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Abstract. The natural pseudo-distance is a similarity measure conceived for

the purpose of comparing shapes. In this paper we revisit this pseudo-distance
from the point of view of quotients. In particular, we show that the natural

pseudo-distance coincides with the quotient pseudo-metric on the space of con-
tinuous functions on a compact manifold, endowed with the uniform conver-
gence metric, modulo self-homeomorphisms of the manifold. As applications

of this result, the natural pseudo-distance is shown to be actually a metric on
a number of function subspaces such as the space of topological embeddings,

of isometries, and of simple Morse functions on surfaces.

1. Introduction

The natural pseudo-distance was introduced by Frosini and Mulazzani in [13],
and further studied in [8, 9, 10, 12], as a measure of similarity that behaves nicely
when invariance to deformations or different poses of the compared objects is a key
requirement. These contributions stemmed from the actual need for these sort of
similarity measures in pattern recognition to cope with the matching of natural or
articulated objects. In general, such measures are reckoned to be beneficial for the
organization of the huge collections of digital models produced nowadays through
massive data acquisitions and shape modeling. In recent years, the development and
study of topology-invariant metrics with stability properties has widely increased,
as the numerous studies on similarity of non-rigid shapes testify (cf., e.g.,[2, 6]).

In many practical applications, data are endowed with measurements on their
points. For instance, in applications to shape comparison, recognition, and retrieval,
the measurements can correspond to perceptions (e.g., height, depth, curvature, or
color). Therefore, it is natural to model data as manifolds endowed with R

n-valued
functions defined on them [1].

The natural pseudo-distance is usually defined on the space C(M,Rn) of Rn-
valued continuous functions with domain a compact manifold M in the following
way. Assuming R

n endowed with the usual maximum norm: ‖(x1, x2, . . . , xn)‖∞ =
max1≤i≤n |xi|, for f, g ∈ C(M,Rn),

δ(f, g) = inf
h∈H(M)

max
p∈M

‖f(p)− g ◦ h(p)‖∞,

H(M) being the set of self-homeomorphisms of M .
Starting from an idea presented in [4], the aim of this paper is to put the natural

pseudo-distance in context with the classical notion of quotient pseudo-metric. We
think that this link between the natural pseudo-distance and quotients is not only
interesting per se, but can also enable to derive new results. For example, a result
that, for the case of curves, was obtained in [5] using a constructive technique, is
proved here for surfaces by indirect arguments. Indeed, as a further contribution
of this paper, we show that for simple Morse functions on a surface, the natural
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pseudo-distance is actually a distance, i.e. it distinguishes non-isometric surfaces
(Subsection 4.3). Besides this result, we also prove that the natural pseudo-distance
turns to a distance when defined on subspaces of C(M,Rn) such as the spaces of
embeddings and immersions (Subsection 4.1), and on quotient spaces induced by
compact subgroups of H(M) (Subsection 4.2).

In perspective, we hope that other well-known properties of quotient pseudo-
metrics will turn useful for the study of the natural pseudo-distance.

2. Quotients of pseudo-metric spaces

In this section we review the notion of a quotient pseudo-metric. More details can
be found in [3] where the quotient pseudo-metric is called the quotient semi-metric.

Let us consider the category PMet of pseudo-metric spaces and non-expansive
maps, i.e. functions between pseudo-metric spaces that do not increase distances:
A map h : (Z, d) → (Z ′, d′) is non-expansive if, for all z1, z2 ∈ Z,

d′(h(z1), h(z2)) ≤ d(z1, z2).

A map h between pseudo-metric spaces is an isometry if and only if it is non-
expansive, it is a bijection, and its inverse is also non-expansive. In particular,
since non-expansive maps are always continuous, any isometry in PMet is a home-
omorphism.

Non-expansive maps are the suitable maps between pseudo-metric spaces to pass
to quotients. Indeed, if (Z, d) is a pseudo-metric space and ∼ is an equivalence
relation on Z, the quotient set Z/∼ can be endowed with the following pseudo-
distance: Given two equivalence classes [z] and [y], the quotient pseudo-metric is
defined by

d∼([z], [y]) = inf

{

n
∑

i=1

d(zi, yi)

}

where the infimum is taken over all finite sequences (z1, z2, . . . , zn) and (y1, y2, . . . , yn)
with [z1] = [z], [yi−1] = [zi], . . . , [yn] = [y], i = 2, . . . , n (see [3, Def. 3.1.12]).

