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ON THE USE OF MCMC CAT WITH EMPIRICAL PRIOR INFORMRAON TO

IMPROVE THE EFFICIENCY OF CAT

Abstract

In this paper, empirical prior information aboug ttendidate is applied in computerized
adaptive testing (CAT). The main objective of CAStdb improve efficiency of test
administration. In this paper, it is shown how theusion of background variables both
in the initialization and the ability estimationakle to improve the accuracy of ability
estimates. In particular, a Gibbs sampler schemm@dposed in the phases of interim
and final ability estimation. By using both simd@dtand real data, it is demonstrated
that the method produces more accurate abilityneséis, especially for short tests and
when reproducing boundary abilities. This implieattoperational problems of CAT
related to weak measurement precision under péaticonditions, can be reduced as
well. In the empirical example, the methods wergliad to CAT for intelligence
testing in the area of personnel selection. Othemfsing applications would be in the

medical world, where testing efficiency is of pa@amt importance as well.

Key words: adaptive testing, empirical prior infaation, Gibbs sampler, measurement

precision.



Introduction

In recent years, we have seen a rapid developniesdnoputer-based testing in the
field of psychological measurement, especially damive testing. The practice of
conducting the test administration via adaptivéirigss becoming more and more well-
established. Since the early 1970s (Lord, 19701 1Dkven, 1969;1975), studies have
been conducted to develop the theoretical framewbromputerized adaptive testing
(CAT) (see e.g., van der Linden and Glas, 2000;néfa¢et al., 2000). The basic idea of
CAT is to adapt the difficulty of the items to thstimated ability level of the candidate.
In this way, the behavior of a real oral examineriity a testing occasion is simulated.
In fact, most oral examinations start with an alititem and, depending on the
examinee's response, proceed with a more diffmuttasier item, until the examinee's
grade of proficiency becomes sufficiently preciggalogously, in computerized
adaptive testing a first item is submitted to tbs&t-taker: if the item is endorsed, a more
difficult item is presented, otherwise an easiee @ selected by the algorithm to be
submitted. The procedure ends when a pre-specdrégdrion is met. Finally, the
estimated ability is reported as a measure of taenenee's proficiency.

CAT relies strongly on item response theory (IRdgyeloped in order to estimate
individual and item characteristics after a teshauilstration (see e.g., Lord and Novick,
1968). In fact, items are selected from an iteml ploat is calibrated with a particular
IRT model, based on data nature and fit, and thpamse process is assumed to follow
the IRT model.

Despite the wide use of computerized adaptivengsthe method has a number of

operational problems like item pool maintenancadlArvan der Linden, and Veldkamp,



2006; Belov and Armstrong, 2009), test assemblyn (d@@r Linden, 2005), item
exposure control (e.g. Sympson and Hetter, 198%;dea Linden and Veldkamp, 2004,
2007), and recovery from unforced errors duringlibginning of CAT (Guyer, 2008).
Furthermore, technical issues, such as initiabzatand ability estimation, might be
improved, especially when only a restricted nundietems can be submitted.

In this study, the focus is on the use of colldterformation about the candidate in
CAT. In many situations, much information about tb@ndidate is available. For
example, bio data, educational level, and infororaibout work experience might be
available in a job selection context. In educaticg&ditings, results on previous tests,
social economic status, or the educational levethef parents might be available.
Besides, it often happens that a whole batteryesiistis administered to the candidate
during an exam, or during a psychological screeniling question arises how all of this
information could be used to improve the efficiewfyhe CAT.

Collateral information may be included in CAT indwdifferent stages. Firstly, the
initialization of ability estimate can make use pfor information (see Gialluca and
Weiss, 1979; van der Linden, 1999). As a conseajeacbetter provisional ability
estimate is provided and the first item is selecieder to the true ability of the person.
Secondly, background variables may be includedénéstimation process through an
empirical prior distribution. Two different problemwill be solved by using
complementary information in CAT. First of all, thest length will be reduced.
Additionally, bias due to unforced errors during theginning of CAT (Guyer, 2008)
will be reduced as well, since the impact of thegers on ability estimation is much
smaller due to the use of an informative prior.

A natural way of developing this approach is repnésd by Bayesian statistics,

where likelihood and prior distributions are conddnin order to obtain the posterior



distribution of interest. Recently, Markov chain Me Carlo (MCMC) methods, and
particularly the Gibbs sampler (Geman and GemarB4)9have been applied
extensively in IRT estimation because they are tblgrovide flexible algorithms for a
large variety of models, such as unidimensional etod@Albert, 1999; Johnson and
Albert, 1999; Patz and Junker, 1999), multidimenaionodels (Béguin and Glas, 2001;
Sheng and Wikle, 2007; 2008) and models with aahidical structure (Fox and Glas,
2001; Sheng and Wikle, 2008; Natesan, Limbers, dachi, 2010). Basically, the
advantages of using MCMC are twofold. Firstly, tinethod is able to integrate all
dependencies between variables and allows the feagicin of different prior
distributions depending on the researcher’s previmowledge. This particular aspect
makes the Gibbs sampler a flexible and powerfuissizal tool. Secondly, MCMC is
free from the technical limitations of the Gaussipradrature involved in the marginal
maximum likelihood (MML) estimation (Béguin and GJa2001; Sheng and Wikle,
2007). Moreover, with modern computers, MCMC corepintensiveness has been
strongly reduced.

By introducing the empirical prior within MCMC, thmosterior distribution becomes
candidate-tailored and more precise ability est®atan be obtained. In the paper of
van der Linden (1999) it is shown how prior infotioa can be included in the ability
initialization. The purpose of this paper is to whioow collateral information can be
used even more efficiently by introducing it bathinitialization and ability estimation.
Furthermore, the paper describes how the empipcalr can be integrated in the
estimation process within the Gibbs sampler scheme.

The paper first gives an overview of how prior mi@tion can be included in CAT.
Then, it is shown how the Gibbs sampler can beemphted in computerized adaptive

testing effectively in order to integrate infornwaticoming from both likelihood and



prior distributions. The advantages of introducibgckground variables in CAT
administration are discussed through a set of coatipa simulation studies, by using
first a variable-length termination criterion, atmeén a fixed-length one. The number of
items needed to complete the CAT and the levelbditya precision are evalutated in
case empirical priors are introduced instead afdaed priors. The issue of convergence
of the MCMC algorithm is addressed briefly. Finallige results of an empirical CAT

application are presented in the context of irgeltice testing for personnel selection.

