
 

 

 

 

 

COMPUTER ADAPTIVE TESTING WITH EMPIRICAL PRIOR INFORMATION:  

A GIBBS SAMPLER APPROACH FOR ABILITY ESTIMATION1 

 

 

MARIAGIULIA MATTEUCCI  

UNIVERSITY OF BOLOGNA 

e-mail: m.matteucci@unibo.it 

 

 BERNARD P. VELDKAMP 

UNIVERSITY OF TWENTE 

e-mail: B.P.Veldkamp@gw.utwente.nl 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                           
1
 Corresponding author: Mariagiulia Matteucci, Statistics Department “P. Fortunati”, 

University of Bologna, via Belle Arti 41, 40126 Bologna (Italy).  

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AMS Acta

https://core.ac.uk/display/11069885?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

 

COMPUTER ADAPTIVE TESTING WITH EMPIRICAL PRIOR INFORMATION:  

A GIBBS SAMPLER APPROACH FOR ABILITY ESTIMATION 

 

 

Abstract 

In this paper, empirical prior information is introduced in computer adaptive testing. 

Despite its increasing use, the method suffers from a weak measurement precision, 

especially under particular conditions. Therefore, it is shown how the inclusion of 

background variables both in the initialization and the ability estimation is able to 

improve the accuracy of ability estimates.  In particular, a Gibbs sampler scheme is 

proposed in the phases of interim and final ability estimation. By using simulated data, 

it is demonstrated that the method produces more accurate ability estimates, especially 

for short tests and when reproducing boundary abilities.  

 

Keywords: adaptive testing, empirical prior information, Gibbs sampler, measurement 

precision. 

 

 

1. Introduction 

In recent years, we have assisted to a rapid development of computer-based testing in 

the field of educational assessment, especially in adaptive testing.  Furthermore, the 

practice of conducting the test administration via adaptive testing is becoming more and 

more well-established. Since the early 1970s (Lord, 1970; 1971), studies have been 

conducted to develop the theoretical framework of computerized adaptive testing (CAT) 

(see e.g. van der Linden and Glas, 2000; Wainer et al., 2000). The basic idea of CAT is 

to simulate the behavior of a real oral examiner during a testing occasion. The most 

likely situation is that he/she would start with an initial item and, depending on the 

examinee's response, proceed with a more difficult or easier item, until the examinee's 

grade of proficiency becomes sufficiently precise. Analogously, in computer adaptive 

testing a first item is submitted to the test-taker: if the item is endorsed, a more difficult 

item is presented, otherwise an easier one is selected by the algorithm to be submitted. 

The procedure goes on until a pre-specified criterion is met and a measure of the 

examinee's proficiency is given. In this sense, the algorithm is adapted to the candidate 

because items are chosen exactly to met his/her specifications in terms of ability.  



 

 

CAT relies strongly on item response theory (IRT), developed in order to estimate 

individual and item characteristics after a test administration (see e.g. Lord and Novick, 

1968). In fact, the item pool is calibrated according to a particular IRT model, based on 

data nature and fit, and the response process is assumed to follow a chosen model.  

Despite the wide use of computer adaptive testing, the method has a number of 

problems in use as item pool maintenance, test assembly and item exposure. 

Furthermore, technical issues as initialization, ability estimation, algorithm stopping 

rule should be improved, especially under particular conditions. 

In this study, the focus is on the ability estimation for short CAT tests. Nowadays, in 

the area of psychological measurement but not only, examiners are more and more 

interested in obtaining as much information as possible about candidates by using 

restricted resources. This goal may be achieved by using short test versions, which 

allow a considerable saving of time and money. Moreover, an important consequence in 

adaptive testing is the decrease of item overexposure because, given a fixed number of 

items in the pool, items are selected less frequently. On the other hand, the main interest 

in CAT is in the precision of the ability estimates, which may be not sufficiently 

accurate adopting short tests. A possible solution to the estimation improvement is 

represented by the introduction of background information about individuals. In fact, 

besides the candidates’ responses, more and more information about individuals is 

stored in databases (e.g. think about large scale educational assessments as PISA or 

TIMMS) and can be used in order to obtain more accurate estimates of candidates’ 

degree of proficiency. Background variables may be included in CAT in two different 

stages. Firstly, the initialization of ability estimate can make use of prior information 

(see van der Linden, 1999). As a consequence, a better provisional ability estimate is 

provided and the first item is selected closer to the true ability of the person. Secondly,  

background variables may be included in the estimation process through an empirical 

prior distribution. A natural context this approach can be developed within is 

represented by Bayesian statistics, where likelihood and prior distributions are 

combined in order to obtain the posterior distribution of interest. Recently, Markov 

chain Monte Carlo (MCMC) methods, and particularly the Gibbs sampler (Geman and 

Geman, 1984), have been applied extensively in IRT estimation because they are able to 

provide flexible algorithms for a large variety of  models.  By introducing the empirical 

prior within MCMC, the posterior distribution is more informative about the candidate 

and better ability estimates can be obtained.  



