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ABSTRACT
In testing, item response theory models are widsld in order to estimate item parameters and
individual abilities. However, even unidimensiomabdels require a considerable sample size so
that all parameters can be estimated preciselyifthauction of empirical prior information about
candidates and items might reduce the number ofidares needed for parameter estimation.
Using data for 1Q measurement, this work shows leopirical information about items can be
used effectively for item calibration and in adaptitesting. First, we propose multivariate
regression trees to predict the item parameteredbas a set of covariates related to the item
solving process. Afterwards, we compare the iterarpater estimation when tree fitted values are
included in the estimation or when they are ignotdddel estimation is fully Bayesian, and is
conducted via Markov chain Monte Carlo methods. f@sellts are two-fold: a) in item calibration,
it is shown that the introduction of prior infornat is effective with short test lengths and small
sample sizes, b) in adaptive testing, it is denrated that the use of the tree fitted values inktda
the estimated parameters leads to a moderate sgciedhe test length, but provides a considerable

saving of resources.
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1. Introduction
In educational and psychological measurement, tactassisting of a number of items is usually
administered to candidates in order to infer tpeaficiency level or psychological profile.

The phase of testing is based on strong method@btheories, among which item response
theory (IRT) has a long tradition (Lord and Novidl®68; Hambleton and Swaminathan, 1985; van
der Linden and Hambleton, 1997; de Ayala, 2009)I iRodels express the probability of a
response to a test item as a non linear functiothefitem characteristics, called item parameters,
and a set of latent variables, representing indaidnon-observable cognitive abilities or
personality traits.

Application of IRT involves two separate stepsirstfone to estimate the item parameters and to
ensure that they match the desired characterigtiderms of psychometric properties and test
requirements (calibration), and a second stepdatéoexaminees into the latent trait scale (schring
Depending on the complexity of the fitted model amdthe measurement context, these phases can
be very expensive. In the calibration phase, tleeipion of the item parameter estimates depends
partly on the sample size and several studies bae® conducted to investigate the minimum
requirements for different combinations of IRT misdand test lengths (see e.g. De Ayala, 2009)
and the consequences of not meeting these requitenféeldkamp, Matteucci, and de Jong,
submitted).

Within a Bayesian framework, the effects of a snsalinple size can be compensated by the
application of a more informative prior distributigGelman, 2002), for example, by the application
of an empirical prior distribution based on theatieinship between the parameter of interest and a
set of covariates. Generally, a normally distrilbdutgrior is used in Bayesian item parameter
estimation (see e.g. Albert, 1992). When the infton derived from auxiliary variables is
accurate, the variability of the prior could be ®@&sed considerably, so that it becomes more

informative. Besides, the location of the prior htighift, so that it becomes more accurate.
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In the literature, most attention has been paithéorelationship between the ability estimates
and a set of covariates about the individual, sashdemographical variables, socio-economic
status, cultural habits, achievements in differégdts, as can be found also in large-scale
standardized assessments (see e.g. OECD, 201®@raSstudies used the specified relationship
effectively to improve the ability estimates both terms of bias and measurement precision
(Zwinderman, 1997; van der Linden, 1999; Matteuttignani, and Veldkamp, 2009; Matteucci
and Veldkamp, 2011). In IRT models, latent abilgytypically viewed as a random variable when
marginal maximum likelihood (Bock and Aitkin, 198ty a fully Bayesian estimation (Albert,
1992) are adopted, and the specification of a gligtribution, even empirical, is immediate.

On the other hand, covariates about items, suegasolving strategy, are collected in surveys
less frequently than covariates about candidatetatiRely few studies have been conducted to
investigate the impact of explanatory variablesitem parameters (Enright and Sheehan, 2001;
Wright, 2002), and this relation has hardly beeadu® fine-tune the prior distribution (Matteucci,
Mignani, and Veldkamp, 2011). Within a fully Bayasiapproach, the item parameters are viewed
as random variables with their own prior distribatiand empirical prior distributions can be used,
as well. Finding only few studies on this topi@isttle unexpected, since, especially in education
measurement, the use of personal information atendidates may arise the issue of fairness with
respect to candidates while, on the other handareaes about items do not state the matter of
fairness. Test takers may claim that the introaunctif information other than their responses in the
test is not fair for the assessment, while thisas questioned for item parameters. Besides, a
relation between the item parameters and auxili@igrmation can be found especially helpful in
the possibility of predicting the item charactecstin terms of discrimination and difficulty, henc
to build a frame of references for item writing.itdm writers could know that items with certain

features would hold specific psychometric propstttesting efficiency could be improved.



The main aim of this work is to show how efficienof item parameter estimation can be
improved when the sample size is small, or ratimecase the combination of sample size and test
length is unfavourable, by using empirical informmatabout the item parameters. In Matteucci,
Mignani, and Veldkamp (2011), the performances dfeent prior distributions for item
parameters commonly used in the literature werepewed to empirical prior distributions. In
particular, the relationship between item paranseteérd covariates was investigated by specifying
two separate regression trees for item discrimonaéind difficulty, and the tree fitted values were
used to set the hyperparameters of prior distiimsti The results showed that, for a test length of
20 items, the empirical prior performed better tirformative and vague priors commonly used in
the literature, especially with small sample sizéswever, the use of two univariate trees appears
restrictive, because the item discrimination arflicdilty are usually interpreted jointly. Moreover,
the approaches should be compared under differalibration conditions, based on several
combinations of sample size and test length, asaliala different assessment environment, such as
adaptive testing.

To overcome these limitations, in this paper a)tivatiate regression trees are proposed to
describe the link between the item psychometrip@riies and a set of available covariates about
the item solving process, b) the empirical and aempirical approaches are compared under several
conditions based on both sample and test size, sijnalation study in adaptive testing is also
conducted.

The paper is organized as follows. Section 2 dessrihe intelligence test data used throughout
the paper. In Section 3, methods are presentegbatticular, multivariate regression trees for
predicting item parameters are discussed in Se@idnwhile Bayesian model estimation is
described in Section 3.2, where the method is ee@nto the inclusion of empirical prior

information. In Section 4, the main results arewvainoThey include the prediction of item



parameters through regression trees and the adpntaf including the fitted values in item

calibration and adaptive testing. Finally, conaus are addressed in Section 5.