Adaptive Testing with Empirical Prior Information

In testing occasions, besides the candidates' mespoon a target test, a set of
individual covariates may be available. Backgrouratiables may include scores
obtained by the examinees on other tests or testetio-economic, or demographical
variables. Moreover, response times can represerffactive source of information
about individual ability (van der Linden, 2008; vder Linden and Pashley, 2010).
Given the availability of such information, its lasion in the investigation of
candidates’ ability might make sense. Whether am hollateral information about
examinees may be included in IRT ability initiaibm and estimation has been
discussed by various authors (e.g., Zwinderman1;19997; van der Linden, 1999;
Matteucci and Veldkamp, 2011; Matteucci, Mignamig & eldkamp, 2009). As reported
in van der Linden and Pashley (2010), one reasomtimducing collateral information
about the candidates in adaptive testing is CATkwess in ability estimation when
dealing with short tests, caused by a possiblesbed in the ability initialization. Even
if it is well known that the convergence of theaithm is not affected by the choice of

starting values, a rough initial inference abouilitgb may cause a very slow



convergence (Guyer, 2008). In the following, thifedent steps of CAT with empirical

prior are described. A particular section is dediddo the ability estimation.

The Phases of CAT

In computerized adaptive testing, the item pararaeiee typically treated as known
and the main purpose of test administration isathiéty estimation of test takers. Item
parameters are estimated on the basis of a pantitRll model, and stored in an item
pool. The IRT model should be able to reproduceitigéviduals’ response process;
therefore, it describes the mathematical functiokimg the response probability to a set
of item parameters and ability. Once the item patans have been estimated with
sufficient precision, items with target feature® ancluded in the item pool to be
administered. The choice of the model depends fi@reint issues such as item format,
dimensionality specification, and fit. For the posp of this study, the unidimensional
two-parameter normal ogive (2PNO) model (Lord, 196@rd and Novick, 1968) is
assumed to underlie the response process. The rhadebeen designed for binary
observed data, employing a cumulative standard alodistribution to express the
probability of a correct response to an itgmwith j=1,...,k items, as a function of ability

and item parameters, as follows

Y =1]8)=d(a -5 )=[""" L e g
(Y, =16)=d(a,6-0,)=]" wor i (1)

whereY; is the random response variable for itgntaking the valuel for a correct
response and) otherwise, ¢; and J; are the item discrimination and difficulty

respectively, and is the unidimensional ability. Model (1) assumeglimensionality,



i.e., a single latent trait accounts for the indual responses. Depending on the data
characteristics, other models are possible and bese employed in CAT.
Once the items have been calibrated according tdRdn model, computerized
adaptive testing works with the following steps:
1. Ability initialization
2. Item selection
3. ltem administration
4. Ability estimate update.
Steps 2-4 are repeated iteratively until a stopping is satisfied and a final estimate of
the candidate’s ability is obtained. An empiricaiop may be introduced both in the
initialization of the algorithm (step 1) and in timerim-final ability estimation (step 4).
In order to introduce empirical information in tfiest step, a relation between the
ability & and a set oP individual covariates Xy}, with p=1,...,B, is assumed in the

form of a linear regression, as follows

0 = 6ot B Xyt B X t 6, (2)

where the error terms are assumed to be indeperadehtnormally distributed as
& ~N(0,0%), with i=1,...,nindividuals. The assumption of a linear regressimel is

translated into a normal conditional distributidrdogiven the covariates, as

G 1 Xz Xip ~ N(5, +ﬁlxi1+---+ﬁpxip;az)- 3)

Equation (3) represents the informative prior disttion for ability. When regression

(2) is estimated with satisfying precision and ¢juality of the background variables is



good (i.e., they are highly informative predictorle estimated regression coefficients
may be used in order to initialize the ability ilrAT for a generic examinee with

realizations Xi,...,Xp), as follows

A

6o =B+ BXat ot BoXp (4)

The advantage of usingd hocinformation to initialize the algorithm is mainkp
shorten the procedure. Within this approach, intedues may be much more reliable
and accurate initial inferences about ability cdogdable to shorten time to convergence
significantly. As discussed in van der Linden argtey (2010), the choice of the prior
distribution should be taken carefully. In fact,tive initial phase of CAT no response
data are available and the choice of the first itentompletely determined by the
empirical information. When the prior is not reli@bthe examinee’s initial ability may

be located far from the true ability and needs ntone to be recovered. However, this
consideration is also valid for fixed initializatiowhen éo =0is imposed as the initial

ability estimate for all candidates, the recovefythe true ability for examinees with
high or lowé values is seriously compromised within short tests

Before proceeding with item selection (step 2), fiblklowing notation on CAT is
introduced. Gived calibrated items in the pool, indexedjb,...,J, denote the rank of
selected items ds=1,...,K Hence, when choosing tlkh item to be administeregk is
the index of the chosen iten§.i1={j 1,j2,....k-1} is the set of selected items and
R&{1,...,J]\S-1 is the set of remaining items in the pool. In fhkowing, the index
i=1,...,n of examinees is omitted and the test administnaisoreferred to a generic

candidate implicitly.



In order to proceed with the item selection (stgp \&rious criteria have been
proposed in the literature. A classical and stridagtvard method which is also applied
in linear testing is the maximum-information criter (Birnbaum, 1968). When

selecting thekth item, the method works choosing the item whicximizes Fisher’s

expected information function at the current apialue & = ék_l, as follows

i =argmax{ 1, (6.); | IR} 5)

The form of the information function depends on ffaticular chosen IRT model.

According to model (1), the information functioncoenes

,{(2m) ™2 exptnii2)}?

(6 =a]
O, )L~ D(7,)]

(6)

where 7, :ajék_l—é'j and ®() is the standard normal cumulative distribution

function. The method is widely used; neverthel#&ss,maximum-information criterion
associated with a fixed ability initialization lesatb the problem of item overexposure,
because the same item is always selected as sherfie.

Following the CAT algorithm through step 3, the shio item is administered to the
test-taker and the answer is recorded. The respsrssbsequently used in step 4, when
ability should be estimated. Steps 2-4 of the allgor are repeated iteratively until a
stopping rule is satisfied, as a fixed test lermtla pre-specified level of precision for
the ability estimate.

One crucial issue in CAT certainly is the measumgnpeecision of ability estimates.

Typically, standard errors of ability score estiegaare not negligible and efforts in the

10



direction of improving the accuracy of ability estites should be done. In fact, the task
of obtaining an accurate ability estimate is patddy hard when poor information
comes from the responses or when the examineess dé\proficiency is extreme (very
high or very low).

