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COMPUTER ADAPTIVE TESTING WITH EMPIRICAL PRIOR INFRMATION:
A GIBBS SAMPLER APPROACH FOR ABILITY ESTIMATION

Abstract
In this paper, empirical prior information is inthaced in computer adaptive testing.
Despite its increasing use, the method suffers feonveak measurement precision,
especially under particular conditions. Therefateis shown how the inclusion of
background variables both in the initialization atte ability estimation is able to
improve the accuracy of ability estimates. In jgatar, a Gibbs sampler scheme is
proposed in the phases of interim and final ab#gyimation. By using simulated data,
it is demonstrated that the method produces marerate ability estimates, especially

for short tests and when reproducing boundarytadsli

Keywords: adaptive testing, empirical prior infotina, Gibbs sampler, measurement

precision.

1. Introduction

In recent years, we have assisted to a rapid dewvelot of computer-based testing in
the field of educational assessment, especiallgdaptive testing. Furthermore, the
practice of conducting the test administrationad@ptive testing is becoming more and
more well-established. Since the early 1970s (L&@70; 1971), studies have been
conducted to develop the theoretical frameworkavhputerized adaptive testing (CAT)
(see e.g. van der Linden and Glas, 2000; Wainal.,e2000). The basic idea of CAT is
to simulate the behavior of a real oral examinetindua testing occasion. The most
likely situation is that he/she would start with gmtial item and, depending on the
examinee's response, proceed with a more diffmutasier item, until the examinee's
grade of proficiency becomes sufficiently preci8@alogously, in computer adaptive
testing a first item is submitted to the test-takiethe item is endorsed, a more difficult
item is presented, otherwise an easier one istedldxy the algorithm to be submitted.
The procedure goes on until a pre-specified cateris met and a measure of the
examinee's proficiency is given. In this sense,algerithm is adapted to the candidate

because items are chosen exactly to met his/heifispéions in terms of ability.



CAT relies strongly on item response theory (IRdgyeloped in order to estimate
individual and item characteristics after a teshamistration (see e.g. Lord and Novick,
1968). In fact, the item pool is calibrated accogdio a particular IRT model, based on
data nature and fit, and the response processusnasl to follow a chosen model.

Despite the wide use of computer adaptive testihg, method has a number of
problems in use as item pool maintenance, testnddgeand item exposure.
Furthermore, technical issues as initializationiitgbestimation, algorithm stopping
rule should be improved, especially under particatanditions.

In this study, the focus is on the ability estiroatfor short CAT tests. Nowadays, in
the area of psychological measurement but not aetgminers are more and more
interested in obtaining as much information as bssabout candidates by using
restricted resources. This goal may be achievedidayg short test versions, which
allow a considerable saving of time and money. [deeg, an important consequence in
adaptive testing is the decrease of item overexpdsecause, given a fixed number of
items in the pool, items are selected less fredye@n the other hand, the main interest
in CAT is in the precision of the ability estimateghich may be not sufficiently
accurate adopting short tests. A possible solutmithe estimation improvement is
represented by the introduction of background mfmtron about individuals. In fact,
besides the candidates’ responses, more and mfmenation about individuals is
stored in databases (e.g. think about large sahleational assessments as PISA or
TIMMS) and can be used in order to obtain more eteuestimates of candidates’
degree of proficiency. Background variables maynotuded in CAT in two different
stages. Firstly, the initialization of ability estaite can make use of prior information
(see van der Linden, 1999). As a consequence,ter h@bvisional ability estimate is
provided and the first item is selected closeht® true ability of the person. Secondly,
background variables may be included in the estangtrocess through an empirical
prior distribution. A natural context this approadan be developed within is
represented by Bayesian statistics, where liketih@nd prior distributions are
combined in order to obtain the posterior distridutof interest. Recently, Markov
chain Monte Carlo (MCMC) methods, and particuldig Gibbs sampler (Geman and
Geman, 1984), have been applied extensively indRimation because they are able to
provide flexible algorithms for a large variety ofiodels. By introducing the empirical
prior within MCMC, the posterior distribution is meinformative about the candidate

and better ability estimates can be obtained.



In the paper of van der Linden (1999) it is shovawhprior information can be
included in the ability initialization. On the othkand, the purpose of this paper is to
show how collateral information can be used evemengficiently by introducing it
both in initialization and ability estimation. Fhermore, the paper describes how the
empirical prior can be integrated in the estimatpyocess within the Gibbs sampler
scheme.

