is normally to select an appropriate set of
directions from which to sample the object, and to select a suitable set of point samples from
each direction such that the entire set of samples forms a complete representation of the object
with minimal redundancy. A common approach is to organize the object geometry in a
hierarchical octree structure, as suggested in [Yemez99], containing enhanced samples of the
underlying geometry, where points can have additional information such as surface normal
and/or local curvatures. The depth of the octree is usually limited by a point count budget or
curvature variation estimated using Principal Components Analysis (PCA) and a correctly
oriented representative normal associated with each cell. During rendering, points in each
cells are stochastically sampled and rendered. The number of samples is determined by
multiple visual cues including image size, local surface features, silhouette containment and
occlude-potential. Larger number of points samples are rendered in regions of high curvature
and around the silhouette, while lesser number are rendered in flatter regions or when the
occlude - potential is high. The representative normal is used to correctly orient the local
normal. The local normal and curvature at the point sample are used to decide on the splat

shape, size and illumination.

An image-based approach to the rendering of crowds in real-time 31

CHAPTER 2 - BACKGROUND AND PREVIOUS WORK

2.5 Image based rendering

At the root of Image Based Rendering (IBR) is the observation that in many cases it is much
faster to render an image representing a complex object or scene than it is to render the scene
itself starting from its original representation inside a scene graph. Even considering a scene
as composed of several sub-objects, if we can render one image representing each complex
object and properly compose the final image, this process will be orders of magnitude faster
than rendering directly the objects themselves. Also, using photographs or videos it is possible
to represent scenes that are not explicitly modeled. The first paper on Image Based Rendering
was in 1976 entitled “Texture and Reflection in computer Generated Images” [Blinn76]. In
this paper Blinn and Newell formalised the idea, which had been previously suggested in
[Catmull75], of applying a texture to the surface of an object. Modern IBR approaches are a
generalization of Blinn initial concept, and they try to represent complex 3D environments
with sets of images that in some way include information describing the depth of each pixel

along with the colour and other properties.

Figure 2.8 - Warping of panoramic images to compensate perspective distortion (image S. E. Chen).

Using this set of 'rich' images, various warping algorithms can be applied to produce new
images from viewpoints that were not included in the original image set [Chen95]. Thus,
using a finite set of source images, it is possible to produce new images from arbitrary
viewpoints. In [Lipman80] part of a small town was modeled by recording panoramic images
at 3 meters intervals along each of several streets and recording these images to videodisc. A
user could then virtually drive through these streets and look in any direction while doing so.
It must be noted that camera rotation was continuous, but camera translation was only discrete

— there was no interpolation between neighboring viewpoints. Chen extended this idea to

An image-based approach to the rendering of crowds in real-time 32

CHAPTER 2 - BACKGROUND AND PREVIOUS WORK

provide continuous motion between viewpoints by morphing from one to the next [Chen93].
However, the virtual camera was constrained to lie on the lines joining adjacent viewpoints,
and the linear interpolation of the optical flow vectors which was used for morphing provided
approximate view reconstruction only. In [Laveau94] and [McMillan95] the optical flow
information was combined with knowledge of the relative positions of the cameras used to
acquire the images. This allowed the researchers to provide exact view reconstruction from
arbitrary viewpoints. In [Maciel95], the hybrid approach of using texture mapped
quadrilaterals, referred to as planar impostors, to represent objects in order to maintain an

interactive frame rate for the visual navigation of large environments, was presented.

2.5.1 Impostors rendering

Rendering an environment using only images is a very powerful approach, but deviates quite
radically from the standard polygon-oriented rendering pipeline. Dedicated hardware
architectures have been proposed in the past to deal with Image-Based Rendering [Molnar92]
[Torborg96][Eyles97], but these systems never achieved commercial success. Also, polygons
can be useful for other properties not strictly related to graphics - for example, tasks such as
collision detection and physical simulation need geometrical information about the objects in
the scene, making the pure IBR approach in many cases too far-fetched and impractical for
real-life use. The technique called impostors rendering was then proposed in an attempt to
combine the standard, geometry-based rendering pipeline with IBR principles, generating an
hybrid approach where IBR is mixed with the standard polygonal rendering. The idea of using
images to represent single objects embedded in a larger polygonal scenario (Figure 2.9) was
first mentioned in [Chen93] and realized by the ‘object movies’ described in [Chen95]. This
system used image morphing to approximately reconstruct novel views of an object (a simpler
approach to generating approximate novel views is to simulate 3D movement by applying
affine transformations to existing views). In effect, this treats the object as a flat rectangle
textured with its image. To construct a nearby view, the textured rectangle is simply rendered

from the new viewpoint.

An image-based approach to the rendering of crowds in real-time 33

CHAPTER 2 - BACKGROUND AND PREVIOUS WORK

S Viewpoint

Viewpoint

Figure 2.9 - Embedding images in a polygonal scenario: the impostor (image P. W. C. Maciel).

This method has the important advantage of being able to make use of standard texture

mapping hardware, but it is obviously a gross approximation of the proper perspective

transformation.

Figure 2.10 - A complex object is replaced by a

single, texturised, quadrilateral (image G. Shaufler)

Single image-based entities that are placed inside
the polygonal scenario are called impostors
(Figure 2.10). There are two main approaches to
the generation of the impostor images: in
[Maciel95] the impostors were precomputed and
selected for use at render time (static generation
— also referred to as pre-generated impostors),
while Schaufler [Schaufler95] and Shade
[Shade96] independently presented the concept
of dynamically generated impostors (dynamic
generation). In the latter case, object images are
generated at run-time and re-used as long as the
introduced error remains below a given
threshold. This latter approach was also used in

the Talisman rendering system ([Toborg96]) to

provide higher refresh rates than would be possible using polygons alone. Numerous

algorithms can be found in the literature that try to generate better approximations of an object

view starting from the available samples. For example Chen et al. [Chen93]and McMillan et

An image-based approach to the fe/nlierir;é oj crowds in real-time 34

CHAPTER 2 - BACKGROUND AND PREVIOUS WORK

al. [McMillan95] warp the images to adapt them to different viewpoints while Mark et al.
[Mark97] and Darsa et al. [Darsa97] apply the images on triangular meshes to better
approximate the shape of the object. Unfortunately, due to the complexity of the operations
involved, many warping procedures have to take place on the CPU, producing a data traffic
between the CPU and the GPU that can attenuate or even completely remove the speed
advantages of using impostors; Schaufler [Schaufler98] proposed an interesting hardware-
assisted approach to image warping using layered impostors (Figure 2.11) and Dally et al.
[Dally96] used an algorithm that is very efficient in storing image data starting from a number

of input images.

original g impostor
geometry t o one layer
f} —
1 ‘\ Ny
¥ MR /
I e 2k >/
' 2 | & ~ 2 /i
e xd) ! Yoo f A
1 ,',' l Y
! ” { 1 ¢ .
1l Pyl e
A4) uis, -
» ' Py d
b j P
eye -
) /S e
e -~ r |
Ie el '
i '/:j:, ’]
It g " .
- -
'.’ ,~” layered ;’ My layered
. impostor o l‘n:po.s(or
b cight layers P' 32 layers
eye eye

Figure 2.11 — Impostor warping using image layers (image G. Shaufler)

Another problem encountered with impostors is that because they are flat, object intersections
may not be handled correctly (Figure 2.12). To address this problem, Schaufler added a 'layer'
of depth information to the impostors [Schaufler97]. The resulting primitives, named
nailboards (impostors with depth) are still rendered using the same 2D affine transformation
as before. However, the depth information is used to compute approximate depths for pixels
in the destination image; in this way proper object intersections can be handle by the standard
Z-buffer mechanism. Obviously, the depth information can also be used to compute an exact
3D warp as in [Mark97]. Later, due to planar impostor providing a good visual approximation
for complex objects at a fraction of the rendering cost, a large amount of research has refined

the impostor concept, introducing further innovations in the main idea. Examples include

An image-based approach to the rende;;'l-'ng of crowds in real-time 35

CHAPTER 2 - BACKGROUND AND PREVIOUS WORK

types of impostors such as layered impostors [Decor99], billboard clouds [Decor03], and
texture depth images [Jesch02] for rendering acceleration of various applications. A survey of
these different types, including their application and their advantages and disadvantages, can

be found in [Jesch05].

chair over table:
incorrect visibility

correct image

table over %
incorrect visibility

Figure 2.12 - Incorrect visibility due to impostor lack of depth information (image G. Shaufler).

2.6 Drawbacks of the impostors approach

It is impossible to accurately reconstruct a novel view of an object from existing views
without knowing anything about the object’s geometry. Without any geometric information,
we will invariably end up with geometric artifacts. In practice, with the notable exception of
impostors which treat objects as textured rectangles, nearly all image based rendering
algorithms make use of some sort of geometric information. This information is either in the
form of correspondences between images [Chen93], [Chen95], [Laveau94], [McMillan95],
explicit per-pixel depth information with known transformations between views [Dally96],
[Pulli97], or an approximation of the object’s shape which is used to alleviate, but not
eliminate, the geometric artifacts [Gortler96], and the extent to which an image based
rendering algorithm suffers from geometric artifacts depends on the manner in which it makes
use of geometry. Another side-effect of rendering without the complete geometric information
available in polygon systems is the inability to use dynamic lighting. Depending on the
situation, this is usually seen as an advantage rather than a drawback of image based
rendering: the lighting computation, although static, comes for free since it is captured in the
images of the object, and thus it requires no computation at render time. Furthermore, it will

contain all of the complex and usually computationally intensive lighting effects that are

An image-based approach to thieire;déir;ﬁg;fcrowds in real-time 36

CHAPTER 2 - BACKGROUND AND PREVIOUS WORK

present in the original images such as shadows, specular highlights and anisotropic effects.
Notwithstanding these advantages of static lighting, there are certain applications which
demand dynamic lighting. Finally, since a large number of images are required to properly
sample an object, image based techniques are usually fairly memory intensive. This usually

makes it difficult to render scenes containing multiple objects in an image based fashion.

2.7 Real time rendering of crowds

So far we have discussed methods and approaches to speed-up the rendering of large static
scenarios, but many of the principles are applicable to more general situations. Still, crowd
rendering presents unique characteristics, as it deals with a multitude of animated entities that
navigate around the environment, each of them ideally showing a rather detailed geometry. It
is mainly this shape complexity that makes real-time rendering of virtual crowds such an hard

task even using modern graphics hardware.

2.7.1 Modeling the human body

As with any other kind of models, the most common way to represent characters in 3-D
computer graphics is the polygonal mesh. However, as the need for realism increases, more
detailed models are necessary, requiring higher polygonal budgets (i.e., several thousand) to
model the character. This detail comes at a great rendering cost, needing to find a balance

between realism and interactivity, especially when the number of characters to render is large.

Also, proper real-time lighting of these meshes
is important in order to enhance the overall
f crowd realism. Typically, the lighting of the
| character’s mesh in games is still implemented
I with basic Gouraud shading [Gouraud71] even
5] if, more recently, more sophisticated forms of

flighting have been used for interactive

I simulations such as diffuse lighting using

ambient occlusion[Zhukov98] and image-

Figure 2.13 - Reproducing the human shape needs a
large polygon budget. based lighting[Debevec02]. Very frequently

An image-based ap?fééc%?o the rendering of crowds in real-time 37

CHAPTER 2 - BACKGROUND AND PREVIOUS WORK

texture mapping is used to attach a two-dimensional image onto the polygon’s surface, in this
way greatly improving the realism of the mesh. These textures are usually artist-drawn or
scanned photographs and are typically used to capture the detail of areas such as human’s hair,
clothes and skin. Many other special techniques have been proposed to increase the realism of
human characters rendering (realistic hair rendering [Kim02] and sub-surface scattering skin
illumination effects [Jensen01] just to name a couple), but these are normally restricted to the
rendering of a single, very detailed model. For real-life applications the severe time-
constraints of interactive graphics still impose for crowd rendering the use of just the basic

OpenGL lighting style.

2.7.2 Rendering crowds using polygons

As discussed earlier, when a plain polygonal representation is used for each mesh in a crowd,
the overall scene complexity often results in a polygonal budget that is impossible to handle at
interactive frame rates. A first way to speed-up crowd visualisation is the use of the LODs
technique, similarly to what can be done with static scenarios. Depending on the scene layout,
the number of triangles in each character’s mesh (or any other element of the scene) can be
reduced depending on the projected size of the character on the screen, to optimise the
computational load and achieve a real-time frame rate. A discrete LOD framework can
obviously be used to handle a geometric LODs hierarchy of virtual humans, and highly
detailed mesh can be simplified using automatic tools to create multiple low resolution
meshes varying in detail. Unfortunately, due to the complex topology of a human body,
simplification artifacts can easily arise using automatic simplification procedures, so that a

time-consuming manual process is still normally necessary (Figure 2.14).

Figure 2.14 - Simplification of polygonal characters.

People are very very acquainted to the shape of the human body and can easily spot the artefacts of

automatic mesh simplification.

An image-based approach to the rendering of crowds in real-time 38

CHAPTER 2 - BACKGROUND AND PREVIOUS WORK

Several examples of polygonal-based crowd rendering exists: in order to solve the problem of
rendering large numbers of humans, De Heras Ciechomski et al. [Ciechomski05] avoid
computing the deformation of a character’s mesh by storing precomputed deformed meshes
for each key-frame of animation, and then carefully sorting these meshes to take cache
coherency into account. Ulicny et al. [Ulicny04] improve on their performance by using 4
LOD meshes consisting of 1,038, 662, 151 and 76 triangles and disabling lighting for the

lowest LOD, thereby achieving a frame rate several times higher.

(€)

Figure 2.15 - Polygonal crowd used to populate a 3D model (image U.B. Ulicny)
(a) rendering with texture, (b) shading and no texture,(c) local lighting effects, (d) cartoon-like shading.

Visual variety is another critical aspect of crowd rendering. Ulicny et al. [Ulicny04] introduce
crowd variety using several template meshes for the humans and then modifying some of the
attributes at run-time, such as textures, colours, and scaling factors. In this way they succeed
in simulating several hundred humans populating an ancient Roman theater (Figure 2.15) and
a virtual city while maintaining interactive frame-rates. Gosselin presented an efficient
technique for rendering large crowds while taking variety into account optimising the way
geometric data is prepared for the graphic hardware[Gosselin05] (Figure 2.16) . His approach
involves reducing the number of API calls needed to draw a character’s geometry by rendering

multiple characters per draw call, each with their own unique animation. This is achieved by

An ii%c;ééjb;se& ciz;p;oach to the renderinig ojérowds in real-time 39

CHAPTER 2 - BACKGROUND AND PREVIOUS WORK

packing a number of instances of character vertex data into a single vertex buffer and
implementing the skinning of these instances in a vertex shader. As vertex shading is
generally the bottleneck of scenes containing a large number of deformable meshes, they

minimise the number of vertex shader operations that need to be performed.

Figure 2.16 — Rendering an army using polygons (image D. Gosselin).

2.7.3 Rendering crowd using points

Even if point based rendering is a rather generic approach to real-time visualisation, this
sampled-based approach has also been applied to the specific case of rendering virtual
humans. As in the general case, point-based crowd rendering involves replacing a mesh with a
cloud of points, approximately pixel-sized (Figure 2.17) . This involves converting key-frame

animations of meshes into a hierarchy of point samples and triangles at different resolutions.

Hierarchy of Paint Samples Splatting

Figure 2.17 - Rendering animated characters using points (image M. Wand)
a) the original models, b) subdivision of the original mesh and point sampling, c) rendering

with different splats sizes.

An image-based approach to the rendering of crowds in real-time 40

CHAPTER 2 - BACKGROUND AND PREVIOUS WORK

Wand et al. use a precomputed hierarchy of triangles and sample points to represent a scene
[Wand02]. They partition the scene’s triangles using an octree structure and choose sample
points which are distributed uniformly on the surface area of the triangles in each node. Using
this multi-resolution data structure, they are able to render large crowds of animated
characters (Figure 2.18). For smaller crowds, consisting of several thousands of objects, each
object is represented by a separate point sample and its behavior is individually simulated.
Larger crowds are handled differently, with a hierarchical instantiation scheme, which
involves constructing multi-resolution hierarchies (e.g., a crowd of objects) out of a set of

multi-resolution sub-hierarchies (e.g., different animated models of single objects).

Figure 2.18 — Two examples of crowd rendering using points (images M. Wand)

While multi-resolution hierarchies allows them to render arbitrarily complex scenes, such as
90,000 humans walking on the spot and a football stadium with 16,000 spectators (Figure
2.18(b)), less flexibility is provided for the motion of the objects, since the hierarchies are
precomputed and therefore cannot be used in simulating a large crowd moving within its

environment.

2.7.4 Rendering crowd using impostors

An alternative to polygonal and point-based rendering was presented for the case 6f large
crowds by Aubel et al. [Aubel98]; in particular, the use of impostors for the rendering of the
virtual humans was presented. In [Aubel98] each human is replaced by a single dynamic

impostor while in [Aubel99] the authors take a much more detailed approach where each body

An image-based approach to the rendering of crowds in real-time 41

CHAPTER 2 - BACKGROUND AND PREVIOUS WORK

part is replaced by a dynamic impostor, overall using 16 impostors for each human (Figure

2.19).

Figure 2.19 - Using impostors for crowd rendering (image A. Aubel)
In Aubel’s original work, a human-like polygonal model can be replaced either by a single dynamic impostor

(left), or by a collection of smaller impostors refreshed at a different frame rates (right).

In [Aubel00] an example with dynamically generated impostor used to render a crowd of 200

humans performing a ‘Mexican wave’ is reported (Figure 2.20).

Figure 2.20 - Aubel's dynamic impostors performing a "Mexican wave' (image A. Aubel).

When using dynamically generated impostors, the impostors images are updated at run-time
by rendering the object’s mesh model to an off-screen buffer and storing this data in the
image. The image is displayed on a quadrilateral, which is dynamically orientated towards the
viewpoint. This uses less memory, since no storage space is devoted to any impostor image
that is not actively in use. On the other hand, dynamic generation of impostors is fairly

computational intensive, and strongly influenced by the particular graphics hardware

An iiﬁége-based cizpipiroidcrh to 7tl;17e7;eridé}ir;,g; of crowds in real-time 42

CHAPTER 2 - BACKGROUND AND PREVIOUS WORK

architecture and software driver efficiency. Some of the operations involved in this process
used to be extremely slow to process, and only recently these operations have been optimized
in the rendering pipeline. An extensive analysis of what can be expected using dynamic
impostors generation on recent hardware architectures can be found in [Day05].
Notwithstanding these progresses, unlike dynamically generated impostors for static objects,
where the generation of a new object impostor image depends solely on the camera motion,
animated objects such as a virtual human’s mesh also have to take self-deformation into
account. Aubel's solution to this problem is based on the sub-sampling of motion. By simply
testing distance variations between some pre-selected joints in the virtual human’s skeleton,
the virtual human is re-rendered if the posture has changed significantly.

As for static scenes, the planar nature of the impostor can cause visibility problems as a result
of the impostor inter-penetrating other objects in the environment. To solve this problem,
Aubel et al. propose using a multi-plane impostor which involves splitting the virtual humans
mesh into separate body parts, where each body part has its own impostor representation.
However, this approach can cause problems similar to those discussed in Section 2.2,
resulting in gaps appearing in the final image. Unfortunately, dynamically generated impostors
rely heavily on reusing the current impostor image over several frames in order to be efficient,
as animating and rendering the human’s mesh off-screen is too costly to perform regularly.
Therefore, this approach does not lend itself well to scenes containing large dynamic crowds,

as this would require a coarse discretization of time, resulting in jerky motion.

2.8 Summary

The present Chapter has analysed the mainstream approaches to real-time rendering of
complex Virtual Environments, in particular examining their specific application to the task
of rendering large crowds in real time. Accelerated techniques for the rendering of large
crowds has been discussed in some detail as this is the most computationally intensive part of
crowd simulation, accounting for the biggest overall system bottleneck. Previous work of real-

time rendering of crowds using polygons, points and dynamic impostors has been presented.

An image-based approach to the rendering of crowds in real-time 43

CHAPTER 3 - CROWD RENDERING USING IMPOSTORS

Figure 3.1 - A scene from the movie 'Troy’ (Warner Bros. - 2004).

he extreme geometrical simplicity of impostors makes them one of the fastest

alternatives to the visualisation of objects having a complex geometrical shape.

Despite this remarkable quality, prior to the present work impostors were used
rarely for real time crowd rendering and always in their dynamic variant. A closer examination
of this task and the availability of graphics hardware with larger amounts of dedicated video
memory suggest a reexamination of this technique. A novel way of using static impostors is
proposed in this Chapter: we first introduce the basic principles of unstructured impostor
rendering applied to crowds, and then discuss how such impostors could be built, stored and
managed. Additional techniques for impostors colour control and lighting are also presented,
showing that in many situations impostors can be effectively used for real-time crowd

visualisation tasks.

An image-based approach to the rendering of crowds in real-time

CHAPTER 3 - CROWD RENDERING USING IMPOSTORS

3.1 Rendering human - like characters using impostors

The basic idea of the impostors is to use a single image to replace some complex geometry.
Even if originally used to replace parts of static scenarios, impostors can obviously be used
also to replace polygonal objects representing human-like figures. In the case of unstructured
impostors, a single image captures the complete visual apparency of the (complex) polygonal
object. In its simpler description, our approach to crowd rendering uses a set of precomputed
textures to store a collection of sampled images, each one corresponding to a frame of
animation of a human performing some actions (a walking sequence, for example). At run
time, depending on the view position with respect to each individual, the most appropriate
image is chosen and displayed on an impostor. The principle is depicted in Figure 3.2, where
the polygonal mesh of a character is replaced by a single image, properly positioned in 3D

space.

Figure 3.2 - Impostors can be used to replace the complex geometry of a human character.

Clearly, an impostor has the same visual aspect of the replaced object only as long as the
camera is placed exactly in the sampling position; moving the viewpoint around would need
to replace both the impostor image and its projection plane in space. As reported in Chapter 2,
the set of sampled images needed to represent an object as seen from different view directions
can either be created in a preprocessing phase (static impostors) or at run-time (dynamic
impostors). We propose for the task of crowd rendering the idea of a static, unstructured
impostors representation: our approach achieves the maximum possible rendering speed
using only one polygon per human, and a precomputed set of images sampled from a given
collection of view-directions; this makes our approach substantially different from the use of

dynamic impostors proposed by Aubel [Aubel98].

An image-based approach to the rendering of crowds in real-time 45

CHAPTER 3 - CROWD RENDERING USING IMPOSTORS

3.2 Pros and cons of precomputed impostors

Due to their short life-span and high memory requirements, impostors are frequently created
dynamically at run-time. As their computation can be very time consuming, dynamic
impostors are commonly used in limited numbers and only to replace static objects, to avoid
the need of frequent updates. Conversely, static impostors creation takes place at
preprocessing, without the need of run-time updates for the images database, thus producing
much faster rendering. While static impostors can, in principle, be used to replace animated
objects (several independent impostors can be used to reproduce the key-frames of an
animation sequence), storing a multitude of image samples might require a very large amount

of memory, something that prevents their intensive use on systems equipped with a small

MAAAS IS

Figure 3.3 - A key-framed walking sequence can be captured using multiple impostors.

amount of video storage space.

In the task of crowd visualisation, we have to deal not only with animated geometry, but also
with the problem of visual variety: the individuals composing a crowd should not look all the
same. This may raise even more the memory requirements of the impostor technique, as more
variety usually means that more memory is needed to store more samples. Another drawback
of static impostors is the inability to change the illumination stored in the image samples, that
apparently make impossible the simulation of dynamic lighting or shadowing effects.

On the other hand, computational and memory resources constantly increase on modern
graphics hardware. The apparent large consumption of texture memory produced by the use of
static impostors is becoming less and less critical, while the rendering speed advantage of this
form of representation is always extremely attractive. Moreover, when applied to the specific
case of crowd rendering there are some peculiar aspects that can be exploited to save storage

space, allowing us to reduce the total number of necessary image samples:

1. Characters in a crowd can have individual orientations, but each orientation is usually

An image-based approach to the rendering of crowds in real-time 46

CHAPTER 3 - CROWD RENDERING USING IMPOSTORS

defined simply by the amount of rotation around the vertical axis. This is a key
consideration for the applicability of static impostors to crowd rendering: it is not necessary
to sample the character mesh for all its possible orientation. Using simple geometrical
transformations, impostors can be rotated at run-time and have an arbitrary orientation
around the vertical axis.

2. In scenes that show a large number of humans, the vast majority of the characters are far
from the viewpoint; impostors can then be used to replace the far individuals, maintaining
a geometrical representation for the closer characters. With this mixed technique it is
possible to use a limited image resolution for the object samples, tuning accordingly the
memory requirements.

3. In a typical crowd simulation the viewpoint is normally placed above the crowd, as very
rarely we have situations where a crowd is seen from below; for this reason we can limit
our sampling process to the top hemisphere around the object, avoiding the necessity of

sampling the remaining views.

The following paragraphs will show that the use of novel, dedicated techniques of impostors
management can overcome the problem of visual variety as well as the limitations for
dynamic lighting of impostors-based crowds. In practice, carefully handling of impostor data
with the set of dedicated techniques presented in this thesis can effectively reduce the overall
memory requirements and increase the flexibility of the basic method, leading to the
successful application of the static impostors technique on a wide range of graphics hardware.
- The basic principles of our approach are reported in the following paragraphs, while a more
in-depth description of the implementation details discussed in Chapter 5, where the general

software architecture of our rendering system is also presented.

