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Abstract 3

Support vector machines (SVMs) have displayed good predictive accuracy on a wide
range of classification tasks and are inherently adaptable to complex problem domains.
Structure-property correlation (SPC) analysis is a vital part of the contemporary drug dis-
covery process, in which several components of the search for novel molecular compounds
with therapeutic potential may be performed by computer (in silico). Inferred relationships
between molecular structure and biological properties of interest are used to eliminate
compounds unsuitable for further development. In order to improve process efficiency
without rejecting useful compounds, predictive accuracy of such relationships must remain
high despite a paucity of data from which to infer them.

This thesis describes the application of SVMs to SPC analysis and investigates methods
with which to enhance performance and facilitate integration of the technique into present
practice. Overviews of contemporary drug discovery and the role of machine leaming
place the investigation into context. Computational discrimination between compounds
according to their structures and properties of interest is described in detail, as is the SVM
algorithm. A framework for the assessment of supervised machine leaming performance on
SPC data is proposed and employed to assess SVM performance alongside state-of-the-art
techniques for in silico SPC analysis on data provided by GlaxoSmithKline.

SVM performance is competitive and the comparison prompts adaptations of both data
treatment and algorithmic application to explore the effects of data paucity, class imbalance
and outlying data. Subsequent work weights the SVM kernel matrix to recognise heavily
populated regions of training data and suggests the incorporation of domain-specific cluster-
ing methods to assist the standard SVM algorithm. The notion that SVM kernel functions
may incorporate existing domain-specific methods leads to kernel functions that employ
existing pharmaceutical similarity measures to treat an abstract, binary representation of
molecular structure that is not used widely for SPC analysis.
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Chapter 1

Introduction

This thesis concerns the application of supervised machine leaming to the analysis of data
drawn from the contemporary drug discovery process. Research, in collaboration with the
pharmaceutical company GlaxoSmithKline (GSK), demonstrates that support vector ma-
chines (SVMs) are a suitable technique with which to build classifiers capable of distin-
guishing discrete classes of biological behaviour according to the structures of novel phar-
maceutical compounds. Further investigation suggests improvements, both to the technique
and to the practice of its application to drug discovery, that have the potential to increase
performance.

1.1 Motivation & Hypotheses

Several aspects should be considered upon the introduction of a machine leaming technique
to a new application. Primary questions asked of both technique and application include
whether the application would benefit from the inclusion of another technique in its analysis,
whether the technique involved is capable of analysing the application successfully and how
success is measured in the context of the application. Secondary questions, such as whether
the technique may be adapted to treat the application better or whether the application may
be altered in order to improve machine leaming performance upon it, should be asked also.

A major motivating factor in the introduction of a machine learning technique to a new
area of application is that it provides useful information regarding the behaviour of the tech-
nique in practice. However, the majority of real-world applications seldom provide data that
describes perfectly the relationship between process and outcome. Small samples of known
data are employed to analyse relationships that govern large amounts of unknown data. Ac-
cordingly, any deviation in the known data from the wider relationship across all data causes
significant problems to machine learning when the aim is to create a relationship that gen-
eralises well to unknown data. This unwelcome facet of real-world applications provides
machine leamning research with contradicting goals. It is important that a new technique is
well founded and shown to work on statistically regular data, but if that technique is to be
applied to a real-world domain, with its associated difficulties, it must be able to cope with
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at least some disruption to the relationship it is employed to leam. From a machine learning
perspective, pharmaceutical classification is particularly challenging. There is no universal
standard for the computational representation of molecular structure. The data itself is sub-
ject to bias during its extraction from the industrial process, contains significant amounts of
noise and exhibits complex non-linear relationships between structural attributes and class
labels and between the structural attributes themselves.

A sensible approach to such challenges is to take a well-founded technique and adapt it
to cope with real-world applications in a manner that affects its analytical strengths as little
as possible. The application of machine learing techniques to real-world scenarios, such as
drug discovery, provides a test bed for their further development. Therefore, the hypotheses
investigated during this work take the form of positive answers to the research questions

posed above. In particular that:

la. the application does benefit from the inclusion of another technique in its analysis;
1b. the technique is capable of analysing the application successfully; and
2a. the technique can be adapted to treat the application better;

2b. the application can be altered to improve machine learning performance upon it.

Measurement of successful analysis from the context of the application is answered by
necessity during investigation of the two primary hypotheses above. The work performed
tests the hypotheses against null hypotheses presented by negative answers to the research

questions.

1.2 Application

The roles played by pharmaceutical classification within the contemporary drug discovery
process are described in Chapter 2. Pharmaceutical classification has risen in importance as
the search for new therapeutic products has widened. It is no longer sufficient to examine
the range of pharmaceutical compounds known to a pharmaceutical company and develop a
new product from within that collection [Beresford et al., 2002]. Novel therapeutic products
must compete in an increasingly crowded market place and it is increasingly difficult to
discover a novel product using a finite collection of known compounds as the basis for
development.

Advances in the contemporary drug discovery process require the replacement of bio-
logical compound selection with computational models of biological selection in order to
identify novel compounds with potential for development into a therapeutic product. Classi-
fiers that relate molecular compound structure to biological properties of interest (known as
structure-property correlation (SPC) analysis) are becoming widely used for computational
analysis of biological processes and relationships. Support vector machines have hitherto
demonstrated greater predictive ability than a number of other supervised machine learning
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methods on a wide range of real world applications (see, for example, [Jaakkola et al., 1999;
Ward et al., 2003; Hammond et al., 2004]). More importantly, SVMs have demonstrated an
adaptability to specialised domains that is lacking in many other such methods. It is ex-
pected that SVMs in standard form will provide predictive ability that is competitive with
machine leaming methods currently used for pharmaceutical classification. Moreover, it is
anticipated that SVMs may be adapted to the domain to provide better results than those
provided by the standard form of the algorithm.

The approach taken in this thesis towards development of the technique and its applica-
tion to the domain considers more than the straightforward pursuit of performance increase.
An endeavour is made to provide developments via the incorporation of extant methods
of pharmaceutical analysis, including relevant methods of similarity assessment and pat-
tern identification, in order to facilitate their eventual incorporation into the drug discovery
process.

1.3 Thesis Structure

This work provides a focused example of the use of a state-of-the-art machine leaming
technique in a specific area of the drug discovery process. The expected benefit of this is
that the application will profit from the use of another recent technique in its analysis and
the applicative practice reported will aid the introduction of future techniques.

Chapter 2, Background, provides an overview of the area of application (pharmaceuti-
cal classification) and the use of machine learning within it. Section 2.1 guides the reader
through the contemporary drug discovery process towards the focus of this research. Sec-
tion 2.2 introduces machine leaming, before discussing its role within contemporary drug
discovery. Advantages of the use of machine leaming for this problem are described, along
with obstacles in the path of successful analysis. Measures available with which to over-
come such obstacles are discussed and a perspective from which to measure algorithmic
performance when analysing this application is described. The support vector machine al-
gorithm is described alongside recent developments to the technique and their use hitherto
for drug discovery and other real-world applications. The background material culminates
by matching the strength of support vector machines to the challenges posed by a specific
area of the contemporary drug discovery process (SPC analysis).

Chapter 3, ADMET Data and Experimental Practice, introduces the real-world data
employed to demonstrate the major contributions of this work. Five SPC analysis problems,
provided by GSK, are visualised and described in terms of their purpose and the nature of
the data involved. Subsequently, an experimental rationale and practice for the principled
comparison of several machine leaming techniques on pharmaceutical data are outlined.
Chapters 4, 5 & 6 employ the practice of Chapter 3 in experimental work undertaken to test
the research hypotheses of section 1.1 above.

Chapter 4, Support Vector Machines for ADMET Property Classification, is formed by
two distinct pieces of work, the first of which approaches the primary research hypotheses.
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The performance of several machine leaming techniques is compared when they are used to
analyse the SPC data provided by GSK. Results of the comparison are discussed and guide-
lines for the use of support vector machines, and supervised machine leaming in general,
for small scale pharmaceutical modelling are reported throughout. The results are assessed
as to whether they provide positive answers to the primary research questions.

The second section in Chapter 4 considers measures with which to acknowledge imbal-
anced training data class sizes, a particular challenge posed to classifier creation by many
small SPC problems. The effect of existing methods that direct machine learning algorithms
towards the provision of balanced classification accuracy during training is employed as a
benchmark, against which to assess the use of existing pharmaceutical analysis procedures
to alter the training data in order to achieve similar effect. Discussion of the results re-
lates the data balancing measures introduced to other work in the field and suggests several
approaches via which the methods may be developed further.

Chapters 5 and 6 investigate whether the SVM algorithm may be adapted to better anal-
yse the application. Two developments of the SVM algorithm are introduced. Chapter 5,
Neighbourhood Influence on Support Vector Machine Classification, describes the effect of
biasing the existing SVM data transformation according to aspects of locality within the
training data. Chapter 6, Tanimoto Kernels for Support Vector Classification, describes con-
version of an existing structural similarity measure in order to allow domain-relevant SVM
application to a specific pharmaceutical data representation, Daylight fingerprints, that is
not used widely for SPC analysis in the later stages of drug discovery.

Chapter 7 concludes the work by considering the outcome of its tests upon the research
hypotheses. The work described here gives rise to several lines of further investigation that
provide interesting platforms from which to continue research in this area. Suggestions are
made for improvement of the present work and ideas for future work and new directions in

SPC analysis are discussed.

1.4 Conclusion

This thesis concerns the application of supervised machine leaming to the analysis of data
drawn from the contemporary drug discovery process. Research, in collaboration with the
pharmaceutical company GlaxoSmithKline, provides the following contributions:

e an experimental framework for the comparison of supervised machine leaming algo-
rithms when applied to pharmaceutical data;

o a detailed assessment of the suitability of the support vector machine method for
supervised learming from small sets of pharmaceutical data;

e adaptations to the standard formulation of SPC analysis as a supervised machine
learning problem that balance the training data to improve algorithmic performance;
and
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e adaptations to the SVM kernel transformation that may improve performance by
incorporating domain-relevance into the treatment of pharmaceutical analysis prob-
lems.

The intention of the work, therefore, is to introduce and adapt a relatively new tool to a
well-defined area of drug discovery to the prospective benefit of both machine leaming and
drug discovery communities. The tool, support vector machines, benefits from exposure to
a new area of application and the non-standard challenges that come with it. The area of
application benefits from a set of guidelines regarding the application of a state-of-the-art
technique, which may assist in what is commonly a ‘trial and error’ introduction of a recent
development to an industrial process. In addition, the attempt is made during this work to
adapt the technique in a manner that will facilitate its insertion into extant drug discovery
processes. Tools and procedures, e.g. similarity measures, data representations and data
description techniques, are employed where possible in order to make the developments
proposed by this work easier both to interpret and to incorporate within a contemporary
drug discovery environment.

This thesis is submitted for examination in computer science and, thus, the primary
focus is on the computational technique applied. Nevertheless, it is hoped that the work
will be of use and interest to the drug design community in general and to those wishing to
classify pharmaceutical data with support vector machines in particular.



Chapter 2

Background

2.1 Contemporary Drug Discovery

In order to understand the classification task to which support vector machines are applied
during the course of this work, it is first necessary to describe the contemporary drug dis-
covery process and the rationale behind it. This section describes major stages of the con-

temporary drug discovery process.

2.1.1 Identification of a Therapeutic Target

The search for a new pharmaceutical product begins with the identification of a therapeutic
target, e.g. a protein implicated in some pathogenic process. The first aim of drug discovery
is to find a novel compound that reacts with (is biologically active against) the target in the
desired manner. For example, an inhibiting compound will bind to the target in a manner
that impedes its undesirable effects, e.g. via its unimpeded interaction with receptors on the
cell surface [Wang et al., 2004]. The majority of therapeutic products interact with their
target on the cellular or molecular level.

The success of the search depends largely upon the amount of information available
regarding the target. Information may be acquired from empirical investigation of the target,
e.g. examination of protein binding sites and local structure, known crystal structure (if
available), or from the large amounts of new therapeutic information arising from the fields
of functional genomics and proteomics [Debouck and Metcalf, 2000]. Once the target is
described in sufficient detail, the search for compounds that are active against it may begin.

An ability to interact with the target in the manner desired is only the first step towards
discovering a novel therapeutic product. Most compounds selected by an initial search for
binding affinity to the target, for example, will possess very few of the properties required
for eventual sale as a therapeutic product. It is more likely that compounds that are identified
as ‘suitable’ during the early stages of the drug discovery process will become backbone
compounds that are used as a development platform from which to produce a novel product
with properties optimised for the therapeutic aim.

It is important to introduce the notion of chemical space [Walters and Murcko, 2002]

14
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as early as possible, as it provides a useful tool with which to describe both drug discovery
and the use of machine learning in this context Chemical space is that space inhabited by
all possible molecular combinations. Conservative estimates place the number of viable
therapeutic compounds!' in this space to be 10%°. The number of novel compounds from
which to select the basis of a therapeutic product is very large. Rough estimates, based
on current search throughput capabilities, place the length of time required to assess the
suitability of all possible novel therapeutic compounds against a single target to be in the
order of the lifetime of the universe. Estimates such as this must be regarded with caution,
but the reality is that a practical search for novel compounds of therapeutic worth presents
a significant problem to the investigator. An important aid to drug discovery is the prior
knowledge that compounds with similar properties, both physical and therapeutic, tend to
inhabit similar regions of chemical space [Van Hijfte et al., 1999]. For the purposes of the
search, it is valid to say that the space is localised.

2.1.2 High Throughput Screening

Since the 1980s, the search through chemical space for novel compounds has been for-
mulated as a ‘needle in a haystack’ search by elimination [Beresford et al., 2002; Xu and
Hagler, 2002]. A key component of the early search process is high throughput screening
(HTS).

HTS comprises a series of rapid, batch assays that test the affinity of a large number
of compounds against a well-described therapeutic target. Pharmaceutical companies keep
large collections of compounds (in the order of 108 - 107) with known molecular structures
and binding properties [Xu and Hagler, 2002]. The collections form a record of their work
to date and provide a known region of chemical space from which to start a search. When
confronted with a new therapeutic target, it is common to assess the entire corporate col-
lection against the target using HTS to identify those compounds that are active against it.
The hits that emerge successful from HTS provide backbone compounds that can be used
to explore useful regions of chemical space.

At this point, it is useful to distinguish in vitro and in silico methods. Increases in
automated production line processes allow thousands of compounds to be synthesised and
assayed against a biological target in batch. Industry sources regularly pronounce HTS
throughputs in excess of 10° compounds per day, although a realistic estimate across the
pharmaceutical industry is closer to 10° compounds per day [Dixon et al., 2000]. When this
figure is compared to the above estimate of the number of potential compounds that inhabit
useful chemical space (10%0) it is clear that initiating a search from a relatively small subset
of known compounds does not permit a full exploration of chemical space. On occasion,
the search is augmented by the inclusion of all compounds that a company is capable of
synthesising at the time. Contrary to this, if prior domain knowledge suggests that a small,
well-defined area of chemical space is likely to produce compounds that are active against

!Viable compounds are commonly specified as those compounds having molecular weight < 500 - beyond
which metabolism and ingestion become difficult.
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the target, a subset of the corporate collection that describes that area may be assayed.

The application of HTS methods to existing compounds, or those synthesised for the
purposes of the search, is known as in vitro HTS. The term in vitro can be roughly translated
from the Latin of its origin as ‘in glass’, thus signifying the creation and evaluation of the
compounds physically in laboratory conditions. The in vitro HTS processes of today allow
a much wider initial search than the ‘trial and error’ and prior knowledge based methods in
place before the inception of HTS [Van Hijfte et al., 1999; van de Waterbeemd, 2003]. There
exist drawbacks to in vitro HTS, however, which have necessitated a further development,
similar in magnitude to the development of in vitrro HTS when compared to the methods
used before it, in the initial search for active compounds.

In order to lead smoothly to the most recent development in high throughput screening,
first it is necessary to list the deficiencies of the in vitro method.

e to search chemical space using a subset of 107 known compounds limits the diversity
of novel compounds that may be discovered when using the results of the search as
the basis for future development;

e when all compounds that a company is capable of synthesising are included in the
search, an increase in diversity may be noted but the diversity is limited by the range
of chemical reagents available at the time of synthesis [Xu and Agrafiotis, 2002];

e as the size of the search increases, so does the cost of performing the search;

o as the size of the search increases, it is likely that the accuracy of results emerging
from HTS will decrease. The primary cause of potential accuracy loss is the miniatur-
ization of the assay process required in order to make increasing throughput practical
[Panfili, 1999; Bajorath, 2000]. Loss of accuracy results in process inefficiency, as
compounds that are not therapeutically useful may remain in the process for further
evaluation and potentially useful compounds may be rejected.

It is clear that, as the difficulty of discovering novel products to compete in crowded
markets increases, the search must be widened if product output is to be maintained or
increased. It is also clear that the primary limitations of in vitro HTS are physical. The
requirement that compounds are synthesised and assayed in physical form limits throughput
and increases cost.

Virtual HTS [Bajorath, 2000], also known as in silico HTS, is now in widespread use
within the pharmaceutical industry. Again, roughly translating from the Latin of its origin,
in silico refers to a process conducted ‘in silicon’ or, to be more familiar, by using a com-
puter. Increases in available computational power, including distributed or grid computing
(www.grid.org), during the past two decades allow a target to be modelled and represented
computationally. An electronic representation is gained via thorough examination of the
individual binding sites across the target and their geometric relation to each other. The
approximated representation of a typical target may be referred to as a pharmacophore.
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Similarly, compounds may be synthesised and represented in silico. A similar represen-
tation to that used for pharmacophore creation combines the binding properties of many
sub-molecular fragments that comprise each compound [Joseph-McCarthy, 1999]. In silico
representations of both target and potential substrates allow HTS to be performed in silico.

Unlike in vitro HTS, computational power and storage capacity are the only limiting
factors of in silico HTS, although the time required to search chemical space remains an
issue. Material costs do not rise with the size of the search undertaken and accuracy does
not diminish with increasing throughput. Accordingly, in silico HTS can search over 102
compounds synthesised in silico and cover a wider range of chemical space in the initial
search. In silico methods are cheaper, faster, and allow a wider search for novel therapeutic
products than in vitro methods. However, in silico drug discovery involves some significant
complications which will become evident in the course of this work.

2.1.3 Lead Generation & Combinatorial Chemistry

High throughput screening enables the identification of thousands of molecular compounds
that are active against a specific biological target [Van Hijfte et al., 1999]. A series of hits
identified by HTS proceed to the next stage of the discovery process, lead generation.

Hits emerging from the HTS process are likely to be active against a therapeutic target,
but they bear little resemblance to the drugs available in pharmacies, surgeries and hospi-
tals. Hits display a desired activity against the target, but their binding properties are likely
to be suboptimal and their structures must be optimised against the target. Hits are consid-
ered as developmental backbones, not as eventual products, and are used to identify useful
regions of chemical space. The subsequent task is to cover those useful regions with a di-
verse collection of compounds that display a similar interaction with the target. It is from
these collections (/ibraries) that candidates for further development (/eads) are selected to
progress further through the discovery and design process to be optimised for the therapeutic
aim [Bohm and Stahl, 2000; Beresford et al., 2002].

Once hits have been identified, the aim is to cover the region of chemical space around
each hit with a diverse collection of novel compounds. The rationale behind this practice is
simple. Compounds that inhabit the same region of chemical space have similar properties
[Van Hijfte et al., 1999], both structural and therapeutic. Hits have been identified as being
active against the target and, therefore, potentially capable of fulfilling the design objective.
Covering the region of chemical space around each hit with novel compounds should ensure
that the novel compounds themselves are likely to be active against the target, and that a new
product developed from the collection is itself likely to be novel. The additional requirement
that the collection is ‘diverse’ increases the likelihood that a compound selected from the
collection will be different from others that have been selected to date. Sparse coverage of
a diverse area ensures that, although a wide region is covered by novel compounds, time
and resources are not wasted by the development of compounds that are almost identical in
structure or effect.

A collection of novel compounds in the region around a hit is created by a process
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known as combinatorial chemistry [Bannwarth and Felder, 2000]. To describe the process
briefly, combinatorial chemistry involves the synthesis of each hit with combinations of ad-
ditional monomers or sub-molecular fragments. For example, if a backbone compound is
synthesised with all possible combinations of 100 monomers of type A and 100 monomers
of type B, 10000 new compounds, or variations about the backbone compound, will be pro-
duced. Compounds in the new combinatorial library share the same backbone and, thus,
are likely to be similarly active against the therapeutic target. They all differ in structure,
binding properties and potential for further development. Each library is ‘weeded’ of com-
pounds that display some measure of structural similarity beyond a certain threshold, to
ensure that the region of chemical space around the initial hit is covered only by novel, non-
redundant compounds that display potential to fulfill the therapeutic objective. It is from
such collections that leads are identified.

2.1.4 Structure-Property Correlation Analysis

The interaction between HTS hits and the therapeutic target is seldom optimal and, there-
fore, neither is the likely therapeutic efficacy of a combinatorial library that covers the region
of chemical space around an initial hit. Variations on a hit may result in improved interac-
tion of combinatorial library members with the target, but the question remains as to which
of the thousands of compounds synthesised around an initial hit to develop further. Those
chosen are known as development candidates.

More is required of candidate compounds than high levels of desired interaction with
the target. In order for a compound to interact with a therapeutic target successfully, it must
first reach the target site in the body (in vivo). Ability to do so is governed by a large number
of properties that relate to the interaction between a compound and the human system.

The design of an orally administered drug (or xenobiotic) intended to interact with a
target site in the brain provides a good example. The drug must pass through the gut, avoid
being broken down in the liver, be transported to the brain in the blood stream, pass through
the membrane separating blood and brain, and arrive at the target site in sufficient quantity
to perform the task required of it. The presence of the drug must not result in harmful sec-
ondary (side) effects. Candidates that pass all of the above criteria must meet the additional
condition that they are novel, i.e. they are not covered by existing patents. This simple ex-
ample, described in greater detail in {Beresford et al., 2002], demonstrates the complexity
of the search space created by combinatorial chemistry, from which suitable compounds
for further development are identified by elimination. A model of human-xenobiotic in-
teraction is required in order to identify suitable development candidates from a collection
of novel compounds, but modelling the entire system of human-xenobiotic interaction as a
single problem is almost impossible in practice. The system is too complex for satisfactory
models to be extracted from the relatively small amount of available knowledge regarding
the interaction of known compounds and the human system.

An intractable problem can often be decomposed into a series of constituent sub-

problems that, when solved and recombined in a suitable manner, approximate to solving
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the larger problem. Absorption, Distribution, Metabolism, Excretion, and Toxicity (AD-
MET) properties [Beresford et al., 2002; van de Waterbeemd, 2003] and their relationship
to molecular structure provide the constituent sub-problems that comprise a larger model of
human-xenobiotic interaction. The example above describes the progress of a drug through
the body, which may be decomposed into a series of hurdles that a compound must pass in
order for it to be considered a suitable candidate for further development. A screen created
for each hurdle, e.g. a screen that identifies compounds able to pass the gut wall, can be used
to reject a subset of compounds in the library on the basis that, in spite of being biologically
active against the target, they are unlikely to reach it. The deployment of screens to weed
combinatorial libraries of compounds that are unsuitable for further development improves
process efficiency through the early identification of useful development candidates and the
early rejection of compounds that do not possess the properties required of a successful
therapeutic product.

In vitro screens are employed to observe the behaviour of novel compounds in labo-
ratory conditions designed to replicate the conditions inside the body. Thus, the ADMET
properties of a compound may be quantified and used to evaluate development potential.
The limitations of in vitro screening are similar to those outlined for in vitro HTS (section
2.1.2). Many properties and relationships must be tested in order to assure the retention
of only those compounds with development potential and the rejection of those that do not.
The cost involved in synthesising every member of every combinatorial library created from
HTS hits, building in vitro screens for several identification criteria and screening the library
members in order to ascertain their developmental worth becomes prohibitively expensive
as the search space widens.

The successful substitution of in vitro HTS by in silico HTS (section 2.1.2) is largely de-
pendent upon the availability of sufficient computational resources. Both processes measure
the same outcome in a similar manner, but in silico HTS allows a wider range of compounds
to be assayed more rapidly and with less operational cost than in vitro HTS. When consid-
ering the substitution of in vitro ADMET screens, the situation is more complex and, rather
than directly replicating the in vitro process, the in silico alternative to in vitro screening
must perform its function in a different manner.

The computational complexity involved in modelling whether each compound in a li-
brary can, for example, cross a specific membrane limits its viability as an alternative to in
vitro screening. Alternately, it is considerably less intensive to encapsulate prior knowledge
regarding previous in vitro screens in a classification rule that relates compound structure
to the screened property. It was impractical, even before the advent of HTS, combinatorial
chemistry and the expanded search through chemical space that they make practical, to use
in vitro screens to examine the binding affinity and ADMET properties of every compound
created towards a particular therapeutic aim. Chemical knowledge, dating back to the 19th
century, was used to create linear relationships between molecular structure and properties
of interest [Hollinger, 1997]. As descnibed in section 2.1.2, binding affinity is directly re-
lated to the location and nature of various binding sites across a substrate and the sites to
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which it binds. The relationship between compound binding and molecular structure is used
to model compound synthesis and binding reactions during in silico HTS.

As the search narrows, models that relate various aspects of molecular structure to its
affinity to a target are used to evaluate the success or otherwise of making small changes
to the structural features modelled during compound optimisation. Since the 1960s, the
relationships modelled have been non-linear as well as linear [Hansch, 1969], which has
prompted the introduction of computational modelling techniques. The field of modelling
the relationship between compound structure and binding affinity is known as structure-
activity relationship (SAR) analysis, a popular machine leaming application in drug discov-
ery [King et al., 1992; Burbidge et al., 2001].

The premise of relating molecular structure to binding affinity can be extended to a wide
range of interesting properties that relate to molecular behaviour. The properties of interest
include those most pertinent to ADMET investigation, such as protein binding tendency,
bioavailability and toxicity. Other properties, such as the ability of a compound to permeate
a membrane, are directly related to properties that are regulated by compound structure.
This basic premise enables the creation of relationships between compound structure and
biological properties. The practice of creating relationships that describe the effect of com-
pound structure on properties of biological interest is generally known as structure-property
correlation (SPC) analysis.

In silico SAR and SPC relationships are used to identify leads from combinatorial li-
braries using prior knowledge gained from the in vitro and, on occasion, in vivo examination
of the binding affinities and ADMET properties of compounds with known structure. A pri-
mary benefit of in silico screening, in which the screens need not be physical, is that a
selection of compounds may be assessed against several biological target properties simul-
taneously (parallel screening). This notion may be extended to consideration of a single
target property that represents the presence, or otherwise, of several individual properties.
Rather than examine the various biological properties that a compound must display in or-
der to be developed into a new pharmaceutical product, it is becoming popular to screen
for abstract properties, relevant throughout the discovery process, such as drug-likeness (or
lead-likeness) [Rishton, 2003], in exactly the same manner as for biological properties, such
as protein binding or membrane penetration. By doing so, the most pertinent question, i.e.
whether a compound demonstrates potential for further development, is answered via the
consideration of a single target property, its similarity to other compounds that were devel-
oped into novel therapeutic products. There exists a large amount of prior knowledge from
which to create in silico drug-likeness screens, more so than there exists prior knowledge
regarding the relationship between individual biological properties and molecular structure.
Moreover, knowledge regarding the structures of commercially available pharmaceuticals is
publicly available from sources such as the World Drug Index (Derwent Information, UK;
http://www.derwent.com) and others listed in [Walters and Murcko, 2002]. However, the
selection of compounds that most resemble previously successful development candidates
may impair the selection of novel development leads. Nevertheless, the creation of in sil-
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ico screens for drug-likeness is one of the most popular applications of supervised machine
learning within the contemporary drug discovery process (§ 2.2.6).

Compounds with known structural attributes and measured ADMET properties provide
prior knowledge from which to create in silico ADMET structure-property models. Com-
pound samples relevant to the target property are provided via a complex series of in vivo
and in vitro assays [Beresford et al., 2002]. Models are designed to predict a target property
(or properties) when presented with new compounds, whose structural properties are known
but whose target properties are not. In many cases, there is a limited amount of known data
available with which to describe the relationship between a specific property and aspects of
molecular structure.

The information required to create SAR and SPC models is fed backwards through the
discovery process. In vivo and in vitro trials that measure properties, such as membrane
penetration, bioavailability and toxicity, during the final stages of the discovery process
provide qualitative and quantitative measures of ADMET properties. Whether the property
modelled is discrete or continuous depends largely on the stage of the discovery process at
which the model is used. During lead generation and early lead optimisation (which follows,
cf. § 2.1.6), the modelling task is formulated to determine between discrete quantisations
of the target property. For example, the modelled property may be represented as ‘high /
low’ or ‘good / bad’. As the discovery process focuses upon the optimisation of compound
properties for the therapeutic aim, the modelled property becomes more descriptive, e.g.
‘high / medium / low’, or continuous. Continuous property modelling is employed when
investigating the biological effects of small changes to molecular structure.

A limited amount of information is available from which to create structure-property
relationships. A typical set of ‘known’ data will contain hundreds rather than thousands of
compounds. The paucity of known data is the result of the difficulty and cost of obtaining
precise ADMET properties from relevant compounds. For example, in vivo trials that pro-
duce precise measurements of compound toxicity in the human system are, for obvious rea-
sons, limited in number. Occasionally, in cases where in vivo data are particularly limited,
an in vitro screen is created to predict in vivo results and to classify further compounds as,
for example, toxic or non-toxic in order to provide more information from which to create a
model. It is envisaged that, as in silico screening becomes more prevalent in contemporary
drug discovery, the information available from which to create structure-property relation-
ships will increase. Presently, great efforts are made to create models from small collections
of known data that are capable of generalising well beyond the range of information pre-
sented to them. These efforts, and how their success is measured, are described in section
2.2.

The use of computational modelling techniques to replace in vitro assays appears sensi-
ble and cost-effective, but requires the computational representation of molecular structure.
Knowledge of the geometric relationship between the binding sites of a pharmacophore and
potential substrates is sufficient to assay binding affinity in the HTS process. The rela-
tionship is explicit. The relationships between the ADMET properties of interest described
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above and molecular structure are more abstruse and may prove more difficult to model. A
wide variety of structural and chemical attributes may contribute to relationships between
molecular structure and ADMET properties.

2.1.5 Insilico Molecular Representation

The association of relevant experimental measurements with aspects of molecular structure
is an intuitive concept. Each structural feature employed within an SPC relationship rep-
resents an associated axis in chemical space. Thus, in silico representations of molecular
structure are used to reference chemical space when considering the similarity or otherwise
of compounds within it.

An explicit representation of molecular structure comprises a vector (one for each com-
pound) of descriptive attribute values, each of which relates to a specific structural property
(cf. § 2.2.1). The primary aim of SPC analysis is to relate aspects of molecular structure to
biological properties of interest, therefore, one must consider which elements of molecular
structure best describe the tendency of a compound to fulfill a particular biological criterion.

Descriptive attributes available with which to describe molecular structure vary in
resolution, from properties of the individual atoms and bonds that comprise a molecule
[Kier, 1995], to properties of larger sub-molecular fragments [Dominik, 2000] and whole-
molecular properties, such as molecular weight [Jurs et al., 1995]. All properties may affect
fundamental aspects of pharmaceutical desirability, such as binding, absorption and solu-
bility. Measurements of structural properties may be the results of laboratory assays or, if
sufficient knowledge is available, may be calculated deterministically from those of small,
well known molecular fragments that comprise a larger compound. Whole molecule prop-
erties, such as lipophilicity and hydrophobicity (which influence binding and membrane
penetration) are employed also. Subsets of the available structural information are selected
to provide as much relevant information as possible about the region of chemical space
inhabited by a collection of compounds.

The representation of a molecular compound by a number of measured (or calculated)
structural or biological properties is known as a 2D molecular representation. Structural
features are quantified, but their geometric relationship to one another is unspecified. A
representation that specifies the geometric relationship of structural features, as well as
some measure of their magnitude, is known as 3D molecular representation. 2D molec-
ular representation is used at lead generation and early lead optimisation (cf. § 2.1.6) stages
of the discovery process because it has been demonstrated empirically to reference the local
neighbourhood characteristics of chemical space in the most suitable manner for the models
built at this stage [Van Hijfte et al., 1999].

If there existed a subset of explicit structural attributes that allowed chemical space to
be partitioned according to any biological property, regardless of its nature, SPC analysis
would not be such a necessary and challenging component of the drug discovery process.
In actuality, there is no ‘perfect’ descriptor set for the creation of SPC relationships. The
resolution and nature of the descriptors employed depends upon the biological property
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that one attempts to associate with chemical space. Prior knowledge, gained from decades
of examination and process development, is commonly employed to focus 2D representa-
tions of particular SPC relationships. Well-known SPC applications are accompanied by the
knowledge that a well-defined subset of all available molecular information should be in-
volved in the construction of predictive relationships on them, e.g. Lipinski’s ‘rule-of-five’
for drug-likeness [Lipinski et al., 1997; Dominik, 2000]. Focused targets, such as whether a
particular compound is able to pass through a specific membrane of the body, may be gov-
erned by a smaller subset of attributes that relate directly to the target [Zhao et al., 2003].
For example, it is more likely that small compounds pass through a membrane than larger
ones, thus, molecular weight and surface area are likely to play an important role in the
description of such a process.

The scenario wherein little prior knowledge exists regarding the relationship between a
target property and chemical space results in an undesirable search across a large number of
structural descriptors for descriptors related to the target property as measured over a small
subset of compounds (cf. § 2.2.4). The results of such an approach are sub-optimal in the
majority of cases (the selection problem is NP complete [Frohlich et al., 2006; Russell and
Norvig, 2003]) leading compounds with distinct ADMET properties to occupy overlapping
regions of a chemical space defined by the chosen subset of molecular descriptors.

The difficult nature of relevant structural descriptor selection has motivated the devel-
opment of whole-molecular structural descriptions, designed to encode relevant structural
information in a uniform representational schema. Descriptions of three such representa-
tional schema, two of which are employed in later chapters of this work, are provided below -
and more detailed descriptions are provided in the literature, e.g. [Drewry and Young, 1999;
Matter et al., 2001; Xu and Hagler, 2002].

Volsurf [Cruciani et al., 2000] is a relatively recent framework for the description of
molecular structure, which departs from the explicit representation of molecular structure
towards a wider, abstract representation. Volsurf descriptors originate from 3D molecu-
lar information, produced by measured interactions between a molecule and a number of
probes applied uniformly to points across it (cf. GRID representation [Goodford, 1995]).
The probes measure hydrophobic and electrostatic potentials, which affect molecular bind-
ing propensity, and their multiple application provides whole molecular information, rather
than the fragmental extrapolation measures employed by many explicit representations.
Other factors that similarly affect binding propensity, such as surface area and molecular
weight, may be measured also. Image processing techniques are employed to convert the
3D GRID image of a molecule to a 2D string of real-valued information, some of which may
be mapped back to the corresponding structural features. Two of the five GSK ADMET data
sets, described in Chapter 3 and used to assess algorithmic performance in Chapter 4, em-
ploy Volsurf molecular representation. The other three sets employ subsets of explicit and
fragment-based molecular descriptors.

Abstract molecular representations imply a mapping, of sorts, between molecular struc-

tural attributes and a simplified vector representation. Structural keys arose from the need
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for a better, i.e. more computationally efficient, representation of chemical structure than
traditional chemical notation, when screening structural information [Hansch, 1969]. A
structural key is a binary string in which bits represent the presence of particular combina-
tions of molecular features. For example, part of the string might be chosen to represent the
presence of hydrogen bond donors, with attributes such as ‘zero’, ‘one’, ‘two’, ‘> two’, and
so on. Continuous attributes, such as molecular weights, are separated into bins.

There are two specific considerations to be made when employing structural keys. The
first concerns the number of bits employed to represent each attribute. For example, in the
case that a compound has two hydrogen bond donors, should the attribute of having one
hydrogen bond donor be represented as well? The compound with two donors also has one,
thereby sharing a structural similarity with other compounds that only have one. The second
consideration concerns the choice of descriptive attributes contained in the bit string. The
more molecular information (attributes) represented by the string, the more sophisticated the
comparison between it and others will be. It will also be more computationally expensive
to analyse. Conversely, too few descriptors, or the wrong type of descriptors, may lead one
to draw an unsatisfactory relationship from the data. Generic structural key representations
are used widely [MDL, 1994; Drewry and Young, 1999; Van Hijfte et al., 1999].

Fingerprints are a more recent development in abstract molecular representation, an ex-
ample of which is employed during this work. The Daylight fingerprint method [James
et al., 2000; Daylight, 2006] provides structural information over the whole molecule,
whereas structural keys may represent attributes chosen by the user. Thus, fingerprints em-
ployed by pharmacologists may be compared to those employed by petrochemists [James
et al., 2000; Daylight, 2006]. Structural keys employed in the two different disciplines are
likely to feature different attributes and, therefore, could not. The generalisation stems from
a representation in which individual attribute values are not related to specific structural
properties. Data in fingerprint form cannot be used to examine specific structural elements
responsible for classification, but may be used effectively to assess whole-molecular simi-
larity rapidly and provide transferable results.

The Daylight method works as follows. Each compound is comprised of several pat-
terns. Patterns are created of each atom, each atom and its nearest neighbours (including
the bonds that join them), each group of atoms connected by paths of two bonds and so on,
up to a predetermined path length limit. A fingerprint is a bit string of length NV, in which
all bits are initially un-set (set to zero). Each sub-molecular pattern serves as a seed to a
pseudo-random number generator, which returns 4 / 5 distinct integers in the range [1, V].
The bits at corresponding string locations are switched on (set to one). The individual sub-
pattern fingerprints are combined using a logical OR to yield a single fingerprint of length
N. Each molecule is thus represented by a unique string of ones and zeros, resulting di-
rectly from its structure. Each fingerprint is of uniform length and represents all structural
patterns contained by the molecule within the path length limit.

