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Abstract In this paper, we address two issues that have long plagued researchers in
statistical modeling and data mining. The first is well-known as the “curse of dimen-
sionality”. Very large datasets are becoming more and more frequent, as mankind is
now measuring everything he can as frequently as he can. Statistical analysis tech-
niques developed even 50 years ago can founder in all this data. The second issue
we address is that of model misspecification - specifically that of an incorrect as-
sumed functional form. These issues are addressed in the context of multivariate
regression modeling. To drive dimension reduction and model selection, we use the
newly developed form of Bozdogan’sICOMP, introduced in Bozdogan and Howe
(2009b), that penalizes models with a complexity measure ofthe “sandwich” model
covariance matrix. This information criterion is used by the genetic algorithm as
the objective function in a two-step hybrid dimension reduction process. First, we
use probabilistic principle components analysis to independently reduce the num-
ber of response and predictor variables. Then, we use the genetic algorithm with the
multivariate Gaussian regression model to identify the best subset regression model.
We apply these methods to identify a substantially reduced multivariate regression
relationship for an dataset regarding Italian high school students. From 29 response
variables, we get 4, and from 46 regressors, we get 1.
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1 Introduction

In this paper, we address two issues that have long plagued researchers in statistical
modeling and data mining. The first is well-known as the “curse of dimensional-
ity”. Very large datasets are becoming more and more frequent, as mankind is now
measuring everything he can as frequently as he can. Statistical analysis techniques
developed even 50 years ago can founder in all this data. The second issue we ad-
dress is that of model misspecification - specifically that ofan incorrect assumed
functional form. These issues are addressed in the context of multivariate regression
modeling, in which we present a novel hybrid dimension reduction technique. We
apply these methods to identify a substantially reduced multivariate regression re-
lationship for an dataset regarding Italian high school students. From 29 response
variables, we get 4, and from 46 regressors, we get 1.

2 Multivariate Regression Modeling with ICOMP

2.1 Multivariate Gaussian Regression

In the usual multivariate regression (MVR) problem, we havea matrix of responses
Y ∈ Rn×p; n observations ofp measurements on some physical process. The re-
searcher also hask variables that have some theoretical relationship toY: X ∈Rn×q,
of course, we usually include a constant term as an interceptfor the hyperplane gen-
erated by the relationship, soq = k+1. The predictive relationship betweenX and
Y has both a deterministic and a stochastic component, such that the model is

Y = XB+E, (1)

in which B ∈ Rq×p is a matrix of coefficients relating each column ofX to each
column ofY, andE ∈Rn×p is a matrix of error terms. The usual assumption in mul-
tivariate regression is that the error terms are uncorrelated, homoskedastic Gaussian
white noise:

Y ∼ Np(XB,Σ ⊗ In), where E[Y] = XB, andCov(Y) = Σ ⊗ In. (2)

Under the assumption of Gaussianity, the log likelihood of the multivariate regres-
sion model is given by

logL(θ |Y) =−np
2

log(2π)− n
2

log|Σ |− 1
2

tr[(Y−XB)Σ−1 (Y−XB)′]. (3)

The model covariance matrix, (inverse Fisher information matrix) can be derived
using the results of Magnus and Neudecker (1988, page 321), and is given by
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Ĉov(vec(B̂),vech(Σ̂ ))≡ F̂
−1 =

[
Σ̂ ⊗ (X′X)−1 0

0′ 2
nD+

p (Σ̂ ⊗ Σ̂)D+
p
′

]
(4)

The IFIM provides the asymptotic variance of the ML estimators when the model is
correctly specified. Itstraceanddeterminantprovide scalar measures of the asymp-
totic variance, and they play a key role in the construction of information complex-
ity. It is also very useful, as it provides standard errors for the regression coefficients
on the diagonals.