2. Data
The data consist of an item bank containing 391 bemseries items (Matteucci, Mignani, and
Veldkamp, 2011), commonly used in intelligencegédte available number series items represent
a subscale of a test for IQ measurement, the Coomédbility (Maij- de Meij, Schakel, Smid,
Verstappen, and Jaganjac, 2008), created by PiGom@aDutch Human Resources company.
Connector Ability consists of three different sullss (figure series, number series, and Raven’s
matrices) and it is used for personnel selectiapgses.

A number series item is simply a sequence of numlaerd the candidate has to find the

subsequent number according to some mathematiealAn example is the following:

11 14 20 32 ?

Starting from number 11, one has to add 3 (+3)deioto obtain 14, then add 6 (+3-2) to get 20
and finally add 12 (+6-2) in order to get 32. Theme, the answer to the item is 56. The item can be
described by a first level operation (additionyezond level operation (multiplication), the number
involved in the first level operation (=3), and thember involved in the second level operation
(=2). In the example, a one-series item is presert@wever, more difficult items are available,
consisting of two series of numbers, where numhbersdd position follow one series while
numbers in even position follow another series. réfoge, several covariates about items are
available:

- first level operation (Opl) with categories l1=autgif 2=subtraction, 3=multiplication,

4=division;



- second level operation (Op2) with categories 1=tamdi 2=subtraction, 3=multiplication,

4=division, 5=none;

- number involved in the first level operation (Nliyiwpositive integer values;

- number involved in the second level operation (Nh positive integer values;

- number of series (Ns) with values 1 for one sear@s$ 2 for two series.

Four alternatives were presented to the candidatesthey had to select the correct one. ltem
responses were recorded as binary data (l=cor@eatcorrect). The estimation of the
psychometric properties of the items was condubiedsing IRT models.

Given a set of items, IRT models express the prithalmf response to a test item as a
mathematical function of item parameters, and @lsiror multiple latent abilities. Under the
assumption of unidimensionality, i.e. the presente single underlying variable, PiCompany
conducted the item calibration according to the-paoameter logistic (2PL) model (Birnbaum,
1968) which specifies the probability of a correztponse as a monotonically increasing function

of the underlying trait, as follows

(a;8 -b;)

e
P(Y, =116,2,,0) = 7 Y

whereYj; denotes the response variable of individualitemj, with i=1,...n andj=1,... K, 6; is the
ability of personi, & andb; are the item parameters for itgmThe discrimination parametey
assesses the power of the item to differentiatelidates of different ability, while the difficulty
parameteb; represents the threshold level of the item. Pat@nestimation produced a set of two
real-valued parameter estimates for the 391 itentise pool.

The introduction of a scaling constant D=1.702 Wwhmgultiplies the termg6;-b;) both in the
numerator and the denominator, makes model (1)vabpnt to the two-parameter normal ogive
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(2PNO) model (Lord, 1952; Lord and Novick, 1968)tarms of predicted probabilities (for the
proof, see Haley, 1952). The 2PNO model expresseprobability of success to a test itgras

follows

ij 1 —z2
P(Y, =18) = @(n,) = [ =e""dz 2)

Vo

where @ is the cumulative normal distribution functiom;=0;6;-9;, with o; and é; equivalent in
meaning to the 2PL model item discrimination anffialilty parameters respectively, but on a
different metric. Thanks to model (1) and (2) probty equivalency, the 2PNO model could be
chosen as the measurement model, ensuring an gasi@bility within Bayesian estimation.
Figures 1a and 1b show the box-plots related tm itscriminatione; and item difficulty

parameters, respectively, in model (2) metric.
[INSERT FIGURE 1a AT ABOUT HERE] [INSERT FIGURBIAT ABOUT HERE]

As regards the discriminations, the plot clearlgwg that all values are positive, ensuring that
the item characteristic curve is an increasing tioncof the latent ability. In fact, negative
discrimination parameters are not desirable bubrdtecally possible, and would mean that the
probability of giving a correct response to thegédritem could decrease for increasing abilities.
The higher the discrimination parameter is, théh&igs the capability of the item to differentiate
between the candidates. When the discriminationevad above 0.7, the item becomes more and
more discriminating, thanks to an increasing stespnin the pool, the median discrimination is
equal to 0.76 while the mean value is 0.69, witttaendard deviation of 0.40. Difficulty parameters

usually range from -2 to 2, and the difficulty Iéwd# an item increases as the parameter increases.



In the pool, a mean value of -0.34 is observedy wistandard deviation of 0.72, while the median
difficulty is -0.30. As a consequence, the itemlpgeaot precisely balanced in terms of difficulty
but easy items are predominant. The representafiotem parameters through a scatter plot, as

shown in Figure 2, can be useful to interpret thameter values simultaneously.
[INSERT FIGURE 2 AT ABOUT HERE]

What can be seen, is that most items are moderdistyiminating and are associated to a
medium-low difficulty. The range of most discrimtitan parameters is from 0.3 to 1, while most
difficulties are in the interval [-1.5; 0.5]. Thimplies that the item bank is more informative for
individuals with low abilities. In fact, the amounf information provided by each item can be
described by the item information function (Fishdormation), which, according to model (2), can

be expressed by

, ()™ expn 12))°

o -9 @)

1,06)=a

It can be demonstrated that, when the ability efdandidate is equal to the item difficulty, themit
provides maximum information. Moreover, it can beserved that the information function (3) is
proportional to the squared discrimination parametgich means that the most discriminating

items are the most informative too.

3. Methods

In order to investigate the relationship betweea iiem parameters and the set of covariates

described in Section 2, so that item parametersesi items could be predicted, the use of
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multivariate regression trees is proposed. Whenfohm of the function relating the response
variables and the covariates is not known, we ac@nausupervised methodology based only on data.
Moreover, regression trees can be used to idehtiipogeneous clusters with respect to the
covariates. This aspect is very important in thasghof item writing because, already during the
item writing process, an accurate prediction ofitam parameters can be made. Besides, for some
applications, item parameters might even be asdigmesed on item characteristics and the
expensive step of pre-testing can be skipped.