3.3 Building the impostors database

The approach described in this thesis uses only a single texturised polygon per human. Since
no interpolation is used between different views (the reason for this is explained later in the
present Chapter), each image sample represents only the closest match to the correct .image,
and it is chosen depending on the view direction discretization and on the frame of animation.
The first phase of the algorithm consists in the generation of a sufficiently large set of sample

views for the object. A representation of this process is depicted in Figure 3.4.

An image-based approach to the rendering of crowds in real-time 47

CHAPTER 3 - CROWD RENDERING USING IMPOSTORS

Figure 3.4 - Taking a discrete set of images of a polygonal character.

A sampled hemisphere is used to capture the character as seen from several positions around
and at various elevations. At run time, depending on the view position with respect to each
individual, the closest match will be selected and displayed on a properly placed image
projection plane. The sampling process does not involve just image capturing: some
geometrical data needs to be associated to each impostor, to store the vertices position of the
impostor on the projection plane, and the normal direction to the impostor plane expressed in
local coordinate, that we can use for impostor lighting computation as Section 3.9 will show.
Also, when impostor images are not placed in texture space on a regular grid, an appropriate
(u,v) coordinate set need to be stored for each sample; this is the case in our implementation,
as the image samples are tightly grouped together in texture memory to save space.

To summarise, a generic sample is represented by the following set of information:

an RGBA image, sampling the object from a given view direction;

4 vertices, to properly place the impostor in space;

4 sets of (u,v) coordinates, used to apply texture mapping to the impostor image;

a three-dimensional vector representing the normal to the impostor plane.

It must be noted that the number of object samples needed to represent an objects with an
acceptable precision is largely dependent on the particular application scenario, and can be

adjusted to accommodate specific needs. Clearly, larger amounts of image samples correspond

An image-based Zzﬁproach to the rendering of crowds in real-time 48

CHAPTER 3 - CROWD RENDERING USING IMPOSTORS

to larger memory requirements, and a trade-off between quality and memory should be
defined. Our experiments with crowd visualisation suggest in practice that in many situations
an acceptable sampling density for a polygonal character was achieved when the view
directions around the model are discretised using a regular subdivision composed of 32 views
around replicated for 8 different elevations. Sample images of the object are taken from these
directions, each row of images corresponding to a different elevation of the viewpoint. As the
impostor representation is used only to replace distant geometry, the resolution of each
impostor image can be limited to the size that the object would occupy when the replacement
takes place. In many experiments we used for this reason a maximum resolution of 256 x 256
pixels for each object sample. To each image correspond an activation distance of the
impostor representation, that is the distance at which the geometrical object is replaced by the
impostor in our rendering system. As a way to reduce memory requirement, we also made use
of mirroring of some of these samples at run time, taking advantage of the pseudo-symmetry
of the human body in certain postures.

At the end of the sampling procedure, all the images are stored in video memory as RGB
textures, so standard texture mapping can be used to project the impostor image on the
impostor projection plane. Chapter 5 reports in detail on how the resulting database is
managed and how the images are grouped together to minimise texture memory requirements

and maximise rendering speed.

3.4 Impostors run - time rendering

Once the database grouping all the samples is created, the impostors can be used at run-time
to replace the geometry of the distant individuals. The visualisation of a single character is
obtained by projecting, using texture mapping, a sample image contained in the impostor
database over a single polygon having the right space location, dimensions and orientation.
This process is rather computationally intensive, as in a crowded scene it involves computing
these values for a multitude of entities and on a frame-by-frame basis: provided that each
individual can have an arbitrary rotation around the y-axes (vertical), the viewpoint-to-
impostor direction is first transformed in the coordinate system of the impostor. The résulting
view direction is then discretised following the same rules and algorithm used in the sampling
phase, and two indices are computed reporting the closest sampling direction and elevation.

These indices are used to retrieve from the sample database the impostor image representing

An image-based approach to the rendering of crowds in real-time 49

CHAPTER 3 - CROWD RENDERING USING IMPOSTORS

the closest match for the object, together with information needed for its proper placement in
3D space, such as orientation, (u,v) texture-space coordinates and projection plane
displacement distance (the meaning of the last term will be exposed in the following
paragraphs). Even if these operations are performed at every frame and for a very large
number of individuals, in practice the overall process (summarised in Figure 3.5) accounts
only for a small fraction of the rendering time for each frame (as the performance tests of
Chapter 6 will show), making feasible the display of crowds exceeding ten thousands

individuals on commodity hardware.

User ViewPoint

Direction Discretizer

Row

Column’

Impostors Database

Figure 3.5 - Conceptualisation of the impostors run-time rendering pipeline.

3.5 Impostors and billboards

Billboards and impostors share the same idea of replacing a complex geometry with an image,
but there are fundamental differences between these two entities. Billboards are frequently
used in real-time applications as a simple form of image-based representation aimed at
replacing with a single textured polygon objects that have cylindrical symmetry. A billboard is
in practice a textured quadrilateral presenting the image of the object that it replaces, hinging
around a vertical axis through its centre in order to be always facing the camera. This is
different from what a proper impostor presents. More precisely, moving the view point around
does not produce any rotation of the impostor, that always maintains the orientation (in the
world space coordinate system) computed during the sampling procedure; it is only when the
camera moves too far away from the original sampling direction, that the impostor is
eventually replaced by another one, that having a different orientation better represents the

object from the current point of view. So, in the case of the impostor a generic 3D model is

An image-based approach to the rendering of crowds in real-time 50

CHAPTER 3 - CROWD RENDERING USING IMPOSTORS

not represented by a single hinging image, but rather from a collection of static quadrilaterals,
with only one active at any given time, depending on which sample is the best approximation
given the current view direction. Finally, in the case of impostors the image plane can present
a displacement from the centre of its local frame of reference, something that does not happen
with normal billboards. Such displacement is exaggerated for illustration purposes in Figure
3.6 (b).

Impostor Displacement

() (b)

Figure 3.6 - Billboards (a) and impostors (b) are conceptually different.
Billboards hinge around a central vertical axis and are used as a replacement for objects with cylindrical
symmetry. Impostors do not rotate, they approximate the object only for a small number of view directions,

and the image plane can be displaced from the origin of the local frame of reference.

As Section 3.7 will show, the fine tuning of this displacement can be used to attenuate some
of the visual artifacts introduced by the use of impostor, and has important implications both
in the way impostors need to be organized and managed, than in the kind of final image they

can produce.

3.6 Visual artifacts caused by impostors

Lighting and shading aspects aside, an impostor can be considered an exact visual replica of
the original object only when the position of the user view-point exactly matches the one used
in the capturing process; in that case an impostor is indistinguishable from the replaced
geometry. As discussed in Chapter 2, the more the view-point moves away from the position
used in the sampling phase, the greater visual artifacts may arise in comparison with what

would be generated by a real 3D representation. More generally, when IBR techniques are

An image-basa approia;iTt'oiﬂEeir;gér%éi of crowds in real-time ol

CHAPTER 3 - CROWD RENDERING USING IMPOSTORS

used to render a complex object, two common forms of artifacts may arise: missing data due
to incomplete handling of inter-occlusion may cause black regions to appear, and 'popping'
effects may occur at the switch of different images or when the image samples are warped
and/or blended to obtain the replacing image.

In our impostor approach we try to maximize the rendering speed using minimal geometric
complexity for each entity, and we use a single planar polygon as the plane on which to
project a sample. The popping artifact arises then because all the points on the surface of the
sampled object are projected onto the same plane, along the direction that the camera is facing
at the time the sample was created. The displacement of the projected point from where it
should appear considering its real position is proportional to the distance of the point from the

projection plane, and constitute an error in the rendered image (Figure 3.7).

Impostor Plane

Original

view \/ view

Figure 3.7 - Projecting points on the impostor plane.

When the viewpoint moves there is a mismatch between the position

expected for the point P and the position of its old projection P;,

A technique at times used to alleviate this effect is to simulate a 'fake' morphing operation
blending two 'adjacent' samples together [Meyer01]. Unfortunately, the alpha-test operation
used in the multi-pass rendering strategy of our system to improve the crowd variety

(introduced in Section 3.8) prevents us from using blending.

An image-based approach to the rendering of crowds in real-time 52

CHAPTER 3 - CROWD RENDERING USING IMPOSTORS

Due to the absence of warping procedures, when only a limited number of samples are stored
in memory, the image produced by an impostor may at times turn out to be slightly imprecise.
These artifacts are hardly noticeable during the lifespan of a single impostor, but can be
detected when there is a switch between different samples, as the switch can cause quite a
few of the features to suddenly change position. When impostors are used for crowds,
focusing the attention on a single virtual human when the camera moves, the rapid succession
of different samples can sometimes be detected - obviously depending on the sampling rate
used. It must however be noticed that, when the scene is populated with crowds composed of
thousands of animated individuals, each of them performing a key-framed animation, such
popping effect becomes almost unnoticeable. In the following paragraph we show that even if
this type of artifact cannot be completely removed, given the absence of sophisticate warping
procedures, it is possible to attenuate them with an optimal placement of the impostor

projection plane.

3.7 Optimal placement of the impostor plane

Since the popping effect occurs when there is a switch between samples, it can be obviously
reduced increasing the total number of impostor samples stored in the database, but this may
require very large amounts of video memory. We present a technique to reduce this kind of
artifact that does not require an increase of the number of images sampled and does not
compromise the efficiency of the single-non blended impostor plane rendering. We claim that
even in the absence of warping procedures for the impostor images, it is possible to attenuate
popping artifacts with a careful placement of the impostor plane.

As discussed above, popping is due to the fact that all the points on the surface of the sampled
object are projected onto a single plane. This plane is normally orthogonal to the direction that
the camera is pointing when the sample is created. Obviously, as the camera position changes,
the projection of such points on the impostor plane might change, so that the current impostor
is no longer an exact replica of the object appearance. The amount of error generated for a
generic point on the object surface is proportional to the distance of the point from the
projection plane. Different placements of the impostors plane with respect to the cioud of
visible samples can then lead to different amount of error. A common choice for the impostor
projection plane is the one passing from the centre of the replaced object and perpendicular to

the view direction from which the sample image was taken. The placement of this plane does

An image-based approach to the rendering of crowds in real-time 53

CHAPTER 3 - CROWD RENDERING USING IMPOSTORS

not take into account the shape of the object nor any kind of self-occlusion that could be
present in the image. A different approach has been used here: given an object and the camera
position from where the sample image is created, we search for the projection plane passing
through the object that reduces the sum of the absolute distances of the sampled points and the

projection plane. Figure 3.8 shows some choices for the projection plane that have been used.

Figure 3.8 - Different choices for the impostor projection plane.

(a) The projection plane is at the origin of the object reference frame and perpendicular to the
view direction, (b) the projection plane cuts the visible pixels across to minimise the distance
Jfrom each visible sample, (c) the projection plane is perpendicular to the view direction but

displaced from the origin of the object reference frame

In particular, Figure 3.8 (b) reports the choice for the plane that generates the minimum
amount of displacement error, referred here as a perturbed impostor plane. To compute the
equation of this plane, we project back in 3D space all the pixels in the impostor image,
computing in this way the 3D coordinates of the object’s visible samples only. This can be
done in several ways. Since OpenGL is used in the sampling phase of the impostor
representation, we can compute the 3D coordinate of each pixel composing the image using
the glUnproject API command, and taking advantage of the availability in the depth buffer of
a z-value for each visible pixel. Once the cloud of 3D points forming the visible samples with
respect to a particular direction and distance of the camera is available, we search for the
projection plane that, passing through the cloud could minimise the projection displacement
effect. A way to compute this is to apply a Principal Component Analysis (PCA) to the cloud

of 3D points, identifying the two principal eigenvectors, and using them as the principal

An irﬁage-based approach to the rendering of crowds in real-time 54

CHAPTER 3 - CROWD RENDERING USING IMPOSTORS

directions describing the projection plane. Using such a plane as the projection plane for the
visible samples potentially results in a significantly better approximation of the position of the
pixels in respect to their real positions in 3D as points, and we tested the use of this plane in
our development system. However, experiments revealed that this does not translate in
practice to a higher quality visualisation of the resulting impostors: when using the perturbed
plane to project all the pixels, other visual artifacts arise, as the non-orthogonal orientation of
this new plane with respect to the camera produces an asymmetric warping of the image
depending on the direction the camera moves away from the sampling position. In some
extreme cases, for some plane orientation and a certain distance of the camera, perspective
distortion effects can even become more evident than the popping artifacts we are trying to
alleviate. This is more visible when moving the camera upwards rather than around the
impostor, since our object (the virtual human) is usually longer along that dimension.

A better choice for the projection plane is depicted in Figure 3.8 (c). In this case the projection
plane is kept orthogonal to the sampling view direction, but the plane is displaced from the
origin so to cut across the cloud of visible samples. This still reduces the distance between the
visible samples and their projection, and does not produce the asymmetric warping effect of
the perturbed plane. We found this to be the best choice in term of overall visual results: this
plane is termed the displaced impostor plane in this thesis, and we have used it extensively in

our development system.

3.8 Colour modulation of the impostors

Visual variety is very important when rendering a crowd composed of thousands of
individuals, since it would be unrealistic if they all looked the same. This is a common
problem in crowd rendering, independently of the form of representation used for the
characters: designing hundreds of geometrically and visually different meshes is a daunting
task, and the memory requirements that would arise from storing them in memory would be
considerable, even in the case of polygonal meshes. A way to improve the perceived variety
without having to change the geometrical shapes of the individuals in the crowd is by
controlling and varying the colours of clothes and different body parts of each individual
[Ciechomski04]. Figure 3.9 shows how much the visual variety of three polygonal models can

be improved simply using colour modulation.

An image-based approach to the rendering of crowds in real-time 55

CH4PTER 3 - CROWD RENDERING USING IMPOSTORS

LN
AL
408 A

s,

}w@-@

i
Ak

Figure 3.9 - Simulating variety using colour modulation (image S. Noverraz).

While modulating the material colours of individual parts of an object having a polygonal
representation is relatively straightforward, things are more difficult in the case of impostors,
as all we have in that case is a precomputed image of the object. The intrinsic inability to
modify the content of an impostor sampled image and the resulting inability to use colour
modulation as a way to contribute to visual variety, has traditionally represented a very big
drawback of the impostor representation. A novel technique is presented here that, storing
additional information in the Alpha channel of the impostors samples, allows the fine-tune
colour modulation of isolated regions in the samples images. This is achieved by introducing a
multi-pass strategy in the impostor rendering procedure, and exploiting an alpha test operation
to control the differences between consecutive rendering passes.

The technique works as follows: each impostor sample is stored in texture memory as a 4
components RGBA image. The Red, Blue and Green colour channels are used to store the
colour of the pixels, while the Alpha channel value is used to assign a region ID for each pixel
on image. Assuming 8-bits resolution for the alpha channel we can identify up to 256 different
sub-regions in the image. Pixels having the same alpha value are assumed to belong to the
same area (or sub-object image), see Figure 3.10. Having defined an alpha value for each

pixel, we can use the standard OpenGL alpha-test feature: the alpha test discards a fragment

An image-based approach to the rendering of crowds in real-time 56

CHAPTER 3 - CROWD RENDERING USING IMPOSTORS

conditional on the outcome of a comparison between the incoming fragment’s alpha value and
a constant value. The comparison is enabled or disabled with the generic glEnable and
glDisable commands using the symbolic constant ALPHA TEST.

We combine alpha-test with multi-pass rendering: by changing the alpha test value pass by
pass (to select the region of interest inside a single impostor) a final, composed image gets
rendered in several rounds, overlapping the various regions one at the time. Since for each
rendering pass we can change the base colour of the impostor polygon, this technique results
in the ability to control independently the colour generated by each rendering pass, effectively

modulating the final colour of all the pixels lying in the same region.

PreShaded Alpha Channel Alpha Threshold Modulating Color Final Image I

Figure 3.10 - Fine-control of the impostor colours.
Alpha-testing and multi pass rendering can be used to select different regions of the impostors

images and modulate their colour.

It must be noted that modulating the colour of each region is not mandatory; in our
implementation we have both regions where we store the final desired colour of the impostor
and regions where we just store a grey-scale image of the impostor. We can avoid modulating
the colour of the former, and concentrate on the colour changes only in the grey-scale regions
of the image. Figure 3.11 shows the result obtained for impostors having 4 regions of interest:
skin, hair, shirt and trousers, resulting in 4 rendering passes for each individual. More passes
can be carried out since, as we said, we can identify up to 256 regions. However, impostors
multi-pass rendering can be fill-rate intensive; to avoid a decrease in rendering speed we can

limit the number of independent regions required to be controlled. Also, for impostors that are

An image-based approach to the rendering of crowds in real-time 57

CHAPTER 3 - CROWD RENDERING USING IMPOSTORS

far for the view-point we can avoid rendering the smaller image regions, as they give a
negligible contribute to the final image. This is similar to the concept of Levels of Detail for

polygonal models.

Figure 3.11 - Effect of the random colouring of different body parts.

3.9 Interactive impostor lighting

As the tests in Chapter 6 will show, the basic techniques illustrated in the previous paragraphs
allow for a very efficient crowd rendering, where populations exceeding 10,000 individuals
can be rendered in real-time on commodity PCs.

So far we have illustrated the tasks of rendering and colour modulation, but nothing has been
said yet about how illumination (both static and dynamic) can be taken into account. There are
situations where the precomputed lighting stored in the impostor images imposes severe
restrictions to the realism of a simulation, and the ability to introduce interactive dynamic
lighting would be desirable. For example, in a complex urban environment with a mix of short
and tall buildings, regions with different illumination characteristics are present, and a
realistic simulation should take this into account. In the following paragraphs, novel methods

are proposed to handle dynamic illumination using impostors, showing that the use of an

An image-based approach to the rendering of crowds in real-time 58

CHAPTER 3 - CROWD RENDERING USING IMPOSTORS

image-based representation makes it possible to achieve advanced lighting effects, with a
further discussion on global illumination and shadows postponed to Chapter 4. We begin the
discussion introducing a basic but effective dynamic lighting model that proposes uniform
light intensity across each impostor, and continue presenting a more sophisticated per-pixel
lighting techniques. The discussion will show that, far from being a restrictive technique,

impostor shading can, in certain situations, be very flexible.

3.10 Approximate dynamic lighting

When a 3D object is replaced by an impostor, it normally has a fixed lighting, that is the
lighting active when the image sampling process took place. This lighting information, being
pre-encoded in the samples, cannot normally be changed at run time; some work on this topic
has been proposed in [Meyer01], where a hierarchy of bidirectional textures and cube maps
are used to render image-based trees covering a landscape with consistent shading and
shadows. Conversely, when populating virtual cities with crowds, it is desirable that dynamic
lighting conditions are taken into consideration, as when the individuals navigate in the
environment appropriate variations of their illumination would enhance the overall scene
realism. Even if the fine-detail illumination of an impostor is usually pre-stored into the image
samples, in many situations a general attenuation of the overall colour intensity of the
impostor can be sufficient to simulate an attenuation of the ambient light intensity due, for
example, to the passage of an individual in a narrow and dark alley (see the example in Figure
3,12y

Figure 3.12 - Global illumination effects can increase the realism of a scene.

Adjusting the colour intensity of each impostor to the ambient light intensity (right) harmonize

the overall visual appearance of the image.

An imageJ)Tséd approach to the rendering of crowds in real-time 59

CHAPTER 3 - CROWD RENDERING USING IMPOSTORS

If this approximation is sufficient, we can very easily replicate on per-impostor basis the
mathematics of OpenGL lighting. In the OpenGL lighting process, the possibility of one
object blocking light from another is not taken in account (so shadows are not automatically
created). Also, it is assumed that illuminated objects do not radiate light onto other objects. As
a result of this assumption, an OpenGL-compliant rendering pipeline computes the colour
produced by lighting a vertex as the sum of several terms: the final vertex colour is the sum of
the material emission at that vertex, the global ambient light scaled by the material's ambient
property at that vertex and the ambient, diffuse, and specular contributions from all the light
sources, properly attenuated. After lighting calculations are performed, the colour values are
clamped (in RGBA mode) to the range [0,1]. We can perform similar computations for the
impostors assuming that the light intensity that we compute will modulate the intensity of the
whole image. If we assume that impostors do not present light emission or specular effects,

we can compute the final colour of each impostor pixels as:
FinalColor = ImpostorImageColor * ImpostorLight Intensity

If we have n light sources in the scene, we can sum their effects in the following way:

ImpostorLightintensity = GlobalAmbientIntensity + Z Att %(AmbientTerm,+ DiffuseTerm,)

i=0

and where A# is the light intensity attenuation factor due to the distance of the impostor from
the the various light sources. OpenGL attenuation is referred to the distance from a vertex to

the light source and its function has constant, linear and quadratic components

1

Ant= -
(K. +Kxd+K *xd")

where d is the distance between a vertex and the light source. Attenuation can then be
computed on the fly for each impostor, and the resulting ImpostorLightlntensity can be used to
modulate the overall impostor colours, to produce local lighting effects such as those depicted
in Figure 3.13, and 3.14.

An image-based approach to the rendering of crowds in real-time 60

CH4PTER 3 - CROWD RENDERING USING IMPOSTORS

Figure 3.13 — Simulating the effects of a (white) local light source.

If more than one light source is present in the scenario, the final intensity can simply be
computed as the sum of the single contributions and using this method, coloured light sources
are possible as well. Also, dynamic effects such as moving light sources and spot light
simulation can be achieved. An example is shown in Figure 3.14, where 3 coloured lights and

one white light of the same intensity were used, placed in different locations.

An irhdée-based appro&c};ité ;};}enderin;g bf crowds in real-time 61

CHAPTER 3 - CROWD RENDERING USING IMPOSTORS

Even if approximate lighting using colour intensity modulation can increase the realism of a
scene, it constitutes only an approximate solution to the problem of impostor dynamic
lighting. While this may be perfectly acceptable in many applications, there are certain
situations where a more accurate lighting computation is preferable. In particular, when
impostors are very close to a local light source, the approximate method introduced in the
previous paragraph can result in image artifacts at the switch from the polygonal
representation to the image-based counterpart or vice-versa. As discussed previously, such
opefations can introduce 'popping' artifacts in the rendered image, that we can classify in two
categories: the first has a geometric nature, and is due to the misalignment in the final image
of the pixel location computed with the proper geometric transformations and the location of
the pixels generated by the use of a single-layer impostor; the second form of artifacts has a
lighting nature, and it is due to the possible clash of illumination variations between the
polygonal mesh and the impostor image, as the latter has the detailed illumination pre-
encoded in the sampled images. On the other hand, the polygonal representation can reflect
any lighting condition through the standard lighting model of OpenGL, as lighting is in this
case computed dynamically for each polygon or vertex. The switch between images and
polygons then produces a shimmering of the object, and for some lighting conditions this can
be more distressing than the popping due to geometric Iﬁisalignment. The difference between
these two lighting effects can be avoided using precomputed anisotropic illumination for both
the impostors and the polygonal characters. However, the simulation of any dynamic effect

becomes in this case impossible.

3.11 Impostors per-pixel lighting

To allow the use of more complex and accurate lighting effects in applications where this is
required, we present a novel illumination method for impostors that takes advantage of the
OpenGL 1.3 support for per-pixel dot product to achieve fully dynamic impostor lighting
[Segal01]. With an appropriate use of per-pixel dot product computation, the intensity of each
pixel in the impostor image can be controlled individually, and it is possible to relate the
intensity of the light on each impostor pixel to the dot product between the pixel normal and
an incoming light direction. In this way, it is even possible to reproduce on an impostor image
a per-pixel computation of the standard OpenGL lighting equations. In order to take advantage
of OpenGL per pixel dot product, we need first to change the type of information stored in the

An image-based approach to the rendering of crowds in real-time 62

CHAPTER 3 - CROWD RENDERING USING IMPOSTORS

RBG channels of the impostors image database: instead of storing a grey-scale image holding
a fixed lighting information as in the case of static lighting, we store now the normal
associated at each visible pixels (Figure 3.15). We compute such a normal in the
preprocessing phase, using the geometric data associated to the object. According to the
OpenGL 1.3 specification, the spatial components x, y, and z of the normal of each pixel can
be encoded and stored in the texture RGB space using the following convention: x is mapped
in the Red channel, y and z are mapped to the Green and Blue channel. Since OpenGL1.3 only
has the ability to store up to 8 bits for each colour channel of an RGB texture, normals stored
as RGB values undergo a quantization process. Also, it must be noticed that the normals

stored as RGB textures can also take advantage of OpenGL1.3 texture compression.

Figure 3.15 - Storing per-pixel normal information in the impostors image samples.

Each pixel in the image stores the (x,y,7) normal components in the 8-bits RGB channels.

Once the colour channels are filled with the normals' information, we can still add to the
image an alpha channel, and store there the same information about pixels regions reported in
Section 3.8, as the multi-pass technique to control impostors colours is compatible with the
per-pixel lighting approach. This information is then used at run time with the same multi-

pass rendering strategy discussed before.

