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Abstract. We deal with Matveev complexity of compact orientable 3-
manifolds represented via Heegaard diagrams. This lead us to the def-

inition of modified Heegaard complexity of Heegaard diagrams and of
manifolds. We define a class of manifolds which are generalizations of
Dunwoody manifolds, including cyclic branched coverings of two-bridge

knots and links, torus knots, some pretzel knots, and some theta-graphs.
Using modified Heegaard complexity, we obtain upper bounds for their
Matveev complexity, which linearly depend on the order of the covering.
Moreover, using homology arguments due to Matveev and Pervova we
obtain lower bounds.

1. Introduction and preliminaries

The notion of complexity for compact 3-dimensional manifolds has been
introduced by S. Matveev via simple spines. We briefly recall its definition (for
further reference see [13, 14]).

A polyhedron P embedded into a compact connected 3-manifold M is called
a spine of M if M collapses to P in the case ∂M 6= ∅, and if M−Int(B) collapses
to P in the case ∂M = ∅, where B is a closed 3-ball in M . Moreover, a spine
S is said to be almost simple if the link of each point x ∈ S can be embedded
into K4, a complete graph with four vertices. A true vertex of an almost simple
spine S is a point x ∈ S whose link is homeomorphic to K4.

The complexity c(M) of M is the minimum number of true vertices among
all almost simple spines of M . Complexity is additive under connected sum of
manifolds and, for any integer n > 0, there are only finitely many closed prime
manifolds with complexity n.

In the closed orientable case there are only four prime manifolds of complex-
ity zero which are S3, RP

3, S2 × S1, and L3,1. Apart from these special cases,
it can be proved that c(M) is the minimum number of tetrahedra needed to
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obtain M by pasting together their faces (via face paring). A complete classi-
fication of closed orientable prime manifolds up to complexity 12 can be found
in [15, 16].

In general, the computation of the complexity of a given manifold is a
difficult problem. So, two-sided estimates of complexity become important,
especially when dealing with infinite families of manifolds (see, for example,
[14, 17, 25]).

By [14, Theorem 2.6.2], a lower bound for the complexity of a given manifold
can be obtained via the computation of its first homology group. Moreover,
for a hyperbolic manifold a lower bound can be obtained via volume argu-
ments (see [14, 17, 25]). On the other hand, upper bound can be found using
triangulations.

In this paper we deal with the possibility of calculating complexity via Hee-
gaard decompositions. This way of representing 3-manifold has revealed to be
very useful in different contests. So, it is natural to wonder whereas it is possible
to calculate complexity via Heegaard diagrams. In Section 2 we use Heegaard
diagrams to define modified Heegaard complexity of compact 3-manifolds and
compare this notion with Matveev complexity. A widely studied family of man-
ifolds, defined via Heegaard diagrams, is the one of Dunwoody manifolds (see
[8]). This family coincides with the class of strongly-cyclic branched coverings
of (1, 1)-knots (see [6]), including, for example, 2-bridge knots, torus knots and
some pretzel knots. In Section 3 we construct a class of manifolds that gen-
eralizes the class of Dunwoody manifolds, including other interesting class of
manifolds such as cyclic-branched coverings of 2-component 2-bridge links. In
Section 4, using modified Heegaard complexity, we obtain two-sided estimates
for the complexity of some families of generalized Dunwoody manifolds.

2. Heegaard diagrams and complexity

In this section we introduce the notions of modified complexity for Heegaard
diagrams and for manifolds, comparing these notions with Matveev complexity
of manifolds. Let us start by recalling some definitions.