In adaptive testing, a number of methods for thiétyalestimation are in use. These
include maximum likelihood (ML) procedures or Baipesmethods (see van der Linden
and Pashley, 2010). Because ML estimates stay emmdieted until a mixed response
pattern is observed, Bayesian methods could beemeef for ability estimation.
Therefore, due to its growing and relatively new usIRT, a Gibbs sampler scheme is
implemented for ability estimation in CAT. The atijbm, as shown in Matteucci,
Mignani, and Veldkamp (2009), is able to integrafficiently data coming from
individual responses and empirical prior informatidhe method is illustrated in detalil

in the next section.

MCMC Ability Estimation

To perform a Bayesian ability estimation in CATetibbs sampler (Geman and
Geman, 1984) is implemented. The algorithm beldagke family of MCMC methods
which introduce simulation for the purpose of refuraing a target distribution by using
one or more sequences of correlated random vasiaBlecording to the Bayesian
approach, both ability and item/regression pararaetee regarded as random variables.
Once all components of the joint posterior distlitmu of interest have been
individuated, the single conditional distributiorshould be specified. The Gibbs
sampler works by creating suitable samples fronh esaiggle conditional distribution
iteratively until convergence. Among others, AlbEB99), Béguin and Glas (2001),

Fox and Glas (2001), and Matteucci, Mignani, anddk@mp (2009) dealt with Gibbs
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sampler estimation within item response theory nwde the current work, the
algorithm is modified in order to estimate abilityadaptive testing with the inclusion
of an informative empirical prior.

Generally, the presence of the binary responsealiariy; can be modeled by
introducing continuous underlying variabl&s which are independent and identically

distributed as Z; ~N(a,6-9; 1) The relation between the observed and the

underlying variables is the following

Y =

J

1 i Z,>0
0 if z <o (7)

According to Equation (7), the continuous variablis greater than zero if and only
if the corresponding observed response is a succes¥=1; the underlying variable
approach (Bartholomew, 1987; Bartholomew and Kri#89) describes the partition of
the continuous variablé in order to represent the dichotomy\of

From a fully Bayesian perspective, the joint pastedistribution of interest is
P@Z.0.5B,0°|Y,X)=P(Z|68,&Y)P@|B,0°, X)PE)PB)P(c?), 8

whereé is the vector including all item parameters. melr testing, given the data on
the responses and the observed covariates, thes Giampler would have worked
iteratively sampling from the following single canhdnal distributions:

1. Z216,¢

2. 01Z,&B,c°

3. £10,Z

12



4. B0, 0°

5. 6%, .

On the other hand, in adaptive testing both itechragression parameters are treated
as known; therefore, their conditional distribugoare not needed in the scheme. In
CAT, the Gibbs sampler works only with the condiibdistribution of the underlying
response variableg (distribution in step 1) and the posterior disitibn of the ability
6 (distribution in step 2), in order to proceedtwihe ability estimation. The single
conditional distributions, compared to the joinsfawior, are treatable and easy to draw
samples from.

With regard to the first conditional distributioa,classical result (see e.g., Johnson
and Albert, 1999, chapter 3) is that the distributof eachy; given the ability and the

item parameters is a truncated normal, as follows

N(7;) with Z,>0 if Y =1
N(7;) with Z, <0 if Y, =0 9)

21606~
J
The conditional distribution of the underlying \atslesZ; is normal, with expected
value equal to7; =a,6-9,; and variance 1, truncated by O to the leftj#1 (correct
response to itery) and to the right ifY;=0 (incorrect response to itejn
The second conditional distribution is obtained bormg the likelihood and the
informative prior distribution, according to Bayasiconjugate families of distributions.

Starting from the normal regression modgl=a;6-9, +v, forj=1,...,J, we obtain

Z,+0,=a,6+v,, (10)

13



wherey; areindependent and identically distributed as N(O&Eyuation (10) is simply
the regression of the terms on the left Agdej; on the independent variablg whered
is the regression coefficient. Hence, the likelithdanction of the ability follows a

normal distribution, as

8~ N(:v), (11)

where 8 = (a;a,)a;(Z, +9; )is the least square estimatedadnd v = (a;a;)"is the

variance. Practically, the variance can be caledlasv =1/ Zj:laf and the expected
lue as@=>" 3)/1>" _a?. The prior distribution for the ability is th

value as —ijlaj (Z;+9)) ijlaj . The prior distribution for the ability is the

empirical normal prior (3) and the combinationi&elihood and prior leads to a normal

posterior distribution, as follows

(12)

N 2
012 .B.0° ~N 6/v+XB/? ; 1 |
1/v+1l/o° 1/v+l/o

After thekth item has been administered, the Gibbs sampbdlesto simulate ability as

follows:

1. Start with known item parametets and a provisional estimate @&,
6 =6, ,, and sampl@® from distribution (9), withj OIS, .
2. UseZ©® and knowrt, B, o to sampled® from distribution (12).

3. Repeat steps 1-2 with the updated values, itetgtive
The steps describe the estimation of the interiityabSimply, after the last item has
been administered, the same steps may be appltadivae updated likelihood in order

14



to obtain the final ability estimate. The Gibbs séangas been implemented in the
software MATLAB 7.1 (The MathWorks Inc., 2005) .

In order to compare the accuracy of ability estesain adaptive testing by using
different criteria for the initialization and théikty estimation, simulation studies are

conducted under different conditions.

Simulation Studies

Several simulation studies were conducted. In CAfedint stopping rules can be
applied (Wainer et al., 2000). In variable lengihTCitems are being administered until
the measurement error is below a certain thresholaireas in fixed length CAT, a
fixed number of items is being administered. Fixenlgth CAT is often applied when
the test has to meet a number of specificationgh wespect to content, or other
attributes. The first simulation study is designedcompare the performances of the
algorithm with and without empirical prior for anable length CAT. In the second
study, the focus is on the impact of empirical piidormation for fixed length CAT of
different lengths. In the third study, differenttseys are evaluated for a short test of
length equal to 10. In particular, the estimatiesults are compared for the MCMC
CAT proposed by the authors, CAT without empiricaioprand CAT with only
empirical ability initialization. Finally, the isguof the algorithm convergence is taken

into account.