3.12 Per-pixel lighting equation

We now examine how we can use the pixel normals stored in the compressed RGB channels
of the textures to achieve per-pixel lighting at run time, and how we can make the resulting
equation very similar to the standard local lighting computation taking place in the OpenGL

pipeline. If we consider the local reflection model used by OpenGL (leaving temporarily aside

An image—baséd app;o;;h to the ;;ndering of crowds in real-time 63

CH4PTER 3 - CROWD RENDERING USING IMPOSTORS

the issue of colour and distance attenuation), we can write down the light intensity equation in

the usual form:

I=A+K, L-N+K RV

where n is used to model the specularity of a surface. Being the mirror direction R
computation computationally expensive, the equation is normally considered in the following

simplified form:

I=A+K, L-N+K(H-N)

Figure 3.16 - The standard OpenGL lighting equation.

where H is the halfway direction between the light direction L and the viewing direction
V. We can now use OpenGL DOT3 RGB_ARB texture parameter to perform the equation's
dot products on a per-pixel basis and perform multiple rendering passes, accumulating on the
frame buffer the partial results of the intensity equation. Also, we can use multi-pass rendering
to sum-up all the components and compute the final value of each pixel intensity as well as to
raise the specular component to a certain power. To accomplish this, and in accordance with
the OpenGL specifications, the RGB codification of vectors L and H are used as the fragment
colour of the polygon. Our method uses a very important assumption: as the per-pixel
computation of L and H is costly, we consider them constant over each impostor. With this
simplification, it is necessary to compute L and H on a per-impostor basis only, depending on
the current impostor position and orientation with respect to the considered light source, but it
does not reproduce exactly the effect of a local light source. Still, it's very difﬁcult,‘ if not
impossible, to notice the difference when hundreds of individuals are going around on screen.
To accumulate in the frame buffer all the lighting component we use at present 5 passes per

impostor. The first 3 passes are used to compute the specular component and to rise it to the

An image-based approach to the rendering of crowds in real-time 64

CHAPTER 3 - CROWD RENDERING USING IMPOSTORS

power of 3 (greater values are possible, but at the cost of slowing down the rendering
process); the next pass is used to compute and add the effects of the ambient component, and
a last one to compute and add the effect of the diffuse component. Using intensity modulation
of the of the polygon colour, we also introduce in the equation the attenuation factors K,
and K, , so that the effects of local light sources can be simulated.

At this point, the frame buffer contains the grey scale image of the impostors representing the

correct illumination with respect to the actual light position and surface propriety as reported

in Figure 3.17.

Figure 3.17 - Impostor per-pixel lighting.

(a) per-pixel lighting applied to a single impostor (b) per pixel lighting on a crowd.

The process can also be repeated to accumulate the effects of multiple light sources; in this

case the limited numerical precision of the frame buffer should be considered, as the standard

An i;age-ba;& appréach to the renderihg c;f crowds in real-time 65

CHAPTER 3 - CROWD RENDERING USING IMPOSTORS

8 bits per colour channel could present some numeric precision issues. Using a uniformly
coloured texture in the second texture unit, we can modulate the colour of the resulting
intensity computation, making it possible to simulate even coloured lights. Once the
illumination is in the frame buffer, we can still use several additional passes (4 in our case) to
modulate different regions with different colours, using the alpha test technique described in
the previous paragraphs. Figure 3.18 shows the results of the described process, starting from

the light intensity calculation to the final colour modulation using the alpha-test.

Figure 3.18 - Final effects of per-pixel lighting on an impostor-based crowds.

3.13 Summary

We have proposed the use of a static, unstructured impostors representation as an effective
mean to render densely populated large scale environments with crowds in real-time.
Impostors have a flexibility that is often underestimated, and we proposed several
management techniques that allow for the display of a large number of different animated
people, using fully precomputed animated impostors. The fundamental advantage of

impostors is that the rendering time of each character is independent of the complexity of its

An image—bage’dicizpproézch 10 the ;rjde;iﬁgiof crowds in real-time 66

CHAPTER 3 - CROWD RENDERING USING IMPOSTORS

polygonal model; this makes it possible to render thousand of agents at interactive frame rate.
The method improves pre-existing methods in several aspects. The choice of the impostor
plane is adapted to the object to render, thus reducing popping effects when changing view.
We tested several options: the plane orthogonal to the view direction and passing from the
geometrical centre of the object, the plane orthogonal to the view direction and passing from
the centre of the visible samples (we found this to give the best results), and the plane
minimising the sum of the squared distance of each visible sample (computed using PCA).
We use a multi-pass algorithm that allows visual variety using colour modulation, exploiting
OpenGL Alpha Test and the alpha channel content to control the colour of different regions of
the body, and a technique to approximate dynamic lighting on an impostor-by-impostor basis.
Finally, we introduce a novel way to store and represent per-pixel impostor data that, through
the use of hardware accelerated dot product operation, removes the fixed lighting limitation
previously associated to impostors, making it possible to achieve per-pixel dynamic lighting
effects. Our implementation has only minimal OpenGL1.1 requirements (OpenGL1.3 for per-
pixel lighting), so it can be ported to basically every available graphic system. In the following
chapters we will show how global lighting effects as well as shadow effects can be achieved,
and how this form of IBR can coexist with standard polygonal rendering inside the same

scene-graph management system.

An image-based approach to the rendering of crowds in real-time 67

CHAPTER 4 - PLACING CROWDS IN VIRTUAL

ENVIRONMENTS

Figure 4.1 - An image from the movie 'Shrek' (Dreamwork — 2004).

his Chapter will illustrate how impostor based crowds can be used inside polygonal
scenarios, obtaining what in practice is an hybrid approach for complex Virtual
Environments rendering. Issues such as impostors casting shadows on a polygonal
model or receiving shadows generated by other scenarios elements will be discussed, as well
as visibility computation for crowds and basic collision detection tests that characters perform
in order to navigate in the polygonal model. The following will show that, far from being a
restrictive technique, using impostors to populate conventional polygonal models can
successfully lead to a high degree of visual realism whilst retaining an high frame rate,

something that would not have been possible using plain polygonal rendering alone.

An image-based approach to the rendering of crowds in real-time

CHAPTER 4 - PLACING CROWDS IN VIRTUAL ENVIRONMENTS

4.1 Using animated impostors in a polygonal scenario

Animated impostors are an effective means of rendering thousands of characters in real-time,
but the differences between this approach and that of standard polygonal rendering must
always be carefully taken in consideration when using both approaches inside the same
application. Impostors are fundamentally 2D entities with no retained information about the
volume of the original object they represent. When used to populate large urban-like models
(Figure 4.2), their different nature has several important implications for the way that they can
coexist with polygons, both for rendering-related tasks (such as illumination and shadowing

effects) and for more general tasks (such as collision detection, behaviour and navigation).

Figure 4.2 - High-performance crowd rendering using textured impostors..

The structure of a city is a perfect example of an environment where many complex
interactions between these different entities can potentially take place. The ability to perform
collision detection between the impostors and the scenario, or between the impostors
themselves, is a fundamental requirement in order to simulate the crowd dynamic behaviour.
Also, shadowing and illumination interactions exist between the crowd and the environment
that should be considered, and even the ability to perform visibility computation, i.e. taking
into account the occlusion effects of the environment on the impostors, may be crucial,
especially when the goal is the visualisation of virtual cities where the population is counted
in hundreds of thousands. Some of these forms of interaction have been studied in previous
research in the context of large scale visualisation, but the hybrid nature of rendering
introduced by the use of impostors imposes a careful rethinking of existing techniques. The

following short list summarises what has to be kept in consideration when planning to use

An image-based approach to the renderingr éf crowds in real-time 69

CHAPTER 4 - PLACING cROWDS IN VIRTUAL ENVIRONMENTS

animated impostors inside a polygonal scenario:

- As impostors do not retain much of the geometrical information about the objects they
replace, there are implications for the collision detection task between impostors and the
surrounding scenario.

- Casting shadows of an object onto another object normally requires some sort of volume
information that our impostors do not have. As the presence of shadows cast by the crowd
onto the environment is important for realism, a specific approach for impostors-to-
polygons shadow casting is needed.

- Shadows cast by the environment on the population are equally important. Again, as our
impostors do not retain true volume information, many existing approaches are not directly
applicable.

- When dealing with large crowds only a small fraction of the overall population may be
visible; occlusion effects of the environment on the population need to be taken in account,
as well as the fact that crowds have a dynamic nature, and the individuals are continuously
moving around. More importantly, given the extreme 'rendering lightness' of the impostors,
the run-time test to decide the visibility of a single individual needs to be extremely

efficient, or any speed advantage would be lost.

The following paragraphs present how the work address these points.

4.2 lilumination of a crowded scene

In Chapter 3 we proposed a technique to compute the effects of positional light sources on the
crowd, taking into account per-pixel lighting where possible. As in the standard OpenGL
lighting computation, our approach assumes that no occlusions are present between the light
sources and the crowd individuals. This is frequently not the case in Virtual Environments:
once a crowd is used to populate an urban scenario such as the 3D model of a city, where a
mixture of short and tall buildings are present, the illumination effects become more complex,
and variations in the intensity of ambient light in different part of the scenario may arise (for
instance narrow alleys tend to be darker than the large streets — Figure 4.3). Also, when
simulating direct sunshine the tall buildings should cast shadows on the streets. It is desirable

that these different lighting conditions are taken into consideration in crowd simulation, as

An image-based approach to the rendering of crowds in real-time 70

CHAPTER 4 - PLACING CROWDS IN VIRTUAL ENVIRONMENTS

ambient light intensity variation and shadows of the environment on the crowd (and of the

crowd on the environment) greatly contribute to the overall perceived realism of the scene.

() (d)

Figure 4.3 - Global illumination effects on crowds.

Our impostors-based crowd in a scenario without (a,c) and with (b,d) ambient lighting.

The following 3 paragraphs will expose several techniques to add global illumination effects
to the rendered scenes, trying at the same time to meet the always demanding requirement of
interactive rendering of a large crowds. It must be noted that the applicability of some of the
techniques here presented is not restricted to the impostor approach only, and could also be

used with other types of representation.

4.3 Ambient lighting for a crowded Virtual Environment

As discussed in Chapter 3, the intensity of an impostor image can be modulated on a per-
character basis, to approximate the illumination effects of local light sources; this

simplification is possible because, when a dense crowd is scattered around an urban

An image—baséd approach to the rendering of crowds in real-time 71

CHAPTER 4 - PLACING CROWDS IN VIRTUAL ENVIRONMENTS

environment, the artifacts caused by this approximation are hardly noticeable. A similar
approximation can be used to simulate the variation of light intensity that the animated agents
composing the crowd undergo while navigating the environment. While in Chapter 3 we used
for the light attenuation a quadratic function of the distance between each impostor and the
light sources, in this case the attenuation is a function of the position of the impostor within
the urban scenario. A technique that takes advantage of the mostly 2.5 D nature of a urban
scenario is used to compute a 2D discretization of the light intensity over the scenario, in a
similar fashion to the technique of precomputed lightmaps; the resulting data is stored in a 2D
structure, named ambient intensity map, that for each cell of the discretisation reports the
average intensity of the incoming ambient light. Figure 4.4 shows an example of such an
intensity map computed for a model of a square using a skylight illumination model inside
3DStudio Max.

(a)

Figure 4.4 - An urban scenario (a) and the resulting light intensity map (b).
Once this map is available, the contained information can be used to modulate the colour
intensity of each impostor on the basis of its position in the scene (Figure 4.5). Accessing
intensity information using a regular 2D cell subdivision is extremely fast and efficient, so this
technique does not degrade much the rendering performance even in situations with thousand
of individuals (measured in Chapter 6). Since large scenarios might need very large intensity
maps, a hierarchical memory structure and simple image compression (for regions having
constant or near-constant intensity values) could be used instead of a flat 2D organization, at
the price of an increased number of memory accesses required to obtain the final value,

although this feature has not been implemented in the test platform.

An image-based approach to the rendering of crowds in real-time 72

CHAPTER 4 - PLACING CROWDS IN VIRTUAL ENVIRONMENTS

Figure 4.5 - The light intensity modulation at work on the impostors.

Individuals walking in the darker regions are assumed to receive less light.

4.4 Shadowing

Shadows are useful in VEs for a variety of reasons: they help understand relative object
placement in a 3D scene by providing visual cues, and they can dramatically improve image
realism allowing the reproduction of complex lighting effects. A large number of algorithms
exist in the literature for generic shadow generation; depending on the application the
emphasis is placed either on a guaranteed frame rate or on the visual quality of the shadows.
There is always a trade-off between realism and speed, and no general technique exists that
can render physically correct shadows in real-time for every dynamic scene. These approaches
can be broadly subdivided into two categories: sharp shadows are generated when the light is
assumed to be at infinity or a point light source, while soft shadows are produced by taking the
light source to be a finite area or volume. The latter case is more accurate and realistic, but
requires more complex visibility computations, therefore it is not commonly used for real-
time rendering of complex dynamic scenes. Scenes populated by a crowd of thousands of
individuals poses novel challenges due to the high number of moving (and complex) objects
casting shadows.

The existing general approaches to shadow computation were considered in this thesis for
their suitability; one of the more effective approaches to real-time shadow mapping is still the
fake shadows technique proposed by Blinn [Blinn88]. After rendering the model from a given
view point, a special matrix is added on the stack that projects every vertex onto a plane

(usually the floor). The scene is then rendered again painting the projected polygons as 'grey'

An image-based approach to the rendering of crowds in real-time 73

CHAPTER 4 - PLACING CROWDS IN VIRTUAL ENVIRONMENTS

and semi transparent, to give them the aspect of a shadow. These kind of shadows are
computed at each frame, and an additional rendering pass for the scene is needed for each
receiving surface. Other methods, such as the Shadow Volume BSP (SVBSP) tree [Chin89]
precomputes the shadows so that they just need to be rendered for each new viewpoint. The
computation of a full solution on all surfaces is possible but is time consuming. Although
incremental update is possible for a small number of dynamic objects [Chrysanthou97], this
would be too costly for a highly dynamic setting such as a crowd navigating in a urban
environment. In many cases, the number of extra shadow polygons that are needed for the
display of shadows can greatly affect rendering performance. Techniques such as
discontinuity meshing [Lischinski92] are the most accurate for shadow computation and
rendering; they find not only the shadow boundaries but also the edges where the direct
illumination on the surfaces varies discontinuously. However, they are slow to compute and
render because of the resulting complex mesh. More approximate techniques that use texture
mapping instead of partitioning the input polygons into a mesh [Soler98] are faster to render.
However, they still cannot be computed in real time for any sizable scene and they require
separate textures for different surfaces, so that for real time applications the rendering of
shadows has often been restricted to sharp ones. Shadow volume methods [Crow77] were
used to delimit a spatial region in shadow between the object surface and a receiver, and using
the stencil buffer [Heidmann91], regions in shadow can be automatically detected by the
hardware. An interesting alternative method for computing shadow planes was suggested by
McCool [McCo0l00]. The scene is drawn first from the light position and the z-buffer is read;
the shadow volumes are then reconstructed based on the edges of the discretized shadow map.
One of the drawbacks of this method is that the shadow planes tend to be very large and they
have a detrimental effect on the rendering time. Even if in practice this effect can be limited
by using the method not for a complete solution but rather for shadows only from the
'important' objects, the discretization can still introduce artifacts.

Recently the use of graphics hardware to compute shadows at per-pixel level has been
introduced, a technique that avoids some of the aforementioned shadows computation and
storage problem. These methods are based on the concept of shadow maps [Williams78] and
are pixel-based, mixing depth information provided both from the light source and the user's
points of view. Shadow areas are determined by comparing the depth of the points from both

the light source viewpoint and the user viewpoint. Even if this approach benefits from the

An image-based approach to the rendering of crowds in real-time 74

CHAPTER 4 - PLACING cROWDS IN VIRTUAL ENVIRONMENTS

availability of hardware allowing fast shadow computation for complex geometrical
environments, shadow maps need to be carefully used, as they are prone to exhibit artifacts
due to the finite image resolution: images can be aliased if the resolution does not permit to
accurately decide on depth (and unfortunately this is often the case for large scenes for which
objects might be represented by few pixels). Also, because these methods are pixel-based, the
resulting frame rate might be influenced by the size of the computed shadow map and by the

fill-rate available in the rasterizer.

4.5 Shadows in populated Virtual Environment

When deciding how to approach the problem of shadowing in the context of a virtual city
populated by a large number of animated humans, four typical cases of sharp shadow

computations can be distinguished:

1. Shadows between the static geometry (e.g. tall buildings casting shadows onto the static
scenario);

2. shadows from the dynamic onto the static geometry (e.g. from the humans onto the
environment);

3. shadows from the static onto the dynamic geometry (e.g. from the buildings onto the
avatars);

4. shadows between dynamic objects (e.g. shadows of avatars onto other avatars).

Case (1) is a classical problem in real-time computer graphics. To display shadows from the
buildings on the ground the test system can use either the well-established method of
precomputed lightmaps (stored as texture maps) or, when the urban model has a single flat
ground, the technique of polygonal fake shadows that has the advantage of producing sharper
shadow edges. There is a broad literature on the computation and usage of light maps whose
discussion is not in the scope of this work. In the context of this thesis we addressed case (2)
and case (3). In our thesis we did not address case (4); it has proved to be very hard to solve
impostor shadowing and self-shadowing problems without using programmable graphics
hardware. Very interesting work has recently emerged in this direction, for example in
[Ryder06].

An image-based approach to the rendering of crowds in real-time 75

CHAPTER 4 - PLACING CROWDS IN VIRTUAL ENVIRONMENTS

4.6 Casting shadows on the surrounding environment

This requires efficient computation of the shadow cast on the surrounding environment by
every individual in the crowd. Out of all the possible approaches to shadow computation, fake
shadows proved in many cases to be a very efficient way to add a good amount of visual
realism to the scene — obviously with some limitation. Hardware-assisted shadow mapping
has also proved to be compatible with the image based representation of the impostors. Both
of these techniques presents unique aspects when they are combined with the use of

unstructured impostors for the crowd rendering task, discussed in the following paragraphs.

4.6.1 Using fake shadows

The first method used to compute shadows of individuals in the crowd onto urban scenarios
was through of the use of fake shadowing: in particular ground-aligned impostors were used
to display shadows cast by the humans. This is inspired by the way the texture for the
impostor is computed - instead of using the user viewpoint as a reference to compute the
needed impostor sample, the light source position is used instead (assuming a single
directional light in the environment). By replacing the viewpoint by a point light source, the
silhouette of the projected shadow would be given by the position of the human viewed by the
light source. This shadow can therefore be represented as the image viewed from the light
source mapped onto a projected polygon (Figure 4.6). Precomputing and storing a set of
projected polygons for each possible light direction, a process in many ways similar to what is
anyway carried out for the basic impostor technique, allows shadows to be displayed very
efficiently, even in the case of moving light sources. The position of the resulting projected
polygon is relative to the position of the human so that the feet of the human always touch the
feet of the shadow. At run time, the appropriate texture image is chosen corresponding to the
light position and the frame of animation of the human.

The texture is then mapped on to the projected polygon, and the RGB values (0,0,0) are used
as the modulating colours to darken the texture. In this way no new texture needs to be
generated just for the shadow and as the texture is already loaded to render the impostor, the
only additional rendering cost is for this new polygon. The advantage of this approach is that
the same sample images that are already inside the impostor database can be used again for
the shadows. This enables high-quality shadows representing the exact shape of the walking

human with extremely low additional cost, both in terms of memory requirements and

An image-based approach to the rendering of crowds in real-time 76

CHAPTER 4 - PLACING CROWDS IN VIRTUAL ENVIRONMENTS

Figure 4.6 — Casting a fake shadow on the ground.

This technique can be used both for polygonal models (left) and for impostors (right).

rendering speed. There are problems too - the most noticeable is that the shadow is cast only
onto an assumed horizontal floor, and this can generate bad intersections with the surrounding
buildings and people. However, using a discretization of the environment such as the one
reported in Chapter 5 it is possible to detect the presence of non-flat elements in the region
occupied by the shadow and revert to polygonal rendering if a more accurate shadow

computation is needed. Figure 4.7 shows an example of this method final resuts.

4.6.2 Using shadowmaps

Using fake shadows is a simple and extremely effective technique to improve the realism of a
scene, and they are computed almost for free when using for crowds an impostors-based
representation. However, it is not the only approach to shadows suitable for impostor based
rendering. When available, hardware accelerated shadow maps may be used to render
shadows effects. Typically, shadow maps use a 2-pass rendering approach: in the first pass the
scene is transformed so that the eye point is at the light source and the objects casting shadows
in the scene are rendered. The resulting depth buffer is read back, and stored into a texture
map. On a second rendering pass this depth texture is mapped onto the primitives of the
original scene (this time viewed from the eye point) using the texture transformation matrix
and eye space texture coordinate generation. The value of each texel value, the texture's
'intensity', is then compared against the texture coordinate's r value at each pixel. This
comparison is used to determine whether the pixel is shadowed from the light source. This
procedure works because during the first pass the depth buffer records the distances from the

light to every object in the scene, creating a shadow map.

An image;l;ased approacﬁb thg;;zdw?zg of crowds in real-time : 77

CHAPTER 4 - PLACING CROWDS IN VIRTUAL ENVIRONMENTS

An impostor-based representation for the individuals in a crowd is compatible with the
principle of shadow mapping, at least for the computation of the shadows that the crowd cast
on the environment. Adaptation of the shadow map method to the case of impostor-based
crowd rendering is straightforward: during the first pass impostors are rendered as seen from
the light source; this is perfectly feasible even if the impostors’ geometrical information is
minimal, since the shape of the silhouette of the object casting the shadow is inherently
preserved by the impostor representation. The resulting depth texture is used for the second
pass, when the shadow maps projects dark areas on the surrounding environment. As in the
standard case of purely polygonal rendering, the main advantage of using shadow maps over
fake shadows is the correct handling of projections over non flat surfaces; using shadow maps
makes trivial projecting people shadows on the walls of the buildings, as well as projecting
shadows on even non-flat ground, with no need to actively inspect the geometry that lies
below. Consequently, when they are available, hardware accelerated shadow maps can
simplify the development of realistic shadowing effects.

The drawbacks to using shadow maps in the case of crowd rendering are the same normaily
associated with this technique: since the shadow map is point sampled and then mapped onto
objects from an entirely different point of view, aliasing artifacts might become a problem.
When the texture is mapped, the shape of the original shadow texel does not necessarily map
cleanly to the pixel in the framebuffer and aliased shadow edges can appear in the resulting
image. Using shadowmaps of very large resolution attenuates the problem, but introduces
memory problems and reduces rendering performance. The problem can be attenuated using
the technique of projective shadow mapping [Stamminger02]. Recent work also suggested the
use of multiple 'tiled' shadowmaps for when the scene is lit by more than one light source
[Day05]. The situation where shadow maps really cannot be used is when one computes the
light effects of the building casting shadows on the crowd: in this case, the lack of proper
geometrical information of the impostors results in severe and view dependent artifacts. To
handle this important situation we have developed a dedicated approach, discussed in the

following section.

An image-based approach to the rendering of crowds in real-time 78

CHAPTER 4 - PLACING CROWDS IN VIRTUAL ENVIRONMENTS

VREib Debug. FPS: 17

Figure 4.7 - An early version of our rendering system: crowd casting (fake)

shadows on the scenario.

4.7 Shadowing effects of the environment on the crowd

In a complex urban environment, tall buildings can cast shadows on the crowd of individuals
that walk around the streets of the city. Real-time rendering of this kind of shadowing effects
is not simple, as it means that thousands of dynamic objects (and their shadows) need to be
updated at interactive frame rates. Unfortunately, when the crowd is represented using
impostors, techniques such as shadow maps or shadow volumes cannot be directly applied, as
the impostors do not retain the necessary geometry information. This problem is extremely
complex if considered in a general case. However, we have seen in our case that the static
scene where the individuals navigate can be assumed to be 2.5D and therefore the volume
covered by the shadows can be approximated by a 2.5D map. The idea, in many ways is
similar to what was discussed in Section 4.3, is to discretise the shadow volumes and to store
them as a 2D height map, termed the shadow height map (Figure 4.8a). Using the information
stored in this map it is simple to compare the height of the people with the height of the
shadows and accordingly to compute the degree of coverage of a human. To simulate the
effect of the shadow over the impostor, we use an additional texture mapped on top of the
impostor to darken the part that results in shadow; this is simply a regular 2D texture divided
in two uniform black and white regions (Figure 4.8b). Varying the (u,v) coordinates at the

vertexes of the impostors is used to move the border up and down along the impostor. The

An imagé-baﬁéd &})ﬁr&b&h 10 the ;;endefing of crowds in real-time 79

CHAPTER 4 - PLACING CROWDS IN VIRTUAL ENVIRONMENTS

way these texture coordinates are computed and the texture applied is described in Chapter 5,

that also reports further details on the computation of the shadow height map.

Fully lit

2 textures

" -

Different texture

coordinates Fully shaded

Partially shaded
(b)

Binary shadow map (a)

Figure 4.8 - Simulating shadows on the impostors.
(a) shadow height map for a simple urban scenario, (b) using a secondary texture to

approximate the shadow casted by buildings over an impostor.

While improving overall realism of the scene, Figure 4.9 shows clearly that our current
implementation of the algorithm provides only a rough approximation of the shadowing
effects (note the shadows cutting across impostors horizontally). Also, our algorithm can only
generate approximate results because of the space discretisation we use and for our
assumption that when a shadow is cast it covers everything under it, assuming a 2.5D
configuration of the scene. This excludes for example the case of roofs overhanging the edge
of buildings, bridges, and other kind of 'non 2.5D' objects.

On the other hand, while for our purposes we compute shadows in the case of moving objects
represented by impostors, this approach is quite generic and it could be used regardless of the
type of representation used: and should the objects have a polygonal representation, the
information stored in the shadow height map could also be used to quickly compute shadows

onto the polygons.

