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Abstract

In this paper the theory of species sampling sequences is linked to the theory of conditionally
identically distributed sequences in order to enlarge the set of species sampling sequences which are
mathematically tractable.

The Conditional identity in distribution (Berti, Pratelli and Rigo (2004)) is a new type of de-
pendence for random variables, which generalizes the well-known notion of exchangeability. In this
paper a class of random sequences, called Generalized Species Sampling Sequences, is defined and a
condition to have conditional identity in distribution is given. Moreover, two types of generalized
species sampling sequences that are conditionally identically distributed are introduced and studied:
the generalized Poisson-Dirichlet sequences and the generalized Ottawa sequences. Some examples
are discussed.
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1 Introduction

A sequence (Xn)n≥1 of random variables defined on a probability space (Ω,A, P ) taking values in a
Polish space, is a species sampling sequence if (a version) of the regular conditional distribution of
Xn+1 given X(n) := (X1, . . . , Xn) is the transition kernel

Kn+1(ω, ·) :=
Pn

k=1 p̃n,k(ω)δXk(ω)(·) + r̃n(ω)µ(·) (1)

where p̃n,k(·) and r̃n(·) are real–valued measurable functions of X(n) and µ is a probability measure.
See Pitman (1996).

As explained in Hansen and Pitman (2000), a species sampling sequence (Xn)n≥1 can be inter-
preted as the sequential random sampling of individuals’ species from a possibly infinite population
of individuals belonging to several species. If, for the sake of simplicity, we assume that µ is diffuse,
then the interpretation is the following. The species of the first individual to be observed is assigned
a random tag X1, distributed according to µ. Given the tags X1, . . . Xn of the first n individuals
observed, the species of the (n + 1)-th individual is a new species with probability r̃n and it is equal
to the observed species Xk with probability

Pn
j=1 p̃n,jI{Xj=Xk}.

The concept of species sampling sequence is naturally related to that of random partition induced
by a sequence of observations (see Pitman (2006)). Given a random vector X(n) = (X1, . . . , Xn),
we denote by Ln the (random) number of distinct values of X(n) and by X∗(n) = (X∗

1 , . . . , X∗
Ln
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random vector of the distinct values of X(n) in the order in which they appear. The random partition

induced by X(n) is the random partition of the set {1, . . . , n} given by π(n) = [π
(n)
1 , . . . , π

(n)
Ln

] where

i ∈ π
(n)
k ⇔ Xi = X∗

k .

Two distinct indices i and j clearly belong to the same block π
(n)
k for a suitable k if and only if

Xi = Xj . It follows that the prediction rule (1) can be rewritten as

Kn+1(ω, ·) =
PLn(ω)

k=1 p̃∗
n,k(ω)δX∗

k
(ω)(·) + r̃n(ω)µ(·) (2)

where
p̃∗

n,k :=
P

j∈π
(n)
k

p̃n,j .

In Hansen and Pitman (2000) it is proved that, if µ is diffuse and (Xn)n≥1 is an exchangeable
sequence, the coefficients p̃∗

n,k are almost surely equal to some function of π(n) and they must satisfy
a suitable recurrence relation. Although there are only a few explicit prediction rules which give
rise to exchangeable sequences, this kind of prediction rules are appealing for many reasons. Indeed,
exchangeability is a very natural assumption in many statistical problems, in particular from the
Bayesian viewpoint, as well for many stochastic models. Moreover, remarkable results are known
for exchangeable sequences: among others, such sequences satisfy a strong law of large numbers and
they can be completely characterized by the well–known de Finetti representation theorem. See,
e.g., Aldous (1985). Further, for an exchangeable sequence the empirical mean

Pn
k=1 f(Xk)/n

and the predictive mean, i.e. E[f(Xn+1)|X1, . . . , Xn], converge to the same limit as the number of
observations goes to infinity. This fact can be invoked to justify the use of the empirical mean in the
place of the predictive mean, which is usually harder to compute. Nevertheless, in some situations
the assumption of exchangeability can be too restrictive. For instance, instead of a classical Pólya
urn scheme, it may be useful to deal with the so called randomly reinforced urn schemes. See, for
example, Aletti, May and Secchi (2009), Bay and Hu (2005), Berti, Pratelli and Rigo (2004), Berti,
Crimaldi, Pratelli and Rigo (2009), Crimaldi (2009), Crimaldi and Leisen (2008), Flournoy and
May (2009), Janson (2005), May, Paganoni and Secchi (2005), Pemantle (2007) and the references
therein. Such processes fail to be exchangeable. Our purpose is to introduce and study a class of
generalized species sampling sequences, which are generally not exchangeable but which still have
interesting mathematical properties.

We thus need to recall the notion of conditional identity in distribution, introduced and studied in
Berti, Pratelli and Rigo (2004). Such form of dependence generalizes the notion of exchangeability
preserving some of its nice predictive properties. One says that a sequence (Xn)n≥1, defined on
(Ω,A, P ) and taking values in a measurable space (E, E), is conditionally identically distributed with
respect to a filtration G = (Gn)n≥0 (in the sequel, G-CID for short), whenever (Xn)n≥1 is G–adapted
and, for each n ≥ 0, j ≥ 1 and every bounded measurable real–valued function f on E,

E[f(Xn+j) | Gn] = E[f(Xn+1) | Gn].

This means that, for each n ≥ 0, all the random variables Xn+j , with j ≥ 1, are identically distributed
conditionally on Gn. It is clear that every exchangeable sequence is a CID sequence with respect to
its natural filtration but a CID sequence is not necessarily exchangeable. Moreover, it is possible
to show that a G–adapted sequence (Xn)n≥1 is G-CID if and only if, for each bounded measurable
real–valued function f on E,

V f
n := E[f(Xn+1) | Gn]

is a G–martingale, see Berti, Pratelli and Rigo (2004). Hence, the sequence (V f
n )n≥0 converges almost

surely to a random variable Vf . One of the most important features of CID sequences is the fact that
this random variable Vf is also the almost sure limit of the empirical means. More precisely, CID
sequences satisfy the following strong law of large numbers: for each bounded measurable real–valued
function f on E, the sequence (Mf

n )n≥1, defined by

Mf
n :=

1

n

Pn
k=1 f(Xk), (3)

converges almost surely to Vf . It follows that also the predictive mean E[f(Xn+1)|X1, . . . , Xn] con-
verges almost surely to Vf . In other words, CID sequences share with exchangeable sequences the
remarkable fact that the predictive mean and the empirical mean merge when the number of obser-
vations diverges. Unfortunately, while, for an exchangeable sequence, we have Vf = E[f(X1)|T ] =
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R

f(x)m(ω, dx), where T is the tail–σ–field and m is the random directing measure of the sequence,
it is difficult to characterize explicitly the limit random variable Vf for a CID sequence. Indeed no
representation theorems are available for CID sequences. See, e.g., Aletti, May and Secchi (2007).

The paper is organized as follows. In Section 2 we state our definition of generalized species
sampling sequence and we give a condition under which a generalized species sampling sequence is
CID with respect to a suitable filtration G. After recalling the notion of stable convergence in Section
3, we introduce and analyze two types of generalized species sampling sequences which are CID:
the generalized Poisson-Dirichlet sequences (see Section 4) and the generalized Ottawa sequences (see
Section 5). We give some convergence results and we discuss some examples. The paper closes by a
section devoted to proofs.

2 Generalized species sampling sequences

The Blackwell–MacQueen urn scheme provides the most famous example of exchangeable prediction
rule, that is

P{Xn+1 ∈ · |X1, . . . , Xn} =
Pn

i=1

1

θ + n
δXi

(·) +
θ

θ + n
µ(·)

where θ is a strictly positive parameter and µ is a probability measure, see, e.g., Blackwell and
MacQueen (1973) and Pitman (1996). This prediction rule determines an exchangeable sequence
(Xn)n≥1 whose directing random measure is a Dirichlet process with parameter θµ(·), see Ferguson
(1973). According to this prediction rule, if µ is diffuse, a new species is observed with probability

θ/(θ + n) and an old species X∗
j is observed with probability proportional to the cardinality of π

(n)
j ,

a sort of preferential attachment principle. In term of random partitions this rule corresponds to the
so–called Chinese restaurant process, see Pitman (2006) and the references therein.