The quotient pseudo-distance d∼ is characterized by the following universal prop-
erty. If h : (Z, d) → (Z ′, d′) is a non-expansive map between pseudo-metric spaces
such that h(z) = h(y) whenever z ∼ y, then the induced quotient map h∼ : (Z/

∼, d∼) → (Z ′, d′) is non-expansive, that is the following diagram commutes in
PMet:

Z
π

//

h
!!B

B

B

B

B

B

B

B

Z/∼

h∼

��

Z ′

In general the quotient topology induced by ∼ is different from the topology induced
by the quotient pseudo-distance d∼. However, when the equivalence classes are the
orbits of the action of a group of isometries the following result holds.

Theorem 2.1. If (Z, d) is a pseudo-metric space endowed with an equivalence

relation where the equivalence classes are the orbits of the action of a group of

isometries on (Z, d), then

(i) d∼([z], [y]) = inf {d(z′, y′) : z′ ∼ z; y′ ∼ y}.
(ii) The topology induced by the quotient pseudo-metric coincides with the quo-

tient topology.

(iii) d∼ is a metric if and only if the topology it induces is T0.
(iv) d∼ is a metric if and only if the orbits of the action are closed.
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Proof. Statements (i) and (ii) have been proved in [14, Thm. 4], while statement
(iii) can be found in [20, p. 85].

It remains to verify (iv). From (iii), (Z/∼, d∼) is a metric space if and only if
the topology it generates is T0. Let us observe that a pseudo-metric space is T0 if
and only if is T1. Therefore (Z/∼, d∼) is a metric space if and only if its points are
closed, i.e. if and only if the equivalence classes [z] ∈ Z/∼ are closed. Moreover,
since from (ii) the projection π : (Z, d) → (Z/∼, d∼) is a topological quotient,
[z] ∈ Z/∼ is closed if and only if π−1([z]), that is the orbit of z in Z induced by the
action, is closed. �

3. The natural pseudo-distance as a quotient pseudo-metric

In this section we show that the natural pseudo-distance is a quotient pseudo-
metric. In order to see this, we endow the space of continuous functions C(M,Rn)
with the uniform convergence metric d: d(f, g) = maxp∈M ‖f(p) − g(p)‖∞, which
induces the compact open topology. In this way, C(M,Rn) belongs to PMet.

Next we quotient C(M,Rn) by the following equivalence relation: denoting by
H(M) the set of self-homeomorphisms of M , for f, f ′ ∈ C(M,Rn), f ∼ f ′ if and
only if there exists h ∈ H(M) such that f ′ = f ◦h. In other words, the equivalence
classes of ∼ coincide with the orbits induced by the action of H(M) on C(M,Rn)
given by:

◦ : H(M)× C(M,Rn) −→ C(M,Rn)
(h, f) 7→ f ◦ h

By definition, the natural pseudo-distance is trivial on the orbits of this action:
δ(f, f ◦h) = 0 for every f ∈ C(M,Rn) and every h ∈ H(M). Therefore it is natural
to identify functions in the same orbit and consider the natural pseudo-distance on
C(M,Rn)/∼ rather than on C(M,Rn):

Definition 3.1. The natural pseudo-distance δ : C(M,Rn)/∼ × C(M,Rn)/∼ → R

is defined by setting

δ([f ], [g]) = inf
h∈H(M)

max
p∈M

‖f(p)− g ◦ h(p)‖∞.

Clearly this definition does not depend on the choice of the representatives f, g.
Let us observe that δ is not in general a distance, even when we define it on

C(M,Rn)/∼ rather than on C(M,Rn). Indeed, there may exist functions f, g ∈
C(M,Rn) such that δ([f ], [g]) = 0, but with no h ∈ H(M) for which f = g ◦ h.
Some examples of this fact can be found in [5, Sec. 2].

Now, as a corollary of Theorem 2.1, we get the result below.

Corollary 3.2. The following statements hold:

(i) The natural pseudo-distance δ is the quotient pseudo-metric induced by the

action of H(M) on (C(M,Rn), d): δ = d∼.
(ii) The topology induced on C(M,Rn)/∼ by δ coincides with the quotient topol-

ogy.