Prior in Use: a Comparison in a Variable Length CAT
The purpose of the first simulation study is to shbe potentiality of the empirical

prior in reducing the test length within the Gibkmmpler scheme. To this aim, two

15



different CAT designs are compared: the first onkofes the common practice of

initializing the ability at zero and assuming anstard normal as a prior for the ability

distribution, while the second one adopts an emgiiprior both in the initialization and

in the ability estimation, as shown in the previgestion. For simplicity of description,

the former approach is denominatdndardwhile the latter is callefully empirical

In both cases, item selection is conducted by usiagnaximum-information criterion.
In the study, an item bank of 500 items is employeith item parameters sampled

asa; ~U (0.7;2) and 9, ~U (- 44), forj=1,....k. When the fully empirical approach is
adopted, the linear relatio =02+ 0.7X +& withe ~ N (0,0.3) is assumed between

the ability @ and a single covariaté. Responses are simulated for different levels of
ability from -3 to 3 according to model (1). Givére trued, theX-values are simulated

for each replication fronf@d-02-¢ )/0.7

The Gibbs sampler with a chain length of 5000 tteres and burn-in of 500 is
employed for the ability estimation. The output sists of the mean and standard
deviations sampled from the posterior distributafnability. The choice of the chain
length and the number to discard iterations is vat#id by the convergence study
described in the end of this section. All chaingvebd fast convergence and good
mixing properties. In order to compare the efficigof the two different approaches,
especially in terms of number of items needed tmmete the CAT algorithm, the
stopping rule is set to a test information aboveatlthe current ability estimate.

For all ability levels within each approach, a nembf 100 replications have been
conducted. The mean number of items needed to edenfiie CAT over replications
has been recorded together with the correspondamgiard deviation (s.d. items). With
respect to ability, the expected posterior estimlaitess and standard deviation (s.d.) are

reported. The results of the simulations are shiowirable 1.
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[INSERT TABLE 1 ABOUT HERE]

As can be seen from the mean test length, the fripirical solution is able to
reduce the mean number of items needed respedtetstandard one, and the two
approaches are comparable only for ability levétse to zero. By using empirical
information, CAT tests are shortened and, as aemprence, item overexposure is also
reduced. Furthermore, the recovery of the trueitgbié more precise in the fully
empirical approach in terms of both bias and eg@nstability, which can be assessed
by looking at the standard deviation (s.d.). Int,féte standard solution fails to recover

the ability levels when deviating frofs0.

Prior in Use: a Comparison with Different Test Ldrsy

In the second simulation study, the same item ool conditions of the previous
study are maintained, but a fixed length CAT isdude fact, in order to get results for
tests consisting of different numbers of items, @&T stopping rule is defined fixing
the test length at 10, 15 or 20 items. As usualiraber of 100 replications have been
conducted in the simulation.

Besides the expected a posterior estimate anddahdard deviation, also the average
bias and the root mean square errors (RMSE) hase tedculated. Table 2 provides the

results of the simulation study in case of a stest consisting of 10 items.

[INSERT TABLE 2 ABOUT HERE]
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As can be easily noticed, compared with the stahdarsion of CAT, the parameter
recovery of empirical CAT is more accurate in terofidRMSE, and the estimates are
more stable because the are associated with |Ideedard deviations, especially when
deviating from@=0. Bias is comparable between the two approaches.

Table 3 and 4 show the results of the simulatiamslacted for adaptive tests of 15

and 20 items, respectively.

[INSERT TABLE 3 ABOUT HERE]

[INSERT TABLE 4 ABOUT HERE]

Due to the increasing number of items, standard @&domes more precise, and the
two approaches become comparable, even if for Tth&sfully empirical approach
maintains lower standard deviation and RMSE, esfigcior extreme abilities. The
comparison of true and simulated values for certhbdities suggests that there are no
considerable differences in reproducing the abialues between the two approaches.

From this simulation study it can be learned tihat introduction of an informative
prior leads to an improvement of measurement poetign the individual ability
assessment. This improvement becomes very evideshort tests and when shifting to
boundary ability values. This cannot be generalipetthe case of longer test (e.g., more
than 20 items): when the test length increasesptlog distribution lacks in strength

and the two solutions become more and more similar.

Introduction of Prior Information at Different Lelge

18



According to the findings of the previous studye tise of prior information in CAT
shows its maximum effectiveness in case of shatistdn this simulation study, the
focus is on the comparison of different levels ofopinformation for a target test
consisting of 10 items. Results of Table 2 regaydirly empirical and standard CAT
are compared to an intermediate solution, nareetpirical initialization where
empirical information is used only in the initisdtton of the ability estimate. Table 5

illustrates the results of the simulation.

[INSERT TABLE 5 ABOUT HERE]

The empirical initialization CAT shows an intermaidi behavior with respect to the
other two approaches. This approach obtains stdndaviations which are more
comparable to the fully empirical approach than stendard one. On the other hand,
estimates are biased, even more seriously thastaéinelard solution especially fér-3
andfd=3. As can be clearly seen in Figure 1, which shdvwsRMSESs across the ability
true values for the three approaches, the empind#lization solution performs better

than the standard approach but worse than thedutlgirical one.

[INSERT FIGURE 1 ABOUT HERE]

For the fully empirical solution, the RMSE curveaisvays below or at most close to

the curves associated with the standard and thérieaipnitialization approaches. The

difference in precision is particularly significafdr ability levels in the tails of the

distribution.
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A Note on the Algorithm Convergence

One of the most critical issues in MCMC estimatisrassessing the convergence of
the algorithm. A large number of researchers hgpraached the problem turning out
with different, sometimes conflicting solutions r(fa review, see Cowles and Carlin,
1996). When simulating a MCMC chain, the first thiis to check the trace plot of the
simulated random draws. Even if convergence cabhaansured by simply looking at
the iteration history, a clearly critical situatiai non-convergence can be detected
immediately. After computing the posterior mean #m&l standard deviation, a measure
of the standard error of estimate should be caledlaAs suggested in Gelman, Carlin,
Stern and Rubin (2004, chap. 10), an approximatasare of the accuracy of the
sample mean estimate is the standard deviatiodetivby the square root of the number
of simulations, which is nothing but the posterimviance. Moreover, an estimate of
the Monte Carlo standard error should be compu@erk possibility is to calculate the
square root of the spectral density variance estirdavided by the number of actual
iterations (time-series estimate), as proposed &weke (1992) in order to provide an
estimate of the asymptotic standard error. As a nfl thumb, the estimated Monte
Carlo error should be less than 5% of the standaweation.

In order to decide the necessary number of itematimr obtaining an acceptable
accuracy, a study has been conducted by simulaimgle chains. In particular, the
simulation design of the second study is drawnrothe case of ability=0 and test
lengthT=10. The purpose of this convergence study is to etalthe accuracy of the
posterior mean in the simulations by using difféneamber of iterations (1000, 2000,
5000 and 10000). Table 6 shows the results botthéofully empirical and the standard

approaches.
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[INSERT TABLE 6 ABOUT HERE]

The number of iterations is specified in the fastumn, while the number to discard
iterations (burn-in phase) is contained in columm@sides the posterior mean and the
standard deviation, an estimate of the Monte Camlor (MC error) is reported, which
has been calculated by using the R package BOA.