A randomly reinforced prediction rule of the same kind could work as follows:

P{Xn+1 ∈ · |X1, . . . , Xn, Y1, . . . , Yn} =
Pn

i=1

Yi

θ +
Pn

j=1 Yj
δXi

(·) +
θ

θ +
Pn

j=1 Yj
µ(·) (4)

where µ is a probability measure and (Yn)n≥1 is a sequence of independent positive random variables.
If µ is diffuse, then we have the following interpretation: each individual has a random positive weight
Yi and, given the first n tags X(n) = (X1, . . . , Xn) together with the weights Y (n) = (Y1, . . . , Yn), it
is supposed that the species of the next individual is a new species with probability θ/(θ +

Pn
j=1 Yj)

and one of the species observed so far, say X∗
l , with probability

P

i∈π
(n)
l

Yi/(θ +
Pn

j=1 Yj). Again a

preferential attachment principle. Note that, in this case, instead of describing the law of (Xn)n≥1

with the sequence of the conditional distributions of Xn+1 given X(n), we have a latent process
(Yn)n≥1 and we characterize (Xn)n≥1 with the sequence of the conditional distributions of Xn+1

given (X(n), Y (n)).
Now that we have given an idea, let us formalize what we mean by generalized species sampling

sequence. Let (Ω,A, P ) be a probability space and E and S be two Polish spaces, endowed with their
Borel σ-fields E and S, respectively. In the sequel, FZ = (FZ

n )n≥0 will stand for the natural filtration
associated with any sequence of random variables (Zn)n≥1 on (Ω,A, P ) and we set FZ

∞ = ∨n≥0FZ
n .

Finally, Pn will denote the set of all partitions of {1, . . . , n}.
We shall say that a sequence (Xn)n≥1 of random variables on (Ω,A, P ), with values in E, is a

generalized species sampling sequence if:

• (h1) X1 has distribution µ.

• (h2) There exists a sequence (Yn)n≥1 of random variables with values in (S,S) such that, for
each n ≥ 1, a version of the regular conditional distribution of Xn+1 given

Fn := FX
n ∨ FY

n

is
Kn+1(ω, ·) =

Pn
i=1 pn,i(π

(n)(ω), Y (n)(ω))δXi(ω)(·) + rn(π(n)(ω), Y (n)(ω))µ(·) (5)

with pn,i(·, ·) and rn(·, ·) suitable measurable functions defined on Pn ×Sn with values in [0, 1].

• (h3) Xn+1 and (Yn+j)j≥1 are conditionally independent given Fn.

3



Example 2.1. Let µ be a probability measure on E, (νn)n≥1 be a sequence of probability measures
on S, (rn)n≥1 and (pn,i)n≥1, 1≤i≤n be measurable functions such that

rn : Pn × Sn → [0, 1], pn,i : Pn × Zn → [0, 1]

and
Pn

i=1pn,i(qn, y1, . . . , yn) + rn(qn, y1, . . . , yn) = 1 (6)

for each n ≥ 1 and each (qn, y1, . . . , yn) in Pn × Sn. By the Ionescu Tulcea Theorem, there are
two sequences of random variables (Xn)n≥1 and (Yn)n≥1, defined on a suitable probability space
(Ω,A, P ), taking values in E and S respectively, such that conditions (h1), (h2) and the following
condition are satisfied:

• Yn+1 has distribution νn+1 and it is independent of the σ-field

Fn ∨ σ(Xn+1) = FX
n+1 ∨ FY

n .

This last condition implies that, for each n, (Yn+j)j≥1 is independent of FX
n+1 ∨ FY

n . It follows, in
particular, that (Yn)n≥1 is a sequence of independent random variables. Therefore, also (h3) holds
true. Indeed, for each real–valued bounded Fn-measurable random variable V , each bounded Borel
function f on E, each j ≥ 1 and each bounded Borel function h on Sj , we have

E[V f(Xn+1)h(Yn+1, . . . , Yn+j)] = E
ˆ

V f(Xn+1)E[h(Yn+1, . . . , Yn+j) | Fn ∨ σ(Xn+1)]
˜

= E[ V f(Xn+1)
R

h(yn+1, . . . , yn+j) νn+1(dyn+1) . . . (dyn+1) ]

= E
ˆ

V E[f(Xn+1) | Fn]
R

h(yn+1, . . . , yn+j) νn+1(dyn+1) . . . (dyn+1)
˜

.

On the other hand, we have

E[h(Yn+1, . . . , Yn+j) | Fn] =
R

h(yn+1, . . . , yn+j) νn+1(dyn+1) . . . (dyn+1)

hence
E[f(Xn+1)h(Yn+1, . . . , Yn+j) | Fn] = E[f(Xn+1) | Fn]E[h(Yn+1, . . . , Yn+j) | Fn].

This fact is sufficient in order to conclude that also assumption (h3) is verified. ♦

In order to state our first result concerning generalized species sampling sequences, we need some
further notation. Set

p∗
n,j(π

(n)) = p∗
n,j

`

π(n), Y (n)
´

:=
P

i∈π
(n)
j

pn,i

`

π(n), Y (n)
´

for j = 1, . . . , Ln

and

rn := rn

`

π(n), Y (n)
´

.

Given a partition π(n), denote by [π(n)]j+ the partition of {1, . . . , n+1} obtained by adding the element
(n + 1) to the j-th block of π(n). Finally, denote by [π(n); (n + 1)] the partition obtained by adding a
block containing (n + 1) to π(n). For instance, if π(3) = [(1, 3); (2)], then [π(3)]2+ = [(1, 3); (2, 4)] and
[π(3); (4)] = [(1, 3); (2); (4)].

Theorem 2.2. A generalized species sampling sequence (Xn)n≥1 with µ diffuse is a CID sequence
with respect to the filtration G = (Gn)n≥0 with Gn := FX

n ∨FY
∞ if and only if, for each n, the following

condition holds P -almost surely:

p∗
n,j(π

(n)) = rnp∗
n+1,j([π

(n); {n + 1}]) +
PLn

l=1p
∗
n+1,j([π

(n)]l+)p∗
n,l(π

(n)) (7)

for 1 ≤ j ≤ Ln.

In the following sections, we shall introduce and study two types of generalized species sampling
sequences that are CID.

We conclude this section with some remarks on the length Ln of the random partition induced
by a generalized species sampling sequence at time n, i.e. the random number of distinct values of a
generalized species sampling sequence until time n.

Let A0 := E and An(ω) := E \ {X1(ω), . . . , Xn(ω)} = {y ∈ E : y /∈ {X1(ω), . . . , Xn(ω)}}
for n ≥ 1 and set s0 := 1 and sn := rn

`

π(n), Y (n)
´

µ(An) = rnµ(An) for each n ≥ 1. (If the
probability measure µ is diffuse, then sn = rn.) Reconsidering the species interpretation, given
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X(n) = (X1, . . . Xn) and Y (n) = (Y1, . . . , Yn), the species of the (n+1)-th individual is a new species
with probability sn and one of the species observed so far with probability 1 − sn, that is

P [Ln+1 = Ln + 1 | Fn] = sn = rnµ(An).

Moreover, setting Bn = {Ln = Ln−1 + 1} ∈ Fn for each n ≥ 1 (with L0 = 0), we have

Ln =

n
X

k=1

IBk
, and

X

k≥1

P [Bk | Fk−1] =
X

k≥1

sk−1.

Then, by Lévy’s extension of Borel-Cantelli lemmas (see, for instance Williams (1991), sec. 12.15),
we can obtain the following simple, but useful, result.

Proposition 2.3. Let (Xn)n≥1 be a generalized species sampling sequence. Then

(i)
P

k≥0 sk < +∞ implies Ln
a.s.−→ L, where L is a random variable with P{L < +∞} = 1.

(ii)
P

k≥0 sk = +∞ implies Ln
P

n
k=1

sk−1

a.s.−→ 1.

In particular, in case (ii), if there exists a sequence (hn)n≥1 of positive numbers and a random variable
L such that

hn ↑ +∞ and
1

hn

Pn
k=1sk−1

a.s.−→ L,

then Ln/hn
a.s.−→ L.

3 Stable convergence

Since in the sequel we shall deal with stable convergence, we briefly recall here this form of conver-
gence.