(iii) (C(M,Rn)/∼, δ) is a metric space if and only if the topology induced by δ
is T0.

(iv) (C(M,Rn)/∼, δ) is a metric space if and only if each orbit induced by the

action of H(M) on C(M,Rn) is closed.

Proof. We observe that

δ([f ], [g]) = inf{max
p∈M

‖f ′(p)− g′(p)‖∞ : f ′ ∈ [f ], g′ ∈ [g]}

= inf{d(f ′, g′) : f ′ ∼ f, g′ ∼ g}.
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Furthermore, any self-homeomorphism of M induces an isometry on (C(M,Rn), d):
for every h ∈ H(M), maxp∈M ‖f(p) − g(p)‖∞ = maxp∈M ‖f ◦ h(p) − g ◦ h(p)‖∞.
Hence, it is sufficient to apply Theorem 2.1(i) to obtain that δ = d∼ and Theo-
rem 2.1(ii− iv) to obtain the other three claims. �

We end the section by considering the case when the natural pseudo-distance is
defined using only homeomorphisms in a subgroup K(M) of H(M).

Definition 3.3. Let K(M) be a subgroup of H(M), and let us consider the action
of K(M) on C(M,Rn): f ∼K f ′ if and only if f ′ = f ◦ k, for some k ∈ K(M). We
define δK : C(M,Rn)/∼K

× C(M,Rn)/∼K
→ R by

δK([f ]K, [g]K) = inf
k∈K(M)

max
p∈M

‖f(p)− g ◦ k(p)‖∞.

Proposition 3.4. The following statements hold:

(1) δK is a quotient pseudo-metric induced by the action of K(M) on (C(M,Rn), d).
(2) The topology induced on C(M,Rn)/∼K

by δK coincides with the quotient

topology.

(3) If K(M) is compact in H(M) with the compact open topology, then (C(M,Rn), δK)
is a metric space.

Proof. The proofs of (1) and (2) follow immediately from Theorem 2.1(i− ii). As
for (3), by Theorem 2.1(iv) it is sufficient to show that each orbit induced by K(M)
on C(M,Rn) is closed. Let [f̄ ]K ∈ (C(M,Rn)/∼K

, δK), and let (fi) be a sequence
such that d(fi, f) −→

i→∞
0 for some f ∈ C(M,Rn), and fi ∈ [f̄ ]K for every i. Since

fi = f̄ ◦ ki, with ki ∈ K(M), for every i, and K(M) is compact, there exists a
subsequence (kij ) of (ki) converging to a certain k ∈ K(M). Then we can take

the subsequence (fij ) of (fi), with fij = f̄ ◦ kij for every j. Since composition is

continuous with the compact open topology [11, Thm. 2.2], f̄ ◦ kij converges to

f̄ ◦ k, and hence, f = f̄ ◦ k. This proves that f ∈ [f̄ ]K, i.e. that the orbit π
−1([f̄ ]K)

is closed, being π a topological quotient from (2). �

4. Applications

This section concerns some applications of Corollary 3.2 and Proposition 3.4 to
subspaces of C(M,Rn) under the action of H(M) or its subgroups K(M). In partic-
ular, in Subsection 4.1 we show that the natural pseudo-distance is a distance when
induced by the action of H(M) on the space E(M,Rn) of topological embeddings,
and of the group D(M) of diffeomorphisms on the space I(M,Rn) of immersions;
Subsection 4.2 provides some examples of compact subgroups K(M) whose action
on C(M,Rn) induces a distance δK; Subsection 4.3 is devoted to prove that the
natural pseudo-distance is a metric when we consider the space of simple Morse
functions on surfaces under the action of C2-diffeomorphisms.

4.1. Embeddings in R
n under the action of H(M). Let us consider the space

(E(M,Rn), d) of topological embeddings of M in R
n (i.e. of homeomorphisms

onto their image) endowed with the uniform convergence distance d. If K is a
compact subset of M , and U is an open subset of R

n, then V (K,U) = {f ∈
E(M,Rn), f(K) ⊂ U} is an open set in the compact open topology induced by d.

Let us pass to the quotient by considering the action of H(M) on E(M,Rn), and
take R

n endowed with the maximum norm. The following result, whose proof is
inspired by [18, Lemma 13.9], holds.