 

 

In the paper of van der Linden (1999) it is shown how prior information can be 

included in the ability initialization. On the other hand, the purpose of this paper is to 

show how collateral information can be used even more efficiently by introducing it 

both in initialization and ability estimation. Furthermore, the paper describes how the 

empirical prior can be integrated in the estimation process within the Gibbs sampler 

scheme. 

The paper first gives an overview of how prior information can be included in CAT. 

Then, it is shown how the Gibbs sampler can be implemented in computer adaptive 

testing effectively in order to integrate information coming from both likelihood and 

prior distributions. The advantages of using background variables in CAT 

administration are discussed through a simulation study, which reports levels of ability 

precision when empirical prior is introduced instead of standard priors. A special 

attention is given to the case of short tests (e.g. test length less than 10 items) in order to 

show the potentialities of the algorithm.  

 

2. Adaptive Testing with Empirical Prior Information 

In testing occasions, besides the candidates' responses on a target test, a set of 

individual covariates may be available. Background variables may include scores 

obtained by the examinees on other tests or testlets, socio-economic or demographical 

variables, and so on. Given the availability of such information, its inclusion in the 

investigation of candidates’ ability does make sense. Whether and how collateral 

information about examinees may be included in IRT ability estimation has been 

discussed by various authors (e.g. Zwinderman, 1991; 1997; van der Linden, 1999; 

Matteucci and Veldkamp, 2008). As reported in van der Linden and Pashley (2000), one 

reason for introducing collateral information about the candidates in adaptive testing is 

its weakness in the ability estimation when dealing with short tests, caused by a possible 

bad start in the ability initialization. Even if it is well known that the convergence of the 

algorithm is not affected by the choice of starting values, a rough initial inference about 

ability may cause a very slow convergence. In the following, the different steps of  CAT 

with empirical prior are described. A particular section is dedicated to the ability 

estimation. 

 

 

 



 

 

2.1 The Phases of CAT  

Typically, in computerized adaptive testing, the item parameters are treated as known 

and the main purpose of test administration is the ability estimation of test takers. In the 

common practice of item pool calibration, the item parameters are estimated on the 

basis of a particular IRT model. The model should be able to reproduce the individuals’ 

response process; therefore, it describes the mathematical function linking the response 

probability to a set of item parameters and ability. Once the item parameters have been 

estimated with sufficient precision, items with target features are included in the item 

pool to be administered. The choice of the model depends on different issues as item 

format, dimensionality specification, and fit. For the purpose of this study, the 

unidimensional two-parameter normal ogive (2PNO) model (Lord, 1952; Lord and 

Novick, 1968) is assumed to underlie the response process. The model has been 

designed for binary observed data, employing a cumulative standard normal distribution 

to express the probability of a correct response to an item j, with j=1,...,k items, as a 

function of ability and item parameters, as follows 

 

���� � 1��	 � Φ���� � �	 � � 1
√2� ���� �⁄ ��,������

��
 (1) 

 

where Yj is the random response variable for item j, taking the value 1 for a correct 

response and 0 otherwise, αj and δj are the item discrimination and difficulty 

respectively, and θ is the unidimensional ability. Model (1) assumes unidimensionality, 

i.e. a single latent trait accounts for the individual responses.  Depending on the data 

characteristics, other models are possible and have been employed in CAT. 

Once the items have been calibrated according to an IRT model, computer adaptive 

testing works with the following steps: 

1. Ability initialization. 

2. Item selection. 

3. Item administration. 

4. Ability estimate update. 

Steps 2-4 are repeated iteratively until a stopping rule is satisfied and a final estimate of 

the candidate’s ability is obtained. Potentially, an empirical prior may be introduced 

both in the initialization of the algorithm (step 1) and in the interim-final ability 

estimation (step 4). 