We want to seek for a single relationship betwédentivariate response variable, consisting of
the discrimination and the difficulty parametersgdahe shared covariates. As the item parameters
are usually estimated and interpreted jointly, veedua bivariate tree to reproduce better the link
between the dependent and the explanatory variaBgsn, this approach would be particularly
efficient for item writing: given the covariatesgiins with the desired combination of discrimination
and difficulty could be obtained.

The results of multivariate regression trees arpleyed to improve item parameter estimation.
To this end, a fully Bayesian estimation procedsremplemented, where a prior distribution for
item parameters should be specified. The estimagioaviewed and the method is extended to the
possibility of including empirical information imé prior distribution for item parameters.

The methods are described in the following.

3.1 Multivariate regression trees

In the approach of classification and regressiersr(CART) by Breiman, Friedman, Olshen, and
Stone (1984), binary segmentation is used to fisdlsset of covariates which best predict a single
outcome variable, either categorical or quanti@tiCART is a nonparametric technique which

works by recursively partitioning the complete data(root node) by using binary splits in the

covariates so that the heterogeneity (impurityxha resulting nodes at each split is minimized.
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When the outcome variable is quantitative, regozstiees are used. Deviance is generally taken as
impurity measure and each split works by minimizihg deviance within the two nodes resulting
from the binary partition or, analogously, maximgithe deviance between the nodes. When a
given tree size is reached or the deviance is balaertain threshold, no further partitioning is
possible and a maximal tree is specified. The makinee typically overfits the data and should be
pruned according to some criteria in order to gebptimal tree. Several pruning techniques, such
as the 1-SE (one-standard error) rule or technidusesed on cost-complexity measure were
proposed by Breiman et al. (1984).

Multivariate regression trees (MRT) represent atersion of CART, for continuous outcome
variables, to the multivariate case. The firstrafie in this direction was made by Segal (1992),
who extended the regression tree methodology taitatinal data. Thereafter, MRT were
developed nearly simultaneously by De’ath (2002) karsen and Speckman (2004), to describe
the relationships between the abundance of co-ongwspecies and environmental variables.

A multivariate tree should be simultaneously gooddstimating the mean response of several
dependent variables (Larsen and Speckman, 2004¢nGi set oP response variables;, ... Wp,
the impurity of each node should be defined forrthdtivariate extension. Following the approach
proposed by De’ath (2002), the impurltyf a given nodéN, with N representing a subset of the
indices {1,...n} denoting the observational units, is definedlestotal sum of squares (SS) around

the multivariate mean, as follows:

2

P
(N =YY (w, -w,) , (4)
JON p=1
wherew, is the observed response for varigbland unitj, and w, is the mean of variabley, at

node N. Geometrically, the impurity defined by (4) is tleguared Euclidean distance of
10



observations around the node centroid. Other measfrimpurity, based on the multivariate sums
of absolute deviation around the median or on femiht definition of distance, can be used. When
the impurity measure (4) is adopted, the multivarteees are called SS-MRT to recall that the sum
of squares is used.

Following the CART approach, the splits are binang anade by a single explanatory variable.
Each split is chosen so that the sums of squar¢ahdiss (SSD) of units from the centroids of their
respective nodes are minimized. Once the maxingd ts build, a pruning method should be
defined in order to choose the best tree size.skcomplexity measure can be adopted, taking into
account both the tree deviance and the tree comypléxough a cost-complexity parameter
(Breiman et al., 1984).

Cross validation (CV) is often employed, choosihg tree with the smallest predicted mean
square error. In detail, the complete dataset lis igpo a number of approximately equal subsets
(typically 10) that are used for validation. Fockeaubset, the impurity of predictions based on the
remaining data is calculated, and the CV errooisguted by averaging the results of the validation
runs. Different runs will produce slightly differel€V errors, because the subsets are randomly

selected. Following the approach of SS-MRT, the iptexh errorE can be defined by

E=Y(w,-w,), 5)

where W*p denotes a new observation.

3.2 Bayesian model estimation
In IRT model estimation, item parameters are usuaéyed as fixed and unknown quantities. We

decided to use a fully Bayesian estimation, whina iparameters are considered random variables
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(Albert, 1992), and the information derived frone texplanatory variables can be incorporated in
prior distributions.

Given the vector of binary respons&s= (Yi1,...,Yj,...,Yny), With i=1,...n individuals and
j=1,...Kk items, a vector of independent random varialdes (Zi1,...,Zj,....Zn) IS created to
represent the continuous underlying responsedhato;=1 whenz;>0 andY;=0 otherwise, and

Z; ~N(a;6 -9,71) when model (2) is chosen as the measurement miidl.this approach, the

joint posterior distribution of interest is speediasP(Z, 0, & | Y), where@ = (64,..., 6,...,0) is the
vector of ability parameters aid= (1,..., §,..., &) IS the complete vector of item parameters with
the generic elemerd=(¢;, J;) representing the two item parameters for iferfihe joint posterior
distribution has an intractable form while all carahal distributions are easy to simulate (Albert,
1992). For this reason, the Gibbs sampler (GemdnGeman, 1984) can be used to reproduce the
target distribution by sampling iteratively eacingte conditional distribution until convergence.
The algorithm, which is included in Markov chain Me Carlo (MCMC) methods, works with the
following conditional distributions given the rese daté :

1 Z]6,5,

(2)6012,¢,

)¢, Z.

