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Abstract. We give a partial stratification of the secant varieties of the order d

Veronese variety of Pm. We will focus on points lying on the span of curvilinear

subschemes of Veronese varieties and we compute their symmetric rank for
small border rank. We will also describe the structure of the Hilbert schemes

of curvilinear subschemes of Veronese varieties.

Introduction

Let νd : Pm ↪→ P(m+d
m )−1 be the order d Veronese embedding with d ≥ 3. We

write Xm,d := νd(Pm). An element of Xm,d can be described both as the projective
class of a d-th power of a homogeneous linear form in m + 1 variables and as the
projective class of a completely decomposable symmetric d-modes tensor. In many
applications like Chemometrics (see eg. [24]), Signal Processing (see eg. [20]), Data
Analysis (see eg. [5]), Neuroimaging (see eg. [16]), Biology (see eg. [23]) and
many others, the knowledge of the minimal decomposition of a tensor in terms of
completely decomposable tensors turns out to be extremely useful. This kind of
decomposition is strictly related with the concept of secant varieties of varieties
parameterizing tensors (if the tensor is symmetric one has to deal with secant
varieties of Veronese varieties).

Let Y ⊆ PN be an integral and non-degenerate variety defined over an alge-
braically closed field K of characteristic zero.
For any point P ∈ PN the Y -rank rY (P ) of P is the minimal cardinality of a finite
set of points S ⊂ Y such that P ∈ 〈S〉, where 〈 〉 denote the linear span:

(1) rY (P ) := min{s ∈ N | ∃S ⊂ Y, ](S) = s, with P ∈ 〈S〉}.

If Y is the Veronese variety Xm,d the Y -rank is also called the “ symmetric
tensor rank ”. The minimal set of points S ⊂ Xm,d that realizes the symmet-
ric tensor rank of a point P ∈ Xm,d is also said the set that realizes either the
“ CANDECOMP/PARAFAC decomposition ” or the “ canonical decomposition ”
of P .

The natural geometric object that one has to study in order to compute the
symmetric tensor rank either of a symmetric tensor or of a homogeneous polynomial
is the set that parameterizes points in PN having Xm,d-rank smaller or equal than a
fixed value t ∈ N. For each integer t ≥ 1 let the t-th secant variety σt(X) ⊆ PN of a
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variety X ⊂ PN be the Zariski closure in PN of the union of all (t− 1)-dimensional
linear subspaces spanned by t points of X ⊂ PN :

(2) σt(X) :=
⋃

P1,...,Pt∈X
〈P1, . . . , Pt〉

For each P ∈ PN the border rank bX(P ) of P is the minimal integer t such that
P ∈ σt(X):

(3) bX(P ) := min{t ∈ N | P ∈ σt(X)}.
We indicate with σ0

t (X) the set of the elements belonging to σt(X) of fixed
X-rank t:

(4) σ0
t (X) := {P ∈ σt(X) | rX(P ) = t}

Observe that if σt−1(X) 6= PN , then σ0
t (X) contains a non-empty open subset of

σt(X).
Some of the recent papers on algorithms that are able to compute the symmetric

tensor rank of a symmetric tensor (see [9], [7], [10]) use the idea of giving a stratifica-
tion of the t-th secant variety of the Veronese variety via the symmetric tensor rank.
In fact, since σt(X) = σ0

t (X), the elements belonging to σt(X)\ (σ0
t (X)∪σt−1(X))

have X-rank strictly bigger than t. What some of the known algorithms for com-
puting the symmetric rank of a symmetric tensor T do is firstly to test the equations
of the secant varieties of the Veronese varieties (when known) in order to find the
Xm,d-border rank of T , and secondly to use (when available) a stratification via the
symmetric tensor rank of σt(Xm,d). For the state of the art on the computation of
the symmetric rank of a symmetric tensor see [15], [10], [21] Theorem 5.1, [9] for
the case of rational normal curves, and also [9] for the case t = 2, 3, moreover [7]
for t = 4.

If a stratification of the secant varieties of the Veronese varieties via the symmet-
ric rank could be done for all t, then we would get a stratification of PN with strata
labelled by pairs of integers (rank,border rank) and it would be possible to produce
effective algorithms for the computation of the symmetric rank of any symmetric
tensor.

What we propose to study here is the computation of the symmetric tensor
rank of a particular class of the symmetric tensors whose symmetric border rank
is strictly less than its symmetric rank. We will focus on those symmetric tensors
that belong to the span of a reduced 0-dimensional curvilinear sub-scheme of the
Veronese variety. We will indicate in Notation 6 this set as σ†t (X).

From now on in the introduction we take X := Xm,d ⊂ PN with N :=
(
m+d
m

)
−1.

In Section 1 we will define a finite partial stratification of σt(X) \ (σ0
t (X) ∪

σt−1(X)) by constructible subsets and σ†t (X) will turn out to be the union of these
strata (thus σ†t (X) is constructible). For very low t (i.e. t ≤ b(d − 1)/2c), we
will describe the structure of σt(X)†: we will give its dimension, its codimension
in σt(X) and the dimension of each stratum (see Theorem 1). Moreover in the
same theorem we will show that for such values of t, the symmetric border rank of
the projective class of a homogeneous polynomial [F ] ∈ σt(X) \ (σ0

t (X)∪ σt−1(X))
is computed by a unique 0-dimensional subscheme WF ⊂ X and that the generic
[F ] ∈ σt(X)† is of the form F = LdM + Ld1 + · · · + Ldt−2 with L,L1, . . . , Lt−2,M
linear forms. To compute the dimension of the 3 largest strata of our stratification
we will use Terracini’s lemma (see Propositions 1, 2 and 3).
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We will also prove several results on the symmetric ranks of points P ∈ PN whose
border rank is computed by a scheme related to our stratification (see Proposition
5 and Theorem 2). In all cases that we will be able to compute, we will have

bX(P ) + rX(P ) ≤ 3d− 2,

but we will need also additional conditions on the scheme computing bX(P ) when
bX(P ) + rX(P ) ≥ 2d+ 2.

1. The stratification

We begin this section by explaining the stratification of the curvilinear 0-dimensional
subschemes of any smooth connected projective variety Y ⊂ Pr.
Notation 1. For any integral projective variety Y ⊂ Pr let β(Y ) be the maximal
positive integer such that every 0-dimensional scheme Z ⊂ Y with deg(Z) ≤ β(Y )
is linearly independent, i.e. dim(〈Z〉) = deg(Z)− 1.

Notation 2. Fix an integer t ≥ 2. Let A(t) be the set of all non-decreasing
sequences t1 ≥ t2 ≥ · · · ≥ ts ≥ 0 such that

∑s
i=1 ti = t and t1 ≥ 2.