The paper first gives an overview of how prior imh@tion can be included in CAT.
Then, it is shown how the Gibbs sampler can be emphted in computer adaptive
testing effectively in order to integrate infornwaticoming from both likelihood and
prior distributions. The advantages of using backgd variables in CAT
administration are discussed through a simulatiadys which reports levels of ability
precision when empirical prior is introduced insteaf standard priors. A special
attention is given to the case of short tests (eg.length less than 10 items) in order to
show the potentialities of the algorithm.

2. Adaptive Testing with Empirical Prior Information

In testing occasions, besides the candidates' mespoon a target test, a set of
individual covariates may be available. Backgrouratiables may include scores
obtained by the examinees on other tests or tesetio-economic or demographical
variables, and so on. Given the availability of ksusformation, its inclusion in the
investigation of candidates’ ability does make send/hether and how collateral
information about examinees may be included in I&Jility estimation has been
discussed by various authors (e.g. Zwinderman, ;19997; van der Linden, 1999;
Matteucci and Veldkamp, 2008). As reported in vanldnden and Pashley (2000), one
reason for introducing collateral information abth# candidates in adaptive testing is
its weakness in the ability estimation when deaduiidp short tests, caused by a possible
bad start in the ability initialization. Even ifig well known that the convergence of the
algorithm is not affected by the choice of startuadues, a rough initial inference about
ability may cause a very slow convergence. In thlewing, the different steps of CAT
with empirical prior are described. A particularctsen is dedicated to the ability

estimation.



2.1 The Phases of CAT

Typically, in computerized adaptive testing, tremtparameters are treated as known
and the main purpose of test administration isathity estimation of test takers. In the
common practice of item pool calibration, the itgarameters are estimated on the
basis of a particular IRT model. The model showddble to reproduce the individuals’
response process; therefore, it describes the matieal function linking the response
probability to a set of item parameters and abiliyce the item parameters have been
estimated with sufficient precision, items withger features are included in the item
pool to be administered. The choice of the modeledds on different issues as item
format, dimensionality specification, and fit. Fdne purpose of this study, the
unidimensional two-parameter normal ogive (2PNO)deto(Lord, 1952; Lord and
Novick, 1968) is assumed to underlie the responmeeess. The model has been
designed for binary observed data, employing a datie standard normal distribution
to express the probability of a correct responsartatemj, with j=1,...,k items, as a

function of ability and item parameters, as follows

PO =1l) = (o -5) = [ el )
j @; j B me Z

whereY; is the random response variable for itgntaking the valuel for a correct
response and) otherwise,o; and J; are the item discrimination and difficulty
respectively, and is the unidimensional ability. Model (1) assumeglimensionality,
l.e. a single latent trait accounts for the individbesponses. Depending on the data
characteristics, other models are possible and bese employed in CAT.
Once the items have been calibrated according t&®&mmodel, computer adaptive

testing works with the following steps:

1. Ability initialization.

2. Item selection.

3. Item administration.

4. Ability estimate update.
Steps 2-4 are repeated iteratively until a stoppirg is satisfied and a final estimate of
the candidate’s ability is obtained. Potentiallp, @mpirical prior may be introduced
both in the initialization of the algorithm (step &nd in the interim-final ability

estimation (step 4).



In the first step, an initial provisional abilityalue is required for the procedure to
start. The ability initialization may be fixed, @dom or “adaptive”. When the
initialization is fixed, each test-taker is assign® the same ability starting value,
typically equal to zero to reproduce the averageevan the ability domain [-3; 3],
while a random initialization provides a differdmit random allocation in the ability
scale for each individual. Both solutions may compewith starting values which are
very far from the true ability level. On the otheand, an adaptive initialization for the
algorithm may be conducted providing ad hoc stgrtmalues based on background
information about the candidate. In order to intro&l empirical information, a relation

between the abilityy and a set oP individual covariategX,}, with p=1,...,R is

assumed in the form of a linear regression, asvid|

0; = Bo + p1Xi1 + -+ BpXip + &, (2)

where the error term are assumed to be indeperml@htnormally distributed as
g~N(0,0?), with i=1,...,nindividuals. The assumption of a linear regressiwtel is

translated into a normal conditional distributidn& given the covariates, as

0i1Xi1, o, Xip~N(Bo + 1 Xi1 + -+ + BpXip; 0°). (3)

Equation (3) represents the informative prior dsttion for ability. When regression
(2) is estimated with satisfying precision and ¢juality of the background variables is
good,i.e. they are high predictors, the estimated regressiefficients may be used in
order to initialize the ability in CAT for a generiexamineei with realizations

(%1, -, x;p), as follows

i = Bo + Brxi1 + -+ + Bpxip. 4)

The advantage of usingd hocinformation to initialize the algorithm is mainkp
shorten the procedure. Within this approach, initedues may be much more reliable
and accurate initial inferences about ability abdeao shorten time to convergence

significantly.