An image-based approach to the rendering of crowds in real-time 80

CHAPTER 4 - PLACING cROWDS IN VIRTUAL ENVIRONMENTS

Figure 4.9 - Example of the visual effects produced by the shadowing algorithm.
Impostors cast shadows on the ground, and also buildings cast shadows on the impostors.

However, impostors do not cast shadows on the buildings.

4.8 Visibility computation

Visibility computation can be a very effective technique to optimize the management of large
geometrical databases. In particular, when dealing with urban scenarios occlusion culling can
lead to large performance gains. The presence of large and tall buildings implies a lot of
potential to discard from the rendering pipeline large portions of the scenario that would not
contribute to the final image . While occlusion culling is normally performed on the static part
of the scene (the urban model), when a large crowd is added it might require a large portion of
the rendering power; the complexity of the crowd can in extreme cases exceed the complexity
of the scenario, and there are some situations where crowds are too large to be visualised in
real-time even using the technique of impostors rendering. For this reason it makes sense to
apply visibility culling to the crowd as well, because buildings can be very effective occluders
in this case too (see Figure 4.10 and 4.11), but this requires a dedicated approach, as classic
occlusion culling algorithms are normally applied to large, static scenarios and can not handle
a large number of dynamic entities. From an occlusion culling perspective, the differences
between animated impostors and normal polygonal models are significant. Impostors usually
replace complex objects with a very light geometric primitive (the impostor quad) and, as
such, they are much more fill-rate intensive than geometry-rate intensive. Culling away a
single impostor from the rendering pipeline frees very little graphics resources. On the other
hand, the number of impostors in a crowd is very large, and the cumulative benefit of
impostor occlusion culling can lead to significant frame rate increases (see Chapter 6). A very

7 7/717n’7image-based approach to the;’endering of crowds in real-time 81

CHAPTER 4 - PLACING CROWDS IN VIRTUAL ENVIRONMENTS

careful design of the occlusion test is then necessary to avoid the situation where the

computation overhead of the test does not exceed the little gain of the impostor removal.

Figure 4.10 - Similarly to the static geometry, buildings can be very effective occluders.
(Left) - normal rendering; (right) rendering with transparent buildings reveals that a large part of the

crowd is occluded.

Despite the plethora of available occlusion culling methods, some of them reported in Chapter
2, there seems to be nothing that is dedicated to the problem of a large number of dynamic
objects such as the case of crowds moving in the environment. The most similar work in this
area was done by Sudarsky and Gotsman [Sudarsky96], where they used temporal bounding
volumes to enclose the space-time extent of any moving object so as to avoid considering it
when not visible for several frames. Even this kind of method however would not scale
enough to work efficiently for thousands of dynamic objects.

An original method was designed that is specifically targeted to complex urban scenarios
populated by crowds: the starting assumption
is that when the viewpoint is close to the
ground, the buildings become very effective
occluders hiding most of the static geometry
and avatars. This means that, in an urban-like
environment, we can consider the geometry of
the major occluders (i.e. mostly the buildings)

to be of a 2.5D nature, meaning it can be

defined by the building footprint + the height

of each. The culling algorithm devised makes Figure 4.11 — Visibility Culling: our system avoids

. a : rendering of the individuals occluded by buildings.
use of this property to simplify and extend a g of i’ .

An image-based app;(;ézéz‘tb the rendering of crowds in real-time 82

CHAPTER 4 - PLACING CROWDS IN VIRTUAL ENVIRONMENTS

classic BSP tree algorithm which performs intersection of binary trees using tree merging. The
overall idea is to be able to quickly cull away the parts of the discretization used for the rest of
the rendering, not only to avoid the rendering of the static geometry but also to avoid the
rendering of the crowd individuals, and possibly the computation involved in animating them.

Further details of this occlusion culling algorithm are presented in Chapter 5.

4.9 Beyond rendering

The more general problem of simulating the flow of people inside an urban environment is an
interesting research topic that has been one of the motivations of the present work. Even if
the present thesis is mainly concerned with the rendering aspects of crowds, it is important to
consider some more general concepts and approaches related to animated crowds, to have an
wider understanding of what are the challenges implied in the dynamic nature of crowds.

Inside a complex urban scenario, a crowd is a highly dynamic entity: individuals walk around
streets and squares and their position is always changing. One of the building blocks of any
crowd simulation is the ability to study the interaction between individuals and the
surrounding environment. In some research, such as Space Syntax [Hillier76], an agent-
centred approach is proposed for solving the task of navigation: the individuals in a crowd,
perceiving the environment around them, take relatively simple individual decisions, causing
a correlated emergent behaviour at a global crowd level. From a practical point of view,
perceiving the environment implies the ability to perform some sort of collision detection

which is considered in the next section.

4.9.1 Path finding and obstacles avoidance

Throughout a simulation, many of the animations that an individual performs will be based on
interactions with the outside world. In allowing an single unit to conduct interactions with
objects in the world, a number of general approaches may be taken. Path finding is a perfect
example of this kind of interaction, since it is necessary for humans to navigate the
environment they inhabit in a successful and realistic manner. In order for the crowd to
perform path finding inside a virtual environment, the environment itself needs to store path
finding information upon which a search can be performed. Typically, this is achieved by

adding an invisible layer of nodes for the environment’s terrain, where each node stores all

An image-based approach to the rendering of crowds in real-time 83

CHAPTER 4 - PLACING CROWDS IN VIRTUAL ENVIRONMENTS

accessible neighbouring nodes. Using this information, a virtual human can perform a search
across these nodes for the shortest walkable path between its current position and goal
position. Navigation strategies need collision detection to be performed between the crowd
and the surrounding environment. In some cases, a 2D discretisation of the environment is

used [Hillier76, Ross92, TecchOla] (Figure 4.12).

Figure 4.12 - Crowd navigating in the web of streets of a city.

Individuals need to perform collision detection for obstacle avoidance. Our approach uses a

discretisation of the environment as small 2D cells.

Given a city model and a moving crowd represented as a set of particles it is important to be
able to detect any possible collisions between the particles and the surrounding environment.
There are many techniques to detect interference between geometric objects [Lin98]. Many of
them use hierarchical data structures, for example, hierarchical bounding boxes [Cohe95,
Gott96], spheres trees [Hubb93], BSP trees [Naylor90] and Octrees [Samet90]. However, the
majority of them try to solve the harder problem of interference between complex objects.
They tend to be much more precise and involved than what what is required for the crowd
application. As an example, in the busy streets of London during the day, there can easily be
hundreds of thousands of people moving around. Trying to perform exact collision detection
using standard methods for every moving entity is probably not necessary, especially if the
goal is to have a general overview on all the moving entities at the same time, with the
viewpoint located quite far away. Due to the large number of moving objects and the inherent
time constrains of the application, other approaches can be considered which can trade off
small errors in exchange for greater speed and scalability. To this extent, collision detection

through discretisation of space has been used before. The most relevant work is that of

An image-baséd approach to the rendering of crowds in real-time 84

CHAPTER 4 - PLACING CROWDS IN VirRTuaL ENVIRONMENTS

Myskowski [Mysk95] and Rossignac [Ross92]. They use graphics hardware to perform the
rasterization necessary in order to compute the geometrical interference between polygonal
meshes, but they focus on performing this task on a small number of very complex 3D CAD
objects.

More specific to urban environments, even though the geometry is still in 3D, the movement
of humans is usually restricted to follow a 2D surface. Bearing this in mind and the fact that
the environment itself is static, simpler solutions can be developed. In Robotics, the problem
has been studied extensively for navigating mobile robots. Lengyel [Leng90], for example,
used raster hardware to generate the cells of the configuration space used to find an obstacle-
free path. Bandi and Thalmann [Band98] also employed discretization of space using
hardware to allow human navigation in virtual environments. However they use the
information for automatically computing a motion path for a human in an environment with
obstacles using a coarse subdivision on the horizontal plane and repeating that on several
discreet heights, while in our case we want to consider the height of the obstacles in a more

continuous way.

4.9.2 Approximate and fast collision detection for crowd navigation

An approximate method based on space discretization has been developed, with the moving
humans represented as a particles system. The overall idea of the algorithm is to create a
discrete representation of the static model (termed the height map) and use this to detect
collisions of the moving particles with the environment. This map stores the height at each
point in the environment and it is maintained in memory. For every frame of the simulation,
before moving a particle to its new position we check its current elevation against that stored
in the height-map for the target-position. If these values are too different, it means that the
step necessary to climb either up or down to get to the new position is too big and cannot be
taken, otherwise we allow the particle to move and update its height according to the value
stored in the height-map. The algorithm is organized in two phases: the generation of the
height map and the run-time collision test.

4.9.3 Height map generation
The height map is generated using standard OpenGL functions. This is done at the start of the

simulation by positioning the camera over the centre of the model looking down at it with the

An image-based approach to the rendering of crowds in real-time 85

CHAPTER 4 - PLACING CROWDS IN VIRTUAL ENVIRONMENTS

view frustum adjusted to match the model
boundaries. The model is then rendered
using an orthogonal projection and the
resulting contents of the z-buffer, that
represent a discreet map of the heights of
Jthe model, are copied into the main
memory where they can be accessed in a
faster way (Figure 4.13).

Using OpenGL to generate the height-map

allows the algorithm to be simple and very

Figure 4.13 - A simple urban model and its corresponding
height-map (below, in grey scale). fast thanks to the use of dedicated

hardware. Obviously, during the generation of the height-map, the complexity and the scale of
the model must be taken in consideration; in order to permit collision detection tests with the
right order of precision, the height map has to be of sufficient resolution. However, it is
important to notice that although higher resolution maps are more expensive in terms of
memory requirements, the speed of the height map test for each particle doesn’t seem to be

noticeably affected by the size of the map.

4.9.4 Collision detection and avoidance

Depending on the situations, two different approaches for detecting and avoiding collision of
the moving particles were used. The principle is the same in both cases: as each particle
moves in the assigned direction the presence of obstacles in front of it using the information
stored in the height-map is checked (Figure 4.14). In the first case, the position that the
particle is going to occupy after the current movement is checked and this position is
computed and mapped onto the height map. If the height at this point is found to be close
enough to the current height of the particle the movement is considered valid and the particle
is allowed to move there. If the difference in heights is too large a new itinerary needs to be
found. This is done by gradually rotating the particle’s direction in small angle steps until an
obstacle-free direction is found. In the second case the collision detection task ahead of the
current particle position is shifted. Instead of checking whether the next step is possible from
the current position, whether the i-th step is possible from the predicted (i-1)-th position is

checked. If not, the direction is again rotated by a small angle as in the previous case, but the

An image-based approach to the rendering of crowds in real-time 86

CHAPTER 4 - PLACING CROWDS IN VIRTUAL ENVIRONMENTS

position of the particle is updated anyway so that the particle starts changing direction
gradually before colliding against an obstacle, producing as a result a smoother animation. On
the other hand, two accesses to the height map are needed, making this method slower than

the previous one.

S ——
Figure 4.14 - A simple collision avoidance strategy using cells elevation.
The particle search for obstacles comparing the elevation of the current

cell against the elevation of the destination.

The aim of this simple trial and error strategy to find a free path is to avoid querying directly
the geometrical database for valid directions, in order to keep the cost of the collision test low.
Using the height map, the particles correctly detect the different dimension of obstacles,
climbing on them if the steps are small enough and updating their elevation without accessing
the geometrical data representing the model.

A similar technique can be used for inter-collision detection between particles: an additional
map (termed intercollision map), can be used to detect possible collisions between
individuals: before moving to a new cell, a particle checks the destination cells to determine if
free or occupied by the ID of another particle. Similarly to the particle-ambient collision
detection, it is possible to specify how far ahead this check should occur, so to start changing
direction gradually before collision occurs.

Being based on a crude discretization of the environment, our algorithm is not suited for fine-
detail collision detection, and as such should be used only for the crowd navigation task,

reverting to proper polygonal representation for the individuals in the foreground of the scene.

An image-based approach to the rendering of crowds in real-time 87

CHAPTER 4 - PLacING crOwWDS IN VIRTUAL ENVIRONMENTS

4.10 Summary

" Techniques have been presented to further extend the possibility of animated impostors
rendering, enhancing the realism of the rendered scene. An appealing aspect of this method
for real-time crowd visualisation is the mix between traditional and image-based rendering
strategies; both can coexist in the same framework, making it possible to visualise scenarios
that would be too complex using a polygonal approach alone. In particular, we presented a
new method to enhance the overall realism of the scene modulating the intensity of the
impostors images depending on their position in the scene. Since the display of shadows
greatly improves the visual quality of a simulation, methods to compute and update shadows
for thousands of dynamic objects moving in a 2.5D environment were developed, focused on
improving consistency of positioning between objects rather than accurate shadow casting.
This method is adapted to the context of a virtual city simulation with an animated crowd of
humans, and in order to enable fast shadow detection of buildings on the crowd, we use a
25D map to locate shadows, avoiding complex visibility computations. Impostor
representation to quickly cast shadows of humans onto the ground is also used. We have also
presented a new approach to visibility computation that takes into consideration the
peculiarities of impostors as a rendering primitive, stressing the importance of occlusion
culling in real time rendering of densely populated virtual environments. Finally, we presented
a new and fast approach to collision detection (both particle-environment and particle-
particle) using a 2D discretisation of the environment, showing how it can be applied to the
problem of crowd navigation in complex urban environments. Chapter 6 will show that the
computational cost of these techniques is relatively low, and that the system still allows an

interactive walk through in large and crowded urban environments.

An image-based approach to the rendering of crowds in real-time 88

CHAPTER 5 - THE CROWD RENDERING SYSTEM

Figure 5.1 - A scene from the movie 'The Fellowship of the Ring' (New Line Cinema — 2001)

Usually a novel real-time rendering technique becomes widely adopted if it can be realised
using existing graphics hardware and needs only marginal changes to pre-existing software
architectures. Image-based techniques are particularly critical with respect to this, as they
often require substantial modification to both the rendering pipeline and the underlying scene-
graph in order to achieve optimal performance. An advantage of using impostors for crowd
rendering is their compatibility with traditional polygonal-based rendering frameworks. In
order to demonstrate this, a prototype rendering system and a set of flexible libraries and tools
were developed. This shows that unstructured animated impostors can be used inside a
traditional scene graph performing crowd rendering on OpenGL1.2 or OpenGL1.3 compliant
graphics hardware. The present chapter gives an overview of the system's general architecture,
showing the design guidelines that were used. Some extra details are exposed on the most

relevant aspects of our implementation.

An image-based approach to the rendering of crowds in real-time

CHAPTER 5 - THE CROWD RENDERING SYSTEM

5.1 General guidelines

A complete rendering system was developed able to load and display the large urban scenarios
that were used for real-time crowd rendering testing (Figure 5.2). The system uses many of the
classic optimisation techniques for large models rendering, such as OpenGL state sorting,

view frustum culling, occlusion culling and polygonal LODs management.

Figure 5.2 — Two examples of urban environments rendered in real-time in our system.

Concerning the rendering modules specifically dedicated to impostor based rendering, a set of

tools was generated that can be broadly divided in two groups:

- various tools for generation and optimisation of animated impostors from polygonal
models used in a preprocessing phase;

- a dedicated software library (named CrowdLib) based on OpenGL that takes care of the
majority of rendering aspects linked to run-time crowd rendering, with a sufficient
interface abstraction so that it can easily be plugged also in generic scene-graph

infrastructure.

The two general design criteria at the basis of CrowdLib development were performance and
portability. The cross-platform portability of the algorithms is assured by the use of standard
OpenGL1.3 for the run-time rendering, a choice that allows the use of the library on almost
any platform supporting basic hardware accelerated graphics. CrowdLib has been compiled
and used under Windows, Linux, Apple OSX, and SGI Irix. On the Win32 platform a binary

version is available using the DLL (Dynamic Link Library) mechanism, making it particularly

" An image-based approach to the rendering of crowds in real-time 90

CHAPTER 5 - THE CROWD RENDERING SYSTEM

simple to use the library inside larger projects. Today, there are applications using CrowdLib
on a variety of platforms, from desktop PCs to CAVE-like installation such as UCL’s CAVE-
like system (Trimension ReaCTor). The library was successfully embedded in a variety of
scene-graphs such as OpenSG [Ardstegui05], XVR [Carrozzino05] and the UE CREATE
project scene-graph [Loscos03, Drettakis04].

PHASE | PHASE Il
(PRE-PROCESSING) (RUN-TIME)
RIS RO
Impostors Database

Figure 5.3 - Using impostors can be subdivided in two macro phases:

Creation of the database occurs at pre-processing, while samples rendering takes place at run-time.

5.2 Creation of the impostor database

The first step in the process of creating an impostor-based crowd is the construction of the
impostors database, taking place in a pre-processing phase. The polygonal models used for the
animated characters were imported from standard modelling and animation tools
(3DStudioMax [Disc3dMax06], Maya [AutMaya06], Poser [Clans06]).

Impostors are created starting from the 3D polygonal models following a sequence of steps:

- each model is rendered from a fixed set of different view-positions as exposed in Chapter
3. The number of samples and the camera distance from the object during this sampling
process are tuned on the basis of the total texture memory budget allocated to the impostors
storage. The pixels that get rendered on the framebuffer are considered 'visible samples' of

the objects;

An image-based approach to the rendering of crowds in real-time 91

CHAPTER 5 - THE CROWD RENDERING SYSTEM

- the frame buffer content is grabbed and analysed, and the RGB colour components of each
pixel composing a single image are stored in a temporary memory buffer. Each visible
sample is re-projected back into 3D space coordinate using their XYZ windows coordinate
(Z is the normalised z-buffer content). Once re-projected in the 3D space, they form the
cloud of visible 3D samples of the object from that particular direction and distance. The
cloud is then analysed and the best projection plane is computed following the guidelines
reported in Chapter 3;

- once the best projection plane has been computed, we search for the smallest rectangle
lying on this plane and able to contain the projection of all the visible 3D samples of the
object. Once such a rectangle is found, we associate the spacial coordinate of the resulting
4 vertices with the corresponding impostor image and store it into the impostors database;

- to allow the technique of colour modulation described in Chapter 3, the different regions of
each image are analysed and to each pixel is assigned an appropriate alpha value -
depending on the way the polygonal model is organised this analysis can be carried out
using different criteria. Usually the corresponding material colour on the polygonal mesh is
used to differentiate between different parts of the character’s body;

- the last per-pixel computation step involves computing a normal for each pixel to be used
to achieve per-pixel lighting: the normal (in object space) of each visible 3D sample is
computed. The resulting XYZ components are quantised using 8 bits for component and
stored as RGB values of the corresponding pixel of the impostor image. 8-bit quantisation
of the values is usually performed due to the texture format restriction of OpenGL1.3;

- when all the samples are computed, the impostors images are packed together, storing them
as conventional RGBA texture-maps; more details on this step are given in Sections 5.3
and 5.4.

At the end of the capturing phase impostors are fully stored in the database in the form of a
collection of texture-maps, a set of geometrical vertices defining the impostor planes and a set
of texture coordinates that encode the mapping from the image-space to the geometry (Figure
5.4).

An image-based approach to the rendering of crowds in real-time 92

CHAPTER 5 - THE CROWD RENDERING SYSTEM

Viewpoint

Polygonal Mesh Direction Discretizer

i

Sampling I

4

Row

Column |

Impostors Database

Figure 5.4 - Storing impostors data.

The impostors are organised as a set of RGBA textures and the geometric information (vertexes, (u,v)

coordinates, normals) needed to place the images inside the scenario.

5.3 Memory management

When there is a large number of geometrically different characters, each animated with a long
sequences of key frames, the described steps can generate a potentially large amount of
impostor data. Therefore, a high memory requirement is the main drawback of the impostor
techniques, and although the amount of texture memory available on modern graphics
hardware has greatly increased in recent times (graphics accelerators equipped with 512 Mb of
on-board memory are now available even on the consumer market), still efforts should be
made to optimise the memory storage strategy and manage the total memory amount needed

by the impostors.

5.3.1 OpenGL memory management

Some knowledge as to how OpenGL manages texture memory helps in the development of
optimisation strategies. In a typical rendering pipeline there is a certain amount of video
memory that serves multiple purposes. Some of this memory is allocated to store frame buffer
data, some is used for the depth-buffer and some (optionally) for the stencil buffer. With the
exception of small amounts dedicated to special features such as display list and vertex arrays,
the majority of the remaining memory is available as texture-memory. To improve the overall
rendering capacity of the systems, OpenGL allows the total amount of texture memory to be
larger than the physical video memory of the graphics accelerator, and implements a virtual
memory mechanism that uses the system RAM as an additional space to place unused or less

frequently used textures when the video-ram is full. When a texture residing in main memory

An image-based approach to the rendering of crowds in real-time 93

CHAPTER 5 - THE CROWD RENDERING SYSTEM

is needed for the rasterization of a fragment, it is pulled through the bus that connects the
system RAM to the video RAM while some temporarily unnecessary texture is pushed back to
make some space (Figure 5.5). OpenGL establishes a 'working set' of textures that are resident
in texture memory and these textures can be bound to a texture target much more efficiently
than textures that are not resident. To influence how the virtualisation mechanism will handle

the working set, for each texture it is optionally possible to specify a residence priority.

Rasterizer

FrameBuffer

Y

Figure 5.5- A simplification of the rendering pipeline.
OpenGL virtualises the amount of memory dedicated to textures using (slow) communication

between the on-board memory and the the system RAM.
Since the bus connecting the system and memory RAM is characterised by relatively high
latencies and a low throughput, this mechanism works with acceptable performance only as
long as the data traffic is limited. Scenarios using a large amount of texture to render a single
frame may cause an overload of the bus leading to serious performance degradation, a
phenomenon commonly termed fexture trashing. While the use of impostors is very effective
in reducing the total geometrical load that needs to be processed for each frame, the use of a
large number of impostor data favours the insurgence of texture trashing, also because large
city models often require a large amount of texture memory themselves. Reducing the
occurrence of texture trashing can be achieved in three ways: using OpenGL1.3 texture
compression features, reducing the amount of texture memory necessary to store the impostor
images, or organising the impostor data using a subdivision of the resulting database into
smaller memory chunks, as this helps the virtualisation mechanism to handle bus data at the
maximum efficiency should texture swapping become necessary. The following two sections

will present how these strategies are achieved inside the CrowdLib module.

An image-based approach to the rendering of crowds in real-time 94

CHAPTER 5 - THE CROWD RENDERING SYSTEM

5.3.2 Using OpenGL texture compression

When the graphics hardware offers support for texture compression (unfortunately this
excludes the SGI Reality Monster that still runs several CAVE-like installations), CrowdLib
can use it to reduce the amount of video memory needed to store the impostors images.
Initially developed by the company S3 Graphics Co. Ltd, texture compression [Iourcha99]
was introduced as a standard feature in OpenGL starting with version 1.3. Using compressed
texture is extremely efficient and brings advantages not only in terms of storage space but also
in terms of rendering speed, as the reduced memory transfer traffic taking place in the
hardware normally provides a 10-15 % fill-rate speed boost, while image quality does not
decrease noticeably. Due to the large savings of video-memory, the performance bonus and
the ease of use, texture compression has been quickly adopted by the entire OpenGL
developer community. Using texture compression is simple: OpenGL 1.3 (or later versions)
introduces a new series of internal compressed texture formats, all starting with the prefix
S3TC, that be specified when storing an image. S3TC compression ratios are fixed on a per-

format basis [Segal01]. A list of compression ratios is given in Table 1.

S3TC Compression Format Compression (bits/texel) | Compression ratio
(8bits/channel)
GL_COMPRESSED _RGB_S3TC_DXT1_EXT 4 6:1/8:1
GL_COMPRESSED RGB_S3TC_DXT3_EXT 8 4:1
GL_COMPRESSED_RGB_S3TC_DXT5_EXT 8 4:1

Table 5.1 — The S3 OpenGL Compressed Texture formats.

The S3TC compression formula is:

Width X Height
4 4

ImageSize = BlockSize x

where BlockSize is 8 bytes for DXT1 and 16 bytes for DXT3/5. '
However, image compression is lossy, so it is achieved at the expense of a slight change in the
way RGBA channels are managed, and need to be carefully handled to avoid unexpected

image artefacts. In fact, even if they share the same compression ratio, there are important

1 Because 24 -bits textures are actually stored as 32-bit textures, the format
GL_COMPRESSED_RGB_S3TC_DXT1_EXT can be seen as having an effective 8:1 compression ratio.

An image-based approach to the rendering of crowds in real-time 95

CHAPTER 5 - THE CROWD RENDERING SYSTEM

differences between the compression algorithm used in the DXT3 and DXTS formats: DXT3
applies for the RGB channel the same compression scheme of DXT]1, and then sub-samples
the original 8 bits of the alpha channel using only 4 bits. For this reason, only 16 different
values are really possible for the ALPHA component once it has been stored, and this leads to
a limitation that there is a maximum of 16 different regions in our multi-pass algorithm. On
the other hand, the sub sampling mechanism of alpha channel is simple and controllable, as it
is basically just a shift of the 4 most significant bits of the channel, allowing easy management
of the alpha regions following the strategy described in Chapter 2.