 

 

In the first step, an initial provisional ability value is required for the procedure to 

start. The ability initialization may be fixed, random or “adaptive”. When the 

initialization is fixed, each test-taker is assigned to the same ability starting value, 

typically equal to zero to reproduce the average value in the ability domain [-3; 3], 

while a random initialization provides a different but random allocation in the ability 

scale for each individual. Both solutions may come up with starting values which are 

very far from the true ability level. On the other hand, an adaptive initialization for the 

algorithm may be conducted providing ad hoc starting values based on background 

information about the candidate. In order to introduce empirical information, a relation 

between the ability � and a set of P individual covariates  !"#, with p=1,…,P,  is 

assumed in the form of a linear regression, as follows  

 

�$ � %& ' %(!$( ' )' %*!$* ' +$, (2) 

 

where the error term are assumed to be independent and normally distributed as 

+$~-.0, 0�1, with i=1,…,n individuals. The assumption of a linear regression model is 

translated into a normal conditional distribution of  �$ given the covariates, as 

 

�$|!$(, … , !$*~-.%& ' %(!$( ' )' %*!$*; 0�1. (3) 

 

Equation (3) represents the informative prior distribution for ability. When regression 

(2) is estimated with satisfying precision and the quality of the background variables is 

good, i.e. they are high predictors, the estimated regression coefficients may be used in 

order to initialize the ability in CAT for a generic examinee i with realizations 

(6$(, … , 6$*), as follows 

 

�7$& � %& ' %(6$( ' )' %*6$*.  (4) 

 

The advantage of using ad hoc information to initialize the algorithm is mainly to 

shorten the procedure. Within this approach, initial values may be much more reliable 

and accurate initial inferences about ability are able to shorten time to convergence 

significantly.  



 

 

Before proceeding with item selection (step 2), the following notation on CAT is 

introduced. Given J calibrated items in the pool, indexed by j=1,…,J, denote the rank of 

selected items as k=1,…,K. Hence, when choosing the kth item to be administered: jk is 

the index of the chosen item, Sk-1={j 1,j2,…,jk-1} is the set of selected items and 

Rk={1,…,J}\Sk-1 is the set of remaining items in the pool. In the following, the index 

i=1,…,n of examinees is omitted and the test administration is referred to a generic 

candidate i implicitly. 

In order to proceed with the item selection (step 2), various criteria have been 

proposed in the literature. A classical and straightforward method which is also applied 

in linear testing is the maximum-information criterion (Birnbaum, 1968). When 

selecting the kth item, the method works choosing the item which maximizes Fisher’s 

expected information function at the current ability value � � �78�(, as follows 

 

98 : argmax� @A���78�(	; 9 B C8D. (5) 

 

The form of the information function depends on the particular chosen IRT model. 

According to model (1), the information function becomes 

 

A���78�(	 � ���
@.2�1�(/�exp��H��/2	D

Φ�H�	I1 � Φ�H�	J
�
, (6) 

 

where H� � ���78�( � � and Φ.·1 is the standard normal cumulative distribution 

function. The method is widely used; nevertheless, the maximum-information criterion 

associated with a fixed ability initialization leads to the problem of item overexposure. 

In fact, when CAT is initialized at the average ability level �7& � 0, or at any fixed 

value, adopting Birnbaum’s criterion means selecting the same first item for each 

examinee indifferently. On the other hand, the use of empirical information in the 

ability initialization, together with the maximum-information criterion for item 

selection, avoids this problem. Different criteria for adaptive item selection have been 

proposed, also adopting a Bayesian approach (see e.g. Owen’s procedure; Owen, 1969; 

1975). For the purpose of the current work, the classical maximum-information rule is 

adopted. In fact, prior information is not directly introduced at this phase and a classical 



 

 

criterion is considered sufficient. For a review of both classical and modern procedures 

for item selection, see van der Linden & Pashley, 2000. 

Following CAT algorithm through step 3, the chosen item is administered to the test-

taker and the answer is recorded. The response is subsequently used in step 4, when 

ability should be estimated.  Steps 2-4 of the algorithm are repeated iteratively until a 

stopping rule is satisfied, as a fixed test length or a pre-specified level of precision for 

the ability estimate.  

One crucial issue in CAT certainly is the measurement precision of ability estimates. 

Typically, standard errors of ability score estimates are not negligible and efforts in the 

direction of improving the accuracy of ability estimates should be done, especially 

under particular conditions. In fact, the task of obtaining an accurate ability estimate can 

be hard when poor information comes from the responses or when the examinee’s level 

of proficiency is extreme (very high or very low). As a consequence, in case the test is 

particularly short or when it is difficult to calibrate the items around the individual 

ability, the use of prior information is highly recommended.   

In adaptive testing, a number of methods for the ability estimation are in use. These 

include maximum likelihood procedures or Bayesian methods (see van der Linden and 

Pashley, 2000). Due to its growing and relatively new use in IRT, a Gibbs sampler 

scheme is implemented for ability estimation in CAT. The algorithm, as shown in 

Matteucci and Veldkamp (2008), is able to integrate efficiently data coming from 

individual responses and empirical prior information. The method is illustrated in detail 

in the next section. 