Stable convergence has been introduced by Rényi (1963) and subsequently studied by various
authors, see, for example, Aldous and Eagleson (1978), Jacod and Memin (1981), Hall and Heyde
(1980). A detailed treatment, including some strengthened forms of stable convergence, can be found
in Crimaldi, Letta and Pratelli (2007).

Given a probability space (Ω,A, P ) and a Polish space E (endowed with its Borel σ-field E), recall
that a kernel K on E is a family K = (K(ω, ·))ω∈Ω of probability measure on E such that, for each
bounded Borel function g on E, the function

K(g)(ω) =
R

g(x)K(ω, dx)

is measurable with respect to A. Given a sub-σ-field H of A, we say that the kernel K is H-measurable
if, for each bounded Borel function g on E, the random variable K(g) is measurable with respect to
H. In the following, the symbol N will denote the sub-σ-field generated by the P -negligible events
of A. Given a sub-σ-field H of A and a H ∨ N -measurable kernel K on E, a sequence (Zn)n≥1

of random variables on (Ω,A, P ) with values in E converges H-stably to K if, for each bounded
continuous function g on E and for each H–measurable real–valued bounded random variable W

E[g(Zn) W ] −→ E[K(g) W ].

If (Zn)n≥1 converges H-stably to K then, for each A ∈ H with P (A) 6= 0, the sequence (Zn)n≥1

converges in distribution under the probability measure PA = P (·|A) to the probability measure
PAK on E given by

PAK(B) = P (A)−1E[IAK(·, B)] =
R

K(ω, B) PA(dω) for each B ∈ E . (8)

In particular, if (Zn)n≥1 converges H-stably to K, then (Zn)n≥1 converges in distribution to the
probability measure PK on E given by

PK(B) = E[K(·, B)] =
R

K(ω, B) P (dω) for each B ∈ E . (9)

Moreover, if all the random variables Zn are H-measurable, then the H-stable convergence obviously
implies the A-stable convergence.

Throughout the paper, if U is a positive random variable, we shall call the Gaussian kernel
associated with U the family

N (0, U) =
`

N (0, U(ω))
´

ω∈Ω

of Gaussian distributions with zero mean and variance equal to U(ω) (with N (0, 0) := δ0). Note that,
in this case, the probability measures defined in (8) and (9) are mixtures of Gaussian distributions.
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4 Generalized Poisson Dirichlet sequences

Let α ≥ 0 and θ > −α. Moreover, let µ be a probability measure on E, ν1 be a probability measure
on (α, +∞) and (νn)n≥2 be a sequence of probability measures on [α, +∞). Consider the following
sequence of functions

pn,i(qn, y(n)) :=
yi − α/Ci(qn)

θ +
Pn

j=1 yj

rn(qn, y(n)) :=
θ + αL(qn)

θ +
Pn

j=1 yj

where y(n) = (y1, . . . , yn) ∈ (α, +∞) × [α, +∞)n−1, qn ∈ Pn, Ci(qn) is the cardinality of the block
in qn which contains i and L(qn) is the number of blocks of qn. It is easy to see that such functions
satisfy (6). Hence, by Example 2.1, there exists a generalized species sampling sequence (Xn)n≥1 for
which

P{Xn+1 ∈ · |X(n), Y (n)} =
PLn

l=1

“

P

i∈π
(n)
l

Yi

”

− α

θ + Sn
δX∗

l
(·) +

θ + αLn

θ + Sn
µ(·), (10)

where (Yn)n≥1 is a sequence of independent random variables such that each Yn has law νn and
Sn =

Pn
j=1 Yj (with S0 = 0). If µ is diffuse, one can easily check that (7) of Theorem 2.2 holds and

so (Xn)n≥1 is a CID sequence with respect to G = (FX
n ∨ FY

∞)n≥1.

It is worthwhile noting that if µ is diffuse, Yn = 1 for every n ≥ 1, α ∈ [0, 1) and θ > −α, then we
get an exchangeable sequence directed by the well-known two parameter Poisson-Dirichlet process:
i.e. an exchangeable sequence described by the prediction rule

P{Xn+1 ∈ · |X1, . . . , Xn} =
PLn

l=1

card(π
(n)
l ) − α

θ + n
δX∗

l
(·) +

θ + αLn

θ + n
µ(·). (11)

See, e.g., Pitman and Yor (1997) and Pitman (2006).

The case α = 0 have been deeply studied by many authors (see, for instance, Aletti, May and
Secchi (2009), Bay and Hu (2005), Berti, Crimaldi, Pratelli and Rigo (2009), Crimaldi (2009),
Flournoy and May (2009), Janson (2005), May, Paganoni and Secchi (2005), Pemantle (2007) and
the references therein). The case when µ is discrete and α > 0 has been treated in Berti, Crimaldi,
Pratelli and Rigo (2009). Here, we present some results for the case when µ is diffuse and α > 0.

Proposition 4.1. If supn E[Y 2
n ] < +∞ and limn E[Yn] = m, then

rn =
θ + αLn

θ + Sn

a.s.−→ R and
Ln

n

a.s.−→ R,

where R is a random variable such that P{0 ≤ R ≤ 1} = 1.

In particular, if m > α, we have P{R = 0} = 1.

Later on we shall see some examples in which P{R > 0} > 0.

Let us take A ∈ E and set V A
n := P [Xn+1 ∈ A | Fn]. Since, (Xn)n≥1 is CID, we have

V A
n

a.s.−→ VA and MA
n :=

1

n

n
X

k=1

IA(Xk)
a.s.−→ VA.

We shall prove the following central limit theorem.

Theorem 4.2. Let us assume the following conditions:

(i) supn E[Y u
n ] < +∞ for some u > 2

(ii) m = limn E[Yn], q = limn E[Y 2
n ].

Then
“√

n(MA
n − V A

n ),
√

n(V A
n − VA)

” A−stably−→ N (0, UA) ×N (0, ΣA),

where

UA =
“ q

m2
− 1
”

VA(1 − VA) +
α2

m2
Rµ(A)[1 − µ(A)].

ΣA =
q

m2
VA(1 − VA) +

α

m

“ α

m
− 2
”

Rµ(A)[1 − µ(A)].
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In particular,
√

n(MA
n − VA)

A−stably−→ N (0, UA + ΣA). Moreover,

E[g
`√

n(V A
n − VA)

´

| Gn]
a.s.−→ N (0, Σf ))(g)

for each g ∈ Cb(R).

4.1 Case m > α

By Proposition 4.1, we have P{R = 0} = 1 and so

UA =
“ q

m2
− 1
”

VA(1 − VA). ΣA =
q

m2
VA(1 − VA).

Taking into account the analogy with randomly reinforced Pólya urns, it is natural to think that
the random variable VA is generally not degenerate (see Aletti, May and Secchi (2009)). This fact
implies that ΣA is not degenerate, while UA is degenerate if and only if Yn converges in L2 to the
constant m. This happens, for example, in the classical case (see (11)) studied by Pitman and Yor
(1997) and Pitman (2006).

4.2 Case m = α

If m = α and q = α2 (i.e. Yn
L2

→ α), then

UA = Rµ(A)[1−µ(A)], ΣA = VA(1−VA)−Rµ(A)[1−µ(A)] and UA +ΣA = VA(1−VA).

The following examples show that, if m = α, we can have P{R > 0} > 0.

Example 4.3. Let us take α > 0 and −α < θ ≤ 0. Setting

Wn =
αLn

α + θ + Sn−1
,

we have (see the following Lemma 6.2)

∆n = E[Wn+1−Wn | Fn] =
(α − Yn)Wn

θ + Sn
+

αθ

(θ + Sn)(α + θ + Sn)
≥ (α − Yn)αn

(θ + αn)2
+

αθ

(θ + αn)(α + θ + αn)
.

Therefore, we have

E[Wn+1 | Fn]−W1 =
n
X

k=1

E[Wk+1−Wk | Fk] =
n
X

k=1

∆k ≥ α
n
X

k=1

(α − Yk)k

(θ + αk)2
+αθ

n
X

k=1

1

(θ + αk)(α + θ + αk)
.

and so

E[Wn+1] ≥ α

α + θ
+ α

n
X

k=1

E[α − Yk]k

(θ + αk)2
+ αθ

n
X

k=1

1

(θ + αk)(α + θ + αk)
.

