
An Iterative Method for the Solution of

Nonlinear Regularization Problems with

Regularization Parameter Estimation.

E. Loli Piccolomini∗ F. Zama†

September 22, 2009

Abstract

Ill posed problems constitute the mathematical model of a large vari-
ety of applications. Aim of this paper is to define an iterative algorithm
finding the solution of a regularization problem. The method minimizes a
function constituted by a least squares term and a generally nonlinear reg-
ularization term, weighted by a regularization parameter. The proposed
method computes a sequence of iterates approximating the regularization
parameter and a sequence of iterates approximating the solution. The
numerical experiments performed on 1D test problems show that the al-
gorithm gives good results with different regularization functions both in
terms of precision and computational efficiency. Moreover, it could be
easily applied to large size regularization problems.

Keywords: Regularization methods, Tikhonov method, Ill-posed problems, Inte-
gral equations.
Classification: 65R30, 65R32, 65F22.

1 Introduction

Ill posed problems constitute the mathematical model of a large variety of ap-
plications whose physical model is a first kind Fredholm integral equation. Such
problems can be expressed by the linear relation

Hx = y (1)

where H denotes a compact operator between Hilbert spaces X and Y. It is
well known that problem (1) is ill posed in the sense of Hadamard since H
is not continuously invertible or, equivalently, the set {x ∈ X : ‖Hx− y‖ ≤ δ}
is unbounded [7]. Regularization methods are introduced to solve a slightly
modified well-posed problem whose solution is close to the original one [2].

∗Department of Mathematics, University of Bologna, e-mail: piccolom@dm.unibo.it
†Department of Mathematics, University of Bologna, e-mail: zama@dm.unibo.it

1

One of the most widely used and well established regularization method is
the Tikhonov regularization method which requires the solution of the following
minimization problem:

min
x
‖Hx− y‖2 + λR(x) (2)

where ‖ · ‖ denotes the usual euclidean norm, λ > 0 is known as regularization
parameter whose value must be determined. The operator R(x) is used to
impose some constraints about the smoothness of the solution.

The choice of the regularization parameter λ is a crucial issue: a small value
gives a good approximation to the original operator but presents instabilities
due to the influence of data errors. Conversely, a large value of λ suppresses
the data errors but increases the operator approximation error. A wide variety
of methods can be found in the literature to compute a suitable value for the
regularization parameter. In the absence of any prior knowledge of the entity of
data perturbation, a common practice is to use methods based on a posteriori
criteria. In this case one needs to solve problem (2) more than once for different
values of λ. When R is a euclidean norm operator (i.e. R(x) = ‖Lx‖2) widely
used methods are the Generalized Cross Validation method (GCV) [15] and the
L-Curve methods [10]. In [11, 16], the values of the regularization parameters
are obtained through an iterative step reduction procedure that is suitable for
solving large scale problems.

As observed in [1] and [13] the problem of finding a regularizing solution for
(1) can be stated as the following constrained optimization problem:

min
x
‖Hx− y‖2 : s.t. R(x) ≤ γ∗ (3)

for a given value γ∗ > 0 which represents the level of smoothness required.
In order to have a good regularized solution of the original problem (1), the
parameter γ∗ should be as close as possible to R(x∗) where x∗ is the solution
of (1).

In the case R(x) = ‖x‖2 algorithm LSTRS [12] finds the solution of a se-
quence of modified trust region subproblems, solving each subproblem as a
parametric eigenvalue problem [14]. This method is not immediately extensible
to the case of a general non linear regularization functional.

On the other hand the approach followed in [1] can be easily extended to
the case of a general regularization functional giving raise to linear or nonlinear
regularization algorithms. It is not clear however how this algorithm behaves
in presence of noisy data when the problem is obtained from the discretization
of ill-posed problems. Furthermore none of the previously cited papers gives
a procedure to compute a suitable value γ∗ for obtaining efficient regularized
solutions.