Let Σg be a closed, connected, orientable surface of genus g. A system of
curves on Σg is a (possibly empty) set of simple closed curves C = {γ1, . . . , γk}
on Σg such that γi ∩ γj = ∅ if i 6= j, for i, j = 1, . . . , k. Moreover, we denote
with V (C) the set of connected components of the surface obtained by cutting
Σg along the curves of C. The system C is said to be proper if all elements of
V (C) have genus zero, and reduced if either |V (C)| = 1 or V (C) has no elements
of genus zero. Thus, C is: (i) proper and reduced if and only if it consists of one
element of genus 0; (ii) non-proper and reduced if and only if all its elements
are of genus > 0; (iii) proper and non-reduced if and only if it has more than
one element and all of them are of genus 0; (iv) non-proper and non-reduced if
and only if it has at least one element of genus 0 and at least one element of
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genus > 0. Note that a proper reduced system of curves on Σg contains exactly
g curves.

We denote by G(C) the graph which is dual to the one determined by C on Σg.
Thus, vertices of G(C) correspond to elements of V (C) and edges correspond
to curves of C. Note that loops and multiple edges may arise in G(C).

A compression body Kg of genus g is a 3-manifold with boundary, obtained
from Σg × [0, 1] by attaching a finite set of 2-handles Y1, . . . , Yk along a system
of curves (called attaching circles) on Σg × {0} and filling in with balls all the
spherical boundary components of the resulting manifold, except from Σg×{1}
when g = 0. Moreover, ∂+Kg = Σg ×{1} is called the positive boundary of Kg,
while ∂−Kg = ∂Kg − ∂+Kg is called negative boundary of Kg. Notice that a
compression body is a handlebody if an only if ∂−Kg = ∅, i.e., the system of the
attaching circles on Σg ×{0} is proper. Obviously homeomorphic compression
bodies can be obtained with (infinitely many) non isotopic systems of attaching
circles.

Remark 2.1. If the system of attaching circles is not reduced then it contains
at least one reduced subsystem of curves determining the same compression
body Kg. Indeed, if C is the system of attaching circles, denote with V +(C)
the set of vertices of G(C) corresponding to the components with genus greater
then zero, and with A(C) the set consisting of all the graphs Ti such that:

• Ti is a subgraph of G(C);
• if V +(C) = ∅ then Ti is a maximal tree in G(C);
• if V +(C) 6= ∅ then Ti contains all the vertex of G(C) and each compo-

nent of Ti is a tree containing exactly a vertex of V +(C).

Then, for any Ti ∈ A(C), the system of curves obtained by removing from
C the curves corresponding to the edges of Ti is reduced and determines the
same compression body. Note that this operation corresponds to removing
complementary 2- and 3-handles. Moreover, it is easy to see that if ∂−Kg has
k boundary components with genus g1, . . . , gk then

|E(Ti)| = |C| − n − k + 1 +

k∑

j=1

gj

for each Ti ∈ A(C), where E(Ti) denotes the edge set of Ti.

Let M be a compact, connected, orientable 3-manifold without spherical
boundary components. A Heegaard surface of genus g for M is a surface Σg

embedded in M such that M − Σg consists of two components whose closures
K ′ and K ′′ are (homeomorphic to), respectively, a genus g handlebody and a
genus g compression body.

The triple (Σg,K
′,K ′′) is called Heegaard splitting of M . It is a well

known fact that each compact connected orientable 3-manifold without spher-
ical boundary components admits a Heegaard splitting.
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Remark 2.2. By [14, Proposition 2.1.5] the complexity of a manifold is not
affected by puncturing it. So, with the aim of computing complexity, it is
not restrictive assuming that the manifold does not have spherical boundary
components.

On the other hand, a triple H = (Σg, C
′, C′′), where C′ and C′′ are two sys-

tems of curves on Σg, such that they intersect transversally and C′ is proper,
uniquely determines a 3-manifold MH which corresponds to the Heegaard split-
ting (Σg,K

′,K ′′), where K ′ and K ′′ are respectively the handlebody and the
compression body whose attaching circles correspond to the curves in the two
systems. Such a triple is called Heegaard diagram for MH .