Letting n → +∞, we obtain

E[R] ≥ α

α + θ
+ α

X

k≥1

E[α − Yk]k

(θ + αk)2
+ αθ

X

k≥1

1

(θ + αk)(α + θ + αk)
.

Therefore, if

α
X

k≥1

E[Yk − α]k

(θ + αk)2
− αθ

X

k≥1

1

(θ + αk)(α + θ + αk)
<

α

α + θ
, (12)

then E[R] > 0 and so P{R > 0} > 0. Note that, in order to have (12), it must be

X

k≥1

E[Yk − α]

k
< +∞.

♦

Example 4.4. Let us take α > 0, θ = 0, Y1 > α and Yn = α for each n ≥ 2. Then, using the same
notation as the one in the previous example, we have ∆n = 0 for each n ≥ 2 and so E[R] = E[W2].
On the other hand, we have

0 < E[W2] ≤ E

»

2α

α + Y1

–

< 1.

Then we get min
ˆ

P{R > 0}, P{R < 1}
˜

> 0. Moreover, since it must be P{ΣA ≥ 0} = 1, we obtain
that, if 0 < µ(A) < 1, then P{VA = 0, R > 0} = 0 and P{VA = 1, R > 0} = 0. ♦
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5 Generalized Ottawa sequences

We shall say that a generalized species sampling sequence (Xn)n≥1 is a generalized Ottawa sequence
or, more briefly, a GOS, if the following conditions are satisfied for every n ≥ 1:

• The functions rn and pn,i (for i = 1, . . . , n) do not depend on the partition, hence

Kn+1(ω, ·) =
Pn

i=1 pn,i(Y (n)(ω))δXi(ω)(·) + rn(Y (n)(ω))µ(·). (13)

• The functions rn are strictly positive and

rn(Y1, . . . , Yn) ≥ rn+1(Y1, . . . , Yn, Yn+1) (14)

almost surely.

• The functions pn,i satisfy

pn,i :=
rn

rn−1
pn−1,i for i = 1, . . . , n − 1

pn,n := 1 − rn

rn−1

(15)

with r0 = 1.

For simplicity, from now on, we shall denote by rn and pn,i the FY
n -measurable random variables

rn(Y (n)) and pn,i(Y (n)), that is rn := rn(Y (n)) and pn,i := pn,i(Y (n)).

First of all let us stress that any GOS is a CID sequence with respect to the filtration G =
(FX

n ∨ FY
∞)n≥0. Indeed, since Gn = Fn ∨ σ(Yn+j : j ≥ 1), condition (h3) implies that

E[f(Xn+1) | Gn] = E[f(Xn+1) | Fn] (16)

for each bounded Borel real–valued function f on E and hence, by (h2), one gets

V f
n := E[f(Xn+1) | Gn] =

Pn
i=1 pn,if(Xi) + rnE[f(X1)].

Since the random variables pn+1,i are Gn-measurable it follows that

E[V f
n+1 | Gn] =

Pn
i=1pn+1,if(Xi) + pn+1,n+1E[f(Xn+1) | Gn] + rn+1E[f(X1)]

=
rn+1

rn

Pn
i=1pn,if(Xi) + V f

n − rn+1

rn
V f

n + rn+1E[f(X1)]

=
rn+1

rn
V f

n − rn+1E[f(X1)] + V f
n − rn+1

rn
V f

n + rn+1E[f(X1)] = V f
n .

Some examples follow.

Example 5.1. Consider a GOS for which Yn = an, where (an)n≥0 is a decreasing numerical sequence
with a0 = 1, an > 0 and rn(y1, . . . , yn) = yn.

If µ is diffuse, by Proposition 2.3, we can say that Ln converges almost surely to an integrable
random variable if and only if

P

k ak < +∞. ♦

Example 5.2. Consider a GOS for which (Yn)n≥1 is a Markov chain taking values in (0, 1], with
Y1 = 1 and transition probability kernel given by

P{Yn+1 ≤ x|Yn} =
x

Yn
I(0,Yn)(x) + I[Yn,+∞)(x) n ≥ 1

and rn(y1, . . . , yn) = yn.
If µ is diffuse, we have E[sn] = E[Yn] = (1/2)n−1 and so

P

k≥0 E[sk] < +∞. Therefore, by
Proposition 2.3, we can say that Ln converges almost surely to an integrable random variable. ♦

Example 5.3. Consider a GOS for which (Yn)n≥1 is a sequence of random variable taking values
on (0, 1) and

rn(y1, . . . , yn) =

n
Y

i=1

yi.

Note that in this case

P{Xn+1 ∈ · |X(n), Y (n)} =
n
X

j=1

"

(1 − Yj)
n
Y

i=j+1

Yi

#

δXj
(·) +

"

n
Y

i=1

Yi

#

µ(·).
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Assume that µ is diffuse and that (Yj)j≥1 is a sequence of independent random variables dis-
tributed according to a Beta distribution of parameter (j, 1−α) with α in [0, 1). That is each Yj has
density (with respect to the Lebesgue measure) on [0, 1] given by

x 7→ Γ(j + 1 − α)

Γ(j)Γ(1 − α)

xj−1

(1 − x)α
,

where Γ(z) =
R +∞
0

xz−1e−xdx. Set m1,n := E[Ln] and m2,n := E[L2
n]. Note that

m1,n+1 = m1,n + E[rn] =
n
X

j=0

E[rj ]. (17)

and

m2,n+1 = 3m1,n+1 − 2 + 2
n
X

j=2

j−1
X

i=1

E[rirj ]. (18)

If α = 0, (17) gives

m1,n+1 = 1 +
n
X

j=1

j
Y

i=1

i

1 + i
=

n
X

j=0

1

1 + j

and, after some computations, from (18), one gets also

m2,n+1 = 1 + 3
n
X

j=1

1

1 + j
+ 2

n
X

j=2

j−1
X

i=1

i
Y

h=1

h

h + 2

j
Y

k=i+1

k

k + 1
= 1 + 3

n
X

j=1

1

1 + j
+ 4

n+1
X

j=3

1

j

j
X

i=3

1

i
.

Now recall that

lim
n→+∞

1

log n

n
X

j=1

1

j
= 1 (19)

and, moreover, observe that

lim
n→+∞

1

log2(n)

n
X

j=1

1

j

j
X

i=1

1

i
=

1

2
.

This shows that the mean of Ln diverges as log n and the second moment diverges as log2(n). More
precisely,

lim
n→+∞

m1,n+1

log n
= lim

n→+∞

m2,n+1

2 log2(n)
= 1.

If α 6= 0, in the same way, one gets

m1,n+1 = 1 + Γ(2 − α)

n
X

j=1

Γ(j + 1)

Γ(j + 2 − α)
.

Now recall that
Γ(j + 1)

Γ(j + 2 − α)
=

1

j1−α

`

1 + O(1/j)
´

for j → +∞ and that

lim
n→+∞

1

nα

Pn
j=1

1

j1−α
=

1

α
for α ∈ (0, 1). (20)

Hence, when α 6= 0, we have

lim
n→+∞

m1,n+1

nα
=

Γ(2 − α)

α
.

♦

Example 5.4. Consider a GOS for which (Yn)n≥1 is a sequence of random variable taking values
on R+ and

rn(y1, . . . , yn) =
θ

θ +
Pn

j=1 yj

with θ > 0. Note that the randomly reinforced Blackwell–McQueen urn scheme (described by (4))
gives rise to a GOS. This example will be reconsidered later on. ♦

For the length Ln of the random partition induced by a GOS, we shall prove the following central
limit theorem.
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Theorem 5.5. Let (Xn)n≥1 be a GOS with µ diffuse and suppose there exists a sequence (hn)n≥1 of
positive numbers and a positive random variable σ2 such that the following properties hold:

hn ↑ +∞, and σ2
n :=

Pn
j=1 rj−1(1 − rj−1)

hn

a.s.−→ σ2.

Then, setting Rn :=
Pn

j=1 rj−1, we have

Tn :=
Ln − Rn√

hn

A−stably−→ N (0, σ2).

Corollary 5.6. Under the same assumptions of Theorem 5.5, if P (σ2 > 0) = 1, then we have

Tn

σn
=

(Ln − Rn)
q

Pn
j=1 rj−1(1 − rj−1)

A−stably−→ N (0, 1).