Aim of this paper is to describe an iterative algorithm which computes a
succession of approximate solutions xk and regularization parameters λk that
converge, in absence of data noise, to the solution of (3) and that can be applied
to linear and nonlinear regularization functionals.

2

When the data are affected by noise, we prove that the method behaves like
a regularization method: it finds a solution (xδ, λδ) that converges to the noisy
free solution (x∗, λ∗) as δ → 0.

Finally we introduce a numerical procedure to compute an estimate γ̂ of the
parameter γ∗ that produces good regularizing solutions of problem (1).

Numerical tests are performed to observe the behavior of the algorithm on
small-medium size regularization problems.

In section 2 we introduce our iterative method for a general nonlinear regu-
larization functional and prove the convergence both in the noiseless and noisy
data cases. Details about the algorithm are discussed in section 3. The results
obtained by several numerical experiments are reported in section 4.

2 The Iterative Method

In order to describe our iterative algorithm we define (x∗, λ∗) as the point that
minimizes the Lagrangian functional L(x, λ) of problem (3):

L(x, λ) = ‖Hx− y‖2 + λ (R(x)− γ∗) . (4)

Then (x∗, λ∗) satisfies the following Kurush Khun Tucker (KKT) conditions:

H∗Hx + λ∇xR(x)−H∗y = 0 (5)
R(x)− γ∗ = 0 (6)

where H∗ is the adjioint of H and ∇xR is the gradient of the regularization
operator with respect to x.

Proposition 1. Let λ0 > 0 be a given value and x0 ≡ x(λ0) obtained solving
(5) with λ = λ0. Let R(x) be a continuous function such that 0 < R(x0) < γ∗

with
0 < R(x(λ)) < γ∗, ∀λ > λ∗ (7)

and
R(x(λ)) > γ∗, ∀λ ∈ [0, λ∗]. (8)

Then the succession (xk, λk) computed by the following iterative procedure:

λk = Fb(λk−1), Fb(λk−1) = λk−1

(
1− sign(γ∗ − γk−1)

1
2

)
(9)

with
γk−1 = R(xk−1), and xk−1 such that
H∗Hxk−1 + λk−1∇xR(xk−1)−H∗y = 0 , k = 1, 2, . . . (10)

converges to (x+, λ+) that fulfills the KKT conditions (5),(6).

Proof. Let’s define
G(λ) ≡ R(x(λ))− γ∗ (11)

3

for the hypotheses we have that G(λ0) < 0, and G(0) > 0. The bisection
method applied in the interval [0, λ0] converges linearly to the root λ+ such
that G(λ+) = 0

It is not difficult to observe that (9) computes the sequence of iterates λk

applying the bisection method in the interval [0, λ0]. Concluding we have that
λk converges linearly to λ+ fulfilling condition (6) and, using the continuity of
(5), x(λk) converges to x+ ≡ x(λ+) that fulfills the KKT conditions (5).

In order to speed up the convergence modified Newton methods can also be
applied, in particular both Newton and Hebden methods are used in [1]. In
the following proposition we report the convergence conditions for the secant
method that can be coupled with the bisection method to obtain a globally
convergent method.

Proposition 2. Let the succession (xk, λk) be computed by the iterative proce-
dure (10) with

λk = Fs(λk−1), Fs(λk−1) = λk−1 − γk−1 − γ∗
γk−1 − γk−2

(λk−1 − λk−2) (12)

If D ⊆ R is an open interval such that λ∗ ∈ D and
∣∣∣∣

d

dλ
R(x(λ))

∣∣∣∣ ≥ ρ, ρ > 0, ∀λ ∈ D (13)

|R(x(λ))−R(x(µ))| ≤ α |λ− µ| , α > 0 (14)

Then ∃I ⊆ D open interval of size 2η: I = {λ : |λ− λ∗| ≤ η} such that
the succession {λk} computed by (12) converges to λ∗, ∀λ0, λ1 ∈ I and the
pair (xk, λk) obtained by (10), (12) converges to (x∗, λ∗) that fulfills the KKT
conditions (5),(6).