Proposition 4.1. (E(M,Rn)/∼, δ) is a metric space.
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Proof. Since (E(M,Rn)/∼, δ) is pseudo-metric, from Corollary 3.2(iii), it is suffi-
cient to verify that it is T0. Let [f ], [g] ∈ E(M,Rn)/∼, [f ] 6= [g]. We want to show
that there exists an open set containing [f ] and not [g] or viceversa.

Let us observe that [f ] 6= [g] implies f(M) 6= g(M). Indeed, if f(M) = g(M),
then g = f ◦(f−1◦g), with f−1◦g ∈ H(M), i.e. [f ] = [g]. Therefore, since [f ] 6= [g],
without loss of generality, we can assume that there exists y ∈ f(M) \ g(M). Since
g(M) is compact as the image of a compact space through a continuous function,
an open set U ⊂ R

n can be found such that g(M) ⊂ U , y /∈ U . Then, considering
the open subset V (M,U) of E(M,Rn), we have g ∈ V (M,U), while f /∈ V (M,U).
Now, let us observe that π(V (M,U)) is open if and only if π−1 ◦ π(V (M,U)) is
open. Given that π−1 ◦ π(V (M,U)) = V (M,U) which is open, then π(V (M,U)) is
open. Clearly, [f ] cannot belong to π(V (M,U)), while [g] does. Hence, E(M,Rn)/∼
is T0. �

The above result can be generalized by considering the action of the group D(M)
of diffeomorphisms of class C1 of M on the space (I(M,Rn), d) of C1 immersions
of M in R

n (i.e. of diffeomorphisms whose differential is injective) without points
of self-tangency. Let us recall that an immersion f : M → R

n has no points of
self-tangency if whenever p, p′ are distinct points of M with f(p) = f(p′), then
im dfp 6= im dfp′ .

To prove that I(M,Rn)/∼D
is T0, let us consider f, g ∈ I(M,Rn) with [f ]D 6=

[g]D and show that this implies f(M) 6= g(M). The rest of the proof can be
obtained using the same arguments as in the case of embeddings.

Let us assume f(M) = g(M) and prove the existence of h ∈ D(M) such that
f = g ◦ h, i.e. [f ]D = [g]D. Let Pf ,Pg ⊂ M be the sets of preimages of multiple
points of f and g. Since f, g ∈ I(M,Rn), f|M\Pf

, g|M\Pg
are C1-diffeomorphisms

between M \ Pf and f(M \ Pf ), and between M \ Pg and g(M \ Pg), respectively.
Moreover, since f(M) = g(M), for any p ∈ M , the set g−1(f(p)) is not empty.

Seeing that in particular f(Pf ) = g(Pg), if p ∈M \ Pf , the set g−1(f(p)) contains
only one point p′ and we can define h(p) = p′. If p ∈ Pf , then g

−1(f(p)) ⊂ Pg. In
this case, there is just one point p′ ∈ g−1(f(p)) verifying im dgp′ = im dfp because
multiple points of g are without self-tangency. Thus, we can define h(p) = p′.
Because of its definition, the function h verifies the equality g ◦h = f . Let us show
that h ∈ D(M). Recalling that f(M) = g(M), the definition of h implies that
h is injective and surjective. Furthermore, for each point p ∈ M , there exist an
open neighborhood U(p) of p in M such that f|U(p) is a C1-diffeomorphism, a point
p′ ∈ M for which g(p′) = f(p), and an open neighborhood U ′(p′) of p′ in M such
that g|U ′(p′) is a C1-diffeomorphism and g(U ′(p′)) = f(U(p)). Hence, h|U(p) equals

the C1-diffeomorphism g−1
|U ′(p′) ◦ f|U(p). This proves that [f ]D = [g]D.

4.2. C(M,Rn) under the action of compact groups. As an application of
Proposition 3.4(3), let us consider the space (C(M,Rn), d) with M a submanifold
of Rn verifying one of the following properties:

• M is of revolution;

• M is invariant with respect to a rotation of
2π

n
.

