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The H;’ ion is the simplest and most fundamental of polyatomic molecules consisting
of three protons and two electrons. H; is an important molecule playing a key role in
many areas of Physics, Chemistry and Astronomy. The astrophysical importance of Hf
lies in the fact that most of the universe is made up of hydrogen, and molecular hydrogen

in the cool regions. Hg’ is rapidly formed by the reaction
H, +Hf > HI +H (1)

Thus HZ{ is usually the dominant ion in environments containing molecular hydrogen.
Further more, multiply deuterated species have been observed in the interstellar medium
recently. These species are thought to have been formed via deuterium fractionation
effects, in which the isotopomers HoD* and DyH™ play a significant role.

More than two decades have passed since Carrington and co-workers produced a
remarkably rich spectrum of the HZ{ Over 27,000 absorption lines in a region between
872cm~! to 1094cm~!. This experiment still remains largely unexplained. This work
calculates intensities of transitions of states near dissociation. Thus will help illuminate
the Carrington spectrum.

Within this work I present a method of calculating line strengths for the Hi system.
Several improvements on previous methods are presented, including the use discrete
variable representation, symmetry and a parallel algorithm. The implementation of this
method on massively parallel computers is also discussed.

Several applications of the synthetic spectra of H{{ and isotopomers are presented.
This will include where possible how they have aided other work and the results of this

other work.
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Chapter

Introduction

The initial purpose of theoretical spectroscopy calculations was perhaps to test theory
against experiment, with the hope that the calculations, if sufficiently accurate, could
aid experiment. With advances in theory and the development of computers, ab initio
calculations are now able to provide much more. The ability to compute large datasets,
far greater than is feasible with experiment, enable the calculations to move from micro-
scopic spectroscopy to the macroscopic level of modelling the interstellar medium, stellar
evolution, the Earth’s atmosphere, and various other chemical processes. Furthermore
the nature of an experimental spectrum can be illuminated by theoretical calculations,
where individual contributions can be separated and their contribution assessed. Thus
from the combination of experiment and theoretical calculations the maximum amount

of information may be obtained from a given spectrum.

1.1 Astrophysics
Most of the universe is made of hydrogen. Hi is usually formed through the reaction
Hf +H, > Hf +H (1.1)

which is very rapid and exothermic by approximately 1.7 eV. Thus Hj is produced
whenever a hydrogen molecule and its ion collide, therefore Hf can be expected to exist
in any environment where molecular hydrogen is ionised. H7 has been found to be
present in a number of different astronomical environments: The gas giant planets of

the solar system [24-26]; dense molecular clouds [27]; diffuse molecular clouds [28, 29];
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1.2 Spectroscopy of H3+

and also possibly in supernova [30]. It is also predicted to be present in low mass zero
metallicity stars [31];

Detection of interstellar molecules via high resolution spectroscopy gives knowledge
about the conditions where the molecules are found. Hg is a universal protonator and
has been known for some time to be the initiator of a network of ion—neutral reactions
which give rise to the formation of most interstellar molecules 32, 33], and as such an
understanding of the chemistry of Hi in the interstellar medium is of great importance.

H3 has been detected in both diffuse [28, 29] and dense [34] molecular clouds, in
unexpectedly high amounts in the former. Dense molecular clouds, which are opaque
to visible light, can be observed in the infra-red, as this radiation is able to penetrate
the cloud. The Hj chemistry in these dense clouds is largely understood [34]; it is in
diffuse clouds where the “Enigma of Hi " [35] exists. Hf was not thought to be impor-
tant in diffuse molecular clouds because it would be rapidly destroyed by dissociative
recombination with electrons, which are abundant in diffuse molecular clouds. However,
observations of diffuse molecular clouds in fact show similar amounts of Hf in diffuse
clouds to dense clouds [28, 36], in contradiction to the models. There are three factors
which determine the abundance of H3+ in diffuse clouds: the cosmic ray ionisation rate,
the electron fraction, and the recombination rate for H;

It has been long expected that fractionation effects at low temperature would en-
hance the relative abundances of the Hg’ deuterated isotopomers in low temperature

environments such the interstellar medium [37]. The primary fractionation reaction is
Hy + HD — HoD* + Hy (1.2)

which is exothermic by approximately 230 K, that is the difference in zero point energies
between the reactants and products. Similar zero point effects result in the production
DoH* and D; . Many others species become deuterated [38—40] through reaction chains

involving these deuterated isotopomers.

1.2 Spectroscopy of Hj

At equilibrium Hy forms an equilateral triangle with the protons separated by 1.65a,.
An unconventional bonding structure is formed by the three protons sharing the two
electrons. Hgf and D; are members of the D3, point group. At non-linear geometries it

has three vibrational modes. (figure 1.1). One is a totally symmetric “breathing” mode,
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1.2 Spectroscopy of H7
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Figure 1.1: The harmonic vibrational modes of Hj. The v; breathing mode and the doubly
degenerate v bending mode.

in which all the internuclear distances expand and contract in unison. This A; symmetry
mode is refereed to as v1. The other mode is the doubly degenerate (E) bending mode,
v9. The v, mode possesses vibrational angular momentum, I/, which has allowed values
from —vy to +v5 in steps of two. These states are often labelled V%. Vibrational states
for which [ is not divisible by 3 are two-fold degenerate and thus have E symmetry, while
states for which [ is divisible by 3 are split into A; and As pairs. States with [ = 0 have
A, symmetry only.

For the deuterated isotopomers HoD* and DoH' the degenerate v, mode is split
by the lower symmetry (Cg,) into a bending mode and an asymmetric stretch: 15 and
v3 respectively. The symmetry of the vibrations determines the nuclear spin statistical

weights, g;. These statistical weights are outlined in table 1.1.

1.2.1 Quantum numbers

There are two schemes by which quantum numbers are assigned to H;' and D{{, those of
Watson [16] and of McCall [41] . Hi (D3) is a symmetric top, thus if J is the rotational
angular momentum then its projection onto the molecular axis is given by K. K is
normally regarded as a good quantum number. However, in the case of Hi one has to
take into account that [, the vibrational angular momentum, is also projected along the
molecular axis.

Under the Watson [16] scheme the conserved quantity is |k — |, denoted by G; k is
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1.2 Spectroscopy of HZ

Table 1.1: Summary of nuclear spin weights, g; for H;’, H,D*, D,HT and D;. (16, 17]

Molecule Symmetry g;

HY Ay 0
Az 4
E 2
Df A 10
Az 1
E 8
H,D* A, 1
A, 1
B, 3
B, 3
D,H* Ay 3
A; 3
B, 6
B, 6

the signed projection of J onto the molecular axis. For the cases where [ is non-zero a
further quantum number U, is required, this has the value +|l| and —|!| for the upper
and lower level respectively. Thus rotational-vibrational levels can be labelled by (J, G,
U).

The total angular momentum, F, and the parity, P, are the only completely rigorous
quantum numbers for any molecule. For H;’ the total angular momentum is the sum
of the total spin angular momentum, I, and the rotational angular momentum, J. Hf
consists of three spin 1/2 protons and thus I can be 1/2 (ortho) or 3/2 (para). As the
coupling between the spin of the nuclei and the motion of the nuclei for H;’ is extremely
small, I and J can be regarded as good quantum numbers. For energy levels which have
the same values of I, J, and P an additional quantity, n, is required. This is an index
for levels with the same I, J, and P, ordered by energy. Therefore under the McCall
scheme rotational-vibrational levels are labelled by (I, J, P, n) [41].

Theoretical calculations of energy levels only provide the quantum numbers J and P,
and occasionally I. The assignment of the Watson approximate quantum numbers must

therefore be done manually. This assignment becomes progressively more subjective as
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1.3 Carrington-Kennedy Spectrum
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Figure 1.2: A simplified diagram showing the Carrington-Kennedy dissociation experimental
apparatus [1]. Ions enter on the left, are mass/charge selected and then enter the drift chamber.
A laser excites the ion and the dissociation products are mass selected in the ESA, which also

determines their kinetic energy.

the energy of the levels increases, and near impossible near the barrier linearity (~10000
cm™!). Therefore the McCall scheme is useful for theoretical calculations, especially at
high energy.

HoD* and DoHY are asymmetric top molecules and thus the energy levels are labelled
by J, K4 and K¢, where K4 is the projection of J onto the A axis and K¢ is the
projection of J onto the C axis. The value of K4 goes from 0 to J; while K, takes
values Kc = J — K4 and J — K4 + 1. K4 and K¢ are only valid within the rigid
rotor model and thus must regarded only as approximate quantum numbers. More
fundamentally, K4 and K¢ are two components of the total angular momentum J. As
the operators for the z, y and z components of J do not commute between themselves,

only one component can be known at any one time.

1.3 Carrington-Kennedy Spectrum

One of the major motivations for the work presented here has been an attempt to
interpret the near-dissociation spectrum of Hy, first measured by Carrington et al [1].
This spectrum is remarkable in that a window of only 220 cm™!, approximately 27000
lines were detected.

Carrington et al used an ion beam set-up illustrated schematically in figure 1.2. The

H3 ions are produced hot by e~ bombardment of molecular hydrogen. The HJ ions are
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1.3 Carrington-Kennedy Spectrum

then accelerated through a magnetic sector which is set to transmit Hg” ions. The ng
beam now enters the drift tube; a line tunable CW carbon dioxide laser operated with
12C0, or 13CO; is directed along the drift tube. The laser sweeps the frequency range
from 872 cm™~! to 1094 cm™!. Any HY ions released by dissociation are detected by the
multipliér. In order to separate the HY, HJ and the parent H:{ ions an electrostatic
analyser, ESA is employed. The ESA has sufficient resolution to be able to determine
the kinetic energy of the fragments. To ensure that the fragments detected in the ESA
emanated from the tube, a bias voltage was applied. H* and Hy fragments are detected
when the laser beam is not present; this is due to collision induced dissociation. This
set-up provides a very sensitive method of detection.

A spectral line is detected when the laser frequency causes an increase in the number
of H* ions detected. The near-dissociation mechanism is such that the laser excites the
H;f ion in the drift tube into a metastable state; this state leads to dissociation. The
fragments of this dissociation are detected. The method of detecting spectral lines is
dependent on monitoring fragments from the H; parent ion beam, and presuming that
these fragments are produced from the dissociation of H, this may not be the case.
However as long as any secondary process which fragments the Hg’ beam is minor in
comparison to the outlined Hg dissociation process, these effects should be small. The
presence of metastable states through which the transitions take place is implied by the
kinetic energy of the H* fragments. As this kinetic energy is observed to be as high as
4000 cm™! and as the laser only produces excitations between 874 cm™! and 1094 cm™!
the final spectrum must be produced via metastable states between the initial and final
states.

The centre of mass kinetic energy of the of the H* can be measured by the ESA. The
ESA may be utilised in two different modes. Firstly the ESA may be used such that an
energy window is established, such that only ions of a certain energy are transmitted.
Secondly the ESA may be used to scan the kinetic energy. This allows the variation of
centre of mass kinetic energy for a particular transition to be studied. The second mode
required a prohibitive amount of time (approximately one hour per transition) thus only
small sections of the spectrum were observed in this manner. The 27000 lines refers to
those transitions where the kinetic energy released is zero. For the higher kinetic energy
releases fewer, more intense lines are observed.

The nature of the experimental set up produces more information regarding the near-
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1.4 Aims of this work

dissociation spectrum. The ions produced in the ion source must have a sufficiently long
lifetime to reach the drift tube irradiated by the laser. This gives the minimum lifetime
of the initial states which Carrington et al [42] determined to be 107% s. They were able
to give a maximum lifetime of the excited states of 1077 s from the requirement that
dissociation needed to take place in the drift chamber. Furthermore, lifetimes greater
then 1072 give lines too broad to be observed and thus provide a lower limit for the
excited state lifetime.

The H' jons were monitored against a background fragmentation source of HT.
There are a number of sources for this background: collisional dissociation with the
residual gas in the analyser; transfer in population at resonance resulting in an increase
or decrease in fragmentation. This is dependent on the initial population of the states
involved, spontaneous near-dissociation and weak continuous photo-dissociation. This
background determined the noise level against which the lines were detected. A spectral

line was recorded if the signal to noise ratio was greater than 2:1.

1.4 Aims of this work

The primary aim of this work is to investigate the Carrington-Kennedy spectrum [1]. It
is hoped that a calculation of HgL dipole transition intensities near-dissociation could help
to illuminate this spectrum. In order to tackle the calculation of transition intensities in
the high energy regime a number of preliminary tasks will need to be undertaken. This
includes the development and optimisation of the DVR3DRJZ suite of Tennyson et al
[43], the development and optimisation of the parallel version of the DVR3DRJZ suite,
and testing the convergence of calculations near-dissociation. This will allow the near-
dissociation calculations to be carried out and subsequently analysed. In the course of
developing the DVR3DRJZ suite of programs it became apparent that a new algorithm
for the calculation of dipole transitions moments which more fully exploited the sym-
metry of the H;’ was needed. This algorithm would substantially reduce computational
costs. This algorithm will be developed.

Additionally there are a number of applications for H} and isotopomer calculations.
During the course of this work deuterium chemistry in the interstellar medium has
become an area of renewed interest for many groups. Broadly, this interest is split
into two areas: those who wish to observe HgL and its deuterated isotopomers; and

those who wish to model various astrophysical processes. Synthetic spectra can help
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1.4 Aims of this work

to identify possible transitions for observations, such spectra will be calculated in this
work. Partition functions and zero point energies together with reaction energies and
equilibrium constants involving H] and its deuterated isotopomers are invaluable to
models of the chemistry in the interstellar medium. These quantities will be calculated.

Theoretical calculations are also able to significantly aid Hg’ experiments; for exam-
ple, by giving optimal frequency ranges for measurement. The calculations for applica-

tions will be able to take advantage of developments in the DVR3DRJZ suite.
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Chapter

Theory

Within the Schrodinger formulation of quantum mechanics, the state of a many-particle

system is described by the wavefunction

‘I/(Q,t) = \I’((I1,Q2,(I37~--a(Imt) (21)

where q1, 42,43, ...q, are the generalised coordinates of the particles at a time ¢. The

evolution of the system is given by the time-dependent Schrodinger equation

where H is the Hamiltonian operator, the form of which will be discussed in more detail
in sections 2.8 and 2.9. A solution to equation 2.2 proves too difficult for all but the
simplest cases, therefore simplifying assumptions have to made.

One simplification that can be made is the removal of the temporal dependence in
equation 2.2. If the potential of the system is not dependent on time, the Schrédinger

equation admits stationary state solutions of the form

(g, t) = ¥(q)9() (2.3)

Where v(g), the spatial wavefunction, and ¢(t) = exp(—iEt/h), the phase factor, satisfy

the time-independent Schrédinger equation
Hy = Ey (2.4)
If we consider a molecule of N electrons of mass m,, charge e, and positions r; (i =
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2.1 Variational Calculations

1,...,N); L nuclei of mass m;; charge Z and positions R; (j = 1,...,L). Then the Hamil-

tonian is given by

B, o= R,
‘ =1 ¢ j=1"""
U (Rj,r;) is the molecular wavefunction and V(Rj,r;) is the potential as given by the

sum of all coulomb pair potentials:

L L
Z7'e? Ze?
o) — 2: e 2.
V(Rjﬂ"z) IRj_Rj’I ZZIR]_,,«A +Z|’r‘,/ -7 ( 6)

2.1 Variational Calculations

The time-independent Schrédinger equation can be solved using the variational method
as proposed by Rayleigh and Ritz [44, 45]. The method provides useful means of
obtaining approximately the bound state energies and wavefunction states of a time-
independent Hamiltonian.

H is a time-independent Hamiltonian whose eigenvalues are E, with corresponding
orthonormal eigenvectors of ¥,,. Let ¢ be some arbitrary function which is normalisable

and square integrable. The expectation value of H may be written

[ ¢*Hedr
[ ¢*¢dr

where integration extends over all of coordinate space.

(E) = (2.7)

The arbitrary function ¢ may be an expansion of the eigenvector ¥,
n

Substituting equation (2.8) into equation (2.7)

[, CoUH Y, ComUpmdr
[3,Crus 5, Crn¥mdr

(E) =
The eigenvectors form an orthonormal set, thus

> U = Gpm (2.10)
n,m

substituting
Zn’m CrCr [VXHUdr
donm CiCm [ O3 Y dr
2nm CnCm [ULHY dr
2onm CnCmbnm

(2.11)

(2.12)
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2.2 Born-Oppenheimer approximation

as HY,, = E, U, where E, is the eigen energy of the i'" state

S o CaCm [ Ur Ey VU pdr
(E) = =™ S Gr0 5" e (2.13)
n,m ~n~mYnm
B En,m C;;Cm(snm .
On 2En

If Ej is the ground state; then clearly the expectation energy which is the average energy

is greater than the lowest energy

Col2E
(E) = % (2.16)
(E) > E (2.17)

This proof shows that the approximate energy of the ground state is greater than or
equal to the true ground state Ep. Thus minimising (F) we can obtain the best possible
approximation of the ground state energy. The above proof can be extended to excited

state energies E; [46] such that
E; < (Bpy) < (Bp) < (B;7) (218)

where (E:

% 1) uses one more basis set expansion function than (E%).

The value of (F) is dependent on the goodness of the arbitrary function ¢ which can
be expanded in terms of the basis set. Thus in using the variational method to solve the
Schrodinger equation numerically, the size and quality of this basis set determines how
closely related the approximated energy is to the true energy. The criteria for a basis set
are such that the set be as complete as possible, spans the correct space, the integrals
are readily evaluated and the basis set represent the physics of the situation as closely

as possible.

2.2 Born-Oppenheimer approximation

A further simplification to the Schrédinger equation is to adopt the Born-Oppenheimer
approximation [47, 48], which exploits the mass difference between electrons and nuclei.
This allows the nuclear and electronic motion to be separated as the electrons are as-
sumed to respond instantaneously to any movement of the nuclei. Thus the wavefunction

may be written as,

Vne = Un(gn)¥e(ge) (2.19)
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2.3 Potential Energy Surface

where g, and ¢, are the nuclear and electronic coordinates respectively. The Hamiltonian

can then be written as,

H= Tn(‘]ﬂ) + ﬁe(‘]e»qu) (2'20)

where T}, is the nuclear kinetic energy and H, is the clamped-nucleus electronic Hamil-

tonian.

2.2.1 Adiabatic Correction

The Born-Oppenheimer approximation, that is the separation of nuclear and electronic
motion, can be improved by adding a correction. If equation (2.19) is substituted into

(2.20) and manipulated one obtains:

(Tn(Qn) + Ee(gn) + U(gn))¥n = Evy (2.21)

where F,(g,) is the eigenvalue to the clamped-nucleus electronic Hamiltonian, E is the
eigen energy of the molecule and U(g,) is the Born-Oppenheimer diagonal correction
(BODC), which is neglected in the Born-Oppenheimer approximation. The addition of
the BODC to the Born-Oppenheimer approximation is referred to as the adiabatic ap-
proximation. It is usually argued that U(q,) is dependent on the electronic wavefunction
e and can be considered as being a function |g, — ¢¢| [49]; its magnitude is of the order
(me/mn)Ee(qn) and hence is usually neglected. However with light nuclei, such as in
Hy, this term becomes significant [50]. The simplest method to evaluate this term is to

use the formula of Handy: [51-53]

1 0
Ulan) = —5 2 o (Wl g 1¥e) (2.22)

where m,,; is the mass of the ith nuclei.

2.3 Potential Energy Surface

As a consequence of using the Born-Oppenheimer approximation the molecular dynamics
problem has been separated into two parts: electronic and nuclear dynamics. The
potential energy surface is the potential that determines the motion of the nuclei; thus
it determines the rotation-vibration spectrum, the structure of the molecule and as such
chemical reaction pathways.

The potential energy surface can be determined either by fitting an analytical form

to the result of some experiment which measures the dynamical processes of the nuclei
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2.3 Potential Energy Surface

within the molecule, or one can calculate the potential ab initio. The former of these
approaches produces an empirical potential. The major problem with this approach is
that the experiment may produce data which does not give complete coverage of the
surface, therefore extrapolation which may not be valid is needed to cover a significant
portion of the nuclear configuration space. The ab initio approach involves solving the
Schrodinger equation for the electrons for a grid of nuclear geometries. This approach
requires that the Schrédinger equation be solved a sufficient number of times to give
an adequate representation of the surface. To do this to the requisite accuracy requires
significant computational effort.

Two potential energy surfaces have been employed in this work: the Born-Oppenheimer
corrected surface of Polyansky and Tennyson [2] and the global ab initio potential sur-
face of Polyansky et al [3]. The Born-Oppenheimer corrected surface used the Born-
Oppenheimer electronic structure calculations of Cencek et al [54]. Cencek et al also cal-
culated corrections. These include a electronic relativistic correction to the Schrodinger
equation and a mass dependent adiabatic correction to the Born-Oppenheimer approxi-
mation. Polyansky et al use the electronic data and the corrections to fit a new potential
energy surface (refer to figure 2.1). This surface with non-adiabatic corrections (section
2.12) is able, at low energy, to reproduce the energy levels of H§L and isotopomers to
within a few hundredth of a wavenumber.

At higher energy the Born-Oppenheimer corrected potential energy surface is not
extensive enough, instead the global ab initio potential surface of Polyansky et al [3] is
used. This global Born-Oppenheimer surface used an energy switching function to en-
compass three different energy regimes and the respective associated electronic structure
calculations. At low energy, 69 points from Cencek et al [54] were employed, which have
an absolute accuracy of 0.05 cm™!. At high energy, 492 points lying below 75,000 cm™!
from Schinke et al [55] were used to constrain the high energy region. The accuracy

1

of these points is approximately 300 cm™", several orders of magnitude below that of

Cencek et al. Polyansky et al computed a further 134 ab initio points in the intermediate

region to an accuracy of 3 cm™!,

Because of the differing accuracies of the points in
the three regimes the fit weighted the points on accuracy, with the more accurate points
given more importance. Two fits were produced. The first fit produced a “shoulder”
in the potential for some geometries near 50,000 cm~! and above. This can be seen

in figure 2.2. A second fit was performed, Fit 2; this is a poorer fit to the data but
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0 0.05 0.1 0.15 0.2 0.25

Ry /aq

Figure 2.1: The Born-Oppenheimer corrected potential energy surface of Polyansky et al [2]
in Jacobi coordinates with # = 90°. Contours drawn from 0.01 E; to 0.2 E, with 0.01 E,
increments. Note the unphysical behaviour at high energies.

removes the unphysical “shoulder”, figure 2.3. This potential is accurate to within a few

wavenumbers up to the dissociation energy.

2.4 Dipole Surface

The dipole surface of a molecule is obtained by calculating the dipole moment at various
nuclear geometries; the points are then fitted to a continuous surface. The surface used
throughout this work is that of Rohse et al [56]. Rohse et al give the accuracy of the
dipole moment fit as 0.00013 atomic units. The dipole surface returns the p, and u,
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2.4 Dipole Surface

R,/ ag

Figure 2.2: The Fit 1 potential energy surface of Polyansky et al [3] in Jacobi coordinates with
6 = 90°. Contours drawn from 0.01 E; to 0.35 E; with 0.01 E; increments. Note the shoulder

for large values of R,

components of the dipole as defined by Botswina et al [57]. These coordinates are not
mutually orthogonal and thus converted to axes where the z component lies along the
r9 coordinate in Jacobi coordinates. The z component lies in the plane of the molecule
while the y component is perpendicular to molecular plane, such that they form a right-
handed set.
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Rg/ao

Figure 2.3: The Fit 2 potential energy surface of Polyansky et al [3] in Jacobi coordinates with
6 = 90°. Contours drawn from 0.01 E; to 0.35 E; with 0.01 E, increments.

2.5 Coordinate systems

In solving any problem an important step in the process is defining the problem. Defin-
ing the problem involves describing the system using coordinates. Judicious choice of
coordinates can simplify the mathematics of the problem significantly which can conse-
quently reduce the computational cost of the calculation, thus implicitly the calculation
time.

Within the Born-Oppenheimer approximation, the motion of N nuclei can be de-
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2.5 Coordinate systems

scribed by the Hamiltonian
. hz 3N 1
H= > —Vi+Vl(g) (2.23)
1=1

=72 m

Where q are the 3N — 6 internal coordinates of the system. The translational part of

the Hamiltonian can be separated by defining the centre of mass motion coordinate

1 1
X = ; ptl M= Z ™ (2.24)

There remain 3N —3 internal coordinates. Three of these can define the rotational motion
in terms of the Euler angles («, 3, 7y) required to rotate the laboratory fixed axes into the
frame of the molecule. The remaining 3N coordinates describe the internal/vibrational
motion. The vibrational motion is usually described by some internal coordinate system,
then the rotational motion can be described by body-fixed coordinates embedded onto
the internal coordinates. The kinetic energy operator can be greatly simplified if the
rotational and vibrational motion are separated as much as possible, that is to minimise
the Coriolis coupling. Eckart devised a method by which the body-fixed system could
be embedded such that the Coriolis coupling would be minimised at equilibrium [58].

The Eckart conditions can be formulated as follows:

ZMAer X XA (225)
A

where x4 are the nuclei’s Cartesian coordinates and X4, their equilibrium values. It is
apparent that the Eckart embedding becomes undefined at equilibrium, as the conditions
vanish for x4 = x4.. Therefore at equilibrium there are an infinite number ways to
embedded the body-fixed axes.

It is not always possible to use the Eckart embedding as the kinetic energy operator
can become prohibitively complex [59, 60]. Furthermore the Eckart embedding is unable
to deal with the problem of a homonuclear molecule becoming linear. This is because
it is no longer possible to relate each of the nuclei with their equilibrium positions, and

thus meet the Eckart conditions (2.25).

2.5.1 Inter-nuclear coordinates

One of the simplest coordinates systems is inter-nuclear coordinates. The system is
described by the distances between the three atoms, A;, A; and Az, as shown in figure

2.4. This allows the body-fixed coordinates to be placed along the Eckart axes so as to
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V<

A, T Az

Figure 2.4: The inter-nuclear coordinate system. The body-fixed y-axis is placed parallel to rq,
the = axis bisects r; in the plane of the molecule, and the z-axis is defined to give a right-handed

set [4].

minimise Coriolis coupling [58]. These coordinates are able to reflect the high symmetry
of a molecule with three identical atoms.