As described in Albert (1992), the first conditibdastribution is truncated normal, as follows

N(@7;) with Z, >0 if Y, =],
0

% '9’§~{N(/7” 1) with z,<0 if Y, =0 ©

Given a standard normal prior distribution for @jli.e. {6;} i.i.d.~ N(0,1), the second conditional

distribution can be expressed by
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g 12,8~ N(
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i

wherev =1/ Z'j‘:laf and @ :VEZ';:lafj (Z; +9,) . The third conditional distributions depends on
the prior distribution for item parameters. A conmuhoice (see e.g. Albert, 1992) is to assume a

k
vague prior given by and indicator function suchRg) =[]1(a; >0), so that discrimination
j=1

parameters are ensured to be positive. Alterngtival prior covariance matrix for the item

parameters can be specified (Béguin and Glas, Z88XL.and Glas, 2001), as follows
g 0
o :( zj : (8)

In Matteucci, Mignani, and Veldkamp (2011), a biata normal distribution was assumed as prior

distribution for item parameters
éj = N(l‘o;zo)’ 9

where the hyperparameters to be specified are tioe means contained ipp and the prior
variances of the prior covariance matbl. Following this last, more general specificatione t

posterior distribution of the item parameters beesm

g 10.2-N{xoxszg 2 ez v oz )Y (10)
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whereX=[0 -1] is anx2 matrix containind in the first column and all elements equal to -the
second column. Starting with provisional estimdt@sabilities and item parameters, the Gibbs
sampler is used to iteratively simulate sampleganfrdistributions (6), (7), and (10) until
convergence is reached. Convergence can be asdgssespecting the trace plots of simulated
Markov chains, and applying convergence diagngstieseviewed in Cowles and Carlin (1996).
When using distribution (9) as prior for item paeters, a common choice is to set the prior
means equal to zero and the prior variances equahé¢. Variances can be increased to make the
distribution less informative (Bolt and Lall, 2003jowever, empirical information can be included
in distribution (9) to set the prior means. Thigprgach will be followed in the application, where
fitted values from regression trees will be usedasr means for the prior distribution of item

parameters.

4. Results

In this section, our approach has been appliedeantelligence test data. First of all, MRT aredis
to predict the item parameters of the intelligetest items. Afterwards, the inclusion of tree fitte
values is evaluated for item calibration and foamtd/e testing. Item calibration is simply the
estimation of item parameters based on the respanfsa random sample of individuals, drawn
from the population of interest. Differently, adapt testing is the administration of a tailored
sequence of items to single individuals, and ibased on the availability of an item pool, where
item parameters are known, e.g. estimated with c@epable accuracy in the calibration phase.

Item selection is adaptive as it is based on tbeigpional ability estimate of the single candidate.

4.1 Prediction of item parametersvia MRT
The implementation of SS-MRT in our problem is iginforward. The multivariate response

variable is represented by the two item parameti#sgriminatione; and difficulty 6; (which are
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here treated as random variables),jdr,... k items. In the MRT notatiorB=2, wy=a, W,=9, while
k is the total number of observed units. As desdribve Section 2, there are five explanatory
variables: Op1, Op2, N1, N2, and Ns.

A multivariate regression tree was fitted by usthg R packagenvpart which follows the
approach of De’ath (2002). Ten-fold cross validatieas used. In order to choose the best tree size,
the relative error is plotted for different treeghwa number of terminal nodes from 1 to 9 (see

Figure 3).

[INSERT FIGURE 3 AT ABOUT HERE]

The upper curve represents the cross-validatioor evhile the lower one is the resubstitution
error for the sequence of nested trees. For eaelsize, a complexity parameter (cp) can be used to
define a cost-complexity function which identifig® best pruning. In the figure, the horizontaglin
(Min + 1 SE) shows the error limit according to theSE (one-standard error) rule, which was
adopted to choose the best tree size by crossatialind According to this rule, the best tree is the
one associated to less than one standard erroedabhevminimum value of the impurity measure. In
our application, the tree associated to a minimwor eonsists of 7 leaves, while the optimal tree
has 6 leaves. The tree with 6 terminal nodes iggddo best fit the data and it is depicted in Fagu

4.

[INSERT FIGURE 4 AT ABOUT HERE]

The tree describes the recursive partitioning sctr each node, a splitting variable is chosen
to best separate the items into two groups. Theee covariates are involved in the tree: N2, Ns

and Opl. The first splitting variable is N2 (thenther involved in the second level operation),
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which creates a left branch for N2 < 5.5 and atrighnch for N2> 5.5. As described in Section 2,
N2 can take any value in the natural set. Theretbeesplit can be translated as N2 and N2> 6.
When the Ns variable is used, the condition Ns5<mieans that only one series is present, while Ns
> 1.5 means that the item involves two series. Alse,Op1l variable splits the data as Opl1=1, 2, 4
(addition, subtraction, and division) and Opl=3 I@plication). Each terminal nodeN is
characterized by the fitted values for the itemapaeters, the impurity measure according to (4),

and the number of observations (items). The fittathes can be represented by the arithmetic
meansa,, and J,, or by the median valueg,, and SN. In Figure 4, at a given node, the bar on the
left represents the mean discrimination paramatgwhile the bar on the right the fitted difficulty

parameterd,, . However, the median can also be chosen to repréise fitted values at each node,

due to its robustness and to the property of mimiimgi the sum of the absolute deviations.

Reading the tree in Figure 4 from left to righk Eaves can be identified and numbered from 1
to 6. Their properties are summarized in Tableodether with a description of the range of values
taken by the covariates. In fact, each node cawidoged as a cluster of items, described by the

covariates.

[INSERT TABLE 1 AT ABOUT HERE]

On average, the easiest items are in the termogs11, with a mean difficulty equal to -1.22,
and a fairly good discrimination. The easiness ledseé items may depend on the first level
operation, involving mainly addition and subtraatin fact, division is not used very often in
number series items, and the item pool containg dbflitems involving a division out of 391), the
presence of one series only, and a low N2 numberth® other hand, the most difficult group of

items can be found in leaf 6, where items are podidcriminating. The difficulty can be imputed
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to the concurrent presence of two series in the dad high N2 numbers (X8). Both nodes 2 and
3 consist of easy items, even if items are moreridmnating in node 3. Finally, leaves 4 and 5 are

characterized by moderately difficult items, withoav and fair mean discrimination, respectively.