Before proceeding with item selection (step 2), filklowing notation on CAT is
introduced. Gived calibrated items in the pool, indexedjby,...,J, denote the rank of
selected items ds=1,...,K Hence, when choosing tlk#h item to be administeregk is
the index of the chosen itenG.i1={j 1,j2,....k-1} IS the set of selected items and
R&{1,...,J]\S-1 is the set of remaining items in the pool. In fbkowing, the index
i=1,...,n of examinees is omitted and the test administnaisoreferred to a generic
candidate implicitly.

In order to proceed with the item selection (stgp \&rious criteria have been
proposed in the literature. A classical and stridogtvard method which is also applied
in linear testing is the maximum-information crter (Birnbaum, 1968). When
selecting thekth item, the method works choosing the item whiciximizes Fisher’s

expected information function at the current apiialued = ,_,, as follows
Jx = arg mflx{lj(ék_l);j € Rk}. (5)

The form of the information function depends on ffaticular chosen IRT model.

According to model (1), the information functioncoenes

-1/2 2 2
I;(Bx-1) = &f (e exp(-nj/2) ’ (6)

®(n;)[1 ~ @(n;)]

where n; = ajék_l—(Sj and ®(-) is the standard normal cumulative distribution
function. The method is widely used; nevertheléss,maximum-information criterion
associated with a fixed ability initialization lesatb the problem of item overexposure.
In fact, when CAT is initialized at the averagelifpilevel 8, = 0, or at any fixed
value, adopting Birnbaum’s criterion means selgctihe same first item for each
examinee indifferently. On the other hand, the ageempirical information in the
ability initialization, together with the maximumiformation criterion for item
selection, avoids this problem. Different critefta adaptive item selection have been
proposed, also adopting a Bayesian approach (ge®wen’s procedure; Owen, 1969;
1975). For the purpose of the current work, thesital maximum-information rule is

adopted. In fact, prior information is not direcihfroduced at this phase and a classical



criterion is considered sufficient. For a reviewbhaith classical and modern procedures
for item selection, see van der Linden & Pashi@p®@

Following CAT algorithm through step 3, the chogem is administered to the test-
taker and the answer is recorded. The responsgbsegquently used in step 4, when
ability should be estimated. Steps 2-4 of the mtligm are repeated iteratively until a
stopping rule is satisfied, as a fixed test lenmtla pre-specified level of precision for
the ability estimate.

One crucial issue in CAT certainly is the measumnpeecision of ability estimates.
Typically, standard errors of ability score estiezatire not negligible and efforts in the
direction of improving the accuracy of ability estites should be done, especially
under particular conditions. In fact, the task bfaining an accurate ability estimate can
be hard when poor information comes from the resesmor when the examinee’s level
of proficiency is extreme (very high or very lows a consequence, in case the test is
particularly short or when it is difficult to calidte the items around the individual
ability, the use of prior information is highly mmended.

In adaptive testing, a number of methods for thiétyalestimation are in use. These
include maximum likelihood procedures or Bayesiagthuds (see van der Linden and
Pashley, 2000). Due to its growing and relativegwnuse in IRT, a Gibbs sampler
scheme is implemented for ability estimation in CAllhe algorithm, as shown in
Matteucci and Veldkamp (2008), is able to integraffciently data coming from
individual responses and empirical prior informatidhe method is illustrated in detalil

in the next section.

2.2 MCMC Ability Estimation

To perform a Bayesian ability estimation in CATetBibbs sampler (Geman and
Geman, 1984) is implemented. The algorithm beldogthe family of Markov chain
Monte Carlo (MCMC) methods which introduce simudatifor the purpose of
reproducing a target distribution by using one arensequences of correlated random
variables. According to the Bayesian approach, balility and item/regression
parameters are regarded as random variables. Qremergonents of the joint posterior
distribution of interest have been individuatede thingle conditional distributions
should be specified. The Gibbs sampler works argasiuitable samples from each
single conditional distribution iteratively untilonvergence. Among others, Albert
(1999), Béguin and Glas (2001), Fox and Glas (20adyl Matteucci and Veldkamp



(2008) dealt with Gibbs sampler estimation withtem response theory models. In the
current work, the algorithm is modified in orderdstimate ability in adaptive testing
with the inclusion of an empirical prior.