In most statistical modeling problems, we almost always fit awrong model to the
observed data. This can introduce bias into the model due to model misspecification.
The most common causes of model misspecification include: multicollinearity, au-
tocorrelation, heteroskedasticity, and incorrect functional form. This final type is
the type of misspecification we address. The common answer inthe literature to
nonnormality has been the utilization ofBox-Cox transformationsof Box and Cox
(1964), which does not seem to work consistently well, especially in the context of
multivariate regression. Of course, when performing regression analysis, it is not
usually the case that all variables inX have significant predictive power overY.
Choosing an optimal subset model has long been a vexing problem, and there are
many approaches to this problem. We follow Bozdogan and Howe(2009b) and use
the genetic algorithm to select a subset MVR model.

2.2 Robust Misspecification-Resistant Information Complexity
Criteria

Acknowledging the fact that any statistical model is merelyan approximate repre-
sentation of the true data generating process, informationcriteria attempt to guide
model selection according to theprinciple of parsimony. This principle of parsi-
mony requires that as model complexity increases, the fit of the model must increase
at least as much; otherwise, the additional complexity is not worth the cost. Virtu-
ally all information criteria penalize a poorly fitting model with negative twice the
maximized log likelihood, as an asymptotic estimate of the KL information. The
difference, then, is in the penalty for model complexity. Inorder to protect the re-
searcher against model misspecification, Bozdogan and Howe(2009b) generalized
ICOMP to the case of a misspecified MVR model and introduceICOMPMISP, which
can drive effective model selectioneven when the Gaussian assumption is invalid.
Here we show their results without derivations or proofs.

If we note θ ∗g as the value of the parameters vector which minimizes the
Kullback-Lieblerdistance (Kullback and Leibler, 1951) for some specified func-
tional modelf

(
θ ∗g

)
to the true functional modelg(θ ), and we useR to indicate the

outer-product form of the Fisher information matrix, we have

Theorem 1.Based on an iid sample, y1, . . . ,yn, and assuming regularity conditions
of the log likelihood function hold, we have
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θ̂ ∼ N(θ ∗g ,F−1
RF

−1), or
√

n(θ̂ −θ ∗g)∼ N(0,F−1
RF

−1). (5)

Note that this tells us explicitly

Cov(θ ∗g )Misspec= F
−1

RF
−1, (6)

which is called thesandwichor robustcovariance matrix, since it is a correct vari-
ance matrix whether or not the assumed or fitted model is correct.

Of course, in practice the true model and parameters are unknown, so we estimate
this with

Ĉov(θ ) = F̂
−1

R̂F̂
−1. (7)

If the model is correct, we must havêF−1R̂ = I , so

Ĉov(θ ) = F̂
−1

R̂F̂
−1 = IF̂−1 = F̂

−1.

Thus, in the case of a correctly specified model,̂Cov(θ ) = F̂−1.
For multivariate regression, we have already seen the inner-product form of esti-

mated IFIM in (4). The outer-product form̂R is derived in Magnus (2007), and we
show the result in (8).

R̂ =

[
Σ̂−1⊗X′X 1

2(Σ̂−1/2⊗X′)Γ̂1D+
p
′∆

1
2∆D+

p Γ̂ ′1 (Σ̂− 1
2 ⊗X) 1

4∆D+
p Γ̂ ∗2 D+

p
′∆

]
. (8)

This matrix takes into consideration the actual sample skewness and kurtosis of the
data. There is an issue of matrix stability to be addressed with the sandwich covari-
ance matrix, however. Numerical issues with estimating thesandwich covariance
matrix prevent it from approximating the FIM when the model is correctly speci-
fied. We employ theEmpirical Bayes covariance regularizationprocedure

Ĉov(θ )← Ĉov(θ )+
p−1

(n)tr(Ĉov(θ ))
Ip, (9)

to ensureĈov(θ ) is of full rank. Thus, the misspecification-resistant form of ICOMP
for multivariate regression is computed as (10). When the model is correctly speci-

fied, we expectĈov(θ ) = F̂−1, we getICOMP(F̂−1) in (11).

