
ar
X

iv
:0

91
0.

42
57

v1
  [

m
at

h.
A

P]
  2

2 
O

ct
 2

00
9

Mathematical Economics

Obstacle problem for Arithmetic Asian options

Laura Monti a, Andrea Pascucci a
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Abstract

We prove existence, regularity and a Feynman-Kač representation formula of the strong solution to the free

boundary problem arising in the financial problem of the pricing of the American Asian option with arithmetic

average.

Résumé

Problème de l’obstacle pour l’option américain asiatique à moyenne arithmétique. On démontre

l’existence, la régularité et une formule de représentation de Feynman-Kač de la solution forte d’un problème

avec frontière libre. Ce type de problème on le retrouve en finance pour évaluer le prix d’une option asiatique à

moyenne arithmétique de style américain.

1. Introduction

According to the classical financial theory (see, for instance, [12]) the study of Asian options of American
style leads to free boundary problems for degenerate parabolic PDEs. More precisely, let us assume that,
in the standard setting of local volatility models, the dynamics of the underlying asset is driven by the
SDE

dSt = µ(t, St)Stdt + σ(t, St)StdWt, (1)

and consider the process dAt = f(St)dt, where f(S) = S and f(S) = log S occur respectively in the study
of the Arithmetic average and Geometric average Asian options. Then the price of the related Amerasian
option with payoff function ϕ is the solution of the obstacle problem with final condition

{

max{Lu, ϕ− u} = 0, ]0, T [×R
2
+,

u(T, s, a) = ϕ(T, s, a), s, a > 0,
(2)
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where

Lu =
σ2s2

2
∂ssu + rs∂su + f(s)∂au + ∂tu − ru, s, a > 0, (3)

is the Kolmogorov operator of (St, At) and r is the risk free rate. Recently this problem has also been
considered in the study of pension plans in [7] and stock loans in [2].

Typical Arithmetic average payoffs are of the form

ϕ(t, s, a) =
(a

t
− K

)+

(fixed strike),

ϕ(t, s, a) =
(a

t
− s

)+

(floating strike).
(4)

A direct computation shows that in these cases a super-solution1 to (2) with f(s) = s is given by

ū(t, s, a) =
α

t

(

1 + e−βt
√

s2 + a2
)

(5)

for α, β are positive constants, with β suitably large. On the other hand it is well-known that generally
(2) does not admit a smooth solution in the classical sense.

Recently the Geometric Asian option has been studied under the following hypotheses:
(H1) σ is bounded, locally Hölder continuous and such that σ ≥ σ0 for some positive constant σ0;
(H2) ϕ is locally Lipschitz continuous on ]0, T [×R

2
+ and the distributional derivative ∂ssϕ is locally

lower bounded (to fix ideas, this includes ϕ(s) = (s − K)+ and excludes ϕ(s) = −(s − K)+).
In [4], [11] it is proved that problem (2), with f(s) = log s, has a strong solution u in the Sobolev space

Sp
loc = {u ∈ Lp | ∂su, ∂ssu, (f(s)∂a + ∂t)u ∈ L

p
loc}, p ≥ 1. (6)

Moreover uniqueness has been proved via Feynman-Kač representation. However, as we shall see below,
the Geometric and Arithmetic cases are structurally quite different.

The aim of this note is to give an outlined proof of the following
Theorem 1.1 Consider problem (2) with f(s) = s, under the assumptions (H1) and (H2). Then we
have:

i) if there exists a super-solution ū then there also exists a strong solution u ∈ Sp
loc ∩ C

(

]0, T ]× R
2
+

)

for any p ≥ 1, such that u ≤ ū;
ii) if u is a strong solution to (2) such that

|u(t, s, a)| ≤ C

t
(1 + sq + aq), s, a > 0, t ∈]0, T ], (7)

for some positive constants C, q, then

u(t, s, a) = sup
τ∈Tt,T

E
[

e−rτϕ(τ, St,s,a
τ , At,s,a

τ )
]

, t, s, a > 0, (8)

where Tt,T = {τ ∈ T | τ ∈ [t, T ] a.s.} and T is the set of all stopping times with respect to the Brownian
filtration. In particular there exists at most one strong solution of (2) verifying the growth condition (7).