Generally, the presence of the binary responseabiariy; can be modeled by
introducing continuous underlying variabl&s which are independent and identically

distributed as;~N(a;6 — §;; 1). The relation between the observed and the uridgrly

variables is the following

1 ifZ>0,
b if 2, <0, 0

J
According to Equation (7), the continuous variablis greater than zero if and only
if the corresponding observed respolfds a success; thenderlying variableapproach
(Bartholomew, 1987; Bartholomew and Knott, 1999saldes the partition of the
continuous variabl& in order to represent the dichotomyYof

From a fully Bayesian perspective, the joint pastedistribution of interest is
P(Z,6,¢,B,0%|Y,X) = P(Z]6,§Y)P(0|B,0% X)P(E)P(B)P(c?), (8)

whereg is the vector including all item parameters. Imelr testing, given the data on
the responses and the observed covariates, thes Gimmpler would have worked
iteratively sampling from the following single catidnal distributions:

1. Z6,&

2. 0|Z,& B, >

3. §16,Z.

4. B|6,0%

5. |6, p.

On the other hand, in adaptive testing both itechragression parameters are treated
as known; therefore, their conditional distribugoare not needed in the scheme. In
CAT, the Gibbs sampler works only with the condiibdistribution of the underlying
response variable; (distribution in step 1) and the posterior digitibn of the ability
6 (distribution in step 2), in order to proceed witle ability estimation. The single
conditional distributions, compared to the joinsfawior, are treatable and easy to draw

samples from.



With regard to the first conditional distributioa,classical result (see e.g. Johnson
and Albert, 1999, chapter 3) is that the distribtof eachZ; given the ability and the

item parameters is a truncated normal, as follows

(77], 1) with Z; > 0 if

Z;|0,
6.~ {N(n],l) with Z; < 0 if

Yy =
v (9)

The conditional distribution of the underlying \atslesZ; is normal, with expected
value equal to); = a;6 — 6; and variance 1, truncated by 0 to the leffj#1 (correct
response to iterj) and the right ifY;=0 (incorrect response to itejn

The second conditional distribution is obtained bormg the likelihood and the
informative prior distribution, according to Bayasiconjugate families of distributions.

Starting from the normal regression modgk a;0 — §; + v;, forj=1,...,J, we obtain

wherey; arei.i.d.~N(0;1) Equation (10) is simply the regression of thentgon the left
side Zj+¢; on the independent variabdg whered is the regression coefficient. Hence,

the likelihood function of the abilit§ follows a normal distribution, as
o~N(8; v), (11)

where 6 = (aja;) " @}(Z; + &) is the least square estimatefoandv = (aja;) " is

a? and the

the variance. Practically, the variance can beutaied asv =1/ Z] 1%

expected value & = Z a](Z + 6; ) /Z] 1 ] The prior distribution for the ability

is the empirical normal prior (3) and the combioatof likelihood and prior leads to a

normal posterior distribution, as follows

02,8, 62N (@/v+Xﬁ/JZ _ 1 ) (12)

1/v+1/02 ' 1/v+1/02

After thekth item has been administered, the Gibbs samp#dlésto simulate ability as

follows:



1. Start with known item parametets and a provisional estimate @0),
6 = 6,_,, and sampl&® from distribution (9), withj € Sy.
2. UseZ® and knowrt, B, o° to samples™ from distribution (12).
3. Repeat steps 1-2 with the updated values, itetgtive
The steps describe the estimation of the interiffityabSimply, after the last item has
been administered, the same steps may be applitedive updated likelihood in order

to obtain the final ability estimate. The Gibbs géen has been implemented in the
software MATLAB 7.1 (The MatWorks Inc., 2005) .

3. Simulation Studies

The design of an adaptive test may be very contelicand several decisions should
be taken into account in order to proceed with dhgorithm. A popular choice in
standard CAT, is to initialize the ability at a dik value (e.g. zero), to adopt the
maximume-information item selection and to estinthi ability on the sole basis of the
individual responses. The evident consequences saiguthis approach are the
overexposure of the first item, which is repeatealiyninistered, and the absence of a
useful source of information as it is prior knowdedn the ability estimation.