This system has been employed successfully by Spirko et al [61] and Watson [4].
The problem of using inter-nuclear coordinates is the coupled nature of the integration
ranges. This coupling may be overcome with Pekeris coordinates [62-65]; but problems
arise when molecules sample linear geometries, which is a particularly important issue

for Hi.

2.5.2 Radau coordinates

The Radau coordinate systems uses two lengths and an angle, (ry, 7o, 6), figure 2.5.
The distances 1 and 7 are the distances of A; and A, from the point P and the angle
0 is the angle between r; and ry. The point P is defined as the canonical point which

satisfies the condition that PD° = AsD.CD.

If atoms A; and A, are identical, and the body-fixed z-axis is embedded along the
line of symmetry, -g- (bisector embedding) then the Sy permutation symmetry of the AB,
molecule can be exploited. This make the Radau coordinate system particularly suited
to ABy molecules such as HoO [66, 67]. Unfortunately the Radau coordinate system
can not fully exploit the higher permutation symmetry Ss associated with B3 molecules.
Thus the full symmetry of the H; cannot be exploited. However the Radau coordinate

system has been successfully used to represent the H system for rotation-vibration
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Figure 2.5: The Radau coordinate System. D is the centre of mass of atoms A; and Ay, C is the

triatomic centre of mass, and P is a canonical point satisfying the condition PD" = A3D.CD

A,

A, ¢ Az

Figure 2.6: The Jacobi Coordinate System [5]. C is the centre of mass of the “diatom”.

calculation [68, 69].

2.5.3 Jacobi coordinates (Scattering)

The Jacobi or Scattering coordinate system again uses two lengths and an angle, (ry,
r9, 6), figure 2.6. r; represents the distance between the two atoms, As and As, the
“diatom,” and 7y represents the distance from the centre of mass of the diatom to the
third atom, A;. 0 is the angle between r) and rs.

If atoms A; and Ajz are identical, then the line of symmetry about 8 = 90° can be
exploited. This is particularly suited to molecules associated with the S5 permutation
symmetry group. Unfortunately the symmetry of the Jacobi coordinates, like Radau
coordinates, does not extend to the S3; thus does not fully represent the D3, symmetry

of HgL system. This means the full symmetry of H:{ is not represented and thus cannot be
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Figure 2.7: Generalised internal coordinate system for a triatomic molecule [6]: A; represents
atom ¢. The coordinates, 1, 72, and 8 are given by r, = AR, 79 = A1 P,0 = AIQAQ. The
positions of P and R are determined from the particular choice of coordinate system and the

masses of A;.

exploited during computing, making it less efficient. Also the assignment of symmetry
to a particular energy level becomes problematic as the states with E symmetry are

non-degenerate. Practical problems with this are discussed in chapter 4.

2.5.4 Hyperspherical coordinates

The symmeterised hyperspherical coordinate system [70] uses a distance and two angles,
p, 0, @, to represent a molecule. The major advantage of these coordinates are that the
full S3 permutation symmetry can be exploited and all energy levels can be assigned to
a symmetry block trivially. These coordinates have been used successfully to calculate
vibrational and rotational energy levels of Hi [71-74]. These coordinates have been
found to be less well suited for molecules which do not have three-fold permutation
symmetry [73], such as HoDT and DoH™; it is thought that for these lower symmetry
molecules coordinates such as Jacobi may be preferable. Hyperspherical coordinates are
also very inefficient at large p, this is particularly undesirable for a molecule such as H7

which undergoes large amplitude motion.

2.5.5 Coordinate system used in this work

The internal coordinate system for a triatomic molecule can be described by Sutcliffe-
Tennyson generalised coordinates, figure 2.7 [6]. Points A;, A and A; denote the

positions of the three atoms. The geometric parameters g; and g, are defined as,

39



2.5 Coordinate systems

 As- P

e —n (2.26)
As— R

»=T 4 (2.27)

There are several variations on figure 2.7 that produce coordinate systems which
could be employed to describe the H; system. They include Jacobi, Radau, and bond
length-bond angle coordinates, which are parameterised by ¢g; and g». In terms of these
parameters we can define the Radau coordinate system as follows,

o «

—1-— =12 2.28
91 a+pB—-af 92 1-8+ap (2.28)
ms % mo
a=——"-—), B=—"12
mi + mo + m3 my + my

where m;, mo, and m3 are the masses or the three atoms. Similarly the Jacobi coordinate

system can be defined as follows,

™m
g =——", g2=0 (2.29)
mo + ms3

The parameters g; and go for A3 molecule such as Hf and D;’ simplify to g; = %, go =0

and g; = g2 = 1;{\% for the Jacobi and Radau coordinate systems respectively. For

AB; molecules such as HoD" and DoHt where Ay = A3, g1 and gy are g1 = %, g2 =0

and g1 =go =1+ —%ﬂ* - (1 + %:‘)2 — 1 for the Jacobi and Radau coordinate systems
respectively.

Both Radau and Jacobi coordinates are orthogonal, that is the kinetic energy op-
erator in the Hamiltonian is diagonal, which leads to a simpler Hamiltonian then one
derived from non-orthogonal coordinates.

There are a number of ways that the body-fixed axes may be embedded in Jacobi
and Radau coordinates; some of the embeddings are shown in figures 2.8 and 2.9. In
the Jacobi coordinate system there is only one Coriolis term if the body-fixed axis is
embedded along either the ) or r9 coordinate. In Radau coordinates the coupling is
more complicated. The manner by which coupling between rotation and vibration is
reduced is to adopt the Eckart conditions [58] when choosing the embedding of the
body-fixed axis; it has been shown that for the H; system this means that the z-axis
should be perpendicular to the frame of the molecule [4, 41].

There are three linear saddle points for Hf. In Jacobi coordinates, these occur

for = 0, 8 = m and ro = 0. The third case, where r, goes to zero, causes the
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Ay

b3

" e o - :
,, : @ "

3 r

Figure 2.8: The different embeddings of the body-fixed axis system with the Jacobi coordinates.
From left to right: The z-axis is parallel to ry, the z-axis is in the plane of the molecule, while
the y-axis is such to defined a right-handed set; The z-axis is parallel to r2, again the z-axis is in

the plane, while the y-axis is such to defined a right-handed set.

most problems as consequently 6 becomes undefined [15, 75, 76]. In Radau coordinates
the linear case is treated simply when § = 0 and 8 = m. The case where r; or
is 0 can also treated easily. However the Hamiltonian in Radau coordinates [68] is
considerably more complicated than that for Jacobi coordinates (section 2.9). This leads
to complex behaviour relating to the convergence, especially with rotational excitation
[68]. Throughout this work the Jacobi coordinate system has been employed with the
body-fixed z-axis embedded parallel to the r; axis (figure 2.8). This is the most sensible
embedding as the 7o coordinate becomes zero for linear geometries, hence embedding the

z-axis along 9 would mean that the z-axis would become undefined at linear geometries.

2.6 Finite Basis Representation

An arbitrary normalised eigenfunction ¥(g) of a Hamiltonian can be expanded in terms
of basis functions ¥(g) which are linear in the parameter ¢;; this is known as the Finite

basis representation, FBR.

¥(q) c191(q) + c2vp2(q) + c3bz(q) + ... + enyn(q)
V() = Zqzm(q) (2.30)

The vibrational motion can be described by three coordinates, such that the wavefunc-

tion can be represented as a sum of products of suitable one dimensional functions ¥(q),

U(q1,q2,03) = 3 citi(q)¥;(q1) e (qr) (2.31)

i!jik
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X

As

Figure 2.9: The Radau bisector embedding. The z-axis is parallel to %, the z-axis is in the plane

of the molecule and the y-axis is such to make a right-handed set.

where qi1,¢2,q3 are internal coordinates of the system and c; j; are coefficients to be
determined from diagonalising the Hamiltonian matrix.

The extent to which the FBR represents the true wavefunction is dependent on the
number of basis functions used; the greater the number of functions, the better the
representation. This applies to the eigen energies of the system, which are subject to
the variational principle. Although strictly the variational principle optimises the eigen
energy only, there is a correlation with the quality of the associated wavefunction. The
size of the Hamiltonian matrix is directly dependent on the number of basis functions
used. The number of functions tends to increase as the complexity of the motion which
the wavefunction describes increases. Thus the number of basis functions needed to
converge the wavefunctions of very high lying states to the required accuracy can become

computationally prohibitive.

2.7 Discrete Variable Representation

In order to alleviated the problems of the Finite Basis Representation, Light et al [77]
rediscovered the Discrete Variable Representation, DVR.

The DVR moves from an FBR where the wavefunctions are expressed as a set of
orthogonal polynomials to amplitudes represented at the Gaussian quadrature points of
these polynomials [78]. If the functions used are a set of j + 1 orthogonal polynomials,

then there is an orthogonal transformation to a representation at j + 1 weighted Gauss-
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polynomial quadrature points.
A 1D DVR transformation of a coordinate expressed as FBR orthogonal polynomials
to n points and weights, wy, of the associated N-point Gaussian quadrature is given by

the unitary transformation [79]
1
T, = (wp)2t(n)) (2.32)

Thus the DVR wavefunction consists of a basis of discrete points resulting in a compact
representation. There are advantages and disadvantages of using a DVR. The disadvan-
tages are that the DVR Hamiltonian is not strictly variational. The DVR points and the
basis set size are linked such that the only way to improve the accuracy of the integrals
is to increase the number of points and thus the size of the problem. Within the FBR, a
quadrature scheme can be chosen to give the integrals to the required accuracy without
consequence to the size of the problem. This means that converged FBR calculations
tend to be more accurate than the corresponding DVR calculation. Also it is difficult
to perform small DVR calculations as the numerical quadrature with too few points is
unreliable and thus unlikely to give meaningful results.

The advantages are that due to the quadrature approximation, the potential elements
in the DVR are diagonal (section 2.9); the DVR is particularly conducive to parallel
computing as the wavefunction is represented on a grid of points which can be distributed
across a series of processors; this is discussed in chapter 5. The grid representation
also lends itself to evaluating dipole transition moments, as this is the sum of discrete
points within the DVR as opposed to over non-localised functions in an FBR, dipole
transitions are discussed in chapter 3. In addition the DVR Hamiltonian is solved by
a series of diagonalisations and truncations for each of the three coordinates in turn.
Thus the Hamiltonian can be solved via diagonalisations of a 1D, 2D and finally a full
3D Hamiltonian matrix [79] which reduces the size and thus computational cost of the

calculation considerably. This is discussed further in section 2.9.1.

2.8 Finite Basis Representation Hamiltonian

Using the Jacobi coordinate systems with the body-fixed z-axis parallel to either the

71 or the ro coordinate, the Coriolis decoupled Hamiltonian matrix, H”*, for the finite
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basis representation may be written [43]

(m,n, §, K| H*m! !, ', I K'Y = (m|hD|m!)é, ;5

+ (@Yo 1 85 1

+ ((m|g M m"Y0n 85 1 + ()G P06 65.4)5 (5 + 1)855

+ (ma n,j|V(r1, 72, g)lmlv n,a .7,)
+ (15 D1)8,5:05,5 (T (J + 1) — 2K?)

where (m| and (n| are the radial basis functions for the r; and r3 coordinates respectively,
(4] are the angular basis functions, J is the total angular momentum of the system, and
k is projection of J onto the body-fixed z-axis. This Coriolis decoupled Hamiltonian
assumes that k is a good quantum number, that is the Coriolis couplings are neglected.

The Hamiltonian for fully Coriolis coupled vibration-rotation within the finite basis

representation can be expressed as [43]

(m,n, 5, J, k,plHm!, 0, 5, ' K, ') = S (m, my 1 H Rl 0, )
_1 ~(3
— (1 + 8,0 + Ok1,0) 720k g1 (G [)85.50 85 9 CF 0 Cs

k=pp+1,.,J, p=0,1 (2.34)

If the body-fixed z-axis is taken parallel to r; then |t) = |m), s = n and 7 = 1; and if
the z-axis is taken parallel to r, then |t) = |n), s = m and ¢ = 2. The angular factors
are given by

Cly = (11 +1) = k(k£1))3 (2.35)

where V is the potential and the radial kinetic integrals are given by

WO = (- 22y (2.36)
B 2u; Or? '

(@) )4 R /
gDy = (¢ - t 2.37
@) = = glt) (237)

The reduced masses are give by [6]

1 1 1-g7)?
1 _ e 1 (A-gr (2.38)
H1 m) m2 m3
1 1 P (1-g1)?
1 1 g (-9)¢ (2.39)
Yo my M2 m3

The variables g;, g2, m1, mo and mg are as described in section 2.5.
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2.9 Discrete Variable Representation Hamiltonian

The Coriolis decoupled Hamiltonian, Equation (2.33), may be transformed to the Dis-
crete Variable Representation, DVR, via a unitary transformation of the Finite Basis
Representation, FBR, to some quadrature scheme associated with polynomials used in
the FBR. A 1D transformation for any of the three coordinates r1, 75 or 8 to n points
with weights wy, of the N-point Gaussian quadrature associated with the orthogonal
polynomials used for the FBR in that coordinate can achieved using equation (2.32),
where t = m, n, j for n = a, 3,y respectively.
The product of the three transformations, one for each coordinate, will give the
composite transformation
T =Ton) = ToTlT] (2.40)
The three dimensional DVR Hamiltonian Hiﬁ',ﬁ,ﬁ' oy CAN be obtained from the three

dimensional FBR by applying the transformation as

T"(m,n, j, J, k| H |, 0, 5, J' k)T (2.41)
Jk _ (1) (2) 1 2
Ha,a’,ﬂ,ﬂ',’m’ - Ka,a"sﬂ,ﬂ"s%’v’ + Kﬂ,ﬁ"sa,a"svﬂ’ + Lg,L"s%v"SB,B’ + Lg,}ildw,w"sa,a’
+ (I +1) = )M, 5 580y
+ V(r1a, 728, 6y, )5a,a’ 5;3,5'6’7,’)" (2.42)

It can be seen from equation (2.42) that the potential energy operator is diagonal, this
is due to the quadrature approximation (78, 79]

Z Z T;‘;‘L”ﬁ:}(m,n,j|V(r1,r2,0)|m', n',]')TslI,’ﬁ’,’z,l ~ V(r1a,728,0v)00,a'08,8' 0,y

m,n,jm' n',j'

(2.43)

T1a)T28,04 are the values of r,7,0 at «,,7. Thus the potential is diagonal in all
coordinates and therefore requires no integration. A consequence of this approximation
is that the DVR Hamiltonian is not strictly variational, as the number of basis functions
is linked to the number of points.

The kinetic energy terms in the Hamiltonian (2.42) are given by

Ky = Y THUD1)Ty (2.44)
£t
in,n’mv' = J%'r’ZTtn(tlg(i)|t'>Tﬁl (2.45)
£t
' h2
= ‘QHQ ‘57;,17’ (2.46)
ll'i'rin
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by applying the quadrature approximation. J, .. is given by

Ty = 3 T75( +D)TY (2.47)
i

The symmetry of ABs molecules in Jacobi coordinates can exploited such that J,

becomes the J, . , and is given by

N/2-1
Jyya= 3 T dG+i2i+q+ )T, ¢=0,1 (2.48)
J

Where ¢ identifies the even and odd symmetry blocks for ABy molecules with ¢ = 0 the
ortho block and ¢ = 1 the para block.

2.9.1 Solution Scheme

One of the advantages of using a DVR is that the Hamiltonian can be solved through
a series of diagonalisation and truncations, which reduces the computational cost of the
solution [80, 81]. If we assume that the coordinate order of the solution is § — r; — 7o,

that is v first and «a last. The 1D problem is solved for each a and 3

(1D) g8 _ L(l)

1
oh = L0, A LEL .+ V(ria,T2a,0y) (2.49)

The amplitudes for the h** level, with eigenvalues ef{’ﬂ

, are given at each grid point, «, 8
by C’s‘f Figenvalues are then selected and used to solve the 2D problem for each £.
The manner of selection can either be determined by the size of the 2D Hamiltonian or
by energy, ez’ﬁ < ED

max*

'8 (1
(QD)Hg,a’,h,h’ = eﬁ’ﬁ%,wéh,h' + E C'sfcf;,,fK((m, (2.50)
Y

Amplitudes for the [ level, with eigenvalue ef are given by Cf ., for each point 3.
These eigenvalues are selected to be used to solve the full 3D problem. Again they may

be selected by the size of the 3D Hamiltonian, N, or by energy elﬁ < E?D

maz
GOV Hg g1 = g b+ Y. Co L, Co L ST 0008 KD, (2.51)

ah,h! v,h
Eigenvalues and eigenfunctions coefficients, ¢; and Cp, of this, the Coriolis decoupled
Hamiltonian, H”*, for J > 0 can be used to construct and solve the full rotation-
vibration Hamiltonian, H. The first term in (2.42) is simply ¢; and the Hamiltonian

matrix construction becomes one of calculating terms off-diagonal in k.
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The coefficients of eigenvectors of this 3D Hamiltonian need to be expressed as am-
plitudes of the wavefunction at the original DVR grid points. These wavefunctions can
be put to a number of uses in addition to solving the fully Coriolis coupled Hamiltonian.

The wavefunction amplitude for the i** eigenstate at the DVR grid points is

o ﬁ ¥ Z Cﬂllcalhc'yh Z Cpil Z ngh aﬂ (2.52)
i,h

Where the 8§ — r; — 79 ordering is assumed.

The quadrature approximation allows matrix element (¢|§(?|t') to be diagonal in a
DVR. However the angular contribution is diagonal in an FBR. Therefore to solve the
fully coupled Hamiltonian the DVR wavefunctions of H7* are transformed to an FBR
in 6 by,

Vass = 2T Vs (2.53)
v

Thus Hamiltonian matrix in DVR? - FBR! representation becomes

(b, k,p|HIW K\ p) = Opplpper”

1
(1 + dk,00k,0) 2 0k k41

Jk,h Jk’,h + ot a0
Z ¢aﬁ,1 a,B,j CJk’Cglc' a,o 8,8
a,B,y
k=p’p+l,7‘]7 p'——oyl (254)

X

Where for z embedded along r; (i = 1), the M-matrix it is diagonal in 8 and given
by

h2
MY, = N T(m)gD [m!) TS ~ baa —— 2.55
iy mZm (mig D m) T = boar 7o (2.55)
If z is embedded along ry (i = 2), it is diagonal in 8
(2) B 11 5(2)) B A2
Mg = Thin|g@|n) Ty ~ dps —— (2.56)
n,n' 2M1T2ﬂ

Solving H7* gives eigenvalues, 7;, and eigenfunctions, 1/1# The eigenvalues rep-
resent the energy levels of the system and the eigenfunctions are the accompanying

wavefunctions. The wavefunctions can be transformed back to a DVR using
PEh
k a,ﬁ,y Z 1/) ,/9,] (2.57)

The DVR wavefunctions d;c’il p,; Mmay then be used to calculate dipole transition strengths,

this is described in detail in chapter 3.
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2.10 Basis functions

In choosing basis functions one must consider both whether these functions will ade-
quately represent the motion of the molecule and how computationally workable they
are, that is to say the cost of evaluating the relevant integrals using them must be
reasonable.

The angular coordinate @ is represented by associated Legendre polynomials. For
the radial coordinates either Spherical Oscillator [82] or Morse Oscillator-like functions

[83] can be used. The Morse Oscillator-like functions are defined as:

In) = Ha(r) = B Naa exp(~5)y " L3(y) (2.58)

y = Aexp[-B(r —re)],

4D, , _ H
e B = we (2De

where

A=

1
) ’ ,a = integer(A). (2.59)

With u, re, we and D, representing the reduced mass, equilibrium separation, funda-
mental frequency and dissociation energy of the relevant coordinate respectively. The

parameters re, we and D, can be adjusted to give optimal results.

The Spherical Oscillator functions are defined by:

1,1 atl _a+d
[n) = Hu(r) = 2564 N,y exp(~5)y"% L (1) (2.60)
y = Br?
where
B = (we)? (2.61)

and a and w, are treated as variational parameters.

2.11 Quadrature approximation

Henderson et al [15] found a particular failure of the quadrature approximation when
evaluating the r; 2 integrals. Within the Jacobi coordinate system it is possible that the
ro coordinate becomes equal to, or very close to zero when the molecule is near linear

geometry. If Spherical oscillator-like functions are used to represent the ro coordinate
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2.12 Non-Adiabatic correction

then quadrature approximation has to be abandoned for the ry 2 integral because the
integral exhibits non-polynomial behaviour as r, — 0.
An alternative procedure was developed which alters the construction of the 3D DVR
Hamiltonian, 3° Hg g . The altered Hamiltonian 3P Hg g i is given below,
5 (2
3D Hg pray =P Hg gy + ) Calkcﬂ Iz k'(Mﬁ z)%' - ,6,8' Z CO"’%J (2.62)
a,k.k’

where 3P Hg g/, 1 is given by equation (2.51) and Mg[),, is given by

2)
M), =" T (n)g@ )T (2.63)
n,n'
This is evaluated analytically and is given by [82]

1
h*B nT(n +a+3))\?
"(2) ! = —_— : > ! 2' 4
(nlg™ ) (20 + 1)pag (n’! T'(n'+a+3) n=n (2.64)

2.12 Non-Adiabatic correction

An additional correction to the Born-Oppenheimer approximation can be made based
on the work of Bunker and Moss [84] on diatomics which introduces non-adiabatic cor-
rections; separate reduced masses are employed for the vibrational and rotational terms
in the Hamiltonian, x¥ and u® respectively. The distinction of the reduced mass leads
to an extra term in the Sutcliffe-Tennyson Hamiltonian, KNBOZ

- . . 9 h? 1 1 1 1

KNBO = Ok wk* (5, k| sin™2 6|4, k) (ﬁ (2u T ) + (2u R o7 >) (2.65)
Polyansky and Tennyson [2] found for the H] system that u® was close to the nuclear
mass while " differed slightly from the nuclear masses. The vibrational reduced mass,

©Y, could be calculated from a isotopomer independent scaling term.

2.13 Coordinate Ordering

Henderson et al [81] performed numerical experiments with the order of the coordinates
in a DVR calculation. They found that for a given DVR calculation placing the coordi-
nate with the largest number of grid points last requires considerably less computational
time and converges faster, that is with fewer grid points. For the systems they studied

this last coordinate was also the one with the greatest density of vibrational states.
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2.14 Computational Implementation (Serial Program)

2.14 Computational Implementation (Serial Program)

The suite of programs by Tennyson et al [43] implements the method of determining
rotation-vibration energy levels and wavefunctions outlined.

The program DVR3DRJZ solves the Coriolis decoupled Hamiltonian, H7* (equation

J,k,h

2.42) producing eigenvalues 7; and eigenfunctions @B

These are vibrational energy
levels and wavefunctions for J = 0; for J > 0 they are used by the programs ROTLEV3 to

solve the full Coriolis coupled Hamiltonian. ROTLEV3 transforms the DVR eigenfunc-

Jk,h J.k,h

afry aBg A certain

tions ¥ to the DVR2-FBR! representation using equation (2.53), v
number of the lowest solutions to H”’* and the accompanying DVR2-FBR! eigenfunc-
tions are used in equation 2.54. The solutions to the full Coriolis Hamiltonian are the
rotational-vibrational energy levels, 7, and wavefunctions 1[1,& These wavefunctions
are transformed to the DVR representation, d,{’fa’ﬂ’ ; using equation (2.57). These wave-
functions are then used by DIPOLES to calculate dipole transitions (refer to chapter

3).
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Chapter

Dipole transition calculations

3.1 Jacobi Dipole calculation

A general formula for the dipole transition line strength using a DVR is outlined below.
This derivation starts from the formalism of Miller et al [85] which derived the dipole
transition line strength using a wavefunction represented by an FBR.

The derivation is valid for both the Jacobi coordinate system with the body fixed
z-axis fixed to either the ry or rp coordinate and the Radau coordinate system with
the body fixed z-axis fixed to either rq, o or along the bisector. J is the total angular
momentum, with k& the projection of J onto the z-axis. M spans the magnetic sub levels
of the wavefunction. The angular part of the wavefunction is represented by the angular

basis given by

1/2
atskadyp) = ( ) 0@ Dl (3.1)
0.p=0
|Jm, k,5,p) = ( ) (1/2)'/?
X ( (6)Dis_(aB)* + (=1)POk(0) D gi (aB)*)
k>0,p=0,1 (3.2)

The Radial part of the wavefunction is represented by ¢, (1) dn(r2)

|m,n) = ¢m(r1)dn(re) (3.3)
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3.1 Jacobi Dipole calculation

The [th eigenfunction of the Jth angular momentum level with parity p is given by

lJM,P, szznﬂfyf;"]ﬂ/fyk,m7n7j’p) (34)

k=pmnj
The line strength S(f — ¢) for a particular transition from an initial state i to a final

state f is given by

S(f—i)= D (TH™M'™:? (3.5)
MIMIIT
where
T M = (0 V|| T g, 07,17 (3.6)

and p? is the 7 component of the space-fixed dipole moment. Due to the nature of the
body fixed coordinates, only the z and x components are non-zero. The body-fixed dipole

moment, u™(ry, 19, #), transforms to a tensor of rank one into space fixed coordinates.