Example 5.7. Let us consider Example 5.1 with µ diffuse and

an =
θ

θ + n1−α

with θ > 0 and 0 < α < 1. We have sn = rn = an and, setting hn = nα and L = θ/α, from (20) we
get

1

nα
Rn =

1

nα

Pn−1
j=0

θ

θ + j1−α
−→ θ

α
.

Thus, by Proposition 2.3, we obtain that Ln/nα a.s.−→ θ/α. Further, since

1

hn

Pn
j=1ajbj → b, (21)

provided that aj ≥ 0,
Pn

j=1 aj/hn → 1 and bn → b as n → +∞, it is easy to see that

σ2
n =

Pn−1
j=0 rj(1 − rj)

nα
=

θ

nα

Pn−1
j=1

j1−α

(θ + j1−α)2
=

θ

nα

Pn−1
j=1

„

j1−α

θ + j1−α

«2
1

j1−α
→ θ/α.

Therefore, by Theorem 5.5, we obtain

Tn =
Ln − Rn

nα/2

A−stably−→ N (0, θ).

♦

Example 5.8. Let us consider a GOS with µ diffuse and

rn =
θ

θ +
Pn

i=1 Yi
.

where θ > 0 and the random variables Yn are independent positive random variable such that
P

n E[Y 2
n ]/n2 < +∞ and limn E[Yn] = m > 0. Then sn = rn and (see, for instance, Lemma 3

in Berti, Crimaldi, Pratelli and Rigo (2009)) we have

„

θ

j
+

1

j

Pj
i=1Yi

«−1
a.s.−→ 1/m.

Setting hn = log n and L = c/m, by (19) and (21), we obtain

1

log n
Rn =

1

log n
+

θ

log n

Pn−1
j=1

1

θ +
Pj

i=1Yi

∼ θ

log n

Pn−1
j=1

1

j

„

θ

j
+

1

j

Pj
i=1Yi

«−1
a.s.−→ θ

m

and so, by Proposition 2.3, we can conclude that Ln/ log n
a.s.−→ θ/m. Moreover, by (21), we have

σ2
n =

Pn−1
j=0 rj(1 − rj)

log n
=

θ

log n

Pn−1
j=1

Pj
i=1 Yi

(θ +
Pj

i=1 Yi)
2

=
θ

log n

Pn−1
j=1

 

Pj
i=1 Yi/j

θ/j +
Pj

i=1 Yi/j

!2
j

Pj
i=1 Yi

1

j
→ θ/m.
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Therefore, by Theorem 5.5, we obtain

Tn =
Ln − Rn√

log n

A−stably−→ N (0, θ/m)

and so
Ln − Rn
q

θ
m

log n

A−stably−→ N (0, 1).

If we take Yi = 1 for all i, we find the well known results for the asymptotic distribution of the
length of the random partition obtained for the Blackwell–McQueen urn scheme. Indeed, since
Pn

j=1 j−1 − log n = γ + O( 1
n
), one gets

Ln − θ log n√
θ log n

A−stably−→ N (0, 1).

See, for instance, pages 68-69 in Pitman (2006). ♦

We recall that, since a GOS (Xn)n≥1 is CID, then, for each bounded Borel real–valued function
f on E, we have

V f
n = E[f(Xn+1) | Fn]

a.s.−→ Vf and Mf
n =

1

n

n
X

k=1

f(Xk)
a.s.−→ Vf .

Inspired by Theorem 3.3 in Berti, Pratelli and Rigo (2004) and the results in Crimaldi (2009), we
conclude this section with the statements of some central limit theorems for a GOS.

Theorem 5.9. Let (Xn)n≥1 be a GOS. For each bounded Borel real–valued function f and each
n ≥ 1, let us set

Cf
n =

√
n(Mf

n − V f
n )

and, for 1 ≤ j ≤ n,

Zf
n,j =

1√
n

ˆ

f(Xj) − jV f
j + (j − 1)V f

j−1

˜

=
1√
n

(1 + jpj,j)
ˆ

f(Xj) − V f
j−1

˜

.

Suppose that:

(a) Uf
n :=

Pn
j=1(Z

f
n,j)

2 P−→ Uf .

(b) (Zf
n)∗ := sup1≤j≤n |Zf

n,j |
L1

−→ 0.

Then the sequence (Cf
n)n≥1 converges A-stably to the Gaussian kernel N (0, Uf ).

In particular, condition (a) and (b) are satisfied if the following conditions hold:

(a1) Uf
n

a.s.−→ Uf .

(b1) supn≥1 E[(Cf
n)2] < +∞.

Theorem 5.10. Let (Xn)n≥1 be a GOS and f be a bounded Borel real–valued function. Using the
previous notation, for n ≥ 0 set

Qn := pn+1,n+1 = 1 − rn+1

rn
and Df

n :=
√

n(V f
n − Vf ).

Suppose that the following conditions are satisfied:

(i) n
P

k≥n Q2
k

a.s.−→ H, where H is a positive real random variable.

(ii)
P

k≥0 k2 E[Q4
k] < ∞.

Then
E
ˆ

g(Df
n) | Fn]

a.s.−→ N
`

0, H(Vf2 − V 2
f )
´

(g)

for each g ∈ Cb(R). In particular, we have Df
n

A−stably−→ N
`

0, H(Vf2 − V 2
f )
´

.
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Corollary 5.11. Using the notation of Theorem 5.10, let us set for k ≥ 0

ρk =
1

rk+1
− 1

rk

and assume the following conditions:

(a) rk ≤ ck a.s. with
P

k≥0 k2c4
k+1 < ∞ and krk

a.s.→ α, where ck, α are strictly positive constants.

(b) The random variable ρk are independent and identically distributed with E[ρ4
k] < ∞.

Finally, let us set β := E[ρ2
k] and h := α2β.

Then, the conclusion of Theorem 5.10 holds true with H equal to the constant h.

Furthermore, if the assumptions of both Theorems 5.9 and 5.10 hold true, then, by Lemma 1 in
Berti, Crimaldi, Pratelli and Rigo (2009), we get

`

Cf
n , Df

n

´ A−stably−→ N (0, Uf ) ×N
`

0, H(Vf2 − V 2
f )
´

.

In particular,
√

n(Mf
n − Vf ) = Cf

n + Df
n

A−stably−→ N
`

0, Uf + H(Vf2 − V 2
f )
´

.
Since the proofs of these results are essentially the same as those in Berti, Pratelli and Rigo

(2004), in Crimaldi (2009) and Berti, Crimaldi, Pratelli and Rigo (2009), we shall skip them. The
interested reader can find all the details and some simple examples in the first version of this paper
Bassetti, Crimaldi and Leisen (2008).

6 Proofs

This section contains all the proofs of the paper. Recall that

Fn = FX
n ∨ FY

n and Gn = FX
n ∨ FY

∞ = Fn ∨ σ(Yn+j : j ≥ 1)

and so condition (h3) of the definition of generalized species sampling sequence implies that

V g
n := E[g(Xn+1) | Gn] = E[g(Xn+1) | Fn]

for each bounded Borel real–valued function g on E.

6.1 Proof of Theorem 2.2

We start with a useful lemma.

Lemma 6.1. If (Xn)n≥1 is a generalized species sampling sequence, then we have

P [n + 1 ∈ π
(n+1)
l | Gn] = P [Xn+1 = X∗

l | Fn] =
P

j∈π
(n)
l

pn,j(π
(n), Y (n)) + rn(π(n), Y (n))µ({X∗

l })

for each l = 1, . . . , Ln. Moreover, for each bounded Borel real–valued function f on E,

E[I{Ln+1=Ln+1}f(Xn+1) | Gn] = E[I{Ln+1=Ln+1}f(Xn+1) | Fn] = rn(π(n), Y (n))
R

An
f(y) µ(dy).

holds true with A0 := E and An the random “set” defined by

An(ω) := E \ {X1(ω), . . . , Xn(ω)} = {y ∈ E : y /∈ {X1(ω), . . . , Xn(ω)}} for n ≥ 1.

In particular, we have

P [Ln+1 = Ln + 1 | Gn] = P [Ln+1 = Ln + 1 | Fn] = rn(π(n), Y (n))µ(An) := sn(π(n), Y (n)).