One single replication, depending on the numbéteadtions in the chain, took only
few seconds to complete (from 1 to 7 seconds) ¢h6& GHz Intel Core2 Quad
desktop. The simulations conducted by using 108f@tions do not satisfy the accuracy
condition of MC error less than 5% of the standdediation, while the solution with
2000 iterations slightly satisfies it. On the othand, running 5000 or 10000 iterations
turns out with MC errors significantly lower thamet5% of standard deviation and are
thereby considered a good standard of accuracy.

As a consequence of these results, the adopted eruofibterations was settled to
5000. For each replication of the simulation stadiescribed in the section, the MC
error was assessed to be less than 5% of stanéardtidn. All chains showed fast
convergence and good mixing properties. The chadam length represents a good
compromise between the estimate accuracy and the tieeded to complete the
algorithm. Figure 2 shows the trace plot of thewation with 5000 iterations when

prior information is included.

[INSERT FIGURE 2 ABOUT HERE]
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Clearly, the plot shows a random fluctuation of saenple values around the mean.
The absence of autocorrelation (at least at a lggeh than 5) is confirmed by the

autocorrelation plot reported in Figure 3.

[INSERT FIGURE 3 ABOUT HERE]

Usually, one of the main drawbacks of MCMC is timaet consuming and slow
convergence of the algorithm; however, adoptingaheve mentioned features for the
chain, the simulation represents a good comproiméseeen speed and accuracy. Of
course, we should also mention that the model impleed is rather simple, because it
is a unidimensional model for binary indicators.olfably, the extension of the
algorithm to more complicated model, as multidimenal models, would come out

with a slower convergence.

Empirical Example

The MCMC CAT described in previous sections proside useful strategy for
improving the quality of measurement precision d@s a good potentiality in real
applications of adaptive testing. In order to shibve effectiveness of the method in
practice, a case study was chosen in the fielahtefligence testing. Data regarding a
computer adaptive intelligence tests for persorsedéction, the Connector Ability
(Maij- de Meij, Schakel, Smid, Verstappen, and gz 2008) were available. The
complete test consists of three different subscalesnber series, Figure series, and
Raven’s matrices. This test has been developedpiplications in the area of HRM, for
example for job selection or for career developmbnbur example, the focus is on the

role of the Raven’s matrices (RM) ability as predicfor the performance in the
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Number series (NS) test. In Matteucci, Mignani areldkamp (2009) a Bayesian
procedure for concurrent estimation of both thespemparameters, item parameters, and
the empirical prior on the person parameters han badescribed. Following this
approach, the relation between the RM and NS sigseas estimated, resulting in the

following empirical prior distribution

6| X, ~ N(- 0243+ 0394X, :0414), (13)

whered is the ability in the NS subscale aXgis the ability in the RM subscale. Given
the standard normal scale of ability, the estimatsgtession coefficient@’l = 0394

shows a positive and moderate effect of the RMitghiin the performance in the NS
subscale.

To determine whether the introduction of the puastribution (13) is effective in
this case study, an adaptive version of the NSisesimulated for a group of 660 real
examinees. The full item bank consisted of 49%cated Number series items. Some
descriptive statistics on the item parameters ohtuin the item bank are shown in
Table 7.

[INSERT TABLE 7 ABOUT HERE]

Discrimination parameters vary in the interval BD1 1.470], with a mean value
around 0.7, while difficulty parameters are incldde the range [-2.290; 2.300] with a
mean of -0.4. Discrimination and difficulty paramest are treated as known in the
adaptive test administration, while the abilitieg\pously estimated in the NS test for
the 660 examinees are considered as true abilitise simulation. For each examinee,

the adaptive test is replicated 10 times, and bi@yaestimation is performed by using
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5000 MCMC iterations with the usual burn-in of |&mdg00. The algorithm stopping
rule is established as test information at theesurability estimate above 10, which is
the equivalent of a standard error less or equ@l3@ for a population with a standard
normal ability distribution. For each candidatee tinean number of submitted items
over replications is recorded. As usual, the thk€MC CAT approaches (fully

empirical, empirical initialization and standardle a&compared. The simulation results

for the three different approaches are shown ife€rab

[INSERT TABLE 8 ABOUT HERE]

Before looking at the mean number of items neededAT, a remark on the setting
of the item parameters with respect to the exarsieéng simulated is needed. As can
be observed from the first column of Table 8, 16agpaced intervals of ability from -
2.4 to 2.4 are constructed in order to presenteagded results. The second column
shows the number of items with difficulty paramsté@lling in each interval while the
third column contains the number of simulees inhealaility range. Three items in the
bank have difficulty parameters in the range [-2241], but no examinees in the same
ability range were simulated. Eight items in thelbb&ad difficulty parameters above
1.5, where also no examinees were simulated.

With regards to low ability intervals, the fully @mical solution performs better than
the others, with a mean number of items neede@éshadministration sensibly lower
while the standard solution presents the worstlteswhile approaching intermediate
ability levels, the number of items needed in tiausation reduces and the three
approaches show similar performances, even if theirgcal initialization and the

standard solutions still seem the weakest. For hlghty intervals, the fully empirical
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solution performed better than the empirical ifig@ion and the standard CAT. The
results of the MCMC CAT applied to a real item baegarding intelligence tests show
that the inclusion of empirical prior informatioaspecially in the estimation of the
candidate’s ability, is effective in reducing thestt length for the same test information
level. The application also demonstrates that thadity of results depends much on the

quality of the item bank itself in terms of sizeddtem properties.

Discussion

The study focused on increased efficiency of comenzed adaptive testing. It also
introduced the problem of ability estimation in quuiterized adaptive testing under
particular situations of uncertainty about the gdate’s level of proficiency. Examples
are CAT consisting of a small number of items ardidates with latent ability far from
average. The introduction of prior information ihet algorithm resulted in more
accurate ability estimates or, analogously, ingucgon of the test length at a given
level of precision, and strengthened the appliggbif CAT for extreme ability levels
and for short CATs. This approach is developed iwitthe MCMC methods,
particularly adopting the Gibbs sampler to integrékelihood with empirical prior
information about the candidate. The use of MCMCahility estimation allows to
overcome both the technical limitations of the Gars quadrature in estimation and
the problem of non-mixed patterns in CAT.