For each such sequence t = (t1, . . . , ts) let l(t) be the number of the non zero ti’s,
for i = 1, . . . , s.
Set A′(t) := A(t) t {(1, . . . , 1)} in which the string (1, . . . , 1) has t entries.
We say that l((1, . . . , 1)) = t.

Definition 1. Let Y ⊂ Pr be a smooth and connected projective variety of dimen-
sion m. For every positive integer t let Hilbt(Y ) denote the Hilbert scheme of all
degree t 0-dimensional subschemes of Y .

Remark 1. Observe that if m ≤ 2, then Hilbt(Y ) is smooth and irreducible.

We now introduce now some subset of Hilbt(Y ) that will give the claimed strat-
ification.

Notation and Remark 1. Let Y ⊂ Pr be a smooth connected projective variety
of dimension m.

• For every positive integer t let Hilbt(Y )0 be the set of all disjoint unions of
t distinct points of Y .

Observe that Hilbt(Y )0 is a smooth and irreducible quasi-projective va-
riety of dimension mt and also a dense open subset of it if m ≥ 2 (see [18],
[19]). Moreover for arbitrary m = dim(Y ) the irreducible scheme Hilbt(Y )0
is always open in Hilbt(Y ).
• Let Hilbt(Y )+ be the closure of Hilbt(Y )0 in Hilbt(Y )red. The elements of

Hilbt(Y )+ are called the smoothable degree t subschemes of Y .
If t� m ≥ 3, then there are non-smoothable degree t subschemes of Y .
• An element Z ∈ Hilbt(Y ) is called curvilinear if at each point P ∈ Zred the

Zariski tangent space of Z has dimension ≤ 1 (equivalently, Z is contained
in a smooth subcurve of Y ). Then for arbitrary m we can define Hilbt(Y )c
that is the set of all degree t curvilinear subschemes.

Hilbt(Y )c is a smooth open subscheme of Hilbt(Y )+ which strictly con-
tains Hilbt(Y )0.

Fix now O ∈ Y with Y ⊂ Pr being a smooth connected projective variety of
dimension m. Following the introduction of [19] we state the corresponding result
for the punctual Hilbert scheme of OY,O.
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Remark 2. For each integer t > 0 the part of the punctual Hilbert scheme
parametrizing the degree t curvilinear subschemes of Y with P as its reduction
is smooth, connected and of dimension (t− 1)(m− 1).

Notation 3. Now fix an integer s > 0 and a non-decreasing sequence of inte-
gers t1 ≥ · · · ≥ ts > 0 such that t1 + · · · + ts = t and t = (t1, . . . , ts). Let
Hilbt(Y )c[s; t1, . . . , ts] denote the subset of Hilbt(Y )c parametrizing all elements of
Hilbt(Y )c with s connected components of degree t1, . . . , ts respectively. We also
write it as Hilbt(Y )c[t].

Remark 3. Since the support of each component Hilbt(Y )c[t] varies in the m-
dimensional variety Y ⊂ Pr, the theorem on the punctual Hilbert scheme quoted
in Remark 2 says that Hilbt(Y )c[s; t1, . . . , ts] is an irreducible algebraic set of di-
mension ms +

∑s
i=1(ti − 1)(m − 1) = mt + s − t, i.e. of codimension t − s in

Hilbt(Y )c.
Thus if t ≥ 2 we have:

Hilbt(Y )c = tt∈A′(t)Hilbt(Y )c[t] = Hilbt(Y )0
⊔
tt∈A(t)Hilbt(Y )c[t].

Each stratum Hilbt(Y )c[t] is non-empty, irreducible and different elements of A′(t)
give disjoint strata.

Different strata may have the same codimension, but there is a unique stratum of
codimension 1: it is the stratum with label (2, 1, . . . , 1). This stratum parametrizes
the disjoint unions of a tangent vector to Y and t− 2 disjoint points of Y .

Notation 4. Take now a partial ordering� onA′(t) writing (a1, . . . , ax) � (b1, . . . , by)
if and only if

∑i
j=1 aj ≤

∑i
j=1 bj for all integers i ≥ 1.

It turns out that a � b if and only if the stratum Hilbt(Y )c[b] is in the closure
of the stratum Hilbt(Y )c[a].

We recall now a lemma that we borrow form [12] and [9].

Lemma 1. Let Y ⊂ Pr be a smooth and connected subvariety. Fix an integer
k such that k ≤ β(Y ), where β(Y ) is defined in Notation 1, and P ∈ Pr. Then
P ∈ σk(Y ) if and only if there exists a smoothable 0-dimensional scheme Z ⊂ Y
such that deg(Z) = k and P ∈ 〈Z〉.

Proof. As observed in [12], proof of Lemma 2.1.5, the condition k ≤ β(Y ) is the one
need to apply [9], Proposition 11, to get the “ only if ” part. The same references
also gives the “ if ” part, but we will write down the proof. Assume that Z is
smoothable and P ∈ 〈Z〉. Call Sλ a family of reduced subsets converging to Z,
then the condition “ k ≤ β(Y ) ” says that 〈Z〉 and all 〈Sλ〉 are (k− 1)-dimensional
and the family {〈Sλ〉} converges to 〈Z〉 in the appropriate Grassmannian G(k−1, r).
Since the incidence correspondence of Pr ×G(k− 1, r) is closed and the projection
Pr ×G(k − 1, r)→ Pr is a closed map, we get that 〈Z〉 is in the closure of ∪λ〈Sλ〉.
The latter set is contained in ∪kt=1σ

0
t (Y ). �

The following lemma shows a very special property of the curvilinear subschemes.

Lemma 2. Let Y ⊂ Pr be a smooth and connected subvariety. Let W ⊂ Y be a
linearly independent curvilinear subscheme of Y . Fix a general P ∈ 〈W 〉. Then
P /∈ 〈W ′〉 for any W ′ $ W .
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Proof. A key property of curvilinear schemes is that they have finitely many proper
closed subschemes. Since the base field is algebraically closed, it is infinite. Thus
Pk−1 is not a finite union of proper linear subspaces. Thus ∪W ′$W 〈W ′〉 $ 〈W 〉 �

We introduce the following Notation.

Notation 5. For each integral variety Y ⊂ Pr and each Q ∈ Yreg let [2Q,Y ] denote
the first infinitesimal neighborhood of Q in Y , i.e. the closed subscheme of Y with
(IQ,Y )2 as its ideal sheaf. We call any [2Q,Y ], with Q ∈ Yreg, a double point of Y .