When querying such a fingerprint with a sub-structural pattern, e.g. to determine
whether the sub-structure may serve as a novel developmental backbone [James et al., 2000],
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the sub-structure may be assumed not to exist within the queried compound unless all of the
sub-structure fingerprint bits match the bits of the queried fingerprint. This may be ex-
panded to assess inter-molecular similarity in relation to the number of bits shared by the
fingerprints under comparison [Dominik, 2000; Xu and Hagler, 2002; Holliday et al., 2002].
Small molecules, comprised of few sub-patterns, may yield sparse fingerprints, i.e. finger-
prints with few bits switched on. In order to improve the information content (the ratio of
bits switched on to fingerprint length), fingerprints may be ‘folded’. The fingerprint is split
into two, equally sized, sub-prints, which are combined by a logical OR. It is easy to see
that a sub-structure that does not exist in the original fingerprint is also likely to be excluded
by its folded counterpart. Of course, care must be taken in order to leave sufficient spar-
sity to retain structural individuality. A mean information content of ~ 20% is frequently
considered suitable [James et al., 2000].

The concept of abstract fingerprints raises the consideration of how best to assess molec-
ular similarity from an in silico representation. When compound structures are represented
as vectors of real-valued measurements or descriptors, it is intuitive to employ the Euclidean
distance or some other Minkowski distance in order to assess inter-molecular similarity or
diversity. In the discrete chemical spaces represented by keys or fingerprints, which encode
the presence of sub-structural elements in their bits, several measures exist with which to
provide relevant measures of similarity or diversity [Holliday et al., 2002]. The Tanimoto
similarity, for example, is a measure of similarty between binary strings of structural infor-
mation. The Euclidean distance between two binary strings treats identical variable values
(be they one or zero) as inter-string similarities. The interest, here, lies in existing structural
properties that the two compounds have in common. The Tanimoto similarity only com-
putes similarity based on what the compounds possess, i.e. the ones. It does so by dividing
the number of ones in common between the two compounds by the number of ones that
could be in common. This gives a normalised similarity ratio, which accounts for the num-
ber of ones that might be in common relative to those that are. Daylight fingerprints and the
Tanimoto similarity are the subjects of work described in Chapter 6 of this thesis.

The identification of a relevant in silico representation of molecular structure is funda-
mental to the success of SPC analysis. There does not exist an ‘ideal’ subset of the available
explicit molecular descriptors that performs well for all analysis problems of this nature.
Thus, methods to select relevant descriptors, or even to obviate this requirement, are very
much required in order to advance the field [Frohlich et al., 2004, 2006].

2.1.6 Lead Optimisation

HTS produces hits, which are used to create combinatorial libraries of potential leads. The
libraries are weeded of compounds that do not possess the properties required of a therapeu-
tic product using in vitro and in silico screens. By this stage of the discovery process, the
number of compounds under consideration for development has been reduced from 102 (in
silico HTS) to approximately 10? development candidates.

The lead optimisation process contains many stages and involves significant compound
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attrition. Once leads have been identified during lead generation, a rigorous series of com-
pound synthesis, in silico, in vitro, and in vivo screening is undertaken in order to optimise
whole molecular properties for the therapeutic aim. The contemporary lead optimisation
process is described well by [Beresford et al., 2002]. To summarise, contemporary lead
optimisation is a smaller, more focused, repetition of the combinatorial chemistry used to
create candidates during lead generation. Instead of making single, specific changes to the
structure of each lead and observing the results, as was done previously, multiple changes
are made around each lead in order to cover the region of chemical space around the lead
in a focused and detailed manner. The combinatorial libraries created at this stage of the
process differ greatly in size when compared to those created directly after HTS. Libraries
created during lead optimisation commonly contain in the order of 10° compounds, whereas
libraries created for lead generation can contain in the order of 10 compounds.

After leads have been optimised, compound properties are optimised to produce maxi-
mum therapeutic effect whilst remaining suitable for ingestion. Virtual screens may be em-
ployed to select library members with properties suited to the therapeutic aim. The selected
compounds are synthesised and evaluated with both in vitro and in vivo methods. Further
compounds are synthesised around those tested and the process is repeated until no further
improvement is apparent. It is likely that any remaining compounds will be active against
the target, optimised for ADMET suitability, and not covered by existing patents. Once it is
thought that a compound is ready for market, clinical trials begin to test the hypothesis and
satisfy medical and safety regulations.

2.1.7 Performance Evaluation of SPC Classifiers

An improvement in SPC classification accuracy may involve an increase in one or more of
the following categories:

1. generalisation accuracy;

2. classification throughput;

3. rapidity of classifier creation;

4. intelligibility of classification; and
5. ease of use for the non-expert.

Each application area within the discovery process may place different emphasis on any
of the categories listed, but generalisation accuracy is frequently at the top of the list. It
is a little misleading to list individual categories of improvement, because advances often
involve a combination of the above. For example, a new method for SPC analysis may
be regarded as successful if able to predict a target property with greater accuracy than
the existing state-of-the-art, from the same amount of information, while taking the same
amount of time, or less, to do so. The individual treatment of improvement types does

help, however, during consideration of their importance to a particular process. This work
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treats the creation of SPC relationships from the ADMET properties of small compound
collections during early lead optimisation. It is from this perspective that the categories
listed above are considered below.

The outright predictive accuracy of an SPC relationship may be misleading in certain
scenarios that occur frequently when attempting to classify biological properties from small
collections of known data. In many cases, it is not desirable that a classifier treats all data
examples with equal importance. A good example arises in the creation of in silico screens.
Should a new compound be incorrectly described as drug-like (a false positive classifica-
tion), the result will be that the library it inhabits will be less efficient and the compound
(and dependents, if used to combinatorially construct new compounds) will remain in the
development process until potential rejection at the next synthesis-screening repetition. The
magnitude of such a reduction in process efficiency is dependent on the number of com-
pounds misclassified in such a manner and on how the combinatorial chemistry process
acts upon those compounds once they remain in the process. Should a new compound
be incorrectly classified as not drug-like (a false negative classification), a potential new
drug is disregarded at an early stage of development, with an enormous potential cost. It
is clear that accuracy, in this case, should not be calculated on the basis that both classes
involved are of equal importance. It is unclear, however, how best to ‘cost’ misclassifica-
tions of each class. For example, it is of primary importance to retain leads when mining
the output of HTS to identify backbone compounds for further development, but the false
identification of non-leads affects the efficacy of the combinatorial chemistry process that
ensues subsequently. During the creation of ADMET SPC relationships for lead optimisa-
tion, it is certainly important both to retain candidates for further optimisation and to reject
non-viable compounds in order to prevent their continuation through the process of further
combinatorial creation and, eventually in vitro, optimisation.

A complementary consideration to that of misclassification cost is that of balanced pre-
dictive performance assessment. As discussed above, the discrete, binary classification sce-
nario requires that the SPC solutions obtained must deliver high classification accuracy on
both the ‘good’ and ‘bad’ compound classes. For example, a solution that classifies ev-
erything as ‘good’ will not serve the intended purpose, as it is required to form part of a
search by elimination. Likewise, if everything is classified as ‘bad’, the search ends and
no compounds will be selected for further development. This obvious requirement may be
challenged in the case of one compound class being far greater in size (both in terms of
available, known data and in terms of potential encounters during classification) than the
other. In such a circumstance, the assessment of a trained classifier must acknowledge the
existence of a majority class. Otherwise, an apparently high predictive accuracy may mask
poor performance on the minority class. Communication with collaborators at GSK during
the course of this work suggested an ‘industry-desired’ prediction accuracy of > 80% on
both classes, beyond which limitations of the data make further performance increase un-
likely. From this brief consideration, it is clear that firm notions of ‘useful’ classification
accuracy must be employed in order to evaluate the performance of SPC models created at
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this stage of the design process. These issues are discussed in greater detail in Chapter 3
(§3.2.3).

The time taken to build a discriminant model (at this stage) is not particularly significant,
largely because the amount of data available for training is, in general, small (< 1000
examples). Moreover, a classifier learned from the available data is likely to be applied to
larger numbers of unknown examples repeatedly. Predictive performance is a key issue,
thus extra time taken to construct an accurate classifier is likely to be rewarded several-
fold. Nevertheless, the developmental process behind the construction of an SPC classifier
requires creation and validation to take place within a reasonable period and thus, the time
taken to select classifier architecture and the parameters that define it must also be taken
into account.

The time taken to create a classifier for eventual use is not of primary importance, al-
though time taken during R & D may well be. Ease of use during R & D by non-expert users
is of similar importance. A similar and important area, in which improvement would be of
great benefit, is that of intelligibility. Through detailed research, the computer scientist may
understand a lot about how a technique has made its prediction. The end user, however, may
not possess such knowledge and be unable to verify how the decision is constructed. If a
new classification method is to be used by many different types of user, it must be able to
deliver its results in a manner and format that all can understand. For example, this may in-
clude information regarding which compounds are primarily responsible for the form of an
SPC relationship, or which descriptive attributes play the largest role during classification
of further compounds.

Regardless of the nature of an advance provided by a new SPC classifier, it is important
that it may be incorporated easily into the extant process framework. Any improvement in
performance is welcome in such a challenging and potentially inefficient domain, but the
domain itself is unlikely to change wholesale unless the improvement is of such magnitude
as to render previous practices obsolete, e.g. high throughput screening. A new SPC classi-
fication method is more likely to provide such a paradigm shift in combination with wider
changes to the domain and should be designed, therefore, to be integrated in a practical and

domain-relevant manner.

2.1.8 Research Focus and Conclusion

As stated in the introductory chapter, this work examines the application of a recent tech-
nique, SVMs, to a specific area of the drug discovery process. The above overview of the
contemporary drug discovery process allows the application to be placed in context. The
area of the drug discovery process that provides the focus for this work is the creation of in
silico SPC relationships during the early lead optimisation stage. The relationships are used
to discriminate between compounds that belong to discrete classes of ADMET properties.
The description of the contemporary drug discovery process provided in this section
suggests clearly that the replacement of in vitro processes with their in silico equivalents
is paramount to the expansion of the drug discovery search. Machine leaming is becom-
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ing widely used within the pharmaceutical industry to perform tasks previously performed
by in vitro screening, with the ultimate aim of an automated in silico discovery process
that initiates upon the identification of a therapeutic target [Beresford et al., 2002; van de
Waterbeemd, 2003]. The increasing use of data mining packages, such as Clementine
[SPSS, 2002}, and dedicated pharmaceutical modelling packages, e.g. Pharma Algorithms
(http://www.ap-algorithms.com/), display the current trend towards in silico discovery. The
aim will not be attained, however, unless in silico structure-property predictors are able to
overcome the challenges posed by the domain. Before proceeding to the application of sup-
port vector machines to the prediction of ADMET properties, it is useful to place support
vector machines in the context of contemporary machine leaming as ADMET structure-
property relationship analysis has been placed in the context of contemporary drug discov-
ery here.

2.2 Contemporary Machine Learning for Drug Discovery

It is assumed that most readers are familiar with machine learning and many techniques
described in this section. One of the aims of this thesis, however, is to provide useful in-
formation to those readers who may be from outside the computer science community, or
those who have not dealt specifically with the application of machine learning to pharmaceu-
tical data analysis. Accordingly, this section introduces machine learning, and supervised
machine leaming in particular, before proceeding to describe the application of machine
learning techniques in general to the contemporary drug discovery process of section 2.1.

Machine leaming involves the induction of relationships from sets of descriptive data
examples. The relationships (or solutions) obtained may be applied subsequently to predict
the behaviour of further examples drawn from the same data distribution. This section
begins with an introduction to classifier inference, before describing a selection of machine
leaning techniques and their application to contemporary drug discovery.

2.2.1 Introduction

Throughout this work, vectors of descriptive values are referred to as data examples (or
points). Descriptive values are referred to as data attributes and correspond to the individual
pieces of information that comprise an example. Data attribute values may be numerical,
textual, continuous and / or discrete. A useful concept in the description of machine leaming
is that of an input space, within which all possible data examples reside. For example, a
collection of examples, each possessing three descriptive attributes, may be seen to exist
as points within a 3-dimensional sphere, the diameter of which relates to the maximum
distance between any two examples in the collection. Here, input space is denoted X C
R™, where m is the dimensionality of real-valued data examples drawn from input space.
The notion of input space encourages the involvement of associated similarity metrics (e.g.
Euclidean distance) with which to reference the space. This concept is analogous to the
chemical space described in § 2.1.1 (p. 14).
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The purpose of supervised machine leaming is to infer a mapping of input space to a
target attribute, Y, that describes (or categorises) its contents, f : X — Y. As above, the
target attribute can be numerical, textual, continuous and / or discrete in nature. Examples
referred to as known examples have a corresponding target attribute value (or class label)
that designates the class of data to which they belong, i.e. they are drawn from X x Y.
Known examples represent a finite data subset, e.g. of size n, from which the wider rela-
tionship between input space and the target attribute may be inferred.

xeX An example vector of m attribute values, z;, j = 1,...,m.
YEY A vector of n class labels, e.g. y; € {—1,+1},:=1,...,n.

A subset S € X x Y of n labelled data examples is defined as § =
{(x1,91), (x2,¥2),---,(Xn,yn)}. In the presence of a labelled data subset (or training
data), the task of supervised machine learning is to infer the mapping f : Sx — Sy under
the assumption that it reflects a wider mapping X — Y. An unknown example does not
possess an associated class label, or rather, the mapping function is not party to the class
label. A mapping f : X — Y/, inferred from a collection of training data, may be applied to
unknown examples in order to predict their target attribute values. Such a process represents
classification when the target attribute is discrete, or regression when the target attribute is
continuous.

Supervised leaming is often referred to as pattern recognition, because most scenarios
in which it is employed involve the recognition of significant relationships within a body
of data drawn from input space. The supervisor, or target attribute, is used to represent
prior knowledge regarding the form of the relationship in question. Unsupervised leaming
concerns the induction of significant, latent relationships from a body of data in the absence
of a supervisor. Unsupervised leaming methods are often employed to reduce the size or
complexity of a body of data in order to elucidate an underlying distribution across its
members. This may be via a reduction in the number of data examples (to provide a sparser,
phenotypic representation of dense or clustered data), or a reduction in the number of data
dimensions (to provide a more compact representation of highly descriptive data, e.g. for
visualisation).

The research described in subsequent chapters concentrates on an application located
early in the lead optimisation stage (cf. § 2.1.6) of drug discovery. Complex, small-scale
SPC relationships are investigated to focus the discovery search towards those novel com-
pounds most likely to fulfill a given therapeutic aim. Relationships are created from small
collections (typically hundreds) of compounds, primarily due to a paucity of known data
relevant to the areas under investigation. The classification required at this stage remains
‘select / reject’ rather than the prediction of a continuous property, which is often required
later in the discovery process, e.g. when optimising molecular binding properties against
a target. Thus, the target attribute is discrete and binary. A relationship is required to dis-
criminate between those compounds that should remain in the design process for further
investigation and development, and those that should be rejected in order to improve the
efficiency of the design process. Despite a focus on binary classification, the majority of
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methods described hereon can be applied to both multi-class discrete and continuous target
attributes.

A generic SPC analysis problem with binary target attribute presents a set .S of n
example vectors, x; € R™, i = 1,...,n, each labelled according to a target attribute,
yi; € {—1,+1}. Each example vector contains m attribute values that correspond to struc-
tural features or properties of a molecular compound. As for a generic supervised leaming
problem with binary target attribute, the aim is to map the example vectors to their corre-
sponding class labels under the assumption that the mapping will generalise to the remain-
der of chemical space. The relationship between example attributes (molecular structure)
and the target attribute (biological property) induced by the mapping is used subsequently
to associate target attribute values with examples (compounds) drawn from the remainder
of chemical space.

Formulated thus, in silico screening of compounds according to a target biological prop-
erty is dependent upon:

o the identification of an adequate vector representation of molecular structure;

e an accurate relationship between a vector representation of molecular structure and a
target property,

e the computational means by which to describe such a relationship; and
e arepresentative sample of labelled training data from which to derive the relationship.

From section 2.1, these requirements are not encountered easily and sub-section 2.2.4
describes the potential effects of this upon the creation of useful SPC classifiers. First,
sub-sections 2.2.2 & 2.2.3 describe means by which SPC classifiers may be obtained via
supervised leamning.

2.2.2 Linear Classification

When attempting to partition input space according to a binary target attribute, a discrimi-
nant function may employ a threshold constant to relate training data examples to the target
attribute. If the value of the discriminant function is greater than the threshold constant,
one class is assigned. If it is lower, the other is assigned. A common form of linear dis-
criminant function, which creates a linear hyperplane to separate two data classes in input
space, is shown in equation (2.1). A set, S = {(x1,41),--.,(Xn,Yn)}, of linearly sepa-
rable, binary labelled data examples may be separated according to their associated class
labels (y; € {—1,+1}) by the following equation

+1 >0

. (2.1)
—1 otherwise.

yi = sgn (wlx; +wp) where sgn(u) = {

Equation (2.1) provides a discriminant threshold that assigns the binary class label (y €
Y) to the examples in S. The structure of the discriminant function is determined by the
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example vectors (x; € R™), a vector of weights (w € R™) and a constant bias term (wg)
that provides the threshold. The weights and bias of the discriminant function may be used
to associate the same binary target label (y € {—1,+1}) with an example, x € X, using
the classification function

f(x) =sgn (wix +wo) . (2.2)

The classification function, f(x), employs a hyperplane in the R™ input space that is ori-
ented by the perpendicular weight vector w and located w.r.t. the origin of input space by
the constant wg. At

wa+w0=0

the discriminating hyperplane separates the training data according to y € Y. Training
examples with y; = +1 lie on one side of the hyperplane and those with y; = —1 lie on the
other side. The notion of a discriminating hyperplane (or decision boundary) in input space
is fundamental to the following description of supervised machine leaming and its use for
SPC analysis.

It remains to infer a set of weights and a bias term that orient the hyperplane to separate
data in input space according to the target attribute - assuming, here, that it is possible to
do so. An input space hyperplane that separates examples according to an associated binary
target attribute records an empirical error of zero when its decisions are compared to the
corresponding target attribute labels, or

E[f(S)] =) lvi - f(xi)] =0 (2.3)
=1

where E [f(S)] represents the number of errors encountered in the application of f(x) to
the training set, S, of n labelled training examples. A generic measure of the empirical error
of f(x) is provided by

E[f(9)]

E{f(x)] = (2.4)

The decision hyperplane is defined by the weights and bias that orient it. Accordingly, it is
convenient to describe the associated empirical error in relation to the weights and bias term,
E(w,wp) = F[f(x)]. Of greater convenience is a small change to the present notation, in
which the bias term, wy, is added to the weight vector and a corresponding constant input
attribute equal to one is added to all examples,

xT=(1a:1:z:2 e Tm), WP = (wowy wy ... W)

Thus, the error associated with a set of weights becomes F(w) and the linear decision
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function becomes
f(x) = sgn (W"'x + wo) = sgn (w'x)

Hypothesis space represents the collection of classifiers that map f : X — Y. When
applied to data drawn from an m-dimensional input space, the linear classification func-
tion employed thus far has an associated hypothesis space inhabited by all linear classifiers
defined by a weight vector € R{™+1)_The axes of hypothesis space are provided by the in-
dividual weights that determine classifier structure. A change to the dimensionality of input
space, or to classifier structure, redefines the number of classifiers available with which to
map X — Y and, thus, redefines their hypothesis space. Constraints on classifier structure,
e.g. that all weights must be positive integers, affect coverage of hypothesis space by a
family of classifiers. Classifiers, or hypotheses, that record zero empirical error on a set of
training data represent the version space w.r.t. the training data and the hypothesis space
that they are drawn from.

A typical classifier training algorithm draws an initial classification function at random
from hypothesis space and aims to update the function parameters to minimize an error,
or loss, function across the training data. For example, a training algorithm may begin
with a classification function defined by a random set of weights and assess a measure of
its performance over a set of labelled data examples. Upon the application of classifier to
training data and subsequent performance evaluation (one training iteration), the structure
of the solution is altered in a manner that is likely to improve performance after the next
iteration.

The ‘sum of squares’ loss function provides a useful example of an error function with
which to assess the separation, or otherwise, of data according to a target attribute. The sum
of squares loss is the sum of squared errors between predictions made by a classifier and the

corresponding target variable
¢ 1 ¢ 2
Ew) =35> (- fxa)) =53 (s:-w'x)" . (2.5)
i=1 i=1

Classifiers that populate hypothesis space and their associated empirical errors may be
seen to define an error (or loss) ‘surface’ over hypothesis space. The location on the surface
at which the minimum error occurs is known as the global minimum. Over a linearly sepa-
rable data set, S, the error surface of a linear classifier is parabolic and has a single global
minimum that lies in version space. An iterative training algorithm that updates the classi-
fication function (via its weights) in a manner proportional in magnitude to the associated
empirical error and which alters the function to reduce future error behaves as if following
a path along the error surface that, at each step (training iteration), proceeds in the direction
of maximum negative gradient

OE(w)
ow

Wipl = W;—1) where n = RY,

OE(w) OE(w) OE(w)\T
o =< e awm) (2.6)

Wi
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n € R*, winit — 0, witt — 0, k # 0, R = max;||xi]|

while (k # 0)  // if errors are made on the training data

{
k=0
for (i = 1ton) // iterate over the training data
{
if (y; (wTxi +wp) < 0) //an error occurs
w =W+ ny;X; //update weights
wop = wo + Ny R?  // update bias
k=k+1
}
}
}

Figure 2.1: The Primal Perceptron Algorithm

In plainer language, the analogy is of a ball, which rolls down the steepest slope in the error
surface, —%‘l"—), until it comes to rest in the global minimum. A parameter optimisation
scenario of this nature is known as gradient descent. The sum-of-squares error is favoured
by many, as it is easily differentiable. Thus, the minimum of the loss term can be found
easily and an appropriate optimisation procedure employed to find it.

Rosenblatt’s linear perceptron [Rosenblatt, 1958] ties the above concepts of linear clas-
sification, empirical error, training and gradient descent together nicely. The linear percep-
tron accepts a real-valued input vector, x € R™, and compares the weighted sum of its
elements to a threshold, 6, in order to assign a binary class label. Accordingly, the percep-
tron classification rule can be described by equation (2.2) above. To classify an example,
x € R™, with binary attribute label y € {—1,+1}, a perceptron with input weights w
computes

f(x) =sgn ijxj -0 =sgn(wix+wp) . 2.7
j=1

The weights of the perceptron solution are found by iterative updates to a random set of
initial weights. Given a set of binary labelled training data, the primal perceptron training
algorithm calculates weights as shown in figure 2.1.

A positive real-valued constant, 7, controls the size of steps by which the weight update
seeks to minimize empirical error and is referred to as the learning rate. This update proce-
dure parallels the gradient descent method discussed above. If the data are linearly separable
according to the target attribute, the error surface defined by all possible classifier weights
and the corresponding classifier errors is parabolic and has a single global minimum. Thus,
the perceptron algorithm obtains a solution that separates the data within a finite number of
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weight updates (from a theorem of Novicoff, a proof of which is given in [Cristianini and
Shawe-Taylor, 2000]).

2.2.3 Non-Linear Classification

Before proceeding to describe non-linear classification, it is useful to consider the dual form
of the perceptron algorithm. The dual form arises from the following observation. If the
constant learning rate is set to 7 = 1, upon encountering a misclassification, the primal
perceptron algorithm update procedure adjusts the weight vector, w, with the correspond-
ing misclassified attribute vector (or training example). Accordingly, when the algorithm
terminates successfully, the solution may be represented as

W= uxi (2.8)
=1

where the o; are positive and proportional to the number of times each x; is misclassified

T

during training. The vector o' = (a; a2 ... ;) may also be seen as an alternative to

the weight vector, w, when defining the classification function. For example, the binary
classification function (equation 2.2) can be re-written as

f(x) = sgn(wlix+wp)
n T
= sgn (Zaiyixi) X + wo
i=1
sgn (Z a;y; (xF'x) + wo) : 2.9)

i=1

]

The dual form of the perceptron training algorithm is shown in figure 2.2.

The binary classification scenario described thus far assumes that input space may be
partitioned according to a target attribute in a linear manner. When the training data are
not linearly separable according to the target attribute, no separating hyperplane exists in
version space. A change to the form of classification function employed and, hence, the
hypothesis space, is required in order to encounter a mapping that partitions input space
according to the target attribute. Consider, for example, a polynomial decision function of

the form
fx) = (w")Tx® + (W) Tx + wp (2.10)

where w’ is the original m-dimensional weight vector of the linear classification function
and w” is a vector containing an additional k = (("‘_21)*'2) weights, which correspond to
the components of the squared example vector (x?). Now, the total number of weights that
define the non-linear classification function is d = m + k (with & > m). Let the input

dimension m = 2 in the above polynomial classification function, thus k = 3 and d = 5.
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oMt — 0, wilt — 0, k # 0, R = max;||x,]|

while (k # 0)
{
k=0
for(i = 1ton)

{

if (y,- (WTX,‘ + ’wo) < 0)

Ct.,'=ai+1
wp = wp + yi R?
k=k+1

Figure 2.2: The Dual Perceptron algorithm

From equation (2.10), we have

/ " / / " " n
W=W AW =(w1, Wy, Wy, Wy, 'UJ3)
The enlarged weight vector, in tandem with a composite input vector

v=xAx2= (21, 72, (21)% (22)% 27122)

36

yields a linear classifier that performs its calculation on a non-linear transformation of input

space

f(x) = wlv+ w

A neater form maps the m-dimensional input attribute vector to the d-dimensional ex-

pansion employed to provide non-linearity. Consider d mapping functions,

¢i(x), wherei=1,...,d,
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each of which provides one component of the composite input vector, v,

$i(x) = (z1)?
$a(x) = (22)°
$3(x) = 25122
$a(x) = =
¢5(x) = 2,

v = xAXx?
= (2122 (21)? (72)° 22122)

= ((x) ... ¢5(x))

The d-dimensional space employed to describe the original input space in higher dimen-
sion is referred to as feature space. The d-dimensional mapping vector ®(x), contains the
individual mapping functions, ®(x) = (¢1(x) ... ¢a4(x)), and maps data residing in in-
put space to feature space. A non-linear decision function with linear form may now be

rewritten as

d

f(x) =sgn (Z wigi(x) + wo) = sgn (WwT®(x) +wp) . (2.11)
=1

This representation of a linear decision function in feature space can be applied to the per-

ceptron dual representation described earlier in equation (2.9) to yield

n
f(x) =sgn (Z @iy ®(xi) T 8(x) + wo) : (2.12)
i=1

The comparison of equations (2.11) & (2.12) reveals a potential trade-off between the
number of training examples and the dimensionality of the mapping used to create a non-
linear decision function. Equation (2.11) involves a sum over d individual mapping func-
tions of ®(x), whereas equation (2.12) involves a sum over n, the number of training exam-
ples. It is clear from equation (2.10), above, that an increase in either the dimensionality of
input space, m, or the complexity of the desired non-linear solution, e.g. the degree of poly-
nomial used in equation (2.10), will increase the number of weights that define the classifier
and, thus, the size of the sum in equation (2.11). A further consideration is that the number
of examples required to describe a particular space in sufficient detail so as to associate
a target attribute across it increases with the dimensionality of the space (cf. the curse of
dimensionality, described well in [Bishop, 1995a]). A common by-product of complex non-
linear representations of input space and an associated target attribute is an error surface in
hypothesis space that contains local minima. Convergence at local minima causes an algo-
rithm to cease training before the global minimum is reached, thereby creating a suboptimal
solution. It is also of note that, despite being able to represent non-linear relationships be-

tween input space and a target attribute, the non-linear functions described above can only
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approximate the true mapping, as their form is chosen prior to weight optimisation. The
additional complications of non-linear classification highlight an important practical barrier
to the statistical analysis of large descriptive data sets, which is of particular consideration
on the high-dimensional data often encountered during in silico screening (cf. § 2.1).

A kernel function computes K (x,z) = ®(x)T ®(z) for all vectors x and z. Valid kernel
functions are defined by Mercer’s conditions [Mercer, 1909], which state the following
validity condition for a kernel expansion of two vectors x and z. There exists a mapping
vector ¢ and a kernel expansion

K(x,2) = ®(x)T®(2) (2.13)

iff, for any function g(x) such that / g(x)%dx is finite, then

/K(x, z)g(x)g(z)dxdz > 0

In practice, the above condition requires that a kernel expansion of two vectors be symmetric
and positive semi-definite. A valid kernel function represents implicitly the components of
the mapping vector @, i.e. the individual mappings, ¢1(x) . .. ¢4(x), need not be calculated
explicitly. Accordingly, equation (2.12) becomes

n
f(x) =sgn (Z iy K (xi,x) + wo) : (2.14)
i=1

With the addition of a valid kernel function, non-linear classification becomes more
practical. A linear separating hyperplane may be created in any valid space, even one of in-
finite dimension. Furthermore, the error surface of a linear classifier has a single minimum.
It is important to remember, however, that the calculation of K (x;,X) in equation (2.14)
should be affected as little as is possible by the value of d, as its computation is required
n times in order to evaluate the decision function. Otherwise, that advantage of an implicit
representation of ¢, (x) ... ¢4(x) is lost.

2.2.4 Impediments to Generalisation

Hitherto, the treatment of classifier inference has assumed a linear separation of input space
according to a binary target attribute. Data not linearly separable by a binary target attribute
may be mapped to a higher-dimensional feature space in which linear separation is possible.
Furthermore, classifier inference from a set of training data has been described under the
assumption that f : § — y = f : X — Y and that a measure of the empirical error is
sufficient to suggest classifier performance across the rest of input space.

The training data frequently comprise a small subset of data drawn from input space.
Thus, there may exist a disparity between the information afforded by the available training
data and the ‘true’ relationship between input space and the target attribute. A paucity of
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known data translates to a lack of knowledge regarding how a particular property partitions
chemical space. Separation in chemical space of a small collection of compounds according
to an ADMET property of interest may not be reflected outside the small region that these
known compounds occupy, for reasons outlined below.

The production of training data represents transition from a hypothetical relationship
between chemical space and target property to the existence of labelled data. Input space
provides a descriptive framework for the examples of a particular process or population.
Chemical space, defined by a particular representation of molecular structure (cf. § 2.1.5)
and populated by all possible molecular compounds, provides a good example. The target
attribute often represents the outcome of an experiment involving examples that populate
input space, e.g. whether a molecular compound is toxic to humans, or whether it passes
an in vitro ADMET screen. Prior to sampling, the relationship between chemical space and
target property is either hypothesised, or obtained via prior observation of the relationship
under examination. In either case, the relationship is not quantified in entirety prior to clas-
sifier creation (or there would be little need to apply the classifier to new examples). Thus,
training data is often the result of experimentation, with the experimental parameters drawn
from chemical space and the outcome of the experiment drawn from the target property.
Under these circumstances, it is difficult to design experiments or conditions that sample
X x Y uniformly. For example, there is a paucity of data to describe molecular compounds
known to be toxic to humans (see below).

Viable molecular compounds may not populate chemical space in a regular manner,
with compounds appearing in groups, or regions, rather than uniformly across the space.
Similarly, the target property may relate to chemical space in a /ocalised manner. That is,
the target property may not partition chemical space smoothly. Rather, certain values of
the target property may relate to discrete regions of chemical space. Combined with a non-
uniform population of chemical space, this prompts consideration of how representative
data are to be drawn from X x Y. A complex relationship between chemical space and
a target property may not be represented well by a small amount of data drawn uniformly
from chemical space. Drawing more examples increases the likelihood that the data will
reflect the true relationship between chemical space and target property. Limited training
data, therefore, represents a challenge to successful prediction by an SPC classifier.

Sample irregularity may be thought of as sampling from X x Y in a manner that does
not reflect the true relationship between chemical space and target property. For example,
uniformly sampled compounds may not reflect input space locality as described above. The
problem of class imbalance, which occurs when the majority of training examples belong
to a single target attribute class, is particularly prevalent in SPC analysis. The requisition of
training data via experimentation limits the sampled region of chemical space and constrains
availability of the target property. For example, a true measure of toxicity must be measured
in vivo. It is difficult to convince human subjects, and the regulatory authorities, to approve
an assay in which the subjects may ingest toxic material. Accordingly, compounds known

to be toxic to humans are in short supply because experimental restrictions prevent a bal-
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anced sample of labelled chemical space. So difficult is it to obtain known toxic examples
from physical assays that many toxicity training sets are themselves labelled according to
models created previously from very small amounts of known data. Reliable training data
at this stage of drug discovery is expensive to obtain and in short supply, therefore, the data
available is used regardless of population balance. Furthermore, the outcome of a screen
to label a collection of compounds is unknown at the time of their selection. Hence, many
SPC data sets provide a wider sample of one (majority) class during training when it may
be no more important to the process than the corresponding minority class (cf. Chapter 4).
The production of data upon which to build in silico screens is described further by such
sources as [van de Waterbeemd, 1995; Drewry and Young, 1999] and [Dominik, 2000].

The training data may represent a small region of the target property distribution across
chemical space. Certain structural attributes may vary little over the training set and, hence,
provide little information regarding the distribution of the target property across the sampled
region of chemical space, i.e. they appear redundant. The information that they contain does
little to relate the training compounds present to the class distinction. This may be the result
of employing an irrelevant structural feature to relate chemical space to the target property,
but it is more likely that the feature in question does not correlate with the target property
over the sampled region. Regardless of the source of redundancy, such features should be
removed from the training data prior to the creation of a relationship, as they contribute little
to the representation of X x Y and lead the available training data to reference the space less
well (cf. the curse of dimensionality [Bishop, 1995a]). The removal of redundant features
is often referred to as feature reduction and suggests further removal of features which,
although not redundant, either do not correlate with the target or which correlate with other
features, thereby introducing a redundancy of sorts. The co-linear nature of seemingly
unhelpful molecular attributes may limit the sensible application of feature reduction in
order to remove them. Removing a feature altogether may remove valuable information
provided by its combination with another. This situation is outlined practically in a paper
by Gillet et al. [1998], in which sub-structural analysis is used to provide a relationship
between a descriptor subset and biological activity against a molecular target.

The redundancy that results from descriptor co-linearity is a primary reason for the
increasing use of machine leaming techniques over traditional statistical techniques for SPC
and SAR analysis. Well-known approaches to solving the problem (or lessening its effects)
include methods to identify a subset of informative, non-correlated descriptors with which
to represent the original data (feature selection) and data transformation methods, such as
PCA, which transform the data to a representative set of orthogonal (uncorrelated) axes in
a manner that retains the information inherent in the original data. The former approach
is described well in [B6hm and Schneider, 2000] and several machine leaming texts, e.g
[Bishop, 1995a; Mitchell, 1997]. The latter approach is introduced later in this chapter
(2.2.6) and is a popular data pre-processing and visualisation step [Franke and Gruska,
1995]. The application of feature reduction and feature selection prior to the creation of an
SPC relationship is referred to as data pre-processing and forms part of the data treatment



Chapter 2. Background 41

process prior to analysis.

The effects of an erroneously sampled training data subset are described above, along
with the notion that training data samples are the experimental embodiment of a hypo-
thetical relationship between all of input space and the target attribute. The incorporation
of erroneous attribute values in the sampled embodiment of X x Y is arguably the most
common impediment to successful generalisation. This may be seen as sampling from an
erroneous representation of input space, rather than erroneously sampling from an accurate
representation of input space. Erroneous measurements of both the target attribute and input
space attributes are commonly referred to as noise, or as being noisy. An algorithm that is
evaluated solely according to its performance over the training data may be led to model
erroneous features of the data that do not correctly reflect the underlying distribution from
which they are drawn. Noisy, or incomplete, data sets are common and methods used to
analyse the data must be able to consider this noise when making subsequent predictions
based on the information provided. Noisy examples may be either incorrectly labelled with
the target attribute or contain erroneous descriptive attribute values. Algorithms capable of
creating complex, non-linear solutions risk the incorporation of training data noise into the
inferred representation of X x Y and suffer poor generalisation accordingly. Although the
classifier should base its prediction on the data put before it, it should not follow the data so
closely that anomalies cause false classification. In other words, the algorithm and its solu-
tion should be robust to at least a small amount of false or missing information. When noisy
data attributes are present within the training data, the notion of balancing empirical error
with predictive generalisation has an easily interpretable form. That 1s, it may be necessary
for a classifier to ‘ignore’ certain training examples to improve its inference of the mapping.

Unlike many other machine leaming applications, e.g. microarray analysis [Tu et al.,
2002], there is little noise within the attribute values employed to describe molecular struc-
ture, because many are calculated deterministically (see p. 17). Nevertheless, if the rules
used to calculate compound attribute values from those of constituent fragments were de-
veloped for compounds dissimilar to those under investigation, the properties calculated
may be erroneous. Conversely, compounds are frequently mislabelled in this scenario, be-
cause the property classes to which they belong are open to interpretation. For example,
in order to make a binary classification, e.g. reject / retain, it is likely that a continuous
property, €.g. a measured assay of membrane penetration, will be partitioned in order to
do so. Threshold selection involves uncertainty and the continuum on which the threshold
is based may also contain noise. Common sources of noise include procedural variation,
such as measurements recorded on different subjects in differing quantities, and analytical
variation, such as measurements recorded and analysed in different laboratories by different
scientists. Differing compound classification conventions, themselves thresholds of sorts,
may also complicate matters.

An increase in structural information, to allow a small collection of compounds to de-
scribe a clear separation of the chemical space that they inhabit, is not a particularly de-
sirable approach in the majority of cases. A partition derived from such information may
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overfit characteristics of the known data in relation to a larger unknown space, to the detri-
ment of further generalisation (cf. § 2.2.2). An increase in structural information increases
the dimensionality of chemical (input) space, which leads the available data to cover the
space less well and which may require greater algorithmic complexity to describe separa-
tion of the known data.