If µ is diffuse, we have

P [n + 1 ∈ π
(n+1)
l | Gn] = P[Xn+1 = X∗

l | Fn] =
P

j∈π
(n)
l

pn,j(π
(n), Y (n))

for each l = 1, . . . , Ln and

E[I{Ln+1=Ln+1}f(Xn+1) | Gn] = E[I{Ln+1=Ln+1}f(Xn+1) | Fn] = rn(π(n), Y (n))E[f(X1)]

and
P [Ln+1 = Ln + 1 | Gn] = P [Ln+1 = Ln + 1 | Fn] = rn(π(n), Y (n)).

12



Proof. Since Gn = Fn ∨ σ(Yn+j : j ≥ 1), condition (h3) implies that

P [n + 1 ∈ π
(n+1)
l | Gn] = P [Xn+1 = X∗

l | Gn]P [Xn+1 = X∗
l | Fn].

Hence, by assumption (h2), we have

P [Xn+1 = X∗
l | Fn] =

Pn
i=1 pn,i(π

(n), Y (n))δXi
(X∗

l ) + rn(π(n), Y (n))µ({X∗
l })

=
P

j∈π
(n)
l

pn,j(π
(n), Y (n)) + rn(π(n), Y (n))µ({X∗

l }).

for each l = 1, . . . , Ln. If µ is diffuse, we obtain

P [Xn+1 = X∗
l | Fn] =

P

j∈π
(n)
l

pn,j(π
(n), Y (n))

for each l = 1, . . . , Ln.
Now, we observe that

I{Ln+1=Ln+1} = IBn+1(X1, . . . , Xn, Xn+1)

where Bn+1 = {(x1, . . . , xn+1) : xn+1 /∈ {x1, . . . , xn}}. Thus, by (h3) and (h2), we have

E[I{Ln+1=Ln+1}f(Xn+1) | Gn] = E[I{Ln+1=Ln+1}f(Xn+1) | Fn]

=
R

IBn+1(X1, . . . , Xn, y)f(y)Kn+1(·, dy)

=
Pn

i=1 pn,i(π
(n), Y (n))

R

An
f(y)δXi

(dy) + rn(π(n), Y (n))
R

An
f(y)µ(dy)

= rn(π(n), Y (n))
R

An
f(y)µ(dy).

If we take f = 1, we get

P [Un+1 = 1 | Gn] = P [Un+1 = 1 | Fn] = rn(π(n), Y (n))µ(An).

Finally, if µ is diffuse, then µ(An(ω)) = 1 for each ω and so we have

R

An
f(y)µ(dy) = E[f(X1)].

Proof of Theorem 2.2. Let us fix a bounded Borel real–valued function f on E. Using the
given prediction rule, we have

V f
n =

Pn
i=1pn,i(π

(n), Y (n))f(Xi) + rn(π(n), Y (n))E[f(X1)]

=
PLn

j=1p
∗
n,j(π

(n))f(X∗
j ) + rnE[f(X1)].

The sequence (Xn) is G-cid if and only if for each bounded Borel real–valued function f on E, the
sequence (V f

n )n≥0 is a G-martingale. We observe that we have (for the sake of simplicity we skip the
dependence on (Yn)n≥1)

E[V f
n+1 | Gn] =

Pn
i=1f(Xi)Ei + E[pn+1,n+1(π

(n+1))f(Xn+1) | Gn] + E[rn+1 | Gn]f̄

=
PLn

j=1 f(X∗
j )
P

i∈π
(n)
j

Ei + E[pn+1,n+1(π
(n+1))f(Xn+1) | Gn] + E[rn+1 | Gn]f̄

where Ei = E[pn+1,i(π
(n+1)) | Gn] and f̄ = E[f(X1)].

Now we are going to compute the various conditional expectations which appear in the second member
of above equality. Since µ is diffuse, using Lemma 6.1, we have

Ei = E[pn+1,i(π
(n+1)) | Gn]

=
PLn

l=1E[I{n+1∈π
(n+1)
l

}pn+1,i(π
(n+1)) | Gn] + E[I{Ln+1=Ln+1}pn+1,i(π

(n+1)) | Gn]

=
PLn

l=1pn+1,i([π
(n)]l+)E[I{n+1∈π

(n+1)
l

} | Gn] + E[I{Ln+1=Ln+1} | Gn]pn+1,i([π
(n); n + 1])

=
PLn

l=1pn+1,i([π
(n)]l+)

P

j∈π
(n)
l

pn,j(π
(n)) + rnpn+1,i([π

(n); n + 1])

=
PLn

l=1pn+1,i([π
(n)]l+)p∗

n,l(π
(n)) + rnpn+1,i([π

(n); n + 1])
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and so

X

i∈π
(n)
j

Ei =

Ln
X

l=1,l6=j

p∗
n+1,j([π

(n)]l+)p∗
n,l(π

(n)) +
X

i∈π
(n)
j

pn+1,i([π
(n)]j+)p∗

n,j(π
(n)) + rnp∗

n+1,j([π
(n); n + 1])

=
PLn

l=1p
∗
n+1,j([π

(n)]l+)p∗
n,l(π

(n)) − pn+1,n+1([π
(n)]j+)p∗

n+1,j(π
(n)) + rnp∗

n+1,j([π
(n); n + 1])

Moreover, using Lemma 6.1 again, we have

E[pn+1,n+1(π
(n+1))f(Xn+1) | Gn] =

Ln
X

l=1

E[I{n+1∈π
(n+1)
l

}pn+1,n+1(π
(n+1))f(Xn+1) | Gn] + E[I{Ln+1=Ln+1}pn+1,n+1(π

(n+1))f(Xn+1) | Gn] =

Ln
X

l=1

E[I{n+1∈π
(n+1)
l

} | Gn]pn+1,n+1([π
(n)]l+)f(X∗

l ) + E[I{Ln+1=Ln+1}f(Xn+1) | Gn]pn+1,n+1([π
(n)]; n + 1) =

PLn

l=1

“

P

k∈π
(n)
l

pn,k(π(n))
”

pn+1,n+1([π
(n)]l+)f(X∗

l ) + rnpn+1,n+1([π
(n)]; n + 1)f̄ =

PLn

l=1p
∗
n,l(π

(n))pn+1,n+1([π
(n)]l+)f(X∗

l ) + rnpn+1,n+1([π
(n)]; n + 1)f̄ .

Finally we have

E[rn+1 | Gn] = 1 −Pn+1
i=1 E[pn+1,i(π

(n+1)) | Gn]

= 1 −Pn
i=1 Ei − En+1

= 1 −Pn
i=1Ei −

PLn

l=1p
∗
n,l(π

(n))pn+1,n+1([π
(n)]l+) − rnpn+1,n+1([π

(n)]; n + 1)

Thus we get
E[V f

n+1 | Gn] =
PLn

j=1 cn,jf(X∗
j ) + (1 −PLn

j=1 cn,j)f̄

where

cn,j =
P

i∈π
(n)
j

Ei + pn+1,n+1([π
(n)]j+)p∗

n,j(π
(n))

= rnp∗
n+1,j([π

(n); n + 1]) +
PLn

l=1p
∗
n+1,j([π

(n)]l+)p∗
n,l(π

(n))

We can conclude that (Xn)n≥1 is G-cid if and only if we have, for each bounded Borel function f on
E and each n

PLn

j=1 p∗
n,jf(X∗

j ) + rnf̄ =
PLn

j=1 cn,jf(X∗
j ) + (1 −PLn

j=1 cn,j)f̄ P -almost surely.

Since E is a Polish space, we may affirm that (Xn)n≥1 is G-cid if and only if, for each n, we have
P -almost surely

PLn

j=1 p∗
n,jδX∗

k
(·) + rnµ(·) =

PLn

j=1 cn,jδX∗

k
(·) + (1 −PLn

j=1 cn,j)µ(·)

But this last equality holds if and only if, for each n, we have P -almost surely

p∗
n,j = cn,j for 1 ≤ j ≤ Ln ;

that is
p∗

n,j(π
(n)) = rnp∗

n+1,j([π
(n); {n + 1}]) +

PLn

l=1p
∗
n+1,j([π

(n)]l+, )p∗
n,l(π

(n))

This is exactly the condition in the statement of the Theorem 2.2.

