

Characterization of an ASIC Front-End electronics dedicated

to Silicon Drift Detectors

C. Labanti¹, G. Baldazzi^{2,3}, P. Malcovati⁴, G. Bertuccio⁵, M. Feroci^{6,7}, R. Campana^{6,7}, M. Grassi⁴, L. Picolli⁴, E. Del Monte^{6,7}, L. Pacciani^{6,7}, Y. Evangelista^{6,7}, F. Muleri⁶, E. Costa⁶, I. Donnarumma⁶, F. Lazzarotto⁶, F. M. Rapisarda^{6,7,8}, A. Rubini^{6,7}, P. Soffitta⁶, M. Mastropietro⁶, M. Marisaldi¹, E. Morelli¹, A. Vacchi⁹, G. Zampa⁹, V. Bonvicini⁹, A. Rashevsky⁹, N. Zampa⁹, A. Battistella¹⁰, M. Bello¹⁰, C. L. Fontana¹¹, N. Uzunov^{10,13}, F. Navarria^{2,3}, M. Zuffa³, P. Rossi^{11,12}, G. Moschini^{11,12}

{¹INAF/IASF-Bologna, ²Università di Bologna, Dip. di Fisica, ³INFN Sezione di Bologna, ⁴Università di Pavia, Dip. di Ingegneria Elettrica, ⁵Politecnico di Milano, Dip. di Ingegneria Elettrica, ⁶INAF/IASF-Roma, ⁷INFN - Sezione di Roma 2, ⁸ENEA Frascati, ⁹INFN - Sezione di Trieste, ¹⁰ Laboratori Nazionali di Legnaro, INFN Legnaro (Padova), ¹¹Università di Padova, Dipartimento di Fisica, ¹²INFN - Sezione di Padova}: Italy ¹³ Faculty of Natural Sciences, Shumen University, Bulgaria

The Context

Large-area multi-anode Silicon Drift Detectors (SDDs) have X-ray imaging and spectroscopic characteristics that make them extremely attractive in the perspective of their applications to the field of space astrophysics and in instruments for medical diagnostic imaging.

We describe here the activity aimed to develop an ASIC suitable for coupling with SDDs.

The ASIC described here is the first prototype of front end electronics to be used for the readout of largearea SDD of a similar design of that one developed for the Inner Tracking System (ITS) in the ALICE experiment of the Large Hadron Collider (LHC) at CERN.

ASIC Main Features

FUNCTION	IMPLEMENTATION
Input: Readout of 32 SDD anodes	32 parallel inputs channels, current input Channel pitch 200 μm
Pre-amp	DC coupling Input range 120 – 12000 e ⁻ Detector param. 150 pA max leak curr, 0.5 pF max
Signal processing 32 Read-out Pixel Cell (RPC)	Low-noise preamplifier Pulse shaper CR-RC ² with pole zero suppression, Amplitude discriminator Peak discriminator and stretcher Digital circuits required for cell operation
Commanding configuring the internal registers	Shaping time (selectable from 0.5 to 10 µsec) Discriminator level (general + individual tuning of the ch) Channel disabling (of both pre-amp and discriminator) External trigger (selectable) Output mode: shaper or stretched output in selected ch
Output	Internal trigger (OR of all channel trigger) Analogue output (parallel) for ch from #15 to #22 Analogue output (serial) of stretched signals after a MUX

These detectors can reach large area of some tenth of cm² with anode pitch of various size from some hundred of micrometer so a millimeter, and can be used with very good spectroscopic capabilities for low energy X-ray detection.

Similar detector with their electronic readout can find application in many different mission ranging from configuration devoted to X-ray spectroscopy, imaging or timing observation to configuration conceived for gamma-ray observation like for example in architectures at the base of a Compton telescope design.

One channel simplified architecture

The ASIC in its packaged version

0.35 mm CMOS technology

The first ASIC prototype design

Read-Out Channels

Dutput Buffers and DACs

Analog Pads

Die dimension are 6.4×2.3 mm channel pitch 200 μ m

Digital Pads

Programmable Registe

The testing system

The ASIC testing system consist of two PC boards: the first one with digital input/output for ASIC configuration and commanding, the second one for ASIC commanding during operation and for ADC conversion.

Different graphical interfaces are used for choosing ASIC configuration, data acquisition and visualisation

Prototype board with the ASIC bonded to a multi-anode SDD.

Read out sequence for a detected event

Analog Pads

ASIC functionality on ch #15 (ch #15 chain ON (shaping 1 µsec), all other channels OFF)

Left: Output of the channel chain from the tes_pin of the channel (available only for ch from #15 to #22 will be removed in final design). Top ASIC in shaping configuration, bottom ASIC in stretching configuration, in both cases internal trigger is used.

Right: Output from the MUX pin (internal trigger is used); signal sequence from top to bottom	
Out from ch #15 chain	Analog
Out from MUX	Analog
nput MUX address	Digital (5 bits)
nput Sample	Digital (must be long enough to allow multplexing operations)
nput Reset	Digital

The functional behaviour of the ASIC is correct; the performance figure of the ASIC are still under test, expectation from circuit simulation are that the noise figure is contained in some tent of e- rms, with a power consumption of about 1 mW/ch

A new ASIC run is foreseen in the next months

Schematics of the ASIC Test Equipment.

Graphical interfaces of the Test Equipment for ASIC configuration and real time signals display