+1
= Z MT(TI,TQ,H)D.}_,V(C!,B’Y)* (37)

v=—1
This gives
TFMT = (a0 VI (1,72, 0) D | T, 2, 1)
I JII

SYY Y Y

v=—1 kl_p m'n' ]I kll_pll m/ln// 31

(Jpey k!S5 ol | rl,rg,O)D},*,,]J” a k' ym " 5" ")

I

(3.8)

This equation can be separated into angular and radial parts. Considering the an-
gular part first
+1 / JII
JIMI Ill JIIMI/ Illll
DD IO AT A
V—_l k/_pl kll_pll ]/]II

X (J;V[’ak/,j,aplll‘l’gl(rlar2; *VIJM” k”aj//’p”) (39)

Substituting in the angular functions (3.2) and multiplying out, we obtain the fol-
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3.1 Jacobi Dipole calculation

lowing (The k=0 special case is treated later).
+1 / JII
dJI Mlplll JII MII Illll
Z Z Z Z klmln .7 k”m"n”]"
U_-l kl.._pl kll_pll ] ]”
/ (D)¥+F" 2y 1\ Y2 f2g" 41\ /2
) 2 82 872
(0511 (60) Doy (BT (71,72, 0) D3, © i (0) Dty () +
@;Ikl (Q)Dﬁ,”k,(aﬁv)uf}l (Tl, T, O)D @ 51K (O)D;}[]/,ilku (a,B")’) -+
(=1)" €314 (0) Dy (BY g (r1, 72, 0) DL, O g () D3Iy (08) +
(=1)7 O340 (0) Diogs ()i (11,72, 0) DL, (= 1) © s (0) Dt ()]

x  dsinf dBdady dcos 0 (3.10)

Exploiting the properties of angular algebra as given by Brink and Satchler [86] and

given below

D} (aBy)* = (-1)""™ D’  (aB7) (3.11)

/ DE,(aBv) D2, (afy)DE, (afy) sin BdBdady
ZSWZ(ABC)(ABC> 12
a b ¢ ad b

/ J/I

+1
= (2J’+1)1/2 20"+ 1)1 Y Z >N

I/_—l kl.._pl kll...pll ] ,7”

" !
dJ’M,pll,dJ”M”p”l” 1 k' +k" 1 T—V, m 1 J J
k'm!n'j' k”m”n"j”(_ ) (_ ) ,uy

1 1
TZI}’I M"7 becomes

TM MII

- —-M" M

1" 1 JII -]’
X /[(_I)M tk ( )e}kl(G)@j'/k"(e)'{'
—v k’" —k’

Ly g g | TERVIEIE

- Y R LA 4

(—=1)M R (—1)P ( )@;,k,(e)@juku(f)H
v kKK

1 JII JI

(_1)M”—k"(_1)p'+p” (
—v __kll kl

) @;’k' (O)Gjuku (O)jl dcos 6
(3.13)
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3.1 Jacobi Dipole calculation

3-j symbols are invariant under cyclic permutation of its columns and multiplies by

(-1)®+b*¢ by non-cyclic ones.

a b c b ¢ a b a c
= = (—1)otbte (3.14)
a B v B v a B a v
also
a b c a b ¢
= (—1)*tbte (3.15)
-—a -f -v a B v
Thus
1 Jr g _ J1 J' _ (Lq)o Jo1 J”
- M" M M - -M" -M r M
(3.16)
Using equations (3.14) and (3.15) equation (3.13) can be rewritten as
1 +1 Jl JI/
MM'r _ ! 1/2 1" 1/2
T; = @I+ +1) > ZZ
V:_l kl:pl kl/:pll JI]H
! () " "1y JI l JI/
JM'PU I MU Kk NT—v 1y T+
s Do i o (—1) (-1)77"(-1) IV R
" " JI 1 J”
x [ HrE5(O)850) | (-1 +
__k_l —v kl/
n " J’ 1 JI,
(_1)M -k _+__
_kJ —v —k‘”
" " / J’ 1 J”
(=M (—1)p +
k.l —v kll
" " / 1 J’ 1 J"
()M -k (_1)p+p dcos 6
kl —v _kl/
(3.17)

From the 3-j symbols of second and third terms the following relations can be obtained
-k -v-K'"=0 (3.18)

K—v+K'=0 (3.19)

It can be shown that the second and third term are forbidden due to the restriction that

k' and k" must be a positive non-zero integer. Reordering upon v equation (3.17) now
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3.1 Jacobi Dipole calculation

becomes

+1 g

il}l,M,/T _ %(2J/+1)1/2(2J//+1)1/2 Z Z Z Z

l/:—l klzpl kl/:pll jljll

JIMIle/ JIIMIIlelII 1 K +k" 1 S JULJI41 J’ 1 J’I
dklmlnljl k“m”n”j"(_ ) (_ ) (—1) M' M”
- T
"oyt J 1 J"
x [ B0 @8 (0) | (-1 (
___k/ v k’/
"_gn It J’ 1 J"
(—1)M K ()PP dcos @
K —-v -k

(3.20)

Again using the 3-j symbol property defined by equation (3.15), equation (3.20) can be

rewritten

+1 Jl JII

TiI}/I'M”T _ %(2J/+1)1/2(2ju+1)1/2 Z Z Z Z

V:—l kl:pl kJI:pH j,j”

mlnljl kllm/lnII]II

dJ,/MIp/l’dJ//M/’p’ll‘l’(_1)k’+k,,(_l)T—U(_l)J,I+J’+1
k -M M

X /u;n@;!kl (e)ej//ku (0)

% [ (_1)M"+k” +(__1)M”—k"(_1)p'+p”(_l)J“—l-J’-l-l]

J 1 J"
X dcos 0
-k v K"

(3.21)

Once again using the 3-j symbol properties and defining k = k" we can further simplify.

-M'+7+M'=0 (3.22)

~k +v+k'=0 (3.23)

95



3.1 Jacobi Dipole calculation

+1 JH

Ml
’.Z-;'].\;!’M”T — ( ]‘) (2J,+1)1/2(2J”+1)1/2 Z Z Z

2 >
v=—1 k:p” J’J"
JI Mlpl ll JII M”p“l” IC J’ 1 J”
dk’m’n'j’dk”m”n”j” (_1) , "
-M T M

X

/w@;,k,(e)ejuk”(e) % [(—1)1”“’+1 +(—1)P'+P"] dcos 6

J! 1 J”
-v—-k v k
(3.24)

The angular integral can be evaluated using a Gaussian quadrature as outlined in

Stroud and Secrest [87] of the form,
b n
[ 1@ =Y wis@) (3.25)
a i=1

Where f(z) is a polynomial of degree m, z; are points and w; are weights. The Condon
and Shortley functions ©7,,(f) and © () can be expressed as the polynomials Pl

and Pjuyn respectively.

+1 J"

M’
mmrr (1) 1/2 1/2
Ty = @+ )21+ Y2y NN

v=—1k==p' j'j!

dJ/M/p/l/ JU M1 k J' 1 J”
k'm'n'j' k“m”n”j”(_ ) o I
— T
n
X Zurun(mi)P]tkl(mi)Pjnku(1131‘)
=1
% [(_I)J”+J’+1 +(‘1)p'+p”]
J' 1 J”
X
-v—k v k

(3.26)

z; and w; are determined from the Legendre polynomial of equal order to Pjo, ie k=0.

The radial part in an FBR can be expressed as,

1
T M T M
Z Z Z (m'n'|,ui|m”n") X dk’m’:’j’dk”m”np”j” (327)

v=—1m/n' m'"n"
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3.1 Jacobi Dipole calculation

We can omit D;’*,, as it has no radial dependence. A 1D DVR transformation for a
coordinate is defined in terms of points, z;, and weights, w;, of the N-point Gaussian
quadrature associated with the orthogonal polynomials used for the FBR in that coor-

dinate [79].

T = (wa)'/?Ima) (3.28)
TP = (wp)/?Ing) (3.29)

Z SN TeT (min | [ 0 YT T,

l/"—l mlnl ml!nl/
JI MI Ill JII MII Il[ll
it Do o (3.30)

33 (a2 ) iy e )2 )

v=—1m'n' m"

Jl M/ Ill JII MII Illll
x dklml,nejldkllmllnlljll (3-31)

3DIDIDIDD

U:__l ml nl mli nll al ﬂl allﬂll

('wa’ )I/Q(U}ﬁ’)l/Q (wa/)l/Q(wﬁ:)l/Q,uﬁéafa/ 56”ﬁ”

JIMI ([l J”M” lIlH
X dlc’m nl,)j’dk”m”'n”]” (3'32)

let
J/MI /ll J MI Il/
k’]’ag - Z (’LU ')1/2(w5’)1/2dklm,fl i’ (333)
m'n'
JIIMII Illll JHMII IIlN
Ck'”]"aﬁ — Z (wa”)1/2(wﬂ”)1/2dk//mun11]1/ (334)
m!'n!
Therefore
JIMI Ill JIIMII Illll
D Ul Chiah ! Chnnah (3.35)
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3.1 Jacobi Dipole calculation

Thus combining the radial and angular parts,

_+_1 JII

j;l}llM”T — (__2_1) (2JI+1)1/2(2JH+1 1/2 Z Z ZZ

v==1k=p" j'j" af
J! 1 J” J! 1 J”
(-1
-M T M" —v—k v k
X Zw,pu z;) ,k,(:cl)Puku(:v,)
Jl Mlplll JII MII Illll

X Cli aff k”]”aﬁ
[(—1)1"“'+1 +(~1)P’+P”] (3.36)

X

S(f—-1i) = [(2J" +1)(2J" + 1)]]

AN

+1 0 J"

DIDIONY

v=—Llk=p" j'j" af
J' 1 J"
-v—k v k

x (-1)F

X Z/.LU .’El ’k’ :BZ)PH;CH(:L‘Z)

JI Mlplll J” MII 1 lII
x kljlaﬁ ckll]Haﬂ

y [(_I)J"+J’+1 + (=)t ]r

fork > 0,p =0, 1 only (3.37)

3.1.1 Special Cases

There are a number of special cases which must be dealt with.

Firstly for ¥/ = 0,p’ = 0 to k"’ = 0,p"” = 0 case. Taking the angular basis first, from
(3.1) and (3.4),

2 2 +1
TMIMII _ 2J’ + 1 1/ 2J” + 1 1/ Z ZdJlMlplll J/IMII Illll
- 87r2 87-(2 1 klmlnl ! k”m”n”]”
v=—1j'j"

X @;;0(9)@]“0(9)
X DX/}’O(Q, ﬁ) 7)“{/’1(7‘1, T2, 9)D$,*,(a, ﬁ) 7)Dﬂl’70(aa :31 ’Y)
x  dsinfB dfBdady dcos 6 (3.38)
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3.1 Jacobi Dipole calculation

Using the 3-j symbol relations outlines in equations (3.11), (3.12), (3.14) and (3.15).

1/2 1/2 +1
TMIMII _ 2J’ + ]. / 2.]” + ]. / Z Z d‘] Mlplll JIIMII ”l”
if - 87T2 87(2 k'm'n!j' kllmll,nlljll

v=—1 j/5
X  ©%0(0)0;mo() ' (r1,72,0)
S D{/}’O(a,ﬂv'Y)( l)T UD—T u(aaﬁa'}l)('— )M"‘DJM” 0(a :37 )
x  dsinf dBdad~y dcos (3.39)
A T Afl ]! JIIMII ”l”
qll}/fM = (2J, )1/2 J”+ 1)1/2 Z Zdi,,%np/l/ k"mllnll]ll
v=-1 35"
" 1 JII J’ 1 JII Jl
x (=17 (=nM
-7 =M" M -v 0 0
X /@/0 j10(8) )t (r1, 72, 0)dcos 6 (3.40)
TMM'T = (7' + 1)V (20" + 1)1/? Z Sodl M lal, M
v=—1 3/ 4"
1" " ! J’ ]- J” J/ 1 J’,
x (—l)M (_1)7'—1/(_1).] +J'+1
-M T M" 0 —-v 0
x / 0(6)0 10(8) T (r1, 72, B)dcos 8 (3.41)

Similarly we can evaluate the angular integral as a Gaussian quadrature.

+1
THM T = @1+ )21+ )2 ST S d M hal,

1 klmln J k”m”n”]”

v=—1 jij"
J’ 1 J// Jl l J/l )
x (=M (-1)7
-M T M" 0 v O
n
XY wiPyo (i) Pjo (i) g (2:) (3.42)

i=1

Thus incorporating the radial portion we obtain,

712‘1}'4/MII - (2Jl + 1)1/2(2J” + 1)1/2
+1
JlMlpll/ JIIMII Ill/l
X Z chkl] 'af klI]I/aﬂ
v==13'5" af
, JI 1 J” JI 1 JII
x (=nM(-1)7
-M' 7 M" 0 v 0
n
X Zwinfo(sz')*Pj“o(iﬂi)HT(xi,a,ﬁ) (3.43)
=1
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3.1 Jacobi Dipole calculation

S(f-19) = @J+1)@2J"+1)

+1
JIMIpllI JIIMHpIIlII
X E § ck’]’aﬂ ck(ljllaﬂ

v="177" af
Jl 1 JII
x (=17
0 » O
n 2
X Zwin'o(iEz‘)*Pj"o(wi)HT(Ei,a,ﬂ)]
i=1

K =0, k=0
for (3.44)
pl = 03 P" =0

For ¥ = 0,p' = 0 to k" > 0,p"” = 0,1 case. Taking the angular basis first, from
(3.1), (3.2) and (3.4),

+1 J o J" 1/2 ' 1/2 " 1/2
1A w1 2J"+1 2J"+1
M'M"T LA = -
Ly ™" o= Z Z Z Z/(—l) (2) ( 872 ) ( 872 )

U:—l kI:pI klI:pH j/j//

JIMI Ill JIIMII Illll
dk’m’rf’j’ klImIITfII]'Il

X [©30(0) Dipigler B, KR DE (e B, 1) mkn Do, B,7)+
(=)' ©310(60) Do, B, VAL DE (4, B, )0 010 (0) D _gon (@, B,7)]

X dsinf dBdady dcos 6 (3.45)

1 g

M'M'r g 1 v 1/2 /6y 711 1/2
Ty = Y Y Y Y [ (5) (27" + 1)V22J" + )Y

ru:._l kl:p’ klI:plI jljll

dJI Mlplll JHMI/pIIlH

k'm! nljl k! munlrjl/
* _ Mll+kll

X [€30(0)0 (B} (~1) (1)
g 1 J
X

- -M" M -v K" 0

1

+ @;10(0)®jukn (e)u;n(_l)p (—1)T_V(_1)M”-—k;”

1 JII ,]’ 1 JII JI
X
-7 -M" M -v =k" 0

X dsinf dfBdady dcos 0 (3.46)
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3.1 Jacobi Dipole calculation

+1 J! J" 1/2
! " 1 1
= L3S S e () e e
ru:_.l kI:pl k//:pll jlj”
JIM/pll/ JIIMIIpIIlII
x dklm/nljldkllmllnlljll

JII JI " ,
X @;,O(B)Gjnku(é’)u{," (—1)'] +J+1(—1)T—V
- =M" M
" " J, 1 J” s " 1 J, 1 J”
X |(=DMIHE + (=DP (~pM" ok
0 —v k" 0 —-v —k"
x  dsinf dBdady dcos 6 (3.47)

! t +1 J” 1 1/2
oy = 3 S S [(5) e
v=—1k"=p" j'j"
JlMlp,ll JHMIlpU l”
X dklmlnljl kl/ mllnlljll

" JI 1 JII JI 1 JII
x (=177 (=1)M" 0% ()0 i ()l
-M -7 M" 0 v k"
x  [(=1)7" '+ 4 (=1)""|dcos 6 (3.48)

From the 3-j the symbols we obtain the following relations

M' = M -7 (3.49)

v = —k" (3.50)

Applying the Gaussian quadrature on the angular integration in a similar manner as

previously.

+1 _]”

T M D'l T M
= _S_ § Z dk’m"rf:j’dk”m”:”j”

v:__l kl/:pll jljll

M' Mt
Tiy

1\'? :
x (20" + 1)1 (20" 4+ 1)/ (5) (-1 (=M

n
X > wiPo(zi) Py (m) ul (o, B, 7:)

i=1

Joo1r g J o1J
X
-M' -7 M" 0 v k"
x [(=1)7" 4 (-1 (3.51)
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3.1 Jacobi Dipole calculation

Including the previously derived radial portion,

+1 J”

TM[M” _ Mlplll JIIMII IIlII
'Lf - kla/ﬂl 3! k// Ilﬂll i

v___l kll.__pll ] ]/’ a'B

x (2 + )27+ )12 (1)1/2 (=)
2

n
XY wiPpo () Py (i) u (o, B, ;)

=1
Jl 1 J" JI 1 J’II
-M - M" 0 v k"
x (=17 4 (-]

+1 J"

S(f—i) = (%) @F+1)EI"+1) | S ST SN Mt

'U__l kll._pll J ]l/ QB

, J 1 g
x (=1)
0 v k'
n
XY wiPhg (@) Py () ) (o, B, 22)
i=1
1 1 1 2
x (=) (-]
E=0 Kk">0
for

pP=0 p"=0,1

Similarly for ' > 0,p' = 0,1 to k"’ = 0,p" = 0 case, the line strength is given by

+1 JII

S(f -1

'U-‘—l kll_pll ]IJ/I aﬁ
Jl 1 JII
0 v kK
n
X Y wiPo(zi) P (zs)ul (e, B, 7:)
=1

(=17 (1)

X

>0 k"=0
for
pP=0,1 p'=0
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(3.52)
J//MH Illll
k/l I/B// i
(3.53)
J”MII Illll
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3.1 Jacobi Dipole calculation

3.1.2 General Case

As the DVR2-FBR! wavefunctions, c,{(%’;l, have an angular dependence on k it is neces-

sary to transform them such that all the wavefunctions are on a common DVR grid. This

. . . JIMIp!ll J/’M/Iplllll
transformation, which places the wavefunctions Ck'afj! and ¢y, g onto a common
grid is given by
Jpl 1 J okl
CraBy = Z(wn)2 jk(mn)da,ﬁ,j (3.55)

n

The weights w; and points z; are determined from a Gauss-Legendre polynomial of equal
order to Pjg, ie kK = 0. The number of angular points on the common grid, v, is at least
one more than the number FBR angular functions, . The DIPOLE3 program allows =y
to be used as input, thus allowing it to be varied. This relatively fast transformation
has the effect of removing one of the summations from the line strength expression. The
implementation and use of these transformed wavefunctions into the DIPOLE3 program
by the author has led to a significant increase in efficiency, and hence a reduction in
computational cost.

The above relations can be combined to give a single equation for the transition

strength S(f-7).

. 1 " 1 , 7
S(F—i) = (@7 +D@I"+ 1] [(~)7HH 4 (-1 ]
oL Joo1Jg S g ’
X Z Z a(k + I/,k)(—l)k cklgﬁ,yckllgﬂ—y /.LT(CEﬁ’)’) )
v=—1k=p" —-v—-k v k afy
(3.56)

where ¢/MP! is the value of the wavefunction of the {*" state with rotational quantum

numbers (J, M, p), at grid point (afv).The coefficient a(v, k) is given by

a(0,k) = 277b,
a(+1,0) = F271b,

a(£l,k) = Fb (3.57)

where the factor b depends on the embedding used:
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b =1 for the standard r; embedding;
b = (-1) for the standard 7, embedding;
b = (-1)¢ for the bisector embedding,

/ k "
-I2—p )+ integer(+++p

k
d = integer( ) (3.58)

where the integer specifies integer arithmetic rounded towards zero.

3.2 Computational Implementation

The calculation of dipole transitions as outlined above has been implemented by the
author in the DIPOLE3 program of Tennyson et al [43]. The general algorithm of the

dipole calculation is as follows

1. Calculate dipole moment at the radial grid points and angular integration

points
2. Begin to loop over k
JI ,kl’ll Jl

3. Read in wavefunctions, daﬁj' , and transform to common grid, giving cj,

. R JII k(/ l”
4. Read in wavefunctions, d- ;..

8,0 » and transform to common grid, giving cj,

5. Evaluate the following part of line strength equation

J, 1 J" Jl !ll JII IIlII
a(k +v,k)(-1)* DI TACT:R)
-v—k v k aBy

6. Next k, i.e. goto 3

7. Calculate S(f —4) by completing the evaluation of line strength

equation (3.56)

8. Calculate A;;y and J(w;;) (equations (3.60) and (3.61)) and output

transitions

This new algorithm is significantly more efficient then that by Lynas-Gray et al [88],

which uses the expression for the transition strength, S(f — 1), (3.56) given below using
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DVR?2-FBR! wavefunctions and the function bﬁ,"jfj gives the value of the dipole moment

for a given a,ﬁ, ~ and v.
S(f—i) = Z[@J+1)(2J"+1)]

il
JII
" [Z S SN ()P P a(, v+ )25+ 1)(257 + 1))

U——].'y |l/|k P”]”]

—-v—k v k 0 0 O -v—k v k
2

a,ﬂ J/ lll J” II[/I
X D bSY X CuTagChntag
B

( I 1 JII j’ ,Y j” j’ 7 ]'II

(3.59)

The Lynas-Gray et al expression has an extra summation compared to the new
expression (3.56). The new form of dipole transition integral can now be expressed in
the most computationally efficient form, that is »; 4;(1)u(I)vf(I), where I runs over
integration points. Thus the line strength is calculated simply by summing over grid
points of the bra wavefunctions times the dipole operator times the ket wavefunctions.
In addition the new expression removes the angular coupling in the Lynas-Gray et al
expression. This is particularly useful for parallelisation as the whole wavefunction can

be split across processors, not just the radial portion (refer to section 5.6).

3.3 Einstein A-coefficient

The Einstein A-coefficient, A;; may be calculated from the line strength, S(f — i), as
given by equation (3.56),

647 AU —1)gi
3c3h 2J'+1

where w; is the frequency of the transition, g; is the nuclear degeneracy factor for lower

Ay = (3.60)

level, ¢ is the speed of light in a vacuum, and h is Plank’s constant.

3.4 Integrated absorption coefficient

The integrated absorption coeflicient, I(w;ys), in cm~3 per molecule can be calculated as
a function of frequency, w;y,
(4.162034 cm~2 Debye ™) x 107 %w; ;g;[exp(E" /kT) — exp(E' /kT)]

o) S(f—1)

(3.61)

I( 1f)
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3.4 Integrated absorption coefficient

where T is the temperature, Q(T) is the partition function of the molecule, E' and E" are
the energies of the upper and lower levels respectively, and g; is the nuclear degeneracy

factor for the level.
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Chapter

Hé" low-lying states: Applications

There are a number of important applications for H; calculations, many of these ap-
plications are on going. One such application is deuterium chemistry in the interstellar
medium. This has had renewed interest of late, due in part to recent observations of
multiply deuterated species in the interstellar medium [38-40]. The cosmic abundance
of deuterium with respect to hydrogen at low temperature is approximately 1.4x1075
in the solar neighbourhood [89], but a much higher ratio is observed between molecules
and their deuterium baring isotopomers in some environments. The process which leads
to enhanced abundance of deuterium baring isotopomers is know as deuterium fraction-
ation. This effect is thought to be primarily through reactions with HoD*. Modelling
of interstellar deuterium chemistry by Roberts et al [90] suggest that all the deuterated
H; isotopomers, not only HoD*, have an effect on fractionation. In fact under certain
conditions DF becomes the dominant ion [91]. That is the inclusion of D} and D,H*
enhances fractionation significantly [91]. The deuteration of Hi to form the isotopomers
is exothermic dues to differences in zero point energies.

Both theoretical and experimental progress can be made if cooperation exists between
theorists and experimentalists; this cooperation can be an important diagnostic tool. To
this end a number of calculations have been performed to aid experiment.

Unless otherwise stated all calculations in this chapter use the DVR3D program suite
of Tennyson et al [43] and the ultra-high accuracy ab initio potential energy surface of
Polyansky and Tennyson [2] which was based on the electronic structure calculations of

Cencek et al [54]. The Jacobi coordinate system (ry, 7o, 6) with the body-fixed z-axis
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4.1 Zero point energies

Table 4.1: Parameters, in atomic units, for the Morse oscillator-like functions used for the radial

grid in DVR3D [18].

T T2

Te D, We Te D, w
Hi 21 01 0.0118 1.71 0.26  0.009
H,D* 171 0.1 0.0108 1.65 0.215 0.00895
D,H* 1.83 0.09 0.0081 1.62 0.17  0.0105
DT 1.78 0.12 0.009 148 02  0.009

taken along the 7, coordinate was used (see figure 2.6). The DVR grid size was 20,
21, and 36 for the 7, ro and @ coordinates respectively. These grids were based on
the use of Morse oscillator-like functions for the ry and r9 coordinates, the parameters
used are given in table 4.1. Associate Legendre polynomials were used for the angular
coordinate. For the vibrational step, a final Hamiltonian of dimension 4000 was used
in all cases. For the rotational step a final Hamiltonian of dimension 350x(J+1) was
used unless otherwise stated. Vibrational reduced masses of 1.0075372 u and 2.0138140
u were used for hydrogen and deuterium respectively [2]. The rotational masses used
for hydrogen and deuterium were 1.00727647 u and 2.0135532 u respectively [2] which
correspond to the nuclear masses. Using the above parameters it has been shown that
known transition frequencies in the low energy regime can be reproduced to with a few

hundredth of a cm~1.

4.1 Zero point energies

The zero point energies of H;r and its isotopomers are needed to accurately model re-
action dynamics (see section 4.3). It is believed that Hg’ in the interstellar medium
is the primary driver of ion-molecule chemistry and thus is important in the evolution
of both dense and diffuse molecular clouds. In addition, ion-molecule reactions at low
temperatures of the isotopomers of H7 lead to enhanced abundances of other deuterium
baring molecules with respect to their non-deuterated forms. Thus the H3 isotopomers
are important in modelling these molecular clouds. The formation of the isotopomers of
H7 is exothermic due to differences in zero point energies.

The zero point energies were calculated by finding the global minimum for the poten-

tial energy surface of Polyansky and Tennyson [2] (refer to section 2.3). The calculated
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Table 4.2: Comparison of vibrational zero point energies for deuterated Hf . A(zpe) is the change

in zero point energy relative to the lowest J =1, K = 1 level of H}.

Isotopomer Zero point energy [cm™!] A(zpe) [K]

Carney Jensen et al This work This work
Hf 4345.3 4361.7 0.0
H,D* 3963.0 3993.3 3978.1 —644.2
D,H* 3547.5 3571.5 3561.4 —1243.8
D+ 3099.8 3112.3 —1890.0

zero point energies for HY, HoDt, DoyHY, and Dgr are presented, table 4.2. The zero
point energies which were calculated were compared to the previous work of Carney [92]

and Jensen et al [93].