4.2 A smulation study in item calibration

We want to evaluate the advantages of includinginf@mation derived from auxiliary variables
about the item parameters in the item calibratioden different conditions. To this aim, model
estimation is conducted by setting the parametéistribution (9) as follows: prior means are
specified as the median values fitted through tlkarlate regression tree of Section 4.1 and prior

standard deviationg, ando;s are set to 0.5 so that the prior distribution cdagdfairly informative.
Therefore, the prior distributions for item paraerstares~N(a, ,0.5) andc5,-~N(5N ,0.5), where

the j-th item belongs to the terminal notle We call this approackmpirical to underline that
information derived from data is introduced in gsimation process. The approach is compared to
the classical one, where prior means and variances for itemnpatiers are set to zero and one,
respectivelys;~N(0,1) and)~N(0,1).

To compare the estimation of item parameters inefmpirical and the classical approach, a
simulation study was conducted based on differemznations of test length (number of items)
and sample size (candidates). Random samplksidf, 20, 30 items were extracted from the pool
of intelligence test items described in Sectiom@ #gest submission was simulated for samples of
n=100, 200, 300, 500 candidates, wi#h}{i.i.d.~ N(0,1). The Gibbs sampler was implemented in
the software MATLAB 7.1 (The MathWorks Inc., 200f) estimate the item parameters. The
convergence of the algorithm was assessed insgebeniteration plot and calculating a time-series
estimate of the Monte Carlo error, as proposed éwéke (1992), which is implemented in the R
package BOA (Smith, 2007). A rule of thumb is ttte# Monte Carlo error should be lower than

5% of the standard deviation. It was checked thigtd¢ondition was met when 5000 total iterations
17



were used with a burn-in of 500 iterations. Forheeandition, 100 replications were used. For each
run, sampled item parameters from the posteridribigion (10) were recorded and the mean value

was computed turning out with the expected a piost@EAP) estimate for each item parameter.

The mean value among replications is our finalneste of the item parametea (or 5) and the
standard deviation (Sd) is a measure of stabilitgraeplications. For each estimate, bias was
calculated together with the root mean square ¢éRMSE) as a measure of accuracy.

Results fok=10 items are shown in detail for100 in Table 2.

[INSERT TABLE 2 AT ABOUT HERE]

By “True o” and “Trued” we mean respectively the discrimination and diffty parameters of

items extracted from the pool which are taken as ttem parameters in the simulations. Besides,
the columns denoted by, and SN report the median values fitted with the bivaritge, which

are set as the mean value of prior distributionstémn parameters.

Comparing the empirical and the classical appredonn=100, it can be seen that bias is lower
in most cases for the classical approach whiledstahdeviations and root mean square errors are
definitely higher. Overall, we can say that the @@l approach is more stable over replications
and it is also less variable when comparing thee tand the simulated values among the
replications. However, estimates are more biasad th the classical approach, with the exception
of few cases (items 4, 7, 8 for both discriminataod difficulty). These results derive directlyrito
the different prior parameters used in the prigtrdiution (9), and in particular from the use of a
rather small prior standard deviation, equal tq fabthe empirical approach, in combination with a
very small sample size of 100 simulees. The resulthis particular case are useful to understand

how the estimation properties evolves when the $ampncreased, as shown in Table 3rfe200.
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[INSERT TABLE 3 AT ABOUT HERE]

Here, bias is generally reduced in both approaetids respect to the case oF100. This
improvement is more evident in the empirical santi which is also associated to a lower
variability over replications with respect to tHassical solution as in the previous case.

Table 4 and Table 5 report the resultsrf@800 anch=500, respectively.

[INSERT TABLE 4 AT ABOUT HERE]

[INSERT TABLE 5 AT ABOUT HERE]

With a sample of 300 units, both bias and varigbdre reduced in the two approaches. Therefore,

we can say that the two solutions are comparahtéitas is true especially for the casengb00.
Simulations were conducted also for test lengttieréint from k=10. The results for all the

combinations of test length and sample size arensmanmmed in Table 6 for discrimination

parameters in terms of median bias and median RMSE.

[INSERT TABLE 6 AT ABOUT HERE]

As expected, the median bias decreases as tesh land sample size increases. The classical
solution outperforms the empirical one in term @fsbfor short testk€10) and small sample sizes
(n=100, 200). In the other cases bias of the two aaagres is comparable. On the other hand, the
empirical solution presents the best results imseof median RMSE, particularly for combinations

of small test length and small sample size.
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The same summarized statistics are presentedffmutty parameters in Table 7.

[INSERT TABLE 7 AT ABOUT HERE]

Again, the best performances of the empirical apginoover the classical one can be observed
for a very small number of itemk=10) and small samples.

It can be noticed that estimates of difficulty paeders are generally more accurate that those of
discrimination parameters. The estimates depenti@abilities of the simulated sample, as well as
on the specified prior distribution for item parders. Usually, difficulty estimates are more
accurate when abilities are sampled so that thenrabdity level is close to the item difficulty. On
the other hand, the estimation of discriminatiomapgeters needs well spread abilities to be
accurate (see, e.g. de Gruijter and van der Ka®@@g8)2 This last condition can be more difficult to
be reached, and this is why difficulty parametdmestes are more stable and accurate also with

small samples while discrimination estimates aite no

4.2 A ssimulation study in adaptive testing
To evaluate the advantages in the introductiomgfigcal information, we also considered a case
in adaptive testing. In fact, the number seriesngecan be submitted within an automated
environment, and the attention is focused on thglsiexaminee respect than on the whole group of
test-takers.

Unlike linear testing, computer adaptive testind\{Q works by submitting a different selection
of test items to each candidate, where each subsedgem is adapted to the individual current
ability estimate. Here the focus is on the estioratf the examinee ability (scoring phase) with the

aim of finding the “optimal” test length.
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The administration of an adaptive test starts vatility initialization, in which the initial
proficiency level of the candidate is defined. Avznon choice is typically to sét”=0. Otherwise,
when information about the candidate can be infefrem a set of covariates, an empirical
initialization is possible as well (van der Lindefh999; Matteucci and Veldkamp, 2011).
Afterwards, a criterion for item selection shoulkel deefined (for a review, see van der Linden and
Pashley, 2010), where a common practice is to hsenaximum information criterion (Birnbaum,
1968). According to this criterion, the item prowig the highest information is selected from the
pool to be administered. Information can be definedhe item information function described by
(3). After a specified level of measurement prexiss reached or a maximum number of items is
submitted, the adaptive algorithm stops and tha fability of the candidate should be estimated.