Remark 4. Observe that [Q,Y ]red = {Q} and deg([Q,Y ]) = dim(Y ) + 1.

The following observation shows that Lemma 2 fails for some non-curvilinear
subscheme.

Remark 5. Assume that Y ⊂ Pr is smooth and of dimension ≥ 2. Fix a smooth
subvariety N ⊆ Y such that dim(N) = 2 and any Q ∈ N . Since N is embedded in
Pr, the linear space 〈[2Q,Y ]〉 is a 2-dimensional space. Fix any P ∈ 〈[2Q,Y ]〉. If
P = Q, then P ∈ 〈{Q}〉. If P 6= Q, then the plane 〈[2Q,Y ]〉 intersects [2Q,Y ] in a
degree 2 subscheme [2Q,Y ]P and P ∈ 〈[2Q,Y ]P 〉 that is a line.

Notation 6. For any integer t > 0 let σt(X)† denote the set of all P ∈ σt(X) \
(σ0
t (X) ∪ σt−1(X)) such that there is a curvilinear degree t subscheme Z ⊂ Xreg

such that P ∈ 〈Z〉.

Remark 6. Let X ⊂ PN be the Veronese variety Xm,d with N =
(
n+d
d

)
− 1. Take

P ∈ σt(X)† and a curvilinear degree t subscheme Z ⊂ Xreg such that P ∈ 〈Z〉.
The curvilinear scheme Z has a certain number, s, of connected components of
degrees t1, . . . , ts respectively with t1 ≥ · · · ≥ ts, but we cannot associate the string
(t1, . . . , ts) to P , because Z may not be unique. In fact the scheme Z is uniquely
determined by P for an arbitrary P ∈ σt(X)† only under very restrictive conditions
(see eg. Theorem 1 for a sufficient condition). However, we think that it useful to
see σt(X)† as a union on the various strings t1 ≥ · · · ≥ ts, even when this is not a
disjoint union.

We recall the following definition.

Definition 2. Fix now integral and non-degenerate subvarieties X1, . . . , Xt ⊂ Pr
(repetitions are allowed). The join J(X1, . . . , Xt) of X1, . . . , Xt is the closure in Pr
of the union of all (t− 1)-dimensional vector spaces spanned by t linearly indepen-
dent points P1, . . . , Pt with Pi ∈ Xi for all i.

Remark 7. From Definition 2 we obviously have that σt(X1) = J(X1, . . . , X1︸ ︷︷ ︸
t

).

Definition 3. Let S(X1, . . . , Xt) ⊂ X1 × · · · ×Xt × Pr be the closure of the set of
all (P1, P2, . . . , Pt, P ) such that P ∈ 〈{P1, . . . , Pt}〉 and Pi ∈ Xi for all i. We call
S(X1, . . . , Xt) the abstract join of the subvarieties X1, . . . , Xt of Pr.

Remark 8. The abstract join S(X1, . . . , Xt) is an integral projective variety and
dim(S(X1, . . . , Xt)) = t − 1 +

∑t
i=1 dim(Xi). The projection of X1 × · · · × Xt ×

Pr → Pr induces a proper morphism uX1,...,Xt : S(X1, . . . , Xt) → Pr such that
uX1,...,Xt

(S(X1, . . . , Xt)) = J(X1, . . . , Xt). The embedded join has the expected
dimension t− 1 +

∑t
i=1 dim(Xi) if and only if uX1,...,Xt

is generically finite.
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Remind here the so called Terracini’s Lemma (that is for sure the most used tool
to study the dimensions of secant varieties).

Terracini’s Lemma Let Y ⊂ Pr be a smooth projective variety and let P ∈
σt(Y ) be a generic point, i.e. P ∈ 〈P1, . . . , Pt〉 for P1, . . . , Pt ∈ Y generic points.
Then we have the following equality between Zariski tangent spaces: TP (σt(Y )) =
〈TP1(Y ), . . . , TPt(Y )〉.

In [1], part (2) of Corollary 1.11, it is proved that Terracini’s lemma works also for
joins. In fact it can be generalized as follows.

Terracini’s Lemma for Joins Let P ∈ 〈{P1, . . . , Pt}〉 with (P1, . . . , Pt) general in
X1× · · · ×Xt, then the Zariski tangent space TP (J(X1, . . . , Xt)) may be identified
with the linear span of the union of the first infinitesimal neighborhoods [2Pi, Xi]
of Pi in each Xi, 1 ≤ i ≤ t.

We are now ready to apply this tool of curvilinear subschemes in the particular
case of secant varieties of Veronese varieties.

2. Curvilinear subschemes and tangential varieties to Veronese
varieties

From now on in this paper we fix integers m ≥ 2, d ≥ 3 and take N :=
(
m+d
m

)
−1

and X := Xm,d the Veronese embedding of Pm into PN .

Definition 4. Let τ(X) ⊆ PN be the tangent developable of X, i.e. the closure in
PN of the union of all embedded tangent spaces TPX, P ∈ Xreg:

τ(X) :=
⋃
P∈X

TPX

Remark 9. Obviously τ(X) ⊆ σ2(X) and τ(X) is integral. Moreover Since d ≥ 3,
the variety τ(X) is a hypersurface of σ2(X).

Definition 5. For each integers t ≥ 3 let τ(X, t) ⊆ PN be the join of τ(X) and
σt−2(X):

τ(X, t) := J(τ(X), σt−2(X)).

We recall that min{n, t(m+ 1)− 2} is the expected dimension of τ(X, t).
Here we fix integers d, t with t ≥ 2, d not too small and look at τ(X, t) from

many point of views.

Remark 10. The set τ(X, t) is nothing else than the closure inside σt(X) of the
largest stratum of our stratification. As recalled in Remark 3 this is the stratum
given by Hilbt(X)c[(2, 1, · · · , 1)] (see Notation 3).

Remark 11. For any integral projective scheme W , any effective Cartier divisor
D of W and any closed subscheme Z of W the residual scheme ResD(Z) of Z with
respect to D is the closed subscheme of W with IZ : ID as its ideal sheaf. For
every L ∈ Pic(W ) we have the exact sequence

(5) 0→ IResD(Z) ⊗ L(−D)→ IZ ⊗ L→ IZ∩D,D ⊗ (L|D)→ 0
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From (5) we immediately get the following well-known result, often called the
Castelnuovo’s lemma.

Lemma 3. Fix L ∈ Pic(Y ) for Y ⊂ Pr any integral projective variety. Then

hi(Y, IZ ⊗ L) ≤ hi(Y, IResD(Z) ⊗ L(−D)) + hi(D, IZ∩D,D ⊗ (L|D))

for every i ∈ N.