In the previous cases or in each combination of them we can consider respectively
K(M) ∼= S1, K(M) ∼= Zn or the corresponding product of these compact groups.
Then the orbits induced by the action of K(M) on C(M,Rn) are closed, so that δK
is a metric on C(M,Rn)/∼K

.
More in general, we can consider the action of the group I(M) of isometries on

M (i.e. of distance preserving self-homeomorphisms ofM). Indeed, as stated in [15,
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Thm. 1.2], in the caseM is a compact manifold, the group I(M) results to be com-
pact in the compact open topology. Consequently, because of Proposition 3.4(3),
we obtain that (C(M,Rn)/∼I

, δI) is always a metric space.

4.3. The Morse functions space under the action of the group of diffeo-

morphisms. In what follows,M will denote a 2-dimensional smooth compact con-
nected manifold without boundary, and (M0(M,R), d) the space of simple Morse
functions on M endowed with the uniform convergence metric d. Let us recall the
following facts: f :M → R is a Morse function if it is of class C2 and all its critical
points are non-degenerate (i.e. the Hessian matrix at each critical point is non-
singular); the number of negative eigenvalues of the Hessian matrix at a critical
point is called the index of f at the critical point; as a consequence of the com-
pactness of M and the property of being non-degenerate, Morse functions’ critical
points are isolated [19]. Moreover, the Morse function f is said to be simple if each
of its critical values corresponds to a different critical point. Accordingly, it makes
sense to use the terminology index of a critical value c to indicate the index of f at
the only critical point whose value is c.

Given f ∈ M0(M,R), we denote by K(f) the set of its critical points, and by
fa the set f−1((−∞, a]), a ∈ R.

We want to show that, under the action of the groupD(M) of C2-diffeomorphisms
on M , the natural pseudo-distance δD turns out to be a distance:

Theorem 4.2. (M0(M,R)/∼D
, δD) is a metric space.

In virtue of Corollary 3.2(iv), the proof of Theorem 4.2 will be provided showing
that any orbit in M0(M,R) induced by the action of the group D(M) is closed. To
be more precise, we will prove that, if (fi) is a converging sequence of simple Morse
functions with d(fi, f) −→

i→∞
0 for some f ∈ M0(M,R), and fi ∈ [f̄ ]D = {f ′ ∈

M0(M,R) : f ′ = f̄ ◦ h, h ∈ D(M)} for every i, then f ∈ [f̄ ]D. All these notations
will be maintained throughout the section.

The main tool we will use is a result by Kudryavsteva [16, Lemma 1], rewritten
here in Lemma 4.11. It states that two Morse functions sharing the same collection
of critical points, the same graph in the sense of Definition 4.9, and the same values
at critical points, belong to the same equivalence class under the action of D(M).

The proof of Theorem 4.2 is by steps. Firstly, we prove that f and f̄ share the
same set of critical values with the same indices (Proposition 4.5); secondly, we
show that each converging sequence of critical points of (fi) corresponding to a
certain critical value converges to the critical point of f corresponding to the same
critical value (Corollary 4.7); thirdly, we demonstrate the existence of a function
f ′ ∈ [f̄ ]D with the same collection of critical points, the same values at critical
points as f (Proposition 4.8), and the same graph as the one of f (Remark 4.10).
In this way, applying Lemma 4.11 to f and f ′, Theorem 4.2 is proved.

The following two lemmas will be used to prove that f and the functions in [f̄ ]D
have the same critical values with the same indices (Proposition 4.5).

Lemma 4.3. ([17, Lemma 4.1]) Let X1, X2, X3, X
′
1, X

′
2, X

′
3 be topological spaces

such that X1 ⊆ X2 ⊆ X3 ⊆ X ′
1 ⊆ X ′

2 ⊆ X ′
3. Let Hk(X3, X1) = 0, Hk(X

′
3, X

′
1) = 0

for every k ∈ Z. Then the homomorphism induced by inclusion Hk(X
′
1, X1) →

Hk(X
′
2, X2) is injective for every k ∈ Z.

Lemma 4.4. ([7, Thm. A.3]) Let g ∈ M0(M,R), and let c be a critical value

of index k of g. Then there exists a real number η(g, c) > 0 such that each g′ ∈
M0(M,R) verifying d(g, g′) ≤ η(g, c) admits at least one critical value c′ of index
k for which |c− c′| ≤ d(g, g′).
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Proposition 4.5. The functions f , f̄ , and all fi have the same critical values with

the same indices.