We denote by Γ(H) the graph embedded in Σg, obtained from the curves of
C′∪C′′, and by R(H) the set of regions of Γ(H). Note that Γ(H) has two types
of vertices: singular vertices which are 4-valent and non-singular ones which
are 2-valent. A diagram H is called reduced if both the systems of curves are
reduced. If H is non-reduced, then we denote by Rd(H) the set of reduced
Heegaard diagrams obtained from H by reducing the system of curves.

In [14, Section 7.6] the notion of complexity of a reduced Heegaard diagram
H of a genus two closed manifold is defined as the number c(H) of singular
vertices of the graph Γ(H). Moreover the author proved that c(MH) 6 c(H).

Now we extend this definition to the general case, slightly modifying it in
order to obtain a better estimate for the complexity of MH .

The modified complexity of a reduced Heegaard diagram H is

c̃(H) = c(H) − max {n(R) | R ∈ R(H)},

where n(R) denotes the number of singular vertices contained in the region R,
and the modified complexity of a (non-reduced) Heegaard diagram H is

c̃(H) = min {c̃(H ′) | H ′ ∈ Rd(H)}.

We define the modified Heegaard complexity of a closed connected 3-manifold
M as

c̃(M) = min {c̃(H) | H ∈ H(M)},

where H(M) is the set of all Heegaard diagrams of M .
The following statement generalizes a result of [14, Proposition 2.1.8] (for

the case of reduced diagrams of closed manifolds) and [3] (for case of Heegaard
diagrams arising from gem representation of closed manifolds).

Proposition 2.3. If M is a compact connected 3-manifold then

c(M) 6 c̃(M).

Proof. Let H = (Σg, C
′, C′′) be a Heegaard diagram of M and let (Σg,K

′,K ′′)
be the associated Heegaard splitting. We want to prove that c(M) 6 c̃(H).
From the definition of modified complexity it is clear that we can suppose that
H is reduced. If ∂M = ∅ then the statement is given in [14, Proposition 2.1.8].
For the case ∂M 6= ∅ the same proof works because of the following reason. The
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Figure 1. A Dunwoody diagram.

simple polyhedron obtained as the union of Σg with the core of the 2-handles of
K ′ and K ′′ is a spine with c(H) singular vertices of M − Int(B), where B ⊂ K ′

is a closed ball. Since ∂M is contained in K ′′, a spine for M can be obtained
by connecting ∂B with ∂M via pinching a region of R(H). �

By results of [4], the upper bound in Proposition 2.3 becomes an equality
for the 69 closed connected prime orientable 3-manifolds admitting a (colored)
triangulation with at most 28 tetrahedra. As far as we know there is no example
where the strict inequality holds.

Conjecture 2.4. For every compact connected orientable 3-manifold M the
equality c(M) = c̃(M) holds.

3. Generalized Dunwoody manifolds

In this section we define a class of manifolds that generalizes the class of
Dunwoody manifolds introduced in [8].

A Dunwoody diagram is a trivalent regular planar graph, depending on six
integers a, b, c, n, r, s, such that n > 0, a, b, c > 0 and d = 2a + b + c > 0, and
it is defined as follows (see Figure 1).

It contains n internal circles C ′

1, . . . , C
′

n, and n external circles C ′′

1 , . . . , C ′′

n ,
each having d vertices. The circle C ′

i (resp. C ′′

i ) is connected to the circle
C ′

i+1 (resp. C ′′

i+1) by a parallel arcs, to the circle C ′′

i by c parallel arcs and
to the circle C ′′

i−1 by b parallel arcs, for every i = 1, . . . , n (subscripts mod
n). We denote by A the set of arcs, and by B the set of circles. By gluing
the circle C ′

i to the circle C ′′

i+s in the way that equally labelled vertices are
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identified together (see Figure 1 for the labelling), we obtain a Heegaard dia-
gram H(a, b, c, n, r, s) = (Σn, C′, C′′), where C′ is the proper, reduced system of
curves arising from B, containing n curves, and C′′ is the system of curves aris-
ing from A, containing m > 0 curves. Observe that the parameters r and s can
be considered mod d and mod n respectively. We call H(a, b, c, r, n, s) closed
Dunwoody diagram. The generalized Dunwoody manifold M(a, b, c, n, r, s) is
the manifold MH(a,b,c,n,r,s).