In this simulation study, an adaptive test is seted starting from two different items pools. The
first one (pool 1) is the number series item banéviged by PiCompany, which contains the
estimated item discrimination and difficulty forabaof the 391 items. The second pool (pool 2) is
built by substituting the estimated item parametgtl discrimination and difficulty levels fittedyb
using regression trees. Clearly, pool 1 containserheterogeneous items in terms of psychometric
properties than pool 2, and items are more eaddypted to the individual candidate.

Adaptive tests were simulated for different cantidawith ability from -2 to 2. Ability was
estimated by using the Gibbs sampler with knowm iparameters, where the algorithm works only
with the conditional distribution of the underlyinggsponse variables (6) and the posterior
distribution of the ability (7). Test informatiorbave 4.5 was used as a stopping rule and 100
replications were conducted for each ability level.

Table 8 shows the mean number of items needed deraio complete the test and the

corresponding standard deviation (Sd) for eachtglbével.

[INSERT TABLE 8 ABOUT HERE]
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As can be easily seen, the number of items neexlgdttan ability estimate is higher when pool
2 is employed rather than pool 1. This is an exggecesult, as pool 1 is more variable in terms of
item parameters and, as a consequence, provides information on ability levels than pool 2.
However, the crucial point is: how much do we lbgeusing pool 2 instead of pool 1? Within pool
2, the mean test length is around 9-12 items for dmd average abilities which is definitely an
acceptable number of items to be submitted in d@onaated test. Because the item pool is not
symmetric with respect to difficulty, the resulte aaxot symmetric in the ability scale. In fact, for
higher ability levels, the mean test length forA&lGncreases rapidly either using pool 1 or pool 2.

Clearly, the use of MRT fitted values as item pagters makes the item pool less optimal from a
psychometric point of view because most items atalistinguishable from the others. On the other
hand, fitted regression trees could be used to tenppeim parameters of new items, when covariates
are available. As a consequence, the calibrati@sehvould not be needed and a huge saving of

resources could be obtained.

5. Concluding remarks

IRT models, used intensively in educational andcpeilogical measurement, may require quite
large samples to estimate item parameters with gaodracy. Consequent research questions are
how this estimation can be improved, and under wbandition it should be improved.

In this paper, we showed how empirical informatimased on covariates dealing with the item
solving process could be included to improve theredion of item parameters and could be used
in an adaptive testing environment. A pool of ilgeince test items designed for personnel
selection was used.

First of all, we proposed to use multivariate regren trees to predict the item parameters on the

basis of a set of covariates. In particular, it véiewn that a regression tree, with a bivariate
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response vector given by the item discriminatiod difficulty parameters, was able not only to
return fitted values for the response variables disib to identify homogeneous clusters of item
parameters with respect to the selected covaridtas.result is crucial, in fact information about
the item solving process could be used to writenstevith certain psychometric properties with
minor effort.

As a second step, we proposed to use tree fittddevan the prior distribution of item
parameters, within a fully Bayesian approach. Satohs based on the real pool of intelligence test
items were conducted to compare the item paranesimation among the proposed empirical
approach and the classical one, where a standandahts specified as prior distribution for item
parameters. The results showed that empirical prmaproved the parameter estimation especially
in terms of efficiency, when a short test was sutadik=10), combined with a small sample size.

A further study was realized in an automated tgsénvironment, where adaptive tests were
simulated for candidates of different ability stagtfrom two item pools. Using the empirical pool,
with item parameters fitted by using regressiordreve noticed an increase in the number of items
needed to complete the test. However, this wasatg@decause the empirical pool contains more
homogeneous items with respect to their psychomptoperties and a larger number of items is
needed in order to reach the same measuremensiprecA test length up to 20 items is common
in adaptive testing, and this approach could bé us@ractice to skip subsequent item pre-testing.
MRT based item parameters might be used as iitgia parameters, that could be updated on-the-
fly (see e.g. Makransky and Glas (2010) for a camspa of methods of online calibration).

Even if we found encouraging results, some aspsatsl to be deepened. First, the study was
conducted using real data on intelligence items|endlifferent item banks may lead to different
relationships between the item parameters anddhariates. Also, covariates about items may be
difficult to collect, especially when studying p&ydogical traits or in medicine. Finally, much

more complicated models should be estimated tdywire efficiency of our proposal.
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Further research may evaluate more conditions énsiimulations, such as different sample
distributions for the simulees and different IRT dets. Moreover, the Gibbs sampler allows to
estimate item parameters and abilities jointlytisat a joint use of empirical information at item
and person level could be assessed. Lastly, inti@daesting, item pools based on estimated item

parameters could be integrated by item parametedsgbed on the basis of auxiliary information.
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Table 1. Properties of the tree leaves (termindkesn

Leaf @, @, Sdo J, o, S.d& I(N) N.items Opl Op2 N1 N2 Ns

Add,
1 0.87 0.77 0.37 -1.22 -1.13 052 24.3 60 Any Any <2 1
Sub, Div

28



0.63 0.51

0.95 0.86

0.45 0.37

0.75 0.67

0.41 0.33

0.31

0.41

0.28

0.31

0.26

-0.68

-0.49

0.03

0.06

0.58

-0.68

-0.44

0.02

0.09

0.53

0.65 134 26

0.45 485 130

0.52 16.3 47

0.50 33.6 99

0.66 14.4 29

Mul
Any
Any
Any

Any

Any
Any
Any
Any

Any

Any <

Any

Any <

Any

Any

>3

Note. Add=addition, Sub=subtraction, Mul=multipliicen, Div=division.

29



Table 2. Estimates of item parameterskiolO items and sample sinel100.