The capacity of a classifier measures its stability on training data. A classifier with high
capacity is able to label a set of . binary labelled data examples in many of their 2" possible
label configurations. A classifier with low capacity is less flexible and will only be able to
classify the examples when labelled in a smaller number of configurations. Classifiers with
high capacity can separate more complex classification problems than those with lower
capacity. One disadvantage of this is that it they become unstable as a result. The decision
boundary of a classifier with high capacity is likely to change significantly if any aspect of
the data on which it was trained is changed. Thus, classifier capacity plays an important
role in the creation of successful SPC classifiers. One must balance the capacity required
to create complex, non-linear partitions of chemical space with the restriction of capacity
required so as not to produce partitions that only apply to the available known data and not
to chemical space at large. A full discussion of classifier stability and its effects may be
found in [Skurichina, 2001]. The over-reliance of a leamed classifier on poorly sampled
or uninformative training data, to the detriment of generalisation performance on further
examples, is known as overfitting. The balance between drawing a useful representation of
X x Y from the training data (minimising empirical error via high algorithmic capacity)
and avoiding an over-reliance on the training data representation of X x Y (maximising
generalisation, possibly via a lower capacity) is embodied by the process of regularisation.

A measure of expected performance on the unseen region of input space is required in
order to quantify the generalisation ability of a leamed classifier. The distribution of target
attribute values across unlabelled data is unknown a priori, therefore, generalisation ability
must be estimated. The expected generalisation error is the probability that a classifier,
f(x) will misclassify an input-target pair drawn at random from X x Y. Estimates of
generalisation performance may be obtained by partitioning a collection of labelled data
into independent training and test sets. A classifier is created on the training partition,
without reference to the test partition. The expected generalisation performance is obtained
by evaluating an error function upon the application of the classifier to predict the target'
attribute on the test examples. Methods of obtaining independent data partitions for the
estimation of generalisation performance are discussed later in Chapter 3. The drawback of
the above estimation procedure is that, while the classifier is assessed on data unseen during
its construction, the validation data itself represents a (small) subset of input space and,
therefore, is similarly vulnerable to the sources of disparity described for training subsets
above. Moreover, performance assessment is largely dependent on the error function with
which error on the validation data is assessed.

Both compound and feature noise mask the ‘true’ separation of the known data accord-
ing to the target property, therefore, the presence of noise within a small collection of known



Chapter 2. Background 43

data can reduce the generalisation performance of a relationship created from this descrip-
tion. To compensate, ADMET models must be robust to mislabelled compounds and noisy
data, because a model that incorporates erroneous information in a small region of chemical
space is likely to make erroneous classifications when applied to the rest of chemical space.
An alternative to requiring robustness of the classifiers used on noisy ADMET data is to
‘clean’ the data of compounds that appear to have been labelled or described erroneously.
Outlier detection methods (cf. 2.2.6) may be employed to weed a collection of labelled
training compounds of those that appear distinct from the majority, which may be viewed
as an attempt to ‘typify’ any relationship drawn from the data (cf. 4.2).

Just as attribute co-linearity impedes the obvious and sensible corrective measure of
feature reduction, a similar impediment presents itself to the use of robust techniques via
the potential existence of ‘outliers’ or ‘singletons’ in the data. Such examples appear indi-
vidually or in small groups, normally some distance away from other compounds of similar
activity. They may appear to be mislabelled or noisy, but they may be extremely important
in the context of combinatorial chemistry. When designing a combinatorial library (§ 2.1.3,
p- 18), the aim is to cover as much chemical space, with as few compounds, as possible.
Outliers, therefore, offer an increase in the chemical space covered by fellow compounds
of the same target attribute class. In addition, a lead developed from an outlying point may
exhibit different behaviour to that expected from other compounds of similar target prop-
erty, thus further potential for a novel drug. Outliers in known data present an impediment
to generalised partitions of chemical space, but it is clear that outliers must not be ignored
at classification time by any model used to classify the contents of a combinatorial library.

To summarise, when formulated as a machine leaming problem, ADMET modelling for
compound screening presents the following challenges:

o there is a paucity of available training examples, requiring that a model must be able
to generalise well beyond the range of data from which it is created. Despite the
shortage of training data, the resulting classifier may be required to screen large (>
10°) numbers of compounds;

o there is no ‘perfect’ descriptor subset, with which to relate molecular structure suc-
cessfully to biological properties under consideration;

e data examples are often represented by a large number of descriptive attributes. It is
often the case that there are fewer examples in the available training data than there
are dimensions of the chemical space that they inhabit;

o the data available from which to build predictors of a target property often contain
erToneous, Or noisy, measurements;

o there exist complex, non-linear relationships between molecular structure and target
properties; and

o the nature of the target properties under examination (see § 2.1.4, p. 21), results in
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there often being a significant difference in the number of examples available to rep-
resent each class of data.

The linear and non-linear classifiers described in § 2.2.2 and § 2.2.3 respectively appear
vulnerable to these challenges, without the inclusion of methods designed to counter them.
The next sub-section returns to the consideration of linear classifiers and introduces support
vector machines, which may be seen to provide such methods to the classifiers considered
thus far.

2.2.5 Support Vector Machines

Further to the impediments to generalisation outlined in § 2.2.4, two important aspects of
linear perceptron training should be noted:

e perceptron training ceases as soon as the training data are separated according to
the target attribute, which amounts to arbitrary placement of the decision boundary
between two classes of data; and

e perceptron training does not converge if the training data are not linearly separable by
the target attribute.

Linear classifiers, like the perceptron, that reduce empirical error suffer from arbitrary
placement of the decision boundary. In work on statistical learning theory during the 1960s,
Vapnik and colleagues formulated a confidence interval on the expected generalisation of
such classifiers [Vapnik, 1995, 1998]. The confidence interval depends upon the Vapnik-
Chervonenkis (VC) dimension, which is a measure of classifier capacity. The capacity of a
set of functions, used to separate a finite set of data, is a measure of the maximum number
of points that the set is able to ‘shatter’. If a set of n points with two class labels may
be separated in all of their 2" label configurations, they are shattered. A full derivation is
available in [Vapnik, 1995] and described well in [Burges, 1998]. The VC dimension, h, of
linear classifiers in an m-dimensional space is, therefore, h = m + 1.

A subset of linear classifiers, A-margin hyperplanes, have VC dimension h =
min ([g;] ,m) + 1, where R? is the radius of a hypersphere that encloses the training
data and A is the margin of separation, or the minimum distance between a separating hy-
perplane and the examples either side of it. Therefore, a linear hyperplane that maintains
maximal distance between itself and the nearest training examples on either side of it, the
optimum separating hyperplane (OSH), is likely to generalise best to new examples drawn
uniformly from X x Y [Vapnik, 1995, 1999].

An illuminating upper bound on expected generalisation error (equation 2.15) describes
the balance between empirical error and structural error. The same bound is also highlighted
by [Burges, 1998] and provides a worst-case bound on the number of errors made by a
classifier on data drawn at random from the same distribution as the training data. For
0 < 5 £ 1, the bound on expected generalisation error of a linear classifier holds with
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probability 1 — 7:

h(log(2n/h) + 1) — log(n/4)

R(W) < Remp(W) + \/ 2.15)

where w are weights that define the classifier on n training examples. R(w) is the expected
generalisation (test) error of the leamned classifier, Rep,p(w) is the empirical (training) error
and h is the VC dimension of the classifier. The second term on the right-hand side of equa-
tion (2.15) is the VC confidence of the classifier and is minimised via minimising the VC
dimension. By selecting the classifier structure with lowest VC dimension, i.e. a A-margin
hyperplane with largest margin of separation, statistical bounds on generalisation error are
balanced against the empirical error in a process known as Structural Risk Minimisation.

The reduction of a bound on the estimated generalisation error of a classifier departed
radically from the training paradigms of the time, such as those used to train linear percep-
trons, which tended to minimise a cost or loss function on the training data alone (Empirical
Risk Minimization) in the expectation that generalisation error would follow. It may be seen
from the VC confidence term in equation (2.15) that this is true when training data are
abundant, h/n — 0, but not when limited data are available. When linear separation is not
possible, a balance must be struck between reduction of VC-dimension and reduction of
empirical error.

Both weaknesses of the perceptron algorithm are overcome by structural risk minimisa-
tion. By selecting the classifier that separates the training data maximally the placement of
a separating hyperplane is no longer arbitrary. By balancing empirical and structural risks,
a classifier may be trained on data that is not linearly separable according to the target at-
tribute in a manner that reduces expected generalisation error. The following description
outlines the practical implementation of the above, i.e. the process of OSH determination
via the SVM algorithm on a generic binary classification task.

Boundaries parallel to the decision boundary and upon which the closest examples lie
are referred to as margin hyperplanes. The perpendicular distance between them is referred
to as the margin of separation. Maximising the margin of separation across a linear decision
boundary (figure 2.3) creates an optimum separating hyperplane.

A linear decision boundary,

fx)=wix4+w =0,
is flanked at unit distance by parallel margin hyperplanes

X W+ wp > +1 yi = +1 (2.16)
X;. W+wy < -1 yi =—1 (2.17)
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margin
Figure 2.3: The Optimum Separating Hyperplane
Equétions (2.16) and (2.17) form a single inequality
yi(x;w+wy)—1>0 Vi. (2.18)

The distance between margin hyperplanes is

2
lIwli

Thus, minimising ||w||? subject to the constraint of equation (2.18) maximises the margin of
separation. This constrained optimisation is easier to treat when represented in Lagrangian
formulation. Burges [1998] provides two reasons for the conversion. First, the constraints
are easier to handle when placed on the Lagrange multipliers themselves. Second, the La-
grange dual treats training data as inner product pairs, the importance of which becomes
apparent when treating non-linear SVM classification (cf. § 2.2.3). The constraints are mul-
tiplied by positive Lagrange multipliers «;,¢ = 1,...,n and subtracted from the objective
function to provide the primal Lagrangian formulation,

1 & -
Lp = '2'||W||2 - ;aiyi(xi-w + wo) + Zai . (2.19)

=1

Lp is minimised w.r.t. to w and wg. The derivatives of Lp w.r.t. «; must vanish and «;

must remain positive. The constraints on the optimisation become:

n
W=D ayix (2.20)
i=1
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D ey =0 (2.21)
1=1

The dual formulation of the above (known as the Wolfe dual) is solved by maximising
L p subject to the gradient of Lp w.r.t. w and wp vanishing and subject to the o; remaining
positive. The maximum of L p, subject to the dual constraints, is reached at the same values
of w, wo, and « as the minimum of L p when minimised subject to the previous constraints.
When equations (2.20) and (2.21) are substituted into equation (2.19), the dual becomes:

n
1
Lp = Z a; — 3 Z a0y Y XX (2.22)
i=1 i,j
The solution for w, gained by maximising the dual, is again

n
W= z QiYiX, .
=1

The bias of the hyperplane is computed using the Kuhn-Karush-Tucker conditions, inequal-
ities that hold for any convex, quadratic optimisation problem such as this. Details of the
calculation may be found in [Burges, 1998; Cristianini and Shawe-Taylor, 2000].

Lagrange multipliers that remain greater than zero after optimisation represent those
points, referred to above, that lie on the margin hyperplanes. The remainder lie further
away from the OSH, but such that the original inequality of equation (2.18) holds, i.e. they
lie on the correct side of the OSH. Points that lie on the margin hyperplanes are referred
to as support vector (SV) points and are the only training examples required to support the
decision boundary. The boundary would remain the same were the rest of the data removed
and the algorithm re-run.

SVM classifiers may be created in feature space in the same manner as described for
perceptrons in § 2.2.3. The second reason, given above, for use of the Wolfe dual formu-
lation of SVM optimisation is that the training data are treated as inner product pairs. The
original, linear formulation may be performed in a higher dimensional feature space thanks
to an appropriate kernel transformation of inner products to feature space with a single
function. The previous constraints on margin maximisation remain valid, because a linear
separation occurs, albeit in a different space. The Wolfe dual becomes:

1
Lp= Z -3 Z aiorjyiy; K (xi.x;) (2.23)
_, >

The constraints remain the same and the solution, when classifying an unlabelled vector
z € R™, is of the form:

nsv nsv

f(2) =) aiyi®(x:).8(z) + wo = Y _ sy K (xi,2) + wo (2.24)
=1

i=1

=
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where ®(x) is, as before, a mapping from input space to feature space and nsv is the
number of support vector points, i.e. those with non-zero ; after training. Unlabelled points
are mapped into feature space using the kernel expansion of the inner product between
each unlabelled point and the support vector points. One disadvantage of using Mercer
kernels is that the data transformation to feature space is no longer explicit. Thus, it is
particularly difficult to map the solution back to the original input space. Several ‘standard’
kemnel functions enable the creation of both linear and non-linear classifiers and represent
alternative formulations of other, familiar, supervised machine learning techniques. The
following are all valid Mercer kernels which act on vectors x € R™ and z € R™.

Linear: K(x,2) = (xTz)

Polynomial:  K(x,z) = (xTz + ¢c)?

RBF: K(x,z) = exp—(||x — z|[2/20?)

Sigmoid: K(x,z) = tanh (kx7z — ) [only valid for certain values of x and 4]

For éxample, the generalised polynomial kernel function, K (x,z) = (xTz + c)?, maps to
a feature space constructed by (m+p) C, monomials of the original data attributes, where m
is the cardinality of input space and p the degree of polynomial employed. It is important
to note that kernel functions are not limited to those displayed above and domain-specific
kernels have been developed for several applications, of which [Watkins, 1999; Zien et al.,
2000; Lodhi et al., 2000; Vert, 2002] and [Frohlich et al., 2006] provide examples and are
described and discussed in Chapters 5 & 6. Further discussions on kernel design may be
found in [Cristianini and Shawe-Taylor, 2000].

As discussed in § 2.2.4, mapping a small subset of labelled data to a feature space of
higher dimensionality in order to obtain example separation according to the target attribute
is a recipe for overfitting the training data. In order to limit this occurrence, it may be
preferable to attempt the creation of a separating hyperplane in the presence of noise or
class overlap, i.e. to ignore certain training examples in data that is not linearly separable
according to the target attribute and to create an OSH on the remaining data. Slack variables,
positive variables that only exist when required to do so, place points that prohibit an OSH
on the correct margin of an OSH created without them. Equations (2.16) and (2.17) are

altered to include slack variables

X W+ wy > +1-&; ¥ =+1 (2.25)
X, w+wy < —-1+& Y =—1 (2.26)
& >0V

A drawback of allowing points to breach margin constraints is that margin maximisation
becomes unconstrained. A suitable constraint is provided by adapting the previous quadratic

optimisation problem to minimise the objective plus an additional term, comprising the sum
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Figure 2.4: Slack Variables

of slack variables multiplied by a weighting factor.

Iwl®  — (||w||2+0(255)) @227
=1

Minimising the revised objective is a quadratic optimisation problem for £ = 2 and
k = 1. If k is chosen as 1, neither the slack variables nor their Lagrange multipliers appear
in the Wolfe dual. The sole change is that the «; are upper-bounded by the constant, C.
Constraints on the solution and the sum of Lagrange multipliers remain unchanged.

n
Lp= ; o; — %;aiajyiiji.xj 0<a; <C (2.28)
The constant, C, acts to allow a rolerance to misclassification to regularise faith in the
data and generalisation to further data. the balance between margin maximisation and the
empirical error involved on linearly non-separable data is embodied by the upper bound
on expected generalisation of linear classifiers shown earlier (equation 2.15). Thereby, the
SVM algorithm retains the powerful ability to produce robust solutions when trained on
erroneously labelled, or linearly inseparable, data. Without such balance between empirical
and expected generalisation error, the technique would risk overfitting the training data. If
slack variables are weighted heavily (low tolerance / high C'), a decision boundary closely
related to the training data is created at the potential cost of diminished generalisation perfor-
mance. Greater use of slack variables (high tolerance / low C') induces a decision boundary
less faithful to the training data, with the resulting possibility of greater generalisation per-
formance. The tolerance to misclassification that delivers best generalisation performance
may be found empirically by cross-validation or via investigation of an upper bound on the
expected generalisation error [Joachims, 1998a].
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Full tutorials on the SVM method and the statistical leaming theory that underpins it are
provided in fundamental texts by Vapnik [1995, 1998] and an excellent introductory text on
the subject by Cristianini and Shawe-Taylor [2000]. For quick reference, good descriptions
of the SVM method from first principles may be found in [Burges, 1998], [Vapnik, 1999]
and [Trotter and Holden, 2003]. The technique has been developed considerably over the
past ten years, both theoretically and to improve its the practicality of its application to a
variety of machine leaming tasks. A selection of such developments, the majority of which
are relevant to this research, are cited and described below.

SVMs have been successfully adapted to treat both regression [Vapnik, 1998] and one-
class (outlier detection) [Tax and Duin, 1999, 2004] problems. Support vector domain de-
scription (SVDD) [Tax and Duin, 1999] is an SVM-based technique that can be used for
data description, regardless of class labels, for the purpose of noise and outlier detection.
The SVM quadratic optimisation is employed to minimize a sphere that contains the ‘true’
members of a data set. In a similar manner to a separating hyperplane, the sphere is sup-
ported by a subset of the data. The centre of the sphere may be calculated from the subset of
‘support objects’ that support the sphere, allowing fast comparison of new points with the
training set. The SVDD method is a fast and accurate method of domain description and
may be extended to non-linear scenarios using kernel functions, to which the Gaussian RBF
kernel is well-suited. A soft margin is introduced via the use of slack variables. Applica-
tions of this method to real-world data are provided by [Tax et al., 1999; Tong and Svetnik,
2002] and [Morris, 2004].

Formulation of the algorithm for the classification of multiple discrete classes repre-
sents an area of ongoing research [Weston and Watkins, 1999; Hsu and Lin, 2001]. It is
far more common to encounter the use of SVMs for discrete binary classification than for
the classification of more than two classes. Unlike an ANN, it is not an easy task to train
an SVM classifier to recognize more than two classes of data simultaneously, due to its
linear formulation. Many multi-class SVM applications employ a one-against-all classifi-
cation scenario, in which a classifier is built to discriminate each class from all others, with
decisions combined upon classification of new examples [Hsu and Lin, 2001].

The representation of training data as inner products and the use of appropriate ker-
nel functions for non-linear SVM classification reduce effects of the curse of dimension-
ality. The time dependence of the algorithm upon the number of data attributes treated is
approximately linear, although this depends upon the kernel expansion employed for non-
linear classification. A corresponding disadvantage is that the optimisation scales poorly
(> O(n?)) with the number of training examples. Accordingly, an SVM may take longer
to train on large (> 1000) numbers of training data than many other supervised learn-
ing algorithms. Several methods have been developed to reduce the complexity of SVM
optimisation and its time dependency upon the number of training examples. The most
widely used method is that of decomposing the Hessian matrix of inner product values
(H = aTa yTy K(x,x)) over which the optimisation is performed. Much early (mid-
1990s) SVM research concentrated on reduction of SVM training time. Several fast SVM
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formulations have since been developed, the majority of which decompose the optimisation
problem [Osuna et al., 1997]. The reduced training algorithm selects a subset of training
data upon which an SVM is trained. The remainder of the data is classified by the resulting
decision boundary. Examples that violate the boundary are added to the working subset at
the expense of working subset examples that the boundary classifies correctly and which do
not support the boundary. The algorithm is iterated until the working set correctly describes
the optimum solution (no further replacement is required). Decomposition makes advantage
of the fact that SVM classification only makes use of the SV points. It is, therefore, quicker
to train on a small amount of training examples and optimise by classifying the rest than
to optimise over the whole training set. Chang et al. [2000] assess decomposition methods
for SVM approximation and reference the majority of work on the subject. A method of
selecting strategically the training subset employed during decomposition is described by
Hsu and Lin [2002].

Mangasarian and collaborators provide a different approach to computational resource
reduction. Instead of decomposing the optimisation problem per se, an attempt is made
to reduce computational demand via the use of inner products between the training data
and a small, representative, sub-sample of the training data when calculating the kernel
matrix. This ‘slims’ the kernel matrix considerably and is shown not to affect classification
accuracy, even when the subset used contains as little as 1% of the original training data.
Full descriptions of the method may be found in Lee and Mangasarian [2001]; Fung et al.
[2002] and Lin and Lin [2003]. Further comment on this method is made in Chapter 4.

As will be discussed in Chapter 3 and demonstrated in Chapter 4, it is often desirable
to treat one class of data in a different manner to another. Methods have been developed to
allow this, the majority of which include an alteration to the upper bound on the Lagrange
multipliers (equation (2.28)). Variable misclassification costs have been incorporated into
the SVM framework by Lin et al. [2000]. A relatively simple theoretical approach that
considers only the binary classification case adds variable costs to the slack variables in
equation (2.27). In practice, the same effect may be achieved by associating a different
value of the regularisation parameter, C, to the examples of each class [Osuna et al., 1997].
Applications of SVM weighting may be found in [Lee et al., 2001; Weston et al., 2003] and
[Shin and Cho, 2003].

SVMs may be adapted for use in specialist domains by the deployment, or design, of
suitable kernel functions. Polynomial and RBF kernels have been demonstrated to provide
good results on a wide variety of non-linear classification problems [Blanz et al., 1996;
Schélkopf et al., 1997; Hearst, 1998]. Methods for the design of domain-specific kernel
functions are becoming increasingly popular as SVMs are applied to a wide variety of real-
world applications. Schélkopf et al. [1998] describe methods of kernel function design that
incorporate the effects of transformational invariance and local correlation into an image
classification task. Jaakkola et al. [1999] introduces kernel functions that represent similar-
ity between protein sequence, Vert [2002] to analyse phylogenetic profiles and Lodhi et al.
[2000] to classify text documents (cf. Chapter 6). The benefit of involving local, rather than
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global, correlation between members of the kernel matrix is demonstrated further by [Zien
et al., 2000], when it is applied to an SVM used for the identification of particular regions
in protein sequence. A similar technique was developed at the same time by Brailovsky
et al. [1.999] and is developed further to tackle correlation between examples as well as
attributes. Local classification methods (such as the k-NN algorithm) and global training
methods (SVM) are combined to produce an algorithm that recognises local correlation
between training examples, without the complex solutions normally associated with lazy
algorithms. This method is applied to structure-property correlation data in Chapter 5.

There exist optimisation methods for the selection of kernel function parameters, most
notably by Chapelle et al. [2002]. By estimating a continuous bound on the expected gener-
alisation error of an SVM in kernel space, a gradient descent procedure can be used to select
the kernel parameters that offer the lowest expected generalisation error. This technique re-
moves redundancy in feature space, thereby offering a method of feature selection. This
method may also be used to estimate the regularisation parameter, C. The substitution of C'
with a bounded regularisation parameter, v, is described in [Cristianini and Shawe-Taylor,
2000]. Although still a free parameter, v is much easier to interpret, as it relates to both the
fraction of SV points and the fraction of margin errors made on the training set. Although,
as with C, cross-validation may be used to calculate a suitable value of v, bounds based on
the fact that it can be used to control the number of margin errors may also be employed.
Bounds on SVM generalisation have also been employed for free parameter selection by
Joachims [2000]. Alternatively, heuristics for kernel free parameter selection are provided
by Jaakkola et al. [1999] and Burbidge [2004].

SVMs are a black box technique and deliver little information about their predictions
other than the predicted class label. Error bars on predictions are not readily available with-
out reworking the algorithm within a probabilistic framework. If kernel functions are used
in order to make a non-linear classification, the solution is not mapped simply back to in-
put space. This lack of intuitive visualisation can make the SVM algorithm appear rather
obscure to an unfamiliar user. Sollich {2000, 2002] reinterprets the standard SVM formu-
lation, in order to visualise and optimise SVM kernel functions. Probabilistic interpretation
allows the incorporation of approximate error bars on SVM outcome. In the probabilis-
tic interpretation, it is sensible to attach class membership probabilities of less than one to
points that fall inside the margin of the SVM solution. Points falling outside the margin get
conventional probabilities of one. Further probabilistic treatments of the SVM algorithm
are provided in [Bishop and Tipping, 2000; Chu, 2003] and [Shin and Cho, 2003].

Support Vector Machines have been introduced as a powerful, theoretically well-
founded supervised machine learning algorithm, capable of dealing with large, high-
dimensional, non-linear classification problems. Despite some operational weaknesses,
which are outlined above, SVMs have consistently achieved performance competitive with
the state-of-the-art in a wide range of challenging, real world applications. They have also
generated a large and continued research following. To translate the theoretically high gen-
eralisation accuracy of an SVM to the complex, non-standard applications involved in drug
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discovery is not an easy task, however, and one that has proved problematic to other ma-
chine leaming techniques. Manallack and Livingstone [1999] ask whether ANNS live up to
their promise for drug discovery (a question answered in part by Schneider [2000]) and the
same question must be asked here of SVMs. The answer lies in the identification of an area,
or areas, of the drug discovery process in which the high predictive ability of SVMs is a re-
quirement and their relative disadvantages do not detract from their successful application.
To this end, the above-listed range of developments to the basic SVM algorithm, all within
the last 10 years, suggest a flexibility in the SVM framework that may assist the adaptation
of its strengths for application to specialist domains.

A suitable application for which to use an SVM for data analysis may involve the fol-
lowing:

e binary classification (multiple classes and continuous target acceptable);
o high generalisation accuracy required,;
e presence of noise and class overlap;

o little information required regarding classifier decisions;

high dimensional data and potential class imbalance;

classifier used to classify large numbers of new examples from relatively small num-

ber of training examples;
e supervised machine leaming already used as state of the art; and

o the potential for domain-relevant treatment to improve performance.

The construction of SPC relationships to provide in silico screens during the lead opti-
misation stage of the drug discovery process appears to involve the majority of the above
circumstances. With both the requirements of SPC analysis and the abilities of the SVM
algorithm placed in context, it becomes clear that SVMs should be a useful tool for both
this area of drug discovery and those beyond. Before placing this observation to the test
(cf. Chapter 4), there follows a brief review of the use of several familiar machine leam-
ing methods, both supervised and unsupervised, within the contemporary drug discovery
process.

2.2.6 Machine Learning in Drug Discovery

The use of machine leaming within the drug discovery process has proliferated since the
1980s. The main reasons for the increase, and the gradual replacement of traditional statis-
tical analysis methods by machine leaming, are threefold. First, the computational power
required to compute the complex, non-linear solutions produced by machine leaming tech-
niques has only become readily available over the past twenty years. Second, the use of
non-linear modelling techniques in drug discovery has been made obligatory by HTS and
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combinatorial chemistry, which themselves arose from technological developments made
during the past twenty years. Before HTS and combinatorial chemistry widened the search
for novel compounds and formulated it as a search by elimination, in silico screening was
not required to the extent that it is today. Finally, the development of techniques such as
neural networks, decision trees and genetic algorithms, all capable of modelling complex,
non-linear relationships that are intractable when attempted by traditional statistical mod-
elling techniques, has allowed those not involved in computer science research to apply
machine learing to a wide range of problem domains.

The role of machine leaming and in silico library screening in combinatorial drug dis-
covery is described by a large number of discussion papers on the subject. Relevant recent
publications include [Drewry and Young, 1999; Joseph-McCarthy, 1999; Van Hijfte et al.,
1999; B6hm and Stahl, 2000; Matter et al., 2001; Xu and Hagler, 2002; Bécker et al., 2004]
and the special journal issue of Schneider and Downs [2003]. All contain a wide range of
references on the subject and provide good explanations of the techniques involved in com-
binatorial chemistry and the motivation behind current library design methods. Informative
applications of machine leaming techniques (there are many poor applications) to in silico
screening and library design are reported by Manallack and Livingstone [1999]; Schneider
[2000]; Sadowski [2000]; Burbidge et al. [2001]; Trotter and Holden [2003] and, most re-
cently, Frohlich et al. [2006]. These papers are set apaﬁ from the growing number of such
publications because they provide clear descriptions of state-of-the-art screening techniques
alongside information regarding the application that remains comprehensible to those out-
side the immediate field of drug discovery. Compound classification as a machine learning
application was examined during the 2001 KDD Cup competition, in which competitors
investigated the application of machine leaming to the prediction of compound binding to
Thrombin (http.//www.cs.wisc.edu/ dpage/kddcup2001/) .

Chapter 4 describes SVM performance alongside a selection of other supervised learn-
ing methods, when applied to ADMET classification tasks provided by GlaxoSmithKline.
Prior to their use in the comparison and further reference later in this work, brief descriptions
of several machine leamning techniques, both supervised and unsupervised, are provided be-
low. Several other techniques, which are not the focus of this research, and their application
to areas of drug discovery are cited also. Citations of published work that describes their
application to pharmaceutical classification are provided.

During the course of this work, SVMs have been applied to data drawn from the drug
discovery process on an increasingly regular basis. Drug discovery has been recognised by
the machine leaming community as a source of challenging data upon which to test machine
leaming algorithms and it remains apparent that in silico drug discovery requires input from
a diverse range of sources in order to achieve its full potential within the drug discovery
process. The application of the latest machine learning methods to solve drug discovery
problems, such as effective structure-property relationship analysis, has a large contribution
to make towards this objective.

An early application of SVMs to drug discovery data, and the first to emerge from this
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work, was reported by Burbidge et al. [2001]. The SVM'#" implementation of Joachims
[1998a] was applied to the publicly available [Blake and Merz, 1998] QSAR data of King
etal. [1992] and its performance compared to other supervised machine leaming techniques.
The benchmarks included three neural network architectures (cf. p. 57), a radial basis func-
tion network (cf. p. 59), a C5.0 decision tree (cf. p. 62) and a one-nearest-neighbour clas-
sifier (cf. p. 63). The SVM comfortably outperformed all except a neural network with
manual capacity control. The difference in estimated generalisation performance between
an SVM with RBF kernel function and the neural network was negligible (0.3%), but the
network parameter tuning and training time was an order of magnitude larger, due to the
extensive manual tuning required to control the number of hidden nodes and prevent over-
fitting by the ANN. The conclusion reached was that the SVM demonstrated great potential
for QSAR analysis.

Trotter et al. [2001] introduced the application of SVMs to SPC analysis, using BBB
data similar to that described in Chapter 3. This paper, intended as an introduction to
both technique and application for industry consumption, employed an early version of the
RoCKET project [Buxton et al., 2002] SVM implementation, also described in Chapter 3,
and compared performance against ANN, RBF, C5.0 and k-NN methods. Overall predic-
tive accuracy of the RBF-SVM was higher than that of the other methods, but the increase
was gained via better generalisation performance on a class that represented the majority
of the training data. The class in question was that which would be most desirable to re-
tain in the selection process, therefore, the effect of class imbalance was noted but neither
evaluated nor discussed further, as it is in Chapter 4 of this work. In retrospect, the exper-
imental practice employed to set SVM free-parameters (a single constant was used to set
RBF width) and to assess generalisation performance (only overall generalisation accuracy
was considered) lead the high-capacity RBF kernel SVM to concentrate more than is wise
on the majority data class. Nevertheless, the work introduced the potential benefits of SVM
application to problems of SPC analysis and, in reporting performance on both data classes,
lead to the improved treatment of data imbalance seen in later chapters of this thesis.

A further, comprehensive introduction to the SVM technique and its potential role in
SPC analysis was provided by Trotter and Holden [2003], who combined a concise intro-
duction to the SVM technique from the perspective of optimal linear classification, with a
review of machine leaming for SPC analysis and a performance comparison similar to that
of Trotter et al. [2001] but on the BBB, Bioavailability and Protein Binding data described
in Chapter 3 and using an experimental practice similar to that also described in Chapter 3,
which aims to assess generalisation performance in a manner that acknowledges the often
large imbalance in training data class populations. The sizeable effects of training data class
population imbalance were observed and the use of PCA data reduction (cf. p. 66) sug-
gested as a means of improving predictive accuracy on a minority data class via its stronger
representation in input/feature space. Interestingly, this approach is demonstrated not to be
particularly effective in Chapter 4, section 4.1 of this work.

These methods, and others like them [Doninger et al., 2002; Byvatov et al., 2003; Yap
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et al., 2004], follow a familiar pattern, often observed during the introduction of a new
method to an existing application domain. The new method is applied alongside other
methods that constitute a state-of-the-art to data drawn from the application domain, but
measures to adapt the methods applied to the specific challenges of the domain are seldom
taken. In other words, the methods assessed are applied to the domain in an ‘off-the-shelf’
manner and such early works provide a proof-of-concept that encourages further consider-
ation of how best may the new method be successfully applied to the application domain.
The research hypotheses of this thesis, which are stated in Chapter 1, reflect this procedure.
A further pattern is that all of the work described above assesses the potential contribution of
the SVM algorithm solely according to the predictive accuracy of its classifiers, over other
potential benefits shown during its application to other domains, such as the incorporation
of domain-relevance into the kernel transformation [Watkins, 1999; Jaakkola et al., 1999;
Lodhi et al., 2000; Vert, 2002].

In recent years, work that applies SVMs to the drug discovery process in a less straight-
forward manner has begun to appear. A particularly interesting example is the application
of an SVM within a query leaming framework [Campbell et al., 2000] to QSAR data by
Mathieson [2001] and Warmuth et al. [2002]. An SVM is shown to perform well on heav-
ily class imbalanced, sparsely represented Thrombin binding data set - related to that used
during the KDD Cup 2001 (cf. p. 54) - by iteratively requesting the class labels of un-
labelled data examples identified as important to generalisation (those within the margin
hyperplanes of an SVM trained on a subset of labelled data at each iteration). The idea
that the learning algorithm is trained in the presence of unlabelled compounds, synthesised
in silico, and directs which of those compounds should be labelled by in vitro screening
in order to join the training set and improve generalisation performance would represent a
radical departure from present methods of training data production in the design cycle of
combinatorial chemistry [Eriksson and Johansson, 1996; Drewry and Young, 1999]. Algo-
rithms that employ unlabelled examples alongside labelled examples during training, so as
to create a classifier more likely to generalise well to unlabelled data in future, are known
as transductive, rather than inductive, and several formulations exist for the transductive
inference of SVM classifiers [Vapnik, 1998; Bennett and Demiriz, 1998; Joachims, 1999;
Jaakkola et al., 2000]. Further work on transductive approaches to drug discovery are in-
troduced by Weston et al. [2003]. An SVM is assessed against a method of transductive
inference on a the same sparse, binary representation of 3D molecular structure as used in
[Mathieson, 2001} (Thrombin binding data; KDD Cup 2001; see p. 54), in a manner de-
signed to overcome the high cardinality, binary representation of molecular structure and
extreme class imbalance in the training data (only 42 of 1909 compounds bind to Thrombin
as required). Further application of transductive, or semi-supervised, leaming methods to
analyse large combinatorial libraries at lead generation stages of the drug discovery process
is the subject of work by a research consortium at the Rennselaer Polytechnic Institute, New
York, USA [Embrechts et al., 2003].

Another development of standard SVM practice for specific application to pharmaceu-
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tical data introduces a kernel transformation that maps directly from a labelled graph rep-
resentation of molecular structure to a feature space constructed from relevant similarities
between molecular structures [Frohlich et al., 2005, 2006], which obviates the traditional
descriptor selection problem that may afflict QSAR and SPC analysis [Eriksson and Johans-
son, 1996; Drewry and Young, 1999]. This method is described in detail during Chapter 6 of
this thesis, alongside the introduction of new work on the kernel representation of relevant
molecular similarity. The suggestion that present levels of structure-property classifier per-
formance may be improved via the representation of molecular structure in a feature space
constructed from relevant measures of inter-molecular similarity is subscribed to by this
work and, alongside transductive approaches, provides a particularly promising avenue of
further investigation. Additional work of potential interest includes that of Burbidge [2004],
which concerns heuristic methods of SVM application, including online adaptation of ker-
nel free-parameters during training and early-stopping criteria, to data of various molecular
representations drawn from lead generation in work performed under the same research
consortium as the work in this thesis [Buxton et al., 2002]. The recent work of Wilton et al.
[2006] also describes the role of SVMs in lead generation.

Machine learning was applied to structure-property analysis in drug design for at least
two decades prior to the advent of support vectors machines. The remainder of this chapter
describes several widely used machine leaming methods, both supervised and unsupervised,
and their application to drug discovery. Artificial neural networks (ANNs) have become a
particularly popular method of constructing relationships between molecular structure and
properties of biological interest [Manallack and Livingstone, 1999]. The most widely used
ANN methods in drug discovery are backpropagation neural networks and radial basis
Sfunction (RBF) networks. Unsupervised neural network methods, e.g. Kohonen networks,
are also applied to data visualisation tasks. The history of ANN development and further
details on a variety of neural network architectures and training methods can be found in
texts by Hertz et al. [1991] and Bishop [1995a]. A useful text by Devillers [1996b] describes
the use of all three ANN architectures for SAR analysis.

A typical ANN architecture consists of a several nodes, analogous to neurons in the
human brain, connected by a series of weights. Each node receives a weighted sum of
inputs, as described for perceptrons in § 2.2.2. In the majority of implementations, the
binary perceptron threshold is replaced by a continuous sigmoidal function that, for a data
example x € R™, receives the weighted sum of m inputs

1

fx) = T3 e-™o (2.29)

The output range of a sigmoidal decision function is [0, 1] and functionally dependent on

the magnitude of the weighted input sum. An additional bias weight, wg, with an associated
constant input, zo = 1, provides a bias term.

The sigmoid unit is differentiable, therefore, layers of sigmoids, which feed their output

forward from one layer to the units of the next, provide a differentiable non-linear error
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surface. Internal (or ‘hidden’) layers encode input information and provide non-linear in-
terconnection between input and output layers.

Output layer weights are updated in a manner similar to that employed in the linear
perceptron, by an error measure calculated via comparison with the target attribute labels
of the training data. The output of internal nodes, which encode the inputs rather than map
them directly to the target attribute, may not be compared to the target attribute labels to
obtain a measure of error with which to update them. Accordingly, a measure of error at
the output layer is fed backwards (back-propagated) through preceding layers to provide
the basis for internal weight updates. The ability to update hidden layer weights without
explicit comparison of their output with the target attribute labels of the training data, thus
providing a continuous error surface across all network weights, represents the solution to a
problem that almost halted neural network research during the 1970s [Mitchell, 1997].