5.3.3 Tight packing of the impostor images

While the use of texture compression already reduces the effective amount of memory needed
by the impostors approach, designing an optimised packing strategy of the sampled images is
crucial for the success of the method, as well as having a strong impact on the overall
rendering speed. A first optimisation strategy investigated was to pack multiple impdstor
samples on a single texture in order to reduce the texture binding operation performed at run
time. The starting point for this was a simple strategy based on regular grid (as reported in
[TecchOOb]): each image was placed inside a regular table, tuning at run-time the texture-
coordinate in order to appropriately associate a given image to the impostor geometry. In that
phase, each image sample was a pre-rendered ray-traced image of the character (256 by 256
pixels resolution), generated off-line using a commercial ray-tracer (3DStudioMax) and its
scripting code. A set of the original images were then scaled down and packed into larger
textures in order to minimise the amount of context switching occurring at run-time. Apart
from being simple to implement, the use of a regular grid has some advantages over more
elaborate solutions: since the amount of texture space allocated to each image is the same for
every impostor regardless of the view direction, UV coordinate lookup can be done using
simple integer arithmetic on the bases of the elevation and orientation indexes. On the other
hand, this packing strategy, albeit simple and computationally efficient, may lead to a waste of
texels as the regular subdivision generally means that there are large gaps between one image
and the others (refer to Figure 5.6). A greatly improved occupation of texture memory can be
achieved by relaxing the regular subdivision constraint. In [Tecch02b] image samples are
placed very close to each other in order to reduce the unused space that would otherwise get

wasted. Finding the best disposition involves computing for each sample the smallest

An image-based approach to the rendering of crowds in real-time 96

CHAPTER 5 - THE CROWD RENDERING SYSTEM

rectangle containing all the pixel, and can be done at pre-processing time. Then, all the
samples can be packed in a single image, always leaving a row or a column of empty pixels
between adjacent samples to avoid or attenuate the artefacts that might be caused by OpenGL
texture-filtering. After tight packing, the aggregate image is much smaller than when using a

regular grid with resulting large savings in the overall texture memory occupancy.

Figure 5.6 - Packing impostors together.

Tight packing of the impostor samples reduces the amount of unused texture regions.

While the use of a tight packing strategy improves the overall texture memory consumption, it
also introduces some complications in the rendering process, due to the fact that the samples
are no longer disposed using a regular grid: individual texture coordinates need either to be
computed at run time, or to be precomputed and stored for each sample. The latter solution
was chosen for our system, computing the UV coordinates at preprocessing and storing them
in the impostor database. Then, at run time we use this information to compute on-the-fly the

right impostor’s size and orientation, in order to avoid distortions of the sample image.

5.4 Organisation of the texture working set

In principle, the best way to store the impostor samples would be to use a single, very large

texture for the whole impostor database, as this effectively minimises the number of context

An iﬁggé:bésed app};oach o the rendering of crowds in real-time 97

CHAPTER 5 - THE CROWD RENDERING SYSTEM

switches required during the run-time rendering phase. Apart from not being feasible due to
general hardware restrictions of the graphics hardware addressing system (a single texture-
map cannot generally be larger than 2,048 x 2,049 or 4,096 x 4,096 pixels), such a solution,
requiring a fixed amount of texture memory, would not exploit the fact that not all the
impostor images are necessary at all times. In fact, given a generic view direction and
elevation, a large proportion of the impostors images may not be used at all in a graphics
frame. For instance, while a view-point high with respect to the ground level may need all the
sampling levels of the impostors to be present in video memory to render a single frame, when
the view-point is close to the ground only the samples related to one elevation level may be

necessary, as depicted in Figure 5.7

Distance from viewpoint

Figure 5.7 - Some elevations of the camera needs a larger variety of samples to be rendered.

When the user viewpoint is close to the ground only one set of samples is needed (level 0).

Aside from tightly packing together the impostor images to avoid wasting texture memory
with unnecessary gaps between images, additional subdivisions of the database can thus be
used to optimise the texture allocated to impostors on a frame-by-frame basis. The main idea
is to use the large system RAM as an additional pool of memory, trying to keep in video
memory only the minimum amount of textures necessary for the impostors in each frame. In

this way, it becomes possible to exploit the image coherence between two consecutive frames,

An image-based approach to the rendering of crowds in real-time 98

CHAPTER 5 - THE CROWD RENDERING SYSTEM

swapping gradually over the slow bus only the data that really is useful for the next frame.
This form of fine organisation of the way impostors are subdivided, can effectively optimise
the way data transfers on the video bus, leading to a more effective virtualisation of video
memory and at the same time freeing more memory resources for normal polygonal rendering.
There are similar considerations in relation to the animation sequences: while the impostor
database could contain hundreds of key frames of animated characters (walking, running,
sitting or chatting) a generic visualisation frame may need just a subset of them. It was
realised that an effective strategy for impostors organisation is to subdivide the image samples
packing together all those related to the same object and to the same frame of animation (it
should be remembered that the same impostor database can contain images of different
objects, both animated or not), with a further subdivision on the basis of the sample from
which the elevation was taken. Even in those situations where the impostor approach requires
a large amount of memory to be allocated to the samples (because of the a large variety of the
crowd), this simple organisation strategy of the image database can effectively attenuate the
insurgence of severe texture memory trashing, generating smaller textures that are easier to
manage. Optimising the way the extra pool of system memory is used, detailed and complex
crowds can be rendered in real time with excellent performance even on a system equipped

with a limited amount of video memory, as it will be shown in Chapter 6.

5.5 Efficient run-time impostors management

Thanks to the minimal geometric complexity of the unstructured impostor representation, the
CrowdLib rendering performance does not depend on the visual complexity of the human
model represented, but rather on the combined computation taking place in what could be
called the crowd rendering pipeline (Figure 5.8). At the end of the capturing phase impostors
are fully stored in the database in the form of a collection of texture-maps, a set of geometrical
vertices defining the impostor planes and a set of texture coordinates that encode the mapping
from the image-space to the geometry. At run time, the virtual camera position goes through
the same discretization process used in the sampling phase, generating row and column
indexes that are used to look-up the corresponding impostor data. Once the vertices, texture
images and texture coordinates are retrieved, the impostor is rendered with the multi-pass
algorithm described in Chapter 3, with the lightness of this process making impostor

rendering so effective.

An image-based approach to the rendering of crowds in real-time 99

CHAPTER 5 - THE CROWD RENDERING SYSTEM

Row

Column

Image Database Geometry Database
Impostors Database

Figure 5.8 - The Lookup, Selection and Rendering phases of the crowd rendering pipeline.

The efficiency of the discretization algorithm is an important consideration for the
performance, as this operation needs to be performed by the CPU every frame and for every
impostor, but the management strategy of the OpenGL pipeline can also have a large effect
on rendering speed. The detrimental impact of frequent state changes is a well known
characteristic of rendering hardware, that in an attempt to exploit the intrinsic parallelism of
graphics operations, implements deep operation pipelines and a large number of registers.
Also, small high-performance cache memories are used inside the graphics hardware to speed-
up transformation and rasterisation of triangles (Figure 5.9). Cache-miss events result in
memory transfers and bus traffic, as there is a need to upload in the high-speed caches new
content, copying it from the local video memory. Even if high performance buses are used, the
plethora of little glitches associated to cache refilling inevitably contribute to sub-optimal
performance. Such a complex architecture can only work at full speed when there is not
frequent command and registers flushing.

From a software point of view, OpenGL is a simple state machine with two operations: setting
a state, and rendering utilizing that state. Reducing the number of times a state needs to be set
reduces the amount of work the graphics card and it's software driver have to do. This
technique is generally referred to as state sorting and attempts to organize rendering requests
based around the types of state that will need to be updated. Generally, the goal is to sort the
render requests and state settings based upon the cost of setting that particular part of the
OpenGL state. With regards to our crowd visualisation code, rendering is optimized by sorting
the virtual humans in the following order based on the most to least expensive state changes:
binding a texture, setting the modulating colour and changing the alpha test threshold.
CrowdLib sorts at run time the impostors by template model, then by the current key-frame of

animation, then by elevation of the virtual camera position and finally by impostor LOD based

An image-based approach to the rendering of crowds in real-time 100

CHAPTER 5 - THE CROWD RENDERING SYSTEM

Local-Bus Traffic:
Texture Trashing due to Texture Trashing due to

Figure 5.9 - The three stages of memory involved in the rendering process.

on the individuals distance, organising the rendering of the crowd accordingly. This reduces
the number of times that states have to be changed, and this includes the setting of lighting

parameters, alpha test enabling and disabling and texture loads and binds.

5.6 Taking distance into consideration

As pointed out in the previous paragraph, the worst case in terms of memory occupation when
using our impostors-based crowd visualisation technique is when the viewpoint is high with
respect to the ground, since this requires samples from all the different elevations to be
present in memory at the same time. For this situation an additional database optimisation
technique has been devised that can reduce the overall amount of texture memory needed at
run-time. A technique similar in principle to the concept of multiple LODs for polygonal
rendering is employed: the idea is to use less data for the far objects, exploiting the fact that
they need much less visual detail for rendering. There are conceptual differences from the case
of LODs for polygonal models, since the geometry of an impostor does not depend on the
object complexity, and being already minimal (an impostor has just 4 vertices) cannot be

further simplified. Still, two parameters can be varied as a function of the distance: sample

An image-based approach to the rendering of crowds in real-time 101

CHAPTER 5 - THE CROWD RENDERING SYSTEM

image size, that can be reduced as the distance of the object to replace increases, and number
of samples used to replace a single object. The strategy used in CrowdLib is to avoid having
multiple sets of textures at different resolution for the same object, and to reduce the number

of samples instead.

) AAL}

] e

4 Samples 8 Samples 16 Samples

Samples

Figure 5.10 - Using less samples for the distant characters.

The number of samples needed to approximate a character can be changed depending on the

distance from the viewpoint, as more distant characters can use less samples.

If we take the worst-case scenario (viewpoint hight with respect to the ground so that all the
samples related to all the elevations need to stay at the same time in texture memory) and refer
to Figure 5.10, it can be seen that some elevation levels (such as Level 0) only appear for the
most distant characters. When an impostor is so far away we can assume that reducing its
visual detail should not introduce notable errors in the final image. Instead of using smaller
object images, the technique used reduces the number of samples around the object that it is
necessary to keep in memory. This is done by subdividing the original single set of images (in
this example 32, but this number can vary depending on the precision we want to obtain from
our impostors), in four smaller chunks, (TEXTURE_ Group0,1,2,3) — see Figure 5.11. Note
that in this way TEXTURE_Group0 contains orientations 0,8,16, and 24, that are the four
main character orientations (East, South, West and North). At run time just these orientations
are used for the distant characters (those using Elevation Level 0), avoiding loading the other
texture groups and leaving in this way more video memory space available for closer levels.
For Elevation Level 1, more samples are added, introducing also TEXTURE Groupl,
containing orientation 4, 12, 20, 28 (South-East, South-West, North-West, North-East). Now

there is a total of 8 possible orientations to choose from, a rather better approximation.

An image-based approach to the rendering of crowds in real-time 102

CHAPTER 5 - THE CROWD RENDERING SYSTEM

TEXTURE_Group 0

TEXTURE_Group 1

2 B 10 14 18 2 2 30 |I TEXTURE_Group 2

TEXTURE_Group 3

Figure 5.11 - Subdividing textures to optimise memory management.

A single texture set can be subdivided in four smaller ones to alleviate the effects of texture

trashing in highly populated scenarios.
Similarly, adding TEXTURE_Group2 brings the total number of samples to 16, and those can
be used for intermediate elevation levels (2 and 3). Finally, adding TEXTURE Group3 brings
back all the original samples. This is what is needed for the impostors closer to the camera.
This further segmentation of the samples introduces some small overhead in terms of texture
switching, but it can greatly reduce the total amount of video memory in those situations
when it's more needed, that is when the viewpoint is high from the ground. It offers obviously
no advantages when the viewpoint is close to the ground and a single elevation level is present
for all the impostors, independently from the distance. In Figure 5.12 this additional stage is

added to the crowd rendering pipeline.

User ViewPoint 1’ -
; |
Direction Discretizer ‘
i)

[Renauans)

a
GLTRANGLES apoven |

Figure 5.12 - The complete run-time crowd rendering pipeline.

An%ige-ba;edia;p}o&crhrtro the 7rrenrder7i771g bf crowds in real-time 103

=

CHAPTER 5 - THE CROWD RENDERING SYSTEM

5.7 Visibility computation

View frustum culling is another classic optimisation technique that can be applied to crowd
visualisation to improve rendering performance avoiding rendering individuals hidden by
foreground geometry. The nature of urban environments helps with respect to the construction
of efficient occlusion tests: when the viewpoint is close to the ground, the buildings become
very effective occluders: large groups of humans may fall inside the view frustum but still be
occluded by buildings and therefore would be unnecessarily rendered were it not for occlusion
cullihg. As discussed in Chapter 4, occlusion culling of a dynamic crowd against a static
environment poses some new aspects in comparison to the classic scenario-to-scenario
situation, therefore dedicated algorithms to perform real-time occlusion culling on the moving
crowds have been developed.

By taking advantage of the properties of urban environments an occlusion method was
developed based on BSP tree merging [Naylor92]. The general strategy was to perform
occlusion computation in every frame and on every individual, inside a procedure called just
before the rendering phase of each frame. (Note: in the following the terminology from
[Naylor92] is used: a hyperplane is used to denote an infinite plane in 3D or line in 2D, while
a sub-hyperplane is the part of the hyperplane that falls within the domain of the sub-tree in

question)

Phase I — preprocessing: The first step of the approach involves building a KD-tree [Samet90]
on the scene geometry. This is a 2D tree using the x-y of the bounding boxes of the objects but
each node (leaf and internal) holds also the height of the geometry within it. The partitioning
planes of the KD-tree are restricted not only to be axis aligned but also to be coincident with a
tile edge of the collision detection grid. This ensures that any tile of the collision grid falls
neatly within a single tree leaf (of course a tree leaf can contain many tiles). An example of
the results of this process can be seen in Figure 5.13. Once the KD-tree is built, the algorithm

runs through each of the tiles and creates a pointer from it to the leaf that contains it.

An image-based approach to the rendering of crowds in real-time 104

CHAPTER 5 - THE CROWD RENDERING SYSTEM

Figure 5.13 - Subdivision of the scenario's occluders.

Phase II — Run Time: The second phase is performed once per frame, and takes place just
before the rendering of the crowd: we perform an occlusion test on the KD-tree, marking the
leaves that are visible with the ID of the current frame. When the rendering of the static
scenario is complete we start rendering the crowd; when we run through each individual,
before processing it any further, we check if the tile in which it resides holds a pointer to a leaf
that is visible in this frame or not and, in the latter case, we discard the impostor.

The algorithm to perform the occlusion test at each frame has two steps:

- First we build a BSP tree from the viewpoint using occluders selected in the previous
frame. This tree is similar to the SVBSP tree of [Chin89] but in 2D plus height.

- Then we merge the SVBSP and KD trees by inserting the former into the latter. This means
that the KD tree is not actually modified during the merging but rather when parts of it are
found to be in homogeneous regions of the SVBSP tree they are just rendered if the region
is marked visible or ignored if the region is marked occluded. The SVBSP tree on the other
hand is fragmented in the process but that is of little consequence since it changes in every

frame as the viewpoint moves and we have to rebuild it anew.

An image-based approach to the rendering of crowds in real-time 105

CHAPTER 5 - THE CROWD RENDERING SYSTEM

5.7.1 Occluder selection and building of the occlusion tree

The merging of the kd- and SVBSP trees is done is a front-to-back order with respect to the
current viewpoint. As we render the visible geometry in this order a list of the visible
buildings is kept, or other potential occluders which were marked as such in the pre-
processing. In the next frame, since it is assumed that the viewpoint moves smoothly rather
than jumps from point to point, these are still some of the closest good occluders. The SVBSP
tree starts as a tree made of the 4 edges defining the view volume. In this initial tree we add
one by one the occluder edges until they reach a leaf, in a manner similar to [Chin89]. If the
leaf reached is marked as visible, we replace the leaf using the occluder and its shadow edges.
Otherwise, if the leaf ID is marked as occluded, we leave it unchanged. The trees are merged
along the lines of the BSP tree merging described by Naylor [Naylor92]. It is possible to think
of the KD-tree as a BSP tree which has all the partitions being axis-aligned. We do an
intersection operation and we set the operand for intersecting a cell of the SVBSP tree with a
part of the KD-tree to display all the objects if the cell is marked as visible (Figure 5.14). If
the cell is marked as occluded, the height of the KD-tree node is compared against the height
of the occluded cell. If it is lower, everything in the KD-sub tree is occluded. If it is higher, we
test each of the children of the KD-tree recursively. If a leaf is still higher, we render the
objects in it.

A general merging algorithm, although very elegant, can sometimes be slow because of the
need to explicitly compute and maintain the sub-hyperplanes of the two trees being merged.
However in our case the problem is simpler than the general case and we can use that to our
advantage. Since we are inserting the SVBSP tree into the KD-tree, it is the sub-hyperplanes
of the latter that need to be computed and inserted into the SVBSP tree for the partitioning.

It should be noted that the hyperplanes of the KD-tree are trivially computed at almost no cost
since they are axis aligned edges and they remain unchanged throughout. The SVBSP tree
though is not axis aligned and it changes every frame. At first sight it seems difficult to find a
fast way of computing these, but the tree is essentially a 1D structure with height. Basically all
the planes start from the viewpoint and end at the far clip plane. The planes can be
parametrised with just one value, the angle around the viewpoint. Except for those of the
occluders themselves which are always bounded by the shadow planes and therefore cannot
extend out and intersect any other object (their sub-hyperplanes are the same as the edges

themselves), so there is no need to compute them explicitly. Sometimes during the

An image-based approach to the rendering of crowds in real-time 106

CHAPTER 5 - THE CROWD RENDERING SYSTEM

partitioning of a tree the face on a node that was separating two sub trees falls entirely on one
side of the partitioner and thus we need to merge together the parts of the two sub-trees which
fall on the other side of the partitioner.

— —

"
=

o

/- Mﬂ:*i
®) = ks

Figure 5.14 - Computing visibility.

The occluders are reported in red, while the green buildings are the

only geometry that is visible.

In such a case we will normally need to find the sub-hyperplane of one of these sub-trees to
use for the merging. Due to the 1D nature of the tree we can just do point insertion of one of
the sub-trees (using any point on that sub-tree) into the other, resulting in a very fast

algorithm.

5.8 Approximate shadowing of animated impostors

As introduced in Chapter 4, a 2D shadow height map can be used to store information about
the shadow volumes projected in a given urban scenario. A height map is used to represent the
area covered by the shadows of the static scene, and to compute, for a given light source, the
shadow planes enclosing the shadow volumes. Using this information, it is then possible to
compare the height of the people with the height of the shadows and to compute the dégree of
coverage of a human accordingly, and a two-regions texture can be used to simulate the effect

of the shadow over the impostor. The shadow planes can be computed in various ways; the

An image-based approach to the rendering of crowds in real-time 107

CHAPTER 5 - THE CROWD RENDERING SYSTEM

strategy adopted was to place a plane below the whole scene, searching for the intersection
between this plane and the rays going from the light source to each vertex in the urban model.
The original vertices together with the projected ones define, for each edge, a shadow plane.
The discretisation of the shadow volumes can be performed in a similar way to what we use
for the height map used in collision detection; the shadow volumes polygons are rendered in
an off-screen buffer and from a viewpoint placed on the top of the model, using an orthogonal
projection. From the z-buffer of this image, the depth information that we store at the usual
grid resolution is extracted. The height of the shadows relatively to the height of the objects is
given by the difference between the shadow height map and the original height map of the
geometry (Figure 5.15 (a) ,(b)). Note that this is 0 in area non-covered by shadows.

Fully lit

Different texture
coordinates

Fully shaded

Partially shaded

Height Map Shadow Volume Map

(@ (0) (©

Figure 5.15 — Height Map (a) and Shadow Volume Map (b) computed for the same scenario.

(c) a secondary 2-colours texture is overlapped to the impostor for additional shadowing effects.

Once this information is available, impostor shadowing is performed as it follows: while
characters move, their position is located on a 2D grid (usually the same used for collision
detection and ambient lighting). For each cell occupied by an agent, we check whether the
current height of the individual is higher than the height of the shadow stored in the shadow
volume map. The difference in height gives the percentage of coverage of the shadow on the
impostor. Since the discretised shadow volumes have a convex configuration, the number of
cases is limited to uncovered, partially covered and fully covered. When detecting in which
case the shading of the impostor corresponds, we set up the tag for the display. When fully

covered and uncovered, the impostor support polygon could be rendered either in white or

An image-based approach to the rendering of crowds in real-time 108

CHAPTER 5 - THE CROWD RENDERING SYSTEM

grey. When partially covered, we use a two regions (black and white) texture mapped onto the
impostor to reflect the shadow boundary (Figure 5.15(c)). When possible, this secondary
texture is applied using the multi-texturing feature of the graphic cards. When a second

texture unit is not available two rendering passes can be used instead.

5.8.1 Shadow texture coordinate computation
To correctly map the shadow texture, the appropriate texture coordinates need to be computed
for each impostor. As shadows rarely describe horizontal boundaries in a city lit by the sun,

the elevation value of the shadow normally

varies between adjacent cells. To detect the
inclination of the shadow, it is therefore

necessary to check the cells around the

occupied one, and check the difference in

depth. The idea is to compute an average out

of the shadow height of the neighbour cells,

weighted by the position of the particle inside

the current cell. This information is used to

simulate smooth transitions of shadow

elevation when a character is navigating the

environment, avoiding abrupt changes when

Figure 5.16 - Filtering the values of adjacent cells to

going from one cell to the other. Also, since

RN VA i g the particle can occupy any position inside a
single cell of the discretisation, proper shadow computation needs to consider the effective
position of the impostor within the cell. For faster computation, we separate the
neighbourhood into four quadrants, described by the connection of the middle of each cell
(Figure 5.16). The weighted average is done only considering the cells of the quadrant the
particle is in. Finally, as a shadow boundary can be computed for each side of the impostor, it
is also possible to display the inclination of the shadow. This has to be done at rendering time,

because the borders of the impostor are view dependent.

An image-based approach to the rendering of crowds in real-time 109

CHAPTER 5 - THE CROWD RENDERING SYSTEM

5.9 Summary

In this Chapter we have reported on some important details of the crowd rendering system that
bear on real-time performance. We have discussed the main factors influencing the overall
speed of the crowd rendering pipeline and presented how in our system impostors are created,
stored and retrieved. We detailed the data that is stored to represent the crowd as well as how
this data is compressed, segmented and organised (both at pre-processing and at run time). We
have also presented some implementation details on our occlusion culling algorithm for
crowds: a conservative technique based on from-region visibility that uses a combination of
data structures (a kd-tree and a SVBSP tree) to classify which parts of the scenario are
occluded from the camera viewpoint, to avoid the rendering of impostors that are inside
occluded regions. We detailed the construction of the kd-tree (done at preprocessing) and the
SVBSP tree (built once for every frame), explaining how the two trees are merged together at
run time to compute the occluded regions. Finally, we have provided some insight on our

shadowing method, showing how to achieve approximate building-to-impostors shadowing.

An image-based approach to the rendering of crowds in real-time 110

CHAPTER 6 - PERFORMANCE ANALYSIS

Figure 6.1 - A scene from the movie 'Troy’ (Warner Bros. - 2004).

This chapter presents the analysis of the performance of the Impostor based crowd rendering
system introduced in Chapter 5. We show the results of tests of speed and scalability
performance on a number of virtual scenarios that are populated with crowds. There are three
types of test employed: first we measured the raw speed of the unstructured impostors
approach after populating the scenarios with large crowds, showing that real-time
visualisations of complex environments populated with crowds exceeding thousands of
individual are in fact made possible by this method, followed by a detailed analysis of the
factors that affect the performance of the technique. We then compared the speed of this
approach to plain polygonal rendering to give a measure of the extreme performance boost
that can be achieved using an impostor based representation in a practical case. Finally, some
experiments were conducted to measure the impact on the impostors rendering performance
of the various advanced techniques presented in Chapters 3 and 4: approximate dynamic
lighting, per-pixel shading, ambient lighting effects, shadows casting/receiving, and visibility

culling.

An image-based approach to the rendering of crowds in real-time

CHAPTER 6 - PERFORMANCE ANALYSIS

6.1 Thesis Objectives Revisited

The motivation of this research was the need to populate complex virtual environments with
large crowds as a large population is an essential part for the perceived realism of a computer-
generated urban scenario. To achieve the necessary speed and be able to render thousands of
animated human-like characters in real-time, the image-based rendering approach of the
unstructured impostors was used. The goal was to be able to render more than 10,000
animated individuals in real time with sufficient variety and visual detail. An important
requirement was for the resulting rendering system to have the ability to be plugged into
existing scene graph systems, implying the capability to coexist with the traditional polygonal-
based rendering of complex scenarios. OpenGL1.1 was used for the main parts of the system
in order to maintain compatibility with the greatest number of systems, including the Cave
system at UCL, which was driven by a SGI Onyx reality engine, but we have also tested the
system on platform equipped with OpenGL1.3, as we wanted to investigate, when available,
the advanced effects made possible by the the additional features available in this API such as
per-pixel dot product and texture compression, with the purpose to prove the flexibility of this
approach and exploit its full potential.