Empirical Classical Empirical Classical
ltem Truea a, a Bias Sd RMSE & Bias Sd RMSE Trueo SN J Bias Sd RMSE j Bias Sd RMSE
1 0.62 0.77 0.70 0.08 0.21 0.22 0.68 0.06 0.26 0.26 -1.12 -1.13 -1.18 -0.06 0.19 0.20 -1.14 -0.03 0.20 0.20
2 0.78 0.77 0.87 0.09 0.23 0.25 0.81 0.03 0.27 0.27 -0.62 -1.13 -0.71 -0.10 0.16 0.19 -0.62 0.00 0.20 0.20
3 0.36 0.37 0.39 0.03 0.16 0.17 0.38 0.02 0.20 0.20 0.42 0.02 0.40 -0.03 0.13 0.13 041 -0.02 0.13 0.13
4 1.07 0.86 1.04 -0.03 0.22 0.22 1.09 0.03 0.25 0.25 -0.43 -0.44 -0.41 0.02 0.16 0.16 -0.40 0.03 0.18 0.18
5 0.53 0.67 0.59 0.06 0.18 0.18 0.58 0.05 0.25 0.25 0.07 0.09 0.08 0.01 0.13 0.13 0.07 0.00 0.16 O0.16
6 0.60 0.86 0.71 0.11 0.19 0.22 0.68 0.08 0.27 0.28 -0.82 -0.44 -0.85-0.03 0.18 0.18 -0.85-0.04 0.24 0.24
7 0.86 0.67 0.86 0.00 0.19 0.19 0.93 0.06 0.29 0.29 0.38 0.09 0.38 -0.01 0.15 0.15 0.43 0.04 0.18 0.19
8 0.51 0.51 0.53 0.02 0.18 0.18 0.54 0.02 0.26 0.26 -1.15 -0.68 -1.13 0.02 0.16 0.16 -1.18 -0.03 0.20 0.21
9 0.30 0.33 0.23 -0.07 0.15 0.17 0.34 0.04 0.25 0.25 1.71 053 155 -0.16 0.17 0.23 1.81 0.10 0.27 0.29
10 0.35 0.67 042 0.07 0.17 0.18 0.39 0.04 0.18 0.19 045 0.09 046 0.01 0.12 0.12 046 0.01 0.14 0.14
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Table 3. Estimates of item parameterskiotO items and sample sine200.

Empirical Classical Empirical Classical

~

ltem Truea a, a Bias Sd RMSE & Bias Sd RMSE Trued 9, 5 Bias Sd RMSE 5 Bias Sd RMSE

1 062 0.77 0.67 0.05 0.18 0.19 0.63 0.01 0.20 0.20 -1.12 -1.13 -1.17 -0.05 0.13 0.14 -1.13-0.01 0.16 0.15

2 0./8 0.77 0.83 0.05 0.17 0.18 0.79 0.02 0.18 0.18 -0.62 -1.13 -0.66 -0.04 0.13 0.13 -0.64 -0.02 0.12 0.12

3 036 0.37 0.36 0.00 0.13 0.13 0.39 0.03 0.15 0.16 042 0.02 0.41 -0.010.09 0.09 0.44 0.02 0.10 O0.10

4 107 0.86 1.09 0.02 0.21 0.21 1.04-0.030.24 0.24 -0.43 -0.44 -0.44 -0.010.12 0.12 -0.42 0.00 0.15 0.15

5 053 0.67 0.59 0.06 0.16 0.17 0.54 0.02 0.16 0.16 0.07 0.09 0.05 -0.02 0.10 0.10 0.08 0.01 0.10 O0.10

6 060 086 0.64 0.04 0.16 0.16 0.61 0.01 0.18 0.18 -0.82 -0.44 -0.82 0.00 0.11 0.11 -0.83-0.010.12 0.12

7 086 0.67 0.87 0.00 0.15 0.15 0.88 0.02 0.18 0.18 0.38 0.09 0.38 0.00 0.12 0.12 0.40 0.02 0.13 0.13

8 051 0.51 0.51 0.00 0.16 0.16 0.57 0.05 0.19 0.20 -1.15 -0.68 -1.14 0.00 0.14 0.14 -1.17-0.02 0.16 0.16

9 030 0.33 0.26 -0.04 0.15 0.15 0.31 0.01 0.24 0.24 1.71 053 1.67 -0.040.15 0.16 1.75 0.05 0.20 0.21

10 0.35 0.67 0.41 0.07 0.13 0.15 0.35 0.00 0.14 0.14 045 0.09 0.46 0.01 0.10 0.10 0.45 0.00 0.10 o0.10
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Table 4. Estimates of item parametersikfotO items and sample sine300.

Empirical Classical Empirical Classical
ltem Truea @, a Bias Sd RMSE & Bias Sd RMSE Trueo SN 5 Bias Sd RMSE 5 Bias Sd RMSE
1 062 077 0.66 0.04 0.15 0.16 0.630.010.15 0.15 -1.12 -1.13 -1.14 -0.02 0.13 0.13 -1.12-0.01 0.11 0.11
2 0.78 0.77 0.82 0.05 0.15 0.16 0.78 0.01 0.15 0.15 -0.62 -1.13 -0.65 -0.03 0.10 0.11 -0.62 0.00 0.13 0.13
3 0.36 0.37 0.37 0.01 0.09 0.09 0.36 0.00 0.10 0.10 0.42 0.02 0.42 0.00 0.09 0.09 0.42 0.00 0.09 0.09
4 1.07 0.86 1.05-0.02 0.18 0.18 1.11 0.04 0.21 0.22 -043 -0.44 -0.42 0.01 0.11 0.11 -0.44 -0.02 0.10 0.10
5 0.53 0.67 0.58 0.05 0.11 0.12 0.550.02 0.12 0.12 0.07 0.09 0.08 0.01 0.09 0.09 0.07 -0.01 0.09 0.09
6 0.60 0.86 0.62 0.03 0.12 0.12 0.59 0.00 0.13 0.13 -0.82 -0.44 -0.82 0.00 0.09 0.09 -0.82 0.00 0.10 0.10
7 0.86 0.67 0.84 -0.02 0.16 0.16 0.89 0.02 0.17 0.17 0.38 0.09 0.36 -0.02 0.09 0.09 040 0.01 0.12 0.12
8 0.51 0.51 0.51 0.00 0.13 0.13 0.53 0.02 0.16 0.16 -1.15 -0.68 -1.14 0.01 0.12 0.12 -1.16 -0.01 0.12 0.12
9 0.30 0.33 0.27 -0.03 0.13 0.13 0.32 0.02 0.17 0.17 1.71 053 1.67 -0.040.11 0.12 1.76 0.06 0.18 0.18
10 035 0.67 0.37 0.02 0.11 0.11 0.350.01 0.11 O.11 045 0.09 0.43 -0.010.08 0.08 0.45 0.00 0.09 0.09
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Table 5. Estimates of item parameterskeiO items and sample sine500.