Gradient descent optimisation may be employed to update network weights according
to an appropriate loss function over the training data. It is less complex to update network
weights after each training example has passed through the network, instead of allowing
the entire training set to pass through the network before updating the weights (cf. sum
of squares, p. 33). This approach, stochastic gradient descent, provides an acceptable ap-
proximation to gradient descent across network weights, while accelerating convergence
and reducing problems associated with local minima in the network error surface [Bishop,
1995a; Mitchell, 1997]. The network is trained repeatedly until a predefined stopping crite-
rion is fulfilled. The stopping criterion may be, for example, a preset error threshold, time
limit, or number of training iterations, i.e. the point beyond which any further performance
improvement is expected to become negligible.

The flexibility of ANN architecture and, thus, their potential capacity requires painstak-
ing and heuristic architecture and free parameter selection (capacity control) in order to
avoid overfitting the training data and provide good generalisation performance within a
reasonable limit of complexity. The complex, non-linear solutions available from a multi-
layer network correspond to high algorithmic capacity. Hence, the possibility arises that
an ANN may overfit the training data, by including noise, to a considerable degree. The
capacity of a multi-layer neural network increases with the number of nodes in internal
layers. Regularisation is performed by balancing the number of nodes necessary to map
input examples to their target attribute labels with an observed measure of overfitting. If,
despite high accuracy on the training data, performance is poor on an independent valida-
tion set during training, the network may be pruned of some hidden layer nodes prior to the
resumption of training.

The total number of weights in most networks is much greater than the number of input
weights. The corresponding error surface over all possible ANN classifiers available from
the network weights (hypothesis space) may be complex and non-parabolic in consequence.
Accordingly, ANNs may converge to local minima in the error surface during training,
which may trigger a performance-related stopping criterion. This problem may be overcome
by adding a ‘momentum’ term to the weight update. Within a gradient descent optimisation
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framework, the new update simulates a ball, rolling down the error surface, the momentum
of which carries it through local minima. Other potential concerns regarding the practical
application of neural networks include the reproducibility of results, due largely to random
initialisation of the network weights and variation of stopping criteria [Bishop, 1995a], and
lack of information regarding the classification produced. The latter may be remedied via
the combined application of ANN and an interpreting technique in a hybrid system (see
below, p. 2.2.6).

Several texts provide detailed introductions to the ANN technique. Among the most in-
formative are those by Hertz et al. [1991] and Bishop [1995a]. All include derivations of the
sigmoid training rule and the backpropagation algorithm. Mitchell [1997] provides a clear
derivation of the backpropagation training algorithm in relation to gradient descent. These
sources also detail the history of ANNs, from early linear perceptrons to the present day,
outlining some of the problems faced in reaching the current level of development. Early
neural networks are covered well by Duda et al. [2000]. Manallack and Livingstone [1999]
provide an informative review of the use of various ANN architectures for drug discovery
and discuss both the problems encountered in the application of ANNs to drug discovery
and their potential solutions. Kdvesdi et al. [1999] provide a detailed application of neural
networks to SAR analysis. This paper is domain-specific, but makes interesting points about
the use of neural networks in a situation similar to the application considered by this work
and is notable for a large number of useful citations. The introduction of ANN methods
to SAR analysis is nicely documented by a collection of papers made available online by
Igor Baskin (Attp://org.chem.msu.swpeople/baskin/neurchem.html) and general acceptance
of ANNs as a useful technique for drug discovery is suggested by [Schneider, 2000]. That it
appears to take almost 20 years between initial applications of ANNSs to structure-property
relationship modelling and publications such as [Manallack and Livingstone, 1999] and
[Schneider, 2000] serves to highlight the importance of successful interaction between the
field of computer science and the domains to which its developments are applied.

Radial basis function (RBF) networks approximate the training data via the linear com-
bination of basis functions in an architecture similar to that of ANNs. A typical such basis
function describes a Gaussian distribution located in input space with centre ¢ € R™ and
width determined by a constant 0. Each function approximates a local area around its centre
and its contribution to the approximation becomes weaker with distance. A basis function

acts on a point x € R™ in the following manner

B(x,c,0) = exp (—M) . (2.30)
202

An RBF network consists of a weighted sum of the outputs of several basis functions located

across the input space, which is directly analogous to the non-linear mapping described

earlier in § 2.2.3. To classify an unlabelled example, the network decision boundary is

provided by a threshold on the weighted sum of basis function contributions. For a point,

x € R™, and a collection of d basis functions with associated weights w;, centres c¢; and
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widths o; (i = 1...d), the RBF network output is

d
f(x) =sgn (Z w; Bi(x, ¢i,04) + wo) . (2.31)

=1

The basis functions, B; (x, ¢;, 0;), are equivalent to d individual mapping functions of the
example vectors, x;. Therefore,

$i(x) = B; (x,¢;,0;)

and

d
f(x) = sgn (Z w; B;i(x,¢;,0;) + wo)

=1

]

d
sgn (Z w;di(x) + wo) = sgn (w7 ®(x) + wo)
=1

The first stage of RBF network training determines the number, location and range of
the approximating functions. Several methods are available for the initial placement of basis
functions, from the location of basis functions around every training data example to the use
of clustering algorithms (see p. 64 onwards) to place basis functions about groups of similar
examples. The latter approach is more efficient than the former, especially on large data
sets. The second stage of training optimises the approximation weights, which regulate basis
function contributions to the decision function. This may be performed by gradient descent
on the sum of squares loss function over the training data (cf. § 2.2.2 and ANNs above). The
training structure of an RBF network may be viewed as a two-layer ANN, with Gaussians as
hidden layer nodes connected to the output by weights. RBF network training is faster than
training a two-layer ANN, however, as RBF network layers are trained separately. Another
advantage is that the RBF ‘hidden layer nodes’ represent explicit mappings of input space,
therefore, RBF networks lend themselves more favourably to probabilistic output than do
ANNS, the hidden nodes of which tend to encode the input space rather than appear within
it. Work by Walczak and Massart [1996] provides an example of the application of RBF
networks to molecular structure-activity analysis and RBF network performance on QSAR
and SPC analysis problems is assessed during the comparisons of Burbidge et al. [2001]
and Trotter and Holden [2003].

Despite the popularity of neural network architectures, several other supervised ma-
chine leaming algorithms have been applied widely to problems of drug discovery. Ge-
netic algorithms (GAs) are a powerful stochastic technique for optimisation and regression
[Goldberg, 1989]. Based on the principles of Darwinian evolution and genetics, GAs start
with a population of Avpotheses (a random subset of hypothesis space), which are allowed
to ‘breed’ over several generations in order to evolve a solution. For example, the initial
population could be a collection of linear classifiers with randomly drawn weight vectors.
Hypothesis parameters are represented by chromosomes, to which genetic operators are ap-
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plied to diversify the population. Mutation operators select a parent hypothesis at random
and mutate it via a random change to the chromosomes. Crossover operators interchange
selected chromosomes from two parent hypotheses, to produce offspring for the next gen-
eration. At each training iteration, the population are tested according to a fitness criterion,
for example, a measure of empirical error across the training data. Those below a fitness
threshold are rejected from the population under the assumption that the underlying causes
of their weak performance should not be passed to the next generation. Those above the
fitness threshold are acted upon by the genetic operators in order to produce the next gener-
ation.

GAs provide a particularly good random search optimisation technique and have pro-
duced good results when applied to drug discovery, especially when treating the traditional
QSAR or ‘drug-likeness’ scenario during lead generation [Gillet et al., 1998; Shi et al.,
1998]. Design and application of the technique is not without associated challenges that
affect generalisation ability and the size of discrimination task involved. For example, the
time taken to evolve an optimum solution may be much longer than for other leaming tech-
niques. The stochastic nature of GA population initialisation and genetic operators leaves
output dependent upon choices made during implementation of the algorithm, which re-
quire careful consideration prior to training. GAs may converge prematurely due to the
early appearance of a particularly strong hypothesis (and its offspring), which dominates
the population and produces a situation analogous to neural network convergence to local
minima.

Several modifications to the basic algorithm solve many impediments to their success-
ful application. These range from different evolutionary strategies to the co-evolution
of separate algorithms, which compete against each other. Comprehensive introduc-
tory texts on GAs and their development as a machine leaming tool are provided by
[Goldberg, 1989] and [Mitchell, 1996]. The practical application of GAs to structure-
property data is the subject of a texts by Hibbert [1993] and Devillers [1996a] and a
large body of work regarding the application of GAs to drug design is available online
at http://panizzi.shef.ac.uk/cisrg/links/ea_bib.htmi.

Decision trees provide informative classification via the induction and combination of
predictive rules for each data attribute. In the simplest case of discrete data and target
attributes, training example attributes are examined and ranked according to their ability
to partition the data examples according to the target attribute. The most common ranking
measure employs the entropy of labelled data to measure the relative size of target attribute
groupings (impurity) within the data. If an equal number of examples belong to each class,
the entropy is maximal. If all examples belong to a single class, the entropy is zero. The
information gain of a single data attribute is the reduction in entropy expected were the
training data partitioned by a threshold on that attribute alone [Mitchell, 1997].

A popular method of decision tree construction employs recursive partitioning. At-
tributes are ranked as described above and the most informative is selected. Thresholds
available on the most informative attribute are used to partition the training data. On each
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partition of the training data, the selection process is repeated for all remaining attributes.
The selection and partition steps are iterated until an attribute with zero entropy is reached
(or there are no more attributes to consider). An attribute with zero entropy associates a sin-
gle class label with all examples that reach it. To treat continuous attribute values, thresholds
are selected in order to maximise the information gain of an attribute. A lower limit may
be placed on the number of thresholds employed for each attribute, e.g. each attribute must
possess at least two partitions. A detailed description of the above is provided by [Mitchell,
1997].

The attributes selected at each partitioning step may be represented as ‘nodes’ and the
progression between nodes (along ‘branches’) represents the training data subset chosen by
partition. Thus, the attributes and their partitions represent a tree structure in which the
most informative attribute is chosen as the root node at the top of the tree, analogous to a
tree trunk. The branches represent partitions of the training data according to thresholds
on the preceding node. At the end of each branch a further node represents the next most
informative attribute. The tree continues downwards and terminates at ‘leaf” nodes, which
label examples with values of the target attribute. The hypothesis space represented by a
decision tree trained on discrete data is particularly expressive and is guaranteed to contain
a number of classifiers in version space. The training data may be partitioned according to
the target attribute by several possible tree sub-structures (hypotheses).

The decision tree, as described above, is designed so that its leaves replicate the target
attribute as closely as possible. As described earlier, the pursuit of minimum empirical
error leaves a learning algorithm open to overfitting the training data and, subsequently,
poor generalisation performance. To counter this, the tree may be pruned via the systematic
removal of attribute nodes and the branches below them until the empirical performance
of the tree suffers as a result. Pruning a tree that fits the training data well without loss of
empirical performance increases the likelihood that the pruned tree will generalise well on
further examples drawn from input space (cf. the principle of Ockham’s razor, described
well in [Russell and Norvig, 2003]). Other methods to improve tree performance include
various information gain measures and cost functions [Mitchell, 1997], which weight certain
attributes so that they appear higher up the tree.

Quinlan’s commercially available C5.0 tree algorithm is widely used for pharmaceuti-
cal classification and it is based on his earlier C4.5 and ID3 algorithms [Quinlan, 1986].
A benefit of decision trees is that they can be used to elaborate upon decisions made by
more powerful and less informative techniques, such as ANNs (cf. hybrid techniques,
p. 2.2.6). Decision trees have gained favour in pharmaceutical lead optimisation due to
the user-friendly, rule-based nature of their predictions. Nevertheless, it is common that the
rules produced by trees contain as much, if not more, information about which properties a
molecule should not possess as they do about which properties it should possess in order to
fulfill a given selection criterion. This is an open problem, the solution of which would be
of great benefit to the molecular analysis community and which, although not touched upon
further during this thesis, would make an interesting subject for future work. There exist
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powerful decision tree methods capable of competing with both ANNs and GAs in terms of
predictive accuracy, but they commonly require a great deal of tuning to do so [Murthy et al.,
1998]. Simpler techniques are available and popular but can sometimes struggle to attain
similar performance levels. This will become apparent during later stages of this work. A
good example of the application of decision trees to molecular classification is provided by
Hawkins et al. [1997] and the CS.0 algorithm is employed for the purposes of algorithmic
comparison on QSAR and SPC data in [Burbidge et al., 2001; Trotter and Holden, 2003]
and, similarly, Chapter 4 of this work.

Lazy learning algorithms only consult the training data upon introduction to an unknown
example. Lazy algorithms are different to the eager algorithms described earlier, as they
use the location and neighbourhood surrounding an unknown example as a basis for their
classification, instead of discriminating over the training data before classifying a set of
unlabelled data. For example, Nearest-neighbour classifiers (k-NNs) are one of the most
popular, and least complex, supervised classification techniques [Cover and Hart, 1967].
The k-NN algorithm examines the class labels of a pre-specified number (k) of training ex-
amples that are nearest to an unknown example. The unknown example is assigned the class
label associated with the majority of the k nearest examples. The curse of dimensionality
is partially avoided via the assessment of similarity between test and training examples, as
for kernel transformations on example pairs (§ 2.2.3). The higher the dimension, however,
the more calculations are necessary in order to find the nearest neighbours. Despite their
relative simplicity, k-NN classifiers often provide class-leading predictive ability [Trotter
and Holden, 2003] and are frequently used to provide a benchmark when evaluating new
machine leaming methods (cf. Chapter 4). Other lazy leaming algorithms, such as non-
linear density estimators, are increasingly employed to QSAR analysis for lead generation
in large compound collections [Wilton et al., 2006] and are discussed further in Chapter 6.

Hybrid techniques represent the simultaneous use of more than one technique (a hybrid
system). Hybrid systems are used in drug discovery to solve problems that range from data
visualisation to classification and clustering. The most popular hybrid framework employed
is the use of one technique to perform a principal function of another (function-replacing
hybrids [Goonatilake and Khebbal, 1995]). This may be described as technique enhance-
ment, whereby the weakness of one technique is replaced by the strength of another. For
example, a GA may be employed to optimise the weights of a backpropagation ANN archi-
tecture. In doing so, performance is improved and the system converges in far fewer cycles,
reducing the training time of the algorithm (hybrid GA / ANN architecture [Manallack and
Livingstone, 1999]). In general, accurate techniques that are slow to train or difficult to opti-
mise may be made faster to operate without consequent loss of accuracy [Bennett and Blue,
1997]. Hybrids have also been used to provide more information regarding the output of
‘black box’ techniques, e.g. ANNs. Goonatilake and Khebbal [1995] provide a comprehen-
sive review of ‘Intelligent Hybrid Systems’ that includes examples of many different kinds
of hybrid system, applied to a variety of problems. Some examples of their use for drug
discovery may be found in [Gini et al., 1998; Li et al., 1999; Manallack and Livingstone,
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1999] and [Langdon et al., 2001].

The supervised machine leaming methods described above are arguably the most
widely applied to the drug discovery process, but formulation of the relationship between
molecular structure and biological properties of interest as a supervised machine learning
problem has lead to the application of a much wider range of learning methods. For
example, inductive-logic programming (ILP) [King et al., 1992; Hirst et al., 1994; Bryant
et al., 1997], fuzzy logic [Russo et al.,, 1998], expert systems [Gini et al., 1998} and
probabilistic approaches [Labute, 1998] have all been applied to various stages of the
discovery process with various degrees of success.

A selection of unsupervised leaming methods, used in order to identify trends in molec-
ular similarity during combinatorial library design, are given brief descriptions in the same
manner as for supervised leaming methods above. In silico drug discovery produces a
large amount of highly descriptive data, the complexity of which may require reduction
to facilitate handling and visualisation. Accordingly, unsupervised leaming techniques are
employed widely throughout the discovery process primarily for such purposes. Clustering
techniques are used to find patterns in sets of unlabelled data. Unlike supervised learning
techniques, the data examples do not have associated target attribute values, thus prompting
a search for groups of similar points in order to categorise the data. Clustering techniques
are used to explore chemical space to identify regions of interest in large collections of un-
known, or unlabelled, compounds. Information regarding the structure of chemical space
can be used to narrow a search via the identification of suitable starting points and to design
training sets for the supervised techniques listed above. The majority of clustering algo-
rithms seek to minimise intra-group variance and maximise inter-group variance in order to
find the clearest groups (clusters) in the set. Examples that do not fall easily into any cluster
are called outliers or singletons [Butina, 1999].

Outlier detection techniques are used to remove combinatorial library members that
possess similar binding affinity and / or biological property values, to avoid redundancy and
allow a library to cover its chemical space more efficiently. The most diverse compounds in
a library are weeded out and investigated further. If the structural features that cause outliers
to be distinct from the other library members lead to unsuitable biological properties for the
therapeutic aim, they are removed. If they possess suitable biological properties as well as
possessing distinct structural characteristics, they are given special treatment, as they may
describe a new area of chemical space that contains molecular combinations that can fulfill
the therapeutic aim. Further combinatorial synthesis around an interesting outlier furthers
the chance of discovering a novel therapeutic product [Butina, 1999].

k-means clustering is a simple partitioning technique that requires some knowledge of
the data prior to its application. Cluster centroids are spread uniformly across the data,
according to an initial estimate, &, (informed or otherwise) of the number of clusters within
the data. Data examples are assigned to the closest cluster centroid (according to a chosen
similarity metric) and centroids are moved to the mean point of their members. The process
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is iterated until the centroids cease to move beyond a threshold limit. Thus, clusters are
formed via the minimisation of intra-cluster variance and the maximisation of inter-cluster
variance [Mitchell, 1997].

Agglomerative clustering is a hierarchical clustering technique. Initially, each data ex-
ample present represents a cluster. Each cluster is iteratively expanded in a uniform manner.
When two, or more, clusters make contact, they become a single, larger cluster containing
all of the examples from the previous ones, and so on until all of the data examples are
contained within one cluster. Each cluster has a lifetime, during which, the amount of points
it contains does not change. When cluster lifetimes are examined, those that survive longest
are deemed most stable. Divisive clustering works by the same principle, but starts with one
cluster that contains the whole data set and shrinks it until every point represents a cluster.
This method is well suited to the display of results, because the agglomeration (or divi-
sion) process may be represented by a tree structure. The single cluster that encompasses
the whole data set represents the trunk and, as that cluster is subsequently divided into
smaller clusters, their appearance represents the tree separating into branches. The longer
the branch, the more stable the cluster [Eisen et al., 1998]. An application of cluster trees to
QSAR data is provided by [Santos Magalh3es et al., 1999].

Jarvis-Patrick clustering [Jarvis and Patrick, 1973] is a non-parametric method, which
is particularly suitable for examination of large, high-dimensional data sets. The method is
aimed at solving clustering problems encountered when the examples are not grouped into
easily separable ‘globules’. Data examples are grouped according to the number of shared
nearest neighbours, which requires selection of the number of nearest-neighbours to exam-
ine and the number that must be in common for two molecules to inhabit the same cluster.
The revised method of Butina [1999] only requires one parameter selection. A primary
cluster centroid is identified as the molecule with the largest number of neighbours within
some similarity threshold. The centroid and its neighbours are removed from the data and
the process iterated, selecting centroids and their neighbours, until the remaining molecules
have no neighbours within the similarity threshold, i.e. they are singletons. Clustering is
performed by placing an exclusion sphere of radius equal to the similarity threshold about
each centroid, so as to contain the centroid neighbours and identify any new molecules that
fall within a particular cluster. A brief review of several clustering methods, including hier-
archical and non-parametric, employed in the design of combinatorial libraries is provided
by [Drewry and Young, 1999].

Unsupervised leaming is employed also for the visualisation of high-dimensional de-
scriptions of molecular structure. Humans have formidable pattern recognition ability on
data displayed in one, two or three dimensions. Data of higher dimension presents a prob-
lem, as we are unable to perceive it. Statistical transformations, such as principal com-
ponent analysis, and unsupervised machine learning techniques, such as Kohonen neural
networks, have been successfully employed in drug discovery to visualise multivariate data
and to focus the information presented to supervised leaming techniques via the extraction
of information and reduction of redundancy in large data sets (cf. § 2.2.4) [Xu and Hagler,
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2002].

Neural networks may be employed to visualise multi-variate data. Kohonen networks
consist of a two-dimensional grid of nodes (e.g. the sigmoidal nodes described earlier),
connected to each attribute of a data set. Upon encountering a new example, the node with
weight vector most similar to the example has weights updated to approach the example.
A neighbourhood function updates the weights of surrounding nodes in a manner inversely
proportional to their distance from the most similar node. The range of the neighbourhood
and the leaming rate of the update procedure are reduced gradually during the leaming
process. Thus, the algorithm makes large initial changes to the weight vectors of grid nodes
and proceeds to tune the changes made. Learning ceases when the learning rate approaches
zero. Trained thus, the two-dimensional grid of nodes displays a 2D topology of the original
data set, via similarities between node weight vectors. The Kohonen network is used widely
for the elucidation of structure-property data and examples of its successful use are provided
in a text by Devillers [1996b].

Auto-associative neural networks employ a feed-forward, multi-layer perceptron archi-
tecture to map input data to a lower-dimensional space. For example, a reduction of data
with dimensionality m to a lower dimensionality d < m, may be performed by a network
with m input layer nodes that feed forward into d hidden layer nodes. The hidden layer
nodes, in turn, feed forward to m output layer nodes. The targets of the output layer nodes
are the corresponding m inputs. Thus, the network is trained to replicate the input. Once
trained, the d hidden layer outputs provide a d-dimensional representation of the original
data. When presented with new input data, the hidden layer nodes map the new data to
d-dimensional space, thereby reducing dimensionality [Bishop, 1995a; Schwenk, 1998].

Principal Components Analysis (PCA) [Jolliffe, 1986] maps attribute vectors to a set
of orthogonal axes, formed of a weighted linear combination of the original attributes. Inter-
attribute correlation and, hence, redundancy is removed from the new, orthogonal space to
which the data are mapped. The original data are reduced by mapping to a smaller set
of orthogonal axes, for example, to alleviate the negative effects of data redundancy and
the curse of dimensionality when attempting to associate a target attribute with the data.
The notion of mapping data to a lower dimensional space contrasts previous descriptions
of high-dimensional mappings in order to facilitate the creation of non-linear relationships
between data and a target attribute.

Dimensionality reduction requires the removal of a subset of the new axes, preferably
involving as little information loss as possible. Work by Jolliffe [1986], described clearly in
[Bishop, 1995a], shows that an orthogonal transformation of a body of data that accounts for
the variance inherent within it, but not necessarily displayed by the original axes, permits
the new axes to be ranked in order of the amount of variance that they account for. This is
embodied by a convenient eigen-transformation of the original data, X, in the form of its
covariance matrix,

n

Tx =3 (xi—%)(x—%)7

i=1



Chapter 2. Background 67

where X is the mean vector of the collection of attribute vectors, X. The eigen-solution,
b)) XxXv;, = /\ivi

provides the orthogonal axes, in the form of the eigen-vectors v;, and the means to order
them, in the eigen-values \;. The summed eigen-values represent the amount of variance
accounted for by the transformation. Removal of eigen-vectors corresponding to the lowest
eigen-values reduces dimensionality with least information loss. The heuristic methods of
Kaiser [1960] and Catell [1966] provide guides to how many eigen-vectors to remove whilst
retaining a sensible amount of the original variance. The scree test is employed later in this
work in Chapter 4. An additional benefit of this approach is that the two (or three) eigen-
vectors with highest eigenvalues may be employed to provide a low dimensional visualisa-
tion of the data. This approach is particularly popular when examining high-dimensional
data, such as the pharmaceutical data encountered here, and is available in many commer-
cial data analysis packages [Xu and Hagler, 2002], e.g. DecisionSite software [Spotfire
Inc., 2005]. Relevant developments of the PCA transformation outlined above include its
treatment by kernel methods, in order to provide a set of orthogonal axes that relate to the
original data in a non-linear fashion [Scholkopf et al., 1999].

Multi-dimensional Scaling (MDS) [Kruskal, 1964] performs an eigen-transformation of
an original data set, X, in a manner similar to PCA, but replaces the co-variance matrix
with a matrix containing measures of inter-example dissimilarity. The dissimilarities may
be described by Euclidean distance (or some other Minkowski distance) between examples,
but may be described also by any valid measure of dissimilarity, e.g. the Pearson correlation
coefficient subtracted from one yields a dissimilarity in the range [0,2]. A transformation
performed on a measure of inter-example distance yields a new set of axes which account
for the dissimilarities between examples in the original input space. Eigen-values associated
with the transforming eigen-vectors may be used to order the eigen-vectors in order of how
well they reflect the inter-example relationships in the original space, which allows the data
to be reduced for visualisation or greater representational efficiency [Wang et al., 2004].

The Mahalanobis Distance is related to PCA data transformation. The distance of each
example in a body of data from the estimated location (or centre) of that body is described

by

Dy = (% — %) 2% (xi — %)

?

where the mean vector of data set X is employed to describe the location of the data and
the covariance matrix of X is employed to describe the shape of the data. The Mahalanobis
distance is employed to identify outlying compounds that possess different structural prop-
erties to the other members of a particular library or collection. Outlier detection is facili-
tated by the knowledge that the Mahalanobis distance of points within a multivariate normal
distribution correspond to an F-distribution with degrees of freedom determined by the di-
mensions of the set X (m and n — m). The location and shape parameters as described
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above are not robust to the presence of outliers in the data, however. Accordingly, several
robust Mahalanobis distance measures exist with which to identify outliers using a statis-
tical threshold, e.g. [Franklin and Brodeur, 1997; Hardin and Rocke, 1999]. The method
of Filzmoser et al. [2005], developed to identify outliers in geological data, provides an
automated outlier detection threshold on a robust Mahalanobis distance measure.

The unsupervised techniques described above represent a selection of the more popular
data analysis methods employed within the drug discovery process. Several sources pro-
vide more detailed descriptions, including Hand [1981]; Martens and Nas [1989]; Bishop
[1995a]; Mitchell [1997]; Duda et al. [2000] and Russell and Norvig [2003]. Further work
describing general applications of machine leaming methods to the drug discovery process
may be found in [van de Waterbeemd, 1995; B6hm and Schneider, 2000; Matter et al., 2001;
Xu and Hagler, 2002; Schneider and Downs, 2003] and [Bocker et al., 2004].

2.2.7 Conclusion

As the discovery search is widened by in silico HTS and the combinatorial methods that
accompany it, the amount of data that requires classification is growing many times faster
than the amount of data that is available on which to build predictive models. Data that
requires classification is filtered down from the top of the process, which may start with the
virtual consideration of 102 potential molecular combinations. Data available on which to
build SPC models is taken from the opposite end of the process, where a lot is known about
a small collection of optimised compounds. The ability of an algorithm to create predictors
that cope with the classification of large data sets, both in terms of predictive generalisation
and the time taken to make the predictions, is if increasing importance.

This chapter introduces SPC analysis as a vital part of contemporary drug discovery,
which presents a range of familiar impediments to the generalisation required of classifiers
created to perform this task in silico. Support vector machines are introduced as a relatively
recent addition to the collection of supervised machine learning methods, from which SPC
relationships are created, that have been designed and adapted to overcome many of the

challenges provided by the creation of SPC relationships. Such challenges include:

e a paucity of available training examples, requiring that a model must be able to gen-
eralise well beyond the range of data from which it is created;

o the fact that there is no ‘perfect’ descriptor subset, with which to relate molecular

structure successfully to biological properties under consideration;

e the representation of data examples by a large number of descriptive attributes. It is
often the case that there are fewer examples in the available training data than there
are dimensions of the chemical space that they inhabit;

e erroneous, or noisy, measurements within the data available from which to build pre-
dictors of a target property;
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o the potential for complex, non-linear relationships between molecular structure and
target properties; and

o there often existing a significant difference in the number of examples available to
represent each class of data, due to the nature of target properties under examination.

It is promising that the SVM algorithm is robust to noisy, high-dimensional training data,
small collections of which are required to generalise to large amounts of unlabelled data.
That the SVM algorithm is adaptable to overcome domain-specific challenges, such as class
imbalance and strong local effects within global example representations, via the incorpo-
ration of domain-relevant information shows even greater promise for the successful appli-
cation of SVMs to predict biological properties from aspects of molecular structure.

The following chapter describes a collection of SPC ADMET data, provided by Glax-
oSmithKline for this research, and outlines an experimental practice for the comparison of
supervised machine leaming algorithms upon such data and the assessment of their success
or otherwise.



Chapter 3

ADMET Data & Experimental
Practice

3.1 GlaxoSmithKline Data

Five ADMET data sets were made available by the ADMET Modelling Group at Glaxo-
SmithKline, Stevenage, UK, for this work. Each data set describes a binary separation prob-
lem, the nature of which is described below. The first two dimensions of a multi-dimensional
scaling (MDS; § 2.2.6, p. 67) transformation of each problem are plotted alongside each
description, to provide an impression of how the data are arranged in chemical space. One
should note that the MDS transformation provides a low-dimensional representation of com-
pound dissimilarity in chemical space, not a representation of their separability according
to the target attribute. Review papers by Matter et al. [2001] and van de Waterbeemd [2003]
provide generic information regarding the ADMET classification tasks described below.

3.1.1 Blood-Brain Barrier

Compounds designed to interact with target sites in the brain must bypass the protective
membrane between blood and brain. To avoid side-effects, compounds designed to affect
other parts of the body must be repelled. Models of blood-brain barrier (BBB) penetration
are employed in consideration of the desired effects of novel compounds. A good example
is provided by the production of sedating and non-sedating anti-histamines [Atkinson et al.,
2002; Ecker and Noe, 2004]. In this data set, compounds that belong to the positive class
are those that cross the BBB. Compounds that belong to the negative class do not.

The blood-brain barrier data set is the result of in vivo studies and contains 476 (337
+ve / 139 -ve) examples, represented by 72 VolSurf descriptors. The VolSurf molecular
representation [Goodford, 1995; Cruciani et al., 2000] provides 3-D physico-chemical in-
formation in a 2-D string of real-valued descriptive attributes (cf. § 2.1.5). The MDS plot
of figure 3.1, overleaf, displays the negative class interspersed throughout a larger, denser,
positive class. A cluster of outlying positive data, towards the top of figure 3.1, may further

complicate this separation problem. For the purposes of visualisation, ‘positive’ examples

70
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Figure 3.1: MDS Plot of BBB Data

represent compounds that exhibit high BBB penetration and ‘negative’ examples exhibit
low penetration.

3.1.2 P-glycoprotein Substrate Binding

Membranes, such as the blood-brain barrier described above, contain P-glycoprotein (P-gp).
Many compounds have a tendency to bind to P-gp (they are substrates), therefore they will
be unable to cross the membrane if required to do so [Atkinson et al., 2002; Ecker and Noe,
2004]. A tendency to bind to P-gp may be seen as a benefit should a compound be required
not to cross the membrane, but the P-gp in the membrane may become saturated if too much
binding occurs, rendering it useless as a repellant thereafter. Models used to discriminate
between P-gp substrates and non-substrates are built to reject substrates.

The P-gp data set contains 138 (59 +ve / 79 -ve) examples, represented by 5 Abraham
molecular descriptors [Zhao et al., 2003], and is the smallest problem of the five detailed
in this section. Examples described as ‘positive’ exhibit low propensity to bind to P-gp.
Figure 3.2, , overleaf, shows the majority of the positive and negative data lying apart in the
MDS transformed chemical space. Several outliers are visible at the extremities of the plot,
which may lead robust global, rather than local, machine learning solutions to perform best
on this data.
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Figure 3.2: MDS Plot of P-gp Data

3.1.3 Acute Toxicity

Toxic compounds are inappropriate for therapeutic use. In silico models of toxicity are
particularly useful, because compounds are rarely tested for toxicity in vivo. Training data
for the computer modelling of discriminant toxicity relationships are likely to be provided
by in vitro screening of well described, unlabelled libraries. Accordingly, the target attribute
is more likely to contain noise than the structural attributes.

The Acute Toxicity data contains 1176 (226 +ve / 950 -ve) examples, represented by 72
VolSurf descriptors. Here, ‘positive’ examples exhibit high toxicity. Figure 3.3, overleaf,
reveals that the positive class is greater in both number and density of examples compared
to the minority, negative class. Such an imbalance may create difficulties when attempting
to achieve good generalisation accuracy on the negative class, as the majority of supervised
machine learning methods can be lead to overfit a dense majority class to the detriment of
a sparser minority class (cf. § 2.2.4). In addition, a number of outliers belonging to both
classes are visible towards the left of the plot.

3.1.4 Bioavailability

The aim of modelling bioavailability is to identify compounds that remain in the human sys-
tem long enough and in sufficient amount to have a therapeutic effect. Compounds belong-
ing to the positive class of this problem are those with bioavailability above an acceptable
threshold level. Compounds belonging to the negative class are not sufficiently bioavailable
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Figure 3.3: MDS Plot of Acute Toxicity Data

and would not be considered for further development. Bioavailability is affected by many
factors, including solubility, permeability, and the residual concentration after a ‘first pass’
through the metabolism. Further details are available from pharmacokinetics texts, such as
[Roland and Tozer, 1995]. The bioavailability data set is the result of in vivo studies and
contains 481 (393 +ve / 88 -ve) examples, represented by 68 real-valued physico-chemical
attributes calculated from those of the combined molecular fragments that comprise each
compound [Matter et al., 2001] and a number of whole molecular properties. Positive ex-
amples represent compounds that display high bioavailability. This data set (and the protein
binding data described below) is included with the specific intent of testing the supervised
machine leaming methods used during this work in challenging, real-world conditions. Fig-
ure 3.4, overleaf, suggests that the data lie in two clusters, both containing a mixture of data
from both classes. The clusters are distinct, but are not well defined, and a number of outly-
ing points are visible across the transformed chemical space. It is difficult to predict which
type of machine leaming solution (for example linear / non-linear or global / local) will
perform best on what appears to be a non-uniform sample.

3.1.5 Protein Binding

Protein binding can negatively affect pharmaceutical efficacy. If a compound is prone to
bind with proteins in the blood, it is likely that it will not be effective upon arrival at the tar-
get. In this case, binding is particularly undesirable and models of protein binding are used
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to reject compounds that have a protein binding tendency above a predetermined threshold
(negative class). The protein binding data set contains 459 (297 +ve / 162 -ve) examples,
represented by 16 real-valued physico-chemical attributes calculated from those of the com-
bined sub-molecular fragments that comprise each compound [Matter et al., 2001]. Despite
representing a different separation problem with different descriptive attributes, the protein
binding data appear similarly distributed in figure 3.5, overleaf, to the bioavailability data
described above and in figure 3.4, above. The data appear in two distinct clusters in the
MDS-transformed chemical space, but appear to be less mixed than the bioavailability data.
There also appear to be fewer inter-cluster outliers.

3.2 Experimental Practice

It is reasonable to assess the potential worth of a new technique to an existing application
by comparing it to other techniques that represent a state-of-the-art, possibly alongside a
traditional benchmark. It is challenging to assess the ability of a new technique for drug
discovery in a standard manner. The ability of a classifier, or modelling technique, must
be measured against the specific task within the process that it will be used for, whether
it performs that task satisfactorily and, moreover, whether it outperforms the techniques
currently employed to perform the task. The following practice is suggested in order to
provide a principled comparison of several supervised machine leaming algorithms on the
ADMET data described above.
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Figure 3.5: MDS Plot of Protein Binding Data

3.2.1 Data Partitioning

Cross-validation [Kohavi, 1995; Molinaro et al., 2005] (cf. § 2.2.4) is commonly employed
to provide a comparative measure of algorithmic performance on a set of labelled data,
especially when a limited amount of labelled data is available. If sufficient labelled data
exist, however, a single partitioning of the data may be used to provide an impression of
how a classifier generalises to a significant amount of unseen data, as would be the case
in a real-world scenario. A set of labelled data are partitioned into two subsets (preferably
of equal size). All training, parameter setting and performance estimation is performed on
one subset (the training set) and a final performance measure is gained from classifying the
second set (the test set) with a classifier trained on the first. It is common to partition the
data in a random manner for this purpose, but other principled methods exist.

The Kennard and Stone (K&S) partitioning algorithm [Kennard and Stone, 1969] pro-
duces two separate subsets of the available data that reflect its distribution in approximately
the same manner. The data are split into two groups, with each group designed to contain
a similar distribution of examples both to each other and to the original data set that they
comprise. This method is useful when the internal structure of the data may not be uni-
form, or distributed in a standard manner. For example, if the data are not spread uniformly
across the input space, but rather they are grouped in a number of discrete clusters, it is
conceivable that a randomly sampled subset of the data will not fully represent each clus-
ter - although this depends upon the amount of data and size of the sampled subset. K&S
partitioning avoids this situation by employing a selection strategy that aims to sample data
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evenly across the ‘inhabited’ area of input space. Thus, if the data lie in a number of dis-
crete clusters, each cluster should be proportionally represented in both the training and test
partitions. An additional advantage of this is that, in the majority of cases, examples of the
same class tend to occupy similar regions of chemical space (if there was no relationship
between data class and location in input space, no useful model could be drawn from the
data). Because K&S partitioning samples data evenly from all localities of the original input
space, it is likely that class proportions will be preserved, or at least approximated, in the
presence of class imbalance (cf. § 2.2.4). Table 4.1 in Chapter 4 demonstrates how this
occurs in practice.