4.2 Partition functions

The internal partition functions, z;,; for H;’, D; and DoH' were computed by explicitly

summing the series:

)

Zint = Y _(2J + 1)g; exp (— Czﬁ) (4.1)

where J is the rotational quantum number, g; is the nuclear spin degeneracy factor for
state i, ¢y is the second radiation constant and E; is the associated energy level relative

to the J = 0 ground state in cm™!.

No distinction was made between rotational and
vibrational energy levels. H;‘ has only one bound electronic bound state, thus there
was no electronic contribution to the partition functions. All the Hi energy levels were
taken relative to the J = 0 vibrational ground state. The partition function of HoD™
was not calculated as it had been previously calculated along with Hf by Sidhu et al
[7]. The partition function of HY was calculated again in this work for the purposes of

comparison with that of Sidhu et al.

The full partition function, z;,; can be written as

Ztot = Ztmnszint (4~2)

where 2;,; is the internal partition function. The translational contribution to the par-
tition function, 2'"%"*, can be estimated using the perfect gas model as all the reactions

considered conserve the number of particles in the system. The ratio of their transla-
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4.2 Partition functions

tional partition functions is given by a simple mass factor [94]

t t 3/2

zé"anszl;ans _ (mCmD) /
trans ,trans —

ZA " %B

(4.3)
maAamp

where mx is the mass of species X.

A total of 40x(J+1) energy levels were computed for each J, up to J=14. This
procedure gave at least 19119 rotation-vibration energy levels for each molecule and
ensured that all energy levels up to 10000 cm™! were included.

DyH* has Cy, symmetry, this symmetry is fully represent in the DVR3D program by
the parity of the basis, ¢, even and odd; which means that energies with even (g, =3) and
odd (g, =6) parity are easily identified. H and DI have Dj; symmetry, this symmetry
is not fully represented by the DVR3D program. Thus energies with E, A; and A,
cannot be so easily identified. The A; and Ag states are represented by DVR3D and
have even and odd basis parity respectively. The E symmetry energies are determined
by the fact that they are degenerate across even and odd basis parities. The E symmetry
states can be identified by hand by examining the complete list of energy levels for both
even and odd basis parities. For HF the nuclear degeneracy factors are 2, 0 and 4 for
E, A; and Aj respectively. For D the nuclear degeneracy factors are 8, 10 and 1 for E,
A; and A, respectively.

Table 4.3 presents the values obtained by the explicit summation of equation (4.1).
It was found that at a temperature of 800 K the inclusion of the J=14 energy levels
contributed only 0.02%, 0.77% and 0.35% to the internal partition functions for Hi
and D;’ and DoH™ respectively. Therefore the partition functions are valid up to a
temperature of 800 K.

Comparing the Hf partition functions of this work and that of Sidhu et al (figure 4.1)
we see that the two works are in good agreement. There is some minor disagreement at
higher temperatures where in any case the much more comprehensive partition function
of Neale and Tennyson [8] should be used. Neale and Tennyson used all levels lying
up to 15000 cm~! with J < 20 so that the partition function could be reliably used to
a temperature of 10000 K. Figure 4.2 shows the partition functions of DoH* and D3 .
There is no data for which this can be compared, but the good agreement shown in
figure 4.1 indicates that these partition functions will show similar accuracy.

The partition functions have been ﬁtted to the standard formula, see Irwin [95], in
the temperature range 5 K to 800 K using the data in table 4.3. The coefficients a, for
HY , D and DoHT are tabulated in table 4.4.
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4.2 Partition functions

Table 4.3: Calculated internal partition functions as a function of temperature to 4 significant
figures. Powers of ten given in parenthesis
T(K) Hf D} D.H*
5 5.832(—8) 10.00  6.001
10 6.349(—4) 10.24  6.128
20 0.0826 12.57  7.885
30 0.4654 16.38  11.12

40 1.148 21.19 15.09
50 2.020 26.96  19.59
60 2.995 33.60 24.58
70 4.024 40.99 30.03
80 5.083 49.03  35.92
90 6.158 57.62 42.22
100 7.246 66.73  48.93
150 12.90 118.67 87.61
200 19.10 179.79 133.61
300 33.39  325.28 243.78
400 50.06 498.79  375.3
500 68.97 701.12 5273
600 90.18 936.59 701.6
700 113.1  1211.29 901.1
800 140.7 1531.36 1129.6
6
log1p(2) = Z an(logo T)" (4.4)
n=0

Our fit is never more than 1.35%, 0.78%, and 1.22% from the calculated values of z
for Hf, DF and D,H" respectively.

It is interesting to note that the partition functions of each molecule tends towards
the nuclear spin degeneracy factor of the lowest state in the low temperature limit. This
is zero for H, as the energy levels were taken relative to the Pauli forbidden rotational
ground state for which g; = 0. This should be considered when this partition function

1s used.
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Logyp2

oL

Log,oT

Figure 4.1: H:{ partition function, z as a function of temperature, T. Crosses, this calculation;
dashed curve, fit of equation (4.4) to our calculated data; Circles, calculation of Sidhu et al [7];

Pluses, calculation of Neale and Tennyson [8].

H D D,H*
ap —35.10102  —0.388363  —0.975341
ay  72.2463 5.65495 7.92203
a,  —66.3543 ~8.53925  —13.5834
as  35.3938 5.83071 11.0576
ag  —11.3756 —1.74965  —4.45541
as  2.06118 0.205985  0.890251

ag —0.160957 —0.00289176 —0.0704028

Table 4.4: Fitting coefficients for the polynomial fit (equation 4.4) to the partition functions of
HI, Df and D;H%in the temperature range 5 K to 800 K.
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Figure 4.2: DoH' and DgL partition functions, 2, as a function of temperature, T. Diamonds,
DoH* calculation; dashed curve, fit of equation (4.4) to DoH* data; crosses, D;‘ calculation;

solid curve, fit of equation (4.4) to D data.

4.3 Reaction Constants

Hydrogenic gas phase reactions involving H;r and the deuterated isotopomers that are
regarded to be significant in gas phase deuteration are tabulated in table 4.5. Within
the thermodynamic equilibrium regime, the equilibrium constants, K, of these reactions
can be calculated from the partition functions and zero point energies of the reactant
and product species. It is not possibly to separate the forward and backward rates in
these calculations thus comparisons can only been made to the ratio of the forward, k¢,

and backward, k,, rates.

ks
K=— D
kpy (4.5)
For reaction
A+B—->C+D (4.6)

the temperature dependent equilibrium constant, K(T'), was calculated using the fol-
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Table 4.5: The energy released, AE, for the reactions of interest

Reaction AE /K
(a) Hf+D - H,D*+H -597.8
(b) Hi+ HD — H,D*+ H, -231.8
(c) Hy,Dt+ HD — D H*+ H, —187.2
(d) D,H*+ HD — DF+ H, —-233.8
() Hf+ D;— H;D*+ HD -153.0
(f) Hf+ D;— DH*+ H, —340.2
(§) HD*+ D;— D,Ht+ HD -108.4
(h) HyD*+ Dy— DI+ Hy —-342.2
(i) DyH*+ Dy— Df+ HD —155.0

lowing, o b
2542 AFE
K = %exp (—ﬁ) (4.7)

where z;,; is the partition function incorporating translational motion and AF is the

energy released in the reaction. The value AFE was calculated using
AE=ES+EP —gA_EB (4.8)

where EZ is the zero point energy of species X as measured on an absolute energy scale.
Thus the AFE for reactions (b) to (i) were calculated in this way. The diatomic zero point
energies were calculated using the constants of Huber and Herzberg [19] (table 4.6) and
equation 4.12. The zero point energies of H{{ and isotopomers were taken from table
4.2. The ground state for Hi is forbidden by the Pauli principle; The lowest state,
J =1, K =1, lies some 64.123 cm~! above this ground state. Thus for H;“ the so called
“rotational zero point energy” was used, which is 4425.823 cm~!. For reaction (a) the
difference in ionisation energy between H and D was taken to be 46.4 K [96].

The diatomic partition functions needed for the equilibrium constants were calculated

using the formulae given below.

_ FI/ + GI/ - G(]
z= Z(QJ + 1)gsexp <——————kT—) (4.9)
v,J
where
F, = B,J(J +1) — D J?*(J + 1)2, (4.10)
By, =B =a.(v+73), (4.11)
Gy = we(v + 1) — weze(v + 1)? (4.12)
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! used to calculate diatomic partition functions taken from Huber

Table 4.6: Constants in cm™
and Herzberg [19]
H, D, HD
B. 60.853  30.443  45.655
a  3.06 1.0786  1.986
D, 0.0471 0.01141 0.02605
We 4401.21 3115.50 3813.15
wez, 121.33  61.82 91.65
e 1 6 6

8o 3 3 6

The constants used were taken from Huber and Herzberg [19] and are tabulated in
table 4.6.

Table 4.7 gives the equilibrium constants, K, for the reactions tabulated in table 4.5
as a function of temperature. The equilibrium constants were calculated using the
partition functions previously discussed (section 4.2). The HoD¥ partition function was
taken from Sidhu et al [7].

Experiments measuring both the forward and backward rates for the reactions of
interest have been conducted by Adams and Smith [21], Giles et al [20] and most recently
by Gerlich et al [97]. Both Adams and Smith and Giles et al used a variable temperature
selected ion flow arrangement [98], while Gerlich et al used a low temperature multipole
ion trap.

There have been few experiments where both the forward and backward reaction
rates of interest have been measured; so that the equilibrium constant may be deduced
for comparison. A comparison of the experimental data available to date is given in
tables 4.8, 4.9 and 4.10. Our calculations generally show approximate agreement with
the experimental data. The notable exception is the recent experiment of Gerlich et al
[97] for the Hf + HD — HyD*+H,, which disagrees with our calculations by 12 orders
of magnitude (table 4.10). Gerlich et al measured the forward and backward rates at
a low temperature, 10 K, using a low temperature multipole ion trap. There have
been no other experiments carried out at this low temperature, thus no other direct
experimental comparison can be made. Smith and Adams using standard extrapolation
give an equilibrium constant of 1.7x10%° at 10 K, which is in better agreement with our

own result. The previously calculated value of Sidhu et al used a AF of 139.5 K, this AF
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4.3 Reaction Constants

does not take into account the previously discussed rotational zero point energy. Thus
if a AE of 231.8 K is used then an equilibrium constant of 7.1x10%12, which is more
consistent to our own is obtained. At this low temperature only a few energy levels are
thermodynamically available. Thus the theoretical calculation of the reaction constant
uses only a few low lying states which for the triatomic species are determined to within
a few hundredth of a cm™! [2]. Therefore it is difficult to see how our calculation could
be incorrect by several orders of magnitude. It seems more likely that the source of
the discrepancy is with the experiment. These sources could be that other processes are
occurring in the experiment which have not be accounted for or the experiment not being
in thermodynamic equilibrium. This is one of the most important reactions with regard
to fractionation in the interstellar medium. Most theoretical models of the interstellar
medium use the value of either Adams and Smith [21] or Giles et al [20]. These models
have shown good agreement with observation [90, 99], which is difficult to imagine if the
reaction constant of Gerlich et al is used.

A comparison of our equilibrium constants with those of Giles et al [20] for the
reactions of interest are shown in table 4.8. Giles et al give relative errors of + 15% for
the equilibrium constants. This values is much lower then the related absolute values on
the measured rates; Giles et al state that certain systematic errors will cancel when taking
the ratio of rates, thus producing lower error bounds. This may be rather optimistic. In
general there is better agreement between our calculation and the experiment of Giles
et al at the higher temperature of 300 K. This is most likely due to the less demanding
nature of measuring the reaction rates as higher temperature. Giles et al also calculate
the equilibrium constants by calculating the partition functions of the reactant and
product species, and the AFE for the reaction. These partition functions were obtained
by explicitly summing the energy levels (as equation 4.1) calculated using the rigid rotor
approximation and the relevant experimentally determined rotational constants. The
rigid rotor approximation is problematic for the HZ{ system and definitely inferior to our
own ab initio energy level calculations. However we are generally in better agreement
with theoretical equilibrium constants of Giles et al than their experimentally derived
equilibrium constants.

A comparison of equilibrium constants for the reaction H;+ HD — HyD*+ Hj to
those of Adams and Smith [21] and Herbst [22] for a number of temperatures are given

in table 4.9. Adams and Smith estimate their errors on the reaction rates to be +£20%,
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4.4 Transitions for Observation

this gives an error on the equilibrium constants of +30%. We are generally in good
agreement with Adams and Smith. Herbst calculated the reaction constants using his
calculated partition functions and AFE. The partition functions for H; and HyD™ are
determined from explicitly doing the sum as in equation 4.1. The energy levels are found
by using the spectroscopic constants of Oka [100, 101] and Carney [92] respectively. The
constants of Huber and Herzberg [19] were used to calculate the partition functions of
HD and Hj. Our calculations are in reasonable agreement with the cruder calculations
of Herbst.

The reliability of our equilibrium constants are determined by the quality of the par-
tition functions used. The approximate model used to calculate the diatomic partition
functions begins to fail at higher energies; The reliability ab initio energy levels used to
calculate the triatomic partition functions can also be regarded to decrease with energy.
Therefore as energy levels of higher energy become more important at higher tempera-
tures the reliability of the partition functions for both the diatomic and triatomic species
are more reliable at low temperatures. Hence the reliability of equilibrium constants de-

creases with temperature.

4.4 Transitions for Observation

Renewed interest in deuterium chemistry has led to many attempts to observe deuterated
species in the interstellar medium [39]; including attempts to observe the deuterated
species of H; This has led to an increase in the demand for synthetic spectra to aid
observation. To this end the Einstein A;; coefficients of the dipole transitions have been
calculated.

The dipole transition intensities for D:{, DoH* and HaDV are given in tables 4.13,
4.12 and 4.11 respectively; transitions are given up to J = 5 and a maximum frequency of
5000 cm™!; transitions whose relative intensity is less than 0.0001 are neglected. The D
energy levels are labelled by the notation (v, ve, J, G, U) [102]. The quantum numbers
v1, V2, G and U were assigned by referring to the work of [103] and by inspection. The
HyoD*' and DyHY levels are assigned by hand using the standard quantum numbers J,

K,, and K..
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4.4 Transitions for Observation

Table 4.9: A comparison of Equilibrium constants with Adams and Smith [21] and Herbst [22]

for the reaction Hf + HD — HD*+ H,.

T(K) Adams and Smith Herbst

This work

80 448 (+1.3)
200 2.35 (+£0.7)
295  1.96 (£0.6)

5.9
2.6
2.1¢

6.
.52
1.07¢

1

82

a. The theoretical value is actually at 300 K

Table 4.10: A comparison of Equilibrium constants at a temperature of 10 K for the reaction

H{,"+ HD — Hy;D*+ H,. Powers of ten given in parenthesis.

This Work
Gerlich et al [97]

2.6(+12)

7.14

Adams and Smith [21] 1.5(49)

Sidhu et alf7]

7.1(+12)°

a

a. This value is extrapolated from experimental data

b. This value uses the corrected AF of 231.8 K

Table 4.11: Einstein A;; coefficients for transitions from low-lying levels of H,D*. Powers

of ten given in parenthesis.

J K, K, E/ J K K E' / wig(cale.) /  wis(obs.) / Ay /
cm™! cm™! cm~! cm™! 571

1 1 0 B 72457 1 1 1 A, 60.027 12.429 - 1.219(-4)
1 0 1 A, 45698 0 O 0 A,  0.000 45.698 - 4.040(-3)
2 1 2 A, 138843 1 1 1 A, 60.027 78.816 - 1.876(-2)
2 0 2 A, 131638 1 O 1 Ay 45.698 85.94 - 3.034(-2)
2 1 1 B, 175939 1 1 0 B, 72457 103.483 - 4.238(-2)
2 2 0 A, 22388 1 0 1 A,  45.698 178.17 - 1.664(-2)
0 0 0 A; 2205916 1 O 1 A,  45.698 2160.218  2160.176° 17.545
1 1 0 B; 2278465 1 1 1 A, 60.027 2218.438  2218.393° 10.372
1 0 1 A, 2246727 0 O 0 A, 0.000 2246.727  2246.697° 1.896
2 0 2 Ay 2318377 1 O 1 Ay 45.698 2272.68 - 0.352
0 0 0 A 2335338 1 1 1 A, 60.027 227531  2275.403¢ 145.65
1 0 1 A, 2383878 1 1 0 B, 72457 2311.421  2311.512° 83.419
1 1 0 B; 2409.227 1 0 1 A, 45.698 2363.529 - 78.984
2 2 0 A; 2427119 1 O 1 A, 45.698 2381.421  2381.367° 3.058
continued...
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4.4 Transitions for Observation

Table 4.11: ...continued

1 1 1 A, 2402699 0 O 0 A, 0.000 2402.699  2402.795¢ 60.938
2 0 2 A, 2477681 1 1 1 A, 60.027 2417.654  2417.734° 29.82
2 1 2 A; 2490966 1 O 1 Ay 45698 2445.268  2445.348° 58.586
2 2 1 B; 2568.382 1 1 0 B, 72.457 2495.925  2496.014° 60.067
2 2 0 A, 2569.489 1 1 1 A, 60.027 2509.461  2509.541¢ 48.476
0 0 0 Ay 2992524 1 0 1 A, 45.698 2946.826 2946.802° 53.167
1 1 0 B; 3063.331 1 1 1 A, 60.027 3003.304 3003.276° 27.509
1 0 1 A, 3038198 0 O 0 A, 0.000 3038.198  3038.177° 20.353
2 1 2 A, 3128888 1 1 1 A, 60.027 3068.86 3068.845° 20.088
2 0 2 A 3123324 1 O 1 A,  45.698 3077.626  3077.611° 24.757
2 1 1 B, 3167.147 1 1 0 B, 72457 3094.69 3094.671° 19.302
2 2 0 A, 3209.847 1 0 1 A, 45.698 3164.149 - 1.598
0 O 0 A; 428761 1 0 1 A,  45.698 4241.912 - 16.953
1 0 1 A, 433145 0 O 0 A, 0.000 4331.45 - 9.631
2 1 2 A, 4412461 1 1 1 A 60.027 4352.434  4352.360° 14.871
2 0 2 A; 4407925 1 0 1 A,  45.698 4362.227 - 15.450
0 0 0 A, 4461.832 1 1 1 A, 60.027 4401.805 - 88.628
2 1 1 Ay 4512.486 1 0 1 Ay 45.698 4466.788 - 0.413
1 1 0 B; 4536.348 1 0 1 Ay 45.698 4490.65 - 44.342
2 0 2 A, 4555.88 1 1 1 A, 60.027 4495.853  4495.881°¢ 27.013
1 1 1 A, 4512558 0 O 0 A, 0.000 4512.558  4512.567°¢ 41.115
2 1 2 A; 4563405 1 0 1 A,  45.698 4517.707 - 38.458
0 0 0 A; 4602.746 1 0 1 A, 45698 4557.048 - 69.044
2 2 1 B: 4677548 1 1 0 By 72.457 4605.091 - 38.831
1 2 1 B; 467774 1 1 1 A, 60.027 4617.713 - 33.563
2 2 0 A, 4691.531 1 1 1 A, 60.027 4631.504 - 20.198
1 0 1 A, 4657859 0 O 0 A,  0.000 4657.859 - 9.007
2 0 2 A; 4761399 1 O 1 A, 45698 4715.701 - 7.752
2 2 0 B; 4845211 1 O 1 A,  45.698 4799.514 - 1.335
0 0 0 A; 503984 1 O 1 A; 45698 4994.142 - 10.723

a. Frequencies of Foster et al [104]
b. Frequencies of Kozin et al [105]

c. Frequencies of Farnik et al [23]

81



4.4 Transitions for Observation

Table 4.12: Einstein A;s coefficients for transitions from low-lying levels of DoH*. Powers

of ten given in parenthesis.

J K, K, E/ J K, K, E' / wiylcalc) / wif(obs.) / A/

cm™! cm™! cm™! cm™! s~1
1 1 0 B 57993 1 0 1 A, 34918 23.075 - 5.091(-4)
1 1 1 Ay, 49255 0 0 O A; 0.000 49.255 - 3.303(-3)
2 0 2 Ay 101716 1 1 1 A, 49255 52.461 - 2.070(-3)
2 1 2 A, 110259 1 0 1 A, 34918 75.341 - 1.060(-2)
2 2 1 B 179173 1 1 0 B; 57993 121.18 - 4.450(-2)
2 2 0 A, 182074 1 1 1 A, 49.255 132.819 - 4.463(-2)
0 0 0 A, 1968146 1 1 1 A, 49.255 1918.89  1918.908%  52.175
1 0 1 A 1998523 1 1 0 B; 57993 1940.53  1940.551° 21.990
1 1 0 B 202703 1 0 1 A; 34918 1992.116  1992.130°  28.480
2 0 2 A 2055077 1 1 1 A, 49.255 2005.821  2005.844° 6.089
1 1 1 Ay 201409 0 0 0 A, 0.000 2014.09  2014.106° 14.364
2 1 2 Ay 2062923 1 0 1 A; 34918 2028.005  2028.024° 9.981
0 0 0 A, 2078435 1 0 1 A; 34918 2043.517  2043.515°  21.728
1 1 1 A 21287 1 1 0 B; 57993 2070.707  2070.708° 16.782
1 1 0 A, 2136248 1 1 1 A, 49255 2086.992  2086.990° 12.135
2 2 1 By 2145612 1 1 0 B; 57.993 2087.619  2087.630% 11.233
2 2 0 A, 2149555 1 1 1 A, 49.255 2100.299  2100.307° 5.992
1 0 1 A, 2118589 0 O 0 A, 0.000 2118.589  2118.588% 14.303
2 1 2 A 2202779 1 1 1 A, 49.255 2153.524  2153.525°  21.901
2 0 2 Ay 2194064 1 O 1 A, 34918 2159.146  2159.145° 19.827
2 1 1 By 222161 1 1 0 B; 57993 2167.168  2167.166° 17.293
2 2 0 Ay 2257594 1 0 1 A, 34918 2222.675 - 0.387
0 0 0 A 273698 1 1 1 A, 49255 2687.724 - 86.183
1 0 1 A 2771523 1 1 0 B, 57993 2713.53 - 44.856
1 1 0 By 27939 1 0 1 A 34918 2759.042  2759.036°  44.572
1 1 1 A, 2785338 0 0 0 A, 0.000 2785.338  2785.332'  31.182
2 0 2 A, 2837556 1 1 1 A, 49.255 2788.3  2788.300° 16.939
2 1 2 A, 284572 1 0 1 A, 34918 2810.802  2810.800°  29.412
2 2 1 By 2912708 1 1 0 B; 57993 2854.716  2854.707°  29.321
2 2 0 A, 2915616 1 1 1 A, 49.255 2866.36  2866.350" 22.136
0 0 0 A, 3821309 1 1 1 A, 49.255 3772.054 - 6.594
1 0 1 A 381977 1 1 0 B; 57993 3793.984 - 5.085

continued...
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4.4 Transitions for Observation

Table 4.12: ...continued

1 1 0 B: 3881727 1 O 1 A 34918 3846.809 3846.786°¢ 3.326
2 0 2 A; 3909.933 1 1 1 A, 49.255 3860.677  3860.660° 3.048
1 1 1 A, 3871398 0 O 0 Ay 0.000 3871.398 3871.377¢ 3.666
2 1 2 A, 3921988 1 0 1 A; 34918 3887.07 3887.052¢ 5.426
2 2 1 A, 4010.528 1 1 0 B; 57.993 3952.535 - 3.641
2 2 0 Ay 4013.18 1 1 1 Ay 49.255 3963.924 - 3.451
0 0 0 A; 4042815 1 1 1 A, 49.255 3993.56 3993.518°¢ 47.457
1 0 1 A, 4058.521 1 1 0 B; 57.993 4000.528 4000.494¢ 42.900
0 0 0 A, 4060.822 1 0 1 A, 34918 4025.904 4025.873°¢ 41.465
2 0 2 A, 4097.094 1 1 1 A, 49.255 4047.839 4047.840° 21.275
1 1 1 Ay, 4062925 0 O 0 A, 0.000 4062.925 4062.889°¢ 29.138
2 1 2 A 4097933 1 0 1 A; 34918 4063.015 4062.983°¢ 26.675
1 1 0 A, 4101122 1 0 1 A, 34918 4066.204 4066.158¢ 23.775
1 0 1 B; 4119.147 1 1 1 A, 49.255 4069.891 4069.859°¢ 20.300
2 2 1 B, 4179804 1 1 0 B, 57.993 4121.811 - 24.474
1 1 1 A; 4122993 0 O 0 A;  0.000 4122.993 - 1.369(-3)
2 0 2 A;  4214.033 1 1 1 A, 49.255 4164.777 - 5.765
2 2 0 A, 4208.006 1 0 1 A; 34918 4173.088 - 0.922
2 1 2 A; 4229853 1 1 1 A, 49.255 4180.597 - 2.424
2 2 1 A, 42524 1 0 1 A, 34918 4217.482 - 1.391
0 0 0 A, 4648.808 1 1 1 A, 49.255 4599.553 - 10.723
1 0 1 A, 4673469 1 1 0 B; 57.993 4615.476 - 9.138
0 O 0 A, 467496 1 0 1 A, 34918 4640.042 - 13.692
2 0 2 Ay 4720562 1 1 1 Ay  49.255 4671.307 - 4.699
1 1 0 B, 4706.784 1 0 1 A, 34918 4671.866 - 4.944
1 1 1 Ay 468185 0 O 0 Ay 0.000 4681.85 - 7.138
1 1 0 A; 4732173 1 1 1 A,  49.255 4682.918 - 6.999
2 1 2 A, 4723648 1 0 1 A, 34918 4688.73 - 6.633
1 0 1 A, 4727065 0 0 0 A, 0.000 4727.065 - 0.447
2 2 1 By 4796.924 1 1 0 B; 57.993 4738.931 - 6.783
2 2 0 Ay 4798.798 1 1 1 A, 49.255 4749.542 - 2.177
2 0 2 A, 4807.782 1 0 1 A; 34918 4772.864 - 0.875
2 0 0 B; 4852274 1 0 1 A; 34918 4817.356 - 0.503

a. Frequencies of Polyansky and McKellar [106]
b. Frequencies of Kozin et al [105]
c. Frequencies of Farnik et al [23]
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4.5 Telescope proposals

4.5 Telescope proposals

4.5.1 Roueff et al

It was proposed to observe HoD' and DoH™ in a young stellar object. A line strength
calculation on the isotopomers HoD* and DoHt in the infrared was carried out for a
telescope proposal at United Kingdom Infra-Red Telescope (UKIRT), sited in Hawaii.
The principal investigator was Evelyne Roueff of the Observatoire de Paris. The data
calculated is shown in tables 4.14 and 4.15. The proposal was awarded 25 hours of
telescope time in semester 03A in 2003.