In order to compare the accuracy of ability estesain adaptive testing by using
different criteria for the initialization and théility estimation, simulation studies are
conducted under different conditions. The first aion is designed to compare the
performances of the algorithm with and without emepi prior for different test
lengths. In the second study, different settings ewaluated for a very short test of
length equal to 5. In particular, the estimatiosutes are compared for the MCMC CAT
proposed by the authors, CAT without empirical prend CAT with only empirical
ability initialization. Finally, the issue of thelgarithm convergence is taken into

account.
3.1 Prior in Use: a Comparison with Different Tésingth

The purpose of the first simulation study is towshbe potentiality of the empirical
prior use in the parameter recovery within the Gibampler scheme. To this aim, two
different CAT designs are compared: the first ookoWs the common practice of
initializing the ability at zero and assuming anstard normal as a prior for the ability



distribution, while the second one adopts an emgdiprior both in the initialization and
in the ability estimation, as shown in the previgsestion. For simplicity of description,
the former approach is denominateidndardwhile the latter is calle@mpirical In
both cases, item selection is conducted by usiegnximum-information criterion.
This is equivalent to choose the item which diffigus the closest to the provisional
ability estimate of the simulee.

In the study, an item bank of 200 items is employeith item parameters sampled
as a;~U(0.7;2) and §;~U(-3;3), for j=1,....k . When the empirical approach is
adopted, the linear relatioh= 0.2 + 0.7X + € with e~N(0,0.3) is assumed between
the ability & and a single covariatX. Since 6 is known in the simulation, the
distribution ofX is normal with parameters depending on the limeanbination of the
normal distribution ok. Response generation is simulated for differeveelieof ability
from -3 to 3 according to model (1). In order ta gesults for tests consisting of a
different number of items, the CAT stopping rulelefined as fixed test length of 5, 10,
15 and 20 items. The Gibbs sampler with a chaigttenf 5000 iterations and burn-in
of 500 is employed for the ability estimation. Thetput consists in the mean and
standard deviations sampled from the posterioridigion of ability. The choice of the
chain length and the number to discard iteratiams raotivated by the convergence
study described in Section 3.3. A number of 1(Qflications have been conducted in
the simulation. Besides the expected a posteribmate and the standard deviation,
also the average bias and the root mean squans dRMSE) have been calculated.
Both indicators compare the distance between thednd the simulated values in each

replication. In particular, given Q replicationsa®is defined as
Bias(9) = 1/Q £2_,(8; — Oerue) (13)

Whered,, is the estimated ability for replicatigpwith g=1,...,Q andf,,, is the

simulee’s true ability. RMSE is calculated as folto

RMSE () = [1/Q 32_.(6, - éme)z]l/z. (14)

Table 1 provides the results of the simulation gtud case of a very short test

consisting of 5 items.



[INSERT TABLE 1 ABOUT HERE]

As can be easily noticed, compared with the stahdarsion of CAT, the parameter
recovery of empirical CAT is more accurate in terofsposterior mean and bias,
especially when deviating frof = 0. Particularly, for boundary abilities as -3, -2.5,
2.5 and 3, standard CAT produces seriously biasgthates while the introduction of
ad hoc prior information leads to smaller bias.adle few items bring very little
information about the individual trait and the pridistribution really dominates the
estimation. Across the different true ability vadustandard deviation and RMSE are
always smaller in the empirical solution than ia standard one.

Analogous conclusions can be drawn from Table Zretthe simulated values are

reported for a test consisting of 10 items.

[INSERT TABLE 2 ABOUT HERE]

When increasing the number of items, an improvenrettie precision of estimates
is denoted for standard CAT in terms of bias, a¥standard deviations and RMSE are
always larger than the empirical solution. Tablear®d 4 show the results of the
simulations conducted for adaptive tests of 152hdems, respectively.

[INSERT TABLE 3 ABOUT HERE]

[INSERT TABLE 4 ABOUT HERE]

Due to the increasing number of items, standard ®@AGomes more precise, and
slightly outperforms the empirical approach in termf posterior mean and bias.
However, the empirical CAT shows a better perforogann terms of standard
deviations and RMSE. The comparison of true andilsited values for central abilities
suggests that there are not considerable diffeseirce@eproducing the ability values
between the two approaches.

The whole simulation study suggests that the intctidn of an informative prior
leads to an improvement of the measurement precigiothe individual ability
assessment. This improvement becomes very evideshbrt tests and when shifting to



boundary ability values. This evidence cannot heegaized to the case of longer test
(e.g. more than 20 items): it is well known thahen the test length increases, the prior

distribution lacks in strength and the two solnidoecome more and more similar.