Notation 7. For any Q ∈ Pm and any integer k ≥ 2 let kQ denote the (k − 1)-
infinitesimal neighborhood of Q in Pm, i.e. the closed subscheme of Pm with (IQ)k

as its ideal sheaf. The scheme kQ will be called a k-point of Pm.

We give here the definition of a (2, 3)-point as it is in [13], p. 977.

Definition 6. Fix a line L ⊂ Pm and a point Q ∈ L. The (2, 3) point of Pm
associated to (Q,L) is the closed subscheme Z(Q,L) ⊂ Pm with (IQ)3 + (IL)2 as
its ideal sheaf.

Remark 12. Notice that 2Q ⊂ Z(Q,L) ⊂ 3Q.

Remark 13. Let Z = Z1 t Z(Q,L) be a closed subscheme of Pm for Z1 ⊂ Pm
a 0-dimensional scheme. Since Z(Q,L) ⊂ 3Q, if h1(Pm, I3Q∪Z1(d)) = 0, then
h1(Pm, IZ(d)) = 0.

Lemma 4. Fix an integer t such that (m+1)(t−2)+2m < N with N =
(
m+d
d

)
−1

and general P0, . . . , Pt−2 ∈ Pm and a general line L ⊂ Pm such that P0 ∈ L. Set

Z := Z(P0, L)
⋃

(∪t−2
i=12Pi)

and
Z ′ := 3P0

⋃
(∪t−2
i=12Pi).

Then
(i) If h1(Pm, IZ(d)) = 0, then dim(τ(X, t)) = t(m+ 1)− 2.
(ii) If h1(Pm, IZ′(d)) = 0, then dim(τ(X, t)) = t(m+ 1)− 2.

Proof. If t = 2 then τ(X, t) = τ(X) and the part (i) for this case is proved in
[13]. The case t ≥ 3 of part (i) follows from the case t = 2 and Terracini’s lemma,
because τ(X, t) is the join of τ(X) and t − 2 copies of X. Part (ii) follows from
part (i) and Remark 13. �

Remark 14. Let A ⊂ Pm, m ≥ 2, be a connected curvilinear subscheme of degree
3. Up to a projective transformation there are two classes of such schemes: the
collinear ones (i.e. A is contained in a line, i.e. νd(A) is contained in a degree d
rational normal curve) and the non-collinear ones, i.e. the ones that are contained
in a smooth conic of Pm. The latter ones form a non-empty open subset of the
corresponding stratum (3, 0, . . . , 0) and, in this case, we will say that A is not
collinear. The family of all such schemes A covers an integral variety of dimension
3m − 2 (that corresponds, after its embedding via the Veronese map νd, with the
second osculating variety of Xm,d). In [8], Lemma 3.5, by using the theory of
inverse systems, it is proved that the tangent space to the second osculating variety
to Veronese variety is dominated by 4Q, with Q ∈ Xm,d, exactly as 3Q dominates
the tangent developable of Xm,d.
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Lemma 5. Fix integers m ≥ 2 and d ≥ 5. If m ≤ 4, then assume d ≥ 6. Set
α := b

(
m+d−1
m

)
/(m + 1)c. Let Zi ⊂ Pm, i = 1, 2, be a general union of i triple

points and α− i double points. Then h1(IZi(d)) = 0.

Proof. Fix a hyperplane H of Pm and call Ei the disjoint union if i triple points of
Pm with support on H with i ∈ {1, 2}. Thus Ei ∩H is a disjoint union of i triple
points of H. Since d ≥ 5, we have h1(H, IH∩Ei

(d)) = 0. Let Wi ⊂ Pm be a general
union of α− i double points for i ∈ {1, 2}. Since Wi is general Wi ∩H = ∅.
If we prove that h1(IEi∪Wi

(d)) = 0, then, by semicontinuity, we get also that
h1(IZ(d)) = 0 for i ∈ {1, 2}.
By Lemma 3 it is sufficient to prove h1(IResH(Wi∪Ei)

(d− 1)) = 0.
Since Wi∩H = ∅, we have ResH(Wi∪Ei) = WitResH(Ei). Thus ResH(Wi∪Ei) is
a general union of α double points, with the only restriction that the reductions of
two of these double points are contained in the hyperplaneH. Any two points of Pm,
m ≥ 2, are contained in some hyperplane. The group Aut(Pm) acts transitively on
the set of all hyperplanes of Pm. The cohomology groups of projectively equivalent
subschemes of Pm have the same dimension. Thus we may consider Wi tResH(Ei)
as a general union of α double points of Pm. Since (m+ 1)α ≤ b

(
m+d−1
m

)
/(m+ 1)c,

d − 1 ≥ 4 and d − 1 ≥ 5 if m ≤ 4, the very well known theorem of Alexander
and Hirschowitz on the dimensions of all secant varieties to Veronese varieties gives
h1(IResH(Wi∪Ei)

(d− 1)) = 0 (see [2], [3], [4],[14], [11]) �

Lemma 6. Fix integers m ≥ 2 and d ≥ 6. If m ≤ 4, then assume d ≥ 7. Set
β := b

(
m+d−2
m

)
/(m + 1)c. Let Z ⊂ Pm be a general union of one quadruple point

and β − 1 double points. Then h1(IZ(d)) = 0.

Proof. Fix a hyperplane H and call E a quadruple point of Pm with support on H.
Thus E ∩H is a quadruple point of H. Since d ≥ 2, we have h1(H, IH∩E(d)) = 0.
Let W ⊂ Pm be a general union of β − 1 double points. Since W is general, we
have W ∩H = ∅.
If we prove that h1(IE∪W (d)) = 0 then, by semicontinuity, we get also that
h1(IE∪W (d)) = 0. By Lemma 3 it is sufficient to prove h1(IResH(W∪E)(d−1)) = 0.

Since W ∩H = ∅, we have ResH(W ∪ E) = W t ResH . Thus ResH(W ∪ E) is a
general union of β− 1 double points and one triple point with support on H. Since
Aut(Pm) acts transitively, the scheme ResH(W ∪E) may be seem as a general dis-
joint union of β−1 double points and one triple point. Now it is sufficient to apply
the case i = 1 of Lemma 5 for the integer d′ := d− 1. �

Proposition 1. Set α := b
(
m+d−1
m

)
/(m + 1)c. Fix an integer t ≥ 3 such that

t ≤ α− 1. There is a non-empty and irreducible codimension 1 algebraic subset Γ1

of σt(X) with the following property. For every P ∈ Γ1 there is a scheme ZP ⊂ X
such that P ∈ 〈ZP 〉 and ZP has one connected component of degree 2 and t − 2
connected components of degree 1.