The HoD transition 177 < Ogg from table 4.14 shows the greatest intensity, thus this
transition was chosen for the observation. Observations were carried out on the young
stellar object RAFGL7009S. RAFGL7009S is a deeply embedded massive young stellar
object with an estimated kinematic distance of 3.0 kpc [107]. Unfortunately bad weather
hampered observations; Figure 4.3 shows the spectrum from the best observational run.
The radial velocity of the molecular material is approximately 41.5 km s~! [108, 109].
Therefore the HoD* transition 11; < 0Ogg should occur at approximately 4.1615 um. It
is clear from figure 4.3 that there is no spectral feature near that wavelength. Evelyne
Roueff has been awarded a further 25 hours, 5 nights, of telescope time during semester

04A, 2004 (Patt No: u/04a/58).

4.5.2 Ceccarelli et al

Walmsley et al [91] suggest that under certain conditions in the interstellar medium D
becomes the dominant ion.

Cecilia Ceccarelli of the Laboratoire d’Astrophysique de I'Observatoire de Grenoble
hopes to observe D3+ in the interstellar medium. To assist in the observations, ab initio
calculations were made to determine the transitions which may be good candidates for
observation. The typical temperature of the interstellar medium was assumed to be 10
K.

Energy levels up to J=4 were computed. A synthetic spectrum was produced at 10
K up to a frequency of 5000 cm™!, transitions whose relative intensities were less than

0.0001 were neglected. Absolute intensities, I(w;r), and Einstein coefficients A;; were
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4.6 Farnik et al

Table 4.14: Infra-Red transitions for HyD*
JKLK! «JK", K", Vibration E'/cm™! E"/cm™! wis/em™' Ay [/s7?

101 « 000 U 0.000 3038.198  3038.198  20.353
101 «+ 000 U2 0.000 2246.727  2246.727  1.896

111 « 000 U3 0.000 2402.699 2402.699  60.937
000 « 101 V1 2992.524 45.698 2946.826  53.167
000 « 101 vy 2205.916 45.698 2160.218  17.545
202 « 101 U1 45.698 3123.324 3077.626  24.758
220 + 101 U 45.698 2427.119 2381421  3.058

Table 4.15: Infra-Red transitions for DoH*
JK! KL «JK" K", Vibration E'/cm™! E"/cm™ wig/em™ A [/s7!

111 « 000 V1 0.000 2785.338  2785.338  31.182
111 « 000 () 0.000 2014.090 2014.090 14.364
101 « 000 U3 0.000 2118.589  2118.589  14.303
110 < 101 (0 34.918 2793.960 2759.042  44.572
110 «+ 101 Uy 34.918 2027.034 1992.116  28.480
212 « 101 U1 34.918 2845.720  2810.802  29.412
212 < 101 Vg 34.918 2062.923 2028.005  9.981

calculated using the partition function described in section 4.2 and assigning symmetry
labels by hand [102]. The data calculated is shown in table 4.16.

The 1888.048 cm™! line provides the greatest intensity. However it lies just outside
the M window, which ranges from approximately 2050 cm™! to 2260 cm™!. This will
make ground based observations of this transition difficult; however it still remains the

best candidate for observation.

4.6 Farnik et al

Transitions to the overtone 2v5 and 2v3, and combination 3 + v3 vibrations in jet cooled
HyD* and DoH™ ions were measured for the first time by high-resolution IR spectroscopy
[23]. The ion beams were produced in a pulsed, slit jet supersonic discharge. This
produces beams of densities 10!°/cm3 which are rotationally cool. Using a continuous
wave Art (488nm or 514.5nm) laser with dye (R6G) lasers which gives a resolution
of 4x10""Hz~1/2, Absorption measurements were also made to determine relative line

strengths to an accuracy of approximately 10% (tables 4.17 and 4.18).
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4.6 Farnik et al

RAFGL7009S/stondord  20030515_85/73 sm
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Figure 4.3: Attempted spectrum of HoD% 1;;-0¢g transition at 4.1618 um at a resolution 10 km
s~! from the source RAFGL7009S recorded by Thomas Geballe of the Gemini Observatory in
Hilo on UKIRT

Féarnik et al [23] found that there was some disagreement in observed and calculated
line strength transitions for overtone transitions of HyD* and DoH™. The source of these
disagreements was suggested to be unconverged wavefunctions. It is known that dipole
calculations are especially sensitive to the convergence of the wavefunction; excellent
agreement was found between theory and experiment with the energy levels. Thus it
was thought that the convergence of the ab initio calculations in Farnik et al should be
tested.

As the calculations are variational, performing a new calculation with a larger Hamil-
tonian size, a variational parameter, should improve convergence. The DVR grid con-
sisted of 20 r; points, 21 ro points, and 36 6 points. The size of the final Hamiltonian
matrix was 2000 by 2000. A comparison of these results are shown in tables 4.17 and
4.18. It is clear that there is no substantial difference and the ratios of observed and
calculated line strengths remain unchanged between the two calculations. Thus from
these results it may be deduced that convergence was not the source of the line strength

discrepancy.
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4.7 McNab Experiment

Table 4.16: Transitions of D at 10 K, for J = 0 to 4 up to a frequency of 5000 cm™

1 Einstein

coefficients, A;; and absolute intensities, I(w;s) are explicitly calculated using the nuclear spin

factors given by the symmetry assignment of energy levels. Powers of ten given in parenthesis.

J'J  E'"Jem™! E'/Jem™! wis/em™!  S(f+i) / D?  Abs L{wif)) Ay /st
0 1 1834655 E 32324 E 1802.331 1.4387(-1) 1.0075(-19) 264.176
1 1 1884.380 A, 43.609 A, 1840.770 5.3668(-2) 7.5685(-21) 34.994
1 1 1878561 E 32.324 E 1846.237 2.1578(-1)  1.5479(-19) 141.960
1 0 1888.048 A, 0.000 A, 1888048  3.5935(-1) 2.7590(-17)  252.840
2 1 1955980 E 32.324 E 1923.657 2.4074(-1) 1.7993(-19) 107.488
2 1 1979.203 A, 43.609 A, 1935.593 5.4185(-2) 8.0351(-21) 24.647
2 1 1968076 E 32324 E 1035753  26236(-1) 1.9733(-19)  119.368
1 1 3646284 A, 43609 A, 3602.676  4.7880(-2) 1.3215(-20)  234.048
0 1 3650700 E 32324 E 3618376  15578(-2) 2.1901(-20)  231.440
2 1 3662342 E 32324 E  3630.018  4.6759(-2) 6.5950(-20)  140.288
1 0 3647.189 A, 0.000 A, 3647.190 3.8243(-2) 5.6720(-18) 193.960
1 1 3694893 E  32.324 E 3662560  2.2321(-2) 3.1764(-20)  114.640
2 1 3736.400 A, 43.609 A, 3692.791 5.4737(-3) 1.5486(-21) 17.289
2 1 3783234 E 32324 E 3750009  7.1482(-3) 1.0418(-20)  23.662
1 0 4111558 A, 0000 A, 4111558  4.1335(-5) 6.9110(-21) 0.300

4.7 McNab Experiment

The spectrum of Hi has been reasonably well studied in the low energy regime and has
also been well established by Carrington et al in the near-dissociation regime. However
an area which has remained largely unexplored is that region between the low energy
and the near dissociation; that is the region about 20000 cm~!. Iain McNab of the
University of Newcastle aimed to perform an ion beam experiment in this region. To
aid this we have calculated a synthetic spectrum for DoH™.

Energy Levels up to J = 7 were computed. The synthetic spectrum was produced
at 600 K. Absolute intensities were calculated using the partition function of HoD* +
50% from Sidhu et al [7]. The synthetic spectrum is shown in figure 4.4

From figure 4.4 it is clear that HoD™ spectrum shows little intensity above approx-
imately a frequency 5000 cm™!; Even below 5000 cm™! there are regions of very low
intensity. Thus it would be advisable for the apparatus to be tuned to the areas of the

spectrum highest in intensity where measurements would be easiest and good noise to

signal ratios obtained.
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4.7 McNab Experiment
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4.8 Nesbitt Experiment
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Figure 4.4: Ab initio synthetic spectrum of HyD%at 600 K, for J = 0 to 7. I(wis) are explicitly

calculated using the nuclear spin factors given by the symmetry assignment of energy levels.

4.8 Nesbitt Experiment

HJ represents a very clean acid; the following simple exothermic reaction would enable

the quantum states in DoH™ to be probed using IR absorption.
H;- + Dy — D2H+ + Hy (4.13)

David Nesbitt of the University of Colorado looked into the feasibility of performing
state resolved proton transfer reaction dynamics with H in their IR crossed beam
apparatus. As an aid to the feasibility to this study ab initio calculations were made of
the Hf , HoDt, DoH' and D3 molecules to determine transitions which may be observed
using their IR absorption apparatus.

Energy Levels up to J = 7 were computed. The synthetic spectra were produced at
50 K. Absolute intensities were calculated for Hf , DoH™, and D; using the partition
function from section 4.2. For HoD* the partition function of Sidhu et al [7] was used.

The synthetic spectra are shown in figures 4.5, 4.6, 4.7, and 4.8
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4.8 Nesbitt Experiment
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Figure 4.5: Ab initio synthetic spectrum of Hf at 50 K, for J = 0 to 4 up to a frequency of 5000

cm™!,
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Figure 4.6: Ab initio synthetic spectrum of HoD*t at 50 K, for J = 0 to 4 up to a frequency of
5000 cm~!. I(w;y) are explicitly calculated using the nuclear spin factors given by the symmetry

assignment of energy levels.

92
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Figure 4.7: Ab initio synthetic spectrum of DoH* at 50 K, for J = 0 to 4 up to a frequency of
5000 cm™!. I(wis) are explicitly calculated using the nuclear spin factors given by the symmetry

assignment of energy levels.
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Figure 4.8: Ab initio synthetic spectrum of Hf at 50 K, for J = 0 to 4 up to a frequency of 5000

cm~!,
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4.9 Ion trap

Table 4.19: The strongest transitions of DF at 30 K in the range 6820 cm~! and 6930 cm™!.

Powers of 10 are given in parenthesis.

J" E’"/em™! Y E'/em™  wiy /em™!  S(f«i) / D? Lwif) Aip /s™!
1 A 6865.038 1 A, 43.609 6821.429 1.722(-5) 3.686(-21) 5.713
0 A, 6859.664 1 E 32.324 6827.339 5.843(-6) 2.151(-22) 0.583
1 E 6914978 2 E 85.627 6829.351 1.803(-5) 4.121(-22) 4.803
3 E 6934339 2 E 85.627 6848.712 2.595(-5) 5.947(-22) 2.987
2 E 6892375 1 E 32.324 6860.050 1.531(-5) 4.529(-21) 2.479
1 A, 6870771 0 A, 0.000 6870771  1.092(-5) 1.906(-21) 0.370
1 E 6906953 1 E 32.324 6874.628 8.428(-6) 2.499(-21) 2.290
2 E 7011.590 2 E 85.627 6925.963 9.093(-6) 2.108(-22) 1.516
2 A 6969.995 1 A, 43.609 6926.386 1.531(-5) 3.328(-21) 3.191

4.9 Ion trap

An attempt to measure populations of DE{ in the laboratory of Dieter Gerlich in Chemnitz
using an ion trap set-up required ab initio spectra to aid observation. In the experiment
D; ions are formed by electron impact in a separate ion source and injected into the
trap. D3 is formed as the product of the reaction between the injected DF ions and
D, molecules. The DF ions formed are then probed with a laser. It is hoped that
measurement of the population of states of D1 can be made; their dependence on kinetic
temperature, temperature of the buffer gas and possibly the ortho/para conversion. The

1 and

ion trap is cooled to between 6 K and 30K; the laser operates between 6820 cm™
6930 cm~!. Thus the strongest transition in this range at a temperature of 30 K were

calculated; they are presented in table 4.19.

4.10 Dissociative recombination

Dissociative recombination is the major destruction process of Hi in diffuse interstellar
clouds. H; ions are formed from either the ubiquitous cosmic rays that pervade the

universe or stellar radiation. HJ is destroyed by electron recombination,

+ B H+H+H
H +e — (4.14)
Hy + H

the rate of the this reaction is given by k.. During the past 50 years many studies have

attempted to determine this reaction rate, k., however no agreed value has been found;

94



4.10 Dissociative recombination

often values of k. disagree over several orders of magnitude. The first measurement
of ke by Biondi and Brown in 1949 [110] gave a value of 2.5 x 1078 cm3®s~!; more
recently an experiment by Glosik et al in 2001 gives a value of 2 x 107 em3s™! [111];
the value has been as low as below 1 x 107!! cm3s™! [112, 113]. There have been
a number of attempts to measure the rate; however, different experiments have not
agreed satisfactorily, especially those between storage ring merged beam experiments
and plasma experiments. A possible explanation is based on different vibrational and

rotational temperatures, that is vibrational or rotational excited states have a different

recombination rate.

4.10.1 Integrated stationary afterglow

An afterglow experiment involves creating a plasma of the species of interest in some
inert buffer gas. The time evolution of the plasma can then be monitored to ascertain
for example the instance of decay due to recombination, as observed by measuring the
electron densities. A stationary afterglow relies on fast detection of the concentration
decay, while in the flowing afterglow technique the plasma flows along a flow tube where
the concentration decay can be measured along the z-axis. This does not require as fast a
detection technique as the stationary afterglow. The typical detector is a Langmuir probe
which is on a movable mount for the stationary afterglow. The Langmuir probe technique
is satisfactory if all the information required is the electron density and temperature.
However is may be desirable to have some knowledge of the quantum states of the ions
under study, this requires spectroscopic techniques. Spectroscopic knowledge of the ions
would help to resolve the question of differing rates between vibrational and rotational
states.

The Advanced integrated stationary afterglow, AISA, [114] consists of a vacuum cham-
ber through which the plasma will flow; a Langmuir probe and quadrupole mass spec-
trometer are used as detectors. A mixture of He, Ar, and Hj is pumped into the chamber
where pulses of microwaves ignite the mixture to create a plasma. Recently a Cavity
Ring-Down Spectroscopy, CRDS, probe has been added to the apparatus to resolve the
quantum states of the ions. CRDS can be used in three modes. Firstly the discharge is
operated continuously and the laser frequency is scanned over the area of interest. From
the absorption spectra peaks, the population of the lower energy level can be determined

if the strength of the transition is known, for example from ab initio calculations. In
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4.10 Dissociative recombination

Table 4.20: The 10 strongest transitions of DoH*' at 100 K in the range 1 to 1.6 um (6250

cm~! and 10000 cm~!). Powers of 10 are given in parenthesis.

J" E'/cm™t Y E'/em™  wiy /em™!  S(f«i) / D? Lwif) Aip /s7!
2 A,  6570.861 1 A, 34.918 6535943  1.303(-d) 2.630(-20) 2.282
1 A, 6536.301 0 A, 0.000 6536.301 5.773(-5) 1.926(-20) 1.685
3 A, 6636090 2 A, 101716  6534.374  1.969(-4) 1.520(-20) 2.461
1 A 6524909 1 B, 57.993 6466.916 8.531(-5) 1.223(-20) 2.412
1 B, 6673664 1 A, 49.255  6624.400  7.130(-5) 1.187(-20) 2.167
2 A 7263.945 1 A, 34.918 7229.027 4.103(-5) 9.160(-21) 0.972
1 A, 6661.687 0 A, 0.000 6661.687 2.677(-5) 9.102(-21) 0.827
2 A 6567.766 1 A, 49.255 6518.511 1.081(-4) 8.852(-21) 1.878
1 B 6558.905 1 A, 34.918 6523.987 4.365(-5) 8.796(-21) 1.267
2 A, 6745756 1 A, 34918  6710.838  4.124(-5) 8.547(-21) 0.782

the second mode the laser is tuned to a transition and the plasma cavity is pulsed by
the microwave discharge to create plasma in pulses. The cavity gets into resonance and
ring down occurs, the characteristic time and the time from the nearest microwave pulse
are recorded for each ring down. This produces an afterglow time line with absorption
and therefore concentration information. The third and final mode is a combination
of the other two, A time resolved absorption measurement combined with a scan over
frequency. This produces a matrix of absorption values, where each row represents an
absorption spectra at a certain time and the columns give the absorption evolution at a
certain laser frequency.

To aid this work we calculated the 10 strongest transitions for HoDt, DoH*, and
D7 at a temperature of 100 K and 350 K, tables 4.22 to 4.25. This would help identify
possible transition to which the laser could be tuned to look at the time evolution of
absorption. The ab initio intensity data would also help to estimate the populations of

states.

4.10.2 Preliminary experimental results

Some preliminary results for D7 are shown below in table 4.26, and figures 4.11 and
4.12. These results include the first observations of second overtone spectroscopy of D;r.

The 6849.110 cm™! transition appears to be significantly better resolved then the
6821.359 cm™! transition. The 6821.359 cm™! transition differs from theory by 0.07
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4.10 Dissociative recombination
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Figure 4.9: Ab initio synthetic spectra of HoD* (continuous line) and DoH* (dashed line) at
100 K, in the range 1 to 1.6 um (6250 cm~! and 10000 cm™') up to a frequency of 5000 cm™!.

1 : L T T Ll T Ll
08 | i Y
06 | ! g
3 :
& CH
04} 4

02

L
i

o i Bl , . ot .
6000 6500 7000 7500 8000 8500 9000 9500 10000
frequency / cm™

Figure 4.10: Ab initio synthetic spectra of HoD* (continuous line) and D,H* (dashed line) at
350 K, in the range 1 to 1.6 um (6250 cm™! and 10000 cm™!) up to a frequency of 5000 cm™*.
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4.10 Dissociative recombination

Table 4.21: The 10 strongest transitions of DoH* at 350 K in the range 1 to 1.6 um (6250

cm~! and 10000 cm™!). Powers of 10 are given in parenthesis.

J" E’/cm™! J E'/em™  wiy /em™!  S(fei) / D? Hwif) Ay /s7!
3 A, 6636000 2 A, 101716  6534.374  1.069(-4) 6.890(-21) 2.461
2 A, 6570.861 1 A, 34.918 6535.943 1.303(-4) 6.002(-21) 2.282
5 A, 6794110 4 A, 315725  6478.385  3.160(-4) 4.549(-21) 2.450
4 A, 6693.901 3 A, 196.094 6497.806 1.779(-4) 4.199(-21) 1.701
4 A, 6742.576 3 A, 196.094 6546.481 1.676(-4) 3.987(-21) 1.639
3 A 6634.692 2 A, 110.259 6524.433 2.115(-4) 3.568(-21) 2.632
1 A 6524.909 1 B, 57.993 6466.916 8.531(-5) 3.536(-21) 2.412
2 A 6758.563 3 A, 200.023 6558.539 1.495(-4) 3.505(-21) 2.645
2 A, 6799.761 2 B, 179.173 6620.587 1.342(-4) 3.461(-21) 2.443
4 B, 6856.267 3 B, 283.323 6572.944 2.054(-4) 3.427(-21) 2.033

Table 4.22: The 10 strongest transitions of HyD* at 100 K in the range

cm™! and 10000 cm™!). Powers of 10 are given in parenthesis.

1to 1.6 um (6250

J" E'/cm™! J E' /em™  wiy /em™!  S(f«i) / D? L(wif) Ay /s7!
2 A 6537.148 1 A, 45.698 6491.451 2.614(-04) 1.484(-19) 4.486
2 A 7123258 1 A, 45.698 7077.560 1.819(-04) 1.126(-19) 4.046
2 B 6646.381 1 B; 72.457 6573.925 2.043(-04) 7.989(-20) 3.640
2 B 7177.962 1 B, 72.457 7105.505 1.503(-04) 6.352(-20) 3.381
0 A, 6400805 1 A, 60.027  6340.778  1.172(-04) 5.285(-20) 9.367
1 A, 6466.635 0 A, 0.000 6466.635 1.450(-04) 5.275(-20) 4.100
3 A 6622.524 2 A, 138.843 6483.681 3.159(-04) 4.689(-20) 3.858
1 A, 7039.366 0 A, 0.000 7039.366 1.021(-04) 4.043(-20) 3.724
2 A, 7333269 1 A, 45.608  7287.572  5.074(-05) 3.233(-20) 1.232
1 B, 6479.531 1 A 45.698 6433.833 1.667(-04) 3.125(-20) 4.641

cm™!, while the better resolved transition, 6849.110 cm™~!, differs by 0.4 cm™!; this
is clearly inconstant. There is also significant variation in repeated measurements of
the same transitions as shown table 4.26, with the 6849.110 cm™! transition showing
a difference of 0.06 between measurements, this an order of magnitude greater than

1

the given error of £0.002 cm™". This discrepancy between theory and experiment is

contradictory to the results for the overtone and combination band spectroscopy of
HyD* and DyH* (section 4.6) where the maximum disagreement is less then 0.1 cm™1.

However, if the discrepancy is assumed to be with the theoretical results, then there are
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4.10 Dissociative recombination

Table 4.23: The 10 strongest transitions of HoD* at 350 K in the range

cm™! and 10000 cm~!). Powers of 10 are given in parenthesis.

1 to 1.6 um (6250

J" E" /cm™t Y E'/ecm™  wy /cm™! S(f«i) / D? Lwif) Aip /s7?
9 A, 6537.148 1 A, 45.698 6491451  2.614(-4) 1.484(-19) 4.486
2 A 7123.258 1 A, 45.698 7077.560 1.819(-4) 1.126(-19) 4.046
2 B 6646.381 1 B; 72.457 6573.925 2.043(-4) 7.989(-20) 3.640
2 B 7177962 1 B, 72.457 7105.505 1.503(-4) 6.352(-20) 3.381
0 A, 6400.805 1 A, 60.027 6340.778 1.172(-4) 5.285(-20) 9.367
1 A, 6466.635 0 A, 0.000 6466.635 1.450(-4) 5.275(-20) 4.100
3 A 6622.524 2 A, 138.843 6483.681 3.159(-4) 4.689(-20) 3.858
1 A 7039.366 0 A, 0.000 7039.366 1.021(-4) 4.043(-20) 3.724
2 A 7333269 1 A, 45.698 7287.572 5.074(-5) 3.233(-20) 1.232
1 B, 6479531 1 A, 45608  6433.833  1.667(-4) 3.125(-20) 4.641

Table 4.24: The 10 strongest transitions of D; at 100 K in the range 1 to 1.6 um (6250 cm™!

and 10000 cm~!). Powers of 10 are given in parenthesis.

J" E’" /cm™! ) E'/em™!  wip /em™!  S(f«i) / D? L(wif) Ajp /s7!
1 A 6865.038 1 A, 43.609 6821.429 1.722(-5) 3.912(-21) 5.713
2 A 6969.995 1 A, 43.609 6926.386 1.531(-5) 3.533(-21) 3.191
2 E 6892375 1 E 32.324 6860.050 1.531(-5) 3.291(-21) 2.479
3 E 6934339 2 E 85.627 6848712  2.595(-5) 3.291(-21) 2.987
1 E 6906.953 1 E 32.324 6874.629 8.427(-6) 2.587(-21) 2.290
1 E 6914.978 2 E 85.627 6829.351 1.803(-5) 2.587(-21) 4.803
4 E 6993979 3 E 150.862  6834.117  3.681(-5) 1.816(-21) 3.275
4 E 6993893 3 E 159.863 6834.030 3.671(-5) 1.816(-21) 3.267
0 E 6850664 1 E 32.324  6827.310  5.842(-6) 1.793(-21) 4.665
2 A, 6988693 3 E 150.863  6828.830  2915(-5) 1.793(-21) 5.823

a number of possible sources. The calculations may not be converged

. This is unlikely as

convergence was tested for with regard to the Farnik et al results (section 4.6). Another

source could be the various corrections to the potential energy surface, which are mass

scaled for the Hi isotopomers. This scaling may not extend adequately to the heaviest

isotopomer, D7 . This should warrant further investigation.
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4.10 Dissociative recombination

Table 4.25: The 10 strongest transitions of D at 350 K in the range 1 to 1.6 um (6250 cm™!

and 10000 cm™!). Powers of 10 are given in parenthesis.

J" E'/cm™! J E' /em™!  wiy /em™!  S(f«i) / D? Lwig) Ay /s7!
4 E 6993979 3 E 159.862 6834.117 3.6805(-5) 1.062(-21) 3.275
2 E 6988.693 3 E 159.862 6828.831 2.9151(-5) 1.060(-21) 5.823
3 A, 6934339 2 E 85.627  6848.712  2.5945(-5) 1.051(-21) 2.987
1 E 6865038 1 E 43.609  6821.429  1.7217(-5) 1.018(-21) 5.713
3 E 7087.216 3 E 260.474  6826.743  3.9332(-5) 1.018(-21) 5.607
5 Ay 7071330 4 A,  254.964  6816.366  4.7885(-5) 1.000(-21) 3.459
2 A;  6969.995 1 A, 43609  6926.386  1.5312(-5) 9.375(-22) 3.191
2 E 6892.375 1 32.324 6860.050 1.5305(-5) 9.326(-22) 2.479
1 E 6914978 2 E 85.627 6829.351 1.8032(-5) 9.326(-22) 4.803
3 A, 7070608 4 A, 254964  6815.645  3.3860(-5) 9.030(-22) 3.842
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Figure 4.11: Observed D} spectra showing the 6821.359 cm™! transition [9]
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4.10 Dissociative recombination
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Figure 4.12: Observed D} spectra showing the 6849.110 cm™! transition [9]

4.10.3 Storage Ring

Experiments with DoH' were performed at the heavy ion Test Storage Ring (TSR)
at the Max-Planck-Institut fur Kernphysik in Heidelberg to measure the dissociative
recombination rate. Molecular ions are produced in a gas discharge ion source and
accelerated to 1.4 Mev [115]. These accelerated ions are then injected into the storage
ring. This ion beam overlaps with a “cold” electron beam which has the effect of cooling
the ion beam down and giving rise to dissociative recombination. The neutral fragments
produced exit the storage ring and are recorded on an imaging detector.