3.2.2 Accuracy Measures for Imbalanced Class Populations

The data sets used in this comparison, along with the method employed to partition them,
are described in section 3.1 and the preceding subsection respectively. It is clear that all
of the sets contain unequal class populations, with the proportion of positive and negative
data equal to 71% / 29% (BBB), 43% / 57% (P-gp), 19% / 81% (Tox), 82% / 18% (Bio),
and 65% / 35% (PrB). For example, if one were to evaluate algorithmic performance on
the bioavailability data solely by comparing predicted class labels to true class labels, a
solution that classifies every example in the set as positive would record 82% (0.82) overall
accuracy. Such a solution would not perform the task required of machine leaming in this
circumstance because, as described in Chapter 2, a successful solution must reject examples
that are not sufficiently bioavailable as well as retain those that are.

There exist performance measures that account for class imbalance when providing an
assessment of algorithmic performance on binary classification tasks. Sensitivity, speci-
ficity and receiver operating characteristic (ROC) curves [Scott et al., 1998] provide such
measures. A measure that combines the descriptive attributes of both sensitivity and speci-
ficity in a single performance estimate would be a good method with which to evaluate
algorithmic performance in the comparison required by this work.

A single figure that provides a measure of accuracy that reflects performance on both
classes may be obtained by weighting the classifications of both classes so that both con-
tribute 50% towards a balanced accuracy. For example, if Class A contains 80 examples
and Class B contains 20, then predictions of Class A members should contribute (50/80 =
0.625) when summed to provide a performance measure. Predictions of Class B members
should contribute (50/20 = 2.4) when summed to provide a performance measure. Thus, if
all 100 examples are classified as Class A, the balanced performance records 0.5 (or 50%).
The same figure is achieved if all 100 examples are classified as Class B. If all examples
are classified correctly, the balanced performance records 1.0 (or 100%) as expected. A
balanced measure thus calculated is equivalent to averaging the sensitivity and specificity of
the prediction and ensures that the situation described above, wherein a classifier concen-
trates solely on the majority class, is not rewarded with a seemingly acceptable measure of
performance. Similar balanced accuracy measures are employed in [Matthews, 1975; Lodhi
et al., 2000] and [Lee et al., 2001].
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3.2.3 Parameter Selection

The majority of machine leamning techniques require the selection of one or more free pa-
rameters to set an inductive bias [Kohavi, 1995] that controls the structure of the solution
that they create from the training data. Free parameters are selected so as to maximise an
estimate of the generalisation error of the classifier created. If free parameters are set solely
according to performance on the training data, it is likely that the parameter values chosen
would lead to a model which overfits any noise, or anomalies, contained within the training
data and, subsequently, fail to generalise well beyond the training data. It is advisable to
use a method that allows an estimate of generalisation performance to be obtained from the
application of an algorithm to the training data.

A widely used method of parameter selection is to train a classifier on a representative
sample of training data using a number of different parameter settings. The generalisation
performance of each parameter set can subsequently be estimated by testing the resulting
classifiers on another, independent, sample of the training data. The training set may be
partitioned, in order to provide a separate validation set for generalisation estimation during
parameter setting [Zickus et al., 2002], or partitioned into multiple disjoint subsets for cross-
validation [Kohavi, 1995; Molinaro et al., 2005].

The potentially troublesome circumstance of class population imbalance is mentioned
above (Chapter 2, § 2.1.7) and must be taken into account during parameter selection. Using
the example described above, in which 80% of data in a set belong to Class A and the
remaining 20% belong to Class B, if cross-validation were used to partition the data 10
times into 10 independent training (90%) and test (10%) folds, it is conceivable that some
folds may contain very few examples of the minority class. It might be better, and more
representative of the class distribution, to maintain the original class distribution in each
of the ten folds. Otherwise, a performance estimate obtained from the unbalanced cross-
validation may suggest a parameter set that defines a classifier which does not generalise
well to further examples from the same distribution. To maintain class proportions in each
fold of a cross-validation is referred to as stratified cross-validation [Kohavi, 1995].

A performance measure intended for use in the presence of class population imbalance
is described above and such a measure should be considered when setting free parameters.
If overall accuracy is used as a measure of performance during cross-validation over a range
of parameters, the winning parameter set will be the one that delivers the greatest overall
accuracy averaged over the folds of the cross-validation. This may not be desirable, as
the chosen parameters may favour the majority class heavily and achieve the best overall
accuracy largely by leading a classifier to ignore the minority class. It appears sensible,
therefore, to employ a class weighted accuracy measure, as described above, to estimate
the generalisation performance of algorithms and parameter sets that may be required to
produce high accuracy when classifying future examples of both classes. In all trials un-
dertaken during this work, 5-fold stratified cross-validation on the training partition is used
to set algorithmic parameters. The folds of the cross-validation are selected in a random
manner (both positive and negative classes are randomly split into five independent training
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and test folds and then combined to maintain the original class proportions in each fold).
The cross-validation is carried out ten times for each algorithm and the results averaged to

provide a single performance estimate.

3.2.4 Performance Comparison

As described in § 3.2.3, algorithmic parameters are determined via performance estimation
on partitions of a labelled training set. These parameter values are used subsequently to con-
struct classifiers from all available training data, in order to predict the class labels of exam-
ples from the, hitherto unseen, test partition. Thus, the relative generalisation performance
of several machine leaming algorithms, when applied to a specific ADMET classification
task, may be estimated and compared.

It is beneficial to place any observed performance difference between classifiers into
context. Context may be provided by attaching a measure of significance to a compari-
son. Here, significance suggests the likelihood that a difference observed on the subset of
data used to assess the algorithms would be reflected if the same practice were applied to
more data drawn from the same data distribution. There exist parametric methods, which
make no assumption as to the distribution of class labels or the errors made when predicting
them, with which to assess the significance of agreement (or, conversely, disagreement) be-
tween binary predictors (trained two-class classifiers). For example, the McNemar statistic
[McNemar, 1947] assesses agreement between binary predictions in the following manner.

The agreement between the predictions of two binary classifiers may be represented in
a 2 x 2 matrix. In the matrix shown below, ¢, represents the correct classifications made
by ‘classifier 1°, t5 the correct classifications made by ‘classifier 2’ and f; & f; the false

classifications made by the respective classifiers, with

(Ital +1A1) = (k2] + 1f2]) = N

where N is the number of classifications made by each classifier.

True False
True t1 Nty ti N f2
False f1 Nty fl N f2

The McNemar statistic describes the imbalance observed on the disagreements between the
two classifiers, i.e. between the upper-right and lower-left elements of the matrix. The
statistic is shown in equation 3.1

X2 = [(t1 0 f2) = (fL N E2))?
(t1 0 fa) + (fiNta)

(3.1

Equation 3.1 may be corrected for discontinuity and becomes
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e ltnf) —(fint)| -1

(t1N f2) + (fiNt2) (3.2)

The integer elements of the agreement matrix may be converted to the respective pro-
portions of the data that they represent [McNemar, 1947]. At small, integer values of
[(t1 N f2) + (fi Nt2)], X? follows a binomial distribution. At greater values, the distri-
bution of X2 may be approximated by the x? distribution. The corresponding probability
distributions of the McNemar statistic allow one to assess the statistical significance of the
classification difference observed between two binary raters.

The McNemar statistic treats all predictions made by two classifiers as having equal
weight. As described in §3.2.2, however, a class-weighted accuracy measure is used to
assess classifier performance here. A McNemar statistic has been employed to assess sig-
nificant difference between balanced classifications previously by Guyon et al. [2005]. In
the presence of balanced performance assessment, the matrix contributions shown above are
themselves weighted and the test statistic applied as usual. In the performance assessments
of Chapters 4-6, the McNemar statistic is applied to balanced classifier performance over
both classes and, in certain cases, classifier performance on each class in turn. This allows
the cause of any observed difference in balanced classification performance to be examined
in greater detail. For example, it allows one to determine whether a perceived increase in
balanced classifier accuracy is caused by a significant increase in accuracy on both data
classes, or whether an increase on one class is responsible, potentially to the detriment of
the other class.

3.3 Model Building

An adequate range of parameter values is assessed on the training data for each algorithm
and care is taken to ensure comparative fairness, via the assessment of similar ranges of
possible parameter values for each algorithm. The best performing parameter set for each
algorithm, as measured by a stratified, cross-validated performance estimate over the train-
ing data, is selected. The parameter set selected for each algorithm is subsequently trained
on the complete training set. The solutions obtained are used to classify the test data and a
measure of algorithmic performance is obtained by comparing the classifications made by
each solution to the true test data labels.

The algorithms used in the comparison are a support vector machine (SVM), a feed-
forward artificial neural network (ANN), a radial basis function (RBF) network, a C5.0
decision tree, and a Euclidean distance nearest-neighbour classifier. The C5.0 decision tree,
ANN, and RBF network were implemented by the Clementine data mining package [SPSS,
2002]. The SVM and nearest-neighbour algorithms were implemented using the mathe-
matical programming package Matlab [Mathworks, 2002]. All trials were performed on a
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standard PC workstation. A range of parameters were evaluated for each technique, with
the parameter set that performed best during 5-fold stratified cross-validation (as described
above in § 3.2.3) on the training data selected for evaluation on the test set.

3.3.1 SVM Parameters

The standard SVM, used for comparisons and as a development platform over the course of
this work, was coded in Matlab primarily by colleague R. Burbidge [Burbidge, 2004] whilst
at the Department of Computer Science, UCL. The algorithm minimises the 2-norm of the
weight vector and the 1-norm of the slack variables. The decomposition method of Osuna
et al. [1997] is incorporated and employs the working-set selection method of Hsu and Lin
[2002]. A heuristic early-stopping criterion halts optimisation when a model-based error
bound remains unchanged for 1000 iterations. ,

An SVM requires selection of a kernel function and the regularisation parameter, C
(§ 2.2.5, p.49). Linear and quadratic kernels were evaluated with C = {1,10,100} (a small
set, but found to provide an effective range of regularisation). In addition, RBF kernels
were evaluated with the RBF width, o, set using five different heuristics (see [Jaakkola
et al., 1999] for further details):

Hinton: square root of (no. of data dimensions / 2)

Median: median closest separation distance of training data;

Mean: mean closest separation distance of training data;

Jaakkola: median separation of positive training data to nearest negative; and

Jaakkola-Mean: mean separation of positive training data to nearest negative.

It is important to note that the Hinton heuristic is used on the assumption of data scaled to be
non-dimensional, e.g. attributes lie in [-1,+1]. When results are reported in Chapters 4-6,
the above heuristics are abbreviated to ‘H’, ‘Md’, ‘Mn’, ‘J’ & ‘J-M’ respectively.

3.3.2 ANN & RBF Parameters

The generalisation performance of a single-layer ANN is largely affected by the number of
‘hidden’ units it employs to map the data to the class attribute [Bishop, 1995a] (cf. § 2.2.6).
Too few hidden units and the data may be modelled in insufficient detail. Too many hidden
units and the model can overfit noise in the data. The data sets used in this comparison are
relatively free of noise, but are complex and class imbalanced, thus a relatively high num-
ber of hidden layer units may be expected. Accordingly, a single layer, back propagation
ANN was trained using {5,10,15,20,25,35,45,55,65} hidden layer nodes on both the BBB,
Tox & Bio data sets, {2,3,4,5,6,8,10,12,14,16} hidden layer nodes on the PrB data set and
{1,2,3,4,5} hidden layer nodes on the P-gp data set. Learning rate and momentum were
both set to default values of 0.3 (exponentially decaying) and 0.9 respectively for all data
sets.

The number of cluster centroids employed by an RBF network to smooth the data before
mapping their output to the class attribute is largely analogous to the number of hidden layer



Chapter 3. ADMET Data & Experimental Practice 81

nodes employed by a single layer ANN in this context. Accordingly, the RBF network was
trained with the same number of cluster centroids as ANN hidden layer nodes for each data
set. k-means clustering [Duda et al., 2000] was used to place the cluster centroids before
gradient descent maps their outputs to the class attribute.

3.3.3 (5.0 Parameters

The balance between the empirical and generalisation performance of a C5.0 decision tree
is controlled by pruning the tree during training {Quinlan, 1986; Mitchell, 1997] (cf. 2.2.6).
The pruning parameter, indicative of the amount pruned from the tree, was set to percentage
values from the set {0,10,20,30,40,50,60,70,80,90,100}.

3.3.4 Nearest-Neighbour Parameters

A nearest-neighbour classifier [Cover and Hart, 1967; Mitchell, 1997] was used as a con-
ventional benchmark during the comparison. The classifier used Euclidean distance as a
measure of similarity between examples. Significant interactions were expected on a local
level, therefore the number of neighbours employed ranged over the set {1,3,5,7,9,11,13,15}
for all data sets.

3.4 Conclusion

A wealth of options are available to the machine leaming practitioner for the assessment
of algorithmic performance and a wealth of considerations confront the SPC analyst when
applying machine leaming to ADMET data. The experimental practice described in sec-
tions 3.2 & 3.3 does not aim to be the only, or optimum, practice with which to apply ma-
chine learning to problems of ADMET classification. Rather, it aims to provide a balanced
approach to the fair comparison of machine leaming techniques, which acknowledges both
the challenging nature of real ADMET data and existing industrial practice. An attempt
is made to marry machine learing practice, e.g. the use of stratified cross-validation to
select algorithmic free parameters, with facets of drug design practice, such as [Kennard
and Stone, 1969] partitioning of labelled data into training and test sets. As such, the data
and experimental practice described in this chapter, alongside the background knowledge of
Chapter 2, provide a platform for investigation of the research hypotheses stated in Chap-
ter 1. The hypotheses state that SPC analysis will benefit from the successful application of
SVMs to ADMET classification and that both technique and application may be adapted to
improve performance further. The experimental practice is employed to test the hypotheses
by investigation, the nature and results of which are presented in Chapters 4-6.



Chapter 4

Support Vector Machines for
ADMET Property Classification

The case for further integration of supervised machine learming in order to improve present
SPC analysis practice is made in Chapter 2. An experimental practice for the comparison of
machine leaming techniques on pharmaceutical data is described in Chapter 3. This chapter
describes the practical application of the SVM algorithm and a selection of other, widely
used, supervised machine learning methods to five sets of ADMET structure-property data
provided by GlaxoSmithKline (GSK). The comparison provides an empirical assessment of
the arguments made in Chapter 2 and also provides context against which to assess domain-
specific adaptations of the SVM algorithm later in the work. With this in mind, two separate
comparisons are reported in sections 4.1 & 4.2 of this chapter. The first comparison employs
the algorithms involved in an ‘off-the-shelf” manner. That is, they are applied to the data
with no further consideration of the domain than that outlined in the experimental practice
of Chapter 3. The subsequent section employs the same method of comparison, but the al-
gorithms are influenced by two generic methods designed to overcome the effects of having
mismatched training data class sizes, i.e. one class of training data is represented in greater
number than the other.

4.1 Machine Learning Comparison - SVM vs. State-of-the-Art

Table 4.1 displays the class populations of each of the five GSK data sets both before and
after being partitioned into training and test sets with the method of Kennard and Stone
[1969]. From left to right, the first column displays the data set, the second column displays,
from top to bottom, the data set partition (entire set, training partition, or test partition) and
the third column displays the number of examples in each partition. The fourth and fifth
columns display the number of examples of majority and minority data classes respectively
contained within the corresponding partition. The percentage of data belonging to each
class is shown in brackets.

All training data attributes were scaled in the range [-1,+1] prior to analysis [Bishop,

82
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Data Set | Partition | Examples | Majority Examples | Minority Examples
Overall 476 337 (71%) 139 (29%)
BBB Training 238 153 (64%) 85 (36%)
Test 238 184 (77%) 54 (23%)
Overall 138 79 (57%) 59 (43%)
P-gp Training 69 42 (61%) 27 (39%)
Test 69 37 (54%) 32 (46%)
Overall 1176 950 (81%) 226 (19%)
Tox Training 588 452 (77%) 136 (23%)
Test 588 498 (85%) 90 (15%)
Overall 481 393 (82%) 88 (18%)
Bio Training 240 185 (77%) 55 (23%)
Test 241 208 (86%) 33 (14%)
Overall 459 297 (65%) 162 (35%)
PrB Training 230 146 (63%) 84 (37%)
Test 229 151 (66%) 78 (34%)
Table 4.1: GSK Data: Class Distribution in Training and Test Partitions
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1995a] and test data attributes were rescaled accordingly. Figures 4.1-4.5 show multi-
dimensional scaling (MDS) plots [Kruskal, 1964] of the training and test partitions of each
data set. In each figure, the labelling convention of Chapter 3 is maintained and the two data

classes are denoted positive and negative according to the descriptions given in Chapter 3
(section 3.1). In the BBB, Bio & PrB data sets, the positive class is the majority class. In
the P-gp & Tox data sets, the negative class is in the majority.

4.1.1 Results

Table 4.2 displays algorithmic performance on the test partitions of the five GSK data sets
respectively. The table contains seven columns. From left to right, the columns display

=
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Figure 4.1: MDS Plots of BBB Training (left) and Test (right) Partitions
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Figure 4.4: MDS Plots of Bioavailability Training (left) and Test (right) Partitions
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Figure 4.5: MDS Plots of Protein Binding Training (left) and Test (right) Partitions

the data set, the algorithm used, the algorithmic parameters as selected by stratified cross
validation, the overall accuracy and balanced accuracy of the resulting classifier on the test
partition, and classifier accuracy on the majority and minority class test examples respec-
tively. For each data set, the classifier displaying highest balanced accuracy is displayed in
bold type.

As discussed in Chapter 3 (§ 3.2.4), a weighted McNemar test of marginal homogeneity
may be employed to compare and assess the balanced accuracy measures displayed. A one-
tailed weighted McNemar test was applied to classifier output responsible for the contents
of table 4.2 in order to produce the results summary below. A difference in performance is
deemed significant at the 95% level (p < 0.05), marginally significant if between 90-95%
levels (0.05 < p < 0.10) and not significant otherwise (p > 0.10).

BBB: The classifier with highest balanced accuracy is an SVM with RBF kernel (o set by
the Jaakkola-mean heuristic and C' = 10). The leading classifier performs signifi-
cantly better than both linear and quadratic SVMs, better than the RBF network with
marginal significance (p = 0.058), but not significantly better than the other classi-
fiers.

P-gp: The classifier with highest balanced accuracy is a quadratic SVM (C = 1). The
leading classifier performs significantly better than its RBF-SVM counterpart, the
ANN and the C5.0 decision tree, better than a linear SVM and the RBF network with
marginal significance, but not significantly better than the k-NN classifier.

Tox: The classifier with highest balanced accuracy is the C5.0 decision tree with pruning
parameter set to 90%. The leading classifier performs significantly better than SVMs
with quadratic and RBF kernels, better than the RBF network classifier with marginal
significance, but not significantly better than the linear SVM, ANN or k-NN classi-
fiers.

Bio: The classifier with highest balanced accuracy is the ANN (20 hidden layer nodes).
The leading classifier performs significantly better than the linear SVM, better than
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Data | Algorithm Parameters Overall | Balanced | Majority | Minority
Lin. SVM C=1 0.849 0.732 0.946 0.519
Quad. SVM | C =10 0.832 0.761 0.891 0.630
RBFSVM | o =‘J-M’,C=10| 0.870 0.805 0.924 0.685
BBB | ANN Hid. nodes = 25 0.832 0.780 0.875 0.685
RBF Centers = 15 0.857 0.751 0.946 0.556
Cs5.0 Pruning = 100% 0.832 0.774 0.880 0.667
k-NN k=1 0.857 0.796 0.908 0.685
Lin. SVM C=1 0.768 0.761 0.865 0.656
Quad. SVM | C =1 0.870 0.870 0.865 0.875
RBFSVM |[o=‘7,C=10 0.739 0.738 0.757 0.719
P-gp | ANN Hid. nodes =2 0.739 0.734 0.811 0.656
RBF Centers =5 0.812 0.805 0.892 0.719
C5.0 Pruning = 0% 0.754 0.756 0.730 0.781
k-NN k=15 0.826 0.817 0.946 0.688
Lin. SVM C=10 0.939 0.814 0.994 0.633
Quad. SVM | C =1 0.930 0.800 0.988 0.611
RBFSVM | o ="H,C =100 0.932 0.801 0.990 0.611
Tox | ANN Hid. nodes =20 0.939 0.814 0.994 0.633
RBF Centers = 45 0.934 0.811 0.988 0.633
C5.0 Pruning = 90% 0.930 0.827 0.976 0.678
k-NN k=3 0.920 0.812 0.968 0.656
Lin. SVM C=10 0.822 0.603 0.904 0.303
Quad. SVM [ C =1 0.834 0.649 0.904 0.394
RBFSVM |[oc='7,C=10 0.867 0.655 0.947 0.364
Bio | ANN Hid. nodes =20 0.851 0.671 0.918 0.424
RBF Centers = 55 0.863 0.627 0.952 0.303
C5.0 Pruning =20% 0.822 0.654 0.885 0.424
k-NN k=1 0.830 0.634 0.904 0.364
Lin. SVM C =100 0.734 0.659 0.894 0.423
Quad. SVM | C =1 0.756 0.715 0.841 0.590
RBF SVM c="H,C=10 0.716 0.667 0.821 0.513
PrB | ANN Hid. nodes =8 0.716 0.689 0.775 0.603
RBF Centers = 16 0.747 0.690 0.868 0.513
Cs5.0 Pruning = 80% 0.707 0.639 0.854 0.423
k-NN k=3 0.694 0.654 0.782 0.526

Table 4.2: Algorithmic Performance on GSK Test Data
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RBF and k-NN classifiers with marginal significance, but not significantly better than
the other classifiers.

PrB: The classifier with highest balanced accuracy is the quadratic SVM (C = 1). The
leading classifier performs significantly better than other SVM kernels, the C5.0 de-
cision tree and the k-NN classifier, but not significantly better than either ANN or
RBF networks.

4.1.2 Discussion

Three major trends are apparent from table 4.2 and the results summary.

1. There is no clear ‘winner’ on any of the five data sets. That is, no classifier records a
balanced accuracy that is significantly higher than all others according to the outcome
of a one-tailed weighted McNemar test of marginal homogeneity.

2. Despite this, the SVM algorithm appears competitive against the other techniques
present. An SVM classifier records highest balanced accuracy on three of the five
data sets and is significantly better than at least two of the other classifiers on two of
those three sets. On the two sets upon which other classifiers provide higher balanced
accuracy, the winning performance is not significantly better than at least one of the
SVM classifiers.

3. All methods struggle to classify the minority data class with acceptable accuracy
(~ 80%) on all data sets. Conversely, nearly all classifiers perform acceptably on the
majority class of all data sets.

The data supplied by GlaxoSmithKline and the classification scenario that they repre-
sent provide a severe examination of all supervised machine leaming methods investigated
during the comparison. Every method encounters difficulty in classifying unseen exam-
ples from the minority class on all data sets. The quadratic SVM on the P-gp data is the
only method to achieve an ‘industry acceptable’ balanced performance of > 80% accuracy
on both classes. In light of this, and the trends outlined above, it may be said only that
the SVM algorithm has demonstrated potential for successful application to this area of
the drug discovery process. As the strongest trend, however, the generalisation imbalance
observed between majority and minority data classes warrants further investigation before
proceeding.

The five GSK data sets are under the varying influences of molecular representation
and sample quality. Four different molecular representations are employed to describe the
compound collections encountered in the comparison. The P-gp data set is the only one
represented by a small subset of molecular descriptors known, through prior knowledge, to
relate to the distribution of the target attribute across chemical space. The other four data
sets are described by generic representations, related to aspects of their structural composi-
tion and relevant whole-molecular attributes, e.g. hydrophobicity and molecular weight. At
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first glance, it may appear surprising that some of the highest balanced classification accu-
racies are achieved on the data set (P-gp) that comprises the fewest training examples. The
P-gp data set is also represented by the fewest and most relevant molecular descriptors and,
therefore, covers its input space as well as, or better, than the larger data sets. MDS visu-
alisation of the GSK data sets (Chapter 3) reveals a relatively clear distinction between the
mutual similarities of examples that bind to P-gp and those that do not. Despite some outly-
ing examples of both classes, the data appear to cover a single region of chemical space. The
Bioavailability and Protein Binding data, however, display mutual similarity between many
examples of opposing classes and the data sample appears to lie in two distinct regions of
the space defined by inter-example similarities.

In the majority of cases, classification accuracy on the minority class of each problem
appears weak in comparison to that on the majority class. It should be noted, however, that
a blind classifier, which bases predictions on the training class populations alone, would
perform much worse. For example, the BBB training partition has a class population split
of 64% / 36% (cf. Table 4.1). The winning classifier, RBF-SVM, records approximate class
accuracies of 92% / 69% (cf. table 4.2). The minority class accuracy, based on observation
of the structural attributes, is nearly twice that which could be achieved without leaming
from the structural information. Similarly, on the Acute Toxicity data, the class population
split is 77% / 23%, but the winning classifier, C5.0, records approximate class accuracies
of 98% / 68% and all classifiers record approximate class accuracies > 95% / > 60%. It is
apparent that, despite an imbalance in predictive accuracy that results from the difference in
training data class sizes, leaming does occur on the structural information presented to the
training algorithms. This effect is less clear on the Bioavailability data, for which the class
population split is also 77% / 23%, but the winning classifier, ANN, records approximate
class accuracies 92% / 42% and minority class accuracies of other classifiers are as low as
30%.

The BBB and Toxicity data are both represented by 72 Volsurf descriptors [Cruciani
et al., 2000]. The minority class of the Toxicity training data (136 examples) is of similar
size to the majority class of the BBB training data (153 compounds), but algorithmic perfor-
mance exhibits similar levels of imbalance on the corresponding test partitions (see previous
paragraph). An SVM with quadratic kernel function records complete training performance
in both cases, therefore, the majority class of training data appears to possess greater influ-
ence over orientation of the separating hyperplane created in feature space. In both cases,
the QSVM decision boundary is supported by more support vector points of the majority
class than of the minority class, but the relative proportion of majority class SV points is
lower than that of minority class SV points. Therefore, the hyperplane appears oriented in
a manner that will lead to better generalisation on the majority class. These results suggest
that the presence of class size imbalance, rather than minority class size, is responsible for
performance imbalance. Generalisation accuracy on majority class examples in the BBB
test partition is > 80% for all classifiers, whereas generalisation accuracy on the minority
class examples of the Toxicity test partition is < 70% for all classifiers despite training on



Chapter 4. Support Vector Machines for ADMET Property Classification 89

similar amounts of data in each case.

The assumption that the majority class dominates hyperplane orientation due its relative
size against the minority class assumes that sample quality of both data classes is equal. The
labelled data is extracted from a process designed to retain examples of the class to be re-
tained. Data of the class to be rejected is sampled from any compounds that fail the labelling
screen of a compound sample extracted from a combinatorial library and, therefore, may not
provide as focused a body of data as the class to be retained. In all but the P-gp data, the
majority class is that which is most desirable to retain for further participation in the drug
discovery process. The P-gp data is the only set in which the minority class is that to be
retained and also the only set upon which an adequate performance balance is obtained. It
would be natural to consider, if examples of the majority class are to be retained, whether
performance imbalance represents a particular impediment to successful identification of
promising development leads. In fact, low generalisation performance on a data class that
should be rejected from the process is rather a large impediment. The relationships created
from small collections of labelled compounds are likely to be applied subsequently in order
to classify many more unlabelled compounds, it is assumed the majority of which will not
satisfy all criteria for eventual development into a commercial product. Failure to correctly
reject unsuitable compounds may lead to large numbers entering the combinatorial design
process and result in the severe disruption of the goal-based search through chemical space
that it represents. This training scenario, wherein the desired class appears in relatively
high proportion compared to the class to be rejected, is different to that encountered when
analysing structure-activity relationships on the output of HTS during earlier stages of the
discovery process. For example, the class of data to be retained is in the vast minority (lead
identification) and its correct identification paramount.

Deeper examination of SVM classifier performance on the BBB data reveals further
potential sources of performance imbalance. Class population imbalance in the training
data is moderate (64% / 36%), but has a clear effect upon all classifiers. As for all classi-
fication tasks presented, the BBB training data are not linearly separable according to their
class labels. The quadratic SVM makes no training errors (it invokes a feature space with
(72+2), dimensions, of which the 238 training examples occupy a manifold) but generali-
sation performance is imbalanced. Similarly, the RBF-SVM makes one training error only
on the minority class training data and, although it records the best balanced generalisa-
tion accuracy, its performance is imbalanced also. Attempts to force regularisation upon
these (and any other) classifiers that appear to over-perform on the training data do not im-
prove balanced performance. Such attempts to allow training errors in an attempt to avoid
overfitting simply lead to training errors on the minority class. This should be expected, be-
cause the algorithmic specifications employed for the comparison include no option to treat
each class in a distinct manner. For example, from § 2.2.5, a regularised SVM classifier
minimises the objective function ||w||? + C (3, &), where the right-hand term treats
margin transgressions equally (via the single constant multiplier, C') regardless of the data

class involved. With no instruction to balance the losses made on each class, it is likely that
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a relatively small proportion of training errors on the majority class will be accompanied by
a relatively large proportion of training errors on the minority class. The result of further
regularisation leads the minority class to become indistinguishable from the majority class.
This is displayed by the performance of the regularised (C' = 1) linear SVM classifier, for
which the majority of enforced training errors are made on the minority class (training ac-
curacy is 92% / 61% on the majority and minority classes respectively) and minority class
generalisation performance is poor accordingly.

As described in Chapter 2 (§ 2.2.4), classifiers with high capacity (in this case, an ANN
with many hidden nodes, or SVM with high-dimensional kernel function) are capable of
modelling complex relationships between data examples and the target attribute. Classifiers
with lower capacity are less capable of modelling complex relationships, but, as a result,
have the potential to avoid overfitting the training data and provide better generalisation
performance. Here, non-linear SVM classifiers model separation of the training data in a
highly accurate manner but fail to perform similarly when presented with new examples of
the minority data class. It appears that the training data is being overfitted, but attempts to
induce regularisation do not improve results. High capacity is required for the minority class
to be distinguished from the majority class in each case. When capacity is reduced, the size
and location of the minority class in relation to the majority class leads it to be underfitted.
In some respects, classifiers of high capacity appear to act as one-class classifiers [Tax and
Duin, 1999] on the majority class. The circumstance of greater information provision for
one data class over another, which is not taken into account by unweighted regularisation
procedures, presents itself as a primary cause of the performance imbalance observed in
table 4.2. A method of reducing the influence of the majority class only in order to treat the
minority class in a generalisable manner is required (cf. section 4.2).

Predictive imbalance is much greater on the Bioavailability data, which has the same
population imbalance as does the Acute Toxicity data. There appear two differences be-
tween these data sets. First, the Bioavailability data has far fewer examples than the Tox-
icity data. Second, MDS visualisation of the data shows the Bioavailability data to cover
its input space in an irregular, or patchy, manner. Examples of the minority class appear
scattered across the space occupied by the majority class and many members of the minor-
ity class appear more similar to members of the majority class than to members of their
own class. Principal component analysis (PCA) is described earlier (Chapter 2, § 2.2.6) and
is suggested as a potential solution to poor classification of minority examples in ADME
prediction tasks by Trotter and Holden [2003]. One reason for such weakness, aside from
the information bias and sample quality issues proposed above, is that the minority class
training examples fail to cover adequately a chemical space described by the molecular de-
scription employed. For example, the minority class of the Bioavailability training data lies
on a manifold of input space. A reduction in the cardinality of chemical space, coupled
to the removal of data redundancy (cf. § 2.2.4, p. 40), may focus the previously sparse
representation of the minority class afforded by the available training data so as to pro-
vide sufficient information with which to improve generalisation. In addition, § 2.2.5 of
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Chapter 2 describes how reduction of data dimension reduces the VC dimension of linear
classifiers and, hence, may improve generalisation performance.

Table 4.4 displays algorithmic performance after PCA data reduction of both training
and test partitions. The training partitions of the original comparison were PCA trans-
formed and the resulting orthogonal feature sets reduced so as to retain 95% of the available
information (a limit suggested by the scree test heuristic [Catell, 1966]). Algorithmic free
parameters were selected as before !. Test partitions were transformed and reduced accord-
ing to the transformation of their respective training partitions. Rows of table 4.4 in bold
type signify those classifiers that exhibit a significant performance increase after PCA data
reduction. Table 4.3 displays the dimensionality reduction made to each data set by PCA
transformation and reduction.

Data Set BBB | P-gp | Tox | Bio | PrB
Pre-PCA Dimension 72 5 72 | 64 16
Post-PCA Dimension 16 3 18 | 34 8

Table 4.3: Data Dimension Pre- and Post- PCA Transformation

Of 35 applications (7 classifiers to 5 data sets), only 6 classifiers display increased bal-
anced performance (of at least marginal significance) upon PCA data reduction. The classi-
fiers in question are a quadratic SVM on the BBB data, SVMs with linear and RBF kernels
plus an ANN on the P-gp data and quadratic and RBF SVMs on the Acute Toxicity data.
Most (16) classifiers exhibit no significant increase or decrease in performance, but 13 clas-
sifiers exhibit significantly reduced performance upon PCA data reduction.

In several cases, and especially on the Bioavailability data that prompted discussion of
sparse input space coverage, PCA reduction appears to magnify conclusions drawn from the
original comparison. Few classifiers perform significantly better on the PCA-reduced data
sets, whereas several perform significantly worse. This pattern persists when information
retained by PCA reduction is increased to 99%, lowered to 90% and also when univariate
feature selection, of the sort used regularly on gene expression microarray studies [Shipp
et al., 2002], is employed to select a subset of the original features (results unreported). It
appears, therefore, that focusing the description of chemical space, by mapping to orthog-
onal, non-redundant axes, may magnify the effects of class imbalanced and undersampled
training data.

It remains to consider how well the framework for algorithmic comparison, described
in Chapter 3, performed its task when producing the results described above. All algorith-
mic parameters displayed in tables 4.2 & 4.4 were selected by stratified cross-validation
on a class-balanced accuracy measure. Empirical trials, not reported above in the interests
of space and concision, reinforce the judgment that this is a good way to select the best
model. Parameters selected using the overall accuracy, rather than balanced accuracy, dur-

"It is noted that the Hinton RBF kernel width heuristic (cf. p. 80) should strictly be applied to data scaled to
be non-dimensional, e.g. [-1,+1]. The PCA reduced data here is not, but the reduced data attribute ranges are
similar - PCA was applied to scaled data - and within an order of magnitude.
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Data | Algorithm | Parameters Overall | Balanced | Majority | Minority
LSVM C=10 0.832 0.689 0.951 0.426
QSVM C=1 0.866 0.795 0.924 0.667
RBFSVM | o =‘H,C =1 0.840 0.687 0.967 0.407
BBB | ANN Hid. nodes = 10 0.836 0.783 0.880 0.685
RBF Centers = 45 0.824 0.690 0.935 0.444
Cs5.0 Pruning = 100% 0.807 0.659 0.929 0.389
k-NN k=5 0.832 0.721 0.924 0.519
LSVM C =100 0.826 0.823 0.865 0.781
QSVM C =100 0.826 0.823 0.865 0.781
RBFSVM | o =‘H’,C =10 0.826 0.823 0.865 0.781
P-gp | ANN Hid. nodes =2 0.812 0.805 0.892 0.719
RBF Centers =5 0.797 0.792 0.845 0.719
C5.0 Pruning = 0% 0.768 0.782 0.595 0.969
k-NN k=3 0.841 0.837 0.892 0.781
LSVM C=100 0.896 0.679 0.992 0.367
QSVM C=1 0.918 0.820 0.962 0.678
RBF SVM | 0 = ‘H’,C =100 | 0.937 0.831 0.984 0.678
Tox | ANN Hid. nodes = 15 0.920 0.798 0.974 0.622
RBF Centers = 55 0.925 0.792 0.984 0.600
Cs5.0 Pruning = 90% 0.917 0.787 0.974 0.600
k-NN k=1 0.901 0.814 0.940 0.689
LSVM C =100 0.739 0.632 0.779 0.485
QSVM C=1 0.826 0.580 0918 0.242
RBF SVM | o =‘H’,C =100 | 0.859 0.651 0.938 0.364
Bio | ANN Hid. nodes = 10 0.851 0.633 0.933 0.333
RBF Centers = 65 0.863 0.577 0.971 0.182
C5.0 Pruning = 70% 0.797 0.551 0.889 0.212
k-NN k=1 0.834 0.636 0.909 0.364
LSVM C=1 0.721 0.639 0.894 0.385
QSVM C=1 0.707 0.682 0.762 0.603
RBFSVM [ o ="‘H,C =10 0.725 0.683 0.815 0.551
PrB | ANN Hid. nodes = 14 0.703 0.666 0.782 0.551
RBF Centers = 16 0.690 0.629 0.821 0.436
Cs5.0 Pruning = 90% 0.659 0.649 0.682 0.615
k-NN k=9 0.699 0.669 0.762 0.577

Table 4.4: Algorithmic Performance on PCA-Reduced GSK Test Data

ing cross-validation favour the majority class more than is shown in table 4.2. In a large
majority of cases, the algorithmic parameters selected by five-fold stratified cross valida-
tion on the training data provide balanced generalisation performance better than, or at least
not significantly worse than, that provided by other parameter selections across the ranges
assessed. The only circumstance in which this proves not to be the case is in the selec-
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tion of algorithmic parameters for certain algorithms on the P-gp data. The parameter sets
selected for linear and quadratic SVMs, ANN and C5.0 are all better, or not significantly
worse, than the best performing parameter set within the ranges assessed. Parameters for
RBF-SVM, RBF network and k-NN algorithms, which all assess inter-example similarity
and/or approximate the training data, do not generalise as well as most other parameter sets
available. All three classifiers are, in fact, capable of matching or bettering the performance
of a quadratic SVM, described above as very good, but the chosen parameter sets overfit the
data considerably by comparison. One relatively sensible interpretation of this situation is
that the partitions created by random sampling such a small amount of data during stratified
cross validation do not provide a realistic appraisal of the generalisation performance of
such methods from the entire training set. Thus, the results reported for RBF-SVM, RBF
network and k-NN classifiers on the P-gp set are potentially pessimistic.