Proof. We observe that (12) is the secant method applied to the nonlinear equa-
tion (11), which is convergent to λ∗ for the hypotheses (13) [6]. We have that
λk converges to λ∗ fulfilling condition (6) and, using the continuity of (5), x(λk)
converges to x∗ ≡ x(λ∗). In order to start up properly the sequence (12) the
values λ0, λ1 can be obtained by performing several iterations of the bisection
method (9).

If (4) has a unique global minimizer (x∗, λ∗), then we have x+ = x∗ and
λ+ = λ∗, otherwise the values computed by the method in proposition 1 define
a local minimizer (x+, λ+).

In applicative problems the data are usually affected by noise i.e. the ob-
served data yδ are such that: ‖y − yδ‖ < δ. We can prove that the iterative
method (10) converges to a regularized solution (xδ, λδ) such that xδ → x+ and
λδ → λ+ as δ → 0.

Proposition 3. Let (xδ
k, λδ

k), k = 0, 1, . . . be the succession obtained by the
method (10) applied to the noisy problem:

min
x
‖Hx− yδ‖2 : s.t. R(x) ≤ γ∗ (15)

4

then the succession (xδ
k, λδ

k) converges to (xδ, λδ) such that

‖xδ − x+‖2 + |λδ − λ+|2 < τδ2, τ > 0. (16)

Proof. Let yδ = y + δη with ‖η‖ = 1 and δ > 0.
Following the arguments in proposition 1, (xδ, λδ) satisfies the KKT condi-

tions:

H∗Hxδ + λδ∇x (R) (xδ)−H∗yδ = 0 (17)

R(xδ)− γ∗ = 0 (18)

Subtracting (5) from (17) we obtain

H∗H(xδ − x+) + λδ∇x (R) (xδ)− λ+∇x (R) (x+) = δH∗η

substituting the first order approximation of ∇x (R) (x+), given by:

∇x (R) (x+) ' ∇x (R) (xδ) + (x+ − xδ)∇xx (R) (xδ)

we obtain
H∗H(xδ − x+) + (λδ − λ+)∇x (R) (xδ) ' δH∗η

Setting Γ ≡ ∇x (R) (xδ) and defining ∆Γ as an error vector we obtain:

H∗H(xδ − x+) + (λδ − λ+)Γ = δ (H∗η + ∆Γ) (19)

Let H be an m × n matrix with m > n > 0, introducing B ∈ Rn,n+1 and
z ∈ Rn+1 such that:

B =
[

H∗H Γ
]
, z = [zx, zλ]t, with zx = (xδ − x+) and zλ = (λδ − λ+)

then we can write relation (19) as

Bz = δ (H∗η + ∆Γ) (20)

where:
‖Bz‖2 = z∗x (H∗H)2 zx + 2zλΓ∗H∗Hzx + z∗λΓ∗Γzλ (21)

Using the the singular value decomposition (SVD) of the matrix H:

H = UΣV ∗, where U = [u1, . . . , um], V = [v1, . . . , vn]

are unitary matrices and Σ = diag(σ1, . . . σn) is the m×n diagonal matrix with
σ1 ≥ σ2,≥ · ≥ σp > 0), p ≤ n, and substituting in (21):

‖Bz‖2 = z∗xV S4V ∗zx + |zλ|2‖Γ‖2 + 2zλΓ∗V S2V ∗zx

Where S4 defines the diagonal matrix of size n with non zero elements given
by σ4

i , (the same definition applies to S2). Setting w = V ∗zx and g = V ∗Γ we
obtain:

‖Bz‖2 =
n∑

i=1

σ4
i w2

i + |zλ|2
n∑

i=1

g2
i + C (22)

5

where C = 2zλ

∑n
i=1 σ2

i giwi. Let’s define a positive parameter µ such that

|C| = µ

(
n∑

i=1

σ4
i w2

i + |zλ|2
n∑

i=1

g2
i

)
(23)

and the sign function:

sgn(C) =
{

1 C ≥ 0
−1 C < 0

then from (22) and (23) it follows:

‖Bz‖2 = (1 + sgn(C)µ)

(
n∑

i=1

σ4
i w2

i + |zλ|2
n∑

i=1

g2
i

)
.