The main purpose of the study was to compare tkeippon of ability estimates
among different specifications and uses of prigtributions. Therefore, a fixed-length

termination rule was applied in the simulation ggdmore intensively. However, a
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study was conducted also adopting a variable-letegthination rule which was used to
compare the number of items needed in order toirobfae same precision of
measurement.

The findings of simulation studies suggest thatittduction of informative priors
is effective in improving the accuracy of abilitgtenates, especially when dealing with
rather short tests and when the ability is far froeno. In particular, the measurement
precision is improved when empirical priors areradtuiced both to initialize and to
estimate ability. The use of empirical informatisnhighly recommended with rather
short tests, where the standard approaches basedstendard normal prior fail to
reproduce stable ability estimates. When using dabke length CAT, it was
demonstrated that the test could be shortened asda consequence, the item
overexposure could be reduced as well.

Despite the great availability of background valealconcerning the individuals, the
quality of information remains a fundamental issiee usefulness of the described
approach depends highly on the predictive capglufithe collateral variables.

In many applications in psychological measuremingould be acceptable to use
background variables to increase measurement feciBor example, in personnel
selection, companies are just interested in selgdtie best candidates based, and test
efficiency is a major issue. Besides, adaptivestast becoming more and more used in
the area of medicine, where tailored tests areqeeg to patients in order to infer their
physical and mental health. Covariates about patisach as psychological status can
be introduced as empirical prior information indbesettings. In many medical, clinical
or diagnostic applications, reducing the burdernest administration for both patients
and doctors/psychologists is an important topicedacational applications, it might be

an issue to use collateral information. In highketatests like exams or admission tests,
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the use of collateral information would not be gted. However, when such problems
of fairness arise and empirical information canbetused in the ability estimation, an
initial inference which is as close as possibl¢hi true ability value is recommended,
i.e., an empirical CAT initialization is desirabl&€his approach solves the issue of
overexposure of the first item, observed in CAT boring a fixed initialization (e.g.,
ability equal to zero) and maximum-information eribn for item selection. Because
good performances of MCMC CAT have been recordednadackground variables are
used both in the initialization and in the abil@gtimation, another possibility would be
to exclude the use of prior information only frohetfinal ability estimation in order to
prevent the method from potential criticism dudaioness issues.

MCMC CAT might also provide other advantages whaan be used in further
research. In the current study, the item parameters assumed to be fixed and known.
However, these parameters result from a calibragiody and have been estimated with
uncertainty. In a Bayesian estimation procedures thcertainty can be taken into
account. In this way, unrealistically high precisiof ability estimates due to the
assumption of known item parameters might be dedh in future applications.
Moreover, the Gibbs sampler represents a flexibte which can be implemented for
more complex IRT models and with different speeifions for the prior distribution,

depending on the available empirical covariates.

27



References

Albert, J. H. (1992). Bayesian estimation of normogive item response curves using
Gibbs samplingJournal of Educational Statistics, 1251-269.

Ariel, A., van der linden, W. J., & Veldkamp, B. 006). A strategy for optimizing item
pool managemendournal of Educational Measurement,, 8%-96.

Bartholomew, D. J. (1987).atent variable models and factor analysiew York: Oxford
University Press.

Bartholomew, D. J., & Knott, M. (1999).atent variable models and factor analysis.
London: Arnold Publishers.

Béguin, A. A, & Glas, C. A. W. (2001). MCMC estitien and some model-fit analysis of
multidimensional IRT model$2sychometrika, 66641-562.

Belov, D. I., & Armstrong, R. D., (2009). Direct@mverse problems of item pool design
for computerized adaptive testingducational and Psychological Measurement, 69,
533-547.

Birnbaum, A. (1968). Some latent trait models #meir use in inferring an examinee’s
ability. In F. M. Lord & M. R. Novick (Eds.)Statistical theories of mental test scores
(pp. 397-479). Reading, MA: Addison-Wesley.

Cowles, M. K., & Carlin, B. P. (1996). Markov chaiMonte Carlo convergence
diagnostics: a comparative reviedaurnal of the American Statistical Associatiod,
883-904.

Fox, J. -P., & Glas, C. A. W. (2001). Bayesianrastion of a multilevel IRT model using
Gibbs samplingPsychometrika, 66271-288.

Gelman, A., Carlin, J. B., Stern, H. S., & Rubin,® (2004).Bayesian data analysis, 2nd

edition Boca Raton, Florida: Chapman and Hall/CRC.

28



Geman, S., & Geman, D. (1984). Stochastic relarati@ibbs distributions and the
Bayesian restoration of imagd&EE Transactions on Pattern Analysis and Machine
Intelligence 6, 721-741.

Geweke, J. (1992). Evaluating the accuracy of smmpilased approaches to the
calculation of posterior moments. In J.M. BernardoBerger, A.P. Dawid & A.F.M.
Smith (Eds.),Bayesian statistics 4pp. 169-193). Oxford,U.K.: Oxford University
Press.

Gialluca, K. A., & Weiss, D. J. (1979fficiency of an adaptive inter-subtest branching
strategy in the measurement of classroom achieveniResearch Report 79-6.
Minneapolis: University of Minnesota, Department Biychology, Psychometric
Methods Program.

Guyer, R. D. (2008)Effect of Early Misfit in Computerized Adaptive flreg on the
Recovery of ThetdJniversity of Minnesota (MN): Unpublished doctbdéssertation.

Johnson, V. E., & Albert, J. H. (1999Qrdinal data modeling New York: Springer-
Verlag.

Lord, F. M. (1952). A theory of test scor€&sychometric Monographi.

Lord, F. M. (1970). Some test theory for tailoresbting. In W. H. Holtzman (Ed.),
Computer-assisted instruction, testing, and guidaipp. 139-183). New York: Harper
and Row.

Lord, F. M., & Novick, M. R. (1968)Statistical theories of mental test scorBeading,
MA: Addison-Wesley.

Matteucci, M., & Veldkamp, B. P. (2011). Includirmgnpirical prior information in test
administration. In B. Fichet, D. Piccolo, R. Verde,M. Vichi (Eds.), Classification
and multivariate analysis for complex data struetfpp. 171-179). Berlin Heidelberg:

Springer-Verlag.

29



Matteucci, M., Mignani, S., & Veldkamp, B. P. (2009ssues on item response theory
modelling. In M. Bini, P. Monari, D. Piccolo & L.&maso (Eds.),Statistical methods
for the evaluation of educational services and duabdf products(pp. 29-45). Berlin
Heidelberg: Springer-Verlag.