3.2 Introduction of Prior Information at Different Lelge

According to the findings of the previous studye tise of prior information in CAT
shows its maximum effectiveness in case of verytdlests. In the current simulation
study, the focus is on the comparison of diffetemels of prior information for a target
test consisting of 5 items. Results of Table 1 mdgg empirical and standard CAT are
compared to an intermediate solution, nam&emi-empirical where empirical
information is used only in the initialization ofié ability estimate. In fact, when
problems of fairness arise, it can be very diffictd justify the introduction of
background variables directly related to the eusbnaof the performances in the
estimation. Table 5 illustrates the results ofdimeulation.

[INSERT TABLE 5 ABOUT HERE]

The empirical initialization CAT shows an intermai#i behavior respect to the other
two approaches. In fact, from the comparison betvibe estimated and the true ability
values, it can be seen that the results are mareiser than standard CAT but less
accurate than empirical CAT, when deviating fromAlso, standard deviations are
always intermediate between the correspondent sabfieghe standard and empirical
approaches. Figure 1 shows the trend of the RM&&ssaithe ability true values, for the

three approaches.

[INSERT FIGURE 1 ABOUT HERE]

Figure 1 provides a clear visualization of the puotdity of using empirical
information both in the initialization and in théikty estimation when dealing with
short tests. For the empirical solution, the RM&E/e is always below than the curves
associated with the standard and the semi-empiapgkoaches. The difference in

precision is particularly significant for abilitgvels that satisf{jg| > 2.



3.3 A Note on the Algorithm Convergence

One of the most critical issues in MCMC estimatisnassessing the convergence of
the algorithm. A large number of researchers hgprEaached the problem turning out
with different solutions, sometimes conflicting r(fa review, see Cowles and Carlin,
1996). When simulating a MCMC chain, the first this to check the trace plot of the
simulated random draws. Even if convergence cabaansured by simply looking at
the iteration history, a clearly critical situatiaf not-convergence can be detected
immediately. After computing the posterior mead #me standard deviation, a measure
of the standard error of estimate should be contbwis suggested in Gelman, Carlin,
Stern and Rubin (2004, chap. 10), an approximatasare of the accuracy of the
sample mean estimate is the standard deviatiodetivby the square root of the number
of simulations, which is nothing but the posteritmviance. Moreover, an estimate of
the Monte Carlo standard error should be compuischa rule of thumb, the estimated
Monte Carlo error should be less than 5% of thedsted deviation.

In order to decide the necessary number of iterati@r obtaining an acceptable
accuracy, a study has been conducted by simulaimge chains. In particular, the
simulation design of Section 3.1 is drawn on in ¢hge of ability9=0 and test length
T=5. The purpose of the study is to evaluate the aoguof the posterior mean in
simulations conducted by using different numbeitefations (1000, 2000, 5000 and
10000). Table 6 shows the results both for the gogbiand the standard approaches.

[INSERT TABLE 6 ABOUT HERE]

The number of iterations is specified in the fastumn, while the number to discard
iterations (burn-in phase) is contained in columme@sides the posterior mean and the
standard deviation, an estimate of the Monte Cartor (MC error) is reported. The
estimate is calculated as the square root of thetsg) density variance estimate divided
by the number of actual iterations (time-seriesneste), and it was proposed by
Geweke (1992) as an estimate of the asymptoticatdrerror. The MC error has been
calculated by using the R package BOA.

One single replication, depending on the numbeteddtions in the chain, took only
few seconds to complete (from 2 to 6 seconds) Br2a GHz Intel Core2 laptop. The
simulations conducted by using 1000 iterations dibsatisfy the accuracy condition of

MC error less than 5% of the standard deviationlenthe solution with 2000 iterations



slightly satisfy it. On the other hand, running 80& 10000 iterations turns out with
MC errors significantly lower than the 5% of stardldeviation and are considered a
good standard of accuracy.

As a consequence of these results, the adopted eruofibterations was settled to
5000. The chosen chain length represents a googroomse between the estimate
accuracy and the time needed to complete the #igori When running 100
replications, each one with 5000 iterations, onlynutes are needed to complete.
Therefore, this solution allows a fast implememtatin the real practice of testing.

Figure 2 shows the trace plot of the simulationhws0O00 iterations, when prior

information is included.