For simplicity here we only consider the case of constant σ. Then by a transformation (cf. formula (4.4)
in [1]), operator L in (3) with f(s) = s can be reduced in the canonical form

LA = x2
1∂x1x1

+ x1∂x2
+ ∂t, x = (x1, x2) ∈ R

2
+. (9)

Before proceeding with the proof, we make some preliminary comments.

1 ū is a super-solution of (2) if
{

max{Lū, ϕ − ū} ≤ 0, ]0, T [×R
2
+,

ū(T, s, a) ≥ ϕ(T, s, a), s, a > 0.
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Remark 1. In the Geometric case f(s) = log s, by a logarithmical change of variables the pricing operator
L takes the form

LG = ∂x1x1
+ x1∂x2

+ ∂t, x = (x1, x2) ∈ R
2. (10)

It is known (cf. [9]) that LG has remarkable invariance properties with respect to a homogeneous Lie
group structure: precisely, LG is invariant with respect to the left translation in the law (t′, x′) ◦ (t, x) =
(t′ + t, x′

1 + x1, x
′
2 + x2 + tx′

1) and homogeneous of degree two with respect to the dilations δl(t, x) =
(l2t, lx1, l

3x2) in the sense that, setting z = (t, x),

LG(u(z′ ◦ z)) = (LGu)(z′ ◦ z), LG(u(δl(z))) = l2(LGu)(δl(z)), z, z′ ∈ R
3, l > 0.

Moreover LG has a fundamental solution ΓG(t, x; T, X) (here (t, x) and (T, X) represent respectively the
starting and ending points of the underlying stochastic process) of Gaussian type whose explicit expression
is known explicitly:

ΓG(t, x; T, X) = ΓG

(

(T, X)−1 ◦ (t, x); 0, 0
)

where (T, X)−1 = (−T,−X1,−X2 + TX1) and

ΓG (t, x; 0, 0) =

√
3

2πt2
exp

(

x2
1

t
+

3x1(x2 − tx1)

t2
+

3(x2 − tx1)
2

t3

)

, t < 0, x1, x2 ∈ R.

On the contrary, the Arithmetic operator LA does not admit a homogeneous structure: nevertheless in
this case we are able to find an interesting invariance property with respect to the “translation” operator

ℓ(t′,x′)(t, x) = (t′ + t, x′
1x1, x

′
2 + x′

1x2) , t, t′ ∈ R, x, x′ ∈ R
2
+; (11)

precisely we have
LA(u

(

ℓ(t′,x′)

)

) = (LAu)
(

ℓ(t′,x′)

)

. (12)

We remark that the fundamental ΓA of LA is not known explicitly and one of the key point in the
proof consists in showing suitable summability properties of ΓA near the pole. Note also that, due to the
invariance property (12), the fundamental solution ΓA verifies

ΓA(t, x; T, X) =
1

X2
1

ΓA

(

t − T,
x1

X1
,
x2 − X2

X1
; 0, 1, 0

)

, x1, x2, X1, X2 > 0, x2 > X2, t < T.

Remark 2. Given a domain Ø and α ∈]0, 1[, we denote by Cα
G(Ø) and C

1,α
G (Ø) the intrinsic Hölder

spaces defined by the norms

‖u‖Cα
G

(Ø) = sup
Ø

|u| + sup
z,z0∈Ø

z 6=z0

|u(z) − u(z0)|
‖z−1

0 ◦ z‖α
G

, ‖u‖C
1,α

G
(Ø) = ‖u‖Cα

G
(Ø) + ‖∂x1

u‖Cα
G

(Ø)

where ‖·‖G is a δl-homogeneous norm in R
3. Due to the embedding Theorem 2.1 in [4], the strong solution

u of Theorem 1.1 is locally in C
1,α
G for any α ∈]0, 1[. In particular this ensures the validity of the standard

“smooth pasting” condition in the x1 variable (corresponding to the asset price). We also recall that the
(optimal) S∞

loc-regularity of the solution has been recently proved in [5].

Remark 3. In the standard Black & Scholes setting and for particular homogeneous payoffs, it is possible
to reduce the spatial dimension of the pricing problem (from two to one). In the case of European Asian
options, this was first suggested in [8] and [13] respectively for the floating and fixed strike payoffs. In
the American case, the dimensional reduction is only possible for the floating strike payoff while the fixed
strike Amerasian option necessarily involves a 2-dimensional degenerate PDE.