ICOMP(Ĉov(θ ))MISP = nplog2π +nlog|Σ̂ |+np+2C1(Ĉov(θ )) (10)

ICOMP(F̂−1) = nplog2π +nlog|Σ̂ |+np+2C1(F̂
−1) (11)

In both,C1 is the first order maximal entropic complexity of Bozdogan (1988): a
generalization of the model covariance complexity of Van Emden (1971), given by

C1(Ĉov(θ )) =
s
2

log
tr(Ĉov(θ ))

s
− 1

2
log|Ĉov(θ )|, s= rank(Ĉov(θ )). (12)
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3 Dimension Reduction with the Genetic Algorithm and
Probabilistic Principle Components Analysis

3.1 Genetic Algorithm

The genetic algorithm (GA) is a search algorithm that borrows concepts from bio-
logical evolution. Unlike most search algorithms, the GA simulates a large popula-
tion of potential solutions, encoded as binary strings. These solutions are allowed
to interact over time; random mutations and natural selection allow the population
to improve, eventually iterating to an optimal solution. The GA was popularized
by Holland (1975), and it is a widely recognized and popular stochastic search and
optimization algorithm. Today, there are many problems in science, economics, and
research and development that are solved using the GA. We refer the reader to ex-
isting books and articles regarding details of the algorithm. Some excellent books
are Goldberg (1989); Haupt and Haupt (2004); Vose (1999). Articles specifically
combining the GA with subset regression models would include Bozdogan (2004)
in which the GA was implemented for multiple regression subset selection under
the normality assumption. Also, Bozdogan and Howe (2009b) extended this work
to the case of misspecified multivariate regression.

3.2 Probabilistic Principle Components Analysis

In this paper, we employ Probabilistic Principle ComponentAnalysis (PPCA) as a
first step to independently reduce the dimensionality of theindependent and depen-
dent matrices. PPCA was developed in the late 1990’s and popularized by Tipping
and Bishop (1997). Here, we show some results from Tipping and Bishop (1997)
and Bozdogan and Howe (2009a) that are relevant to this research. Let x ∈ R1×p

be a random vector; assumex can be expressed as a linear combination oflatent
variablesand stochastic noise:

x = Λ f + µ + ε, (13)

where f ∈ Rm×1 holds the latent variables,Λ ∈ Rp×m is the loading matrix, and
µ ∈ R1×p defines the mean ofx. Maximizing the PPCA likelihood function, we get
the model covariance matrix in (14)

Ĉov(X) = UpL̂U ′p, (14)

whereUp contains all the eigenvectors of̂Σ . L̂ is almost a(p× p) matrix with
eigenvalues of̂Σ on the diagonals. Positions corresponding to variables notincluded
in the given subset are replaced with the mean of the left-outeigenvalues. Using this,
the inverse Fisher information matrix is given in (15).
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F̂
−1 =

[
Ĉov(X) 0

0′ 2
nD+

pĈov(X)⊗Ĉov(X)D+′
p

]
. (15)

The heavy-penalty form ofICOMP we use here is

ICOMPPEU(F̂−1) =−2logL(Λ̂ ,µ , σ̂2 | x)+2(
nm

n−m−2
)+ log(n)C1(F̂

−1),

(16)
wherem is the number of variables included from the original dataset. As with the
MVR model, we can use the GA to reduce the dimensionality of a data set, with
ICOMP as the objective function.

4 Numerical Results

Our dataset is a random sample of 1,400 students from the ALMALAUREA
database. ALMALAUREA was started as a service for addressing the faculty
choice of high school students based on interests, skills, and job expectations.
All variables have been normalized to vary between−1 and 1. As response vari-
ables, we haveMat1,Mat2, . . . ,Mat29: students judgements about different subjects
(math, physics, chemistry, engineering, statistics. . . ).Our regressor matrix is di-
vided into two “sets”. Answers regarding what the students think are important for
ideal future work - collaboration, time flexibility, . . . - are measured in variables
Nz1,Nz2, . . . ,Nz14. VariablesNp1,Np2, . . . ,Np32 measure students personal abili-
ties (concentration, time management, curiosity, . . . ). The predictor variables are
numbered from 1 to 14 for Nz, and 15 through 46 for Np.