 

2.2 MCMC Ability Estimation 

To perform a Bayesian ability estimation in CAT, the Gibbs sampler (Geman and 

Geman, 1984) is implemented. The algorithm belongs to the family of Markov chain 

Monte Carlo (MCMC) methods which introduce simulation for the purpose of 

reproducing a target distribution by using one or more sequences of correlated random 

variables. According to the Bayesian approach, both ability and item/regression 

parameters are regarded as random variables. Once all components of the joint posterior 

distribution of interest have been individuated, the single conditional distributions 

should be specified. The Gibbs sampler works creating suitable samples from each 

single conditional distribution iteratively until convergence. Among others, Albert 

(1999), Béguin and Glas (2001), Fox and Glas (2001), and Matteucci and Veldkamp 



 

 

(2008) dealt with Gibbs sampler estimation within item response theory models. In the 

current work, the algorithm is modified in order to estimate ability in adaptive testing 

with the inclusion of an empirical prior. 

Generally, the presence of the binary response variable Yj can be modeled by 

introducing continuous underlying variables Zj, which are independent and identically 

distributed as L�~-���� � �; 1	. The relation between the observed and the underlying 

variables is the following 

 

�� � M1 NO L� Q 0,
0 NO L� R 0.S (7) 

 

According to Equation (7), the continuous variable Z is greater than zero if and only 

if the corresponding observed response Y is a success; the underlying variable approach 

(Bartholomew, 1987; Bartholomew and Knott, 1999) describes the partition of the 

continuous variable Z in order to represent the dichotomy of Y.  

From a fully Bayesian perspective, the joint posterior distribution of interest is 

 

�.T, �, U, V, 0�| W, X1 � �.T| �, U, W1�.�|V, 0�, X1�.U1�.V1�.0�1, (8) 

 

where ξ is the vector including all item parameters. In linear testing, given the data on 

the responses and the observed covariates, the Gibbs sampler would have worked 

iteratively sampling from the following single conditional distributions: 

1. Z | θ, ξ. 

2. θ | Z, ξ, β, σ2. 

3. ξ | θ, Z. 

4. β | θ, σ2. 

5. σ2 | θ, β. 

On the other hand, in adaptive testing both item and regression parameters are treated 

as known; therefore, their conditional distributions are not needed in the scheme. In 

CAT, the Gibbs sampler works only with the conditional distribution of the underlying 

response variables L� (distribution in step 1) and the posterior distribution of the ability 

� (distribution in step 2), in order to proceed with the ability estimation. The single 

conditional distributions, compared to the joint posterior, are treatable and easy to draw 

samples from. 



 

 

With regard to the first conditional distribution, a classical result (see e.g. Johnson 

and Albert, 1999, chapter 3) is that the distribution of each Zj given the ability and the 

item parameters is a truncated normal, as follows 

 

L�|�, Y~ Z-�H�; 1	 [N\] L� Q 0 NO �� � 1,
-�H�; 1	 [N\] L� R 0 NO �� � 0.S (9) 

 

The conditional distribution of the underlying variables Zj is normal, with expected 

value equal to H� � ��� � � and variance 1, truncated by 0 to the left if Yj=1 (correct 

response to item j) and the right if Yj=0 (incorrect response to item j). 

The second conditional distribution is obtained combining the likelihood and the 

informative prior distribution, according to Bayesian conjugate families of distributions. 

Starting from the normal regression model L� � ��� � � ' �̂ ,  for j=1,…,J, we obtain 

 

L� ' � � ��� ' �̂ , (10) 

 

where υj are i.i.d.~N(0;1). Equation (10) is simply the regression of the terms on the left 

side Zj+δj on the independent variable αj, where θ is the regression coefficient. Hence, 

the likelihood function of the ability θ follows a normal distribution, as  

 

�~-��7;  _	, (11) 

 

where  �7 � ���̀��	�(��̀�L� ' �	 is the least square estimate of θ and _ � ���̀��	�( is 

the variance. Practically, the variance can be calculated as _ � 1/∑ ���b�c(  and the 

expected value as �7 �  ∑ ���L� ' �	b�c( /∑ ���b�c( .  The prior distribution for the ability 

is the empirical normal prior (3) and the combination of likelihood and prior leads to a 

normal posterior distribution, as follows 

 

�|T, U, V, 0�~- d�e/fgXV/h�
(/fg(/h� ; (

(/fg(/h�i.   (12) 

 

After the kth item has been administered, the Gibbs sampler is able to simulate ability as 

follows: 



 

 

1. Start with known item parameters ξ and a provisional estimate of �8.&1, 
�8.&1 : �8�(, and sample Z(0) from distribution (9), with 9 B j8. 

2. Use Z(0) and known ξ, β, σ2 to sample �8.(1 from distribution (12). 

3. Repeat steps 1-2 with the updated values, iteratively. 

The steps describe the estimation of the interim ability. Simply, after the last item has 

been administered, the same steps may be applied with the updated likelihood in order 

to obtain the final ability estimate. The Gibbs sampler has been implemented in the 

software MATLAB 7.1 (The MatWorks Inc., 2005) .   