Proof. Lemma 5 and Terracini’s lemma (we recalled it in Section 1) give that the
join τ(X, t) (see Definition 5) has the expected dimension. This is equivalent to
say that the set of all points P ∈ 〈Z1 ∪{P1, . . . , Pt−2}〉 with Z1 a tangent vector of
X has the expected dimension, i.e. codimension 1 in σt(X). Obviously τ(X, t) 6= ∅
and Γ1 6= ∅. The set Γ1 is irreducible, because it is an open subset of a join of
irreducible subvarieties. �
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The proof of Proposition 1 can be analogously repeated for the following two
propositions: Proposition 2 and Proposition 3.

Proposition 2. Set α := b
(
m+d−1
m

)
/(m + 1)c. Fix an integer t ≥ 3 such that

t ≤ α− 2. There is a non-empty and irreducible codimension 2 algebraic subset Γ2

of σt(X) with the following property. For every P ∈ Γ2 there is a scheme ZP ⊂ X
such that P ∈ 〈ZP 〉 and ZP has two connected components of degree 2 and t − 4
connected components of degree 1.

Proof. This proposition can be proved in the same way of Proposition 1 just quoting
the case i = 2 of Lemma 5 instead of the case i = 1 of the same lemma. �

Proposition 3. Set β := b
(
m+d−2
m

)
/(m + 1)c. Fix an integer t ≥ 3 such that

t ≤ β − 1. There is a non-empty and irreducible codimension 2 algebraic subset Γ3

of σt(X) with the following property. For every P ∈ Γ3 there is a scheme ZP ⊂ X
such that P ∈ 〈ZP 〉 and ZP has t − 3 connected components of degree 1 and one
connected component which is curvilinear, of degree 3 and non-collinear.

Proof. This proposition can be proved in the same way of Proposition 1 just quoting
Lemma 6 instead of Lemma 5 and using Remark 14. �

Remark 15. Observe that if we interpret the Veronese variety Xm,d as the variety
that parameterizes the projective classes of homogeneous polynomials of degree d
in m+ 1 variables that can be written as d-th powers of linear forms then:

• The elements F ∈ Γ1 can all be written in the following two forms:

F = Ld−1M + Ld1 + · · ·+ Ldt−2,

F = Md
1 + · · ·+Md

d + Ld1 + · · ·+ Ldt−2;
• The elements F ∈ Γ2 can all be written in the following two forms:

F = Ld−1M + L′d−1M ′ + Ld1 + · · ·+ Ldt−4;

F = Md
1 + · · ·+Md

d +M
′d
1 + · · ·+M

′d
d + Ld1 + · · ·+ Ldt−4 :

• The elements F ∈ Γ3 can all be written in the following two forms:

F = Ld−2Q+ L′d−1M ′ + Ld1 + · · ·+ Ldt−3;

F = Nd
1 + · · ·+Nd

2d−1 + Ld1 + · · ·+ Ldt−3 :

where L,L′M,M ′L1, . . . , Lt−2,M1, . . . ,Md,M
′
1, . . . ,M

′
d, N1, . . . , N2d−1 are all lin-

ear forms and Q is a quadratic form. Actually M1, . . . ,Md and M ′1, . . . ,M
′
d are

binary forms (see [9]).

3. The ranks and border ranks of points of Γi

Here we compute the rank rX(P ) for certain points P ∈ τ(X, t) when t is not
too small with respect to d. If t = 2 we refer [9], Theorems 3, 4; if t = 3 we refer
[6], Theorem 2.

We first handle the border rank.

Theorem 1. Fix an integer t such that 2 ≤ t ≤ b(d − 1)/2c. For each P ∈
σt(X) \ (σ0

t (X) ∪ σt−1(X)) there is a unique WP ∈ Hilbt(X) such that P ∈ 〈WP 〉.
Set σt(X)† := {P ∈ σt(X) \ (σ0

t (X)∪σt−1(X)) | ∃WP ∈ Hilbt(M)c s.t. P ∈ 〈WP 〉}
as in Notation 6.
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(a) The constructible set σt(X)† is non-empty, irreducible and of dimension
(m + 1)t − 2. For a general P ∈ σt(X)† the associated W ⊂ X computing bX(P )
has a connected component of degree 2 (i.e. a tangent vector) and t − 2 reduced
connected components.

(b) We have a set-theoretic partition σt(X)† = tt∈A(t)σ(t), where A(t) is
defined in Notation 1, in which each set σ(t) is an irreducible and non-empty con-
structible subset of dimension (m+1)t−1−t+l(t), where l(t) is defined in Notation
2. The stratum σ(t), with t = (t1, . . . , ts), is in the closure of the stratum σ(a) with
a = (a1, . . . , ax) if and only if for each integer i ≥ 1 we have

∑i
j=1 tj ≥

∑i
j=1 aj,

i.e. if and only if a � t.
(c) The complement of σt(X)† inside σt(X)\ (σ0

t (X)∪σt−1(X)) has codimen-
sion at least 3 if t ≥ 3, or it is empty if t = 2.

Proof. Fix P ∈ σt(X) \ σt−1(X). Since β(X) = d + 1 ≥ t (β(X) is defined in
Notation 1), Lemma 1 gives the existence of some W ⊂ X such that deg(W ) = t,
P ∈ 〈W 〉 and W is smoothable. Since 2t ≤ d + 1, we can use [6], Lemma 1 to
say that W is unique. Moreover, if A ⊂ X is a degree t smoothable subscheme,
Q ∈ 〈A〉 and Q /∈ 〈A′〉 for any A′ $ A, then Lemma 1 gives Q ∈ σt(X) \ σt−1(X).
If A is curvilinear, then it is smoothable and ∪A′$A〈A′〉 $ 〈A〉. Hence each degree
t curvilinear subscheme W of X contributes a non-empty open subset UW of the
(t − 1)-dimensional projective space 〈W 〉 and UW1 ∩ UW2 = ∅ for all curvilinear
W1,W2 such that W1 6= W2. Thus

σt(X)† = tt∈A(t)(tW∈Hilbt
(X)[t]

UW ).

Each algebraic set Bt := t
W∈Hilbt

(X)[t]
UW is irreducible and of dimension t− 1 +

tm + l(t) − t. This partition of σt(X)† into non-empty irreducible constructible
subsets is the partition claimed in part (b).