As the dissociative recombination rates found by different experiments differed greatly,

a thorough investigation of the dissociative recombination process was needed. One pos-

sible source of the discrepancy was thought to be that the DoH* was not cold as thought,
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Figure 4.13: Ab initio synthetic pure rotational spectrum of DoH* at 1000 K

but rotationally excited. To estimate the amount of rotational excitation, a Monte Carlo
simulation was to be constructed with thermally distributed rotational excitations as-
suming different temperatures. The results of the simulation could then be compared
with the results of the experiment.

A calculation at 1000 K to extend the data presented in table 7 of Miller et al [85]
was performed to provide rotational data which could be used in the Monte Carlo model.
The pure rotational transitions were identified by hand. Using a partition function of
1694.3 determined from the data in section 4.2 the absolute intensities were calculated.

The spectrum is shown in figure 4.13.
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Chapter

Parallel Computing

5.1 The case for parallelisation

The parallelisation of any program can be difficult and complex. At the very least the
parallel program must be tested throughly to ensure the serial and parallel program
produce identical results, this can be time consuming and tedious. Therefore a well
reasoned argument must be made for parallelisation before it is undertaken.

There are two main reasons for parallelisation: the problem is too large to be tackled
on a single processor or the time for the serial program to produce a solution is too
great. The solving of the Hamiltonian matrix is one of the major computational tasks
in this work. To simply store a 40000x40000 Hamiltonian requires in excess of 12.2 Gb
of memory, this does not take into account workspace, which depending on the chosen
algorithm may be several times this amount. The use of this amount of core memory is
simply unfeasible on a single processor. For line strength calculations the computational
cost is dependent on the size of the DVR grid and J, as is shown by equation 3.56.
The objective is to investigate high-lying states pertaining to the very dense spectrum
found by Carrington et al [1]. To achieve convergence for these states a large DVR grid
is needed (refer to chapter 6). Also it is thought that many of these transitions are
between highly rotationally excited states [69], therefore high J is needed. Thus only
by distributing the work across multiple processors can a full calculation be feasibly

performed.
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Figure 5.1: Flynn’s taxonomy [10]

5.2 Parallel Architecture

5.2.1 Flynn’s taxonomy

Flynn’s taxonomy [10] classifies parallel architecture on the presence of single or multiple

streams of data and instructions, figure 5.1.

SISD single instruction, single data stream, defines a sequential computer, such as the

classic workstation.

MISD multiple instruction, single data stream, describes multiple processors applying

different instructions to the same datum.

SIMD single instruction, multiple data streams, describes multiple processors perform-
ing the same operations on different data. An example would be an array processor
such as the Thinking Machine Corporation’s CM-200. There is often a control pro-

cessor which broadcasts instructions, etc.

MIMD multiple instructions, multiple data streams, describes many processors per-
forming diverse operations on diverse data. An example would be a network of

workstations communicating through message passing.

The Flynn taxonomy provides a useful means by which computer architecture can
be described simply, however it is by no means exhaustive. Many modern day computer
architectures which incorporate such standard features as pipelining and multiple cache

levels may belong to more that one category.
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Figure 5.2: Schematic representation of the Shared memory architecture.

5.2.2 MIMD

MIMD architectures typically employ multiple independent processors that can execute
individual instruction streams, or possibly with different processors executing different
programs. This class of architecture is normally subdivided through the relationship

between memory and processors.

Shared memory

Shared memory architecture is illustrated in figure 5.2. Typically, a relatively small
number processors have access to some global memory store via some interconnect or
bus. Processors communicate via the global memory, that is, one processor will write
some data to memory and then another processor is able to read this data. Thus the

time to access any piece of data is the same, as all communication goes though the bus.

The advantage of this architecture is that it is easy to develop programs for as all
communication is done implicitly. The major disadvantage is that this system does not
scale well. The reason for this is that bottlenecks created when a number of processors
attempt to access the global memory store at the same time. A method which attempts
to resolve this and make the shared memory architecture more scalable is Non- Uniform
Memory Access (NUMA). Under this system all processors are allowed access to all mem-
ory within the system, however some memory may appear slower then other memory.
This system tends to shift the problem onto the communication network which connects

the local memories.
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Figure 5.3: Schematic representation of the Distributed memory architecture.

Distributed memory

The distributed memory architecture is such that it is truly scalable. Each processor
is attached its own local memory; a processor can only access memory that is directly
attached to it. If data from the local memory of one processor is needed by another
processor, then that data has to be explicitly transported via a communications network.
(figure 5.3). Clearly a processor’s access to data on local memory is much faster then
that of data in memory in some remote processor; This non-uniform access time can be

affected by the manner in which the communications network in implemented.

5.2.3 Communications Network

Fundamentally for large problems, processors must be able to communicate, be this
through shared memory or through an explicit communications network. There are
a number different interconnect topologies each with advantages and disadvantages in
terms of latency, bandwidth, scalability, and ease of construction.

The Bus and Crossbar architectures are commonly used in shared memory machines

(figure 5.2). A bus can be considered as a set of parallel wires which connect proces-
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sors, memory, etc. This architecture is essentially a broadcast interconnect as all traffic
from all components must cross the bus. Thus as the load increases the bus eventually
becomes the performance bottleneck. This limits its ability to scale as the number of
processors connected to it increases. The crossbar architecture attempts to resolves the
bottlenecks caused by the bus architecture by providing multiple independent paths be-
tween processors and memory. Any component on the crossbar can access any other
component via a path through the crossbar, and multiple paths may be active simul-
taneously. However the cost of construction of a crossbar becomes prohibitive as the
number of processors increases. Both the bus and crossbar cannot scale sufficiently to
support thousands of processors, and are restricted to relatively small shared memory
machines.

There are a myriad of topologies used for the interconnect in the thousands of pro-
cessor regime. In this regime it is no longer possible to refer to memory as a single block.
There are several steps of communications between the source and destination, thus the

objective of the topology is to minimise the number of steps.

5.2.4 Communication libraries

At present there are two major generic communication libraries in use: Message-Passing
Interface (MPI) [116] and OpenMP [117], the differences between them is essentially the
difference between the data-parallel and message-passing programming models.

The data-parallel model is one where parallelism is attained when a master thread
spawns additional threads which may reside on different processors as and when needed.
Memory is global with each thread having read and write access (common memory is the
defining difference between a thread and a process). The typical method by which this
parallelism is achieved is through parallelising the computationally intensive loops. The
data-parallel model is most suited to shared memory machines as the communication
is through shared memory and thus becomes particularly inefficient when processors
are not sharing local memory and are communicating by some interconnect. Programs
which operate with large arrays requiring the same operation are most suited to the
data-parallel model. Preferably many of these operations should be independent, that is
not depend on the results of previous operations. OpenMP implements the data-parallel
model. It is an API (Application Program Interface) for writing multi-threaded programs

using compiler directives and library routines. Communication between threads is done
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via the sharing of variables and thus all communication is implicit.

In the message-passing model each process has local memory and all other pro-
cesses are unable to access this memory without the use of explicit message passing.
Messages are communicated between processes to synchronise and exchange data. The
message-passing model is particularly suited to the MIMD architecture (refer to section
5.2.2). MPI implements the message-passing model through a collection of communi-
cation primitives. MPI is regarded as the “assembly” code of parallel computing and
as such is available on virtually all machines. It includes features like communica-
tors, topologies, communication modes and single-call collective operations. MPI, more
specifically MPI-2 has been used through out this work to create parallel programs.

BLACS (Basic Linear Algebra Communication Subprograms) [118] is a communi-
cations library developed specifically for linear algebra. It is an array based commu-
nications library as the majority of linear algebra problems are solved using arrays.
Therefore the BLACS library treats processors as being part of a two dimensional pro-
cess grid, with each processor being assigned a row and column, as this is conducive to
working with arrays. The advantages of BLACS is that it is relatively easy to program
with and is available on most platforms. However BLACS is built on top of a message
passing library such as MPI, and thus lacks the ability to do low level communications.
BLACS provides the communication layer for the ScaLAPACK library, this is discussed

in section 5.4.1.

5.2.5 HPCsz

The HPCz system can be a considered as a combination of the shared memory and the
distributed memory architecture.

Phase 2 HPCz consists of 1600 IBM Powerd+ CPUs. Each CPU has a 1.7Gz clock
speed with 2 independent 64-bit floating point units, giving a peak performance of 6.8
GFlops. Each CPU has 96 Kb of level 1 cache. Two of these CPUs co-habit the
Power4+ chip, figure 5.4. These CPUs share 1.5 Mb of level 2 cache. Each chip is
capable of giving a peak performance of 16.6 GFlops. Four chips share 128 Mb level 3
cache upon a Multi-Chip Module (MCM) as shown in figure 5.5. An MCM gives 54.4
GFlops at peak performance. A P690+ frame is made of four of these MCMs. These
can be considered as 32-way shared memory nodes consisting of 32 CPUs and 32 Gb of

main memory per frame, giving a peak performance of 217.6 GFlops. Each frame runs
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Figure 5.4: The Power4+ chip consisting of two CPUs sharing level 2 cache.
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Figure 5.5: Multi-Chip Module consisting of four Power4+ chips sharing level 3 cache.

a separate copy of the operating system.

The frames are able to communicate via the IBM High Performance Switch (HPS).
Each frame has four switch connections. The interconnect is built in a series of stages
like a conventional Butterfly network but each stage consists of an 8 x 8 crossbar rather
then the classic 2 x 2. This arrangement gives a latency of 11 us (MPI) and 600 Mbs™!
through each connection. A hierarchical communications system is produced due the
differing way the constituents are connected. For example communications between two
CPUs on the same chip and that of two CPUs on different frames.

Thus the full system consists of 50 P690+ frames, that is 1600 CPUs and 1600 Gb
main memory. This is capable of give a peak performance of 10.88 TFlops; this translates
to approximately 6.2 TFlops on the LINPACK [119] benchmark.

The complex make-up of the HPCz system can give rise to complex performance

behaviour.

5.3 Measures of parallel performance

For the purposes of comparison and development it is important to ascertain the perfor-
mance of a parallel program. The most common measures of performance are speed-up

and efficiency.
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The parallel speed-up, S(n,P), is the ratio of the execution time of the parallel

program run on one processor to that of the time taken on P processors; it is defined as:

T(n,1)
P) = 5.1
S(n, P) = 7oy (5.1)
where n is a measure of problem size.
The parallel efficiency is the speed-up divided by the number of processors.
E(n,P) = S(r;;P) (5.2)

To gauge the numerical efficiency of a parallel program it should be compared to the
serial version of the program, this gives some indication of the quality of the parallel
algorithm adopted. Measures for this are total speed-up, Siot(n, P), and total efficiency,

Etot (na P)
Tserial(n)

Stot(n, P) = T(n. P) (5.3)
Eso(n, P) = 5‘2‘(;;})) (5.4)

where Tseriqr is the execution time of the serial version of the program. However it is
not always possible to do this as a serial program may not be available due to the size
of the problem, etc.

Amdahl’s Law [120] refers to the maximum speed-up that can be achieved due to
the inherent serial parts of any program. All programs have a mixture of serial parts
and parallel parts. Speed-up is only relevant to the parallel portions and thus the serial

portions provides the limit of parallel efficiency.

5.4 Vibrational Problem: PDVR3DJ

The Coriolis decoupled Hamiltonian, equation 2.42, is solved using the parallel program

Jk,h

B This program is more fully

PDVR3DJ, giving eigenvalues 7; and eigenfunctions
described in Mussa et al [13]. PDVR3DJ is largely based on the earlier version of
DVR3DRJ suite of Tennyson et al [121] as opposed to the more recent version of the
suite [43]. There are some notable differences in the versions of the suite which are
outlined below. In addition a number of significant developments were made to the
PDVR3DJ program during this work.

The general method of decomposing the vibrational problem over N, processors

with N, final grid points is to place N, /N, points on each processor. Therefore the
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5.4 Vibrational Problem: PDVR3DJ

Hamiltonian matrix is split on the final coordinate, such that each processor has a
N3P /n, segment of the whole Hamiltonian matrix, where N3P is the size of the whole
3D Hamiltonian matrix. This requires that the Hamiltonian matrix is both constructed
and solved in parallel.

The Hamiltonian is solved by a series of diagonalisations and truncations. Unlike
the serial program there is no separate 1D and 2D step, this avoids load imbalance
across processors [122]. If the coordinate ordering is & — r; — 75, then each processor

constructs the 2D Hamiltonian as given by,

(2D)H£ = L(l)

ool .y

, + Lx(ﬁl,)ﬁ’,’y,'y' + V(T1as 205 97) + Kc(tl,glldﬁ7ﬁl67,—yl (5.5)

where the terms are given in section 2.9. The 2D Hamiltonian is solved by diagonalisa-
tion, giving eigenvectors, C’g’,, for the [" level, with eigenvalue ef at each grid point S.
The diagonaliser used to solve the 2D Hamiltonian was ARPACK [123]. This was re-
placed by the LAPACK [124] routine DSYEV which is considerably faster, and has been
proven by the serial program to give good eigenvectors and requires a simpler interface,
making the code less cluttered.

The 2D eigenvalues and accompanying eigenvectors are selected by the size of the
full 3D Hamiltonian, thus each v point has the same number of 2D solutions. Again this

is for load balancing.

Each processor constructs a strip of the Hamiltonian, @) H(N3D, N3P /N,), using

(3D)Hﬁ)ﬂl,1,ll = flﬁéﬁ,ﬁldl)ll + Z C_(:’?C’?’?, K‘g%%, (56)
a7y

from equation (5.6). It can be seen that the kinetic K(2) matrix is replicated on each
processor and each processor must broadcast its 2D solutions to all other processors. This
distributed Hamiltonian matrix is solved using a parallel diagonaliser. A representation
of this global 3D Hamiltonian matrix can seen in figure 5.6. The matrix was constructed
such that the coordinate ordering was @ — r; — ro, with 32, 36, and 32 grid points
for the 8, r; and r coordinates respectively. The natural log of the absolute values of
this 4800 x 4800 matrix were converted to a grayscale value in accordance to the PGM
format [125]. Figure 5.6 clearly shows 32 x 32 smaller blocks within the larger matrix,
this represents coupling between the 32 ro points which are used to construct the full
3D Hamiltonian.

The general algorithm of the vibrational calculation is as follows
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5.4 Vibrational Problem: PDVR3DJ

Figure 5.6: A representation of the global view of the J = 0 3D Hamiltonian matrix. The natural

log of the absolute values of the matrix values were taken and converted to a value of gray, where
the darker the colour, the higher the value of the matrix element.(N=4800, n,,=32, n,, =36,
ng = 32)
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[

. Begin to loop over k

2. Each processor constructs and solves (QD)HSQ, for a given 7,

equation (5.5)
3. Each processor broadcasts the solutions of (2D)H£a,

4. Each processor constructs a segment of the 3D Hamiltonian

BD)H (N3P N3P /N,), equation (5.6)
5. Solve (SD)Hﬂﬁ:,l’l,
6. Root process writes e,{’k to disk
7. Each processor transforms the h/N, eigenvectors back onto the DVR grid

to form \Ilil/;';, equation (2.52)

Jk,h

o~ to disk

8. Optionally save V¥

Jk,h

2_ 1
w5~ to DVR*-FBR

9. Each processor Transform the h/N, DVR eigenvectors, ¥

eigenvectors \Ili’%’f]‘-, equation (2.53). Transformation matrix T;’ is

replicated on each processor.
J.k,h .
10. Save \I,a,ﬁ,j to disk
11. if k > O then form the BF* off-diagonal Coriolis block, equation (5.12)
12. if k > 0 save B¥'F to disk

13. Next k, i.e. goto 1

5.4.1 Diagonalisers

The purpose of a diagonaliser is to solve the eigenvalue equation
Az = Az (5.7)

to give a set of eigenvalues ); and corresponding eigenvectors z;; where for the purposes
of this work A is a real symmetric Hermitian matrix. The general manner in which the
eigenvalue equation is solved numerically can be summarised in three parts: Reduction
of A to the tridiagonal form, T'; diagonalisation of matrix 7T'; back substitution to find the

eigenvalues and eigenvectors of the full problem. The Hamiltonian matrix, 3P Hg g s,
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which is solved by PDVR3DJ is dense and contains clusters. The diagonaliser used by
PDVR3DJ needs to provide both the eigenvalues and eigenvectors which need to be
orthonormal.

The diagonaliser implemented in PDVR3DJ had been PelGS [126]. It was suggested
that the ScaLAPACK diagonalisers [11, 12]: PDSYEV, PDSYEVX, PDSYEVD, may be
considerably faster on the HPCxz system. The ScaLAPACK library relies on the BLACS
library for communication and the serial LAPACK library to perform that actual linear
algebra; the LAPACK library in turn relies on the BLAS library. All three ScaLAPACK
routines use a form of the Householder algorithm to reduce the matrix to the tridiago-
nal form. They then proceed from the tridiagonal matrix using their specific algorithm
followed by a back transformation to obtain solutions for the full problem. PDSYEV
implements the QR algorithm to solve the tridiagonal matrix; it gives all the eigenvalues
and eigenvectors. While PDSYEVX uses bisection and inverse iteration to solve the
tridiagonal matrix, thus allows for an arbitrary number of eigenvalues and eigenvectors
to be calculated. As we are only interested in a few thousand such eigenvalue-eigenvector
pairs from matrices possibly containing many times this number, this could prove effi-
cient. PDSYEVD implements a divide and conquer algorithm [12] and currently gives
all the eigenvalues and eigenvectors, although a version which only calculates a subset

is under development.

Two dimensional blocks cyclic distribution

The ScaLAPACK diagonalisers requires that the matrix to be diagonalised, A, is dis-
tributed using the two dimensional block cyclic scheme. The scheme splits the matrix A
into a number of contiguous blocks of size Mp x Ng and then maps these blocks onto
processors. This distribution is chosen as it gives the best load balancing and eflicient
use of Level 3 BLAS library (serial version). The processors form a P, x P, grid where
P, and P, are the number of rows and columns respectively. The size of each block is
chosen such as to optimise computation with respect to considerations such as the size
of Level 1 cache of the CPU. The mapping of element, (I,J), of global matrix A onto

processor, (pr,p.), within block (I, m) at the position (z,y) is given by:

pr = RSRC + integer (I — ) mod(P;)
Mp
pe = CSRC + integer (JN;) mod(F,) (5.8)
B
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I-1 J-1
= § = § 5.9
l = integer ( P, MB) , m = integer ( P, NB) (5.9)
z=mod(I —1,Mg)+1, y=mod(J—1,Mp)+1 (5.10)

where RSRC and CSRC are the row and columns coordinates of the processor to which
the first block is assigned; integer species integer arithmetic rounded towards zero. The
distribution of a 9 x 9 matrix in the two dimensional block cyclic scheme is shown in
figures 5.7 and 5.8. It is apparent that the data is distributed in a complex manner with

each processor having different amounts of data.

An | A
Ag | Az
Az | As2
Ag | Ag
As | Ase |
g1 | As2 |
An | Ar
Agy | Ago
Aoy | Aoy | Ags |

Figure 5.7: The global view the 2D block cyclic distribution of a 9 x 9 global array with blocks
of size 2 x 2 onto a 2 x 3 processor grid. The different colours represent the different processors.
(11]

The method by which the Hamiltonian is constructed as outlined in section 5.4 is
such that it is distributed in bands. Thus the matrix needs to be redistributed in the two
dimensional block cyclic scheme. The matrix is symmetric, therefore only half the matrix
needs to redistributed. After the matrix has been diagonalised the eigenvectors are
distributed in the two dimensional block cyclic scheme and needs to be redistributed into
bands such that an entire eigenvector resides on the same processor. This is accomplished
using the Fortran subroutines of Munro [127]. These use considerably less memory then

the equivalent ScaLAPACK routine PDGEMR2D [11].

Performance

To test the performance of the diagonalisers independently of PDVR3DJ; driver routines
were written for the three diagonalisers: PDSYEV, PDSYEVX, PDSYEVD. These rou-
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0
An | Az | Ar7 | A
Agp | Ay | Ag7 | Agg
0| As1 | As2 | As7 | Ass
Ae1 | As2 | Ae7 | Ass
Ag1 | Agz | Ag7 | Aogs
As1 | Asz | As7 | Asg
Agq | Agz | Agr | Ags
1| An | A7z | A7 | Az
Agy | Agy | Agy | Ass

Figure 5.8: The local distributed view the 2D block cyclic distribution of a 9 x 9 global array
with blocks of size 2 x 2 onto a 2 x 3 processor grid. The different colours represent the different

processors. [11]

tines would read in a Hamiltonian matrix constructed for Hf (J = 0) by PDVR3DJ and
dumped to file. The drivers redistributed the Hamiltonian which when read in produces
a banded data distribution to a two dimensional block cyclic data distribution. This ma-
trix was then diagonalised giving eigenvalues and eigenvectors. All the eigenvalues and
eigenvectors were calculated when using PDSYEV and PDSYEVD, while as PDSYEVX
is able to calculate a subset, only 2400 eigenvalues and eigenvectors were requested. As
the eigenvectors produced were block cyclically distributed, another redistribution to
banded form was required so that the eigenvectors would be stored in columns locally.
The two redistribution and diagonalisation were timed as a function of the number of
processors and the size of the matrix/Hamiltonian. This data is tabulated in tables 5.1,
5.2, and 5.3. Plots comparing the performance of the diagonalisers are shown in figures
5.9 and 5.10.

It is clear from the data in tables 5.1, 5.2 and 5.3, and figures 5.9, 5.10 and 5.11 that
PDSYEV is approximately 4 times slower then either PDSYEVX or PDSYEVD. The
speed of both PDSYEVX and PDSYEVD result in the time for data redistribution to
be significant contributer to the total time taken to solve the Hamiltonian matrix. This
would indicate that if the Hamiltonian were built in a 2D block cyclic distribution sig-
nificant time savings may be achieved through less data redistribution. PDSYEVX and
PDSYEVD have comparable performance, however PDSYEVD should be preferred as it
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5.4 Vibrational Problem: PDVR3DJ
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Figure 5.9: Total time taken to diagonalise 12000x 12000 matrix as a function of number of
processors using ScaLAPACK [11, 12] diagonalisation routines: Crosses, PDSYEV; Diamonds,
PDSYEVX,; Pluses, PDSYEVD.
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Figure 5.10: Total time taken to diagonalise 24000x 24000 matrix as a function of number of
processors using ScaLAPACK [11, 12] diagonalisation routines: Crosses, PDSYEV; Diamonds,
PDSYEVX; Pluses, PDSYEVD.
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Figure 5.11: Total time taken to diagonalise 36000x 36000 matrix as a function of number of
processors using ScaLAPACK [11, 12] diagonalisation routines: Crosses, PDSYEV; Diamonds,
PDSYEVX; Pluses, PDSYEVD.

calculates all the eigenvalues and eigenvectors, and also uses significantly less memory.

From figures 5.9 and 5.10 it can be seen that there is a relationship between matrix
size and number of processors with respect to speed-up and parallel efficiency. In any
parallel task in order to maximise the efficiency of the calculation the time spent calcu-
lating should be far greater then the time spent on communication and synchronisation,
which are pure overhead with respect to parallel efficiency. With a 12000 matrix there
is a near two fold speed up from 32 to 64 processors, but significantly less when going
from 64 to 128. With the 24000 matrix there is a near two fold speed up going from 64
to 128 processors. However the total program execution time actually increases when
the number of processors is increased from 128 to 160. The consequence of adding pro-
cessors to a fixed size problem is that each processor has an increasingly smaller section
of the global matrix, thus initially good speed-up begins to tail off. These inefficiencies
result from each processors having too little computational work with respect to com-
munication. Thus the cost of communication with a larger number of processor, with
each processor doing less computational work, becomes too great to justify adding more
processors. However there are occasions when a loss of efficiency must be made in order

to actually tackle the problem, for example if there is insufficient memory. Thus the
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5.5 Rotational Problem: PROTLEV3

number of processors has to be increased so that each processors has a smaller section
of the problem for which it has sufficient memory to handle. This represents one of the
classic problems of parallel computing and the solution is to strike a balance between

the matrix size, memory, number of processors, and the execution time of the program.

5.4.2 Calculating arbitrary number of £ blocks

On the HPCz system the maximum wall clock time for any calculation is 12 hours. Thus
for large runs of PDVR3DJ this may become a problem. To alleviate this problem a
method by which an arbitrary number of k& blocks could be calculated was devised. This
splits running of PDVR3DJ program for a given J into J + 1 possible runs. This is
achieved by saving the DVR?FBR! eigenvectors, \I/i%’;, to disk when the final & of the

current run is reached. They are read back on the next run to form the off-diagonal

block B¥*'. The I/0 is done in parallel using MPI-2 which makes it rapid.

5.4.3 Summary of changes to PDVR3DJ

I made a number of changes to the PDVR3DJ program, a summary of these changes are

listed below:

¢ 2D diagonaliser changed from ARPACK [123] to LAPACK routine DSYEV [124]

e 3D diagonaliser changed from PelGS [126] to ScaLAPACK routines PDSYEV,
PDSYEVX, and PDSYEVD [11, 12]

e The ability to calculate an arbitrary number of £ blocks on a single run

e The re-writing of all the I/O including the extensive use of MPI-2 I/O routines
[116]

e Replacing the use Fortran common blocks with modules which are more conducive

to complier optimisation.

e The addition of a file to which various pieces of data are written for use in

PDIPOLE.