[INSERT FIGURE 2 ABOUT HERE]

Clearly, the plot shows a random fluctuation of #aenple values around the mean.
The absence of autocorrelation (at least at a lggeh than 5) is confirmed by the

autocorrelation plot reported in Figure 3.

[INSERT FIGURE 3 ABOUT HERE]

Usually, one of the main drawbacks of MCMC is tiree consuming and slow
convergence of the algorithm; however, adoptingabeve mentioned features for the
chain, the simulation represents a good comproimtereen speed and accuracy. Of
course, we should also mention that the model impiged is rather simple, because it
is a unidimensional model for binary indicators.olfably, the extension of the
algorithm to more complicated model, as multidimenal models, would come out

with a slower convergence.

4. Discussion

The study introduced the problem of ability estiilmatin computer adaptive testing
under particular situations of uncertainty abowt ttandidate’s level of proficiency.
Examples are CAT consisting of a small number emg or candidates with latent

ability far from average. A solution to these saserepresented by the introduction of



prior information in the algorithm in order to olstanore accurate ability estimates.
This approach is developed within the MCMC methgdsticularly adopting the Gibbs
sampler to integrate likelihood with empirical prinformation about the candidate.

The findings of simulation studies suggest thatithduction of informative priors
is effective in improving the accuracy of abilitgtinates, especially when dealing with
short tests and when the ability is far from zelo.particular, the measurement
precision is improved when empirical priors arerdadticed both to initialize and to
estimate ability. The use of empirical informatisnhighly recommended with short
tests (e.g. length equal to 5), when the standapdoaches based on a standard normal
prior fail to reproduce the true ability values. dpge the great availability of
background variables concerning the individuals, glality of information remains a
fundamental issue. The usefulness of the descridpgdoach depends highly on the
predictive capability of the collateral variables.

When problems of fairness arise and empirical mfttion cannot be used in the
ability estimation, an initial inference which is alose as possible to the true ability

value is recommended, i.e. an empirical CAT inigetion is desiderable.
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TABLE 1

Ability parameter recovery for empirical and startsolutions (T=5).

Trued Empirical Standard

0 s.d.| Bias| RMSE 6 s.d. | Bias| RMSE
-3 -3.09/ 0.57|-0.09| 0.42 | -2.33/0.88| 0.67 | 0.69
-2.5 | -2.61]0.53|-0.11|, 0.37 | -2.21/0.82| 0.29| 0.39
-2 -2.06/ 0.46| -0.05| 0.38 | -1.88/ 0.70| 0.12| 0.41
-1 -1.02/0.41,-0.02| 0.28 | -0.91/0.51| 0.09| 0.30
0 -0.08/ 0.40|-0.08| 0.31 | 0.04| 0.46 0.04 | 0.33
1 1.04| 0.40 0.04| 0.27 | 0.96 0.50-0.04| 0.35
2 207| 047 0.07| 0.34| 1.94 0.77-0.06| 0.43
25 258| 053 008| 034 | 219 0.87-0.31| 0.36
3 3.13| 0.56 0.13| 0.44 | 2.23 0.89-0.77| 0.78

TABLE 2

Ability parameter recovery for empirical and stamtsolutions (T=10).

Trued Empirical Standard

0 s.d. | Bias| RMSE 0 s.d. | Bias| RMSE
-3 -3.08/ 0.64| -0.08| 0.31 | -2.88/0.98| 0.12| 0.34
-2.5 | -2.66/ 0.59|-0.16| 0.35 | -2.50/ 0.80| -0.00| 0.40
-2 -2.09/0.48|-0.09| 0.29 | -1.98/ 0.62| 0.02| 0.41
-1 -1.04/0.41|-0.04| 0.22 | -0.99 0.47| 0.01| 0.25
0 0.03| 0.39 0.03| 0.17| 0.03 0.420.03| 0.22
1 1.00| 0.39 0.00| 0.22| 0.99 0.45-0.01| 0.26
2 212| 048 0.12| 0.28| 1.9/ 0.62-0.04| 0.33
2.5 266| 059 0.16| 0.33| 244 0.81-0.06| 0.35
3 3.08| 0.64 0.08| 0.28 | 2.83 0.97-0.17| 0.34




TABLE 3
Ability parameter recovery for empirical and stamtsolutions (T=15).