Table 1 ICOMP Scores & Subsets of Predictors.
Criteria Score Best set of predictors

No Preliminary Dimension Reduction
ICOMP(F̂−1) 64004{1,2,4,5,6,9,12,13,16,17,19−21,25−27, . . .

29−31,34,35,38,41,42}
ICOMP(Ĉov(θ))MISP 59701 {1−46}

Preliminary Dimension Reduction of Only Dependent Variables Matrix
ICOMP(F̂−1) 9693 {1−46}

ICOMP(Ĉov(θ))MISP 9483 {1−46}
Preliminary Dimension Reduction of Both Responses and Regressors

ICOMP(F̂−1) 10825 45

ICOMP(Ĉov(θ))MISP 10963 45

For modeling this data, we first used the GA to identify optimal subset MVR

models, driven by bothICOMP(F̂−1) andICOMP(Ĉov(θ ))MISP. If the Gaussian
regression model was correctly specified, we would expect the criteria to select
very similar models with similar scores. Results shown in the first third of Table
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1 do not bear this out. While the substantially lowerICOMP(Ĉov(θ ))MISP score
indicates it has selected a better model, we have not been able to reduce the di-
mensionality at all. Mardia’s tests for multivariate normal skewness and kurtosis
(Mardia, 1974), reject the null hypothesis of normality, with results shown in Ta-
ble 2, confirming the misspecification identified byICOMP. Secondly, we used

Table 2 Normality Test Results for First Identified Model.

Skewness Kurtosis
β1 0 β2 899
β̂1 32.55 β̂2 986.84
χ2∗ 7594.92 Z∗ 38.75

95% Region[0,4652.09] 95% Region[−1.96,1.96]
p-value 0.00000 p-value 0.00000

Conclusion ε ≁ N(µ ,Σ) Conclusion ε ≁ N(µ ,Σ)

PPCA as a preliminary step to reduce the dimensionality of the matrix of responses.
Using ICOMPPEU(F̂−1), the GA selected a model with only 4 dependent vari-
ables:Mat26−Mat29. We then attempted to identify a subset MVR model using just
these responses. TheICOMP scores indicate that the Gaussian regression model is

misspecified, withICOMP(Ĉov(θ ))MISP < ICOMP(F̂−1), though both criteria se-
lected the fully saturated model. These results are shown inthe middle third of Table
1. Mardia’s expected and sample kurtosis values of 24 and 22.6 were very close; the
test statistic for skewness, however, was 214 - much higher than the critical value of
31. Once again, we verify the misspecification identified byICOMP.

Finally, we also used PPCA to select a subset of only 4 of the 46independent
variables. Those selected wereNp29−Np32. We then ran two sets of the GA a
third time, using bothICOMP versions, with results displayed in the bottom third
of Table 1. Note how close theICOMP scores are (relative to the other pairs), and
that both criteria selected the same substantially reducedsubset MVR model, using
only a single predictor for the four responses. Thus, we havegone from an overly
complex misspecified multivariate regression model, to a model that is both (very
nearly) correctly-specified and parsimonious.

While our end result would suggest the misspecification-resistant ICOMP was
not needed, recall the first MVR subset model identified. If wehad only used
ICOMP(F̂−1), we would have had less motivation to use PPCA to reduce the di-
mensionality of the model. We would have settled upon an MVR model with 32
responses and 24 regressors.

5 Concluding Remarks

In this research, we have applied a novel hybrid dimension reduction technique for
multivariate regression. While independently reducing the number of dimensions in
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both the matrix of responses and regressors using PPCA and the GA, we used a new
misspecification-resistent form ofICOMP. These methods allowed us to identify a
nearly correctly-specified simple regression relationship with 4 of 29 dependent and
1 of 46 independent variables, rather than a misspecified overly complex relation-
ship.
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