6.2 Proofs of section 4

We need the following preliminary lemma.

Lemma 6.2. Let us set Sn =
Pn

j=1 Yj. Then

Wn =
αLn

α + θ + Sn−1

a.s./L1

−→ R.

where R is a random variable such that P{0 ≤ R ≤ 1} = 1.
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Proof. We have

E[Ln+1 | Fn] = Ln + rn =
(α + θ + Sn)Ln + θ

θ + Sn
.

Hence, we get

∆n = E[Wn+1 | Fn] − Wn =
αLn

θ + Sn
− αLn

α + θ + Sn−1
+

αθ

(θ + Sn)(α + θ + Sn)

=
(α − Yn)

(θ + Sn)

αLn

(α + θ + Sn−1)
+

αθ

(θ + Sn)(α + θ + Sn)

=
(α − Yn)Wn

(θ + Sn)
+

αθ

(θ + Sn)(α + θ + Sn)
.

If −α < θ ≤ 0, then ∆n is negative for each n and so (Wn)n is a positive supermartingale. Therefore
it converges almost surely to a random variable R.

If θ > 0, let us set Zn = Wn + θ
(θ+Sn−1)

. For each n, we have

E[Zn+1 | Fn] − Zn = ∆n − θYn

(θ + Sn−1)(θ + Sn)

=
(α − Yn)Wn

(θ + Sn)
+

αθ

(θ + Sn)

»

1

α + θ + Sn
− Yn

α(θ + Sn−1)

–

=
(α − Yn)Wn

(θ + Sn)
+

θ(α − Yn)

(θ + Sn−1)(θ + Sn)
− αθ(Yn + α)

(θ + Sn−1)(θ + Sn)(α + θ + Sn)
≤ 0

Therefore, the sequence (Zn)n is a positive F-supermartingale and so it converges almost surely to a
random variable R. Since Sn goes to +∞, we get

Wn = Zn − θ

θ + Sn−1

a.s./L1

−→ R.

Finally, we observe that 0 ≤ Wn ≤ αn
θ+αn

→ 1.

Proof of Proposition 4.1. It is easy to verify that Sn

n

a.s.→ m (see, for instance, Lemma 3 in
Berti, Crimaldi, Pratelli and Rigo (2009)) and so, by Lemma 6.2, we get

rn =
θ + αLn

θ + Sn
=

θ

θ + Sn
+ Wn

α + θ + Sn−1

θ + Sn

a.s.→ R.

Moreover, we have

X

k≥1

rk−1 ≥ 1 + (θ + α)
X

k≥1

1

θ + Sk

a.s.∼ α + θ

m

X

k≥1

1

k
= ∞.

Then, by Proposition 2.3, we find
Ln

Pn
k=1 rk−1

a.s.−→ 1.

Since Cesaro’s lemma implies

1

n

n
X

k=1

rk−1
a.s.−→ R,

we get Ln/n
a.s.→ R. On the other hand, we have

Ln

n
a.s.∼ m

α
rn

a.s.−→ m

α
R.

Therefore, we have m
α

R
a.s.∼ R and so, if m 6= α, it must be P (R = 0) = 1.

Proof of Theorem 4.2. As we have already observed, assumption (ii) implies Sn

n

a.s.→ m and

rn
a.s.→ R. After some calculations, we find

V A
n+1 − V A

n =
Yn+1[IA(Xn+1) − V A

n ]

θ + Sn+1
+ α

[µ(A) − IA(Xn+1)]

θ + Sn+1
I{Ln+1=Ln+1}.

We want to apply Lemma 1, Theorem 2 and Remark 4 of Berti, Crimaldi, Pratelli and Rigo (2009).
Therefore, we have to prove the following conditions:
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(1) 1√
n
E[ max1≤k≤n k|V A

k−1 − V A
k | ] −→ 0

(2) E[ supk≥1

√
k|V A

k−1 − V A
k | ] < +∞

(3) n
P

k≥n(V A
k−1 − V A

k )2
a.s.−→ ΣA.

(4) 1
n

Pn
k=1{IA(Xk) − V A

k−1 + k(V A
k−1 − V A

k )}2 P−→ UA

Conditions (1) and (2) hold true: we observe that

|V A
n+1 − V A

n | ≤ Yn+1 + α

θ + α(n + 1)
.

This inequality and assumption (i) imply

1

nu/2

`

E[max1≤k≤nk|V A
k−1 − V A

k | ]
´u ≤ 1

nu/2

n
X

k=1

ku E
ˆ

(Yk + α)u]

(θ + αk)u
−→ 0

and

E
ˆ

( supk≥1

√
k|V A

k−1 − V A
k | )u ˜ ≤

X

k≥1

ku/2 E
ˆ

(Yk + α)u]

(θ + αk)u
< +∞.

Condition (3) holds true: we observe that

n
X

k≥n

(V A
k−1 − V A

k )2 = n
X

k≥n

Y 2
k [IA(Xk) − V A

k−1]
2

(θ + Sk)2
+ nα2

X

k≥n

[µ(A) − IA(Xk)]2

(θ + Sk)2
I{Lk=Lk−1+1}

+ 2αn
X

k≥n

Yk[IA(Xk) − V A
k−1][µ(A) − IA(Xk)]

(θ + Sk)2
I{Lk=Lk−1+1}

a.s.∼ n

m2

X

k≥n

Y 2
k [IA(Xk) − V A

k−1]
2

k2
+

α2

m2
n
X

k≥n

[µ(A) − IA(Xk)]2

k2
I{Lk=Lk−1+1}

+ 2
α

m2
n
X

k≥n

Yk[IA(Xk) − V A
k−1][µ(A) − IA(Xk)]

k2
I{Lk=Lk−1+1}.

We want to use Lemma 3 in Berti, Crimaldi, Pratelli and Rigo (2009). Therefore, we observe that

E{Y 2
k [IA(Xk) − V A

k−1]
2 | Fk−1} = E[Y 2

k ]E{[IA(Xk) − V A
k−1]

2 | Fk−1} a.s→ qVA(1 − VA)

and so the first term converges almost surely to

q

m2
VA(1 − VA).

Moreover, we observe that we have

E{[µ(A) − IA(Xk)]2I{Lk=Lk−1+1} | Fk−1} = rk−1µ(A)[1 − µ(A)]
a.s.→ Rµ(A)[1 − µ(A)]

and so the second term converges almost surely to

α2

m2
Rµ(A)[1 − µ(A)]. (22)

Finally, we have

E{Yk[IA(Xk) − V A
k−1][µ(A) − IA(Xk)]I{Lk=Lk−1+1} | Fk−1} =

− E[Yk]rk−1µ(A)[1 − µ(A)]
a.s.→ −mRµ(A)[1 − µ(A)]

and so the third term converges almost surely to

−2
α

m
Rµ(A)[1 − µ(A)].
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Condition (4) holds true: we observe that

1

n

n
X

k=1

{IA(Xk) − V A
k−1 + k(V A

k−1 − V A
k )}2 =

1

n

n
X

k=1



[IA(Xk) − V A
k−1]

»

1 − kYk

θ + Sk

–

+
kα[µ(A) − IA(Xk)]

θ + Sk
I{Lk=Lk−1+1}

ff2
a.s.∼

1

n

n
X

k=1



[IA(Xk) − V A
k−1]

»

1 − Yk

m

–

+
α[µ(A) − IA(Xk)]

m
I{Lk=Lk−1+1}

ff2

=

1

n

n
X

k=1

[IA(Xk) − V A
k−1]

2

»

1 − Yk

m

–2

+
α2

m2n

n
X

k=1

[µ(A) − IA(Xk)]2I{Lk=Lk−1+1}+

2α

m

1

n

n
X

k=1

[IA(Xk) − V A
k−1]

»

1 − Yk

m

–

[µ(A) − IA(Xk)]I{Lk=Lk−1+1}

We want to use Lemma 3 in Berti, Crimaldi, Pratelli and Rigo (2009) once again. Therefore, we
observe the second term converges almost surely to (22). Moreover, we have

E

(

[IA(Xk) − V A
k−1]

2

»

1 − Yk

m

–2

| Fk−1

)

= E

(

»

1 − Yk

m

–2
)

E
n

[IA(Xk) − V A
k−1]

2 | Fk−1

o

and so the first term converges almost surely to
“ q

m2
− 1
”

VA(1 − VA).