Since both the diagram and the identification rule are invariant with respect
to an obvious cyclic action of order n, the generalized Dunwoody manifold
M(a, b, c, n, r, s) admits a cyclic symmetry of order n.

Remark 3.1. It is easy to observe that diagrams H(a, b, c, r, n, s) and H(a, c, b, d−
r, n, n − s − 1) are isomorphic, so they represent the same manifold.

A generalized Dunwoody manifold M(a, b, c, n, r, s) is a Dunwoody manifold
when the system C′′ of curves arising from A is proper and reduced. In this
case H(a, b, c, n, r, s) is a “classical” Heegaard diagram (see [11]) and therefore
all Dunwoody manifolds are closed.

As proved in [5], the class of Dunwoody manifolds coincides with the class
of strongly-cyclic branched covering of (1, 1)-knots. So, in particular, it con-
tains all cyclic branched coverings of 2-bridge knots. It is not known if cyclic
branched coverings of 2-bridge links (with two components) admit represen-
tations as Dunwoody manifolds, but they surely are generalized Dunwoody
manifolds. This can be shown by introducing a polyhedral description for gen-
eralized Dunwoody manifolds.

Referring to Figure 2, let B be the closed unitary 3-ball in R
3 and consider

on its boundary n equally spaced meridians m1, . . . mn joining the north pole
N = (0, 0, 1) with the south pole S = (0, 0,−1). Subdivide each meridian mi

into 2a + b arcs with endpoints Pi,j , j = 0, . . . , 2a + b, such that Pi,0 = N and
Pi,2a+b = S. Let ti ∈ ∂B be the shortest arc connecting Pi,a+b with Pi+1,a, for
i = 1, . . . , n. We subdivide ti into c arcs with endpoints Qi,j for j = 0, . . . , c
such that Qi,0 = Pi,a+b and Qi,c = Pi+1,a. In this way ∂B is subdivided into
2n d-gons with d = 2a + b + c. We denote by R1, . . . , Rn the d-gons containing
the north pole Pi,0 = N and by R′

1, . . . , R
′

n the d-gons containing the south
pole. Moreover, let

P ′

i,0 =





Pi,2a+b−r 0 6 r 6 a,

Qi,r−a a 6 r 6 a + c,

Pi+1,r−c a + c 6 r 6 2a + b + c.

According to this definition P ′

i,0 is a point on the boundary of R′

i obtained from
S by giving a combinatorial r-twist in counterclockwise direction to the region
R′

i.
We glue Ri with R′

i+s by an orientation reversing homeomorphism match-
ing the vertices of Ri with the ones of R′

i+s such that Pi,0 ∈ Ri is identi-
fied with P ′

i+s,0 ∈ R′

i+s. In this way we obtain a closed connected orientable
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Figure 2. Polyhedral description of generalized Dunwoody manifolds.

pseudomanifold M̂(a, b, c, n, r, s) with a finite number of singular points whose
stars are cones over closed connected orientable surfaces. By removing the
interior of a regular neighboorhood of each singular point we get a compact
connected orientable 3-manifold with (possibly empty) non-spherical boundary
components, which is homeomorphic to the generalized Dunwoody manifold
M(a, b, c, n, r, s).

As a particular case, an n-fold cyclic branched covering of a 2-bridge link/knot
b(α, β) is M(β, α− 2β, 1, n, 2β +1, s) where s = (−1)β if b(α, β) is a knot (i.e.
α is odd) and s 6= 0 if b(α, β) has two components (i. e. α is even) (see
[20, 21]).