 

3. Simulation Studies 

The design of an adaptive test may be very complicated and several decisions should 

be taken into account in order to proceed with the algorithm. A popular choice in 

standard CAT, is to initialize the ability at a fixed value (e.g. zero), to adopt the 

maximum-information item selection and to estimate the ability on the sole basis of the 

individual responses. The evident consequences of using this approach are the 

overexposure of the first item, which is repeatedly administered, and the absence of a 

useful source of information as it is prior knowledge in the ability estimation. 

In order to compare the accuracy of ability estimates in adaptive testing by using 

different criteria for the initialization and the ability estimation, simulation studies are 

conducted under different conditions. The first simulation is designed to compare the 

performances of the algorithm with and without empirical prior for different test 

lengths. In the second study, different settings are evaluated for a very short test of 

length equal to 5. In particular, the estimation results are compared for the MCMC CAT 

proposed by the authors, CAT without empirical prior, and CAT with only empirical 

ability initialization. Finally, the issue of the algorithm convergence is taken into 

account.  

 

3.1  Prior in Use: a Comparison with Different Test Length 

 

The purpose of the first simulation study is to show the potentiality of the empirical 

prior use in the parameter recovery within the Gibbs sampler scheme.  To this aim, two 

different CAT designs are compared: the first one follows the common practice of 

initializing the ability at zero and assuming a standard normal as a prior for the ability 



 

 

distribution, while the second one adopts an empirical prior both in the initialization and 

in the ability estimation, as shown in the previous section. For simplicity of description, 

the former approach is denominated standard while the latter is called empirical. In 

both cases, item selection is conducted by using the maximum-information criterion. 

This is equivalent to choose the item which difficulty is the closest to the provisional 

ability estimate of the simulee.  

In the study, an item bank of 200 items is employed, with item parameters sampled 

as ��~k.0.7; 21 and �~k.�3; 31, for j=1,...,k . When the empirical approach is 

adopted, the linear relation � � 0.2 ' 0.7! ' + with +~-.0,0.31 is assumed between 

the ability � and a single covariate X. Since � is known in the simulation, the 

distribution of X is normal with parameters depending on the linear combination of the 

normal distribution of +. Response generation is simulated for different levels of ability 

from -3 to 3 according to model (1). In order to get results for tests consisting of a 

different number of items, the CAT stopping rule is defined as fixed test length of 5, 10, 

15 and 20 items. The Gibbs sampler with a chain length of 5000 iterations and burn-in 

of 500 is employed for the ability estimation. The output consists in the mean and 

standard deviations sampled from the posterior distribution of ability. The choice of the 

chain length and the number to discard iterations are motivated by the convergence 

study described in Section 3.3.  A number of 100 replications have been conducted in 

the simulation. Besides the expected a posterior estimate and the standard deviation, 

also the average bias and the root mean square errors (RMSE) have been calculated. 

Both indicators compare the distance between the true and the simulated values in each 

replication. In particular, given Q replications, bias is defined as 

 

nNop��7	 � 1/q ∑ ��7r � �7stuv	wrc( , (13) 

 

Where �7r is the estimated ability for replication q, with q=1,…,Q, and �7stuv is the 

simulee’s true ability. RMSE is calculated as follows 

 

Cxjy��7	 � z1/q ∑ ��7r � �7stuv	�wrc( {(/�.   (14) 

 

Table 1 provides the results of the simulation study in case of a very short test 

consisting of 5 items.  



 

 

 

[INSERT TABLE 1 ABOUT HERE] 

 

As can be easily noticed, compared with the standard version of CAT, the parameter 

recovery of empirical CAT is more accurate in terms of posterior mean and bias, 

especially when deviating from � � 0. Particularly, for boundary abilities as -3, -2.5, 

2.5 and 3, standard CAT produces seriously biased estimates while the introduction of 

ad hoc prior information leads to smaller bias. Clearly, few items bring very little 

information about the individual trait and the prior distribution really dominates the 

estimation. Across the different true ability values, standard deviation and RMSE are 

always smaller in the empirical solution than in the standard one.  

Analogous conclusions can be drawn from Table 2, where the simulated values are 

reported for a test consisting of 10 items.  

 

[INSERT TABLE 2 ABOUT HERE] 

 

When increasing the number of items, an improvement in the precision of estimates 

is denoted for standard CAT in terms of bias, even if standard deviations and RMSE are 

always larger than the empirical solution. Table 3 and 4 show the results of the 

simulations conducted for adaptive tests of 15 and 20 items, respectively.  