6.2 Methods of Assessment

All the algorithms proposed in the previous chapters were implemented in C++, and
integrated inside existing scene-graph managers, therefore providing the opportunity to
conduct analytical tests and to assest the performance and characteristics of the method. We
selected some urban scenarios of increasing complexity and suitable for population with
virtual crowds. Three sets of tests were then performed: first the raw speed of the unstructured
impostors approach, populating the scenarios with large crowds and measuring the rendering
speed achieved when several parameters of the rendering system were varied (total population
number, use of multi-pass approach, number of frames of animation, use of per-pixel lighting
an such). Then we compared the speed of the approach to plain polygonal rendering to
measure the performance boost of the impostor based representation over the polygonal one in
a practical case. Finally, we measured the speed of impostors rendering when advanced
techniques such as impostors approximate dynamic lighting, per-pixel shading, ambient
lighting effects, shadows casting/receiving, and visibility culling are used. Relevant tests were

performed on two different target systems both equipped with OpenGL1.3 compliant graphics

An image-based approach to the rendering of crowds in real-time 112

CHAPTER 6 - PERFORMANCE ANALYSIS

hardware but with different performance level and a different amount of on-board dedicated

video memory, to study the dependency of the method from the PCs levels of performance.

6.3 Scenarios and characters models

We selected for our test three urban-like scenarios, each having its own peculiar
characteristics. The simpler scenario (Test Scenariol - Figure 6.2) represents a block of a
simplified urban model, with a variety of smaller and taller building, narrow alleys and larger
streets and is composed by 3,216 triangles. The simplicity of this scenario allows the use of
most of the graphics resources to the rendering of the crowd. The model was created using the

commercial modeler 3DStudioMax.

Figure 6.2 - Test Scenario 1: a simple urban-like scenario (3,216 triangles).

A second scenario used in the tests is the Garibaldi Square model, a 3D replica of real city

square located in the city of Nizza, France (Test Scenario2 - Figure 6.3).

Figure 6.3 - Test Scenario 2: the Garibaldi Square model (43,866 triangles).

An image-based approac_h to the rendering of crowds in real-time 113

CHAPTER 6 - PERFORMANCE ANALYSIS

The Garibaldi Square model was employed in the European-funded project CREATE
[Loscos03], and it is composed of 43,866 triangles. A large collection of real photographs and
the commercial software /mage Modeler from the company RealVIZ [RVImgmdl06] was
used for its creation. This model has more complex global illumination properties, especially
in the area of the porches around the square perimeter, and was used for the tests involving the

illumination algorithms presented in Chapter 3 and 4.

Figure 6.4 - Test Scenario 3: the town model (41,260 triangles).

The third scenario was a simple city model consisting of 41,260 triangles, representing a
simplified urban environment (Figure 6.4). It was used to perform measures on the
effectiveness of the occlusion culling algorithm, and for some performance tests on shadow-
related algorithms. To create the initial impostor database, as well as to measure the speed
benefits of impostor rendering against plain polygonal rendering, three sets of models of
human characters were used (Figure 6.5). Two of the triangular meshes are highly detailed
(the men and the woman characters in Figure 6.5-a and 6.5-b), and were created using the
commercial animation program Poser. The simpler mesh in Figure 6.5-c is a freely available
VRML 2.0 model. Models (a) and (b) possess a variety of animation key frames. Each key
frame is stored statically as an independent polygonal mesh, and no skeletal
animation/deformation is performed: every key frame has its own set of vertices data, while
they all share the same connectivity information and material properties structure. This
arrangement allows for very efficient rendering, but it leads to higher memory requirements
compared to skeletal animation, as quite an amount of memory is needed for each key frame
to store all the vertices data. The geometry is passed to the graphics hardware in the form of
OpenGL display lists, to reduce the CPU-GPU data traffic and maximize rendering speed.

An image-based approach to the rendering of crowds in real-time 114

CHAPTER 6 - PERFORMANCE ANALYSIS

(B)

Figure 6.5 - The character models used in the tests.
(a),(b): Two detailed polygonal meshes (21,414 triangles, 27,376 triangles)
(c) Low detail polygonal model (2,006 triangles).

6.4 Test systems

Measures on the implemented test system were conducted on two different computer
configurations, belonging to different performance class. In the following, Tests System Low
is the conventional name used for the less powerful machine, while Test System High is the
faster one. Both machines use Microsoft Windows XP, but they differ in processor speed,
maximum theoretical rendering speed, amount of system and video memory, and in the
technology used for the data bus connecting the CPU to the GPU, all factors that have an

influence on the performance of our impostor methods.

Test System Low:

Test System High:

An image-based approach to the rendering of crowds in real-time 115

CHAPTER 6 - PERFORMANCE ANALYSIS

6.5 Factors influencing impostor rendering performance

As the results of the tests reported in the following paragraphs will show, using impostors to
visualise crowds allows for rendering speed exceeding the thousands of units in real-time. A
performance analysis of this very powerful method must take in account that there are several
factors influencing its performance and limiting its maximum throughput. To help the
interpretation of the results obtained in our test, we can subdivide all the activities that are
performed every frame in what we can call the impostors rendering pipeline, reported in

Figure 6.6 as a pipeline of four main functional blocks:

Figure 6.6 - Representing the impostor rendering pipeline as a sequence of 4 functional blocks.

The first block (CPU-Based Impostor Computation) is intended to group all the activities
performed at the CPU level. This includes several operations: selection of the best fitting
impostors image, computation of the impostor geometrical parameters on the basis of the
current view-point position (this activity is performed on a per-impostor basis), impostor
orientation and frame of animation, geometrical transformations needed for per-pixel lighting
and additional computation related to shadow effects (when they are active). The second block
(CPU-GPU Data Traffic) represent the operations involved in passing data from the CPU to
the GPU such as vertex positions, texture coordinate, connectivity information, texture IDs,
colour and alpha related attributes and lighting parameters. As the CPU and the GPU are
physically separated, this traffic occurs on dedicate communication buses, such as the AGP
bus on older INTEL architectures(slower) and the PCI-Express bus (faster) on the newer
systems. The third block (GPU-Based Impostor Computation) groups all the operations
performed on the GPU to transform the impostor vertex position and to manage the OpenGL
state: current colour, texture ID, alpha threshold, per-pixel dot product information, etc.. The
last functional block of the pipeline (Impostors Pixels-filling) represents operations involved

in the rasterization process performed by the GPU to render the impostors.

An image-based approach to the rendering of crowds in real-time 116

CHAPTER 6 - PERFORMANCE ANALYSIS

It is not possible to state which, out of these four functional blocks, is the main bottleneck of
the method, as different architectures exhibit different behaviours: on older systems (such as
System Test Low) the second and fourth block often have greater impact on performance. The
limited bandwidth of the AGP bus (with respect to more modern solution) means that it can
frequently get 'jammed' when large amounts of data are passed between the CPU and GPU
and the system and video memory. Also, while the low geometrical complexity of the
impostor makes relatively light the geometry transformation phase, their rasterization needs
millions of pixels to be rendered on screen, placing a lot of stress on the fill-rate capabilities
of the hardware; techniques such as multi-pass rendering and per-pixel lighting introduce an
additional computational load that is mainly absorbed by the rasterization stage. On the other
hand, the evolution of modern graphics hardware toward supporting very complex per-pixel
operations, has produced a large increase in the fill-rate capability of the rasterizer, as well as
a large improvement of the CPU-GPU bus speed, and on the newer systems (System Test
High) it is frequently the first stage (CPU-based Impostors Computation) that is the slowest of
the pipeline.

6.6 Test1: Speed and scalability of the basic approach

The first set of tests were used to measure the performance and scalability of the basic
rendering technique. An increasing number of walking characters going around in pseudo-
random directions are rendered as depicted in Figure 6.7 using impostors only. There are
3,840 image samples in the impostor database, each of them having a maximum resolution of
128 x 128 pixels. The same size was used for all the tests reported in this Chapter. Figure 6.8
shows the average time to render a frame (computed over a sequence of 1,000 frames) against
the number of impostors composing the crowd. During the test the camera is kept orbiting
around the crowd. At this preliminary stage colour modulation is not yet performed, as the
test is used to evaluate the speed and scalability of the basic technique of impostor-based
crowd rendering. In particular, the test provides some insight into the speed of the view
direction sampling algorithm (black dotted line of Figure 6.8), as well as on the impact that
the frame buffer resolution has on the overall performance of the impostors method. The
results show that the frame rendering time linearly increases with the number of impostors on
both the tests systems (so the method scales up nicely), with the fastest machine showing

some non linearity close to the origin of the graph. These deviations from linearity are not due

An image-based approach to the rendering of crowds in real-time 117

CHAPTER 6 - PERFORMANCE ANALYSIS

to the impostor rendering algorithm, but to some peculiarities of our scene-graph
implementation, that also imposes a limit of 100 frame per second on the simulation rendering

speed.

Figure 6.7 - Rendering a crowd with the basic impostor algorithm

(colour modulation is not performed and no polygonal characters are rendered).

==e==Viewdirection sampling only ==e==Viewdirection sampling only
s Sampling + rendering (VGA) —=— Sampling + rendering (VGA)
—— Sampling + rendarning (XGA et Sampling + rendering (XGA
s Sampling + rendering (SXGA+) s Sampling + rendering (SXGA+)
280 ——— a5 - —

200 -

w
&

?)
£ :
o E 30
E 150 | 83
o ;
3 $ 25 |
§ §
1 E 2
g 0 ® 20
£
- E
15
50 - 4
10
ol i i R i i | sl | prodl b, L . i J
0 5000 10000 15000 20000 25000 30000 35000 0 5000 10000 15000 20000 25000 30000 35000
Number of impostors Number of impostors

Figure 6.8 - Average time to renderer a frame against the number of impostors.

The graphs reports measures obtained with Test System Low (left) and Test System High (right).

An image-based approach to the rendering of;owds in real-time 118

CHAPTER 6 - PERFORMANCE ANALYSIS

The graph shows clearly that an increase of the framebuffer resolution results in a slower
overall rendering speed of the impostors, due to the higher fill-rate requirements (a larger
number of pixels needs to be rendered for each impostors). Interestingly, the rendering speed
of Test System High appears unaffected by the screen resolution unless the population
exceeds 8,000 units. In all probability, this is due to the hight fill-rate performance of this
machine. In this case, the operation that limits the total impostor throughput is the time

needed by the CPU to sample the view direction and to compute the correct impostor image.

6.7 Test 2: The multi-pass colouring approach

This second test is used to measure the impact of the technique of colour modulation over the
basic impostor method. An increasing number of walking characters going around in pseudo-

random directions are rendered using impostors colour modulation as depicted in Figure 6.9.

Figure 6.9 - Introducing variety using colour modulation.

During rendering the camera is kept orbiting around the crowd. Figure 6.10 shows the average

frame rendering time (computed over a sequence of 1,000 frames) against the number

An image-based approach to the rendering of crowds in real-time 119

CHAPTER 6 - PERFORMANCE ANALYSIS

impostors composing the crowd. The framebuffer resolution is kept at XGA resolution (1,024
x 768 pixels). The results still show a linear increase of the frame rendering time for a
growing number of impostors on both the tests systems. As expected, the total rendering time
is influenced by the number of passes used for the impostors, as this increases the fill-rate
requirements of the technique; more rendering passes provide the ability to control the colour
of more regions on the impostor image, but also slow down the rendering. From the graph can
be seen how in the case of 4 rendering passes the System Test High machine exceed 20 Fps
for a population of 15,000 individuals. The same framerate is achieved by System Test Low

for a population of 5,000 individuals.

e TwO passes (XGA) —t—TwO passes (XGA)
Trres passes (XGA Three passes (XGA
e Four passes (XGA) =t Four passes (XGA)
==w==Single pass ~=n==Single Pass (XGA)

800 -~ e e

Time to render a frame (ms)
Time to render a frame (ms)

ot/ - — — — 0! — —

0 5000 10000 15000 20000 25000 30000 35000 0 5000 10000 15000 20000 25000 30000 35000

Number of impostors Number of impostors

Figure 6.10 - Average time to renderer a frame against the number of impostors.

The graphs reports measures obtained with Test System Low (left) and Test System High (right)

6.8 Test 3: Hybrid polygonal - impostor rendering

One of the important characteristic of impostors is their ability to coexist with normal
polygonal rendering. We conducted several tests on hybrid crowd visualisation, using
polygonal models for the individuals in the foreground and impostors to replace the far ones,
as exemplified in Figure 6.11. In the context of the present section a single Level of Detail is
used for the polygonal mesh, while section 6.9 analyses what happens when impostbrs are
introduced in a LODs-based rendering system.

Test Scenariol was populated with a crowd of 5,000 individual (Figure 6.12). One of the

high-complexity triangle meshes reported in Figure 6.5-b is used for each individual in case of

An image-based apprc;cﬂ- to the rendering of crowds in real-time 120

CHAPTER 6 - PERFORMANCE ANALYSIS

polygonal rendering (the detailed female model), while we use for the impostors the same
database of 3,840 image samples as used for Testl. Modulating the colour of the different
body part of each individual is used both on the impostors and on the polygonal model to
enhance the crowd visual variety. Colours are synchronized between the polygonal model and
the impostors. In this case, the polygonal models are pre-lighted with a generic skylight effect

(using texture mapping), so switches between the two representations are hardly noticeable.

Figure 6.11 - Mixing polygonal characters and impostors.
Polygonal meshes are used for the characters in the foreground, while the
background individuals are rendered using impostors. Impostors colour modulation

is kept off for illustration purposes only.

Figure 6.12 - Mixing polygonal characters and impostors (Test Scenario 1).

An %bge:based apprr;z;a’chi to the r&de;u;g b}éroﬁdﬁ in real-time 121

CHAPTER 6 - PERFORMANCE ANALYSIS

The scene is rendered with the virtual camera moving along a precomputed trajectory
consisting of 1,000 discrete steps. For each step, corresponding to a frame of our simulation,
we measured the frame rendering time, including the time to render the crowd as well as the
time to do the rendering the model of the urban environment. The camera transits along a
descending oval and is always pointed to a fixed target, placed near the centre of the

environment (Figure 6.13).

Figure 6.13 - The camera trajectory used for Test 3.

This trajectory has a strong impact on the rendering system in several ways: when the camera
is high over the environment, perspective projection makes the individuals appear very small
on screen. As they occupy now less pixels, both polygonal rendering and impostor rendering
makes it less fill-rate intensive. This has only a limited performance impact in the polygonal
case, as rendering speed is mostly limited by the geometrical transformation of the vertex data
(represented by the GPU-based impostor computation functional block). On the contrary,
impostors benefit from having a smaller on-screen size (as demonstrated by Testl) as their
rendering speed is basically fill-rate limited. On the other hand, when the camera is high over
the environment our impostors algorithm tries to keep in texture memory a larger amount of
image samples, due to the amount of different impostor inclinations present at once in the
scene, as pointed out in Chapter 5, thus placing more stress on the memory management
procedure. As the camera advances over its precomputed path, it's elevation with respect to
the ground level becomes smaller, resulting in the need to maintain in video memory a smaller
variety of impostors image samples, but at the same time requiring to render larger impostor

images, thus placing more load on the triangle rasterizer. The camera path also offer a good

7 Arni imége—based approach tb }Ze rgade;;g ofér;wd; 1}; re;z}-tirhe - 122

CHAPTER 6 - PERFORMANCE ANALYSIS

mix of visibility conditions, varying from full visibility of the scene in proximity of the more

external points of the curve, to the restricted visibility of the central parts of the trajectory.

1 x Activation distance
—&— 4 x Activation distance
—%— 8 x Activation distance
- =% - - Fully polygonal crowd Many individuals on screen — small size

2000 / T \ L T L R
i S S Mo i e
d | ’
g ’.
i e | el LA LA
o ’\}/”J\N‘\&;_(«_/J\/w ’

Frame number Few individuals on screen — large size

Figure 6.14 - Measuring how the introduction of impostors affects the rendering speed of large crowds.
The black curve refers to plain polygonal rendering, while the red, blue and green curves show the rendering
speed (for different activation distances) when impostors are used to replace the characters in the

background. Each impostor replaces a polygonal mesh composed of 21,414 triangles.

Figure 6.14 shows the results obtained during the simulation (Test System High was used in
this case). Four different measures are reported: the slowest simulation (in black) refers to
plain polygonal rendering - no impostors were used in this case and even the more distant
individuals are rendered with their full geometry. It can be seen that the frame rendering time
has a cyclical profile. This is due to the different visibility resulting from the camera trajectory
and the consequent view frustum culling. Frames with less individuals in the field of view are
the fastest to be rendered. It must be noted also that no visibility culling (neither view-frustum
culling nor occlusion culling) was explicitly performed by our framework; it is likely that the
higher speed in regions with a lower visibility may be due the view frustum culling performed
directly by the OpenGL graphics driver. The fastest rendering, reported by the red curve in the
graph, was obtained when using the polygonal models for the rendering of the foreground

individuals and impostors for the characters in the background. It is easy to see from the

An image-based approach to the rendering of crowds in real-time 123

CHAPTER 6 - PERFORMANCE ANALYSIS

graph how large a speed gain can be obtained by the introduction of our impostors technique
in the rendering of large crowds. The distance of each character from the camera is used to
choose between the polygonal model or the impostor: if the distance is greater than a given
threshold (that we named activation distance) the impostor replaces the polygonal geometry.
In the case of the red curve, the value used as activation distance was the same distance used
when, at pre-processing time, the character was sampled to build the impostors database: at
that distance the impostor is an exact visual replica of the object it replaces. The blue curve
reports the frame rendering time if impostors are used only when the distance from the camera
is four times the activation distance used in the case of the red curve. Similarly, the green
curve represents the situation at eight times the normal activation distance. Obviously,
delaying the use of impostors using larger-than-necessary distances from the camera does not
allow for the same speed gains as in the previous case, but the graphs show that even using
extremely conservative parameters the method still achieve large speed-ups over plain
polygonal rendering (average 353%, maximum 504%). The sporadic spikes that at times
occur in the graphs are due to concurrent (and not controllable) CPU activity, and need not to
be considered caused by any simulation or rendering activity.

The test was then repeated using a simpler polygonal model to represent each individual in the

crowd (we used the mesh depicted in Figure 6.5-c, composed by 2,006 triangles).

Figure 6.15- Mixing polygonal characters and impostors.

Simple polygonal meshes are used for the characters in the foreground, while the background .

individuals are rendered using impostors.
In this case impostors replace much simpler polygonal objects, so that the benefits introduced
by impostors could be expected to be inferior than to the previous case. The graph in Figure

6.16 shows the measures that we get from the test, repeating the criteria used before (a total

An image-based approach to the rendering of crowds in real-time 124

CHAPTER 6 - PERFORMANCE ANALYSIS

population of 5,000 individuals, 3 different choices for the activation distance). The average
rendering speed is in this case higher than before, but the same general consideration are still
valid: replacing distant individual with impostors allows for large speed gains over the use of

plain polygonal rendering, even when using extremely conservative parameters.

1 x Activation distance

—&— 4 x Activation distance
—e— 8 x Activation distance
% - - Fully polygonal crowd

300 —— — —

200

Time to render a frame (ms)
8
XK

M M‘v’MWM
50 [y ettt

o e ‘-w S |

100 vwww"m ,,.,W W%M M w
M W

Whira Y]
Aprt A A
Wk bbb Ak i U e WY

0 200 400 600 800 1000

Frame number

Figure 6.16 - Measuring the benefit of impostors when they replace simpler polygonal models.
The black curve refers to plain polygonal rendering, while the red, blue and green curve measure the
rendering speed (for different activation distances) when impostors are used to replace the characters in the
background. Each impostor replaces a polygonal mesh composed of 2,006 triangles (curves appear noisy due

to the limited granularity (1ms) of the timer).

6.9 Test 4: Speed comparison against LODs rendering

Additional tests were conducted in order to measure the impact on performance of the use of
impostors when they are added to a rendering system capable of Level Of Detail management.
We repeated the rendering conditions of Test 3 using for the animated crowd 4 polygonal
LODs consisting of 21,414, 5,070, 1,876, 920 triangles. The four meshes (Figure 6.17), were
generated using automatic simplification inside 3DStudioMax. It must be noted that any
automatic simplification process is prone to introduce visual artefacts in the resulting meshes;
we purposely ignored this effects, as our interest was the speed comparison between a purely

polygonal approach against the combination of polygons and impostors. A manual (time-

An image-based approach to the rendering of crowds in real-time 125

CHAPTER 6 - PERFORMANCE ANALYSIS

consuming) simplification of the polygonal models it is likely to produce better looking

model, but this has no effect on the final frame-rate of the simulation.

Figure 6.17 - Using multiple LODs for crowd visualisation.
From left to right, model complexity:21,414 , 5,070 , 1,876 , 920 triangles.

As in any LODs based system, the full resolution mesh is used for the foreground individuals,
while the background characters are replaced by simpler models; having now four different
meshes available, multiple activation distance are used for the various levels. Figure 6.18
shows how the LODs are distributed in the crowd depending on the distance from the camera

(fake colouring of the various LODs is used for illustration purposes).

Figure 6.18 - Using static polygonal LOD:s to render a crowd.

Detailed meshes are used for the characters in the foreground, and simpler static LODs are

used as the distance from the view point increases (fake colouring for illustration purposes).

An image-based approach to the rendering of crowds in real-time

CHAPTER 6 - PERFORMANCE ANALYSIS

Similarly to Test 4, a crowd of 5,000 individual is used to populate the Test Scenario 1, as
depicted in Figure 6.19. The impostor database remains as in the case of Test2, and is created
from the high-resolution mesh. When the simulation runs, the virtual camera moves inside the
environment following the same precomputed animation path of Test2. For each step, the total
rendering time was recorded, including both the rendering of the crowd and the rendering of
the urban environment model. The OpenGL framebuffer is kept at XGA resolution (1024 x
768 pixels).

Figure 6.19 - Populating Test Scenario 1 with a LODs - based polygonal crowd .

The test was executed under several different conditions, gradually introducing the use of
LODs and finally impostors: the black curve in the graph of Figure 6.20 reports the timing we
get when a single mesh (the detailed one) is used for each individuals and impostors are not
used. The red curve shows what happens when we start using a single additional LOD in the
simulation: the second most detailed mesh (5,070 triangles) replaces in this case all the
individuals in the background. This produces a speed-up of the rendering, but the beneficial
effects are still limited. With the introduction of a second LOD (blue curve) the simulation is
much faster. In this case 21,414 triangles are used for the foreground characters (the detailed
mesh), 5,070 triangles for the middle ones, and finally 1,876 for those in background. In
terms of speed, the best results obtained with polygonal only rendering are shown by the
yellow curve: all 4 of the LODs, including the 920 triangles model, are in use, and the system
shows a very large speed gain (average 315%, maximum 430%) over the single detailed mesh
case. Still, the curve reported in green shows that the speed obtained using just a single LOD

plus the impostors for the distant characters is much higher then in all the other cases.

An image-based approac7 to the rendering of crowds in real-time 127

CHAPTER 6 - PERFORMANCE ANALYSIS

==8==1LOD
—21L0Ds
—e—3L0Ds
4 LODs
1 LOD + Impostors (1 x activation distance)
2000 — ———— —
-’l,-_!'./..‘\ l{' ."--SL"; .{t‘ l':‘l::.a: Ut Tt 2
. 0/ AN Y o/ N ¥
) I % Y ;/
1500 N ¥ \ N (5
L v “
\ . \ ‘

1000 | oy

Time to render a frame (ms)

g
J =
T
//
5‘-"{../-"“
:t-.:g e ———
: 7.‘.....”"&
‘ |
/

Frame number

Figure 6.20 - Measuring rendering time in the LODs - based system.
The black curve is referred to plain polygonal rendering, while the red, blue and green curve measure the
rendering speed (for different activation distances) when impostors are used to replace the characters in the
background. Each impostor replace a polygonal mesh composed by 2,006 triangles.

6.10 Test 5: Increasing the number of samples
An important aspect of impostor-based crowd rendering is related to the amount of texture
memory needed to store the impostors data. As discussed in Chapter 3, sampling key-framed
animated geometry implies that many images have to be independently stored in memory; for
crowds that are composed of a large variety of animated models this process may generate a
very large amount of data. As seen in Chapter 5, when the amount of textures exceed the
storage space available on the high-performance video memory of the graphics hardware, a
memory virtualisation mechanism of OpenGL transforms the main system RAM in an
additional pool of resources. In this case, frequent data transfer operations between the system
RAM and the video RAM have a detrimental effect on overall rendering speed.
The following test examined how the performance of the two test systems are affected by the
number of samples stored in the impostors database. Similarly to Test 1 and 2, a crowd of
walking characters going around in pseudo-random directions is rendered, but in this case the
number of keyframes stored in the database is varied, while the total population is always kept
at 5,000 individual. During rendering the camera is kept orbiting around the crowd. A single,

128

An image-based approach to the rendering of crowds in real-time

CHAPTER 6 - PERFORMANCE ANALYSIS

oversampled walking animation was decided for practical reasons, but the results have a
general validity as the impostors rendering speed has a low dependency on the particular
animation stored in the image database. To avoid all of the impostors being 'synced' on the
same keyframe, the starting animation frame for each character is decided randomly. The
framebuffer resolution is kept at XGA resolution (1024 x 768 pixels), and the tests were
repeated on both Test System Low and Test System High. Impostors images resolution is kept
at a maximum of 128 x 128 pixels. The graphs in Figure 6.21 and 6.22 report the average
frame rendering time (computed over a sequence of 1,000 frames) against the number of
keyframes used for the crowd animation. The results show an increase of the frame rendering
time proportional to the number of keyframes of animation stored in video memory. As
expected, the performance degradation is more visible in System Test Low, that having a
smaller amount of dedicated video memory starts earlier to use the OpenGL memory
virtualisation mechanism, while Test System High experiences performance degradation at a
later stage. The graph also show that even with 600 keyframes stored in the impostors

database the System Test High machine exceed 20 Fps for a population of 15000 individuals.