4. Upper and lower bounds

In this section we calculate the modified complexity of a closed Dunwoody
diagram in order to find upper bounds for the complexity of some families
of generalized Dunwoody manifolds. For n = 1, the generalized Dunwoody
manifold is a a lens space (including S2 × S1 and S3) in the closed case and a
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solid torus in the case with boundary. Since the complexity of these manifolds
has been already studied (see [14, Section 2.3.3]), we will always suppose n > 1.

Theorem 4.1. Let H = H(a, b, c, n, r, s) = (Σn, C′, C′′) be a closed Dunwoody
diagram, and d = 2a + b + c. For each γ ∈ C′′ define n(γ) as the number of
singular vertices contained in the cycle determined by γ in Γ(H). Then, with
the notation of Remark 2.1 we have:

c̃(H) = nd − max



n(R) +

∑

γ∈E(T )

n(γ) | T ∈ A(C′′), R ∈ R(HT )



 ,

where E(T ) is the edge set of the graph T and HT is the element of Rd(H)
obtained by removing from C′′ the curves belonging to T .

Proof. By construction the system C′ is proper and reduced. The statement
follows from the definition of modified complexity and Remark 2.1. �

This result allows us to find upper bounds for the modified complexity (and
so for Matveev complexity) of generalized Dunwoody manifolds. In the fol-
lowing subsections we specialize the estimates to the cases of some important
families.

4.1. Dunwoody manifolds

Proposition 4.2. Let M = M(a, b, c, n, r, s) be a Dunwoody manifold. Then

(i) If abc > 0 then

c(M) 6

{
n(2a + b + c) − max(2n, 6) if r 6= −b,−b ± 1,
n(2a + b + c) − max(2n, 5) if r = −b ± 1.

(ii) If abc = 0 and min(a, b + c) = 0 then

c(M) 6

{
n(2a + b + c − 4) if r 6= −b,−b ± 1,
n(2a + b + c − 3) if r = −b ± 1.

(iii) If abc = 0 and min(a, b + c) > 0 then

c(M) 6





n(2a + b + c − 2) if n > 3,
n(2a + c) − max(2n, 8 − 2k0) if n = 2, 3, b = 0 and s = 0,
n(2a + b) − max(2n, 8 − k0 − k1) if n = 2, c = 0 and s = 0,
n(2a + b) − max(2n, 8 − k0) if n = 3, c = 0 and s = 0,
n(2a + b) − max(2n, 8 − k1) if n = 3, c = 0 and s = 1,

where ki =





2 if r = (−1)ib,
1 if r = (−1)ib ± 1,
0 otherwise.

The cases not covered by the above formulas follow from the homeomorphisms
M(a, b, c, r, n, s) ∼= M(a, c, b, d − r, n, n − s − 1) (see Remark 3.1).
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Proof. The graph Γ(H) associated to a Heegaard diagram H for M(a, b, c, n, r, s)
is obtained from the diagram depicted in Figure 1 by performing the prescribed
identifications. Since Γ(H) is proper and reduced, then G(C′′) is an n-circle
bouquet, so T is a single point and therefore E(T ) = ∅. Hence by Theorem 4.1

c̃(H) 6 n(2a + b + c) − max{n(R) | R ∈ R(H)}.

In case (i) the upper (and lower) region of the Dunwoody diagram has 2n
vertices that are not identified together by the gluing, while for all the other
regions it is clear that n(R) 6 6. More precisely, the six vertices of hexagonal
regions remain all distinct if r 6= −b,−b± 1, while two of them are identified if
r = −b± 1. If r = −b then M(a, b, c, n, r, s) is not a Dunwoody manifold since
Γ(H) is not reduced.

In case (ii) the Dunwoody diagram has regions with 4n vertices. As before,
they remain all distinct under identifications if r 6= −b,−b±1, they become 3n
if r = −b ± 1, while if r = −b the associated manifold is not Dunwoody.