 

[INSERT TABLE 3 ABOUT HERE] 

 

 [INSERT TABLE 4 ABOUT HERE] 

 

Due to the increasing number of items, standard CAT becomes more precise, and 

slightly outperforms the empirical approach in terms of posterior mean and bias. 

However, the empirical CAT shows a better performance in terms of standard 

deviations and RMSE. The comparison of true and simulated values for central abilities 

suggests that there are not considerable differences in reproducing the ability values 

between the two approaches.  

The whole simulation study suggests that the introduction of an informative prior 

leads to an improvement of the measurement precision in the individual ability 

assessment. This improvement becomes very evident for short tests and when shifting to 



 

 

boundary ability values. This evidence cannot be generalized to the case of longer test 

(e.g. more than 20 items): it is well known that, when the test length increases, the prior 

distribution  lacks in strength and the two solutions become more and more similar.  

 

3.2 Introduction of Prior Information at Different Levels 

According to the findings of the previous study, the use of prior information in CAT 

shows its maximum effectiveness in case of very short tests.  In the current simulation 

study, the focus is on the comparison of different levels of prior information for a target 

test consisting of 5 items. Results of Table 1 regarding  empirical and standard CAT are 

compared to an intermediate solution, named semi-empirical, where empirical 

information is used only in the initialization of the ability estimate. In fact, when 

problems of fairness arise, it can be very difficult to justify the introduction of 

background variables directly related to the evaluation of the performances in the 

estimation. Table 5 illustrates the results of the simulation. 

 

[INSERT TABLE 5 ABOUT HERE] 

 

The empirical initialization CAT shows an intermediate behavior respect to the other 

two approaches. In fact, from the comparison between the estimated and the true ability 

values, it can be seen that the results are more precise than standard CAT but less 

accurate than empirical CAT, when deviating from 0. Also, standard deviations are 

always intermediate between the correspondent values of the standard and empirical 

approaches. Figure 1 shows the trend of the RMSE across the ability true values, for the 

three approaches. 

 

[INSERT FIGURE 1 ABOUT HERE] 

 

Figure 1 provides a clear visualization of the potentiality of using empirical 

information both in the initialization and in the ability estimation when dealing with 

short tests. For the empirical solution, the RMSE curve is always below than the curves 

associated with the standard and the semi-empirical approaches. The difference in 

precision is particularly significant for ability levels that satisfy |�| | 2. 

 

 



 

 

3.3 A Note on the Algorithm Convergence 

One of the most critical issues in MCMC estimation, is assessing the convergence of 

the algorithm. A large number of researchers have approached the problem turning out 

with different solutions, sometimes conflicting (for a review, see Cowles and Carlin,  

1996). When simulating a MCMC chain, the first thing is to check the trace plot of the 

simulated random draws. Even if convergence cannot be ensured by simply looking at 

the iteration history, a clearly critical situation of not-convergence can be detected 

immediately.  After computing the posterior mean and the standard deviation, a measure 

of the standard error of estimate should be computed. As suggested in Gelman, Carlin, 

Stern and Rubin (2004, chap. 10), an approximate measure of the accuracy of the 

sample mean estimate is the standard deviation divided by the square root of the number 

of simulations, which is nothing but the posterior deviance. Moreover, an estimate of 

the Monte Carlo standard error should be computed. As a rule of thumb, the estimated 

Monte Carlo error should be less than 5% of the standard deviation. 

In order to decide the necessary number of iterations for obtaining an acceptable 

accuracy, a study has been conducted by simulating single chains. In particular, the 

simulation design of Section 3.1 is drawn on in the case of ability θ=0 and test length 

T=5. The purpose of the study is to evaluate the accuracy of the posterior mean in 

simulations conducted by using different number of iterations (1000, 2000, 5000 and 

10000). Table 6 shows the results both for the empirical and the standard approaches.  

 

[INSERT TABLE 6 ABOUT HERE] 

 

The number of iterations is specified in the first column, while the number to discard 

iterations (burn-in phase) is contained in column 2. Besides the posterior mean and the 

standard deviation, an estimate of the Monte Carlo error (MC error) is reported. The 

estimate is calculated as the square root of the spectral density variance estimate divided 

by the number of actual iterations (time-series estimate), and it was proposed by 

Geweke (1992) as an estimate of the asymptotic standard error. The MC error has been 

calculated by using the R package BOA.  

One single replication, depending on the number of iterations in the chain, took  only 

few seconds to complete (from 2  to 6 seconds) on a 2.27 GHz Intel Core2 laptop. The 

simulations conducted by using 1000 iterations do not satisfy the accuracy condition of 

MC error less than 5% of the standard deviation, while the solution with 2000 iterations 



 

 

slightly satisfy it. On the other hand, running 5000 or 10000 iterations turns out with 

MC errors significantly lower than the 5% of standard deviation and are considered a 

good standard of accuracy. 