An alternative to the use of cross-validation is to perform two applications of Kennard
& Stone partitioning of the original data sets, the first in order to provide training data and
the second to split remaining data into hold-out and validation sets. The hold-out set would
provide performance assessment for the selection of algorithmic parameters, prior to the
estimation of generalisation performance on the test partition as above. Another alternative
practice would be to repeat the comparison having reversed the training and test partitions
employed above (the original data are split 50/50), in order to investigate persistence of the
trends observed. This method is a common approach in drug design, as is the repetition
of performance assessment on classifiers trained upon scrambled class labels [Wold and
Enksson, 1995].

It is appreciated that wider free parameter ranges could be made available to some of
the algorithms assessed during the comparison. The decision was taken to provide a limited
but similarly-sized range of free parameter values to all algorithms during the comparison.
Although wider ranges would have the potential to provide different results, the ranges
employed are sufficient to prompt exhibition of the trends discussed above and provide a
fair comparison of the techniques involved. One recommended change to this approach is to
evaluate multiples of a single RBF width heuristic, rather than to employ the five heuristics
of the comparison, because the non-Hinton heuristics employed produce similar values on
occasion.

The comparison of supervised machine learning methods on five real SPC analysis
problems reveals much regarding the nature of the domain and the impediments that it
presents to successful analysis. The comparison employs a detailed framework of exper-
imental practice, but no action is taken to alter data or algorithms within that framework in
order to overcome the challenges presented. The SVM algorithm is seen to perform com-
petitively alongside machine leamning techniques already well-used for SPC analysis. Given
the straightforward nature of application to such problematic tasks, it is unlikely that one su-
pervised leaming algorithm would perform much better than all others in all circumstances
(unless custom designed with the task in mind, cf. Chapter 6, or embodying a particularly

different approach to the task of leaming). Rather, it is in how an existing learning algo-
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rithm may be adapted to perform adequately in such circumstances that may provide a more
relevant measure of success. The remainder of this chapter investigates generic remedies
to performance imbalance. Chapters 5 and 6 introduce SPC analysis approaches specific to
SVMs.

4.2 Balancing Generalisation Performance

The situation wherein one data class is classified preferentially over another is not desirable
(cf. Chapter 2; § 2.1.7). When screening in the early lead optimisation stage of the drug
discovery process, it is almost as important to reject non-drugs as it is to retain potential
new drugs. This section investigates approaches designed to remedy such performance
imbalance. The first approach weights the influence of the minority training data class as
higher than that of the majority class, so as to balance the treatment of both data classes
during training. The second approach concerns a strategic reduction of the majority data
class so as to balance the training data and, thus, the level of information provided to a
learning algorithm during classifier creation. The reduction strategy entails the removal of
majority class examples in a manner designed to retain the information most typical of the
distribution that the class represents.

The application of variable misclassification costs to the SVM algorithm is discussed
earlier in Chapter 2 (§ 2.2.5). The C5.0 and k-NN algorithms may be weighted also in order
to coerce them into treating the accurate classification of one class with higher priority than
that of another. Several methods exist by which to incorporate variable misclassification
costs into the SVM algorithm. The method employed here is similar to that suggested by
Osuna et al. [1997] and used by (among others) Joachims [1998a]; Brown et al. [2000] and
Shin and Cho [2003]. The regularisation parameter (and thus the upper bound on classifier
weights) is set to different levels for each data class, which has the effect of varying tolerance
of misclassification according to the class of example misclassified. The higher of the two
parameters results in lower tolerance of misclassification for the corresponding class of data.

The question remains as to how much to raise and / or lower the regularisation pa-
rameter for each class from the equilibrium point at which they would be trained without
weighting. The relative importance of each class to the other is unknown. The only prin-
cipled weighting that may be applied without introducing another free parameter into the
training procedure is that which is inverse to the ratio of training class population sizes.
A normalised weighting of n/2n for positive examples and n/2n_ for negative examples
provides a similar weighting scheme to that employed thus far to calculate a balanced classi-
fication accuracy over the test examples. As described in Chapter 3 (§ 3.3.1), the SVM used
during this comparison optimises over the 1-norm of the slack variables, which results in the
Lagrange multiplier of each example being upper bound by the regularisation constant C in
the SVM constrained optimisation. The above weighting scheme may be applied directly
to the SVM upper bound. Thus, multipliers of positive class examples are upper bound by
C+ = n/2n, and the multipliers of negative class examples are bound by C_ = n/2n_.
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The same weighting structure may be applied simply to both C5.0 decision trees and
k-NN classifiers. Decision trees partition the data attribute-by-attribute (recursively) until
the training data is separated according to the class labels. At each iteration, the most in-
formative of the remaining attributes is chosen to form the next node in the tree structure.
The ranking measure employed commonly observes the information regarding training data
classification contained within each attribute. Variable misclassification costs may be ap-
plied at this point, allowing the attribute values of minority class examples greater influence
during information gain calculations, with the intention of creating a classifier more likely to
classify minority class examples correctly. The Clementine v7.1 [SPSS, 2002] implemen-
tation of C5.0, employed here, permits the association of different misclassification costs
with each data class. The results displayed below are the result of using the weighting de-
scribed above to associate different misclassification costs with the two classes present in
each problem. It is also simple to weight a k-NN classifier with variable misclassification
costs. When presented with an unlabelled example, the k-NN algorithm classifies it via a
vote across class labels of the k nearest training examples. The unit vote attributed to each
of the k class labels is replaced by a positive constant that depends upon the corresponding
class label. For example, in the scenario described above, each vote for the majority class
would be worth n/2n, and each vote for the minority class would be worth n/2n_ when
summed in order to classify an unseen example.

Whereas variable misclassification costs implemented in the above manner affect the
C5.0 and k-NN algorithms regardless of circumstance, the weighted SVM implementation
is restricted to certain cases. The reason for non-universality of the weighted SVM, im-
plemented as described above, is that variable misclassification costs are attached to the
regularisation parameter, which only acts when training errors are made. An SVM solution
that is stable and performs strongly over the training data is likely to remain unaffected
by the relatively subtle re-weighting of the regularisation parameter described above. Such
occurrences are noted during analysis of experimental results in subsequent sub-sections.
Strong SVM classifiers may be balanced by scaling the reweighted regularisation so that
the majority parameter is very small compared to the minority parameter, in order to en-
force regularisation upon the majority class. Imposing regularisation upon such situations
in order to balance performance involves more intensive parameter selection, usually involv-
ing cross-validation or some other assessment of generalisation performance over a grid of
separate regularisation parameter values for the two classes (asymmetric regularisation). In
the situation wherein training data present no impediment to separation after transformation
to a high-dimensional feature space, enforced regularisation lessens the effect of majority
class boundary determination by ignoring majority class examples nearest the boundary.
This is discussed further in § 4.2.2.

As an alternative to algorithmic weighting in order to overcome performance imbal-
ance, one may also consider revision of the data presented to a standard algorithm. Previous
attempts to overcome the negative effects of class population imbalance have included the
reduction of majority class data, via random sampling, and expansion of minority class
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data, via the addition of Gaussian noise about existing minority class examples [Bishop,
1995b]. In agreement with Shin and Cho [2003], it is not expected that a random sample
of the majority class data will provide best results, because it may lead to the loss of sig-
nificant patterns, or internal structure, from the data (cf. Chapter 3, § 3.2.1). Furthermore,
several random reductions would be required to provide significant experimental results,
which negatively impacts upon the practical use of such a method and may also impede the
comparison of results obtained from its use.

Strategic sampling from an abundance of data is not a new concept [Provost et al., 1999;
Lee et al., 2001] and methods to do so include the identification and use of only those
examples with nearest-neighbours of mixed class, in order to extract the region around any
potential decision boundary from a large body of labelled data [Shin and Cho, 2003]. The
introductory chapter of this thesis describes how potential improvements to present machine
leaming practice, and SVMs in particular, are sought in conjunction with approaches that
facilitate incorporation into present drug discovery practices. Upon consideration of how
best to reduce a majority class in order to balance the training data, a method widely used
in combinatorial library design presents itself as a potentially useful reduction strategy.

In order to reduce the population of the majority class to a size similar to that of the
minority class, it appears sensible to select examples that are ‘typical’ of the bulk of the
majority class. The Mahalanobis distance (§ 2.2.6, p. 67) is widely used in drug discovery as
a method of outlier assessment [Dominik, 2000]. The retention of majority class examples
with lowest Mahalanobis distance to the entire body of majority class data may typify the
majority class in the manner desired. Accordingly, majority class examples are assessed
against the shape and location of the majority class. If the minority class contains n_
examples, the |n_| majority class examples with lowest Mahalanobis distance are selected
for use in a balanced training set and the rest excluded from training.

The removal of training examples from a data-poor scenario is opposed to the ideal
situation of having more labelled data upon which to train. Nevertheless, and as seen in
the comparison of section 4.1, the undesirable effects of performance imbalance are most
likely to arise in the presence of imbalanced training data class populations, regardless of
their size. Enforcing equal training data class sizes in a relevant manner may eliminate this
source of performance imbalance without damaging majority class performance to the ex-
tent that its reduction outweighs the expected increase in minority class performance. For
SVMs, an additional benefit of this approach is that it should effect the training algorithm
regardless of the strength of original training performance. The results displayed in § 4.2.1
represent a first look at the use of an existing pharmaceutical analysis procedure for the
strategic balancing of training data class as an alternative to extensively tuned asymmetric
regularisation. Existing methods of algorithmic weighting is also assessed in order to pro-
vide context. Subsequent analysis of the results assesses the effect of both approaches on
ADMET SPC analysis and includes suggestions for further development.
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4.2.1 Results

The same experimental practice as employed in section 4.1 is employed here to assess both
balancing methods described above. Results are displayed in tables 4.5 & 4.6 using the same
tabular style as in section 4.1. To compare class-weighted algorithms, an SVM weighted as
described above and with linear, quadratic, and RBF kernels was applied to the five GSK
data sets. Similarly weighted versions of the C5.0 and k-NN algorithms were applied as
benchmarks. ANN and RBF networks are not present in this comparison because no facil-
ity to weight them was available in the Clementine v7.! implementation employed [SPSS,
2002]. It is important to note, however, that both techniques may be weighted directly
[Schwenk and Bengio, 1998].

Figures 4.6-4.10 display MDS plots of each data set training partition before (left) and
after (right) Mahalanobis reduction. Results of the Mahalanobis reduction trial are displayed
in table 4.6. All algorithms compared previously in section 4.1 are trained on Mahalanobis-
reduced training sets and generalisation performance assessed on the usual test partitions.
In order to replicate the eventual application of majority class reduction to the entire train-
ing set, Mahalanobis reduction is performed on each training fold of the stratified cross-
validation when setting free-parameters.

As before, a one-tailed weighted McNemar test was applied to assess the significance
of observations made from tables 4.5 & 4.6. Any increase in balanced accuracy of at least
marginal significance (p < 0.10) when observed against the results of table 4.2 is signified
by bold type. A similarly significant increase in minority class accuracy against the original
application is marked with an asterisk.
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Figure 4.6: Original (left) and Mahal-Reduced (right) BBB Training Data

4.2.2 Discussion

The results of tables 4.5 & 4.6 suggest that balanced accuracy as a result of algorithmic
weighting and strategic majority class reduction is moderately increased when compared to
the standard application of section 4.1. No classifier performance is significantly reduced
by balancing.
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Data | Algorithm Parameters Overall | Balanced | Majority | Minority
Wei. LSVM C=1 0.832 0.806 0.853 0.759*
Wei. QSVM C=10 0.828 0.758 0.886 0.630
BBB | Wei. RBF SVM | 0 =‘J-M’,C =10 | 0.861 0.799 0.913 0.685
Wei. C5.0 Pruning = 100% 0.836 0.776 0.886 0.667
Wei. k-NN k=11 0.811 0.780 0.837 0.722
Wei. LSVM C=1 0.855 0.861 0.784 0.938*
Wei. QSVM C=1 0.841 0.847 0.757 0.938
P-gp | Wei. RBFSVM | 0 =0, C =1 0.841 0.847 0.757 0.938*
Wei. C5.0 Pruning = 100% 0.754 0.734 1.000 0.469
Wei. k-NN k=5 0.841 0.847 0.757 0.938*
Wei. LSVM C=1 0.939 0.868 0.970 0.767*
Wei. QSVM C=1 0.932 0.819 0.982 0.656*
Tox | Wei. RBF SVM | ¢ =‘H’,C' =10 0.942 0.870 0.974 0.767*
Wei. C5.0 Pruning = 100% 0918 0.820 0.962 0.678
Wei. k-NN k=9 0.893 0.837 0.918 0.756*
Wei. LSVM Cc=1 0.822 0.718 0.861 0.576*
Wei. QSVM C=1 0.817 0.639 0.885 0.394
Bio | Wei. RBFSVM | 0 =‘J’,C =10 0.859 0.676 0.928 0.424
Wei. C5.0 Pruning = 20% 0.805 0.658 0.861 0.455
Wei. k-NN k=3 0.788 0.724 0.813 0.636*
Wei. LSVM C=10 0.686 0.703 0.649 0.756*
Wei. QSVM C=1 0.725 0.733 0.709 0.756*
PrB | Wei. RBF SVM | ¢ = ‘H’,C = 10 0.712 0.732 0.669 0.795*
Wei. C5.0 Pruning = 80% 0.703 0.691 0.729 0.654*
Wei. k-NN k=11 0.694 0.712 0.656 0.769*

Table 4.5: Weighted Algorithm Performance on GSK Data Test Data
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Data | Algorithm | Parameters Overall | Balanced | Majority | Minority
LSVM C=1 0.836 0.790 0.875 0.704*
QSVM Cc=1 0.845 0.808 0.875 0.741*
RBFSVM |o="H,C =1 0.811 0.767 0.848 0.685

BBB | ANN Hid. nodes = 25 0.828 0.790 0.859 0.722
RBF Centers =10 0.815 0.782 0.842 0.722*
Cs5.0 Pruning = 100% | 0.840 0.799 0.875 0.722
k-NN k=9 0.870 0.778 0.946 0.611
LSVM C=1 0.855 0.854 0.865 0.844*
QSVM C=10 0.826 0.832 0.757 0.906
RBFSVM [ o='J,C=1 0.797 0.807 0.676 0.938*

P-gp | ANN Hid. nodes =4 0.783 0.781 0.811 0.750
RBF Centers =3 0.855 0.853 0.892 0.813
Cs5.0 Pruning = 0% 0.754 0.734 1.000 0.469
k-NN k=9 0.841 0.847 0.757 0.938*
LSVM Cc=1 0.927 0.852 0.960 0.744*
QSYM C=1 0.881 0.825 0.906 0.744*
RBFSVM (o =‘H’,C =1 0.927 0.843 0.964 0.722*

Tox | ANN Hid. nodes=35 | 0.925 0.828 0.968 0.689*
RBF Centers =20 0.920 0.853 0.950 0.756*
Cs.0 Pruning =100% | 0.893 0.828 0.922 0.733
k-NN k=15 0.924 0.841 0.960 0.722*
LSVM C=1 0.739 0.696 0.755 0.636*
QSVM C =100 0.701 0.687 0.707 0.667*
RBFSVM [ o =‘H’,C =10 | 0.681 0.636 0.697 0.576*

Bio | ANN Hid. nodes =35 0.743 0.685 0.764 0.606*
RBF Centers = 55 0.660 0.675 0.654 0.697*
Cs5.0 Pruning=40% | 0.755 0.731 0.764 0.697*
k-NN k=1 0.764 0.672 0.798 0.546*
LSVM C =100 0.642 0.673 0.576 0.769*
QSVM C=1 0.686 0.687 0.682 0.692*
RBFSVM | o =‘H,C=1 0.738 0.677 0.868 0.487

PrB | ANN Hid. nodes = 10 0.677 0.678 0.676 0.680*
RBF Centers = 16 0.686 0.681 0.695 0.667*
Cs5.0 Pruning = 90% 0.646 0.661 0.616 0.705*
k-NN k=11 0.712 0.698 0.742 0.654*

Table 4.6: Mahalanobis-Reduction: Algorithm Performance on GSK Test Data
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Figure 4.9: Original (left) and Mahal-Reduced (right) Bioavailability Training Data

The weighted linear SVM displays significant increases in balanced accuracy against its

unweighted performance in 4 of S applications. As suggested earlier, unscaled weighting

does not appear to affect non-linear SVMs in situations where they perform strongly on the

training data (the difference in class-specific regularisation parameters is not great enough

to enforce regularisation upon the majority class), i.e. on the BBB and Bioavailability data.

The only contradictions to this are a slight perturbation of quadratic SVM performance bal-
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Figure 4.10: Original (left) and Mahal-Reduced (right) Protein Binding Training Data

ance on the P-gp data, upon which unbalanced classifiers displayed generally good levels of
performance balance, and an increase in quadratic SVM performance on the Acute Toxicity
data. A marginally significant increase in balanced performance is exhibited, but the effect
is lower than for linear and RBF SVMs, which make training errors.

The weighted k-NN classifier exhibits significantly higher balanced accuracy than when
unweighted in three of five applications. Furthermore, minority class accuracy is increased
on the P-gp data, but does not produce a significant increase in balanced accuracy. A de-
crease in majority class accuracy on the BBB data considerably outweighs a small increase
in minority class accuracy. By comparison, the weighted C5.0 algorithm is not affected
successfully, except on the Protein Binding data. Poor performance balance on the P-gp
data, the opposite effect on performance balance to that desired, results from the creation
of a particularly small tree that is unable to successfully distinguish the minority class from
the majority class. Examination of the tree structure suggests that it lacks the capacity to
successfully recognise both classes of data because weighting the recursive partitioning pro-
cess on such a small collection of training data produces a tree with very few nodes. This
situation also exposes weakness in a sole reliance upon balanced accuracy to compare al-
gorithmic performance. It is stated above that no classifier displays significantly reduced
balanced accuracy as a result of the measures employed. This is true, but C5.0 performance
is clearly undesirable.

The application of an unweighted linear SVM to Mahalanobis-balanced training data
exhibits increased performance in the same four circumstances as for algorithmic weight-
ing. In addition, quadratic SVM performance increases significantly on the BBB data (upon
which it made no training errors previously) and, likewise, quadratic and RBF SVMs on
the Acute Toxicity data. The ability of majority class reduction to affect the original perfor-
mance of high capacity classifiers on the Toxicity data is further confirmed by significant
increases in ANN and RBF network performance after training on the balanced data.

The k-NN classifier displays increased minority class accuracy in the same three ap-
plications as observed for algorithmic weighting. k-NN performance on the BBB data is
reduced by majority reduction. C5.0 performance only increases on the majority reduced
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Bioavailability data and the same problem as observed for algorithmic weighting is also
displayed by C5.0 on the majority reduced P-gp data.

Significant increases in minority class accuracy are exhibited by nearly all classifiers on
both Bioavailability and Protein Binding problems, but comes at the cost of an even larger
decrease in majority class accuracy in most cases. Such an effect does not represent any
particular success, as it is not desirable to reduce majority class performance to unaccept-
able levels in order to obtain an improvement in minority class performance - especially as
one would wish to retain the majority class in both of these problems. It appears that, on
the Bioavailability and Protein Binding data, any attempt to balance performance merely
‘pivots’ performance on majority and minority classes about a balanced accuracy that re-
mains roughly the same. One feasible conclusion is that the value about which balanced
generalisation appears to pivot is the limit of classifier generalisation ability on these data
sets, i.e. the structural information provided can be mapped to the target attribute in no more
successful manner. Other conclusions are drawn below.

The above observations raise questions regarding the nature and effect of attempting to
balance algorithmic treatment of the two data classes involved in the ADMET classification
tasks. First, one may consider why majority class accuracy remains higher than minority
class accuracy in the majority of balanced applications on the BBB, Toxicity and Bioavail-
ability training data and, second, why majority class accuracy is lower than minority class
accuracy in several balanced applications on the P-gp and Protein Binding data.

The former case may be related to the discussion of sample quality bias in § 4.1.2. The
three problems in which majority class accuracy remains greater than minority class ac-
curacy after balancing, albeit to a lesser extent than without balancing, are those in which
the majority class should be retained by the discovery process. Any potential quality bias
towards the retained class might explain why retained class performance of classifiers bal-
anced during training remains higher than rejected class performance. Even if there exists
no quality bias toward the retained class, the Mahalanobis reduction method is likely to in-
duce one, by removing outliers from the reduced class but not providing the same favour
to the other class. Similarly, algorithmic weighting will provide greater credence to all
members of the minority class regardless of their quality. A potential remedy might be to
apply algorithmic weighting with individual weights for each example that assess both class
membership and some measure of typicality, such as the Mahalanobis distance.

The latter case is apparent in the results for P-gp and Protein Binding data. The P-gp
data arguably requires little balancing, as long as a classifier of sufficiently high capacity is
employed. The Protein Binding data, however, does require balancing measures and, upon
their application, occasionally reverses the imbalance observed originally. In this circum-
stance, balancing may lead to under description of the majority class. Especially when using
reduction, the previous majority class is ‘shrunk’ about its location (regularisation ignores
examples closest to the eventual decision boundary) and, therefore, the reduced class may
no longer reflect the wider distribution of that class across chemical space. The class to be
retained (the majority in the Protein Binding data) is likely to occupy a more distinct region
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of chemical space than the class to be rejected. Again, even when weighting and reduction
result in well-balanced generalisation performance for both classes, it may be considered
that the level obtained is the generalisation limit of the structure-property information pro-
vided.

In cases wherein one wishes the majority class accuracy to remain at levels similar to
those of minority class accuracy after performing some form of balancing during training, a
scaling parameter may be employed and assessed by cross-validation over a range of values
in order to control the effects of balancing (as for enforced asymmetric SVM regularisa-
tion [Brown et al., 2000]). Alternately, reduction strategies may be stopped prior to class
population balance according to minimum difference between cross-validated performance
measures on each class. Likewise, on balanced data, algorithmic parameters could be cho-
sen according to minimum difference between cross-validated performance measures on
each class. An example of this approach is provided in Chapter 6.

Of the two balancing measures implemented above, it is anticipated that algorithmic
weighting would ‘scale-up’ best in order to treat problems of vast imbalance, e.g. the 2001
KDD Cup Thrombin binding QSAR data, which has a minority / minority class size ratio of
approximately 98% / 2%. In such a circumstance, in which 42 of 1909 compounds form the
minority class, it may be difficult to provide a representative sub-sample of 42 majority class
examples. Fortunately, this situation is unlikely to occur when creating SPC relationships
for lead optimisation.

Table 4.6 demonstrates that the strategic reduction of majority class examples with the
Mabhalanobis distance has the potential to reduce performance imbalance to an extent similar
to that of algorithmic weighting or balanced regularisation. Upon further consideration of
how the majority class is reduced in order to balance the training data, further options for
such a reduction become apparent. First, the Mahalanobis distance itself is, like PCA, not
particularly robust to outlying examples in a body of data. That is, outlying examples may
have undue influence upon the calculated shape and location of a body of data, which are
used subsequently to assess the extent of the outlying examples themselves. Robust variants
of the Mahalanobis distance have been introduced and used to good effect for a variety of
outlier detection tasks [Franklin and Brodeur, 1997; Hardin and Rocke, 1999] and it is
envisaged that the application of robust Mahalanobis methods may improve further upon
the results introduced here. More simply, the present method could be made slightly more
robust by re-calculating all remaining majority class distances upon the removal of each
example.

A further limitation of the Mahalanobis distance is that it is only calculable when a body
of data presents a shape within its input space, i.e. it has more examples than descriptive
attributes. As discussed in section 4.1, this may not be the case in the example poor, at-
tribute rich scenario of in silico drug discovery. Accordingly, one must consider methods,
preferably those already employed for drug discovery, by which to achieve a similar typi-
fication of the majority class. The Kennard and Stone [1969] (K&S) partitioning method,
employed here to partition the data into training and test sets, may also be employed to
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typify a majority class. A potential weakness of strategic majority class reduction via Ma-
halanobis distance rejection is that the area of input space covered by the majority class is
likely to ‘shrink’ as it is reduced, i.e. the shape of the majority class will change as exam-
ples are removed. The K&S method samples evenly across occupied chemical space and
could be employed here to remove majority class examples evenly across the space that they
occupy. By doing so, remaining majority class examples would be more likely to represent
the original majority class distribution. Table 4.7 displays algorithmic performance upon
data reduced by K&S reduction in the same manner as described above for Mahalanobis
reduction (only SVM results shown in the interests of concision). As previously, rows of
table 4.7 shown in bold font refer to an increase in balanced accuracy of at least marginal
significance against the original results of table 4.2. Minority class accuracies accompanied
by an asterisk are also increased significantly.

Data | Kernel Parameters Overall | Balanced | Majority | Minority
LSVM C=1 0.811 0.786 0.832 0.741*
BBB | QSVM C=10 0.836 0.822 0.848 0.796*
RBFSVM |oc=‘H,C =1 0.815 0.763 0.859 0.667
LSVM C=1 0.855 0.854 0.865 0.844*
P-gp | QSVM C=10 0.841 0.847 0.757 0.938
RBFSVM | o =0,C =1 0.841 0.847 0.757 0.938*
LSVM C=1 0.937 0.867 0.968 0.767*
Tox | QSVM C=10 0.872 0.834 0.890 0.778*
RBFSVM | o =‘H’,C =1 0.929 0.849 0.964 0.733*
LSVM Cc=1 0.768 0.713 0.789 0.636*
Bio | QSVM C=10 0.689 0.641 0.707 0.576*
RBFSVM | o0 =‘J-M’,C =10 | 0.730 0.691 0.745 0.636*
LSVM C=10 0.686 0.697 0.662 0.731*
PrB | QSVM C=1 0.707 0.729 0.662 0.795*
RBFSVM | ¢ =‘H’,C =10 0.716 0.714 0.722 0.705*

Table 4.7: K&S-Reduction: SVM Performance on GSK Test Data

The results of table 4.7 display a slightly, but not significantly, stronger balanced accu-
racy than when the training data is Mahalanobis reduced. Mahalanobis reduction samples
non-outlying examples from the majority class, whereas K&S reduction samples evenly
across the majority class. The former is more likely to alter the shape and location of the
majority class in relation to the minority class when providing a reduced but improved sam-
ple, whereas the latter thins the majority class under the assumption that its original shape
and location are representative of the separation problem. The K&S reduction approach is
also demonstrated in section 6.3 of Chapter 6.

Support vector domain description (SVDD) [Tax and Duin, 1999] employs the same
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quadratic optimisation framework of SVM leaming in order to enclose a body of data with
a hypersphere and locate its centre. SVDD may also be performed in feature space, via
an appropriate kernel expansion, in order to provide non-spherical enclosures. Regulari-
sation may be applied and controlled in a manner similar to that of the SVM method in
order to make the enclosure robust in the manner of robust Mahalanobis assessment, de-
scribed above, with the drawback that, unlike supervised learning on labelled data, there
is no natural stopping point for such regularisation. SVDD could be employed to typify a
majority data class, but would involve considerations of free-parameter selection that are
not present when using Mahalanobis distance or K&S sampling. Although not investigated
during the course of this work, the application of SVDD to wider aspects of combinatorial
library design would make an interesting subject for future work.

A balancing approach that is not pursued here is the concept of ‘up-sampling’ the mi-
nority training class to the same size as the majority class. This may involve the addition of
similar examples from a body of unlabelled data, or the addition of virtual examples inter-
polated from existing minority class data. Both methods depend upon information provided
by the minority class data regarding its shape and location. A one-class classifier, trained
on the minority class, could be employed to conscript unlabelled examples to balance the
data. The SVDD method may be a suitable technique with which to build such a one-class
classifier.

Finally, the flexible formulation of SVMs may offer a more elegant and integrated
performance balancing method than that described above. Two developments of the SVM
algorithm present interesting considerations in the context of data typification. First,
the work of Lee and Mangasarian [2001] describes a reduced support vector machine
formulation (RSVM) that a) is formulated as a linear, rather than quadratic, programming
problem and b) is thus able to optimise over a rectangular kermnel matrix composed of
kernel inner products between all training data and a randomly sampled subset of the
training data. Trials in the literature demonstrate that the original performance, i.e. that of
an SVM trained conventionally using all training data, is maintained when using as little
as 1% of the training data in the rectangular kernel matrix. An interesting piece of future
work would be to investigate whether the majority class reduction strategies, proposed
here, may be incorporated into the RSVM framework in order to achieve performance
balance without the outright removal of majority class examples. Another approach that
may not employ all available training data is the use of an SVM within a query leaming
framework [Campbell et al., 2000; Warmuth et al., 2002]. As descnibed in Chapter 2,
§ 2.2.6, query leaming involves the use of a supervised machine leamning algorithm that,
after training on a small subset of labelled data, requests class labels of unlabelled examples
close to the decision boundary and, once labelled, adds them to the training data in order
to improve generalisation performance on unlabelled data from the same distribution in
future iterations of the process. SVMs within a query leaming framework have been
applied to lead generation data previously [Mathieson, 2001; Warmuth et al., 2002] and
their application to these imbalanced SPC problems may invoke a situation in which the
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classifier is not dominated by a majority class. For example, an SVM could be trained
initially on a small, balanced sub-sample of the available training data and request labels
from the remaining data in order to improve generalisation on both classes of data.

It has been demonstrated that the strategic removal of majority class training examples,
in order to provide a class-balanced training set, produces results similar to those of con-
ventional algorithmic weighting and regularisation when applied to five ADMET SPC data
sets. Several avenues for further improvement are apparent and form a body of future work
that appears worthwhile to pursue. Regardless of the method employed, methods to counter
the effects of imbalanced class populations within the training data should be implemented
when using supervised machine leaming to create in silico SPC relationships for lead op-
timisation. Two suggested methods of strategic majority class reduction, Mahalanobis and
K&S sampling, typify the majority data class via the removal of outliers and an even sam-
pling strategy respectively. An ideal situation would combine the two strategies, in order to
obtain a sample representative of the original distribution of majority class examples that is
of higher quality than the original sample. In addition, a milder treatment of the minority
class, to remove outliers in lesser number than from the majority class may also improve
matters. Chapter 5 considers an adaptation to the SVM algorithm towards this purpose.

This chapter contributes to the research hypotheses stated in Chapter 1 in the following
form. The initial comparison (section 4.1) reveals challenges posed by leaming complex
relationships between molecular structure and ADMET properties from small collections of
labelled data. Further to arguments presented during Chapter 2, the results of the compari-
son suggest that the application would indeed benefit from the introduction of any technique
able to improve performance by overcoming the challenges presented. As to whether the
SVM algorithm represents such a technique, the results of both comparisons suggest that,
although it does not offer an immediate and significant increase in predictive accuracy over
extant techniques when employed in a form that is not adapted for the application, it does
perform competitively against them. In agreement with a growing body of published work
on this subject, SVMs display potential for the successful treatment of this application. Fur-
ther to the comparisons, it appears that the success of a newly introduced technique may rely
on how well it retains its natural predictive ability when adapted to overcome the challenges
of the domain. The remaining chapters of this work investigate two such adaptations.



Chapter 5

Neighbourhood Influence on Support
Vector Machine Classification

The challenge of structure-property classification is described in Chapter 2 and demon-
strated in Chapter 4. Earlier comparisons have displayed both the strengths and limitations
of several machine leaming techniques, particularly SVMs, when applied to data drawn
from the lead optimisation stage of the drug discovery process. The predictive success
displayed overall is tempered by the effort required to distinguish a minority, or under-
represented, class of data from a larger class in a manner that maintains good balanced
generalisation performance.

Section 4.2 of Chapter 4 describes approaches with which to balance performance on
class imbalanced training data via weighted training algorithms and a strategy for the re-
moval of majority class examples respectively. It would be convenient if the SVM algo-
rithm could behave similarly regardless of regularisation and without the outright removal
of training examples. Accordingly, this chapter assesses a method of kernel matrix construc-
tion that may focus the algorithm upon relevant regions of the training data and, thereby,
may invite balanced generalisation performance. Subsequent discussion regards the poten-
tial of this approach, and suggested domain-relevant adaptations to it, for SPC analysis.

It is impractical to weight kernel matrix contributions according to training data class
labels, because the class of new examples is unknown and, therefore, weighted contribu-
tion to the kernel function is not available upon classification. One may, however, focus
the kernel matrix upon particular areas of the training set, under the assumption that these
areas will best define the general separation of the data according to the target attribute.
Concentration upon relatively well-populated areas of input space, which will possess sub-
sequently a greater influence upon classifier structure during training, is another form of
data typification (cf. section 4.2 of Chapter 4).

107
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5.1 Neighbourhood Weighting the SVM Kernel Matrix

Several groups have introduced methods of kernel combination in order to treat contribu-
tions of attribute subsets in a distinct manner prior to their combination in order to represent
inter-example similarity. One of the earliest examples is that of Schélkopf et al. [1998],
which incorporates the effects of local feature correlation into an image classification task.
Similarity between pixellated image vectors is assessed via a function on local image sim-
ilarities, rather than a function on all possible combinations of pixel values as would a
standard polynomial kernel (K (x,z) = (x-2z)P, cf. § 2.2.3). Each image vector pair is
combined to form a pixel-wise product of the two images, e.g. a third image in which pixel
values result from the product of corresponding pixels in the original pair. A local area
around each pixel provides attribute (pixel) values that contribute to a dot-product between
each pixel pair. The local dot-products for each pixel pair are raised to a power pl and
represent local image correlations. The local correlation values for each pixel are subse-
quently summed and raised to a power p2 in order to provide a global image correlation.
Thus, the final kernel is of order pl - p2 but does not contain all possible pixel-pair contri-
butions - only those relevant to the comparison of two images. A sizeable reduction in test
error is observed in comparison to a standard polynomial kernel on a hand-written character
recognition task. Several other works have combined partial kernel contributions in order to
involve prior-knowledge regarding local attribute contributions, including [Brailovsky et al.,
1999; Lodhi et al., 2000; Zien et al., 2000; Vert, 2002] and [Ritsch et al., 2006], some of
which are discussed further in Chapter 6.

Alongside similar work on combined attribute kernel functions, Brailovsky et al. [1999]
introduce a method of SVM kernel combination that permits the influence of local patterns
in input space upon transformation to feature space. The method attempts to introduce the
benefits of ‘lazy’ classifiers (such as k-NN), which examine a small subset of training data
local to each test example when predicting its class, with a global classification boundary
that may not require a search across all training examples upon each classification. Thus,
the method differs from previous work on combined kernels by considering the combination
of example, rather than attribute, subsets.

Regardless of the function chosen to provide a ‘base’ kernel, the output for each training
set pair is weighted according to a measure of their locality in input space. Locality, in this
scenario, should be distinguished from similarity. Similarity assesses the likeness of an
example pair, e.g. the similarity between two molecular structures. Locality assesses the
number of examples located in the immediate surroundings of the examples between which
similarity is assessed. Thus, the kernel function mapping of an example pair is weighted
according to the context in which their similanity is assessed. From [Brailovsky et al., 1999],
consider a hard window located in input space with centre wq and an associated binary
function that attributes zero weight to input space examples that lie outside a threshold
distance (or dissimilarity) 6y from w and unit weight to examples inside the threshold
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1 if|x— wp| <6y

) (5.1
0 otherwise.

h(lx — wol) = {
A kemnel function, applied to points in the windowed input space, will provide non-zero
output only for examples that inhabit the window

Kwo(x,2) = K(x,2) h(|x — wol) h(|z — wol) (52)

Centres wy, . .., Wi, distributed across the training data so that functions h(|x — w;|) cover
the domain, provide partial kernel contributions, K, (x,z), that may be summed

k
K*(x,2) = Y Kuw,(x,2) = K(X,2) nx (5.3)
=1

where ny ; is the number of windows that include both x and z.

Data thus weighted ensures that well-sampled regions have greater influence than poorly
sampled regions of the data. There remains the possibility, however, that some test examples
may not inhabit any of the windows determined by the training data and, hence, will provide
no relevant evidence for classification in the locally-weighted feature space. On one hand,
it is rather sensible that such examples are not classified on the basis that they are not
reflected by the training data from which the classifier is constructed. On the other, it would
be preferable to classify such examples and present their classification alongside a warning
flag. In order to do so, an extra window with infinite distance threshold, 6x; = oo, is
introduced and the corresponding partial kemnel, Ky, ,,(x,z) = K(x,z), is added to the
sum of partial kernels for an example pair x and z.

The original work [Brailovsky et al., 1999] suggests several strategies for the placement
of influence windows across the training data, including hard (i.e. non-overlapping) and soft
(overlapping) windows, arranged in a grid, located on the centres provided by k-means data
clustering, or placed at each training example so as to enclose a certain number of nearest-
neighbours. The competitive performance of a k-NN classifier in Chapter 4 suggests the
soft window, nearest-neighbourhood method. In brief, each training example provides the

centre of a spherical window, w; = x;, of radius large enough to contain the k nearest
(k)

examples (neighbours) to the centre, i.e. #; = |x;”’ — x;|, where xgk) is the k'™ nearest
example to x;.

The combination of partial base kernel applications, in order to reflect relevant patterns
within the training data, appears to fulfill the aim outlined at the end of the previous chapter,
1.e. to typify the training data without the outright removal of examples. There exist situ-
ations, however, in which this method may not perform the task as required. For example,
the technique is applied under the assumption that there exists sufficient, sufficiently well-
sampled, labelled data of both classes. This appears likely for the BBB and Toxicity data

sets, but unlikely for the Bioavailability and PrB data sets. When minority class examples
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are scattered amongst a larger majority class, concentrating the training algorithm upon the
densest areas of the data is unlikely to assist recognition of the minority class and may,
in fact, lead to further performance imbalance by strengthening the majority class further.
Another consideration is that, from the sum of partial kernels in equation 5.3, the neigh-
bourhood method represents a form of classifier combination. A large amount of work on
classifier combination [Breiman, 1994; Freund, 1995; Evgeniou, 2000; Skurichina, 2001]
suggests that weak classifiers, i.e. those that make errors on the training data, are those
best affected by combination over different subsets of the training data. To investigate this,
both linear and quadratic SVM kermnels are used as base kernels when assessing the neigh-
bourhood method below. RBF kernels are not assessed, for reasons including their strength
on the training data, the consideration that separate RBF widths may be required for each

partial kernel matrix and their use of an extra free parameter during training.