5.5 Rotational Problem: PROTLEV3

Jk,h

oy from the 3D Hamiltonian are used to solve

The eigenvalues, 7;, and eigenvectors,

the Coriolis coupled Hamiltonian where J > 0. These eigenvectors are transformed to the
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5.5 Rotational Problem: PROTLEV3

DVR2-FBR! representation, 1”"%" by equation (2.53). This transformation is performed

a,B,j
in parallel by PDVR3DJ. As the eigenvectors ¢J’k’h

a By aTe distributed across processors,
Wy

the transformation matrix, T;’, is replicated and each eigenvector is transformed in situ,
therefore the transformation can be carried out without the need for inter-processor
communication.

The Coriolis fully coupled Hamiltonian is given by equation (2.54). It is apparent
that the diagonal elements of the Hamiltonian are simply the eigenvalues 7; of the 3D

Hamiltonian, thus the construction of the Hamiltonian becomes one of building the off-

diagonal blocks in k, B**'(h, h'), the second term in equation (2.54). Therefore each

processor builds rows of each block B**'( (h/Np, h) using local eigenvectors 7,./11’;';/ N and
1/)2’;3”,? /Np , and other non-local eigenvectors wik ;l /No
The off-diagonal block, B¥*¥'(h, h), in serial is given by
B (hh) = — (14 8x,00k0) 20
Jkh, Tk B
Zwaﬂ] aﬂ,] CJkIC aalﬂﬂl (511)
.8,y
which in parallel becomes,
' 1
B*¥(h/Np,h) = — (1 + 05,000,0) 20k k1
Jk,h/Np k' W [Np ~t i
Z wa 8,3 Y aB,j °C k’C aa' 8.8 (5-12)
o8,y

for a definition of the terms in equation (5.12) refer to section 5.11 and 2.9.1.

Both the DVR2-FBR! transformation and the building of the off-diagonal blocks are
performed in PDVR3DJ; the eigenvalues of the 3D Hamiltonian and the off-diagonal
blocks are written to file. This was done to minimise I/O between PDVR3DJ and
PROTLEV3, and also to reduce storage requirements. These I/O and storages restric-
tions were present on machines such as the Cray T3E and thus mainly historic; they
are no longer significant problem. However the algorithm has remained unaltered. The
parallel version of ROTLEV3 [121], PROTLEV3 [13], reads these eigenvalues and the
off-diagonal blocks to build the distributed Coriolis coupled Hamiltonian, as shown in
figure 5.12.

The fully coupled Coriolis Hamiltonian, H’* is then diagonalised using the par-
allel iterative diagonaliser PARPACK [14]. PARPACK is a parallel implementation of
ARPACK [123] which uses the implicit restarted Arnoldi method for solving large sparse

. . o J,k . . . . . J,l .
matrices. Solving H** gives eigenvalues, 7, and eigenfunctions, 1}’;. The eigenvectors
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Figure 5.12: The structure of the Coriolis fully coupled Hamiltonian, H”** which is constructed
by PROTLEV3 [13]. The shaded regions, the diagonal and off-diagonal blocks, represent the only
non-zero elements in this sparse matrix. The distribution of the off-diagonal block, B**' (h, k')
across processors in shown in the enlargement. Each processor has a B** (h/N,, h') segment of

each block.

as returned by PARPACK are such that each processor has 1/1(‘2‘,,.) /N, segment, as illus-
trated in figure 5.13. In order to write the eigenvectors to file such that the eigenvectors
are in sequential order MPI-2 I/O was utilised. Thus all N, processors write simultane-
ously to different parts of a single file.

The general algorithm for PROTLEV3S is given below:

1. Root process reads diagonal elements 7; and broadcasts data to all

processors

2. Root process reads in off-diagonal block B**(h,h') and broadcast data

to all processors

3. The B"”"(h, h') block is distributed among processors, to create

the global Hamiltonian matrix (figure 5.12)

4. The Hamiltonian is diagonalised to give rotation-vibration energy

levels, 7, and eigenfunctions, w;::
5. Optionally save 9% to disk.
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Y

gt

(G i

Np

Figure 5.13: The distribution across, N,, processors of, I, eigenvectors, w;:::, produced by
PARPACK [14].

6. Transform 1/J:: back onto a DVR grid to form dif”; y

7. Save dy . to disk

5.5.1 Back transformation

The FBR eigenvectors 1/1;3 need to be transformed onto the original DVR grid. This
transformation is given by
deapg = D Veitass (5.13)
h
A parallel algorithm was developed and implemented into PROTLEV3 to accomplish
the above transformation in parallel.
The FBR rotational eigenvectors, ¢;C’,’£, are redistributed from the arrangement shown
in figure 5.13 to one where each processor has /N, eigenvectors. The distribution of [

eigenvectors is given by

l
I = (Fp x p'roc) +1 (5.14)
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5.5 Rotational Problem: PROTLEV3

!
—id — — 1
s i+ 1 (5.15)

where /; and [y are the initial and final eigenvectors in each processor, N, is the total

number of processors and proc is the process identifier, which goes from 0 to N, — 1.
The vibrational DVR?FBR! eigenvectors, 1/)5’;3';, which were produced in PDVR3DJ

are distributed across processors such that each processors has h/N, eigenvectors. The

distribution of h eigenvectors is given by

h
i= | = 1 1
h (NpoTOC)+ (5.16)
hy =it 21 (5.17)
[ = Np '

where h; and hy are the initial and final eigenvectors in each processor.

Equation (5.13) is evaluated in parallel using PBLAS parallel matrix-matrix mul-
tiplier PDGEMM ([11]. This produces ! dz:la,ﬁ,j DVR2-FBR! wavefunctions which are
distributed such that each processor has I/N, wavefunctions. The wavefunctions are
written to file simultaneously using MPI-2 I/0.

The parallel algorithm is summarised below:

1. Redistribute rotational eigenvectors, 1/)}!’2, such that each processor has

l/N, eigenvectors.

2. Begin loop over k

J,k,h

3. Read in vibrational DVR eigenvectors, waﬁj’

such that each processor

has h/N, eigenvectors

4. Perform transformation using parallel matrix-matrix multiplier PDGEMM

[11] producing [/N, DVR wavefunctions, d/{:fx,ﬁ,j’ per processor.
Jl .
5. Save dkaﬂj to disk

6. Next k, i.e. goto 2

5.5.2 Summary of changes to PROTLEV3

I made a number of changes to the PROTLEV3 program, a summary of these changes

are listed below:
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5.6 Dipole Transition Moments: PDIPOLE

Re-writing of diagonalisation routines for optimisation

The re-writing of all the I/O including the extensive use of MPI-2 I/O routines
[116]

Rotation-vibration energy levels written to file for use with PDIPOLE

The ability to back transform the rotation-vibration wavefunctions, 1/),?’5, to the

DVR wavefunctions, d,ffx s,;> and write to disk.

5.6 Dipole Transition Moments: PDIPOLE

Dipole transition moments are calculated using a new parallel program PDIPOLE.
PDIPOLE is based of the serial program of Tennyson et al, DIPOLE3 [43]. DIPOLE3
had been parallelised by Harris [128]. This parallelisation was done using OpenMP [117]
for the shared memory architecture. Although OpenMP is particularly suited to the
shared memory architecture, it had mixed success. This was thought to be because runs
of the program required large amounts of memory which could not all be stored local to
the processor, thus was distributed implicitly by OpenMP. This led to large amounts of
communication in data transfer, giving unreliable and inefficient performance. A new
algorithm has been developed which is suited to massively parallel architectures such as
HPCz.

The parallel algorithm developed and used is relatively simple and requires minimal
communication; this is important on a distributed memory system as inter processor
communication is most likely to be the bottleneck in any program. The algorithm
essentially involves parallelising two parts of the serial program, DIPOLE3 [43], the
transformation of the wavefunctions, dgf)ﬂ’ (Equation (3.55)) and the actual intensity
calculation (Equation (3.56)). The parallel decomposition of the problem is achieved by
distributing the basis of each wavefunction across processors, such that each processor

has k (j, a, B)/N, segments of each wavefunction dg‘lzﬁ. The distribution is given by

1= (%ﬂpj— X proc) +1 (5.18)
_ 9B .
f=i+ N, " (5.19)

where ¢ and f are the initial and final grid points respectively on each processor, N, is

the total number of processors and proc is the processor identifier, which goes from 0 to
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5.6 Dipole Transition Moments: PDIPOLE

N, — 1. The transformation in parallel is therefore given by

1
it =" (wn) 7 Pk (zn)d*! (5.20)

n
where z goes from 7 to f; the matrices w, and Pj;(z,) are trivially calculated, thus can
be replicated on each processor. This transformation is performed using BLAS matrix
matrix multiplication routine DGEMM [129].

The evaluation of the line strength is performed in parallel by evaluating the matrix
multiplication and summation 3= 5, c,{fglﬁl;cz::g;g’ p™(aBj) on the local portion of the

wavefunction. Therefore each processor performs the following

1A 1" Illll
cp PV el P um(2) (5.21)

z=i

where z goes from ¢ to f, as given by (5.18) and (5.19), each processor only works with
the local portion of the wavefunction. The matrix u]*(2) is replicated on each processor.
Again the matrix-matrix multiplication is performed by BLAS routine DGEMM [129].
An MPI global reduction routine places the global sum on the root process, which
completes the evaluation of equation (3.56) to give the line strength S(f —4). The global
reduction operation represents the only communication in the procedure; however this
is a trivial amount of data, being only N, double precision numbers. More significantly
a slight load imbalance occurs as the root process alone evaluates the remaining portion
of equation (3.56); Einstein A-coefficient, A;y; integrated absorption coefficient, I(w;y);
and finally outputs all the transitions to disk.

The parallel algorithm is summarised below:

1. All processors calculate dipole moment at the radial grid points and

angular integration points

2. Begin to loop over k

J’,k',l’

aB.j and transform to

3. Read in (j,a,B)/N, segment of wavefunction d

common grid, equation (5.20).

" 0o
4. Read in (j,a,()/N, segment of wavefunction di B’kj,,’l wavefunctions, and

transform to common grid, equation (5.20)
5. Evaluate the following part of line strength equation

lelll Jllplllll m
Crrz Cirz v (Z)
z=1
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5.6 Dipole Transition Moments: PDIPOLE
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Figure 5.14: Total time taken by PDIPOLE to calculate all the transitions between 2112 J = 2
e and J = 2 flevels. The DVR grid consisted of n,,=96, n,, =36 and ny = 32

6. Perform global sum placing the result on the root processor
7. Next k, i.e. goto 3

8. Root processor calculate S(f—i) by completing the evaluation of line

strength equation (3.56)

9. Root processor calculates A;; and /(w;;) (equations (3.60) and (3.61))

and outputs transitions.

5.6.1 Performance

The performance of the PDIPOLE program was determined froma J =2eto J =21
run for a varying number of processors. The results of this are plotted in figure 5.14
There is a near two fold speed up between using 32 and 64 processors, but virtually
none from 64 to 128. This can be explained as a consequence of splitting a fixed size
problem into ever smaller pieces. Thus each processor does increasingly less computation
relative to communication. Also there is Amdahl’s law; certain portions of PDIPOLE
are inherently serial, such as the writing out of the transitions to file. No increase in

the number of processors can speed these portions up; thus we reach a level where no
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5.6 Dipole Transition Moments: PDIPOLE

speed-up can be achieved by adding additional processors. However as the problem
size is increased it should increase the time the program spends in parallel parts of the

program and thus make the program more scalable.
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Chapter

Near-Dissociation Convergence

Performing rotation-vibration calculations which extend all the way to dissociation for
the H3+ molecule is a formidable challenge. In this chapter I present the convergence
testing of the basis sets used to calculate energy levels, wavefunctions, and dipole tran-
sitions in the high energy regime. All calculations pertaining to dissociation, that is all
the calculation outlined in this section, use the dissociating potential energy surface of
Polyansky et al [3].

Adequate convergence needs to be achieved all the way to dissociation, as this is
the area of particular interest. For H] the dissociation energy is approximately 35 000
cm™! [130, 131]. The dissociation energy of the Polyansky potential energy surface is
calculated more precisely in this work.

The method used to solve the rotational-vibrational problem obeys the variational
principle (refer to section 2). Thus by means of judicious choice of various parameters,
the calculation can not only produce the best results but also minimise the cost of
the calculation. The “cost of calculation”, refers to the run-time of a calculation, the
number of processors, the amount core memory needed, and the amount of disk space
needed. There are several parameters used by PDVR3DJ and PROTLEV3 which affect
the convergence of the energy levels and consequently the quality of the wavefunctions.
The value these parameters may take to reach convergence must be weighed against any

increase in computational cost.
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6.1 Dissociation energy

6.1 Dissociation energy
The lowest dissociation channel for H;}r is the reaction
Hf{ — Hy(v =0) +HT (6.1)

There are two different definitions of the dissociation energy: the classical, D,, and
the quantum, D,. Classically the dissociation energy is defined as the difference between
the absolute bottom of the potential for the species of interest, and the energy at which
it is no longer bound. Quantum mechanically the zero point energy must be considered.
For H} the zero point energy is 4361.7 cm™! (refer to section 4.1). The situation is
further complicated for Hi as the ground state is forbidden and the first occupied state
is the J=1, K=1 level, 64.11 cm~! above the ground state. The lowest dissociation
channel for Hi is that

The precise value of the dissociation energy is not known for certain. Cosby and Helm
[130] determine from photo-ionisation and photo-dissociation of H3 that D, for Hi as
4.373 £ 0.021 eV (35270.6 cm™!). This is the dissociation energy from the first occupied
state to dissociation. While Lie and Frye [131] using ab initio techniques found D, from
the zero point energy to dissociation to be 4.381 + 0.002 eV (34980.3 cm™!). These two
energies are compared in figure 6.1 where the different definitions of D, are taken into
account, there is a difference of some 350 cm~! between theory and experiment. This
discrepancy may be attributed to the fact that Cosby and Helm determine their value
for H3 and not a direct measurement on H:‘;

The dissociation energy for the potential energy surface used in this work [3] was
calculated in the following manner. If ry is taken to infinity then the H molecule can
be regarded as dissociated to H* and Hy. The first bound state of this Hy then gives the
H; dissociation limit for the potential energy surface. This can be calculated by solving
the Schrodinger equation for this “diatomic” molecule. The potential for the “diatomic”
is a cut through the full hyper-surface at an infinite r9, arbitrary 6, and therefore r;
represents the distance between the two hydrogen nuclei. The program LEVEL by Le
Roy [132] was used to solve this “diatomic” problem via direct numerical integration
and thus obtain the dissociation energy. The energy from the bottom of the potential
to Hy(v = 0) was calculated to be 4.869 eV (39273.24 cm™!). From figure 6.1 this is

approximately 70 cm™! greater than the value given by Lie and Frye.
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Figure 6.1: An energy diagram showing significant energies of Hf . Note the break in the scale

of the y-axis.
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6.2 Convergence of the Vibrational Problem: PDVR3DJ

There are various parameters which can be varied to improve convergence of the vi-
brational problem: the parameters for the basis functions, the number of points used
for each coordinate, ng, n,, and n,, for 6, r1, and ry respectively; the size of the final
Hamiltonian, N.

For the purposes of convergence testing the energy levels are taken relative to the first
J = 0 state which is 4361.60 cm~! above the bottom of the potential. Thus the relative

dissociation energy is 34911.64 cm™!.

It is known that the convergence characteristics
of the even, ¢ = 0, and odd, ¢ = 1, vibrational states are different [15], therefore

convergence testing needs to be performed on both.

6.3 Basis function optimisation

Spherical oscillator functions are used as the basis for the final coordinate, ro. These
take two parameters, a and w. Morse oscillator functions are used to represent the r;
coordinate, these take parameters r., D, and w,. Legendre functions are used for the
angular coordinate. Through numerical testing, Henderson et al [81] found that the
optimal coordinate ordering with respect to convergence and computational cost for H7
is @ —» r; — ro. It has also been found that the basis parameters chosen for the final
coordinate are most crucial to convergence; thus a and w were optimised. The values
of the Morse oscillator parameters used were r, = 2.1 a,, D, = 0.1 E; and w, = 0.0118
s7L,

Calculations were performed with various values of w and between the values of 0
and 1 for a. Henderson et al [15] used w = 0.0095, this was taken as a starting point for
optimisation.

The mean energy differences between energy levels as a function of « are tabulated
in tables 6.1 and 6.2. The differences between energy levels calculated with different
values of o are shown in figures 6.2 and 6.3. It is evident that convergence improves
with increasing « for even states, while the opposite is true for odd states. In order
to perform dipole transition calculations the wavefunctions must be on the same radial
grid. If transitions between odd and even states are to be calculated, as is the intention
of this work, then the same value of « is needed for even and odd states; otherwise a

costly transformation is required. As the variation for odd states is not as great as those
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Figure 6.2: Convergence of J = 0 even band origins with respect to the value of a. The points
indicate the difference of the nt” energy level calculated using a particular value of « relative to

that calculated with a = 0.0

for even states, o = 0.0 is preferable. This gives convergence for states up to dissociation
to approximately 0.5 cm™! for even states and 1.3 cm~! odd states.

From table 6.3 it is evident that the value of w has little effect on the average
convergence. However it is clear from figures 6.4 and 6.5 that its value has a great
effect on high energy levels. Values of 0.0135, 0.0250, and 0.0500 are particularly bad
for even states. Therefore a low value of 0.0075 seems appropriate giving convergence of

approximately 0.14 cm™! for even states and 0.28 cm™! for odd states.

6.3.1 DVR grid optimisation

The computational cost increases approximately linearly with ng, n,, and n,,. It must be
noted that the DVR is not strictly variational (refer to section 2.9) but can be assumed to
be quasi variational, to a good approximation. That is states may converge from below
or above with increasing a variational parameter. The general method of converging a
DVR grid is to start with varying the first coordinate, while keeping the other parameters

constant. When adequate convergence is attained, the second coordinate becomes the
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Figure 6.3: Convergence of J = 0 odd band origins with respect to the value of . The points
indicate the difference of the n'* energy level calculated using a particular value of « relative to

that calculated with a = 0.0

Table 6.1: The mean energy differences (cm™!) between even energy levels calculated with various
values of a and a = 0.0. The values of the other parameters are : N=29952, n,,=96, n., =36,

ng = 32 and w = 0.0095.
Max. Energy (cm™1)

15000 25000 Dissociation

mean(Ep9-01) -0.04 -0.20 -0.25
mean(Fpo-02) -0.14 -0.73 -0.87
mean(Epo-0.3) -0.28 -1.47 -1.77
mean(Epo-04) -045 -2.36 -2.85
mean(Epo-05) -0.64 -3.37 -4.07
mean(Epo_0s) -0.84 -4.47 -5.39
mean(Epo-07) -1.06 -5.63 -6.79
mean(Fpo-0s) -1.28 -6.84 -8.25
mean(Epo-_09) -1.51 -8.08 -9.76
mean(Fgo-10) -1.74 -9.36 -11.30
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6.3 Basis function optimisation

Table 6.2: The mean energy differences (cm~!) between odd energy levels calculated with various
values of @ and @ = 1.0. The values of the other parameters are : N=29952, n,,=96, n,, =36,

ng = 32 and w = 0.0095.
Max. Energy (cm™!)

15000 25000 Dissociation
mean(El,o_o,o) 0.00 0.01 0.03
mean(El,o_o_l) 0.00 0.03 0.07
meal’l(El_o_o,g) 0.00 0.06 0.12
mean(El_o_o,g) 0.00 0.08 0.18
mean(El,o_OA) 0.00 0.11 0.23
mean(El,o_o,s) 0.00 0.13 0.28
mean(El_g_o,s) 0.00 0.15 0.32
mea.n(El‘o_o,—,-) 0.00 0.17 0.36
mean(El.o_o,g) 0.00 0.18 0.38
mean(El,o_o.g) 0.00 0.18 0.38
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Figure 6.4: Convergence of J = 0 even band origins with respect to the value of w. The points

indicate the difference of the n** energy level calculated using a particular value of w relative to

that calculated with w = 0.0075
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Table 6.3: The mean energy differences (cm™!) between energy levels calculated with various
values of w and w = 0.0075. The values of the other parameters are : N=29952, n,,=96, n,., =36,
ng = 32 and a = 0.0.

EVEN ODD
Max. Energy (cm™!) 15000 25000 Dissociation 15000 25000 Dissociation
mean(Eo 0075-0.0095) 0.00 0.00 0.00 0.00  0.04 0.08
mean(Ep.g075-0.0115) 0.00 0.00 0.00 0.00  0.06 0.13
mean(FEp.0075-0.0135) 0.00 0.00 0.00 0.00 0.08 0.18
mean(Ep 0075—0.0250) 0.00 0.00 0.08 0.00 0.14 0.23
mean(Ep.0075-0.0500) 0.00 0.00 -1.00 0.00 0.17 -0.55
mean(Eg 0075-0.0750) 0.00 0.00 -1.41 0.00 0.19 -0.83
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6.3 Basis function optimisation

Table 6.4: The mean energy differences (cm™!) between energy levels calculated with various
values of ng, and ng, = 32. The values of the other parameters are : N=29952, n,,=96, n,, = 36,

a = 0.0, and w = 0.0075.

EVEN ODD
Max. Energy (cm™!) 15000 25000 Dissociation 15000 25000 Dissociation
mean(Es32_36) 0.00 0.00 0.00 0.00 0.00 0.00
mean(E32-42) 0.00 0.00 0.00 0.00 -0.04 -0.08
mean(FEs3z_46) 0.00 0.00 0.00 0.00 -0.04 -0.09
mean(E32-50) 0.00 0.00 0.00 0.00 -0.04 -0.08

variational parameter. The procedure is then repeated for the third and final coordinate.
There is an additional complication associated with the final coordinate becoming the
variational parameter. The 3D Hamiltonian is built using a certain number of solutions
from each 2D calculation per final grid point. Therefore to ensure that a fair comparison
is made, the size of the final 3D Hamiltonian, N, must scale with the number of final
grid points, such that equal numbers of 2D solutions are used per grid point.

For the 0 coordinate it is clear from table 6.4 that there is little improvement in the
mean convergence in using more than 32 points. Figures 6.6 and 6.7 show the differences
between a calculation using ng = 32 and a calculation using a different value of ng. There
is some non-variational behaviour as there are both positive and negative differences.
Thus some of the states appear to be converging from below, as opposed to from above,
which is the expected behaviour. This is most likely due to DVR calculations not being
strictly variational, and thus are able to converge from above or below. There is little
improvement in convergence for most states in using a ngy greater then 32, some states,
especially near dissociation, show marked improvement in using ng = 50. This value
converges all the states to within 0.28 cm™! for even states and 0.25 cm~! for odd
states.

The mean energy differences for the variation of n,,, table 6.5, do not clearly indicate
the ideal value of n,,. Figures 6.8 and 6.9 show the difference of the n!” energy level
calculated using a particular value of n,, relative to that calculated with n, = 30; it
is difficult to discern any significant trend. The number of r; grid points is limited by
the nature of the Morse oscillator-like functions (2.58) used. Both y and r are valid in
the range zero to infinity, however for certain values of y the corresponding value of r is

negative, which is physically undefined.
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Figure 6.6: Convergence of J = 0 even band origins with respect to the value of ng. The points
indicate the difference of the n'* energy level calculated using a particular value of ny relative

to that calculated with ng = 32

Table 6.5: The mean energy differences (cm™!) between energy levels calculated with various
values of n,, and n,, = 30. The values of the other parameters are : N=29952, n,,=96, ng = 32,

a = 0.0, and w = 0.0075. Powers of 10 in parenthesis.

EVEN ODD
Max. Energy (cm~!) 15000 25000 Dissociation 15000 25000 Dissociation
mean(FE3p_32) 0.00 -0.03 -0.92 0.00 -0.03 -0.57
mean(F3o-34) 0.00 -0.01 -0.26 0.00 -0.01 0.16
mean({Esp_36) 0.00 0.03 0.35 0.00 0.03 0.48

As 7y is the final coordinate, the Hamiltonian needs to be scaled. Hamiltonian sizes
of 19968, 29952, 39273, 49920, and 60000 were used for n,,=88, 96, 104, 112 and 120.
The situation is further complicated by the need for parallel computing and the HPCz
system, both are discussed in more detail in sections 5.4 and 5.2.5 respectively. To
summarise, PDVR3DJ requires that the number of processors used be a multiple of n,;
HPCz is most efficiently used if multiples of 32 processors are used.

The band origins with respect to n,, are shown in figures 6.10 and 6.11. Abnormal
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Figure 6.7: Convergence of J = 0 odd band origins with respect to the value of ng. The points
indicate the difference of the n'* energy level calculated using a particular value of ny relative

to that calculated with ng = 32

behaviour is shown for n,,=104, 112, and 120 near dissociation, especially for the even
states. This is caused by some of the weights, w,, for these values of n,, underflowing
on the machine and being set zero. These weights are used in the kinetic energy terms,
(2.44) to build the Hamiltonian (2.42) and are a source of numerical instability. If 96
ro grid points are used all states are converged to 0.12 cm™! and 0.42 cm™! for even
and odd states respectively, which was judged to be sufficient given the errors in the

individual DVR expansions discussed above.

6.3.2 Hamiltonian size optimisation

The size of the Hamiltonian approximately scales quadratically with the amount of core
memory and cubically with the runtime. Table 6.7, and figures 6.12 and 6.13 show the
convergence as a function of Hamiltonian size. The largest Hamiltonian gave convergence
within 2 x 107% cm™! for even states and 1 x 1074 ¢cm™! for odd states. However this

1

comes at a great computational cost, N = 39273 converges states within 0.12 cm™" and

0.08 cm™! for even and odd states respectively.
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Table 6.6: The mean energy differences (cm~!) between energy levels calculated with various
values of n,, and n,, = 88. The values of the other parameters are : n,, =36, ny = 32, a = 0.0,

and w = 0.0075.