Proof. Since fi ∈ [f̄ ]D, i.e. fi = f̄ ◦ hi for some hi ∈ D(M), and critical values
are preserved under diffeomorphisms, fi and f̄ share the same set of critical values
with the same indices for every i.

Let us prove the claim for fi and f . By Lemma 4.4, if c is a critical value
of index k of f , then there exists a real number η(f, c) > 0 such that each fi
verifying d(fi, f) ≤ η(f, c) admits at least one critical value c′ of index k, with
|c− c′| ≤ d(fi, f). Let us underline that c′ does not depend on the index i as seen
at the beginning of the proof. Letting i tend to infinity, we obtain c = c′. This
proves that the set of critical values of f is contained in the set of critical values of
fi for every i.

To show that this inclusion cannot be proper, let us assume, by contradiction,
that there exists c ∈ R that is a critical value for some, and hence all, fi, and it
is regular for f . Since f ∈ M0(M,R), there exists a real number η(f, c) > 0 such
that [c−η(f, c), c+η(f, c)] does not contain any critical value of f . If we consider i
large enough that d(fi, f) ≤ η(f, c), Lemma 4.4 implies the existence of at least one
critical value of f distant less than η(f, c) from c. This gives a contradiction. �

The result below shows that there exists a subsequence of critical points of (fi)
corresponding to a certain critical value which converges to the critical point of f
corresponding to the same critical value.

Proposition 4.6. Let c be a critical value of f̄ , and hence of f and all fi. Let

qi ∈ K(fi) ∩ f
−1
i (c) for every i. Then q ∈ K(f) ∩ f−1(c) if and only if there exists

a subsequence of (qi) converging to q.

Proof. Let us begin by proving that, if q ∈ K(f) ∩ f−1(c), then there exists a
subsequence of (qi) converging to q.

Let us assume by contradiction that no subsequences of (qi) converging to q
exist. Then a sufficiently small neighborhood U ⊂ M of q can be found such that
U contains neither any other critical point of f besides q, nor critical points of fi
for any i. Moreover, since f ∈ M0(M,R) and we are assuming f(q) = c, there
exists a real number η(f, c) > 0 such that [c − 3 · η(f, c), c + 3 · η(f, c)] does not
contain any critical value of f besides c.

Let us consider an index ı̄ so large that η′ = d(fı̄, f) < η(f, c), and write f c−3·η′

∩

U = X1, f
c−2·η′

ı̄ ∩ U = X2, f
c−η′

∩ U = X3, f
c+η′

∩ U = X ′
1, f

c+2·η′

ı̄ ∩ U = X ′
2,

f c+3·η′

∩ U = X ′
3. Since X1 ⊆ X2 ⊆ X3 ⊆ X ′

1 ⊆ X ′
2 ⊆ X ′

3, and both Hk(X3, X1)
and Hk(X

′
3, X

′
1) are trivial for every k ∈ Z, we can apply Lemma 4.3 to obtain that

the homomorphism Hk(X
′
1, X1) → Hk(X

′
2, X2) induced by inclusion is injective for

every k ∈ Z. But assuming that c is a critical value of index k̄ of f , Hk̄(X
′
1, X1)

is not trivial because the critical point q ∈ f−1([c − 3 · η′, c + η′]) ∩ U , while
Hk̄(X

′
2, X2) = 0 because f−1

ı̄ ([c− 2 · η′, c+2 · η′])∩U does not contain any critical
point of fı̄. This implies a contradiction.

Let us prove now that if there exists a subsequence of (qi) converging to q, then
q ∈ K(f) ∩ f−1(c).

Let us denote again by (qi) the subsequence converging to q. The fact that
d(fi, f) −→

i→∞
0, with fi(qi) = c for every i, immediately implies that f(q) = c. By

contradiction, let us assume that q is a regular value of f . Since f is a simple
Morse function, an arbitrarily small neighborhood U ⊂ M of q can be found such
that U does not contain critical points of f . Because of the convergence of (qi), U
contains the critical points qi of fi for every i > ı̂, for a certain index ı̂. Moreover,
since fi ∈ M0(M,R) for every i, it is not restrictive to assume that U does not
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contain any other critical point of fi besides qi for every i large enough. Hence,
under the assumption fi(qi) = c, a real number η(fi, c) > 0 can be chosen such that
[c− 3 · η(fi, c), c+ 3 · η(fi, c)] does not contain any critical value of fi besides c.