5.2 Results

The neighbourhood kemel method is applied to the GSK data as before (Chapter 4) and
the results are reported in the same tabular format. Table 5.1 displays the performance of
regular and neighbourhood SVM classifiers, with both linear and quadratic base kernels,
when used to classify the GSK data test partitions. Linear and quadratic kernels are denoted
‘LSVM’ and ‘QSVM’ respectively and neighbourhood kernels are prefixed with ‘NN-’. The
neighbourhood of k-NN windowing is assessed over the range k = {3,5,7,9,11,13,15}.

A one-tailed, weighted McNemar test of marginal homogeneity was applied to compare
the performance (balanced accuracy) of neighbourhood weighted SVMs against the perfor-
mance of the original algorithm (Chapter 4, section 4.1). An unweighted one-tailed Mc-
Nemar test was applied to compare classifier performance on majority and minority classes
in isolation. As before, a difference in performance is deemed significant at the 95% level
(p < 0.05), marginally significant if between 90-95% levels (0.05 < p < 0.10) and not
significant otherwise (p > 0.10). Results are summarised below.

BBB: The neighbourhood-weighted linear SVM (NN-LSVM) displays increased balanced
accuracy against the unweighted LSVM, but the increase is not significant. Ma-
jority class accuracy is significantly reduced (p = 0.001) but remains > 80%,
whereas minority class accuracy is significantly increased (p = 0.032). Conversely,
the neighbourhood-weighted quadratic SVM (NN-QSVM) displays a significant de-

crease in balanced accuracy against its unweighted counterpart.

P-gp: The neighbourhood-weighted linear SVM (NN-LSVM) displays significantly higher
balanced accuracy than the unweighted LSVM, courtesy of a significant increase in
minority class accuracy and an insignificant increase in majority class accuracy. The
neighbourhood-weighted quadratic SVM (NN-QSVM) also displays higher balanced
accuracy than its counterpart, but, because of the already strong quadratic SVM per-
formance on this data, the increase is not significant.
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Data | Algorithm | Parameters Overall | Balanced | Majority | Minority
LSVM C=1 0.849 0.732 0.946 0.519
BBB | NN-LSVM | C=1,n=3 0.798 0.758 0.832 0.685
QSVM Cc=10 0.832 0.761 0.891 0.630
NN-QSVM | C=1,n=5 0.790 0.714 0.853 0.574
LSVM C=1 0.768 0.761 0.865 0.656
P-gp | NN-LSVM | C =100,n =5 0.899 0.897 0.919 0.875
QSVM C=1 0.870 0.870 0.865 0.875
NN-QSVM | C =100,n =13 | 0.899 0.897 0.919 0.875
LSVM C=10 0.939 0.814 0.994 0.633
Tox | NN-LSVM | C =100,n =11 | 0.925 0.828 0.968 0.689
QSVM C=1 0.930 0.800 0.988 0.611
NN-QSVM | C =100,n =11 | 0.930 0.831 0.974 0.689
LSVM C=10 0.822 0.603 0.904 0.303
Bio | NN-LSVM | C=100,n=9 0.801 0.655 0.856 0.455
QSVM C=1 0.834 0.649 0.904 0.394
NN-QSVM | C =100,n =13 | 0.809 0.635 0.875 0.394
LSVM C =100 0.734 0.659 0.894 0.423
PrB | NN-LSVM | C=1,n=5 0.716 0.673 0.808 0.539
QSVM C=1 0.756 0.715 0.841 0.590
NN-QSVM | C =100,n =13 | 0.699 0.682 0.735 0.628

Table 5.1: kNN-SVM vs. SVM Performance on GSK Test Data
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Tox: The neighbourhood-weighted linear SVM (NN-LSVM) shows no significant perfor-
mance increase against balanced accuracy of an unweighted LSVM. The minority
class accuracy is increased slightly, but not significantly, at the expense of a signif-
icant decrease in majority class accuracy. The neighbourhood-weighted quadratic
SVM (NN-QSVM) displays significantly higher balanced accuracy against an un-
weighted QSVM. A significant increase in minority class accuracy is accompanied

by a decrease in majority class accuracy of marginal significance.

Bio: The neighbourhood-weighted linear SVM (NN-LSVM) displays increased balanced
accuracy against unweighted LSVM performance with marginal significance (p =
0.057), courtesy of a marginally significant increase in minority class performance.
The neighbourhood-weighted quadratic SVM (NN-QSVM) displays an insignificant
decrease in balanced accuracy against its counterpart.

PrB: The neighbourhood-weighted linear SVM (NN-LSVM) displays an insignificant in-
crease in balanced accuracy against an unweighted LSVM. A significant increase in
minority class accuracy is accompanied by a significant decrease in majority class
accuracy, although majority class accuracy remains > 80%. The neighbourhood-
weighted quadratic SVM (NN-QSVM) displays an insignificant decrease in balanced
accuracy against its counterpart.

5.3 Discussion

Any positive effect of weighting linear and quadratic SVM kernels with the method of
Brailovsky et al. [1999] appears dependent upon the nature of the data to which the algo-
rithm is applied and the strength of the original algorithm itself. For example, a linear base
kernel displays increased balanced accuracy when neighbourhood weighted on all five data
sets (twice with at least marginal significance) and improves minority class accuracy with
at least marginal significance while retaining majority class accuracy > 80% in four of
those cases. Conversely, a quadratic base kernel significantly increases balanced accuracy
once (Toxicity) and significantly decreases balanced accuracy once also (BBB), although
good performance on the P-gp data does not represent a significant increase on the already
strong performance of an unweighted quadratic SVM. This appears contrary to results of
the original work, in which a three-degree polynomial kernel improved performance on an
image recognition task with k = 5. The task involved was larger than the tasks treated here,
however, an it may have been the case that an unweighted polynomial SVM did not perform
strongly on the training data, as it does here.

In general, the balancing effect observed is smaller in magnitude than that achieved
by the explicit balancing techniques of section 4.2, excepting impressive performance on
the P-gp data. Performance on the Bioavailability data in particular reflects the caution
expressed at the end of section 5.1, regarding neighbourhood weighting on a sample of
insufficient size or quality. Both BBB and Bioavailability further reflect potentially negative
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results when combining high capacity classifiers. On the BBB data, for example, the linear
SVM obtains a margin of separation on the training data after neighbourhood weighting,
in much the same manner as do weak classifiers under conventional classifier combination
strategies [Skurichina, 2001]. The quadratic SVM already has a margin of separation on
the training data and the combination of partial kernel matrices appears to induce further
overfitting on both classes of the training data. A potential reason for this on the BBB data
is the locality threshold selected by cross-validation (k = 5 nearest-neighbours). At such
a level, locality tends towards the reinforcement of similarity between training example
pairs. The linear SVM (k = 3) appears to benefit from this influence, but the quadratic
SVM with higher capacity does not. The same effect is less evident on the other data
sets, upon which k is set to 11-13 neighbours for the quadratic SVM. In many respects,
concentration on multiple small localities of the training data has an effect similar to adding
extra information around the examples with greatest window membership to achieve an
effect similar to that of ensemble creation methods [Evgeniou, 2000; Skurichina, 2001].

The neighbourhood influence method of Brailovsky et al. [1999] displays some promise
for strengthening weak SVM classifier performance on the small sets of data presented. It
is in the consideration of how one may improve the method, in terms both of performance
and domain-relevance, that its potential becomes apparent. The first potential improvement
to the neighbourhood technique, in the presence of small, class imbalanced training sets, is
the separate treatment of majority and minority data classes when determining the number,
location and reach of windows employed to create partial kernel matrices. It is difficult to
consider this in the context of the k-NN windowing employed above, because it is not clear
how different neighbour ranges would affect the representation of majority and minority
classes respectively. The use of clustering procedures to attribute windows to positive and
negative classes separately may be a more interpretable method (see below). Alternatively,
neighbourhood weighting could be applied to data balanced as suggested in section 4.2 of
Chapter 4. Such application would have the potential to represent relevant data patterns
in the presence of equally represented classes and, thereby, to focus on locality without
an overwhelming majority class presence in overlapping regions. Thus, the application
of neighbourhood weighting could typify both classes and correct a potential flaw of the
majority reduction method, in which only the majority class is typified.

A weakness of the k-NN windowing is that windows are centred about all training data
examples. The result of this is that the resulting classifier requires the input of all training
data when transforming unlabelled data into feature space for classification. The use of a
potentially sparse training data subset to support the decision boundary is a primary benefit
of SVM classifiers, especially in circumstances wherein they may be employed to classify a
large amount of unlabelled data. The k-NN windowing removes this advantage. As an alter-
native, the original work on neighbourhood kernels [Brailovsky et al., 1999] suggests local
windowing using k-means clustering alongside the nearest-neighbour approach employed
here. In some respects, one might expect such a windowing to replicate the performance of
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an RBF network, especially when applied to linear kernel functions (see § 2.2.6, p. 59). A
previous comparison of RBF networks against RBF-kernel SVMs [Schélkopf et al., 1997]
suggests that the performance advantage of the RBF-SVM over its RBF network counter-
part is due to the placement of RBF network centers by k-means clustering and, thus, would
appear to cast doubt on the usefulness of such an approach. Nevertheless, the use of other
clustering methods to window input space may provide interesting avenues of further inves-
tigation, especially because only cluster centres, rather than the entire data set, are consulted
upon the transformation of unlabelled data for classification, thus retaining the SVM advan-
tage of a sparse solution. The nearest-neighbour method of Jarvis and Patrick [1973], which
is used widely as a method of clustering pharmaceutical data [Butina, 1999], may provide a
suitable windowing with the additional benefit of doing so via a method that is well-known
to practitioners of drug design.

Furthermore, the method of Butina [1999] would offer a more recent technique, de-
signed by a drug design practitioner in order to cluster pharmaceutical data. As described in
Chapter 2, § 2.2.6, not only is this method applicable to both real and binary representations
of structural and whole-molecular attributes, the excluding spheres employed to define clus-
ters about each centre may be adapted to provide overlapping windows (or left unchanged
to provide hard windows) and examples identified as outliers by the clustering may be re-
moved from classifier creation or, in the case of test examples, flagged as examples classified
in a region of insufficient training information. The limiting width of excluding spheres, the
only free parameter of the algorithm, could be set using heuristics similar to those employed
here for setting RBF kernel width (real-valued structural attributes), or set using prior do-
main knowledge on a suitable representation of whole molecule similarity (cf. Chapter 6).
The use of partial kernel construction to involve domain-relevance in SVM classification is
suggested as future work by Brailovsky et al. [1999] and this appears one such example.

The BBB data is seen in table 5.1 to respond to neighbourhood weighting to an ex-
tent that suggests there is sufficient data available from which to extract typical information
regarding both classes. It is also observed that a quadratic base kernel responds to k-NN
weighting by over-fitting the training data. Accordingly, the BBB data is employed here
in a brief trial of two of the above suggestions for improvement. Table 5.2 displays SVM
performance on the BBB data when training is influenced by Butina clustering in the man-
ner suggested above. The clustering algorithm is adapted slightly, to allow the excluding
spheres of the original formulation to overlap. Kernel contributions are weighted accord-
ing to the number of spheres shared by an example pair and an infi-window is added in
order to treat outlying data. The similarity threshold of the clustering algorithm is set using
the ‘Jaakkola’ width heuristic, described in Chapter 3, § 3.3.1, although a full comparison
should set any heuristically determined threshold by cross-validation over a range of multi-
ples (cf. § 4.1.2). Linear and quadratic base kernels are weighted as described and an SVM
trained and assessed according to the experimental practice of Chapter 3. Table 5.2 displays
generalisation performance in the same format as employed earlier. The unweighted linear
and quadratic SVMs are referred to as ‘LSVM’ and ‘QSVM’ respectively. Their weighted
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variants are referred to as ‘BC-LSVM’ and ‘BC-QSVM’ respectively.
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Data | Algorithm | Parameters | Overall | Balanced | Majority | Minority
LSVM C=1 0.849 0.732 0.946 0.519

BBB { BC-LSVM | C' =10 0.807 0.777 0.832 0.722
QSVM C=10 0.832 0.761 0.891 0.630
BC-QSVM | C =100 0.819 0.785 0.848 0.722

Table 5.2: BC-SVM vs. SVM Performance on BBB Test Data

The Butina-weighted linear SVM (BC-LSVM) displays a marginally significant (p =
0.075) increase in balanced accuracy against the unweighted LSVM. Majority class ac-
curacy is significantly reduced, but remains > 80%, whereas minority class accuracy is
significantly increased (p = 0.002). The Butina-weighted quadratic SVM (BC-QSVM)
displays an insignificant increase in balanced accuracy against the unweighted QSVM. Ma-
jority class accuracy is reduced with marginal significance, but remains > 80%, whereas
minority class accuracy is increased with marginal significance (p = 0.090). This result
contrasts sharply with the corresponding NN-QSVM performance in table 5.1. A potential
reason for this is that the windows provided by clustering are wider in scope and overlap
less than those produced by the k-NN method’s immediate view of the region surrounding
each example. The partial matrices produced by clustering describe patterns directly rather
than via accumulation, to the apparent benefit of data typification.

The effect of weighting the SVM kernel matrix according to cluster membership
appears to balance performance on the majority and minority data classes to a similar extent
as that observed for training data balanced by Mahalanobis reduction (Chapter 4, § 4.2).
Table 5.3 displays the effects of combining these two methods, as suggested above. The
Butina neighbourhood weighting is applied and assessed using the experimental practice
employed for the assessment of Mahalanobis reduction in section 4.2 of Chapter 4.

Data | Algorithm Parameters | Overall | Balanced | Majority | Minority
LSVM C=1 0.849 0.732 0.946 0.519
MR-LSVM C=1 0.845 0.789 0.875 0.704
BC-LSVM C=10 0.807 0.777 0.832 0.722

BBB | MRBC-LSVM | C =1 0.832 0.826 0.837 0.815
QSVM C=10 0.832 0.761 0.891 0.630
MR-QSVM C=1 0.845 0.808 0.875 0.741
BC-QSVM C =100 0.819 0.785 0.848 0.722
MRBC-QSVM | C =100 0.807 0.797 0.815 0.778

Table 5.3: SVM and BC-SVM Performance on Mahalanobis-Reduced BBB Data

The effect of combining Mahalanobis data reduction and neighbourhood-weighted

SVM kemnels displays a promising effect on performance over separate applications of both
techniques using both linear and quadratic SVM base kernels. The combined method with
linear base kernel displays a significant increase in balanced accuracy over the unweighted
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LSVM and records > 80% accuracy on both classes of the BBB data. The combined method
with quadratic base kernel displays a significant (p = 0.029) increase in minority class ac-
curacy against an unweighted quadratic kernel, but this increase is offset by a significant
decrease in majority class accuracy and, thus, the displayed increase in balanced accuracy
is not significant. Nevertheless, the class accuracies displayed by the combined method with
quadratic base kernel approach those of the combined method with linear base kernel and
are more even than those attained by the constituent methods when applied separately.

Locality weighting the SVM kernel matrix displays potential to a) incorporate domain
relevance into the SVM framework, and b) reinforce the balancing measures suggested in
Chapter 4. Focus upon data patterns during training tends to improve performance bal-
ance and judicious choice of clustering algorithm would facilitate integration into current
industrial drug discovery practices. One key drawback of such an approach is the introduc-
tion of an extra free-parameter during SVM training. Greater attention than is provided by
the initial trials above is required in order to optimise, for example, the similarity thresh-
old employed by the Butina clustering algorithm. For example, as suggested for tuning
RBF width in § 4.1.2 of Chapter 4, the threshold could be tuned over multiples of a single,
heuristically-chosen value. The use of pharmaceutical clustering methods to weight SVM
kernel contributions on ADMET property prediction is the subject of work ongoing, which
will examine methods of threshold setting more fully.

Further consideration of clustered kernel construction yields several options for further
development. For example, in the original formulation of Brailovsky et al. [1999], par-
tial kernels contribute equally to the combined similarity matrix. Weighted combinations of
partial kernels, which incorporate measures of partial kemnel contribution, may improve per-
formance further. For example, partial kernels could be weighted according to the number
of example pairs that they affect, some measure of the expected performance of their con-
tribution, or class heterogeneity of the associated examples in the case of class imbalanced
training data. Kernel similarity matrices constructed of partial kernels on attribute subsets
have been weighted similarly to good effect in the past. A more sophisticated approach may
be provided by optimising a set of weights across partial kernel contributions, as performed
recently by Ritsch et al. [2006] who solve an optimised weighting over combined local
attribute kernel contributions during SVM training.

The extraction of relevant information from the available labelled data appears a
promising approach in circumstances involving small amounts of relatively well-sampled
data, but displays weakness in the presence of insufficient labelled data of sufficient sample
quality. The idea of using the structure of an associated body of unlabelled data in order to
improve classifier inference on a set of labelled data is proposed in several works [Vapnik,
1998; Bennett and Demiriz, 1998; Joachims, 1999; Jaakkola et al., 2000; Campbell et al.,
2000] and has an unexplored relevance to this framework of kernel construction. For exam-
ple, in the simplest case, one may consider clustering on a relevant body of unlabelled data,
instead of the training data, and using the windowing extracted to produce partial kernel
functions on the training data. The data sets employed thus far do not provide a sufficient
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body of relevant unlabelled data for each problem. Nevertheless, the idea of involving
data beyond the labelled data available is an inviting one, especially in cases of inadequate
sampling. Action to reinforce classifier construction and generalisation should be pursued
further in attempts to improve the quality of in silico ADMET screens when few examples
are available from which to generalise. To date, such work has been pursued in the con-
text of drug discovery by [Mathieson, 2001; Warmuth et al., 2002] and [Weston et al., 2003].

This chapter has introduced the neighbourhood kernel method of Brailovsky et al.
[1999] and assessed its application to several small, class imbalanced ADMET classifi-
cation problems. The original method, which describes training data locality in a similar
manner to the k-NN algorithm (cf. § 2.2.6, p. 63), displays some good effect in strengthen-
ing the unbalanced performance of linear SVMs in particular. It is in the incorporation of
a domain-relevant windowing strategy, however, that more promise is shown particularly in
combination with a data balancing procedure introduced in the previous chapter. The work
presented here is intended to prompt wider research into the application of domain-relevant
kemel weighting for problems such as SPC analysis. Much work has been pursued towards
the combination of local attribute subsets to represent locality within example vectors via
partial kernel combinations, but the neighbourhood weighting of [Brailovsky et al., 1999]
has received relatively little attention as a method of performing the same task across a dis-
tribution of examples. This may be because powerful methods of classifier combination on
sub-samples of training data exist already, in the form of classifier combination algorithms
such as Bagging [Breiman, 1994] and Boosting [Freund, 1995], and have been worked suc-
cessfully into the SVM framework [Ritsch et al., 2000; Evgeniou, 2000]. This application
of partial kernel construction was motivated by a desire to extract information related to the
generalisable separation of imbalanced training data, rather than the creation an ensemble
classifier. Because many of the clusters employed are class homogeneous, it is unclear as
to whether this method may be directly related to traditional approaches to classifier com-
bination. Nevertheless, the positive effect of combining partial kernel matrices, particularly
upon weak SVM classifiers, suggests that study of the method from the perspective of en-
semble creation [Kittler et al., 1998] may yield more specific information regarding how
best to refine the technique.

The incorporation of domain relevance into an SVM kernel framework via the selec-
tion of suitable windowing methods warrants further investigation along with adaptations
that are specifically related to classifier combination, such as the optimisation of partial
kernel weights. The use of windowing strategies to guide a transductive approach to SPC
relationship analysis represents a separate strand of research, albeit one that also warrants
consideration when attempting to generalise well beyond small collections of labelled AD-
MET data.



Chapter 6

Tanimoto Kernels for Support Vector
Machine Classification

The methods described in this chapter were developed independently of the contemporary
and recently published works of Chen et al. [2006] and Frohlich et al. [2005, 2006]. This
unpublished work compliments these citations and, in conjunction with them, makes a pow-
erful statement regarding the future role of machine leamning within the drug discovery pro-
cess.

As discussed during Chapter 2, not all in silico molecular representations available to
the SPC analyst are real-valued. Sparse, binary representations of molecular structure have
found great favour in combinatorial library construction, because measures of similarity
between binary strings are rapidly calculated and have been demonstrated particularly ef-
fective in the assessment of structural dissimilarity [Drewry and Young, 1999].

Daylight fingerprints are introduced in § 2.1.5 of Chapter 2 as 1024-bit binary strings
that provide an abstract representation of molecular structure via the combination of 4 / 5
bit encodings of the molecular sub-structures that comprise a single compound. Chemical
space, thus described, may be considered a 1024-dimensional hypercube with compounds
located on its vertices [Kondor and Lafferty, 2002]. An advantage of such a representation
is to provide chemical space with a set of discrete co-ordinates, at which compounds are
located uniquely according to their sub-molecular constituents.

The high cardinality and sparse nature of Daylight strings (typically 1024 bits, only
20% of which are switched on) have, until recently, rendered them a choice less obvious
than explicit, real-valued descriptors for treatment by supervised machine leaming. Rather,
fingerprints were used to assess the similarity of unlabelled compounds in large collections
(such as those found after HTS or in the large combinatorial libraries of lead generation) to
a reference structure (or structures) of known activity against a molecular target. Clustering
and outlier detection methods work well on binary data, because similarity between exam-
ples is rapidly calculated, and their treatment of Daylight data is used widely to increase
diversity in large combinatorial libraries [Holliday et al., 2002; Daylight, 2006].

The measurement of similarity between Daylight strings requires consideration of the
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mapping that they provide between molecular structure and binary representation. As de-
scribed in § 2.1.5, the Daylight map of structure to chemical space is abstract. That is,
sub-molecular fragments are encoded prior to their combination to form a single string. The
encoding does not represent sub-structural fragments explicitly. If the encoding of a partic-
ular fragment is present within a fingerprint, the fragment itself is highly likely to form part
of the larger molecule that the fingerprint describes. It is of note that the information en-
coded is 2D. Fragment presence within the molecule is represented, but fragment geometry
and location are not.

Direct assessment of similarity between Daylight strings serves to approximate the ex-
plicit comparison of their constituent fragment encodings. The more bits mutually on in two
fingerprints, the greater the likelihood that the compounds represented share sub-structural
fragments and, therefore, are structurally similar. The abstract nature of the encoding lim-
its the relevance of contiguous sub-strings, except as a combinatorial approximation to the
overall similarity between strings. In addition, the attributes (the elements of each string)
have no explicit meaning, i.e. they are not explicitly descriptive attributes, except as contri-
butions to the assessment of similarity between strings.

For example, the Euclidean distance records bits mutually off in two strings as con-
tributing towards their similarity. Daylight strings typically have 20% of their bits switched
on. Two strings, each with 20% bits on but none overlapping would appear 60% similar
according to the Euclidean distance despite having no structural similarities. Measures de-
signed to obviate such a situation are available and widely used. The Tanimoto similarity
[Butina, 1999; Holliday et al., 2002] normalises the number of bits mutually on, c, in two
strings, ¢ and j, by the number of bits on in both strings, (a + b), less the double-counting
of bits mutually on,

.. C
T09) ==

As discussed in Chapter 2, the lack of a universal molecular representation suitable for
machine leaming is a barrier to successful in silico drug discovery. The machine leaming
treatment of structure-activity relationships on molecular encodings is growing in popular-
ity for lead generation [Hert et al., 2006]. Were it practical to employ supervised machine
learning to leam smaller and more complex ADMET SPC relationships on some rapidly
calculable standardised representation, it is conceivable that the in silico discovery process
could be performed automatically and in a single molecular representation from combinato-
rial chemistry through to the latter stages of lead optimisation (the 2D stages). Standardised,
used in this context, represents a molecular description as having relevant standard form
rather than being universally descriptive.

SVMs have been applied to sparse binary fingerprint representations of compound struc-
ture, in order to mine HTS output and large combinatorial libraries at the lead generation
stage of the drug design process [Warmuth et al., 2002; Weston et al., 2003; Wilton et al.,
2006]. An SVM with high-dimensional polynomial kernel (degree = 5) is applied to a
variety of fingerprint representations by [Wilton et al., 2006], to create structure-activity
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relationships from a large collection of agrochemical compounds arising from pesticide dis-
covery. The SVM is compared to another method, binary kernel discrimination (BKD),
which employs a smoothed similarity function to assess the similarity of unlabelled com-
pounds to known compounds in a form of ‘lazy’ classification (cf. p. 63) and proves more
able than BKD when employed to predict compound activity from a subset of labelled com-
pounds. This observation is tempered, however, by the nature of the problem treated - a
one-against-all classification scenario involving five activity classes (and, hence, a 20% /
80% class imbalance), and results in which the proportion of true positives in each class
prediction is 30—60% (performance is best on extreme categories). A recent advance in the
BKD method [Chen et al., 2006] relates to the work of this chapter and consideration of the
technique provides useful background information.
From [Wilton et al., 2006], the standard BKD method employs a similarity function,

ka(i,g) =[x (1 — o] @)
where ) is a smoothing free-parameter in the range (0.5, 1.0), d;; is the squared Euclidean
distance between two compounds, i and j, m is the string length and p is a user-defined
scaling parameter. The similarity function is employed in kernel density estimators [Bishop,
1995a] to estimate the likelihood that an unclassified compound, j, is active against the
same target as a reference compound, i. One should note the use of k to reference the
density function instead of K, which is used throughout this thesis to refer to a valid SVM
inner-product kernel. In the presence of a labelled set of active compounds, A, and another
of inactive compounds, B, a scoring function may be employed to rank the activity or
otherwise of an unlabelled compound j,

N Zi k/\(l’])

which, for binary prediction, may be represented as the decision function

+1 pu>0

f(3) = sgn(Spkp — 1) where sgn(p) = .
—1 otherwise,

or
f(J) = sgn Z yika (i, 7) where y; € {+1, —1} denotes activity.
i€{A,B}
By contrast, the SVM decision function
nsv
f(z) = sgn (Z oy K (xi,2) + wo)
i=1

weights kernel contributions to the decision function by the optimised weights, «;, and only
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involves similarities between an unlabelled example and training examples with non-zero
weights (the SV points) that support an optimum separating hyperplane. As described in
[Wilton et al., 2006], the BKD kernel similarity function is dominated by labelled com-
pounds most similar to the unlabelled compound as A increases. BKD is a ‘lazy’ learning
classifier and, in essence, an appropriate choice of A leads BKD to employ a relevant subset
of nearest neighbours upon which to classify each unlabelled compound.

Chen et al. [2006] replace the Euclidean dissimilarity measure above with the com-
plement of several, popular measures for the assessment of similarity between bit-strings.
The Tanimoto dissimilarity (the complement of the Tanimoto similarity described above) is
found to provide significantly better performance in the prediction and retention of active
compounds from a large collection and represents the incorporation of domain-relevance.
Thus far, SVMs and BKD have been applied to scenarios wherein the efficient discovery
of active lead compounds is paramount. The ADMET classification tasks presented during
early lead optimisation place a different emphasis on the correct classification of both target
property classes.

SVMs have been applied successfully to treat sparse, discrete representations in other
domains. Joachims [1998b] applied SVMs to a sparse representation of document text and
demonstrated effective kernel transformation of sparse data to a feature space in which ex-
amples are represented by inner-product pairs (i.e. a function of their similarity). The
challenges posed to supervised machine leaming by Daylight fingerprints (sparsity, abstract
representation, no contiguous sequence structure, etc.) are similar in nature to those de-
scribed in [Joachims, 1998b] and successfully overcome via the application of SVMs. In
light of this, it is informative to consider the field of research that has arisen around the
design of appropriate kernel transformations of discrete structures and to describe a con-
temporary example.

Further to the application of standard Euclidean kernel functions to discrete data, the
independently developed techniques of Watkins [1999] and Haussler [1999] first introduced
kernel transformations specific to the treatment of discrete sequences. The representation
of a joint probability distribution as valid kernel transformation to feature space enables
the treatment of examples described by different amounts of discrete information (different
example vector lengths) in a continuous feature space. Such kernel functions are able to
assess the similarities between examples of discrete data, such as text strings or biological
sequences, via the construction of kernel transformations that represent example similarity
in feature space without the explicit construction of an input space. The string kernels
suggested in [Watkins, 1999] are applied to a problem of text document classification by
Lodhi et al. [2000], in which similarities between documents, represented as sequences
of characters from a discrete alphabet, are recursively calculated to identify the mutual
presence of non-contiguous sub-strings, weighted by the length of their occurrence within
the original sequence.

A second example, and arguably the most elegant practical application of SVMs to dis-
crete data, is provided in the work of Vert [2002], in which the string kernel methodology of
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[Watkins, 1999] is applied to a binary representation of evolutionary pathways in phyloge-
netic trees in order to classify conserved gene function. This work is notable for its custom
approach to both the domain information and the kernel function applied to it. Further work
by Kondor and Lafferty [2002] introduces a family of ‘diffusion’ kernels for the generic
kernel transformation of discrete, or graph, structures directly to feature space. Of interest
is the definition of a diffusion kernel that treats the hypercube representation of binary data,

K(x,z) = [tanh())]%<=

where ) is a free-parameter and dy 5 is the Hamming distance between two binary vectors.
This function appears similar in nature to the BKD kernel function (cf. equation 6.1 above).
As suggested by their name, diffusion kernels approximate a continuous similarity function
that diffuses from a point source in a discrete input space according to the exponential heat
equation of classical physics. The standard Euclidean RBF kernel is shown to represent a
diffusion kernel in the limit as a discrete space becomes continuous. The work of [Jaakkola
et al., 1999] demonstrates further that, if a domain-relevant similarity measure may be rep-
resented by dot-products between examples, it provides a valid kernel with which to leam
in a domain-relevant feature space.

Whilst many early applications of kernels that map directly from graph or sequence to
feature space were applied to document classification and biological sequence data, work by
Frohlich et al. [2005, 2006] introduces a similar transformation of graph molecular structure
to feature space in order to treat classification problems of SPC analysis. The approach cen-
tres on the calculation of an optimal assignment between two molecular structures, which
includes specific structural and chemical properties of the atoms and their immediate neigh-
bourhoods that comprise each structure. In order to obviate the classic QSAR analysis
problem of having no universal best set of molecular descriptors that work well for all
problems (cf. § 2.1.5) and the extensive feature selection that results, a kernel function is
defined between graph molecular representations instead of vectors of explicit descriptive
attributes. Each molecule is represented as a graph, with atoms at the nodes and bonds rep-
resented by edges between nodes. Nodes and edges are labelled with information relevant
to the problems, e.g. atomic properties and structural memberships. Thus, the graph of a
molecule provides detailed information regarding its topology without consideration of the
whole-molecular relevance of the descriptors employed. The intuition behind the use of
this representation is that similarity between molecules depends upon matching constituent
sub-structures. This is especially relevant to problems of compound binding, but one must
be aware of the case in which molecules with different sub-structural arrangements offer the
same, or similar, values of a less specific target property, e.g. bioavailability.

The optimal assignment between two molecular structures is defined as the sum of edge
weights in a weighted bipartite graph, optimised so as to link each atom in one structure to
the most similar atom in another. Each atom in one structure can only be linked to one in
the other structure, with inter-atomic similarities providing edge weights. The maximised
bipartite weighting problem may be solved in (O(n®)) time where n is the size (number
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of atoms) of the largest structure under consideration. The similarity between atoms, i.e.
the edge weights of the bipartite graph, is calculated according to the following combined
kernel function,

L
knei(a, a,) = katom(aa al) + Rg(a, al) + Z 'Y(Z)Rl(a’ a,)
1+1

Similarity between atoms, a and a’, is composed of similarities between the atoms them-
selves, their direct nearest-neighbours and their indirect nearest neighbours up to a pre-
determined locality limit (L). Standard RBF kernel functions, kaom(@,a’) and kpond(a, a’)
are applied to assess similarity between the numeric atom and bond descriptors employed
to label the nodes and edges of two molecular graphs under consideration. The atomic
kernel function kaom(a,a’) is applied to assess similarity between atoms a and «’. In or-
der to assess similarity between direct nearest-neighbours of a and a’, the product of kaiom
and kpong is calculated for all combinations of atoms directly linked (by bonds) to a and o’
and used to label the edges of a further weighted bipartite graph between the two sets of
atomic neighbours. The sum of optimised bipartite graph weights provides the similarity,
Ry(a,a’), between the direct neighbours of atoms a and a’. Finally, a third term calculates
the locality-weighted mean of Ro(a;, a};) for all direct and indirect neighbours of a and o’
in order to capture similarities across a wider topological distance.

This representation may be reduced by replacing atomic information at the nodes of a
graph molecular structure with similar information regarding sub-structural fragments. The
similarity between two sub-structural fragments in separate molecular structures is found via
optimisation of a weighted bipartite graph between them as before. This summary of the
optimal assignment kernel method describes the representation of inter-molecular similarity
via a valid kernel transformation between graph molecular representation directly into a
relevant feature space, within which inner product pairs may be acted upon by kernel-based
learning methods. It is highly recommended that the reader consults the original work for a
more detailed and reasoned description of the method, the complexity of which is clear.

It is true that, by assessing molecular similarity directly, explicit feature selection across
many whole-molecular structural descriptors is obviated. Nevertheless, classical feature se-
lection is replaced by a raft of algorithmic free parameters and remaining feature selection
for node and edge labeling. For example, widths must be set for both atom and bond RBF
kernels, kayom(a,a’) and kpona(a, a’), as must the locality path length limit, L, and the lo-
cality weighting, v(!). Furthermore, the numeric information employed to describe atoms
and bonds at the nodes and edges of a molecular graph must also be chosen (or selected)
from the wide range of available atomic information [Kier, 1995]. Another consideration
is of the time taken to calculate the kernel transformation of a large amount of unlabelled
data prior to classification. Despite this, the method offers a comprehensive assessment of
sub-structural similarity that is well worked into the kernel framework. The optimal assign-
ment kernel is demonstrated to perform better than a standard RBF kernel when applied to a
selection of ADME classification and regression tasks (BBB, Human Intestinal Absorption
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and Bioavailability), albeit that the standard kernel is applied to a full atomic description
(DESC) that involves thousands of structural descriptors. A wrapper-based feature selec-
tion [Frohlich et al., 2004] is employed to improve standard kernel performance, but is not
particularly successful. Interestingly, the reduced graph representation performs similarly to
the full optimal assignment kernel in all cases and both perform similarly to a small selection
of whole-molecular descriptors of known relevance to the HIA and BBB problems respec-
tively. The combination of optimal assignment kernel output on graph molecular structures
and standard RBF kernel output on problem-specific molecular descriptors shows poten-
tial to improve performance further in much the same manner as the data fusion methods
described in [Hert et al., 2006].

This contemporary work merits citation and the above description because it represents
one of the first uses of kernel design to provide a relevant feature space within which SPC
relationships may be constructed by SVMs. As described earlier in this section, such ap-
proaches have been prevalent in applications of text processing or the comparison of bio-
logical sequences and structures. The concept that present methods of SPC analysis may
be improved by departing the use of explicit molecular descriptors towards the creation of
feature spaces that represent relevant molecular similarities is wholeheartedly subscribed to
by this thesis, for reasons to become apparent.

The work presented in this chapter introduces the formulation of the Tanimoto similarity
coefficient as a combination of dot-products between binary vectors in order to enable its
use for SVM leaming. The ADMET SPC data sets of previous chapters are converted to
Daylight binary representation and a performance comparison assesses SVM performance
with standard and Tanimoto kernels on real-valued and Daylight representations. The use
of Tanimoto similarities for SVM classification was developed independently and prior to
publication of both the optimal assignment method and recent developments involving the
use of Tanimoto similarity for BKD density estimation, but may be observed to compliment
both.

For example, under the Daylight representational schema, the reduced graph optimal
assignment kernel function may be seen to perform a similar function to normalised pattern
matching between the substructural elements that comprise a complete Daylight molecular
fingerprint. Rather than combine similarities between sub-structural elements, the Daylight
encoding represents the presence of sub-molecular fragments within a particular structure
and the Tanimoto similarity assesses similarity after combination of sub-structural elements.
Thereby, reduced-graph optimal assignment kernels are approximated by a domain-relevant
similarity measure applied to a widely-used encoding of molecular structure.

Formulation of the Tanimoto similarity co-efficient as a combination of dot-products be-
tween binary strings enables its use for SVM leaming. Furthermore, the recent introduction
of similar domain-relevant procedures at the lead generation stage of the discovery process
suggests that successful application to the less specific ADMET SPC properties of lead op-
timisation may invite a unified treatment of several stages of the drug discovery process.

The remainder of this chapter outlines the representation of Tanimoto similarity as a com-
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bination of Mercer kernels and subsequently applies the resulting domain-relevant SVMs
to Daylight fingerprint representations of the five ADMET classification tasks described in
Chapter 3 and employed for the comparisons of Chapters 4 & 5.

6.1 Tanimoto Similarity Kernels for Binary Data

The Tanimoto similarity coefficient between two compounds represented by binary strings
takes the following form:

C

Tz ==

where a is the number of bits switched on in string x, b is the number of bits switched on
in string z, and c is the number of overlapping bits switched on between strings x and z.
This normalised similarity is bounded in the range [0,1] and the conditions required for use
of the Tanimoto similarity coefficient are that the data are represented as strings of discrete
binary information and that the strings are of the same length.