As a consequence of these results, the adopted number of iterations was settled to 

5000. The chosen chain length represents a good compromise between the estimate 

accuracy and the time needed to complete the algorithm. When running 100 

replications, each one with 5000 iterations, only 6 minutes are needed to complete. 

Therefore, this solution allows a fast implementation in the real practice of testing.  

Figure 2 shows the trace plot of the simulation with 5000 iterations, when prior 

information is included. 

 

[INSERT FIGURE 2 ABOUT HERE] 

 

Clearly, the plot shows a random fluctuation of the sample values around the mean. 

The absence of autocorrelation (at least at a lag higher than 5) is confirmed by the 

autocorrelation plot reported in Figure 3.  

 

[INSERT FIGURE 3 ABOUT HERE] 

 

 Usually, one of the main drawbacks of MCMC is the time consuming and slow 

convergence of the algorithm; however, adopting the above mentioned features for the 

chain, the simulation represents a good compromise between speed and accuracy. Of 

course, we should also mention that the model implemented is rather simple, because it 

is a unidimensional model for binary indicators. Probably, the extension of the 

algorithm to more complicated model, as multidimensional models, would come out 

with a slower convergence. 

 

 

4. Discussion 

 

The study introduced the problem of ability estimation in computer adaptive testing 

under particular situations of uncertainty about the candidate’s level of proficiency. 

Examples are CAT consisting of a small number of items or candidates with latent 

ability far from average.  A solution to these cases is represented by the introduction of 



 

 

prior information in the algorithm in order to obtain more accurate ability estimates. 

This approach is developed within the MCMC methods, particularly adopting the Gibbs 

sampler to integrate likelihood with empirical prior information about the candidate. 

The findings of simulation studies suggest that the introduction of informative priors 

is effective in improving the accuracy of ability estimates, especially when dealing with 

short tests and when the ability is far from zero. In particular, the measurement 

precision is improved when empirical priors are introduced both to initialize and to 

estimate ability.  The use of empirical information is highly recommended with short 

tests (e.g. length equal to 5), when the standard approaches based on a standard normal 

prior fail to reproduce the true ability values. Despite the great availability of 

background variables concerning the individuals, the quality of information remains a 

fundamental issue. The usefulness of the described approach depends highly on the 

predictive capability of the collateral variables. 

When problems of fairness arise and empirical information cannot be used in the 

ability estimation, an initial inference which is as close as possible to the true ability 

value is recommended, i.e. an empirical CAT initialization is desiderable. 
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TABLE 1 

Ability parameter recovery for empirical and standard solutions (T=5). 

True � Empirical Standard 

 �7 s.d. Bias RMSE θ7 s.d. Bias RMSE 

-3 -3.09 0.57 -0.09 0.42 -2.33 0.88 0.67 0.69 

-2.5 -2.61 0.53 -0.11 0.37 -2.21 0.82 0.29 0.39 

-2 -2.06 0.46 -0.05 0.38 -1.88 0.70 0.12 0.41 

-1 -1.02 0.41 -0.02 0.28 -0.91 0.51 0.09 0.30 

0 -0.08 0.40 -0.08 0.31 0.04 0.46 0.04 0.33 

1 1.04 0.40 0.04 0.27 0.96 0.50 -0.04 0.35 

2 2.07 0.47 0.07 0.34 1.94 0.77 -0.06 0.43 

2.5 2.58 0.53 0.08 0.34 2.19 0.87 -0.31 0.36 

3 3.13 0.56 0.13 0.44 2.23 0.89 -0.77 0.78 

 

 

TABLE 2 

Ability parameter recovery for empirical and standard solutions (T=10). 

True � Empirical Standard 

 �7 s.d. Bias RMSE θ7 s.d. Bias RMSE 

-3 -3.08 0.64 -0.08 0.31 -2.88 0.98 0.12 0.34 

-2.5 -2.66 0.59 -0.16 0.35 -2.50 0.80 -0.00 0.40 

-2 -2.09 0.48 -0.09 0.29 -1.98 0.62 0.02 0.41 

-1 -1.04 0.41 -0.04 0.22 -0.99 0.47 0.01 0.25 

0 0.03 0.39 0.03 0.17 0.03 0.42 0.03 0.22 

1 1.00 0.39 0.00 0.22 0.99 0.45 -0.01 0.26 

2 2.12 0.48 0.12 0.28 1.97 0.62 -0.04 0.33 

2.5 2.66 0.59 0.16 0.33 2.44 0.81 -0.06 0.35 

3 3.08 0.64 0.08 0.28 2.83 0.97 -0.17 0.34 

 

 

 

 

 



 

 

TABLE 3 

Ability parameter recovery for empirical and standard solutions (T=15). 