Maij- de Meij, A. M., Schakel, L., Smid, N., Vergigen, N., & Jaganjac, A. (2008).
Connector Ability; Professional Manudltrecht, The Netherlands: PiCompany B.V.
Natesan, P., Limbers, C., & Varni, J. W. (2010)y&san estimation of graded response
multilevel models using Gibbs sampling: formulatiamnd illustration Educational and

Psychological Measurememo, 420-439.

Owen, R. J. (1969)A Bayesian approach to tailored testingResearch Report 69-92.
Princeton, NJ: Educational Testing Service.

Owen, R. J. (1975). A Bayesian sequential procefturquantal response in the context of
adaptive mental testingournal of the American Statistical Associatidf, 351-356.

Patz, R. J., & Junker, B. W. (1999). A straightfard approach to Markov chain Monte
Carlo methods for item response modelsurnal of Educational and Behavioral
Statistics 24, 146-178.

Sheng, Y., & Wikle, C. K. (2007). Comparing multidtmensional and unidimensional
item response theory modeEducational and Psychological Measuremesit, 899-
9109.

Sheng, Y., & Wikle, C. K. (2008). Bayesian multicdgnsional IRT models with a
hierarchical structur€educational and Psychological Measuremé&& 413-430.

Sympson, J. B., & Hetter, R. D. (1985). Controllibgm-exposure rates in computerized
adaptive testingProceedings of the 37annual meeting of the Military Testing
Association(pp. 973-977). San Diego, CA: Navy Personnel Reteand Development

Center.

30



The MathWorks Inc. (2005). MATLAB 7.1 [Computer gram]. Natick, MA: The
MathWorks, Inc.

van der Linden, W. J. (1999). Empirical initialiwan of the trait estimation in adaptive
testing.Applied Psychological MeasuremeB8, 21-29.

van der Linden, W. J. (2009)inear models for optimal test desigdew York: Springer
Verlag.

van der Linden, W. J. (2008). Using response tifoestem selection in adaptive testing.
Journal of Educational and Behavioral Statisti88, 5-20.

van der Linden, W. J., & Glas, C. A. W. (200@Qomputerized adaptive testing: Theory
and practice Boston, MA: Kluwer Academic Publishers.

van der Linden, W. J., & Pashley, P. J. (2010)nlitselection and ability estimation in
adaptive testing. In W. J. van der Linden & C. A. 8las (Eds.),Elements of adaptive
testing(pp. 3-30). New York: Springer.

van der Linden, W. J., & Veldkamp, B. P. (2004).nSwaining item exposure rates in
computerized adaptive testing with shadow tesltsurnal of Educational and
Behavioral Statistics, 2273-291.

van der Linden, W. J., & Veldkamp, B. P. (2007).n@ional item exposure control in
adaptive testing using item-ineligibility probakbigis. Journal of Educational and
Behavioral Statistics, 38398-417.

Wainer, H., Dorans, N. J., Eignor, D., Flaugher, Breen, B. F., Mislevy, R. J., &
Steinberg, L. (2000)Computerized adaptive testing: A prim{@nd ed.). Mahwah, NJ:
Lawrence Erlbaum Associates.

Zwinderman, A. H. (1991). A generalized Rasch mod@ manifest predictors.

Psychometrika56, 589-600.

31



Zwinderman, A. H. (1997). Response models with feshipredictors. In W.J. van der
Linden & R.K. Hambleton (Eds.)Handbook of modern item response the@y. 245-

256). New York: Springer-Verlag.

32



TABLE 1
Final test length and ability parameter recovenfiitly empirical and standard

solutions.

True 6 Fully empirical Standard
Mean n. s.d. Mean n. s.d.

items items @ Bias s.d. items items @ Bias s.d

-3 991 1.84 -3.040.04 0.24 1249 2.85 -2.790.21 0.31
-2.5 6.69 1.14 -2.500.00 0.23 9.42 1.84 -2.330.17 0.31
-2 545 0.64 -1.990.01 0.25 7.65 0.98 -1.890.11 0.30
-1.5 5.11 040 -1.540.040.29 6.71 0.74 -1.410.09 0.26
-1 5.17 045 -1.02-0.02 0.28 6.16 0.53 -0.950.05 0.28
-0.5 546 0.87 -0.490.01 0.23 5.77 0.75 -0.460.04 0.27
0 5.24 045 0.040.04 0.26 5.29 0.56 0.020.02 0.25
0.5 5.28 055 0.47-0.03 0.25 5.32 0.63 0.46-0.04 0.25
1 5.17 043 1.030.03 0.26 5.58 0.83 0.84-0.16 0.33
1.5 5.18 041 1.520.02 0.28 6.38 0.84 1.40-0.10 0.31
2 549 0.64 2.030.03 0.23 7.64 1.03 1.89-0.110.31
2.5 7.05 147 249-0.010.28 9.72 184 2.37-0.130.31

3 10.15 2.11 3.050.05 0.30 1251 2.59 2.77-0.23 0.33
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TABLE 2

Ability parameter recovery for fully empirical astndard solutions (T=10).

True 8 Fully empirical Standard

g sd Bias RMSE g s.d. Bias RMSE

-3 -3.06 0.25 -0.06 0.25 -2.94 0.36 0.06 0.36
-25 -257 0.25 -0.07 0.26 -2.450.29 0.05 0.29
-2 -2.01 0.22 -0.01 0.22 -1.93 0.27 0.07 0.28
-1.5 -1.47 0.18 0.03 0.18 -1.440.24 0.06 0.25
-1 -0.98 0.22 0.02 0.22 -0.970.25 0.03 0.25
-0.5 -0.52 0.20 -0.02 0.20 -0.450.19 0.05 0.20
0 -0.01 0.22 -0.01 0.22 -0.01 0.24 -0.01 0.24
0.5 0.52 0.18 0.02 0.18 0.49 0.22-0.01 0.22
1 1.00 0.19 0.00 0.19 0.94 0.24-0.06 0.25
15 151 0.21 001 021 1.46 0.20-0.04 0.20
2 206 0.24 0.06 0.25 198 0.28-0.02 0.28
2.5 260 0.26 0.10 0.27 2.47 0.30-0.03 0.30

3 3.05 0.27 0.05 0.27 294 0.33-0.06 0.34
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TABLE 3

Ability parameter recovery for fully empirical astndard solutions (T=15).