In case (iii), if n > 4 then the upper (or lower) region has 2n vertices while all
other regions have at most 8 vertices. When n = 2 or n = 3 the computation is
more tricky. We always have a region with eight vertices, but, as before, some
of them can be identified together. Given such a maximal region, the number
ki counts how many vertices of the circle C ′

i are identified with the ones of the
circle C ′′

i+s. �

Proposition 4.2 allows to obtain an upper bound for the complexity of cyclic
branched coverings of 2-bridge knots (Corollary 4.3) and some families of torus
knots (Corollary 4.5), and a family of Seifert manifolds (Corollary 4.6).

We recall that b(α, β) is a 2-bridge knot if and only if α is odd.

Corollary 4.3. Let Cn(α, β) be the n-fold cyclic branched covering of the 2-
bridge knot b(α, β). Then for n > 2 we have

c(Cn(α, β)) 6 n(α − 2).

Proof. Since b(α, α − β) is the mirror image of b(α, β) we can suppose that
β is even. By [9] we have that Cn(α, β) = M((α − 1)/2, 0, 1, n, β/2, s), for a
certain s = s(α, β). �

This result improves the upper bound obtained in [25], where the lower
bound has been obtained in the hyperbolic case (i.e. β 6= 1, α − 1) via volume
estimates. Now we give a lower bound for the remaining cases.

Proposition 4.4. Let n > 2. We have

c(Cn(α, 1)) = c(Cn(α, α − 1)) >

{
2 log5(α/d) + d − 2 if n is even,
2(d − 1) log5 2 − 1 if n is odd,

where d = gcd(α, n).
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Proof. Obviously Cn(α, α− 1) ∼= Cn(α, 1) since b(α, α− 1) is the mirror image
of b(α, 1). Moreover b(α, 1) is the torus knot of type (α, 2) and therefore
Cn(α, 1) is the Brieskorn manifold of type (2, α, n) [19]. Its first homology

group is Z
d−1 ⊕ Zn/d if n is even, and Z

d−1
2 if n is odd (see [26, 7]). Since the

manifold is irreducible (and different from L3,1), the result follows by applying
Theorem 2.6.2 of [14]. �

Corollary 4.5. Let Tn(k, h) be the n-fold cyclic branched covering of the torus
knot of type (k, h). Then we have

(1) c(Tn(k, h)) 6 n (2qk − 2q − 1) if h = qk + 1 for q > 0 and k > 1;
(2) c(Tn(k, h)) 6 n (2qk − 2q − 3) if h = qk − 1 for q, k > 1;
(3) c(Tn(k, h)) 6 n (2q1(s − 1)(qq1 + 1) + 2qq1 − 1) if k = sq1 + 1 and

h = qk + s for q, q1 > 0 and s > 1.

Proof. By [1] we have that

Tn(k, qk + 1) = M(1, k − 2, (k − 1)(2q − 1), n, k, k)

and

Tn(k, qk − 1) = M(1, k − 2, (k − 1)(2q − 1) − 2, n, (k − 1)(2q − 3), k).

Moreover, by [6], there exists s ∈ Z such that

Tn(sq1 + 1, (sq1 + 1)q + s) =

= M(q1, q1(2qq1(s − 1) + 2q + s − 2), 1 + (s − 2)q1, 2q2
1(s − 1) + sq1 + 1).

The result follows from Proposition 4.2. �

We remark that an algorithm developed in [6] allows us to obtain a presen-
tation of each n-fold cyclic branched covering of a torus knot as a Dunwoody
manifold and so to compute an upper bound for the complexity by using Propo-
sition 4.2.

It is proved in [10] that if p > q > 0 and gcd(p, q) = 1, n > 1, ℓ > 0, then
Seifert manifolds

Sn(p, q, ℓ) = {Oo, 0 | −1; (p, q), . . . , (p, q)︸ ︷︷ ︸
n−times

, (ℓ, ℓ − 1)}

are Dunwoody manifolds that generalize the class of Neuwirth manifolds intro-
duced in [23] and corresponding to p = 2 and q = ℓ = 1. Below we will give
upper and lower estimates for complexity of these Seifert manifolds.