Finally, we have

E

»

1 − Yk

m

–

[IA(Xk) − V A
k−1][µ(A) − IA(Xk)]I{Lk=Lk−1+1} | Fk−1

ff

=

E

»

1 − Yk

m

–

E
n

[IA(Xk) − V A
k−1][µ(A) − IA(Xk)]I{Lk=Lk−1+1} | Fk−1

o

and so the third term converges almost surely to zero.

6.3 Proof of Theorem 5.5

It will be useful to introduce the sequence of the increments

U1 := L1 = 1 and Un := Ln − Ln−1 for n ≥ 2.

We need a preliminary lemma.

Lemma 6.3. If (Xn)n≥1 is a GOS with µ diffuse, then, for each fixed k, a version of the conditional
distribution of (Uj)j≥k+1 given Gk is the kernel Qk so defined:

Qk(ω, ·) :=
N∞

j=k+1B
`

1, rj−1(ω)
´

where B
`

1, rj−1(ω)
´

denotes the Bernoulli distribution with parameter rj−1(ω).

Proof. It is enough to verify that, for each n ≥ 1, for each ǫk+1, . . . , ǫk+n ∈ {0, 1} and for each
Gk-measurable real–valued bounded random variable Z, we have

E
ˆ

ZI{Uk+1=ǫk+1,...,Uk+n=ǫk+n}
˜

= E
ˆ

Z
Qk+n

j=k+1r
ǫj

j−1(1 − rj−1)
1−ǫj

˜

. (23)

We go on with the proof by induction on n. For n = 1, by Lemma 6.1, we have

E
ˆ

ZI{Uk+1=ǫk+1}
˜

= E
ˆ

ZE[I{Uk+1=ǫk+1} | Gk]
˜

= E[Zr
ǫk+1

k (1 − rk)1−ǫk+1 ].

Assume that (23) is true for n − 1 and let us prove it for n. Let us fix an Gk-measurable real–valued
bounded random variable Z. By Lemma 6.1, we have

E
ˆ

ZI{Uk+1=ǫk+1,...,Uk+n=ǫk+n}
˜

= E
ˆ

ZI{Uk+1=ǫk+1,...,Uk+n−1=ǫk+n−1}E[Uk+n = ǫk+n | Gk+n−1]
˜

= E
ˆ

Zr
ǫk+n

k+n−1(1 − rk+n−1)
1−ǫk+nI{Uk+1=ǫk+1,...,Uk+n−1=ǫk+n−1}

˜

.

We have done because also the random variable Zr
ǫk+n

k+n−1(1 − rk+n−1)
1−ǫk+n is Gk-measurable and

(23) is true for n − 1.
We need also the following known result.
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Theorem 6.4. Let (Zn,i)n≥1, 1≤i≤kn be a triangular array of square integrable centered random
variables on a probability space (Ω,A, P ). Suppose that, for each fixed n, (Zn,i)i is independent
(“row-independence property”). Moreover, set

σ2
n,i := E[Z2

n,i] = Var[Zn,i], σ2
n :=

Pkn

i=1 σ2
n,i,

Vn :=
Pkn

i=1 Z2
n,i, Z∗

n := sup1≤i≤kn
|Zn,i|

and assume that (Vn)n≥1 is uniformly integrable, Z∗
n

P−→ 0 and σ2
n −→ σ2.

Then
Pkn

i=1 Zn,i
in law−→ N (0, σ2).

Proof. In Hall and Heyde (1980) (see pp. 53–54) it is proved that, under the uniform integrability
of (Vn), the convergence in probability to zero of (Z∗

n)n≥1 is equivalent to the Lindeberg condition.
Hence, it is possible to apply Corollary 3.1 (pp. 58-59) in Hall and Heyde (1980) with Fn,i =
σ(Zn,1, . . . , Zn,i).

Proof of Theorem 5.5. Without loss of generality, we can assume hn > 0 for each n. In order
to prove the desidered A-stable convergence, it is enough to prove the FX

∞ ∨ FY
∞-stable convergence

of (Tn) to N (0, σ2). But, in order to prove this last convergence, since we have FX
∞ ∨ FY

∞ =
W

k Gk,
it suffices to prove that, for each k and A in Gk with P (A) 6= 0, the sequence (Tn) converges in
distribution under PA to the probability measure PAN (0, σ2). In other words, it is sufficient to fix
k and to verify that (Tk+n)n (and so (Tn)n) converges Gk-stably to N (0, σ2). (Note that the kernel
N (0, σ2) is Gk ∨N -measurable for each fixed k.) To this end, we observe that we have

Tk+n =

Pk+n
j=1 (Uj − rj−1)
p

hk+n

=

Pk
j=1(Uj − rj−1)
p

hk+n

+

Pk+n
j=k+1(Uj − rj−1)

p

hk+n

.

Obviously, for n → +∞, we have
Pk

j=1(Uj − rj−1)
p

hk+n

a.s.−→ 0.

Therefore we have to prove

Pk+n
j=k+1(Uj − rj−1)

p

hk+n

Gk−stably−→ N (0, σ2). (24)

From Lemma 6.3 we know that a version of the the conditional distribution of (Uj)j≥k+1 given
Gk is the kernel Qk so defined:

Qk(ω, ·) =
N∞

j=k+1B
`

1, rj−1(ω)
´

.

On the canonical space R
N
∗

let us consider the canonical projections (ξj)j≥k+1. Then, for each n ≥ 1,
a version of the conditional distribution of

Pk+n
j=k+1(Uj − rj−1)

p

hk+n

given Gk is the kernel Nk+n so characterized: for each ω, the probability measure Nk+n(ω, ·) is the
distribution, under the probability measure Qk(ω, ·), of the random variable (which is defined on the
canonical space)

Pk+n
j=k+1

`

ξj − rj−1(ω)
´

p

hk+n

.

On the other hand, for almost every ω, under Qk(ω, ·), the random variables

Zn,i :=
ξk+i − rk+i−1(ω)

p

hk+n

for n ≥ 1, 1 ≤ i ≤ n

form a triangular array which satisfies the assumptions of Theorem 6.4. Indeed, we have the row-
independence property and

EQk(ω,·)[Zn,i] = 0, EQk(ω,·)[Z2
n,i] =

rk+i−1(ω)
`

1 − rk+i−1(ω)
´

hk+n
.
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Therefore, by assumption, for n → +∞, we have for almost every ω,

Pn
i=1E

Qk(ω,·)[Z2
n,i] =

Pn
i=1 rk+i−1(ω)

`

1 − rk+i−1(ω)
´

hk+n
= σ2

k+n(ω) − hk−1σ
2
k−1(ω)

hk+n
−→ σ2(ω).

Moreover, under Qk(ω, ·), we have Z∗
n := supi Zn,i ≤ 2/

p

hk+n −→ 0. Finally, we observe that,
setting Vn :=

Pn
i=1 Z2

n,i, we have

EQk(ω,·)[V 2
n ] = VarQk(ω,·)[Vn] +

„

σ2
k+n(ω) − hk−1σ

2
k−1(ω)

hk+n

«2

with

VarQk(ω,·)[Vn] =
Pn

i=1VarQk(ω,·)[Z2
n,i] ≤

Pn
i=1E

Qk(ω,·)[Z4
n,i]

≤ 4

„

σ2
k+n(ω) − hk−1σ

2
k−1(ω)

hk+n

«

1

hk+n
.

Since, for almost every ω, the sequence (σ2
n(ω))n is bounded and hn ↑ +∞, it follows that, for almost

every ω, the sequence (Vn)n is bounded in L2 under Qk(ω, ·) and so uniformly integrable. Theorem
6.4 assures that, for almost every ω, the sequence of probability measures

`

Nk+n(ω, ·)
´

n≥1

weakly converges to the Gaussian distribution N
`

0, σ2(ω)
´

. This fact implies that, for each bounded
continuous function g, we have

E

"

g

 

Pk+n
j=k+1(Uj − rj−1)

p

hk+n

!

˛

˛Gk

#

a.s.−→ N (0, σ2)(g).

It obviously follows the Gk-stable convergence (24).
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