True 8 Fully empirical Standard

g sd Bias RMSE g s.d. Bias RMSE

-3 -3.05 0.21 -0.05 0.22 -291 0.26 0.09 0.28
-25 -254 0.21 -0.04 0.21 -2.46 0.22 0.04 0.22
-2 -2.03 0.18 -0.03 0.18 -1.96 0.21 0.04 0.21
-1.5 -151 0.15 -0.01 0.15 -1.450.19 0.05 0.20
-1 -1.00 0.14 0.00 0.14 -1.010.20 -0.01 0.20
-0.5 -0.48 0.17 0.02 0.17 -0.460.15 0.04 0.15
0 001 0.18 0.01 0.18 0.01 0.170.01 O0.16
0.5 0.48 0.18-0.02 0.18 047 0.17-0.03 0.17
1 098 0.17 -0.02 0.17 1.01 0.140.01 0.14
15 152 0.17 0.02 0.18 1.48 0.18-0.02 0.18
2 205 0.20 0.05 0.21 2.00 0.230.00 0.23
2.5 258 0.230.08 0.24 250 0.290.00 0.29

3 3.08 0.28 0.08 0.29 296 0.30-0.04 0.31
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TABLE 4

Ability parameter recovery for fully empirical astndard solutions (T=20).

True 8 Fully empirical Standard

g sd Bias RMSE g s.d. Bias RMSE

-3 -3.07 0.20 -0.07 0.21 -2.96 0.23 0.04 0.23
-25 -253 0.21 -0.03 0.21 -2.50 0.19 0.00 0.19
-2 -1.98 0.17 0.02 0.17 -1970.17 0.03 0.17
-1.5 -151 0.15 -001 0.15 -1.47 0.13 0.03 0.14
-1 -0.96 0.14 0.04 0.15 -0.960.16 0.04 0.16
-0.5 -0.52 0.15 -0.02 0.15 -0.46 0.16 0.04 0.16
0 -0.02 0.15 -0.02 0.16 0.02 0.14 0.02 0.14
0.5 049 0.14-0.01 0.14 049 0.16-0.01 0.16
1 101 0.16 001 0.16 1.02 0.150.02 0.15
15 152 0.14 0.02 0.14 145 0.16-0.05 0.16
2 206 0.18 0.06 0.19 2.00 0.170.00 0.17
2.5 258 0.19 0.08 0.20 2,53 0.220.03 0.23

3 3.06 0.24 0.06 0.24 298 0.21-0.02 0.21
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TABLE 5

Ability parameter recovery for fully empirical, gunical initialization and standard

solutions (T=10).

True 6 Fully empirical Empirical initialization Standard
@ sd. Bias RMSE g sd. Bias RMSE g s.d. Bias RMSE
-3 -3.06 0.25 -0.06 0.25 -2.92 0.26 0.08 0.27 -2940.36 0.06 0.36
-25 -257 0.25 -0.07 0.26 -2450.25 005 0.25 -2450.29 0.05 0.29
-2 -2.01 0.22 -0.01 0.22 -192 0.25 0.08 0.26 -1.930.27 0.07 0.28
-15 -147 0.18 0.03 0.18 -1440.21 0.06 0.22 -1.440.24 0.06 0.25
-1 -0.98 0.22 0.02 0.22 -0.910.21 0.09 0.23 -0.970.25 0.03 0.25
-0.5 -0.52 0.20 -0.02 0.20 -0.46 0.20 0.04 0.21 -0.450.19 0.05 0.20
0 -0.01 0.22 -0.01 0.22 -0.02 0.26 -0.02 0.26 -0.01 0.24 -0.01 0.24
0.5 052 0.18 0.02 0.18 0.48 0.22-0.02 0.22 049 0.22-0.01 0.22
1 1.00 0.19 0.00 0.19 101 0.230.01 0.23 094 0.24-0.06 0.25
15 151 0.21 0.01 0.21 144 0.20-0.06 0.21 146 0.20-0.04 0.20
2 206 0.24 0.06 0.25 195 0.23-0.05 0.23 1.98 0.28-0.02 0.28
2.5 260 0.26 0.10 0.27 246 0.25-004 0.25 247 0.30-0.03 0.30
3 3.05 0.27 0.05 0.27 2.88 0.30-0.12 0.33 294 0.33-0.06 0.34
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TABLE 6

Estimated accuracy of simulation across differamhber of iterations.

N. iter  Burn-in Fully empirical Standard

6 s.d. 5%s.d. MCerror @ s.d. 5% s.d. MC error
1000 100 -0.119 0.393  0.020 0.023 0.070 0.422 0.0210.025
2000 200 -0.101 0.391  0.020 0.013 -0.048 0.417 10.02 0.018
5000 500 0.303 0411 0.021 0.011 -0.135 0.427 0.0210.008
10000 1000 0.048 0.373 0.019 0.006 -0.107 0.410 210.0 0.008

TABLE 7

Descriptive statistics on the item parameters mhetlithe item bank.

Discrimination parameters Difficulty parameters
Mean 0.745 -0.411
Median 0.727 -0.410
Standard deviation 0.309 0.748
Minimum 0.180 -2.290
Maximum 1.470 2.300
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Results on the mean number of items needed in @AUlation.

TABLE 8

Fully empirical ~ Empirical initialization Standard

Ability N. items with difficulty N. examineesin  Mean n. Mean n. Mean n.

range parameter in the range the range items s.d. items s.d. items s.d.
24 --21 3 0 - - - - - -
2.1--18 12 2 13.750 0.212 15.350 2.616 16.150 0.636
-1.8--15 20 8 11.713 0.732 13.325 1.029 13.638 0.905
-15--1.2 34 42 10.655 0.681 11.210 0.854 11.569 0.833
-1.2--0.9 67 54 9.620 0.434 10.174 1.283 10.006 0.511
-0.9--0.6 64 97 9.136 0.154 9.344 0.226 9.481 0.951
-0.6--0.3 78 132 9.085 0.107 9.239 0.172 9.198 0.149
-0.3-/0.0 78 123 9.322 0.259 9.533 0.369 9.498  0.293
0.0-]0.3 61 86 9.920 0.420 10.303 0.585 10.307 0.567
0.3-]0.6 44 61 11.290 0.756 12.077 1.133 11.874  0.997
0.6-]0.9 21 30 13.600 1.642 15.217 1.642 15,540 1.835
09-1.2 7 16 17.681 2.119 21.244 2.589 20.431 3.034
1.2-15 1 9 24.356  3.207 29.622 4.757 29.611 2.930
15-1.8 3 0 35.843 6.097 44.871 6.054 46.129 5.559
1.8-2.1 5 0 - - - - - -
2.1-]2.4 1 0 - - - - - -
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FIGURE 1

Root mean square error (RMSE) for the three diffempproaches (fully empirical,

empirical initialization and standard) when thed taEmsists of 10 items.
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FIGURE 2

Trace plot of a single chain, in the case of T=046 empirical information introduced.
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Autocorrelation plot.
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