Average time to render a frame against number of stored keyframes (Test System Low)

800
700
600
500

400 -

300 - 3 S : :
200
0 ol I 1 | il | il i) |
15 30 45 60 75 90 120 150 180 210 240 360 480

Number of keyframes

Time to render a frame (ms)

(=

8

Figure 6.21 - Measuring rendering speed for different amount of impostor data (Test System Low).

The graph reports the average time to render a frame when more animation keyframes are introduced.

An image-based approdzh to the rendé;ing of crowds in real-time 129

CHAPTER 6 - PERFORMANCE ANALYSIS

Average time to render a frame agai of stored key (Test Sy High)

50 Tt e B sl ot — e

30 45 60 75 90 120 150 180 210

Number of keyframes

40

30

20

Time to render a frame (ms)

10 |

15

Figure 6.22 - Measuring rendering speed for different amount of impostor data (Test System High).

The graph reports the average time to render a frame when more animation keyframes are introduced.

6.11 Advanced impostors effects

The tests reported in the previous paragraphs were used to asses the speed and scalability of
the basic technique of impostor rendering applied to the real-time rendering of crowds.
Additional tests were then conducted to measure the impact on the rendering performance of
this approach of the various advanced techniques presented in Chapter 3 and 4: approximate
dynamic lighting, per-pixel shading, ambient lighting effects, shadows casting/receiving, and

visibility culling. The following paragraphs presents the results.

6.11.1 Test 6: Approximate dynamic lighting

This test measured the rendering speed of the system when the effects of local lights sources
are introduced in the scene using the technique presented in Chapter 3 (Figure 6.23). Similarly
to Test 1 and 2, an increasing number of walking characters going around in pseudo-random
directions are rendered with the camera orbiting around the crowd; the graph in Figure 6.24
shows the average frame rendering time (computed over a sequence of 1,000 frames) égainst
the total number of impostors rendered and for an increasing amount of light sources.

The black column shows the rendering time when no lights are present (i.e. standard impostor

rendering is performed), the red column reports the rendering time when a single local light

An image-based apprzoéc}»{t’o the rende;ihé oféfc;wds in real-time 130

CHAPTER 6 - PERFORMANCE ANALYSIS

Figure 6.23 - Dynamic illumination of a crowd using a variety of local lights configurations.

source is present, and the blue line is referred to a scenario where 10 randomly coloured light
sources are present. The position of the lights does not change over time. The display window
was set to XGA resolution (1,024 x 768 pixels). The results show a negligible impact (less
that 1%) of this technique on the speed of impostor rendering for both the test systems.

B No local lights B No local lights
B One local light One local light
B Tenlocal lights Ten Local lights

350 T - 60 — —

300 50

250

200

30

150

Time to render a frame (ms)
Time to render a frame (ms)

20

: . . .I | |
0 1§ |- 1
000 4000

8000 16000 31999

100 -

50

1000 2000 4000 8000 16000 31999 1000 2

Number of impostors Number of impostors
Figure 6.24 - Testing dynamic lighting.
Average time to renderer a frame against the number of impostors for an increasing number of local lights.

The graphs reports measures obtained with Test System Low (left) and Test System High (right).

6.11.2 Test 7: Per-pixel impostor lighting
This test measured the rendering speed of the system when the per-pixel lighting (presented in

Chapter 3) is activated, and compares the results to standard impostor rendering, where a

An imégé-ba;ved app;;aichitotTeriender;ngof crowds in real-time 131

CHAPTER 6 - PERFORMANCE ANALYSIS

generic (and fixed) illumination is hard-coded in the image samples. Similarly to Test 1 and 2,
an increasing number of walking characters going around in pseudo-random directions are

rendered, while the virtual camera is orbiting around the crowd (Figure 6.25).

Figure 6.25 - Impostors per-pixel lighting. Testing speed and scalability of the method.

The position of the light source changes during the test, moving over the crowd along a

circular trajectory. The display window was set to XGA resolution (1,024 x 768 pixels).

M Standard lighting B Standard lighting
W Per-pixel lighting B Per-pixel ighting

Time to render a frame (ms)
N
S
8

Time to render a frame (ms)

100

3 -‘.
o il
1000 2000 4000

8000 16000 31999

Number of impostors Number of impostors
Figure 6.26 - Testing per-pixel lighting.
Average time to renderer a frame against the number of impostors using standard or per-pixel lighting. The

graphs reports measures obtained with Test System Low (left) and Test System High (right).

The graph in Figure 6.26 shows the average frame rendering time (computed over a sequence

of 1,000 frames) against the number impostors composing the crowd and for an increasing

An image-based appf;)éch to the rendering (-)f crowds in real-time 132

CHAPTER 6 - PERFORMANCE ANALYSIS

amount of light sources: the black column shows the rendering time in the case of standard
lighting and the red column reports the rendering time when per-pixel lighting computation is
activated (a single local light source is present). The graphs show a relatively small impact of
this technique (20% slower in the worst case) over precomputed (static) lighting. This is even
more evident for Test System High (reported on the right), that apperas to be more efficient in

handling per-pixel operations.

6.11.3 Test 8: Ambient lighting

Figure 6.27 - Taking in account ambient light intensity in the Garibaldi Square scenario.

This test measured the rendering speed of the system when the ambient lighting technique
presented in Chapter 4 is used, and compares the results to standard impostor rendering. When
using the ambient lighting algorithm the global colour intensity of the impostor images
becomes modulated depending on the position of the impostors on the scenario. The images in
Figure 6.27 show the effects of intensity modulation for different lighting conditions across
the model. The 2D light intensity map for this scenario is stored at a resolution of 512 x 512
values. Similarly to Tests 1 and 2, an increasing number of walking characters going around in
pseudo-random directions are rendered. During the tests the camera moves along a
precomputed trajectory composed by 1,000 steps (that is also the total number of rendered
frames), The framebuffer was set at XGA resolution (1,024 x 768 pixels). The graphs in
Figure 6.28 report the average frame rendering time against the number of impostdrs that
compose the crowd with and without using ambient lighting modulation. The black column
reports the rendering time for standard lighting, the red column reports the rendering time

when ambient lighting modulation is activated. The graphs suggest a relatively small impact

An image-based approach to the rendering of crowds in real-time Jo8

CHAPTER 6 - PERFORMANCE ANALYSIS

(less than 3%) of this technique over using a constant ambient light intensity.

B Standard lighting B Standard lighting
Bl Ambient lighting B Ambient lighting

30— A S

300 -

250 ~

200

150 ~

Time to render a frame (ms)
Time to render a frame (ms)

100 -~

| .
, ‘-_-
1000 2000 4000 8000

Number of impostors Number of impostors

16000 31999 1000 2000 4000 8000 16000 31999

Figure 6.28 - Testing ambient lighting.
Average time to renderer a frame against the number of impostors with or without the ambient lighting

algorithm. The graphs reports measures obtained with Test System Low (left) and Test System High (right).

6.11.4 Test 9: Shadowing effects

This test measured the rendering speed of the system when the shadow methods presented in
Chapter 4 are used, and compares the results to standard impostor rendering. We populated
Test Scenario 3 (the town model) with an increasing number of individuals walking around,
performing also collision detection and a simple form of obstacles avoidance. The images in
Figure 6.29 show different lighting conditions and different views of the model populated by
10,000 animated people. We tested both impostors-to-environment shadow casting (using the
fake shadow technique) and the environment-to-impostors technique, using the information
stored in the shadow height map whose creation takes less than 2 second for such a model,
including shadow volume vertices computation (which takes only 0.1 second). This map is
then stored at a resolution of 4096 x 4096 values, representing for each cell the elevation of
the shadow (quantized on 24 bits). During the tests the camera moves along a precomputed
trajectory composed by 1,000 steps (that is also the total number of rendered frames). The
framebuffer was set to XGA resolution (1,024 x 768 pixels).

An image-z&d;])broach to th;r‘ada;g of crowds in real-time 134

CHAPTER 6 - PERFORMANCE ANALYSIS

Figure 6.29 - Testing speed and scalability of our shadow methods in the Test Scenario 3.

The graphs reported in Figure 6.30 show the average time to render a frame against the
number of impostors that compose the crowd: the black column reports the timings obtained
when the populated scene is rendered without any shadow effect. The red column shows
timings obtained after turning on shadow projection of the humans on the floor (fake shadows
method). The blue column shows the results when everything is simulated, including the
shadows projected by the buildings on the humans. The measures reported on the graph show
that the additional computational cost of shadow computation and display is fairly low (less

than 25%) even when updating more than 30,000 moving characters.

B No Shadow B No Shadows
B Shadows on the fioor B Shadows on the fioor
B Shadows on the floor + on the impostors W Shadows on the floor + on the impostors
600 100
500
80 H
2 &
< 400 - =
2 £
g & 60
® ®
s 300 3
£ =
3 8
2 -} 40
2 o
E 200] £
- -
20
100
1000 2000 4000 8000 16000 31999 1000 2000 4000 8000 16000 31999
Number of impostors Number of impostors

Figure 6.30 - Testing shadowing effects.
Average time to renderer a frame against the number of impostors with or without shadows effects . The

graphs reports measures obtained with Test System Low (left) and Test System High (right).

An ir;zaéé-based 7ap'p;"07achr to the riendeir;igiof crowds in real-time 135

CHAPTER 6 - PERFORMANCE ANALYSIS

6.11.5 Test 10: Occlusion culling performed on crowd

This test measured the rendering speed of the system with or without the occlusion culling
algorithm presented in Chapter 4. We populated the Test Scenario 3 (the town model) with an
increasing number of individuals walking around and performing collision detection and a
simple form of obstacles avoidance. The left picture in Figure 6.31 shows how the buildings
in an urban scenario can be very effective occluders. During the tests the camera moves along
a precomputed trajectory composed by 1,000 steps (that is also the total number of rendered
frames). The framebuffer was set to XGA resolution (1,024x768 pixels).

Figure 6.31 - Performing real-time occlusion culling on the crowd (Test Scenario 3).

We populated the environment with a increasing number of individuals, and measured the
effects of the occlusion culling algorithm, reporting on the graphs of Figure 6.32 the average
time to render a frame against the number of impostors that compose the crowd. The black
columns shows the timings for the scene rendered without occlusion culling, while the red
columns represents the results for the system when occlusion culling is turned on. The figures
proves that in the case of highly populated urban environments our occlusion culling
algorithm can lead to large rendering speed gains (up to 300%) even when graphics primitive

as simple as impostors are used to represent the crowd individuals.

An image-based approach to the rendering of crowds in real-time 136

CHAPTER 6 - PERFORMANCE ANALYSIS

B Occlusion Culling OFF B Ocdlusion Culling OFF
B Occlusion Culling ON B Ocdusion Culling ON

o - 70 —T T

350 60

300 ¢
50 -

250 ~

200
150
100 ¢
‘mhl
0 | L L ! 1 ol

1000 2000 4000 8000 16000 31999 1000 2000 4000 8000 16000 31999

40

30 +

Time to render a frame

Time to render a frame (ms)

Number of impostors Number of impostors

Figure 6.32 - Testing crowd occlusion culling.
Average time to renderer a frame against the number of impostors with or without occlusion culling . The

graphs reports measures obtained with Test System Low (left) and Test System High (right).

6.12 Discussion

The tests carried out and discussed in this section demonstrate that image-based impostors
can be used to visualise large crowds in real-time. When used to visualise a large number of
animated characters, unstructured impostors offer a very good performance/quality ratio, and
their high effectiveness as a light yet powerful rendering primitive leads to rendering speeds
that are clearly superior to the case of normal polygonal models. With a geometrical
complexity independent of the objects they represent, their rendering speed is linear in the
number of primitives, as shown in test results reported in Sections 6.6, to 6.9. Even advanced
effects, such as per-pixel lighting or shadowing do not introduce significant modifications to
the overall rendering speed, as can be seen by tests reported in Section 6.11. With respect to
memory usage, the tests reported in Section 6.10 shows that on recent hardware significant
variations within the crowd can be achieved before incurring a severe performance
degradation; what this means in practice is that crowd variety is more likely to be limited by
the amount of modelling resources than by the use of a large amount of texture memory.
Finally, the use of impostors makes it possible to visualise very large crowds on common
graphics hardware, reaching rendering speeds that would be impossible to reach using plain

polygonal rendering.

An image-based a;;ﬁréach to the rendering of crowds in real-time 137

CHAPTER 6 - PERFORMANCE ANALYSIS

6.13 Summary

This Chapter investigated the performance of the impostor-based approach to the rendering of
crowds in real-time. Three types of test were used: first we measured the raw speed of the
unstructured impostors approach after populating three test scenarios with large crowds,
followed by an analysis of the factors that affect the performance of the technique. The
scalability of the method was also investigated, with progressive increments of the number of
simulated characters. The measures confirm the effectiveness of impostors as an acceleration
technique. With a very light geometric complexity, the overall rendering performance of
impostors is mainly fill-rate limited. A speed comparison with traditional polygonal rendering
was also performed, confirming the extreme performance boost that can be achieved
introducing impostor based rendering in a generic scene graph implementation, and showing
how impostors can improve system performance even when they coexist with polygonal
character rendering. Results confirm also that impostors are compatible (and beneficial) when
integrated into a polygonal LOD system. Finally, experiments were conducted to measure the
impact on the impostors rendering performance of the various advanced techniques presented
in Chapters 3 and 4: approximate dynamic lighting, per-pixel shading, ambient lighting
effects, shadow casting/receiving, and visibility culling. All tests were carried out on systems
having different levels of performance, to better assess the dependence of the methods from

the overall hardware architecture.

An image-based approach to the rendering of crowds in real-time 138

CHAPTER 7 - CONCLUSIONS

Figure 7.1 - A scene from the movie 'Star Wars Episode II: attack of the clones’ (Lucasfilms — 2002).

he present chapter will conclude this thesis with a summary of research objectives
and achievements. A review of research aims is presented in order to review what
were the motivations behind the choice of unstructured impostors as the
fundamental rendering primitive for crowds. A summary of the contributions will illustrate
the novel features of this work for the field of Computer Graphics. A review of the
implications will follow, discussing the impact the work has on present and future projects.
Possible extensions of what has been achieved will be discussed and some final conclusions

will be presented.

 An image-bésed approach to the rendering of crowds in real-time

CH4pPTER 7 - CONCLUSIONS

7.1 Summary

This thesis is focused on an image-based rendering approach to the task of real-time crowd
rendering. The thesis has proposed the use of animated unstructured impostors as a method to
achieve interactive frame rates for the visualisation of tens of thousands of moving virtual
characters. Chapter 1 is an introduction to the task of crowd rendering that provides the
motivation and explains the complexity of this task. Chapter 2 reviews existing literature on
the visualisation of complex environments focusing, in particular, on those techniques that are
used to visualize crowds. Polygonal-based, point-based and image-based rendering techniques
are discussed, with an analysis of the weak/strong points of each approach. Chapter 3
proposes the use of impostors for the rendering of crowds. Also, techniques are presented to
allow impostors to the reproduction of fine-scale illumination effects on basic OpenGL1.3
compliant hardware. The principles of the néw methods are discussed, and arguments are
proposed as to why this approach has the potential to outperform alternative approaches in
many situations. Chapter 4 discusses the compatibility of unstructured impostors with
polygonal-based scene graph architectures, and the possibility to mix different rendering
approaches. Also, topics as global lighting, shadow casting and visibility computation are
discussed. The research for this thesis required the realization of a rendering system and a
fully functional set of tools and software libraries to populate complex environments with
animated crowds, and these were described in Chapter 5. The results of substantial tests with
this framework was reported in Chapter 6.

7.2 Review of aims

The research focused on a new solution to the problem of efficient real-time rendering of
animated crowds, motivated by the need to populate complex Virtual Environments, since this
is an essential part for the perceived realism of a computer-generated urban scenario. The goal
that we pursued was to be able to render more than 10,000 animated avatars in real time with
sufficient variety and visual detail. The analysis has shown that by compensating or
attenuating the weak aspects of static, unstructured impostors, a new flexibility can be
achieved that in some scenarios such as crowd rendering, makes them an effective and

practical alternative to classic polygonal-only rendering.

An image-based approach to the rendering of crowds in real-time 140

CHAPTER 7 - CONCLUSIONS

7.3 Summary of contributions

The main contributions of this thesis were in the area of real-time rendering of complex
virtual environments. An approach was presented that has made it possible to render large
animated crowds at interactive frame-rates. To accomplish this, achieving at the same time a
very high rendering speed and being able to render thousands of animated human-like
characters in real-time, an innovative image-based rendering approach was proposed that
made use of the hybrid approach provided by unstructured impostors. The results have shown
that impostors are excellent for crowd rendering. The visual realism of the impostor
representations is one of the clear advantages this method has over other approaches, such as
using low detail polygonal models, since at certain viewing distances, it is almost impossible
to determine whether the high-resolution model or the impostor is being rendered.

It should be noted that a qualitative analysis of the output produced by replacing far geometry
with impostor is outside of the scope of this thesis. Building on the fundamental unstructured
static impostor technique, an in-depth analysis of this matter, as well as the perceptual aspects
of impostors rendering can be found in [Dobbyn06]. Dobbyn presents a system employing
various geometrical LOD representations in order to visualise crowds at a real-time frame
rate. The visual performance of the rendering system is in this case tuned by perceptually
evaluating the effectiveness of impostors and low resolution meshes at replicating a highly
detailed model’s visual appearance. Dobbyn describes several experiments on visual
perception: each experiment participant is simultaneously presented with two virtual humans
using a high resolution mesh, a low-resolution mesh and an impostor at a particular distances,
testing their ability to discriminate whether the two models are identical or not. The
participant’s responses for each case are recorded, and a psychometric function is applied to
this data for each distance at which the virtual humans were displayed. The goal is to provide
a guide to when a low-resolution mesh or an impostor could be used in place of the high
resolution mesh without a user detecting the reduction of detail in the character’s appearance.
In order to demonstrate the flexibility of impostors based rendering, we also proposed several
techniques to augment the basic approach with advanced features such as per-pixel impostors
lighting, global illumination and visibility computation for animated crowds. Most of the
proposed algorithms only need the standard features of OpenGL1.1, insuring the applicability
of the code on almost every available platform. Even per-pixel lighting and shadow mapping,

both of which require the use of OpenGL1.3 or other dedicated extension, do not need

An image-based approach to the rendering of crowds in real-time 141

CHAPTER 7 - CONCLUSIONS

programmable hardware, and are easily replicable on any simple fixed-pipeline system.
A final important result is that the new rendering technique can coexist with traditional
polygonal-based rendering of complex scenarios and is integrable with preexisting scene-

graphs software.

7.4 Implications of this work

The results of the research reported in this thesis have been presented in a series of
publications: the initial approach of unstructured animated impostors for the visualisation of
large crowds was presented in [TecchOOb]; the use of multi pass rendering to allow a more
precise control over the impostors colour was presented in [Tecch01b]; the topic of impostor
shadows and shading was further developed in [Losc01]; the effectiveness of impostors
packing strategy as a way to further preserve video-memory was presented in [Tecc02b]; per
pixel lighting and related effects was presented in [Tecc02a][Tecch02c]. ‘

Moreover, to demonstrate the viability and flexibility of the approach, a large rendering
system was developed. In the context of this system, several additional topics regarding crowd
visualisation were also examined and addressed, generating additional innovative material on
crowd-oriented collision detection (published in [Tecc00a]), a test platform for crowd
behavior tests [TeccOla], and crowd visibility computation [TeccOlb, Tecc02b]. Up to the
present day, more than 50 publications have cited our work, including State Of The Art
Reports [Jesch05, Ryder05]. In some cases, our work is the core upon which other researchers
have developed their work [Coic05, Dobbyn05]. Finally, the EU project CREATE [Losc03]
used the crowd rendering module developed during this thesis. Other projects that we were

not involved in reimplemented the same basic technique.

7.5 Critical review

In this thesis, we explored the use of unstructured static impostors as a viable approach to the
rendering of several thousand virtual humans walking around a virtual city at an interactive
frame rate. Static impostors involves the pre-rendering of an impostor image of an object for a
collection of reference viewpoints around. Sharing many concepts with the scalable technique
of point-based rendering, impostor rendering is focused on the image side of the sampling

process, and used to remove geometry complexity from where, in many situations, there is not

An image-based approach to the rendering of crowds in real-time 142

CHAPTER 7 - CONCLUSIONS

a great requirement of geometrical information. The main advantage of unstructured
impostors is their minimal geometrical complexity, that is totally independent from the
complexity of the objects that they replace, leading to an enormous improvement in rendering
speed. The ratio between computation needs and preserved visual details of an impostor
simply can't be matched by any other rendering primitive.

There remain, of course, some problems with the use of impostors: they require large amounts
of dedicated memory, they do not allow many geometrical effects to be applied (but this is
logical, since they contain only limited geometrical information), and they can introduce
visual artifacts in the final generated image. Still, as the graphics capability of the rendering
hardware continues to evolve, resource limitations lose importance, and approaches to
mitigate or even to remove the remaining problems can potentially be developed. In many

ways, we could state that the use of impostors for real-time rendering is future-proof.

7.6 Future directions

The basic technique of crowd rendering using impostors has a great potential for future
developments. In particular, the following sections discusses three topics that the authors

consider especially relevant.

7.6.1 Vertex and pixel shaders

An important initial design requirement for the research was that, in order for the new method
to have a real impact on existing scene-graph architectures, the resulting algorithms needed to
have a practical implementation on a vast range of hardware platforms. As a result, and as
reported above, most of the techniques described here have an OpenGLI1.1 compliant
implementation, with only the most advanced effects requiring OpenGL1.3. Therefore, the
method is nowadays usable on practically every single existing platform. Also, continuous
advances in graphics card fill rate performance, a speed limiting factor in the case of
impostors, are making this approach more and more attractive. Also, to the best of our
knowledge, the set of algorithms here reported and their implementation represent the fastest
possible approach, amongst all those presented, for real-time crowd rendering on a standard
OpenGL pipeline architecture.

Relaxing this strict portability constraint would greatly increase the extensibility of the

An image-based approach to the rendering of crowds in real-time 143

CHAPTER 7 - CONCLUSIONS

method. In particular, the possibility to exploit the powerful per-pixel, per-fragment and per-
vertex capabilities of the new generations of graphics hardware using high-level shading
languages opens a whole new world of possibilities for impostor based rendering, as
programmable graphics hardware gives a much finer control on vertices and pixels
computation. Complex rendering algorithms that were before only possible on the CPU can
nowdays be executed on the GPU, avoiding the bottleneck of CPU-GPU data transfers. Per-
pixel displacement mapping, dynamic ambient occlusion, GPU-based computation of shadow
volumes using the impostor's silhouette are just examples of interesting research directions,
and improvements of our technique that use advanced hardware capabilities are emerging

already.

7.6.2 Dynamical impostors generation

While the use of static impostors produce faster rendering than dynamic impostors, the latter
have the advantage to require less video-memory. A practical implementation of dynamically
generated impostors involves the capability to perform rendering tasks into off-screen pixel
buffers (often called pbuffer), a technique usually associated with computationally expensive
context switch and frame buffer/texture memory operations. With the recent introduction from
the OpenGL ARB community of the EXT framebuffer object extension into the official
OpenGL specification [Segal04], the opportunity now arises for a much more efficient
handling of the process. Beside its efficiency in terms of data transfers between frame memory
and texture memory, the main advantage of the framebuffer object is that it only requires a
single GL context, resulting in no switching between pbuffers, a much faster approach to the
dynamic recreation of a texture.

Although this extension would improve the performance of generating an impostor image for
a character’s mesh at run-time, careful testing should be performed to asses the real potential
of dynamic impostors, as the effectiveness of this technique relies heavily on re-using the
current impostor image for a large number of frames for it be efficient, since the character’s

full geometry needs be rendered each time the image is updated.

7.6.3 Impostors clustering
Another extension of what we proposed would be to render several pre-generated impostors

to the frame buffer object, and dynamically generate a single impostor containing these

An image-based approach to the rendering of crowds in real-time 144

CHaPTER 7 - CONCLUSIONS

characters, something similarly to what Wand et al. are doing for their Point Based Rendering
technique [Wand02]. The advantage of this is that crowds in the background could be
rendered as a single large dynamically generated impostor, thus reducing the number of draw
calls per frame. While this could be done using a low-resolution mesh, it would still involve
rendering several thousand polygons. In the case of applications that are populated with a
large-scale regimented army, a single row of characters utilizing the pre-generated impostor
could be dynamically generated as a single impostor image, and reused several times in the
regiment. For example, a row of a thousand soldiers walking in step could be dynamically
generated as a single impostor each time a new key-frame is needed, and subsequently reused
a thousand times over the subsequent frames until the next key-frame, thus allowing the real-
time visualisation of an army of a million soldiers. This would reduce the number of draw
calls from a million to either two thousand (a thousand individuals and a thousand rows) when
the current frame requires the image to be dynamically updated to reflect the soldiers’ new
key-frame, or a thousand (1,000 rows) when the current frame is in between key-frames.