Empirical Classical Empirical Classical

True
ltem Truea @y & Bias Sd RMSE 4 Bias Sd RMSE N o Bias Sd RMSE 5 Bias Sd RMSE

1 0.62 0.77 0.64 0.02 0.10 0.10 0.62 0.00 0.12 0.12 -1.12 -1.13 -1.14 -0.02 0.09 0.09 -1.12 -0.01 0.10 0.10

2 0.8 0.77 0.80 0.02 0.13 0.13 0.79 0.02 0.12 0.12 -0.62 -1.13 -0.64 -0.02 0.08 0.08 -0.63 -0.01 0.08 0.08

3 0.36 0.37 0.37 0.01 0.08 0.08 0.38 0.01 0.08 0.08 0.42 0.02 041 -0.010.06 0.06 0.43 0.01 0.06 0.06

4 1.0+ 0.86 1.10 0.03 0.15 0.15 1.08 0.01 0.17 0.17 -0.43 -0.44 -0.44 -0.01 0.08 0.08 -0.45-0.02 0.09 0.09

5 0.53 0.67 0.54 0.01 0.08 0.08 0.52-0.01 0.10 0.10 0.0/ 0.09 0.07 0.00 0.06 0.06 0.07 0.00 0.07 0.07

6 0.60 0.86 0.61 0.01 0.10 0.10 0.58 -0.02 0.10 ©0.10 -0.82 -0.44 -0.81 0.01 0.07r 0.07r -0.81 0.01 0.07 0.07

7 0.86 0.67 0.86 -0.01 0.12 0.12 0.89 0.03 0.14 0.14 0.38 0.09 0.37 -0.01 0.08 0.08 0.39 0.00 0.08 0.08

8 0.51 0.51 0.51 0.00 0.11 0.11 0.51 0.00 0.10 0.10 -1.15 -0.68 -1.16 -0.01 0.09 0.09 -1.15 0.00 0.09 0.09

9 0.30 0.33 0.26 -0.04 0.11 0.12 0.30 0.00 0.13 0.13 1.71 053 1.68 -0.030.09 0.09 1.74 0.03 0.13 0.13

10 0.35 0.67 0.37 0.03 0.09 0.10 0.35 0.01 0.09 0.09 0.45 0.09 0.45 0.01 0.07 o0.07 0.44 0.00 0.07 0.07
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Table 6. Median bias and median RMSE for discritidmaparameters under different conditions.

Median bias Median RMSE
k n Empirical Classical Empirical Classical
10 100 0.07 0.04 0.19 0.25
200 0.04 0.02 0.16 0.18
300 0.02 0.01 0.13 0.15
500 0.02 0.01 0.11 0.11
20 100 0.04 0.03 0.19 0.22
200 0.04 0.02 0.15 0.16
300 0.02 0.01 0.12 0.13
500 0.01 0.01 0.10 0.09
30 100 0.03 0.02 0.19 0.21
200 0.03 0.02 0.15 0.15
300 0.01 0.01 0.12 0.12
500 0.01 0.01 0.09 0.09
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Table 7. Median bias and median RMSE for difficgdggrameters under different conditions.

Median bias Median RMSE
k n Empirical Classical Empirical Classical
10 100 0.02 0.03 0.16 0.19
200 0.01 0.01 0.12 0.12
300 0.01 0.01 0.10 0.11
500 0.01 0.01 0.08 0.08

20 100 0.03 0.01 0.18 0.18
200 0.01 0.01 0.12 0.13
300 0.02 0.01 0.10 0.10
500 0.01 0.01 0.07 0.08
30 100 0.02 0.01 0.16 0.18
200 0.01 0.01 0.12 0.13
300 0.01 0.01 0.09 0.10

500 0.01 0.01 0.08 0.08
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Table 8. Number of items needed to complete CAflvimdifferent pools.

Pool 1 Pool 2
Trued | | Mean| Sd| | Mean| Sd
-2 8.39 | 3.2 | 11.09| 2.29
-1.8 6.9 | 29| | 10.24| 1.60
-1.6 57 | 23] | 959 | 0.95
-1.4 4.8 | 1.7 9.37 | 0.74
-1.2 421 | 1.3 9.11 | 0.66
-1 356 | 1.2 | 9.03 | 0.48
-0.8 3.02| 0.8/ | 888 | 053
-0.6 2.86 | 0.7/ | 9.10 | 0.82
-0.4 274 | 08 | 9.37 | 1.32
-0.2 277 | 08| | 957 | 1.34
0 321 | 1 10.39| 2.13
0.2 3.56 | 1.3] | 11.52| 261
0.4 448 | 1.7) | 12.30| 3.22
0.6 5.05| 2.1} | 13.89| 3.56
0.8 598 | 2.7] | 16.05| 4.99
1 7.41 | 3.5 | 17.93| 5.11
1.2 8.24 | 42| |19.85| 6.75
14 10.27| 4.6| | 24.28| 10.30
1.6 14.29/6.8| | 26.25| 9.49
1.8 1592 7.3| | 30.24| 11.89
2 19.39| 8.5| | 37.06| 12.88
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Discrimination parameters

Figure 1a. Box-plot for the item discrimination pareter.
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Difficulty parameters

Figure 1b. Box-plot for the item difficulty paraneet
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Discrimination parameters
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Figure 2. Scatterplot of item parameters.
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Figure 3. Tree relative error for different treees and complexity parameters (cp).
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Figure 4. Fitted tree for the item parameters.
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