Proof of Theorem 1.1. It is not restrictive to assume that ϕ is continuous on [0, T ]×R
2
+ or equivalently

we may study the problem on [ε, T ] × R
2
+ for a fixed, but arbitrary, positive ε. We divide the proof in

some steps.
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Step 1. Let Dr(x) denote the Euclidean ball centered at x ∈ R
2, with radius r. We construct a sequence

of “lentil shaped” domains On = Dn

(

n + 1
n
, 0

)

∩Dn

(

0, n + 1
n

)

covering R
2
+. For any n ∈ N, the cylinder

Hn =]0, T [×On is a LA-regular domain in the sense that there exists a barrier function at any point of
the parabolic boundary ∂P Hn := ∂Hn\({0}×On) and therefore the obstacle problem on Hn has a strong
solution (cf. Theorem 3.1 in [4]). Indeed on any compact subset H of R × R

2
+, we have LA ≡ LH where

LH = aH(t, x)∂x1x1
+ x1∂x2

+ ∂t (13)

and aH is a some smooth function such that 0 < aH ≤ aH ≤ āH on ]0, T [×R
2
+, with a H , āH suitable

positive constants. Note that LH is a perturbation of the Geometric operator LG: as such, by Theorem
1.4 in [3], it has a fundamental solution ΓH that is bounded from above and below by Gaussian functions.
Then by Theorem 3.1 in [4] we have: for any n ∈ N and g ∈ C(Hn ∪ ∂P Hn), g ≥ ϕ, there exists a strong
solution 2 un ∈ Sp

loc (Hn) ∩ C (Hn ∪ ∂P Hn) to problem

{

max{LAu, ϕ − u} = 0 in Hn,

u|∂P Hn
= g.

(14)

Moreover, for every p ≥ 1 and H ⊂⊂ Hn there exists a positive constant C, only dependent on
H, Hn, p, ‖ϕ‖L∞(Hn), ‖g‖L∞(Hn) such that ‖un‖Sp(H) ≤ C.

Step 2. To prove part i), we consider a sequence of cut-off functions χn ∈ C∞
0 (R2

+) such that χn = 1 on
On−1, χn = 0 on R

2
+ \On and 0 ≤ χn ≤ 1. We set gn(t, x, y) = χn(x, y)ϕ(t, x, y) + (1−χn(x, y))ū(t, x, y)

and denote by un the strong solution to (14) with g = gn. By the comparison principle we have ϕ ≤
un ≤ un+1 ≤ ū and therefore, by the a priori estimate in Sp, for every p ≥ 1 and H ⊂⊂ Hn we have
‖un‖Sp(H) ≤ C for some constant C dependent on H but not on n. Then we can pass to the limit as
n → ∞, on compacts of ]0, T [×R

2
+, to get a solution of max{Lu, ϕ − u} = 0. A standard argument

based on barrier functions shows that u(t, x) is continuous up to t = T and attains the final datum. This
concludes the proof of part i).

Step 3. To prove part ii), we first construct the fundamental solution ΓA of LA as the limit of an
increasing sequence of Green functions for LA on the cylinders Hn, n ∈ N: to this end we combine some
classical PDE technique (cf. Chapter 15 in [6]) with the recent interior and boundary Schauder estimates
for degenerate Kolmogorov operators proved in [10]. We also show that ΓA is the transition density of
the underlying stochastic process.

Next we observe that, for fixed (t, x) ∈]0, T [×R
2
+ and n ∈ N suitably large so that x ∈ On, by the

maximum principle we have

ΓA(t, x; ·, ·) ≤ ΓHn
(t, x; ·, ·) + max

[t,T ]×∂On

ΓA(t, x; ·, ·) in ]t, T ] × On.

Consequently we infer (cf. formula (4.8) in [11]) that ΓA(t, x; ·, ·) ∈ Lp(Hn) for some p > 1. This local
summability property of ΓA can be combined with the standard maximal estimate

E

[

sup
t≤τ≤T

|Xt,x
τ |q

]

< ∞, q ≥ 1,

valid for the solution X of a SDE whose coefficients have at most linear growth: then, adapting the
arguments used in the proof of Theorem 4.3 in [11], we can show formula (8). This concludes the proof
of part ii). 2

2 Here Sp

loc
is the Sobolev space defined in (6) with f(s) = s and s = x1, a = x2.
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