Fixed an index ı̄ large enough, we obtain again a contradiction using the same
arguments as in the first part of the proof with the roles of f and fı̄ exchanged. �

Corollary 4.7. Let c be a critical value of f̄ , and hence of f and all fi. Let

qi ∈ K(fi) ∩ f
−1
i (c) for every i. Every converging subsequence of (qi) converges to

q ∈ K(f) ∩ f−1(c).

Proof. It is sufficient to observe that, if two different converging subsequences of
(qi) converged to two different points q and q′, respectively, by Proposition 4.6 we
would have that both q and q′ are critical points of f , with f(q) = f(q′), against
the assumption that f is simple. �

The following result shows the existence of a function in [f̄ ]D having K(f) as
the set of its critical points, as well as the same values at critical points as f .

Proposition 4.8. There exists f ′ ∈ [f̄ ]D such that f and f ′ have the same collec-

tion of critical points, the same index and the same value at each of them.

Proof. Let K(fi) = {q1i , . . . , q
n
i } and K(f) = {q1, . . . , qn}, and assume fi(q

j
i ) =

f(qj) for every j = 1, . . . , n. We apply iteratively Corollary 4.7 to extract a sub-
sequence of (fi), say again (fi), such that, for every j = 1, . . . , n, the sequences

of critical points (qji ) converge to qj ∈ K(f). Moreover, for every j = 1, . . . , n,
let (U j , ψj) be a local chart centered at qj , and fix an index i large enough that

qji ∈ U j .
Let h :M →M be a C2-diffeomorphism such that

h(p) =







p, p ∈M \
n
⋃

j=1

U j

(ψj)−1 ◦ hji ◦ ψ
j(p), p ∈ U j , j = 1, . . . , n

where, denoting by D2 the unit 2-disk in R
2, hji : D2 → D2 is a diffeomorphism

which takes ψj(qj) to ψj(qji ), and is the identity in a neighborhood of ∂D2. Then
we can define the function f ′ :M → R as f ′ = fi ◦ h.

We observe that f ′ is a simple Morse function because obtained from fi by
composition with a diffeomorphism. Hence f ′ ∈ [f̄ ]D. By Proposition 4.5, f ′

and f have the same critical values with the same indices. Furthermore, by con-
struction, h(qj) = qji , and therefore, f ′(qj) = fi(h(q

j)) = fi(q
j
i ) = f(qj). Since

diffeomorphisms take critical points to critical points, qj ∈ K(f ′). This shows
that K(f ′) ⊂ K(f). On the other side, K(f ′) and K(f) have the same cardi-
nality, so K(f ′) = K(f). In conclusion, f and f ′ have the same set of critical
points {q1, . . . , qn}, and the same values at them since f ′(qj) = f(qj) for every
j = 1, . . . , n. �

Let us recall the following concept introduced in [16].

Definition 4.9. Let g :M → R be a Morse function with r saddle points p1, . . . , pr.
The graph Gg associated with g is the graph obtained from g−1{g(p1), . . . , g(pr)}
by removing all connected components containing no saddle critical points.

The graph Gg in Definition 4.9 has r vertices (which are the saddle points
p1, . . . , pr); the degree of each vertex is equal to 4 and hence the graph has 2r
edges.

Remark 4.10. The functions f and f ′ considered in Proposition 4.8 have the same
associated graph in virtue on the fact that they are both simple Morse functions.
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To prove Theorem 4.2, we use the following Lemma 4.11.

Lemma 4.11. ([16, Lemma 1]) Let g, g′ : M → R be Morse functions with the

same collection of critical points, the same graph Gg = Gg′ , and the same values

at critical points. Then

g = g′ ◦ h

for some h ∈ D(M) homotopic to idM .

Proof of Theorem 4.2. From Proposition 4.8 and Remark 4.10, we can apply Lemma 4.11
to f and f ′. This proves that [f ]D = [f ′]D, and therefore that the orbits induced by
D(M) on M0(M,R) are closed. Eventually, applying Corollary 3.2(iv), the claim
follows. �
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