True® Empirical Standard

0 s.d.| Bias| RMSE 6 s.d. | Bias| RMSE
-3 -3.11{0.71|-0.11| 0.31 | -2.96/ 0.94| 0.04 | 0.33
-2.5 | -2.61]0.61|-0.11|, 0.30 | -2.43/0.71| 0.07 | 0.27
-2 -2.04/ 0.49|-0.04| 0.23 | -1.96/ 0.58| 0.04 | 0.27
-1 -1.01{0.42|-0.01| 0.18 | -1.04{ 0.46|-0.04| 0.21
0 0.02| 0.39 0.02| 0.16| 0.02 0.420.02| 0.19
1 1.02| 0.40 0.02| 0.17 | 0.99 0.44-0.01| 0.18
2 209| 050 0.10| 0.27| 2.02 0.580.02| 0.24
25 264| 062 0.14| 0.28| 252 0.770.02| 0.30
3 3.11| 0.7 0.11| 0.34| 2.95 0.94-0.05| 0.34

TABLE 4

Ability parameter recovery for empirical and stamtsolutions (T=20).

True® Empirical Standard

0 s.d. | Bias| RMSE 0 s.d. | Bias| RMSE
-3 -3.16/ 0.77|-0.16| 0.38 | -2.93/0.90| 0.06 | 0.27
-2.5 | -2.62/0.64|-0.12| 0.28 | -2.53/0.75|-0.03| 0.30
-2 -2.07/ 0.52| -0.07| 0.21 | -2.04/ 0.60| -0.04| 0.25
-1 -1.04| 0.44|-0.04| 0.18 | -1.01/ 0.46|-0.01| 0.19
0 0.03| 0.39 0.03| 0.15| 0.02 0.410.02| 0.16
1 1.01| 041 0.01| 0.18 | 0.97 0.44-0.03| 0.18
2 209| 051 0.10| 0.212| 2.07 0.6p0.07| 0.24
2.5 2.68| 0.66 0.18| 0.30| 254 0.760.04| 0.26
3 3.18| 0.78 0.18| 0.33| 2.98 0.93-0.02| 0.28




TABLE 5

Ability parameter recovery for empirical, semi-angal and standard solutions (T=5).

Trued Empirical Semi-empirical Standard
® |s.d. | Bias| RMSE 6 | s.d.| Bias| RMSE 8 | s.d.| Bias| RMSE
-3 -3.09/ 0.57|-0.09| 0.42 | -2.40/0.77) 0.60| 0.71| -2.330.88| 0.67 | 0.69
-2.5 | -2.61] 0.53|-0.11| 0.37 | -2.27/0.70| 0.23| 047 | -2.210.82| 0.29| 0.39
-2 -2.06| 0.46| -0.05| 0.38 | -1.77/0.58| 0.23| 0.48 | -1.880.70| 0.12| 0.41
-1 -1.02/0.41|-0.02| 0.28 | -0.96/ 0.50| 0.04| 0.32| -0.910.51| 0.09| 0.30
0 -0.08/ 0.40|-0.08| 0.31 | 0.00| 0.47 0.01| 0.29| 0.04 0.460.04| 0.33
1.04| 0.40 0.04| 0.27 | 093 0.50-0.07| 0.34 | 0.96| 0.50-0.04| 0.35
2 207| 047 0.07| 034 | 1.93 0.62-0.07| 0.38 | 1.94| 0.77-0.06| 0.43
25 | 258| 053 0.08| 0.34| 2.16 0.71-0.34| 0.53 | 2.19| 0.87-0.31| 0.36
3 3.13| 0.5 0.13| 044 | 240 0.7y-0.60| 0.72 | 2.23| 0.89-0.77| 0.78
TABLE 6
Estimated accuracy of simulation across differemhber of iterations.
N. iter | Burn-in Empirical Standard
0 sd. | 5%s.d.| MCerror 8 sd. | 5%s.d.| MC errof
1000 100 -0.389) 0.386  0.019 0.022 0.113 0.510 0.0250.030
2000 200 -0.001 0.379 0.019 0.013 0.254 0.482 0.0240.023
5000 500 0.118| 0.389 0.019 0.009 -0.111  0.445 0.0220.010
10000 1000 0.078/ 0.390  0.019 0.006 -0.305 0.451 230.0 0.007




FIGURE 1
Root mean square error (RMSE) for the three diffeagpproaches (empirical, semi-

empirical and standard) when the test consistsitains.
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FIGURE 2

Trace plot of a single chain, in the case of T=8 empirical information introduced.
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FIGURE 3

Autocorrelation plot.
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