EVEN ODD
Max. Energy (cm™!) 15000 25000 Dissociation 15000 25000 Dissociation
mean(Egs_ o) 0.00  0.00 0.00 000  0.03 0.08
mean(Esgg_104) 0.00 0.00 0.02 0.00 0.06 0.13
mean(Esgg_112) 0.00  0.00 0.03 0.00 0.08 0.17
mean(FEsgg_120) 0.00 0.00 0.08 0.00 0.10 0.22
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Table 6.7: The mean energy differences (cm~!) between energy levels calculated with various
values of N and N = 19968. The values of the other parameters are : n.,=96, n,, =36, ny = 32,
a = 0.0, and w = 0.0075.

EVEN ODD
Max. Energy (cm™!) 15000 25000 Dissociation 15000 25000 Dissociation
mean(F19968—29952) 0.00 0.01 0.21 0.00 0.00 0.17
mean(E)9968-39273) 0.00 0.01 0.23 0.00 0.02 0.18
mean(E9965—49920) 0.00 0.01 0.23 0.00 0.01 0.18
mean(E19968-60000) 0.00 0.01 0.23 0.00 0.01 0.18
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Figure 6.10: Convergence of J = 0 even band origins with respect to the value of n,,. The values

of the other parameters are : n,, =36, ng = 32, a = 0.0, and w = 0.0075.
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Figure 6.11: Convergence of J = 0 odd band origins with respect to the value of n,,. The values

of the other parameters are : N=29952, n,, =36, ng = 32, a = 0.0, and w = 0.0075.
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The values of the other parameters are: n,,=96, n,, =36, ng = 32, a = 0.0, and w = 0.0075.
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Figure 6.13: Convergence of J = 0 odd band origins with respect to the Hamiltonian size, N.

The values of the other parameters are: n,,=96, n, =36, ng = 32, a = 0.0, and w = 0.0075.
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6.4 Convergence of the Rotational Problem: PROTLEV3

Table 6.8: The mean energy differences (cm™!) between J = 1 energy levels calculated using
various values of h and h = 2016. The values of other parameters are : N =29952, n,,=96,
ny, =36, ng = 32, o = 0.0, and w = 0.0075.

EVEN ODD

P e f e f
mean(Fap16-2076) 0.02 0.00 0.02 0.00
mean(Eap16-3936) 0.03 0.00 0.03 0.00
mean(Fo016-4800) 0.03 0.00 0.03 0.00

6.4 Convergence of the Rotational Problem: PROTLEV3

The convergence of the rotational problem is largely governed by the number of solutions,
h, from the vibrational problem used in the construction of the Hamiltonian. The
number of solutions used is directly related to the size of the Hamiltonian, thus the cost
of the calculation. The number of solutions, rotational-vibrational energy levels and
wavefunctions required must be less then h (refer to section 2.9). Again the needs of
parallel computing limits the value A may take to a multiple of the number of processors
used by PROTLEV3. The convergence is also dependent of the rotational parity, p,
which is 0 or 1 for e and f states respectively.

The energy levels are taken relative to first J = 0 state which is 4361.60 cm™! above
the bottom of the potential. Thus the relative dissociation energy is 34911.64 cm™!,

The mean energy differences between h = 2016 and h = 2976, 3976,4800 for J =1
are shown in table 6.8; they are also plotted in figures 6.14 to 6.17. The convergence
of the f states is clearly not dependent on A and thus a value of A which gives enough
solutions should be used. For the e states there is an improvement in convergence with
increasing h for both the even and odd parities. However the improvement in using
3936 solutions as opposed to be 2976 is not sufficient to justify the increased cost of the
calculation.

For J = 2 the mean energy differences between h = 2880 and h = 3840, 4880, 5760 are
shown in table 6.9. The energy differences are also plotted in figures 6.18, to 6.21. Both
the e and f states show improvement in mean convergence with A. The improvement
in the f states is slight and no greater then 0.03 cm™!, therefore not justifying the cost
of using more than 2880 solutions. The e states show greater improvement in the high
energy regime, with the maximum differences near 0.25 cm~!. The difference in using

= 5760 instead of h = 4880 is slight, so a value of A = 4880 should be considered to
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Figure 6.14: The convergence of J = 1, even, e states. The points indicate the difference between

the nt? energy level calculated with h = 2016 and other values of h.
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Figure 6.17: The convergence of J = 1, odd, f states. The points indicate the difference between

the n'* energy level calculated with h = 2016 and other values of h.
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Table 6.9: The mean energy differences (cm™!) between J = 2 energy levels calculated using
various number of vibrational solutions. The values of other parameters are : N =29952, n,, =96,
nr, =36, ng = 32, a = 0.0, and w = 0.0075.
EVEN ODD
e f e f
mean(FEsgg0-3840) 0.02 0.00 0.03 0.00
mean({FEsgg0-4830) 0.03 0.00 0.03 0.00
mean(FE2ggo-5760) 0.03 0.00 0.03 0.00
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Figure 6.18: The convergence of J = 2, even, e states. The points indicate the difference between

the n‘h energy level calculated with kh = 2016 and other values of h.

converge the high lying states.

In order to ascertain a trend in the value of h needed to adequately converged a
rotation-vibration calculation for a given J, a J = 5 calculation was performed. The
mean energy differences between h = 2880 and h = 3840, 4880, 5760 are shown in table
6.9. The convergence with respect to h is plotted in figures 6.18 to 6.21.

The h = 6912 calculation was near the boundary of what was computationally feasi-
ble with the PROTLEV3 program on the HPCz system. This gave convergence within

0.32 cm~! for the e states and 0.07 cm™! for the f states. The convergence of the e
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Table 6.10: The mean energy differences (cm™') between J = 5 energy levels calculated using
various values of h and h = 2880. The values of other parameters are : N =29952, n,,=96,
n,, =36, ng = 32, a = 0.0, and w = 0.0075.
EVEN ODD
e f e f
mean(FEsggo-3840) 0.83 0.25 0.82 0.24
mean(Eogg0-4992) 1.15 0.33 1.14 0.33
mean(Eogg0-5952) 1.26 0.36 1.24 0.35
mean(FEsgg0-6912) 1.30 0.37 1.28 0.36

states is worse then that for the e states with J = 1 and J = 2. This indicates that 6912
solutions may not be enough to converge J = 5 e states to the same level as those of
J =1 and J = 2 calculations.

It was found that the empirical equation h = (J+2) x 1000 was sufficient to converge

all the states to dissociation to within 0.32 crn~!

. Convergence for the fstates is markedly
better at 0.06 cm™!, therefore a lower value of h could be used for calculating f states

to the same level of convergence as the e states.
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6.5 Summary

6.5 Summary

If the values taken for the variational parameters are ny = 50, n,, = 36, n,, = 96,
N = 39273 and h = (J + 2) x 1000, this gives rotational-vibrational energy levels
converged to within 1 cm™!, with the majority of states converged to a much greater

level.
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Chapter

Near-Dissociation Results and Discussion

In this chapter wavefunctions and a partial calculation of the dipole transition intensities

pertinent to Carrington-Kennedy near-dissociation spectrum are presented.

7.1 Rotation-vibration wavefunctions

Using the PDVR3DJ and PROTLEV3 programs the HF wavefunctions were calculated
for J = 0 to J = 2. The parameters used are outlined more fully in chapter 6. The
coordinates were treated in the order 8 — r; — 79 with 50, 36 and 96 points respectively.
Morse oscillator-like functions were used for the r; coordinate with basis parameters r, =
2.1 a,, D¢ = 0.1 Ej and w, = 0.0118 a.u. The r; coordinate was represented by spherical
oscillator functions with parameters a = 0.0 and w = 0.0075. A final Hamiltonian size
of 39273 was used for the vibrational problem while the size of the rotation-vibration
Hamiltonian was determined from the empirical relation h = (J + 2) x 1000, where h is
the number of vibrational solutions used to build the full Coriolis coupled Hamiltonian.

The J = 0 even (¢ = 0) DVR wavefunctions were examined by taking two dimen-
sional cuts. The @ coordinate was fixed at 88.2°, the last 6 grid point, and plotting
contours as a function of r; and r9 coordinates. All J = 0 even wavefunctions were
examined in this manner, giving 679 plots which are shown in figures 7.1 to 7.17

This is the first time that wavefunctions calculated from a correctly dissociating
H7 potential have been analysed. From figures 7.1 to 7.17 it is clear that most of the
plots show highly irregular structure, this is more prevalent as the energy is increased.

Berblinger et al [133] performed a classical mechanical study of the Hi system at J = 0.
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state. r; and r, are along the r and y axes respectively, with ranges from 0 to 6 a,.
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Figure 7.2: Hf J = 0 even (¢ = 0) wavefunctions in Jacobi (71, r2, ) coordinates for states 43
to 84 with 6 taken to be 88.2°. Contours are taken at 8%, 16%, 32% and 64% of the maximum
amplitude. The dashed line enclosing each state indicates the classical turning point for that

state. r; and r; are along the z and y axes respectively, with ranges from 0 to 6 a..
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Figure 7.3: Hf J = 0 even (g = 0) wavefunctions in Jacobi (r;, 72, 8) coordinates for states 85
to 126 with 8 taken to be 88.2°. Contours are taken at 8%, 16%, 32% and 64% of the maximum
amplitude. The dashed line enclosing each state indicates the classical turning point for that

state. 71 and 7o are along the £ and y axes respectively, with ranges from 0 to 6 a..
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Figure 7.4: HI J = 0 even (g = 0) wavefunctions in Jacobi (ry, ry, 8) coordinates for states 127

to 168 with 6 taken to be 88.2°. Contours are taken at 8%, 16%, 32% and 64% of the maximum

amplitude. The dashed line enclosing each state indicates the classical turning point for that

state. ; and r, are along the r and y axes respectively, with ranges from 0 to 6 a..
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Figure 7.5: H} J = 0 even (g = 0) wavefunctions in Jacobi (7, 72, 8) coordinates for states 169
to 210 with 8 taken to be 88.2°. Contours are taken at 8%, 16%, 32% and 64% of the maximum
amplitude. The dashed line enclosing each state indicates the classical turning point for that

state. ; and 7, are along the z and y axes respectively, with ranges from 0 to 6 a,.
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Figure 7.6: H} J = 0 even (g = 0) wavefunctions in Jacobi (r;, r, 8) coordinates for states 211
to 252 with 6 taken to be 88.2°. Contours are taken at 8%, 16%, 32% and 64% of the maximum
amplitude. The dashed line enclosing each state indicates the classical turning point for that

state. 7, and r, are along the z and y axes respectively, with ranges from 0 to 6 a,.
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Figure 7.7: HT J = 0 even (¢ = 0) wavefunctions in Jacobi (r;, r2, §) coordinates for states 253
to 294 with 6 taken to be 88.2°. Contours are taken at 8%, 16%, 32% and 64% of the maximum
amplitude. The dashed line enclosing each state indicates the classical turning point for that

state. r; and r; are along the r and y axes respectively, with ranges from 0 to 6 as.
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Figure 7.8: H; J =0 even (g = 0) wavefunctions in Jacobi (ry, ra, 8) coordinates for states 294
to 336 with 6 taken to be 88.2°. Contours are taken at 8%, 16%, 32% and 64% of the maximum
amplitude. The dashed line enclosing each state indicates the classical turning point for that

state. r; and ry are along the z and y axes respectively, with ranges from 0 to 6 a..

164



7.1 Rotation-vibration wavefunctions

Q\\ 0 . N Dk\/\
008 ?‘\ 4 0 O\ V é/q ‘Q)@/\_\
Q oj’-/\ Q .Cosa O\\Q > Q%U‘f\‘ a

Figure 7.9: HY J = 0 even (g = 0) wavefunctions in Jacobi (1, r2, §) coordinates for states 337
to 378 with 8 taken to be 88.2°. Contours are taken at 8%, 16%, 32% and 64% of the maximum
amplitude. The dashed line enclosing each state indicates the classical turning point for that

state. r; and ry are along the r and y axes respectively, with ranges from 0 to 6 a..
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Figure 7.10: H} J = 0 even (¢ = 0) wavefunctions in Jacobi (ry, 72, 8) coordinates for states 379
to 420 with 6 taken to be 88.2°. Contours are taken at 8%, 16%, 32% and 64% of the maximum
amplitude. The dashed line enclosing each state indicates the classical turning point for that

state. ry and ro are along the £ and y axes respectively, with ranges from 0 to 6 a..
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Figure 7.11: H;’ J = 0 even (¢ = 0) wavefunctions in Jacobi (ry, ry, 8) coordinates for states 421
to 462 with 6 taken to be 88.2°. Contours are taken at 8%, 16%, 32% and 64% of the maximum
amplitude. The dashed line enclosing each state indicates the classical turning point for that

state. r; and ry are along the z and y axes respectively, with ranges from 0 to 6 a..
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Figure 7.12: HY J = 0 even (g = 0) wavefunctions in Jacobi (|, 7o, 8) coordinates for states 463
to 504 with 6 taken to be 88.2°. Contours are taken at 8%, 16%, 32% and 64% of the maximum
amplitude. The dashed line enclosing each state indicates the classical turning point for that

state. , and r, are along the z and y axes respectively, with ranges from 0 to 12 a,.
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Figure 7.13: H J = 0 even (g = 0) wavefunctions in Jacobi (ry, ra, 8) coordinates for states 505
to 546 with 6 taken to be 88.2°. Contours are taken at 8%, 16%, 32% and 64% of the maximum
amplitude. The dashed line enclosing each state indicates the classical turning point for that

state. r; and ry are along the z and y axes respectively, with ranges from 0 to 12 a,.
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Figure 7.14: H} J = 0 even (g = 0) wavefunctions in Jacobi (r, 79, 8) coordinates for states 547
to 588 with 6 taken to be 88.2°. Contours are taken at 8%, 16%, 32% and 64% of the maximum
amplitude. The dashed line enclosing each state indicates the classical turning point for that

state. 71 and r; are along the = and y axes respectively, with ranges from 0 to 12 a..
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Figure 7.15: H J = 0 even (g = 0) wavefunctions in Jacobi (r1, r2, ) coordinates for states 589
to 630 with 6 taken to be 88.2°. Contours are taken at 8%, 16%, 32% and 64% of the maximum
amplitude. The dashed line enclosing each state indicates the classical turning point for that

state. r; and ro are along the z and y axes respectively, with ranges from 0 to 12 a..
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Figure 7.16: HY J = 0 even (¢ = 0) wavefunctions in Jacobi (r1, r2, ) coordinates for states 631
to 672 with 6 taken to be 88.2°. Contours are taken at 8%, 16%, 32% and 64% of the maximum
amplitude. The dashed line enclosing each state indicates the classical turning point for that

state. r; and ry are along the = and y axes respectively, with ranges from 0 to 12 a..
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Figure 7.17: HI J = 0 even (g = 0) wavefunctions in Jacobi (r1, 72, ) coordinates for states 631
to 679 with 6 taken to be 88.2°. Contours are taken at 8%, 16%, 32% and 64% of the maximum
amplitude. The dashed line enclosing each state indicates the classical turning point for that

state. r; and ry are along the = and y axes respectively, with ranges from 0 to 12 a,.

They discovered stable periodic orbit, which they named “horseshoe” orbits. This motion
can be considered as a highly excited bending motion in a quasi-linear molecule. These
structures have been found within the wavefunctions of other triatomic species, such as
Arg [134] and Nag [135]; thus they are not unique to HF. Le Sueur et al [136] calculated
vibrational band intensities for the Hf system. They found that “horseshoe” states were
responsible for high intensities. Furthermore they found that these “horseshoe” states
were invariant to the potential energy surface used, being produced with both the Meyer
et al [57] and Jensen et al [137] potentials. Thus it would be expected that these states
should exist in the present calculation, which uses a significantly improved potential,
that correctly dissociates. Le Sueur et al [136] identified 20 “horseshoe” states, the last
two are above the dissociation energy of this calculation. One can convince oneself that
states 2, 5, 8, 14, 21, 28, 38, 50, 66, 86, 115, 149 193, 243, 311 and 386 correspond to
the first 16 states identified by Le Sueur et al. However the correspondence of the next
2 states is less clear, this could be due to the generally more chaotic nature of phase
space shown at higher energies.

The plots for states 600, 639, 656 and 674 show an interesting featurc at approxi-
mately r, = 5a, This increase in amplitude along Hj —H,+H™ dissociation channel
may be due to loosely coupled HT-H; complexes. Such states have been suggested to
exist in the Carrington-Kennedy spectra before by Pfeiffer and Child [138], albeit for
much higher rotational excitation. These features could also be an artifact of the po-

tential created when the potential energy surface was fitted. For diatomic molecules
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the near-dissociation and long-range behaviour is well known [139]. The H*-H; com-
plexes found lie above the classical dissociation energy D,, lying in the region between
D. and D,, and therefore are a purely quantal phenomenon. Unlike diatomic states
near-dissociation, the zero point energy and potential energy of the products, Hy in this
case, have to be accounted for. For H} dissociation the potential for Hy lies orthogonal
to the dissociating Hf coordinate. Thus analogies to the one dimensional diatomic case
are not possible. These long-range bonded complexes exhibit interesting behaviour and

definitely warrant further investigation.

7.2 Density of states

The Polyansky et al [3] potential energy used is the first that dissociates Hy correctly.
This potential includes long range attractive terms which should increase the number of
bound states with respect to previous potentials. To test this all the Hg” band origins of
this work are compared to those of Henderson et al [15] up to dissociation (figure 7.18).
Henderson et al used the potential energy surface of Meyer et al [57] which is known
not to dissociates correctly. Therefore a greater density states would be expected in this
work compared to that of Henderson et al.

It is apparent from figure 7.18 that the opposite of the expected behaviour is shown,
that is Henderson et al in fact have a higher density of states then this work. The

significant difference in the densities begins at approximately 22500 cm™!

. A possible
reason for this contradiction may lie in convergence with the Henderson et al band origins
being less well converged then those in this work. Henderson et al found that their band
origins were converging from below and thus a lack of convergence could result in a

lowering in the density of states.

7.3 Dipole calculations

The PDIPOLE program was used with the afore mentioned rotation-vibration wavefunc-
tions to calculate line strengths. Using the dipole surface of Réhse et al [56], the line
strengths for all transition allowed by the rigorous dipole selection rules were calculated
for the given rotational states.

J' K

The wavefunctions, ¥ B

have an angular dependence on k and need to be trans-

formed to a common DVR grid (refer to chapter 3). A slightly larger number of FBR
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Figure 7.18: A comparison of all the Hi band origins of this work and that of Henderson et al
[15]. The E states are not degenerate and thus counted twice in each data set.

angular functions 7 need to be used. The smaller the grid size the lower the computa-
tional cost of the dipole transition calculation. Thus a value y was varied to determine
a stable value, vy = 64.

A total of approximately 12.8 million transitions were computed. It should be noted
that as the full D3, symmetry of the H{ molecule is not fully exploited and as such the
E states are not degenerate across the even (¢ = 0) and odd (¢ = 1) calculations; this

leads to doubling of transitions and transitions with zero line strength.

7.4 Analysis of spectra

The number of transitions, for even this limited calculation, are too large for any analysis
of individual transitions to be made; alternative methods must be used. The Einstein
A;y coefficients for transitions to the vibrational ground states (J = 0) were plotted as
a function of band origin, figure 7.19.

This figure (7.19) compares well to one produced by Le Sueur et al [136] using the
potential energy surface Meyer et al [57]. As previously mentioned, Le Sueur et al
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Figure 7.19: Einstein A;f coefficients for transitions to the vibrational ground states (J = 0) as

a function of band origin. Note the log scale for the A;¢ coefficients

found that the horseshoe states produced high intensities. The peaks in figure 7.19 also
correspond to the horseshoes tentatively identified in section 7.1. This leads one to
believe that although the horseshoe states are less clear in this calculation than previous
ones, they are still present. Thus it is reasonable to believe that these states and the series
of intensity peaks produced by them have a significant effect on the near-dissociation
spectrum.

Also in the manner of Carrington et al [42, 140] and Henderson et al[141] a convoluted
spectrum was produced in an attempt to discern some structure. Each transition was
given a Gaussian profile, I', using equation (7.1) and the resulting intensity, I(w) binned

into boxes of 1 cm™!.

S(f - i)(w) = zN:S(f—z')n lzﬁ‘%lﬁexp (—41n2(“’"r+‘”)2)} (7.1)
where N are the number of transitions satisfying certain criteria; S(f — 1), and wy
are the line strength and frequency, in D? and cm™! respectively, of the nth transition
considered; I is the full width at half maximum in cm™!.

Only absorption transitions into a 33000-34911.64 cm™! energy window with fre-
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1 1

quencies, w, between 0 and 2000 cm™" were analysed. Spectra with I" values of 2 cm™
and 4 cm~! were produced. To examine the effects of the strongest transition, additional
spectra were produced using only transition whose line strength was greater than 0.08
D?; this reduced the number of transitions into the energy window to approximately
1.4% of the original. The convoluted spectra are shown in figures 7.20 and 7.21.

It is apparent from 7.20 and 7.21 that the difference in using a value of I' of 2
1

cm~! and 4 cm™! is marginal, with I' = 4 cm™! giving a slightly smoother spectrum.
Not all the features of the spectra using all the transitions are replicated in spectra
with a reduced number of the strongest transitions in both frequency ranges. The
intensity is also reduced by some 75% in the reduced strongest transitions spectra. This
indicates that all transitions may need to be considered with respect to determining
some structure to the near-dissociation spectrum. It is also clear that there is no real
resemblance between these spectra and the spectra of produced by Henderson et al [141]
using the incorrectly dissociating potential of Meyer et al [57]. Thus the near-dissociation
spectrum has changed significantly in this work which has better convergence and uses a
correctly dissociating potential [3]. Thus a much fuller calculation is needed for further
investigation.

Carrington and Kennedy [42] were able to establish that for some of the Hy ions, the
transitions involved upper and lower energy levels which lay above dissociation; that is
the levels were quasi-bound. These quasi-bound states are thought to be trapped by ro-
tational barriers in the system (shape resonance). The Carrington-Kennedy experiment
can be regarded as a measurement of the transition intensities between bound states
and dissociation. Thus any fuller calculation would need to be extended to these quasi-
bound states and transition intensities to these states from bound states. States with
higher rotational excitation would also need to be considered. Relatively little work on
high-lying rotational states has been done in comparison to the equivalent vibrational
states. However such calculations would be computationally, very expensive. If the
Carrington-Kennedy experimental spectra are to be replicated then the experiment it-
self must be considered, especially with regard to lifetimes. The experiment was only
able to measure transitions satisfying certain lifetime constraints (refer to chapter 1).
Finally, Carrington-Kennedy also repeated the H;r experiment on the H} isotopomers.

It would be desirable if the calculation could be extended to include these isotopomers.
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Figure 7.20: Convoluted Hi spectrum at frequencies of 400 to 800 cm~'. The spectrum was
synthesised by using equation 7.1 with all transitions into the energy window 33000-34911.64

cm™'. Solid curve, T' = 2 cm™; dashed curve, I' = 4 cm™!. Top figure includes all transitions;

Bottom figure includes transitions with S(f — i) > 0.08 D? only.
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Figure 7.21: Convoluted Hi spectrum at frequencies of 800 to 1200 cm~!. The spectrum was
synthesised by using equation 7.1 with all transitions into the energy window 33000-34911.64
em™. Solid curve, T' = 2 cm™'; dashed curve, I' = 4 cm™. Top figure includes all transitions;
Bottom figure includes transitions with S(f — i) > 0.08 D? only.
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Chapter

Conclusion

This work contains valuable data pertinent to the understanding of interstellar space.
This will help to improve our knowledge of the mechanisms which take place in the
interstellar medium and help resolve the mystery surrounding diffuse molecular clouds.

Calculations have been made to aid the observation of H] and its isotopomers.
Although H; , HoD*, and DoH™* have been observed; more observations would determine
certain parameters, such as abundances, more reliably. Such abundance measurements,
if sufficiently accurate, may also be able to improve the estimation of the Baryonic
mass of the universe; which could have cosmological implications. The search for D3+
in interstellar space is still in progress. Its observation would further corroborate the
models, in particular the role of deuterium fractionation.

Several experiments have been assisted by the calculations contained in this work.
This has helped to improve both theory and experiment in areas such as H dissocia-
tive recombination, the spectroscopy of Hi and its isotopomers, chemical dynamics and
the H; near-dissociation spectrum. A Hf{ spectroscopy experiment in the frequency
range between 15000 cm™! and 25000 cm™!, that is between the low energy and near-
dissociation regimes would prove invaluable. At present the low energy behaviour is
well understood with theory and experiment in good agreement. The near-dissociation
behaviour remains poorly understood by theory. Experiments between the two regimes
would allow theory to understand the behaviour of Hj at higher energies in more pro-
gressive manner.

All the HJ states to dissociation for J = 0 to J = 2 using a correctly dissociating
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potential energy surface have been calculated for the first time. The convergence of these
states, although much improved from previous works, still remains an issue. Convergence
may be improved by using a different coordinate system, such as Radau coordinates with
the z-axis perpendicular to the frame of the molecule or hyperspherical coordinates. The
use hyperspherical coordinates would allow symmetry labels to be attached to states
and thus nuclear degeneracy weights could be used more easily to produce realistic
synthetic spectra. Of great interest is the discovery of loosely coupled Ht-H; complexes
which could prove to be crucial to explaining the Carrington-Kennedy near-dissociation
experiment.

A new more efficient algorithm for dipole transitions has been derived and imple-
mented in both serial and parallel programs. Hi dipole transitions to dissociation be-
tween states with J = 0 to J = 2 have been calculated. This has indicated that there is
structure in the near-dissociation spectrum with regard to horseshoe states. That is in-
tensity peaks are still associated with these states when a correctly dissociating potential
is used.

To date, the manner by which attempts to explain the Carrington-Kennedy exper-
iment by theory have been to perform successively larger calculations. That is taking
advantage of the advances in computing to perform ever more converged calculations.
The utility of this approach may now be coming to an end. A more careful study of the
key aspects of the H‘If spectrum may prove to be more fruitful. This would involve a
study of the vibrational horseshoe states and Ht-Hy complexes. That is a calculation
of transitions from these states to both bound and quasi-bound states and an answer to

whether these states remain when rotation takes place.
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