(i) Fix any two strata, say Bti , i = 1, 2. Since each Bti is irreducible, we get

Bt2 j Bt1 if and only if Hilbt(X)[t2] j Hilbt(X)[t2], i.e. if and only if t1 � t2.
(ii) Here we prove part (c). Every element of Hilb2(X) is either a tangent

vector or the disjoint union of two points. Thus Hilb2(X) = Hilb2(X)c. Hence we
may assume t ≥ 3. Fix P ∈ σt(X) \ (σ0

t (X) ∪ σt−1(X)) such that P /∈ σt(X)†.
By Lemma 1 there is a smoothable W ⊂ X such that deg(W ) = t and P ∈ 〈W 〉.
Since 2t ≤ β(X), such a scheme is unique. Thus it is sufficient to prove that the
set Bt of all 0-dimensional smoothable schemes with degree t and not curvilinear
have dimension at most mt− 3.
Call Bt(s) the set of all W ∈ Bt with exactly s connected components.
First we assume that W is connected. Set {Q} := Wred. Since in the local Hilbert
scheme of OX,Q the smoothable colength t ideals are parametrized by an integral
variety of dimension (m− 1)(t− 1) and a dense open subset of it is formed by the
ideals associated to a curvilinear subschemes, we have dim(Bt(1)) ≤ m+(m−1)(t−
1)− 1 = mt− t = dim(Hilbt(X)c)− t.
Now we assume s ≥ 2. Let W1, . . . ,Ws be the connected components of W , with at
least one of them, say Ws, not curvilinear. Set ti = deg(Wi). We have t1+· · ·+ts =
t. Since Ws is not curvilinear, we have ts ≥ 3 and hence t − s ≥ 2. Each Wi

is smoothable. Thus each Wi, i < s, depends on at most m + (m − 1)(ti − 1) =
mti+1−ti parameters. We saw that Bts(1) depends on at most mts−ts parameters.
Thus dim(Bt(s)) ≤ mt+ s− 1− t. �
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Proposition 4. Assume m ≥ 2. Fix integers d, t such that 2 ≤ t ≤ d. Fix a
curvilinear scheme A ⊂ Pm such that deg(A) = t and deg(A∩L) ≤ 2 for every line
L ⊂ Pm. Set Z := νd(A). Fix P ∈ 〈Z〉 such that P /∈ 〈Z ′〉 for any Z ′ $ Z. Then
bX(P ) = t and Z is the only 0-dimensional scheme W such that deg(W ) ≤ t and
P ∈ 〈W 〉.

Proof. Since t ≤ d+ 1, Z is linearly independent. Since Z is curvilinear, Lemma 2
gives the existence of many points P ′ ∈ 〈Z〉 such that P ′ /∈ 〈Z ′〉 for any Z ′ $ Z.
Let W ⊂ X be a minimal degree subscheme such that P ∈ 〈W 〉. Set w := deg(W ).
The minimality of w gives w ≤ t. If w = t, then we assume W 6= Z. Now it is
sufficient to show that these conditions give a contradiction. Write Z := νd(A) and
W = νd(B) with A and B subschemes of Pm, deg(A) = t and deg(B) = w. We have
P ∈ 〈W 〉 ∩ 〈Z〉, then, since W 6= Z, by [6], Lemma 1, the scheme W ∪Z is linearly
dependent. We have deg(B ∪A) ≤ t+w ≤ 2d. Since W ∪Z is linearly dependent,
we have h1(IB∪A(d)) > 0. Thus, by [9], Lemma 34, there is a line R ⊂ Pm such
that deg(R ∩ (B ∪ A)) ≥ d + 2. By assumption we have deg(R ∩ A) ≤ 2. Thus
deg(B ∩ R) ≥ d. In our set-up we get w = d and B ⊂ R. Since P ∈ 〈W 〉, we get
P ∈ 〈νd(R)〉. That means that P belongs to the span of a rational normal curve.
Then the border rank of P is computed by a curvilinear scheme which has length
≤ b(d+ 1)/2c, contradiction. �

Proposition 5. Fix a line L ⊂ Pm and set D := νd(L). Fix positive integers
t1, s1, a 0-dimensional scheme Z1 ⊂ D such that deg(Z1) = t1 and S1 ⊂ X \ D
such that ](S1) = s1. Assume 2 ≤ t1 ≤ d/2, 0 ≤ s1 ≤ d/2, that Z1 is not reduced
and dim(〈D ∪ S1〉) = d + s1. Fix P ∈ 〈Z1 ∪ S1〉 such that P /∈ 〈W 〉 for any
W $ Z1 ∪ S1. We have ](〈Z1〉 ∩ 〈{P} ∪ S1〉) = 1. Set {Q} := 〈Z1〉 ∩ 〈{P} ∪ S1〉.
Then bX(P ) = t1 + s1, rX(P ) = d + 2 + s1 − t1, Z1 ∪ S1 is the only subscheme
of X computing bX(P ) and every subset of X computing rX(P ) contains S1. If
2s1 < d, then every subset of X computing rX(P ) is of the form A ∪ S1 with
A ⊂ D, ](A) = d+ 2− s1 and A computing rD(Q).