Binary data is a special, discrete, case of the continuous data described in earlier chap-
ters. Thus, the Tanimoto similarity co-efficient may be represented in a number of interest-
ing ways. For example, because the data consists solely of zeros and ones, the number of

bits switched on in a string x, containing m bits in total, can be:
m
a=in or a=x'x
i=1

and the same may be shown for bits switched on in another binary string, z, of the same
length as x. Bits mutually on in strings x and z may be represented in a similar manner:

m
c= E Tr;.2; Or C=XTZ

=1
which describes a linear Mercer kernel between two examples x and z

Kun(x,z) =x"z
Thus, the Tanimoto similarity coefficient between two compounds represented as binary
strings may be represented as a combination of linear Mercer kernels:

XTZ

xT'x + 2Tz —xTz

KTAN(X,Z) = (62)

The Tanimoto similarity is symmetric and a matrix of Tanimoto similarity values, calculated
over a finite set of binary strings, was found empirically during this work to be positive and
semi-definite (the eigenvalues of the matrix are > 0) in all cases encountered. Under the
conjecture that this should always be the case, the Tanimoto similarity may be referred to

as a Tanimoto kernel for use in SVM classification. The new kernel is domain-relevant and
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has no free parameters.
To provide some additional context, a well-known assessment of dissimilarity between
binary strings, the Hamming distance, may also be represented by a function on the linear

Mercer kemel:

Duam(x,2) = m — (x7z)
where m represents the string length [Kondor and Lafferty, 2002]. The Hamming distance
counts differences between the strings, whereas the Tanimoto kernel represents the number
of bits mutually on, normalised by the number of bits that could be mutually on. The
Tanimoto dissimilarity coefficient between two binary vectors x and z is simply:

xTx+ 2Tz - 2xTz

/ =] - =
Tlxz)=1-T(xz2) xTx + 27z — xTz

(6.3)

and Tanimoto kernel output falls away linearly with increasing Tanimoto dissimilarity.
The standard RBF kernel function of two compounds x and z is frequently represented

as.
Krpr(x,2) = exp —(||x — 2||*/20?)

As for the Tanimoto kernel, RBF kernel output assesses similarity and is bounded in the
range [0,1]. When data are represented as strings of discrete, binary, attribute values, the
RBF kernel may also be represented as:

Kgrpr(x,2) = exp—((xTx + 27z — 2x72)/20?) (6.4)

The representation of Euclidean distance in feature space is treated in § 3.4 of [Cristian-
ini and Shawe-Taylor, 2000] and confirms the above for vectors of continuous attributes as
well. The top term of the fraction in equation 6.4 represents the unnormalised Tanimoto
dissimilarity (cf. equation 6.3), which is scaled by a constant parameter, o, that controls
the range of dissimilarity over which it acts. Substitution of the Euclidean distance in equa-
tion 6.4 with the Tanimoto dissimilarity provides a relevant measure of dissimilarity that
falls away exponentially (as does the BKD kernel density function when 0.5 < A < 1.0):

Krr(x,z) = exp —(T"(x,2)/0) (6.5)

The scale constant, 3, in equation (6.5) may be set via an estimate of generalisation er-
ror over a range of values, the use of similar heuristics to those described in § 3.3.1, or,
potentially, via the use of data description algorithms to assess the typical separation of
compounds within the data. (3 appears to perform a similar function to the smoothing pa-
rameter, ), in the BKD kernel (cf. equation 6.1, p. 120), but does so within the range of
Tanimoto dissimilarity. The use of a familiar, bounded pharmaceutical dissimilarity mea-
sure results in a more accessible kernel function, the free parameter of which may be related
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Figure 6.1: Output of Tanimoto and Tanimoto-RBF Kernel Functions

simply to pharmaceutical prior knowledge by a non-expert user. Figure 6.1 displays kernel
contributions made by the Tanimoto kernel and an exponential Tanimoto kernel with high

locality (3 set to dissimilarity of 0.2) over the range of Tanimoto dissimilarity.

6.2 Results

In order to compare SVM performance on both real-valued and Daylight molecular repre-
sentations, the training and test partitions of Chapter 4 were converted directly to Daylight
representation. Prior to a description of the trials performed, it may prove useful to examine
the resulting Daylight data sets in greater detail.

Upon consideration of the Tanimoto kernel to represent inter-molecular similarity be-
tween Daylight strings, it is apparent that one scenario in which it may provide an advantage
over, for example, a linear kernel function is when considering strings that have different
bit contents (i.e. the number of bits switched ‘on’). As described in section 6.1, the Tani-
moto similarity provides a form of normalisation that is intended to make similarity values
more comparable for vectors with different bit contents. One might, therefore, expect any
positive effect made by use of the Tanimoto kernel to coincide with data sets in which the
strings vary widely in bit content. Accordingly, to elucidate the diversity of bit content in
each of the GSK Daylight data sets and also in the data classes that comprise each set, the
range of bit content in each data set is displayed alongside the 1st, 10th, 50th, 90th and 99th
percentiles in table 6.1. Table 6.2 provides similar information for the individual classes
of each data set. The two data classes are denoted positive and negative according to the
descriptions given in Chapter 3 (section 3.1).
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Range and Percentiles of Bit Content in Daylight Data
Data | Min. | P1 | P10 | PS5O | P90 | P99 | Max.
BBB | 7.0 | 12.0 | 113.0 | 221.0 | 312.0 | 425.5 | 448.0
P-gp | 30.0 | 44.1 | 152.5 | 259.5 | 437.4 | 612.6 | 632.0
Tox | 27.0 | 36.3 | 68.0 | 124.0 | 260.9 | 391.5 | 493.0
Bio | 16.0 | 37.2 | 102.6 | 196.0 | 345.2 | 488.7 | 584.0
PrB | 29.0 | 50.9 | 109.4 | 205.0 | 399.0 | 501.9 | 538.0

Table 6.1: Range and Selected Percentiles of Bit Content in GSK Daylight Data Sets.

Percentiles of Bit Content in Daylight Data

Positive Class Negative Class
Data| P1 | P10 | P50 | P90 | P99 P1 P10 | PS50 | P90 | P99
BBB | 12.0 | 87.8 | 216.0 | 287.6 | 429.7 || 79.0 | 155.6 | 237.5 | 368.7 | 420.0
P-gp | 31.4 | 1054 | 238.0 | 341.2 | 436.4 || 118.6 | 176.0 | 339.0 | 504.0 | 625.6
Tox | 75.0 | 123.0 | 239.0 | 324.0 | 427.7 || 33.0 | 64.0 | 113.0 | 204.0 { 383.0
Bio | 37.7 | 100.0 | 189.0 | 322.6 | 442.1 || 399 | 1109 | 225.5 | 427.4 | 561.6
PrB | 479 | 105.0 | 194.0 | 421.8 | 504.5 || 84.4 | 124.4 | 223.0 | 344.0 | 446.3

Table 6.2: Selected Percentiles of Bit Content in GSK Daylight Data Classes.

To further elucidate the contents of tables 6.1 & 6.2, the function ksdensity, of the stats
package for the Matlab statistical programming language [Mathworks, 2002], was used to
provide a kemel density estimate [Parzen, 1962] that reflects the distribution of bit contents
in the classes of each data set. The function was employed with default parameters (the aim
here was to provide a simple visual impression of bit content distribution) at 100 equally
spaced points across the bit content ranges shown in table 6.1 and its output is displayed
in the sub-plots of figure 6.2. Each sub-plot reflects bit content distribution in the positive
(solid line) and negative (dash-dotted line) data classes of the corresponding data set (cf.
table 6.2). The dotted line is the sum of the positive and negative class density estimates
and provides an impression of bit content distribution across all strings in the corresponding
data set (cf. table 6.1).

The diversity of bit content apparent in tables 6.1 & 6.2 and in figure 6.2 further sug-
gests the potential suitability of Tanimoto kernels for creating SPC relationships on these
data sets. Furthermore, and before proceeding to details of the performance comparison,
some interesting patterns in the bit content distributions of individual data sets merit brief
comment.

e The Acute Toxicity and P-gp data sets display some disparity in the bit content distri-
butions of positive and negative data classes. The toxicity data in particular suggests
that the distribution of negative class (low toxicity) bit contents is narrower and lo-
cated lower in the range than that of the positive class (high toxicity);

e the positive class of the BBB data contains a visible (cf. figure 6.2) subset of strings
with particularly low bit content. The positive class represents molecules that pass
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Figure 6.2: Estimated Density Plots Reflect Bit Content Distributions in the Positive (solid line) and
Negative (dash-dotted line) Classes of the GSK Daylight Data Sets. The sum of positive and negative
class densities (dotted line) is employed to represent bit content distribution over entire data sets.

through the blood-brain barrier. Low bit content corresponds to few molecular com-
ponents and may suggest small molecules better able to pass through the membrane;

e bit contents of positive and negative classes in the Bioavailability and Protein Binding
data appear similarly distributed across the ranges observed. Both sets exhibit a visi-
ble (cf. figure 6.2) ‘tail’ of high bit content (potentially large / complex molecules) in
both data classes.

The performance comparison between SVM kernels when applied to the GSK Daylight
data and corresponding performance on the real-valued data of Chapter 4 was performed
as follows. SVMs with linear, Tanimoto, RBF and Tanimoto-RBF kernels were applied
to the Daylight data training partitions and the classifiers obtained were assessed on the
corresponding test partitions. Results are displayed in table 6.3. SVM performance with
linear and RBF kernels on the real-valued data of previous chapters is displayed alongside
the results on each Daylight representation for comparison. The classifier with highest
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balanced accuracy on each ADMET problem is displayed in bold. To provide a benchmark

and also to assess the effect of similarity measures upon lazy leamers, a k-NN classifier was

applied to the same data using both Euclidean distance and Tanimoto dissimilarity to select

nearest-neighbours. The results of this comparison are shown in table 6.4 and all results are

summarised at the start of the discussion section.

6.3

Discussion

From the results presented in table 6.3, it is apparent that:

linear and RBF SVM kemels yield similar results on Daylight representation as they
do on real-valued data. The linear SVM kernel exhibits higher balanced accuracy on
Daylight representation on two of the five data sets, once significantly (BBB). The
RBF SVM kernel exhibits higher balanced accuracy on Daylight representation on

four of the five data sets, but the differences involved are not statistically significant;

the parameter-free Tanimoto kernel outperforms its linear counterpart on four of the
five data sets, twice involving a significant increase in balanced accuracy (BBB &
PrB). The performance difference observed between these kernels may relate in part
to the examination of bit content diversity in section 6.2;

the Tanimoto kernel provides significantly similar balanced accuracy to both RBF and
Tanimoto-RBF kernels, which perform similarly, on all data sets; and

all kernels are affected by class imbalance and data paucity on Daylight data, in the
same manner as previously observed on real-valued data but to a varying extent.

In addition, the results of table 6.4 suggest that:

the performance of both Euclidean and Tanimoto k-NN is stronger on the Daylight
BBB data than on the Volsurf BBB data;

Tanimoto k-NN is stronger than Euclidean k-NN on the Daylight Toxicity data, but
not significantly stronger than Euclidean k-NN on the Volsurf Toxicity data;

Tanimoto k-NN performance is competitive against SVM performance on BBB and
Toxicity Daylight data;

k-NN does not perform well on the P-gp Daylight data. The same behaviour as ob-
served for SVMs is observed for k-NN on the Bioavailability and Protein Binding
data sets; and

a low number of nearest-neighbours is employed for classification in the majority of
applications.
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Data | Kernel Parameters Overall | Balanced | Majority | Minority
BBB | Linear C=1 0.849 0.732 0.946 0.519
Real | RBF o=IM,C=10 0.870 0.805 0.924 0.685
Linear C=1 0.840 0.786 0.886 0.685
BBB | Tanimoto | C = 100 0.866 0.828 0.897 0.759
Day. | RBF o =‘Mn’, C = 100 0.874 0.834 0.908 0.759
Tan. RBF | s =‘J-M’,C = 100 0.878 0.836 0.913 0.759
P-gp | Linear Cc=1 0.768 0.761 0.865 0.656
Real | RBF c=7,C=10 0.739 0.738 0.757 0.719
Linear C =100 0.725 0.718 0.811 0.625
P-gp | Tanimoto | C' =100 0.725 0.718 0.811 0.625
Day. | RBF oc=‘Md,C=100 | 0.725 0.718 0.811 0.625
Tan. RBF | s=‘)’,C =100 0.725 0.718 0.811 0.625
Tox | Linear C=10 0.939 0.814 0.994 0.633
Real | RBF oc="‘H,C =100 0.932 0.801 0.990 0.611
Linear c=1 0.886 0.805 0.922 0.689
Tox | Tanimoto | C' =10 0.917 0.814 0.962 0.667
Day. | RBF o=J-M,C =10 0.918 0.815 0.964 0.667
Tan. RBF | s =‘J-M’,C =10 0.920 0.807 0.970 0.644
Bio | Linear C=10 0.822 0.603 0.904 0.303
Real | RBF c=7,C=10 0.867 0.655 0.947 0.364
Linear C =100 0.826 0.644 0.894 0.394
Bio | Tanimoto | C = 100 0.842 0.654 0914 0.394
Day. | RBF oc=*J-M’,C =100 | 0.847 0.656 0.918 0.394
Tan.RBF [ s=‘)",C =10 0.859 0.638 0.942 0.333
PrB | Linear C =100 0.734 0.659 0.894 0.423
Real | RBF c="H,C=10 0.716 0.667 0.821 0.513
Linear C=10 0.664 0.643 0.709 0.577
PrB | Tanimoto | C' = 100 0.707 0.688 0.748 0.628
Day. | RBF oc="J-M",C=10 0.703 0.676 0.762 0.590
Tan. RBF | s = ‘P, C =100 0.725 0.689 0.801 0.577

Table 6.3: SVM Kemnel Performance on GSK Daylight Test Data
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Data Metric Parameters | Overall | Balanced | Majority | Minority
BBB Real | Euclidean | k=1 0.857 0.796 0.908 0.685
BBB Day. | Euclidean | k = 0.866 0.828 0.897 0.759
BBB Day. | Tanimoto | k =3 0.845 0.834 0.853 0.815
P-gp Real | Euclidean | k = 15 0.826 0.817 0.946 0.688
P-gp Day. | Euclidean | kK =15 0.696 0.708 0.541 0.875
P-gp Day. | Tanimoto | k=5 0.638 0.639 0.622 0.656
Tox Real | Euclidean | k=3 0.920 0.812 0.968 0.656
Tox Day. | Euclidean | k=1 0.886 0.783 0.932 0.633
Tox Day. | Tanimoto | k =3 0.912 0.825 0.950 0.700
Bio Real | Euclidean | k=1 0.830 0.634 0.904 0.364
Bio Day. | Euclidean | £k =1 0.817 0.652 0.880 0.424
Bio Day. | Tanimoto | k=1 0.784 0.633 0.841 0.424
Prb Real | Euclidean | k=3 0.694 0.654 0.782 0.526
Prb Day. | Euclidean | k =1 0.712 0.661 0.821 0.500
Prb Day. | Tanimoto | k=3 0.694 0.644 0.801 0.487

Table 6.4: k-NN Performance on GSK Daylight Test Data

The first observation from tables 6.3 & 6.4 signifies that learning ADMET structure-
property relationships from small collections of compounds represented by Daylight finger-
prints is a feasible alternative to leaming on sets of explicit, real-valued whole-molecular
descriptors. An SVM with Tanimoto kernel is competitive against standard kernels and pro-
vides a domain-specific, non-linear kernel for pharmaceutical classification that does not
require a free parameter value to control range or expression. The Tanimoto-RBF kernel is
also competitive, although it provides no significant performance advantage over the Tani-
moto kernel on the data employed here at the cost of a free parameter. Further comparisons
on larger data-sets may provide more information regarding the extent to which Tanimoto
similarity kernels (and other kernels designed upon the same principle) may benefit the
contemporary drug discovery process.

The one problem upon which learning on Daylight fingerprints performs worse than
leaming on real-valued representation, regardless of the kernel function employed, is the
classification of P-gp binding. An immediate conclusion is that the small P-gp training par-
tition (69 examples) produces too sparse a coverage of the Daylight input space hypercube to
produce good generalisation performance. A further consideration is that the target property
is not fully described by Daylight information, which is limited to describing the presence
or otherwise of molecular sub-structures. The P-gp data encountered during Chapters 4 & 5
employs five real-valued Abraham descriptors [Zhao et al., 2003] of known relevance to the
problem, which are observed to provide higher levels of generalisation performance. Com-
bination of the Tanimoto kernel similarity measure on Daylight data with an RBF kernel
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similarity on Abraham descriptors may have the potential to improve performance on this
ADMET problem. As described during the introduction of this chapter, similar measures
are also suggested in [Frohlich et al., 2006] and the fusion of different similarity scores
in order to improve virtual library screening is also introduced by Hert et al. [2006]. Ta-
ble 6.5 displays P-gp prediction performance of an RBF kernel on real-valued descriptors,
a Tanimoto kernel on Daylight data and combination of both kernel outputs. RBF width
was set using the same heuristic as selected previously for the real-valued data (Chapter 4,
table 4.2) and the regularisation parameter for all SVMs set via stratified cross-validation as

in previous comparisons.

Data Kernel Parameters Overall | Balanced | Majority | Minority
P-gp Real | RBF c='7,C=10| 0.739 0.738 0.757 0.719
P-gp Day. | Tanimoto | C = 100 0.725 0.718 0.811 0.625
P-gp Both | Combined | C' = 100 0.870 0.870 0.865 0.875

Table 6.5: Combined RBF and Tanimoto Kernels on Abraham and Daylight P-gp Data

Performance of combined kemnels is significantly increased against their separate appli-
cations to real-valued and Daylight data respectively. As discussed in § 4.1.2, however, the
RBF-SVM is capable of good performance on real-valued P-gp data, but was hindered by
the regularisation parameter selected by cross-validation. Here, it is more likely that simi-
larity assessed on Daylight data reinforces similarities on the real-valued data and induces
selection of a higher regularisation parameter than that selected on the real-valued data
alone, thereby raising performance. Hence, this small example may provide an over-stated
demonstration of the effects of kernel-based data fusion. Kernel fusion on real-valued and
Daylight representations of the Toxicity and Protein Binding data sets displays a mild in-
crease in performance over the best of the individual results (unreported), but the real-valued
information involved is less specific than that of the P-gp data and is, thus, less suited to fu-
sion. A full assessment of any benefit to be gained by fusing kernel-based similarity scores
on real-valued and Daylight data, possibly involving a parameter that controls the relative
contributions of the respective representations, represents future work.

Class performance imbalance is again apparent, especially on Bioavailability and Pro-
tein Binding data, despite leaming on a different molecular representation with different
kernel functions. This appears to confirm conclusions drawn in Chapters 4 & S, i.e. that
the minority class sample is of neither sufficient size nor quality for a generalisable dis-
tinction to be drawn between it and the majority class. Balancing via strategic removal of
majority class examples was introduced in section 4.2 and shown, on the BBB and Toxicity
data in particular, to increase balanced accuracy of many classifiers toward acceptable levels
of generalisation on both data classes. The Mahalanobis reduction is not available for use
on Daylight data, because string length outweighs the number of examples available. The
use of Kennard & Stone sampling was suggested as an alternative and, here, is applied to
the Daylight represented ADMET problems of section 6.2. An SVM with Tanimoto ker-
nel is applied to K&S balanced Daylight data sets, using the same experimental practice as
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in previous comparisons. The sole difference is the selection of regularisation parameter
not by cross-validated balanced accuracy, but by the minimum difference between separate
cross-validated accuracies for each class, so as to prefer classifiers with level majority and
minority class accuracies over outright balanced accuracy (cf. discussion in § 4.2.2).

Data | Parameters | Overall | Balanced | Majority | Minority
BBB | C' =10 0.807 0.816 0.799 0.833
P-gp | C =100 0.783 0.785 0.757 0.813
Tox |C=1 0.830 0.831 0.829 0.833
Bio | C' =100 0.668 0.680 0.664 0.697
PrB | C =100 0.651 0.692 0.563 0.821

Table 6.6: Tanimoto Kernel Performance on K&S Reduced GSK Daylight Data

Balancing the data works well for BBB and Toxicity data sets, producing generalisation
accuracy above, or very close to, 80% on both classes of both problems. Performance is
improved on the minority class of the P-gp data at the expense of the majority class, but,
as observed in table 6.5 and during Chapter 5, other methods are available that produce
better balanced accuracy on the P-gp data and which do not require the removal of training
examples. Poor results on the Bioavailability and Protein binding data suggest that Daylight
data may be more fragile to majority reduction that real-valued representations of lower
cardinality (cf. table 4.7). In these circumstances, it may be worth the extra tuning required
either to remove fewer majority class examples or to enforce asymmetric regularisation (cf.
Chapter 4, section 4.2). Balancing these data sets by majority reduction does not overcome
the problems described in § 4.2.2 of Chapter 4. A further consideration is that the real-
valued representations of both the Bioavailability and Protein Binding data are based on
fragment calculations, as are their Daylight representations. It may be the case, therefore,
that a balanced accuracy in the region of 0.700 is the best that may be expected without the
incorporation of additional information, e.g. 3D structure or a greater number of molecular
property descriptors, and that Daylight fingerprints provide no more information to these
problems that do their original representations. The generic nature of both properties may
be responsible for limiting the effect of a purely 2D approach. For example, 60% accuracy
of Bioavailability prediction is reported as an example in [van de Waterbeemd, 2003] and the
prediction of Bioavailability using optimal assignment kernels [Frohlich et al., 2006] results
in a prediction error > 30% and is the only problem upon which optimal assignment kernels
do not improve markedly upon Euclidean RBF kernels applied to thousands of structural
descriptors.

The lazy k-NN classifier performs competitively against SVMs, especially when using
Tanimoto dissimilarity to assess a small number of nearest-neighbours on the BBB and
Toxicity data. The small data sets employed here do not provide conclusive evidence that
one method is better than the other and it would be interesting to observe the performance
of SVM and lazy classification methods on larger data sets. The SVM holds theoretical
advantages over lazy classification, such as the optimised placement of a margin hyperplane
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supported by a subset of the training data, and may generalise better to a wider sample of
test data than is employed here.

The discovery that SVM leaming upon Daylight molecular representation is able to
produce effective SPC relationships prompts consideration of further work. The amount of
known compounds available on which to build SPC classifiers is expected to grow signif-
icantly over the coming years. As chemical space represented by Daylight fingerprints is
filled with larger populations of training data, it is expected that the separation problems
treated here will become better described. The development of Tanimoto similarity ker-
nels may be viewed, therefore, as having greater potential importance than displayed by the
results of this chapter.

Future work of immediate interest includes the addition of Tanimoto SVMs to the re-
cent comparison of Chen et al. [2006], who evaluated BKD performance when using sev-
eral familiar fingerprint similarity scoring functions. An SVM-related method that appears
well-suited to the description and retention of a single class of data is the one-class SVDD
classifier [Tax and Duin, 1999, 2004], mentioned earlier in Chapter 4 § 4.2.2. The use of a
margin-based one-class classifier with domain-relevant kernel function to locate and define
a body of active reference compounds in chemical space would provide an interesting ap-
proach to the identification or similarity-ranking of further structures. The addition of SVM
and SVDD classifiers with Tanimoto-based kernel functions to the taxing multi-class clas-
sification problem treated by a standard polynomial SVM and Euclidean BKD in [Wilton
et al., 2006] would provide a further test of this approach.

Another comparison could comprise the application of Tanimoto kernel SVMs to the
Daylight representation of data used to assess optimal assignment kernels in [Frohlich et al.,
2006], were the data employed for the original work available for conversion to Daylight fin-
gerprints. Wider Tanimoto kernel assessments are also apparent, including their application
to binary structural keys, rather than the abstract representation employed here. Application
to more descriptive structural keys would provide more information than the 2D structural
information of Daylight fingerprints, which may be necessary in order to model generic
ADMET target properties. The concept that valid kernels may be constructed in order to
represent domain-relevant similarities also invites the appraisal of kernels designed to rep-
resent other specialised pharmaceutical similarity measures, e.g. the chemical environment
code introduced by Xu and Yang [1998] for the assessment of similarity between molecular
NMR spectra and shown to be competitive against the Tanimoto similarity.

A theme of future work described in previous chapters is the use of semi-supervised,
or transductive, methods to improve generalisation via the incorporation of unlabelled data
beyond that of the small labelled collections employed traditionally for ADMET SPC analy-
sis. For example, the application of domain-relevant kernels to structural fingerprints within
a query leaming framework [Campbell et al., 2000; Warmuth et al., 2002] would represent a
particularly interesting approach. Moreover, the use of a single representation of molecular
structure, such as Daylight fingerprints, enables the interaction of classification tasks from



Chapter 6. Tanimoto Kernels for Support Vector Machine Classification 136

different areas of the drug discovery process.

Recent advances in the field of machine learning describe the concept of inductive trans-
fer [Wu and Dietterich, 2004, Marx et al., 2005; Rosenstein et al., 2005], which involves the
use of data from tasks related to the primary classification objective in order to strengthen
generalisation performance. For example, the classification of individual leaf silhouettes is
reinforced by the simultaneous consideration of a larger body of curated samples, which are
of lesser quality and focus but are available in greater number [Wu and Dietterich, 2004].
The motivation is to transfer information leamed on data-rich applications to related appli-
cations that may be data-poor. The five ADMET classification tasks encountered here are
all sampled from different sources during the lead optimisation stage of the process and are
employed to predict different target properties. Nevertheless, they all ask the same, more
generic, question, i.e. whether compounds should be rejected from the design process or
retained for further development. Relationships leamed on the individual tasks combine to
cordon off a ‘drug-like’ region of chemical space. Via the use of an encoded representation
of whole-molecular structure and the formulation of all problems of molecular classifica-
tion as select / reject, one may be able to transfer knowledge gained from leaming on large
collections of data at the lead generation stages, e.g. to predict ‘drug-likeness’, to the more
specific data-poor scenarios encountered during lead optimisation. Conversely, specific AD-
MET relationships may be employed as an ensemble of auxiliary tasks [Marx et al., 2005]
in order to improve the prediction of drug-likeness earlier in the process.

The ability to leam upon abstract representations of molecular structure and, more-
over, upon relevant abstract mappings of explicit molecular representation without feature
selection is a powerful feature of the support vector machine algorithm. Choice of molecu-
lar representation and varying methods of data treatment throughout the discovery process
inhibit fully automated procedures for the target-to-lead identification of novel pharmaceu-
tical products. The ability of kernel methods, such as those described above and in the
literature, to create accurate predictors on high-dimensional whole-molecular representa-
tions of compound structure may facilitate such an approach. The experimental findings are
that the Tanimoto kernel treats Daylight molecular representation at least as effectively as
standard SVM kermnels treat a variety of generic real-valued representations. Although some
deficiency is observed on problems that are likely to require structural description more ex-
pressive than the 2D information provided here, the overall suggestion is of a procedure that
facilitates the integration of SVM classification into present in silico drug discovery practice.
Further development of standardised molecular representations and domain-relevant kernel
functions with which to assess them may yield a system within which all structure-property
analysis, from target to lead, may be performed using the same, uniform representation and
the same assessment of inter-molecular similarity.



Chapter 7

Conclusion

7.1 Summary & Contributions

The classification of biological properties of interest according to aspects of molecular struc-
ture is becoming vital to the contemporary drug discovery process. Data drawn from indus-
trial processes often challenges the creation of predictive relationships between process and
outcome. Pharmaceutical classification is no exception. There is no universal standard for
the computational representation of molecular structure, training data is subject to bias and
erroneous information during extraction from the process and there exist complex, non-
linear relationships between target and descriptive attributes. A sensible approach to such
challenges is to take a well-founded technique and adapt it to cope with real-world applica-
tions in a manner that affects its analytical strengths as little as possible.

This thesis has investigated the application of supervised machine leaming to the analy-
sis of data drawn from the lead optimisation stage of the contemporary drug discovery pro-
cess. Support vector machines (SVMs) are demonstrated a suitable technique with which to
build classifiers capable of distinguishing discrete classes of biological behaviour according
to the structures of pharmaceutical compounds. Further investigations yield adaptations,
both to the technique and to the practice of its application to drug discovery, with the poten-
tial to improve performance.

SVMs were applied to a series of separation problems drawn from the lead optimisation
stage of the drug discovery process. The target properties in these problems ranged from
specific, such as compound ability to cross a particular membrane, to abstract, such as the
effect of metabolism upon in vivo compound concentrations. The research hypotheses tested
were that the application benefits from the inclusion of another technique in its analysis,
the technique is capable of analysing the application successfully and that adapting both
technique and application in a domain-relevant manner may increase performance levels.
Therefore, the contributions made by this work to the field of machine leaming and its role
in drug discovery may be summarised as follows.

Chapter 3, ADMET Data and Experimental Practice, defined an experimental frame-
work for the comparison of supervised machine learming algorithms when applied to create
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ADMET SPC relationships for lead optimisation. Considerations embodied in the practice
include the provision of representative training and test partitions from limited data, bal-
anced performance assessment, a context against which to measure observed differences in
balanced performance and assessment across equivalent algorithmic free-parameter ranges.

Section 4.1 of Chapter 4, Support Vector Machines for ADMET Property Classifica-
tion, compared SVM performance against that of several state-of-the-art supervised ma-
chine leaming techniques when applied to small collections of real-world ADMET SPC
data. The SVM algorithm was observed to be competitive against the other methods as-
sessed and the comparison demonstrated the challenges posed to the successful application
of supervised machine leaming by the data encountered. In concurrence with arguments
presented in the background material (Chapter 2), the presence of training data class im-
balance, data paucity and sub-optimal molecular representation suggest that any supervised
leaming method that is able to cope with such impediments is welcome in this leaming
scenario.

Section 4.2 of Chapter 4 considered existing pharmaceutical outlier assessment and data
sampling methods to strategically reduce a majority data class in order to increase predictive
balance. Data reduction, even on small collections of training data, was shown to provide re-
sults similar to direct algorithmic weighting and a weighted SVM regularisation procedure.
That data reduction improves balanced performance by reducing a majority class so at to
retain its fundamental properties, rather than ignoring examples near the decision boundary,
suggests further measures to typify the training data and alternative SVM applications that
also employ a subset of the available training data.

Consideration of data typification led to work performed in Chapter 5, Neighbourhood
Influence on Support Vector Machine Classification, which investigated SVM kernel com-
position from multiple sub-samples of training data in order to strengthen the information
from which SPC relationships are learned. Simple linear SVMs were shown to be partic-
ularly susceptible to the effects of local weighting and their performance improved to the
level of standard non-linear SVMs in the majority of cases. A proof-of-concept examined
the use of an existing pharmaceutical clustering method for SVM kemel construction. Fur-
ther to this, a domain-weighted SVM was applied to strategically balanced training data and
shown to improve previously observed levels of balanced generalisation accuracy.

Chapter 6, Tanimoto Kernels for Support Vector Machine Classification, demonstrated
that small-scale SPC relationships may be leamed effectively on a sparse, binary representa-
tion of encoded molecular structure that is normally associated with earlier stages of the dis-
covery process. Formulation of a domain-relevant similarity measure as a valid SVM kernel
function was fundamental to this approach and improved performance on the representation
employed. Thus, a domain-relevant SVM displayed ability to treat the five ADMET SPC
problems when represented by a schema suitable for use from the very start of the discovery
process through to its later stages. This approach is discussed as a contribution towards a
unified discovery process. The representation and treatment of data drawn from different
tasks involved in in silico drug discovery by the same method invites consideration of some
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interesting developments in contemporary machine learning and how they may contribute
further to the drug discovery process.

The research hypotheses are answered positively, by the investigations performed and
by the future work that they suggest. The domain requires greater predictive accuracy in
order to focus the drug discovery process and to reduce inefficiency. A standard form of the
SVM algorithm provides acceptable predictive performance across a variety of molecular
representations. Support vector machines are shown to be capable tools for the analysis
of focused ADMET SPC relationships found in the early lead optimisation stage of the
discovery process, but it is not demonstrated here that the standard SVM algorithm com-
prehensively outperforms all other techniques when applied to the domain. Instead, it is the
flexibility of the algorithm to domain-relevant adaptation and consideration of its future role
for in silico screening that denote it as a particularly useful technique for drug discovery,
in terms both of the predictive accuracy provided and ease of integration into present prac-
tice. There do exist some problems upon which generalisation performance of all methods
is limited, primarily due to a paucity of training data and an uncertain relationship between
2D representations of molecular structure and abstract target properties. However, such is-
sues are more likely to be overcome by revision of the process than the inclusion of a new
machine leaming method. The theoretical strengths of the SVM technique and domain-
relevant adaptations of it may be applied process-wide and invite the prospect of a unified

treatment of pharmaceutical classification.

7.2 Suggested Future Work

The investigations of chapters 4, 5 & 6 prompt suggestions for future work in order to further
the research aims. The strategic reduction of majority class data, via outlier removal and
even sampling respectively, suggests the further involvement of robust class identity mea-
sures prior to classifier creation as an alternative to regularisation. SVM-related advances
may be provided by different formulations of the algorithm, e.g. the one-class SVDD clas-
sifier [Tax and Duin, 1999] to direct the strategic removal of training data, or the Reduced
SVM classifier (RSVM) [Lee and Mangasarian, 2001] to learn on a strategically reduced
kernel matrix. An automated approach to data typification may be provided by the applica-
tion of SVMs within a query learning framework [Campbell et al., 2000]. For example, the
training data may be treated as unlabelled except for an initial balanced subset, employed to
seed the query leaming process.

The use of an existing pharmaceutical clustering procedure is introduced to influence
the SVM kernel matrix and focus the learned classifier upon relevant patterns in the training
data. Of immediate interest is an expanded trial of this approach on a wider selection of
data and across a wider range of cluster thresholds in order to provide more information
with which to refine the procedure. Potential refinements include weighting partial kernel
matrix contributions according to considerations of balanced generalisation performance

or via an optimisation procedure, as recently performed on attribute subsets [Ratsch et al.,
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2006].

The application of SVMs to a binary encoding of molecular structure and the formu-
lation of a widely-used pharmaceutical similarity measure as a valid SVM kernel function
yields several avenues for development of both technique and application. Of immediate
interest is extension of the work presented in Chapter 6 to consider the use of more expres-
sive representations of whole-molecular structure. The design of SVM kernel functions to
provide domain-relevant assessment of other representations, such as NMR spectra [Xu and
Yang, 1998], is also an interesting direction. Further considerations involve the potential of
a standardised representation of molecular structure, in tandem with domain-relevant meth-
ods of analysis, to promote a unified approach to classifier creation across all stages of the
discovery process.

The largely unexplored theme that recurs throughout this investigation is the use of un-
labelled data emerging from combinatorial synthesis, virtual or in vitro, to reinforce the
relationships inferred from small collections of labelled compounds. With respect to pre-
vious suggestions for future work, a single representational schema yields a large body of
data upon which to apply such domain-relevant techniques within a transductive framework.
The design of domain-relevant feature spaces has recently entered current thinking on the
prediction of biological properties from aspects of molecular structure. The combination of
domain-relevant kernel design within appropriate reinforcement strategies appears to pro-
vide a promising direction for future research in this field, especially in light of the success
demonstrated thus far by these methods when applied individually [Warmuth et al., 2002;
Frohlich et al., 2006]. The recent publication of work regarding the application of domain-
relevant similarity measures to QSAR classification in lead generation [Chen et al., 2006]
and custom SVM kernel function design for the creation of ADMET SPC relationships
[Frohlich et al., 2006] suggest that the work presented in Chapter 6 should be applied fur-
ther to binary lead generation data and compared to the existing works towards the creation
of a unified in silico discovery process [Beresford et al., 2002; van de Waterbeemd, 2003].

Further to this approach, a wider direction for in silico SPC analysis is suggested upon
consideration of recent advances in the field of machine learmning. As concluded by this
thesis, the use of an abstract encoding of molecular structure, upon which the machine
learning of small SPC relationships is shown to be feasible, promotes similar treatment
of different classification tasks drawn from across the discovery process. Also apparent
is that the five ADMET classification tasks encountered here all consider different target
properties during the lead optimisation stage of the process but all ask the same, more
generic, question, i.e. whether compounds should be rejected from the design process or
retained for further development.

The concept of inductive transfer [Wu and Dietterich, 2004; Marx et al., 2005; Rosen-
stein et al., 2005] involves the use of data from tasks related to the primary classification
objective in order to strengthen generalisation performance. The motivation is to transfer
information learned on data-rich applications to related applications that may be data-poor.
[t may be seen that, via the use of a relevant uniform representation of molecular structure
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and the formulation of all problems of molecular classification as select / reject, one may
be able to transfer knowledge gained from leaming on large collections of data at the lead
generation stages, e.g. to predict ‘drug-likeness’, to the more specific data-poor scenarios
encountered during lead optimisation [Wu and Dietterich, 2004]. Conversely, specific AD-
MET relationships may be employed as an ensemble of auxiliary data [Marx et al., 2005] in

order to improve the prediction of drug-likeness earlier in the process.

7.3 Closing Statement

The investigation of SVMs for in silico prediction of ADMET properties during lead optimi-
sation has demonstrated the algorithm’s potential for successful application. The optimised,
non-stochastic solution of the SVM leamning algorithm, which embodies the structural risk
minimisation principle, combined with the ability to incorporate domain-relevance via the
design of appropriate kernel functions, make SVMs a particularly useful technique for drug
discovery. Moreover, the SVM algorithm may be formulated for regression and outlier
detection tasks as well as for classification. The findings of this thesis, alongside contempo-
raneous work, and the number of directions for further research suggest that support vector
machines have the potential to represent a step-change improvement in in silico screening
practices, in the same manner as did ANNs a decade before them. This statement is tem-
pered, however, by issues of varied molecular representation - noted by Hansch [1969] as a
barrier to successful structure-property classification nearly forty years ago - and a lack of
realistic publicly-available SPC data drawn from industrial processes. Were these impedi-
ments treated in a manner sympathetic to the use of machine learning as an integral part of
drug discovery, the fully automated discovery processes widely anticipated by the literature
[Beresford et al., 2002; van de Waterbeemd, 2003] may become feasible.
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