Corollary 4.6. Suppose ℓ > 1 when n = 2. The following estimate holds:

c(Sn(p, q, ℓ)) 6 n(p + q(nℓ − 2) − 2).

Proof. By results of [10], we have that

Sn(p, q, ℓ) = M(q, q(nℓ − 2), p − 2q, n, p − q, 0)

if p > 2q and

Sn(p, q, ℓ) = M(p − q, 2q − p, q(nℓ − 2), n, p − q, 1)
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otherwise. The result follows from Proposition 4.2. �

Proposition 4.7. The following estimate holds:

c(Sn(p, q, ℓ)) > 2(n − 1) log5 p + 2 log5((n − 1)ℓq − p) − 1.

Proof. Following [24], a standard presentation of π1(Sn(p, q, ℓ)) is

〈y1, . . . , yn, y, h | [yi, h], [y, h], yp
i hq, yℓhℓ−1, y1 · · · ynyh; i = 1, . . . , n〉.

By abelianization, we find that a presentation matrix for H1(Sn(p, q, ℓ)) as a
Z-module is the circulant matrix whose first row is given by the coefficient of
f(t) = −p + ℓq

∑n−1
i=1 ti. By the theory of circulant matrices [2], there exists a

complex unitary matrix F , called Fourier matrix, such that

FBF ∗ = D = Diag(f(ζ1), f(ζ2), . . . , f(ζn)),

where ζ1, ζ2, . . . , ζn are the n-roots of the unity. So it follows that

|Tor(H1(Sn(p, q, ℓ)))| = pn−1((n − 1)ℓq − p).

Moreover, since Sn(p, q, ℓ) is irreducible (and different from L3,1), the result
follows from Theorem 2.6.2 of [14]. �

4.2. Cyclic branched coverings of two-bridge links

We recall that b(α, β) is a 2-component 2-bridge link if and only if α is even.
In the next statement we deal with cyclic branched coverings of 2-component
2-bridge links of singly type (see [18]).

Proposition 4.8. Let b(α, β) be a 2-bridge link with two components and
denote by m1 and m2 the homology classes of the meridian loops of the two
components. If Cn,s(α, β) is the n-fold cyclic branched covering of b(α, β) with
monodromy ω(m1) = 1, ω(m2) = s ∈ Zn − {0} then

c(Cn,s(α, β)) 6 n(α − 2) +
n

d
− α,

where d = gcd(n, s).

Proof. By results of [20, 21], we have

Cn,s(α, β) = M(β, α − 2β, 1, n, 2β + 1, s),

so we can use Theorem 4.1 to calculate c̃(H) in order to obtain an upper bound
for c(Cn,s(α, β)). The system of curves C′′ of the Dunwoody diagram

H = H(β, α − 2β, 1, n, 2β + 1, s) = (Σn, C′, C′′)

is not reduced. Indeed, taking advantage of its symmetries, it is easy to see
that it consists of n+d curves. More precisely, d curves (that we call of type A)
arise from all n “radial” arcs (i.e. the ones connecting the circles C ′

i and C ′′

i ).
Each of these curves intersects C′ in n/d points. The other n curves (that we
call of type B) arise from the remaining arcs and each of these curves intersect
C′ in α points.
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1

2

n

1

2

d

...

...

...