Proof. Obviously bX(P ) ≤ t1 + s1. Since P ∈ 〈Z1 ∪ S1〉 ⊂ 〈D ∪ S1〉, P /∈ 〈S1〉
and 〈D〉 has codimension s1 in 〈D ∪ S1〉, the linear subspace 〈Z1〉 ∩ 〈{P} ∪ S1〉
is non-empty and 0-dimensional, {Q}. Since deg(Z1) ≤ d + 1 = β(X) = β(D)
(where β(X) is defined in Notation 1), the scheme Z1 is linearly independent.
Since P /∈ 〈W 〉 for any W $ Z1 ∪ S1, we have 〈Z1〉 ∩ 〈{P} ∪ S1〉 6= ∅. Since
〈Z1〉 ⊂ 〈D〉, we get {Q} = 〈Z1〉 ∩ 〈{P} ∪ S1〉. Hence Z1 compute bD(Q) (Lemma
1). By Lemma 1 we also have bX(Q) = bD(Q). Since Z1 is not reduced, we have
rD(Q) = d + 2 − t1 ([15] or [21], theorem 4.1, or [9]). We have rX(Q) = rD(Q)
([22], Proposition 3.1, or [21], subsection 3.2). Write Z1 = νd(A1) and S1 = νd(B1)
with A1, B1 ⊂ Pm. Lemma 1 gives bX(P ) ≤ t1 + s1. Assume bX(P ) ≤ t1 + s1 − 1
and take W = νd(E) computing bX(Q) for certain 0-dimensional scheme E ⊂ Pm.
Thus deg(W ) ≤ 2t1 + 2s1 − 1. Since P ∈ 〈W 〉 ∩ 〈Z1 ∪ S1〉, by the already quoted
[6], Lemma 1, we get h1(Pm, IE∪A1∪B1(d)) > 0. Thus there is a line R ⊂ Pm such
that deg(R ∩ (E ∪ Z1 ∪ S1)) ≥ d+ 2.
First assume R = L. Thus L∩ (A1 ∪B1) = A1. Hence deg(E ∩L) ≥ d+ 2− t1. Set
E′ := E∩L, E′′ := E \E′, W ′ := νd(E′) and W ′′ := νd(E′′). Since P ∈ 〈W ′∪W ′′〉,
there is O ∈ 〈W ′〉 such that P ∈ 〈{O} ∪W ′′〉. Thus bX(P ) ≤ bX(O) + deg(W ′′).
Since O ∈ 〈D〉, we have rX(O) ≤ rD(O) ≤ b(d + 2)/2c < d + 2 − t1 ≤ deg(W ′),
contradicting the assumption that W computes bX(P ).
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Now assume R 6= L. Since the scheme L∩R has degree 1, while the scheme A1 ∩L
has degree t1, we get deg(R ∩ E) ≥ d + 2 − s1 > (d + 2)/2. As above we get a
contradiction.
Now assume bX(P ) = t1 + s1, but that W 6= Z1 ∪ S1 computes bX(P ). As above
we get a line R such that deg(W ∪ Z1 ∪ S1) ≥ d + 2 and this line R must be L.
Since P ∈ 〈Z1 ∪ S1〉, there is U ∈ 〈D〉 such that Z1 computes the border D-rank
of U and P ∈ 〈U ∪ S1〉. Take A ⊂ D computing rD(U). By [15] or [21], Theorem
4.1, or [9] we have ](A) = d+ 2− t1. Since P ∈ 〈A ∪ S1〉 and A ∩ S1 = ∅, we have
rX(P ) ≤ d+2+s1−t1. Assume the existence of some S ⊂ X computing rX(P ) and
such that ](S) ≤ d+1+s1−t1. Thus deg(S∪S1∪Z1) ≤ d+1+2s1 ≤ 2d+1. Write
S = νd(B). We proved that Z1 ∪ S1 computes bX(P ). By [6], Theorem 1, we have
B = B1tS1 with B1 = L∩B. Hence ](B1) ≤ d+1− t1. Since P ∈ 〈B1∪S1〉, there
is V ∈ 〈B1〉 such that P ∈ 〈V ∪S1〉. Hence rX(P ) ≤ rX(V )+s1. Since B computes
rX(P ) and V ∈ 〈B1〉, we get rX(V ) = ](B1) and that B1 computes rX(V ). Since
νd(B1) ⊂ D, we have V = Q. Recall that bX(Q) = bD(Q) and that Z1 is the only
subscheme of X computing rX(Q). We have rX(Q) = rD(Q) = d + 2 − t1. Hence
](B1) ≥ d+ 2− t1, contradiction.
If 2s1 < d, then the same proof works even if ](B) = d+ 2 + s1− t1 and prove that
any set computing rX(P ) contains S1. �

Lemma 7. Fix a hyperplane M ⊂ Pm and 0-dimensional schemes A,B such that B
is reduced, A 6= B, h1(IA(d)) = h1(IB(d)) = 0 and h1(Pm, IResM (A∪B)(d−1)) = 0.
Set Z := νd(A), S := νd(B). Then h1(Pm, IA∪B(d)) = h1(M, I(A∪B)∩M (d)) and
Z and S are linearly independent. Assume the existence P ∈ 〈Z〉 ∩ 〈S〉 such that
P /∈ 〈Z ′〉 for any Z ′ $ Z and P /∈ 〈S′〉 for any S′ $ S. Set F := (B \ (B∩M))∩A.
Then B = (B ∩M) t F and A = (A ∩M) t F .

Proof. Since h1(IA(d)) = h1(IB(d)) = 0, both Z and S are linearly independent.
Since h2(IA∪B(d− 1)) = 0, the residual sequence

0→ IResM (A∪B)(d− 1)→ IA∪B(d)→ I(A∪B)∩M (d)→ 0.

gives h1(Pm, IA∪B(d)) = h1(M, I(A∪B)∩M (d)). Assume the existence of P as in the
statement. Set B1 := (B ∩M) ∪ F .

(a) Here we prove that B = (B ∩M)∪F , i.e. B = B1. Since P /∈ 〈S′〉 for any
S′ $ S, it is sufficient to prove P ∈ 〈νd(B1)〉. Since Z and S are linearly indepen-
dent, Grassmann’s formula gives dim(〈Z〉∩〈S〉) = deg(Z∩S)−1+h1(Pm, IA∪B(d)).
Since ResM (A∪B1) ⊆ ResM (A∪B) and h1(Pm, IResM (A∪B)(d− 1)) = 0, we have
h1(Pm, IA∪B1(d)) = h1(M, I(A∪B1)∩M (d)). Since M ∩ (A∪B1) = M ∩ (A∪B), we
get h1(Pm, IA∪B1(d)) = h1(Pm, IA∪B(d)). Since both schemes Z and νd(B) are lin-
early independent, Grassmann’s formula gives dim(〈Z〉 ∩ 〈νd(B)〉) = deg(A ∩B)−
1 + h1(Pm, IA∪B(d)). Since both schemes Z and νd(B1) are linearly independent,
Grassmann’s formula gives dim(〈Z〉∩〈νd(B1)〉) = deg(A∩B1)−1+h1(Pm, IA∪B(d)).
Since A ∩ B1 = A ∩ B, we get dim(〈Z〉 ∩ 〈S〉) = dim(〈Z〉 ∩ 〈νd(B1)〉. Since
〈Z〉 ∩ 〈νd(B1)〉 ⊆ 〈Z〉 ∩ 〈S〉, we get 〈Z〉 ∩ 〈νd(B1)〉 = 〈Z〉 ∩ 〈S〉. Thus P ∈ 〈νd(B1)〉.

(b) In a very similar way we get A = (A ∩M) t F (see steps (b), (c) and (d)
of the proof of Theorem 1 in [6]). �

Theorem 2. Assume m ≥ 3. Fix integers d ≥ 5 and 3 ≤ t ≤ d. Fix a degree 2
connected subscheme A1 ⊂ L and a reduced set A2 ⊂ Pm \ L, such that ](A2) =
t − 2 and h1(Pm, IA(d)) = 0, for A := A1 ∪ A2. Set Zi := νd(Ai), i = 1, 2, and
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Z := Z1 ∪ Z2. Assume that A is in linearly general position in Pm. Fix P ∈ 〈Z〉
such that P /∈ 〈Z ′〉 for any Z ′ $ Z. Then bX(P ) = t and rX(P ) = d+ t− 2.