7.7 Conclusions
This thesis has demonstrated that Image Based Rendering, and in particular the hybrid

technique of unstructured animated impostors represents a very effective approach to the real-
time rendering of large animated crowds. Beyond this, with the constant growth of available
memory resources and the progressive improvement of frame-buffer access performance, that
up until recently have been amongst the bigger obstacles to the use of impostors, it can be
seen that there will be an increasing importance of these type of primitives, not only for the
visualisation of crowds, but, more in general, for the rendering of a large class of visual
phenomena. As the visual complexity of virtual environments increases, there is a growing
need for advanced graphics primitives that can decouple the rendering of small surface details
from their geometrical representation and placement. The availability on modern graphics
hardware of feature such as texture compression, hi-speed data transfers, and per-pixel
computing capabilities, demonstrates a new and flexible way forward, making it possible to
address with IBR techniques a whole new series of application scenarios. Without requiring
any dramatic change in existing scene-graph management, the hybrid technique of impostor
rendering fits perfectly in an evolutionary, and not revolutionary, scheme of things. The author

expects to see more and more of this powerful technique in use in the future.

An image-based approach to the rendering of crowds in real-time 145

REFERENCES

[Airey90] J. Airey, "Increasing Update Rates in the Building Walkthrough System with AutomaticModel-Space
Subdivision and Potentially Visible Set Calculations”, PhD thesis, Department of Computer Science, University
of North Carolina at Chapel Hill, TR#90-027, 1990

[Ar6stegui05] M. Ardstegui, J.M. Miguel Fernandez, T. Gutierrez and J.I. Barbero. “Virtual fire safety
environment”, Virtual Concept 2005, November 2005

[Aube198] A. Aubel, R. Boulic and D. Thalmann. “Animated impostors for real-time display of numerous virtual
humans”, Proceedings of the 1st International Conference on Virtual Worlds (VW-98), volume 1434 of LNAI,
pages 14-28, Berlin, July1998

[Aubel99] A. Aubel, R. Boulic, and D. Thalmann, “Lowering the cost of virtual human rendering with
structured animated impostors”, Proceedings of WSCG 99, Plzen, Czech Republic, 1999

[Aubel00] A. Aubel, R. Boulic, and D. Thalmann, “Real-time display of virtual humans: Levels of details and
impostors”, IEEE Transactions on Circuits and Systems for Video Technology, 10(2):207-217, 2000

[AutMaya06] Autodesk Maya modelling package, http://usa.autodesk.com/adsk/servlet/index?siteID=123112

[Band98] S. Bandi and D. Thalmann, “Space Discretization for Efficient Human Navigation”, Proceedings of
Eurographics 98, Computer Graphics Forum, Vol. 17(3), pp.195-206, 1998.

[Blinn76] J.F. Blinn and M.E. Newell, "Texture and Reflection”, Computer Generated Images, CACM, Volume
19, Number 10, pp. 542-547, 1976

[Blinn82] J. Blinn and F. James, “Light Reflection Functions for Simulation of Clouds and DustySurfaces'”,
Computer Graphics Forum, Volume 16, Number 3, pp. 21-29, July 1982

[Blinn88] James F. Blinn, “Me and My (Fake) Shadow”, IEEE ComputerGraphics and Applications, Volume 8,
Number 1, pp. 82-86, January 1988

[Carrozzino05] M. Carrozzino, F. Tecchia, S. Bacinelli and M.Bergamasco “Lowering the Development Time of
Multimodal Interactive Application: The Real-life Experience of the XVR Project", Proceedings of ACEOS,
Valencia, Spain,2005 ’

[Catmu74] E. Catmull, “4 Subdivision Algorithm forComputer Display of Curved Surfaces”, PhDThesis, Dept.
of Computer Science, Universityof Utah, Salt Lake City, Utah, U.S.A., 1974

An image-based approach to the rendering of crowds in real-time

CH4PTER 7 - CONCLUSIONS

[Catmull75] E.A. Catmull, “Computer Display of Curved Surfaces”, Proceedings of the Conference on Computer
Graphics, Pattern Recognition and Data Structure, pp. 11-17, May 1975

[CiechomskiO5] P. de Heras Ciechomski, S. Schertenleib, J. Maim, and D. Thalmann. “Reviving the roman
odeon of aphrodisias: Dynamic animation and variety control of crowds in virtual heritage”, Proceedings of
VSMMOs, 2005

[Clans06] E-frontier's Curios Labs Poser modelling package http://www.e-frontier.com/go/poser6/whatsnew

[Chin89] N. Chin and S. Feiner, “Near real-timeshadow generation using bsp trees”, Computer Graphics Forum
(SIGGRAPH 89 Proceedings), pages 99—106, July 1989

[Chen93] S. E. Chen and L.Williams, “View Interpolation for Image Synthesis”, Proc. SIGGRAPH ’93. In
Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH, pp. 279-285, 1993

[Chen95] S. E.Chen, “QuickTime® - An Image-Based Approach to Virtual Environment Navigation”,
Proceedings of SIGGRAPH '95, ACM SIGGRAPH, pp. 29-37, 1995

[Chin89] N. Chin, and S. Feiner, “Near real-time shadow generation using BSP trees”, ACM Computer
Graphics, 23(3):99-106, 1989

[Ciechomski04] PdH. Ciechomski, B. Ulicny and R. Cetre, “4 case study of a virtual audience in a

reconstruction of an ancient roman odeon in aphrodisias”, Proceedings of VASTO04 conference, 2004

[Ciechomski0S5] PdH. Ciechomski, S. Schertenleib, J. Maim, D. Maupu and D. Thalmann, "Real-time Shader
Rendering for Crowds in Virtual Heritage", Proceeding of the VAST 05 conference, 2005

[Clark76] J. H. Clark, “Hierarchical geometric models for visible surface algorithms”, Communications of the
ACM, 19(10):547-554, October 1976

[Cohe95] J. Cohen, M. Lin, D. Manocha, and M. Ponamgi. “/-collide: An interactive and exact collision
detection system for large-scale environments”, Proceedings of ACM Interactive 3D Graphics Conference, pp.
189-196, 1995.

[Coic05] J.M. Coic, C. Loscos, and A. Meyer, “ ThreeLOD for the Realistic and Real-Time Rendering ofCrowds
with Dynamic Lighting”, Research Report RR-2005-008, Laboratoire d’InfoRmatique en Images et Sys-témes
d’information, Université Claude Bernard, France, 2005.

[Cox99] M. Cox, L. Oestreicher, C. Quinn, M. Rauterberg, M. Stolze, “HCI - Theory or practice in education”,
Human-Computer Interaction--INTERACT-99 (Vol. 2, p. 134), Edinburgh Press, 1999

An image-based approach to the rendering of crowds in real-time 147

CHaPTER 7 - CONCLUSIONS

[Crow77] F. Crow, “Shadow Algorithms for Computer Graphics”, Computer Graphics (SIGGRAPH '77),
Volume 11(2), pp.242-248,1977.

[Csuri79] C. Csuri, R. Hackathorn, R. Parent, W.Carlson and M. AND Howard, "Towards an Interactive High
Visual Complexity Animation System", 1979

[Dally96] W.J. Dally, L. McMillan, G. Bishop and H. Fuchs, "The Delta Tree: An Object-Centered Approach to
Image-Based Rendering", Artificial Intelligence Memo 1604, Massachusetts Institute of Technology, May 1996

[Day05] A.M. Day, and J.M. Willmott , "Compound Textures for Dynamic Impostor Rendering", Computers and
Graphics, vol. 29, no. 1, pp. 109-124, 2005

[Darsa97] L. Darsa, B. Costa, and A. Varshney, “Navigating StaticEnvironments Using Image-Space
Simplification and Morphing”, ACMSymposium on Interactive 3D Graphics, pp. 25-34, 1997

[Debevec02] P. Debevec, “Image-Based Lighting”, Computer Graphics and Applications, March/April 2002,
Pages 26-34

[Decor99] X. Decoret, G. Schaufler, F. Sillion, and J. Dorsey, "Multi-layered impostors for accelerated
rendering”, Computer Graphics Forum, 18(3):61-73, September 1999 (Proc. of Eurographics *99).

[Decor03] X. Decoret, F. Durand, F. Sillion, and J. Dorsey, “Billboard clouds for extreme model simplification”,
ACM Transaction on Graphics, 22(3):689-696, 2003

[Drettakis04] G. Drettakis, M. Roussou, N. Tsingos, A. Reche and E. Gallo, “Image-based Techniques for the
Creation and Display of Photorealistic Interactive Virtual Environments”, Proceedings of the Eurographics
Symposium on Virtual Environments, June 2004

[Disc3dMax06] Autodesk 3DStudio Max modelling package, hitp://usa.autodesk.com
[Dobbyn05] S. Dobbyn, J. Hamill, K. O'Conor and C. O'Sullivan, "Geopostors: A Real-Time Geometry/Impostor
Crowd Rendering System", ACM SIGGRAPH 2005 Symposium on Interactive 3D Graphics and Games, pp. 95

-102, 2005.

[Dobbyn06] S.Dobbyn, “Hibrid representations and perceptual metrics for scalable human simulation”, P.h.D.
Thesis, Trinity College, Dublin, 2006

An image-based approach to the rendering of crowds in real-time 148

CHAPTER 7 - CONCLUSIONS

[Eyles97] J. Eyles, S. Molnar, J. Poulton, T. Greer, A. Lastra, N. England, and L. Westover, “PixelFlow: The
Realization”, Proceedings of the ACMSIGGRAPH / EUROGRAPHICS workshop on Graphics Hardware, New
York, The ACM Press, p. 57-68, 1997

[Forsyth01] T. Forsyth, “Comparison of VIPM methods”, Game Programming Gems 2, M. DeLoura, Editor,
Charles River Media, pp. 363-376, 2001

[Funkhouser92] T.A. Funkhouser, C.H. Séquin, S.J. Teller, “Management of large amounts of data in
interactive building walkthroughs”, Proceedings of the 1992 symposium on Interactive 3D graphics, p.11-20,
Cambridge, Massachusetts, United States, June 1992

[Greene93] N. Greene, M. Kass, and G. Miller, “Hierarchical z-buffer visibility”, Proceedings of SIGGRAPH
93, pages 231- 240, 1993

[Gortler96] S.J. Gortler, R. Grzeszczuk, R. Szeliski andM. F. Cohen, “The Lumigraph”, Proceedings of
SIGGRAPH 96, in Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH, pp. 43-54,
1996

[Gott96] S. Gottschalk, M. Lin and D. Manocha, “OBB-Tree: A Hierarchical Structure for Rapid Interference
Detection”, SIGGRAPH 96 Conference Proceedings, Annual Conference Series, pp. 171-180, Addison Wesley,
August 1996.

[Gosselin05] D. Gosselin, P. Sander, and J. Mitchell, “Drawing a crowd”, ShaderX3, pages 505-517, 2005

[Gouraud71] H. Gouraud, ”Continuous shading of curved surfaces”, 1EEE Transactions on Computers, 20(6):
623-628, 1971

[Heidmann91] T. Heidmann, “Real Shadows, Real Time”, Iris Universe, 18:28-31, Silicon Graphics, Inc., 1991

[Hillier76] B. Hillier, A. Leaman, P. Stansall, and M. Bedford, (1976) “Space syntax”, Environment and
Planning B: Planning and Design,, Volume 3 (2), pp. 147-185, 1976

[Hoppe97] H. Hoppe, H. “Progressive meshes”, In Proceedings of the 23rd Annual Conference on Computer
Graphics and interactive Techniques SIGGRAPH '96, ACM Press, New York, NY, 99-108, 1996

[Hubb93] P. M. Hubbard, “Interactive collision detection”, Proceedings of IEEE Symposium on Research
Frontiers in Virtual Reality, October 1993

An image-based approach to the rendering of crowds in real-time 149

CH4PTER 7 - CONCLUSIONS

[lourcha99] K. lourcha, K. Nayak, Z. Hong, “System and Method for Fixed-Rate Block-based Image
Compression with Inferred Pixels Values”, US Patent 5,956,431, 1999

[Lin98] M. Lin and S. Gottschalk, “Collision Detection between Geometric Models: A Survey”, Proceedings of
IMA Conference on Mathematics of Surfaces, 1998

[Jensen01] H. W. Jensen, S. R. Marschner, M. Levoy, and P. Hanrahan, “4 Practical Model for Subsurface Light
Transport’, Computer Graphics Proceedings, Annual Conference Series, 2001, August 2001

[Jesch02] S. Jeschke and M. Wimmer, “Textured depth meshes for real time rendering of arbitrary scenes”,
Proceedings on Eurographics Workshop on Rendering, 2002

[Jesch05] S. Jeschke, M. Wimmer, and W. Purgathofer, “Image-based representations for accelerated rendering
of complex scenes”, In Eurographics 2005 STAR Report 1, 2005

[Kim02] T.Y. Kim, “Modeling, Rendering and Animating Human Hair”, PhD thesis, University of Southern
California, 2002

[Laveau94] S. Laveau, O.D. Faugeras, “3-D Scene Representation as a Collection of Imagesand Fundamental
Matrices”, INRIA Technical Report No. 2205, February 1994

[LengG90] J. Lengyel and M. Reichert, B.R. Donald and D. P. Greenberg, “Real-Time Robot Motion Planning
Using Rasterizing Computer Graphics Hardware”, Computer Graphics, Volume 24(4), pp. 327-335, August
1990

[Levoy85] M. Levoy and T. Whitted, “The Use of Points as a Display Primitive”, Technical Report 85-022,
Computer Science Department, University of North Carolina at Chapel Hill, January, 1985

[Lischinski92] D. Lischinski, F. Tampieri, and D. P. Green-berg, “Discontinuity meshing for accurate radiosity”,
1IEEE Computer Graphics and Applications, Volume 12(6), 25-39, November 1992

[Lipman80] A. Lippman, “Movie-Maps: An Application of the Optical Video disk to Computer Graphics”,
Proceedings of SIGGRAPH 80, 1980

[Losc01] C. Loscos, F. Tecchia, Y. Chrysanthou, “Real Time Shadows for Animated Crowds in Virtual Cities” —
ACM Symposium on Virtual Reality Software & Technology 2001, Banff, Alberta, Canada, November 2001

[Losc03] C. Loscos, H.R.Widenfeld, M.Roussou, A.Meyer, F.Tecchia, G.Drettakis, E.Gallo, A.R.Martinez,
N.Tsingos, Y.Chrysanthou, L.Robert, M.Bergamasco, A.Dettori, S.Soubra, "The CREATE project: mixed reality
Jor design, education, and cultural heritage with a constructivist approach”, Proceedings of The Second IEEE

An image-based approach to the rendering of crowds in real-time 150

CHaPTER 7 - CONCLUSIONS

and ACM International Symposium on Mixed and Augmented Reality, 2003

[Luebke95] D. Luebke, C. Georges. “Portals and mirrors: Simple, fast evaluation of potentially visible sets”,
1995 Symposium on Interactive 3D Graphics, pages 105-106, ACMSIGGRAPH, April 1995

[Maciel94] P.W.C. Maciel , “Interactive Rendering of Complex 3D Models in Pipelined Graphics
Architectures”, Technical Report TR403, Department of Computer Science, Indiana University, 1994

[Maciel95] P.W.C. Maciel and P. Shirley, “Visual navigation of large environments using textured cluster”,
Symposium on Interactive 3D Graphics, pages 95-102, April 1995, ACM SIGGRAPH

[Max95] N. Max, K. Ohsaki, "Rendering Trees from Precomputed Z-Buffer Views", 6® Eurographics Workshop
on Rendering, pp. 45-54, June 1995

[Mark97] W.R. Mark, G. Bishop: “Memory AccessPatterns of Occlusion-Compatible 3D ImageWarping”,
Proceedings of Siggraph/Eurographics Workshop on Graphics Hardware, 1997, pp. 35-44, 1997

[MCCo0100] MCCool, “Shadow volume reconstruction from depth maps”, ACM Transactions on Graphics,
Volume 19(1), pp. 1-26.

[McMillan95] L. McMillan, G. Bishop, “Plenoptic Modeling: an image-based rendering system”, In Computer
Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH, pp. 39-46, 1995

[Meyer01] A. Meyer, F.Neyret, and P. Poulin. “Interactive rendering of trees with shading and shadows”,
Proceedings of Eurographics Workshop on Rendering, July 2001

[Mysz95] K. Myszkowski, O.G. Okunev and T.L. Kunii, “Fast collision detection between complex solids using
rasterizing graphics hardware”, The Visual Computer, Volume 11(9), pp. 497-512, Springer-Verlag, 1995

[Molnar92] Molnar, S., J. Eyles and J. Poulton. "PixelFlow: High-Speed Rendering Using Image Composition"
Computer Graphics: Proceedings of SIGGRAPH '92, Chicago, USA, pp. 231-240 July 1992

[Musse97] S. R. Musse and D. Thalmann. “4A model of human crowd behavior: Group interrelationship and
collision detectionan alysis”, Eurographics '97 Workshop on ComputerAnimation and Simulation, pages 39-52,
Budapest, Hungary, 1997

[Naylor90] B. Naylor, J. Amanatides and W. Thibault, “Merging BSP Tress Yields Polyhedral Set Operations”,
ACM Computer Graphics, Volume 24(4), pp. 115-124, August 1990
[Naylor92] B. F. Naylor ,“Interactive solid geometry via partitioning trees”, Proceedings of Graphics Interface

An image-based approach to the rendering of crowds in real-time 151

CHAPTER 7 - CONCLUSIONS

92, pp. 11-18, 1992

[Wand02] M. Wand and W. Straler, "Multi-resolution rendering of complex animated scenes”, Computer
Graphics. Forum, 21(3), 2002

[Phong75] B. T. Phong, "Illlumination for Computer Generated Images", Comm. ACM, Volume 18(6), pp. 311-
317, June 1975

[Pulli97] K. Pulli, M. Cohen, T. Duchamp, H. Hoppe, L. Shapiro, W. Stuetzle, “View-based Rendering:
Visualizing Real Objects from Scanned Range and Color Data”, Rendering Techniques 97, Proceedings of the
Eurographics Workshop on Rendering, pp. 23-34

[Reeves83] W. Reeves, "Particle Systems - A Technique for Modeling a Class of Fuzzy Objects", Computer
Graphics, Volume 17(3), pp. 359-376, July 1983

[Ryder05] G. Ryder, and A. M. Day, “Survey of Real-Time Rendering Techniques for Crowds”, Computer
Graphics Forum, Volume 2(2), PP. 203 -, June 2005

[Ryder06] G. Ryder, and A. M. Day, “High Quality Shadows for Real-Time Crowds”, Proceedings of
Eurographics 2006 (short paper), Vienna, 2006

[Ross92] J. Rossignac, A. Megahed and B.0. Schneider, “Interactive inspection of solids: Cross-sections and
interferences”, Computer Graphics, Volume 26(2), pp. 353-360, July 1992

[RVImgmdl06] RealViz Image Modeler modelling package, http://imagemodeler.realviz.com/

[Samet90] Hanan Samet, “The Design and Analysis of Spatial Data Structures”, Series in Computer Science.
Addison-Wesley, Reading, Massachusetts,U.S.A., reprinted with corrections edition, April 1990

[Schaufler95] G. Schaufler, “Dynamically generated impostors”, GI Workshop on Modeling, Virtual Worlds,
Distributed Graphics, Bonn, Germany,1995

[Schaufler97] G. Schaufler, “Nailboards: A rendering primitive for imagecaching in dynamic scenes”,
Proceedings of Eurographics Rendering Workshop 1997, pp. 151-162, New York City, NY, 1997, Springer
Wien

[Schaufler98] G. Schaufler, “Per-Object Image Warping with Layered Impostors”, Proceedings of the 9th
Eurographics Workshop on Rendering’98, pp.145-156, Vienna, Austria, 1998

[Segal0l] M. Segal, and K. Akeley, K, “The OpenGL graphics system: a specification (version 1.3)”,
http://www.opengl.org. 2001

An image-based approach to the rendering of crowds in real-time 152

CHAPTER 7 - CONCLUSIONS

[Segal04] M. Segal, and K. Akeley, K, “The OpenGL graphics system: a specification (version 2.0)”,
http://www.opengl.org. 2004

[Shade96] J. Shade, D. Lischinski, D. Salesin, T. DeRose, and J. Synder. “Hierarchical image caching for
accelerated walkthroughs of complex environments”, SIGGRAPH 96 Conference Proceedings, pp. 75-82,
August 1996, ACM SIGGRAPH

[Shoup73] R. Shoup, “Some quantization effects in digitally-generated pictures”, Proceedings of Society for
Information Display, 1973

[Soler98] C. Soler, F. X. Sillion, “Fast Calculation of Soft Shadow Textures Using Convolution”, Proceedings of
SIGGRAPH 98, pp. 321-332, 1998

[Stamminger02] M. Stamminger and G. Drettakis, “Perspective shadow maps”. ACM Transactions on Graphics
(SIGGRAPH 2002), Volume 21(3), pp. 557-562, 2002 ‘

[Sudarsky96] O. Sudarsky and C. Gotsman, “Output-Sensitive Visibility Al-gorithms for Dynamic Scenes with
Applications to Virtual Reality”, Computer Graphics Forum, Volume 15(3), Proceedings of Eurographics 96,
pp. 249-258, 1996

[Suth63] I. Sutherland, “SKETCHPAD: A Man Machine Graphical Communication System”, Proceedings of the
AFIPS Spring Joint Computer Conference , pages 329-346, April 1963

[Tecch00a] F. Tecchia and Y. Chrysanthou, “Real time visualisation of densely populated urban environments:
a simple and fast algorithm for collision detection.”, EurographicsUK 2000, Swansee, UK, April 2000

[Tecch00b] F. Tecchia and Y. Chrysanthou, “Real-Time Rendering of Densely Populated Urban Environments”,
Eurographics Workshop on Rendering 2000, Brno, Czeck Republic, July 2000

[TecchOla] F. Tecchia, C. Loscos, R. Conroy and Y. Chrysanthou, “Agent Behaviour Simulation (ABS): A
Platform for Urban Behaviour Development”, Proceedings of GTEC'2001, Hong Kong, January 2001

[Tecch01b] F. Tecchia, C. Loscos and Y.Chrysantou, “Real-Time Rendering of Populated Urban Environment”,
Siggraph Sketches & Applications, Los Angeles, August 2001

[Tecch02a] F. Tecchia,C. Loscos and Y. Chrysantou, “Real-Time rendering of virtual crowds” ,Proceedings of
Imagina 2002, Monte Carlo, February 2002

[Tecch02b] F. Tecchia, C. Loscos and Y. Chrysanthou, “Image Based Crowd rendering”, IEEE Computer

An image-based approach to the rendering of crowds in real-time 153

CHaptER 7 - CONCLUSIONS

Graphics & Applications, Volume 22(2), March-April 2002

[Tecch02c] F. Tecchia, C. Loscos and Y. Chrysanthou, “Visualizing Crowds in Real-Time” Computer Graphics
Forum, Volume 21(4), pp. 753-765, December 2002

[Teller91] SJ. Teller and C.H. Sequin. “Visibility preprocessing for interactive walkthroughs”, Computer
Graphics (SIGGRAPH ’91 Proceedings), Volume 25, pp. 61-69, July 1991

[Tesch05] M. Teschnerl, S. Kimmerle, B. Heidelberger, G. Zachmann, L. Raghupathi, A. Fuhrmann, M.-P. Cani,
F. Faure, N. Magnenat-Thalmann, W. Strasser and P. Volino, ”Collision Detection for Deformable Objects ”,

Computer Graphics Forum. Volume 24(1), 2005

[Torborg96] J. Torborg, and J.T. Kajiya, “Talisman: Commodity Realtime 3D Graphics for the PC”,
Proceedings of SIGGRAPH '96, pp. 353-363, in Computer Graphics,Annual Conference Series, 1996

[Ulicny04] U. B. Ulicny, P. de Heras Ciechomski, and D. Thalmann. “Crowdbrush, Interactive authoring of
real-time crowd scenes”, Proceedings of ACM SIGGRAPH Symposium on Computer Animation, 2004

[Wand02] M. Wand, W. Strasser, “Multi-Resolution Rendering of Complex Animated Scenes”, In Computer
Graphics Forum, Volume 21(3), pp. 483-491, 2002

[Watt98] A. Watt, F. Policarpo, "The Computer Image", Addison-Wesley ACM SIGGRAPH Series

[Watt99] A. Watt, ”3D Computer Graphics (3rd Edition)“, Addison Wesley, 3rd edition (December 6, 1999)

[Williams78] L. Williams, “Casting Curved Shadows on Curved Surfaces”, Computer Graphics (SIGGRAPH '78
Proceedings), Volume 12(3), pp. 270-274.

[Wonka99] P. Wonka and D. Schmalstieg, “Occluder Shadows for Fast Walkthroughs of Urban Environments”,
Computer Graphics Forum, Volume 18(3), pp. 51-60, 1999

[Yemez99] Y. Yemez and E. Schmitt, “Progressive Multilevel Meshes from Octree Particles”, Proceedings of
3D Digital Imaging and Modeling, 1999

[Chrysanthou97] Y. Chrysanthou and M. Slater, “Incremental Updates to Scenes llluminated by Area Light
Sources”, Rendering Techniques 97, pp.103 - 114, 1997, Springer Computer Science.

[Zhang97] H. Zhang, D. Manocha, T. Hudson, and K. Hoff, “Visibility culling using hierarchical occlusion
maps”, Computer Graphics Proceedings of SIGGRAPH 97, pages 77— 88, 1997

An image-based approach to the rendering of crowds in real-time 154

CHaPTER 7 - CONCLUSIONS

[Zhukov98] S. Zhukov , IA. Jones and G. Kronin, “An ambient light illumination model”, Proceedings of the 9th
EG Workshop on Rendering, pp. 45 — 56, 1998

An image-based approach to the rendering of crowds in real-time 155