Figure 3

The graph G(C′′) is the one depicted in Figure 3, and each of its maximal
tree T consists of d − 1 edges corresponding to curves of type A and one edge
corresponding to a curve of type B. So, the total number of vertices of Γ(H)
that belong to curves corresponding to the edges of T is α + (d − 1)n/d. By
removing the curves corresponding to T from C′′, we obtain a reduced Heegaard
diagram which has a region, namely the upper one in Figure 1, with at least
2n vertices. Indeed, except for sporadic cases, 2n is the maximal number of
vertices in a region. Anyway, the statement follows from Theorem 4.1. �

An asymptotically equivalent estimate has been obtained in [25], where a
lower bound has been obtained in the hyperbolic case (i.e. β 6= 1, α − 1) via
volume arguments. We give a lower bound for the remaining cases.

Proposition 4.9. Let (n, s) 6= (3, 1), (3, 2) if α = 2. We have

c(Cn,s(α, 1)) = c(Cn,s(α, α − 1)) >

> 2 log5

(
M
(nm

hD

)m
(

αM

2D

)M−1
)

+ D − M − m

where D = gcd(n, α
2 (s − 1)), M = gcd(n, s − 1), h = gcd(n, s) and m =

gcd(D,h).

Proof. Since b(α, α − 1) is the mirror image of b(α, 1) then Cn,s(α, α − 1) ∼=
Cn,s(α, 1). Moreover b(α, 1) is the 2-component torus link of type (α, 2). So
c(Cn,s(α, 1)) is a Seifert manifold and then it is irreducible. The first homology
group is computed in [21]. So, the statement follows applying Theorem 2.6.2
of [14]. �

4.3. A class of cyclic branched coverings of theta graphs

Let Θ(α, β) be the theta graph in S3 obtained from a two bridge knot of type
(α, β) by adding a lower tunnel τ as in Figure 4. Without loss of generality we
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c1 c2

cm-1
cm

τ

Figure 4. The theta graph Θ(α, β).

can assume that
α

β
= c1 +

1

c2 + · · · +
1

cm−1 +
1

cm

,

where m > 0 and c1, . . . , cm can be taken as even integers (see [12, p. 26]).
Let n > 2 and s ∈ Zn − {0, 1}, then we denote by Θn,s(α, β) the n-fold

cyclic branched covering of Θ(α, β) having monodromy ω(m1) = 1, ω(m2) =
s and ω(m3) = s − 1, where m3 is a meridian loop around the tunnel and
m1,m2 are meridian loops around the other two edges of the graph, according
to the orientations depicted in Figure 4. By result of [22], Θn,s(α, β) is a
pseudomanifold with two singular points whose links are both homeomorphic
to a closed surface of genus (1 + n − gcd(n, s) − gcd(n, s − 1))/2.

Proposition 4.10. Let Θ̂n,s(α, β) be the compact manifold obtained by remov-
ing regular neighborhoods of the two singular points of Θn,s(α, β), then

c(Θ̂n,s(α, β)) 6 n(α − 1).

Proof. It follows from a result of [22] that Θ̂n,s(α, β) is homeomorphic to the
generalized Dunwoody manifold M(β, α − 2β, 1, n, 2β − α, s). Thus we can
use Theorem 4.1 to calculate c̃(H) in order to obtain an upper bound for

c(Θ̂n,s(α, β)).

1

2

...

n'

Figure 5

The system of curves C′′ of the Dunwoody diagram

H = H(β, α − 2β, 1, n, 2β + 1, s) = (Σn, C′, C′′)
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is reduced. Indeed, taking advantage of its symmetries, it is easy to see that
it consists of n′ = gcd(n, s) + gcd(n, s − 1) curves. More precisely, gcd(n, s)
curves arise from the “radial” arcs, while the other gcd(n, s − 1) curves arise
from the remaining arcs. The graph G(C′′) is the one depicted in Figure 5,
where each vertex corresponds to a region of genus (1 + n − n′)/2 > 0. So T
consists of two isolated vertices and the system C′′ is already reduced. Since
α is odd, then α 6= 0 and α − 2β 6= 0. So, referring to Figure 1, the region
with the maximum number of vertices is always the upper one, which has 2n
vertices. The statement follows from Theorem 4.1. �
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