Proof. Since h1(Pm, IA(d)) = 0, then the scheme Z is linearly independent. Propo-
sition 4 gives bX(P ) = t. Fix a set B ⊂ Pm such that S := νd(B) computes
rX(P ). Assume rX(P ) < d + t − 2, i.e. ](S) ≤ d + t − 3. Since t ≤ d, we have
rX(P ) + t ≤ 3d− 3.

(a) Until step (g) we assume m = 3. We have h1(Pm, IA∪B(d)) > 0 ([6],
Lemma 1). Hence A ∪ B is not in linearly general position (see [17], Theorem
3.2). Thus there is a plane M ⊂ P3 such that deg(M ∩ (A ∪ B)) ≥ 4. Among all
such planes we take one, say M1, such that the integer x1 := deg(M1 ∩ (A ∪ B))
is maximal. Set E1 := A ∪ B and E2 := ResM1(E1). Notice that deg(E2) =
deg(E1) − x1. Define inductively the planes Mi ⊂ P3, i ≥ 2, the schemes Ei+1,
i ≥ 2, and the integers xi, i ≥ 2, by the condition that Mi is one of the planes such
that the integer xi := deg(Mi ∩ Ei) is maximal and then set Ei+1 := ResMi

(Ei).
We have Ei+1 ⊆ Ei (with strict inclusion if Ei 6= ∅) for all i ≥ 1 and Ei = ∅ for all
i� 0. For all integers t and i ≥ 1 there is the residual exact sequence

(6) 0→ IEi+1(t− 1)→ IEi
(t)→ IEi∩Mi,Mi

(t)→ 0.

Let u be the minimal positive integer i such that and h1(Mi, IMi∩Ei(d+1− i)) > 0.
Use at most rX(P ) + t times the exact sequences (6) to prove the existence of such
an integer u. Any degree 3 subscheme of P3 is contained in a plane. Thus for any
i ≥ 1 either xi ≥ 3 or xi+1 = 0. Hence xi ≥ 3 for all i ≤ u−1. Since rX(P )+t ≤ 3d,
we get u ≤ d.

(b) Here we assume u = 1. Since A is in linearly general position, we have
deg(M1 ∩ A) ≤ 3. First assume x1 ≥ 2d + 2. Thus ](B) ≥ ](B ∩M1) ≥ 2d − 1 >
d+ t− 3, contradiction. Hence x1 ≤ 2d+ 1. Since h1(M1, IM1∩E1(d)) > 0, there is
a line T ⊂M1 such that deg(T ∩E1) ≥ d+2 ([9], Lemma 34). Since A is in linearly
general position, we have deg(A ∩ T ) ≤ 2. Thus deg(T ∩ B) ≥ d. Assume for the
moment h1(P3, IE2(d − 1)) > 0. Hence x2 ≥ d + 1. Since by hypothesis d ≥ 4,
x2 ≤ x1 and x1 +x2 ≤ 3d+1, we have x2 ≤ 2d−1. Hence [9], Lemma 34, applied to
the integer d−1 gives the existence of a line R ⊂ P3 such that deg(E2∩R) ≥ d+1.
Since A is in linearly general position, we also get deg(R ∩ E2) ≤ 2 and hence
deg(R ∩ B ∩ E2) ≥ d − 1. Thus ](S) ≥ 2d − 1, contradiction. Now assume
h1(P3, IE2(d−1)) = 0. Lemma 7 gives the existence of a set F ⊂ P3 \M1 such that
A = (A∩M1)tF and B = (B∩M1)tF . Thus ](F ) = deg(A)−deg(A∩M1) ≥ t−1.
Since ](B ∩M1) ≥ d, we obtained a contradiction.

(c) Here and in steps (d), (e), and (f) we assume m = 3 and u ≥ 2. We first
look at the possibilities for the integer u. Since every degree 3 closed subscheme of
P3 is contained in a plane, either xi ≥ 3 or xi+1 = 0. Since rX(P )+t ≤ 3d−3, we get
xi = 0 for all i > d. Hence u ≤ d. We have xu ≥ d+ 3−u (e.g. by [9], Lemma 34).
Since the sequence xi, i ≥ 1, is non-decreasing, we get rX(P )+2+t−2 ≤ u(d+3−u).
Since the function s 7→ s(d + 3 − s) is concave in the interval [2, d + 1], we get
u ∈ {2, 3, d}.

(d) Here we assume u = 2. Since 3d + 1 ≥ x1 + x2 ≥ 2x2, we get x2 ≤
2(d − 1) + 1. Hence there is a line R ⊂ P3 such that deg(E2 ∩ R) ≥ d + 1. We
claim that x1 ≥ d+ 1. Indeed, since A ∪B * R, there is a plane M ⊂ R such that
deg(M ∩ (A∪B)) > deg((A∪B)∩R) ≥ d+1. The maximality property of x1 gives
x1 ≥ d + 2. Since A is in linearly general position, we have deg(A ∩ R) ≤ 2 and
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deg(A∩M1) ≤ 3. Hence deg(B ∩E2 ∩R) ≥ d− 1 and rX(P ) ≥ (x1 − 3) + d− 1 ≥
2d− 2 ≥ d+ t− 2, contradiction.

(e) Here we assume u = 3. Since h1(M3, IM3∩E3(d − 2)) > 0, there is a line
R ⊂M3 such that deg(E3 ∩ T ) ≥ d. This is absurd, because x1 ≥ x2 ≥ x3 ≥ d and
x1 + x2 + x3 ≤ rX(P ) + t ≤ d+ 2t− 3 ≤ 3d− 3.

(f) Here we assume u = d. The condition “ h1(IMd∩Ed
(1)) > 0 ” says that

either Md∩Ed contains a scheme of length ≥ 3 contained in a line R or xd ≥ 4. Since
xd ≥ 3, we have rX(P ) + t ≥ x1 + · · ·+xd ≥ 3d. Since t ≤ d and rX(P ) ≤ d+ t−3,
this is absurd.

(g) Here we assume m > 3. We make a similar proof, taking as Mi, i ≥
1, hyperplanes of Pm. Any 0-dimensional scheme of degree at most m of Pm is
contained in hyperplane. Hence either xi ≥ m or xi+1 = 0. With these modification
we repeat the proof of the case m = 3. �
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[1] B. Ådlandsvik, Joins and higher secant varieties. Math. Scand. 62 (1987), 213–222.
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