True � Empirical Standard 

 �7 s.d. Bias RMSE θ7 s.d. Bias RMSE 

-3 -3.11 0.71 -0.11 0.31 -2.96 0.94 0.04 0.33 

-2.5 -2.61 0.61 -0.11 0.30 -2.43 0.71 0.07 0.27 

-2 -2.04 0.49 -0.04 0.23 -1.96 0.58 0.04 0.27 

-1 -1.01 0.42 -0.01 0.18 -1.04 0.46 -0.04 0.21 

0 0.02 0.39 0.02 0.16 0.02 0.42 0.02 0.19 

1 1.02 0.40 0.02 0.17 0.99 0.44 -0.01 0.18 

2 2.09 0.50 0.10 0.27 2.02 0.58 0.02 0.24 

2.5 2.64 0.62 0.14 0.28 2.52 0.77 0.02 0.30 

3 3.11 0.71 0.11 0.34 2.95 0.94 -0.05 0.34 

 

 

TABLE 4 

Ability parameter recovery for empirical and standard solutions (T=20). 

True � Empirical Standard 

 �7 s.d. Bias RMSE θ7 s.d. Bias RMSE 

-3 -3.16 0.77 -0.16 0.38 -2.93 0.90 0.06 0.27 

-2.5 -2.62 0.64 -0.12 0.28 -2.53 0.75 -0.03 0.30 

-2 -2.07 0.52 -0.07 0.21 -2.04 0.60 -0.04 0.25 

-1 -1.04 0.44 -0.04 0.18 -1.01 0.46 -0.01 0.19 

0 0.03 0.39 0.03 0.15 0.02 0.41 0.02 0.16 

1 1.01 0.41 0.01 0.18 0.97 0.44 -0.03 0.18 

2 2.09 0.51 0.10 0.21 2.07 0.60 0.07 0.24 

2.5 2.68 0.66 0.18 0.30 2.54 0.76 0.04 0.26 

3 3.18 0.78 0.18 0.33 2.98 0.93 -0.02 0.28 

 

 

 

 

 



 

 

TABLE 5 

Ability parameter recovery for  empirical, semi-empirical and standard solutions (T=5). 

 

True � Empirical Semi-empirical Standard 

 θ7 s.d. Bias RMSE θ7 s.d. Bias RMSE θ7 s.d. Bias RMSE 

-3 -3.09 0.57 -0.09 0.42 -2.40 0.77 0.60 0.71 -2.33 0.88 0.67 0.69 

-2.5 -2.61 0.53 -0.11 0.37 -2.27 0.70 0.23 0.47 -2.21 0.82 0.29 0.39 

-2 -2.06 0.46 -0.05 0.38 -1.77 0.58 0.23 0.48 -1.88 0.70 0.12 0.41 

-1 -1.02 0.41 -0.02 0.28 -0.96 0.50 0.04 0.32 -0.91 0.51 0.09 0.30 

0 -0.08 0.40 -0.08 0.31 0.00 0.47 0.01 0.29 0.04 0.46 0.04 0.33 

1 1.04 0.40 0.04 0.27 0.93 0.50 -0.07 0.34 0.96 0.50 -0.04 0.35 

2 2.07 0.47 0.07 0.34 1.93 0.62 -0.07 0.38 1.94 0.77 -0.06 0.43 

2.5 2.58 0.53 0.08 0.34 2.16 0.71 -0.34 0.53 2.19 0.87 -0.31 0.36 

3 3.13 0.56 0.13 0.44 2.40 0.77 -0.60 0.72 2.23 0.89 -0.77 0.78 

 

 

TABLE 6  

Estimated accuracy of simulation across different number of iterations. 

N. iter Burn-in Empirical Standard 

  �7 s.d. 5% s.d. MC error θ7 s.d. 5% s.d. MC error 

1000 100 -0.389 0.386 0.019 0.022 0.113 0.510 0.025 0.030 

2000 200 -0.001 0.379 0.019 0.013 0.254 0.482 0.024 0.023 

5000 500 0.118 0.389 0.019 0.009 -0.111 0.445 0.022 0.010 

10000 1000 0.078 0.390 0.019 0.006 -0.305 0.451 0.023 0.007 

 

 

 

 

 

 

 

 

 



 

 

FIGURE 1 

Root mean square error (RMSE) for the three different approaches (empirical, semi-

empirical and standard) when the test consists of 5 items. 

 

 

FIGURE 2 

Trace plot of a single chain, in the case of T=5 and empirical information introduced.  
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FIGURE 3 

Autocorrelation plot. 
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