When C > 0 we have

‖Bz‖2 >

(
n∑

i=1

σ4
i w2

i + |zλ|2
n∑

i=1

g2
i

)

otherwise:

‖Bz‖2 = (1− µ)

(
n∑

i=1

σ4
i w2

i + |zλ|2
n∑

i=1

g2
i

)
(24)

with µ < 1 since ‖Bz‖2 > 0. By setting ‖h‖2 =
∑p

i=1 σ4
i w2

i and ‖g‖2 =
∑n

i=1 g2
i

and defining a value α ∈ [0, 1) such that

α =
{

µ C < 0
0 C ≥ 0

supposing ‖h‖2 > 0, we can rewrite the relation (24) as follows:

(1− α)
(‖h‖2 + |zλ|2‖g‖2

) ≤ ‖Bz‖2. (25)

Let’s define s = (σ2
1 , . . . , σ2

p, 0, . . . , 0), such that s ∈ Rn. We have:

(stw)2 = ‖h‖2 + 2
p∑

i=1

σ2
i wi


∑

j 6=i

σ2
j wj




and obtain that

‖h‖2 =


1− 2

(stw)2

p∑

i=1

σ2
i wi


∑

j 6=i

σ2
j wj





 (stw)2 (26)

Using the Cauchy-Schwartz inequality (stw)2 ≤ ‖s‖2‖w‖2, we can define a pos-
itive parameter 0 < θ ≤ 1 such that

(stw)2 = θ‖s‖2‖w‖2

6

Substituting in (26) we can define a value M > 0 such that:

‖h‖2 = M‖s‖2‖w‖2, where M = θ


1− 2

(stw)2

p∑

i=1

σ2
i wi


∑

j 6=i

σ2
j wj







Substituting in equation (25) we obtain:

(1− α)
(
M‖s‖2‖w‖2 + |zλ|2‖g‖2

) ≤ ‖Bz‖2

Defining smin = min(M‖s‖2, ‖g‖2) we have smin > 0 and obtain from (25):

smin(1− α)(‖w‖2 + |zλ|2) ≤ ‖Bz‖2

Using (20) and recalling that ‖w‖ = ‖zx‖ we have:

‖zx‖2 + |zλ|2 ≤ δ2

(1− α)smin

(‖H∗η‖2 + ‖∆Γ‖2)

Since η is a unitary vector we have ‖H∗η‖2 ≤ σ2
1 :

‖zx‖2 + |zλ|2 <
δ2σ2

1

(1− α)smin

(
1 +

‖∆Γ‖2
σ2

1

)

then we can define τ > 0:

τ ≡ σ2
1

(1− α)smin

(
1 +

‖∆Γ‖2
σ2

1

)

and conclude:

(xδ − x+)2 + (λδ − λ+)2 ≤ δ2τ, with τ > 0

We observe that when the data are affected by noise, the method behaves
like a regularization method: it finds a solution (xδ, λδ) that converges to the
noisy free solution (x∗, λ∗) as δ → 0.

3 Algorithmic features

Using the results stated in propositions 1, 2 and 3 we can define the linear
iterative regularization algorithm named TKit as follows:

Definition 4. Iterative Regularization Algorithm TKit.

7

Algorithm 1 (TKit(H, yδ, L, γ∗, λ0, ks, maxit)).
set k = 0

compute x0 s.t. H∗Hx0 + λ0∇x(R(x0)) = H∗yδ

repeat
k = k + 1
if k < ks, λk = Fb(λk−1) as in (9)
else λk = Fs(λk−1)as in (12)
compute xk s.t. H∗Hxk + λk∇x(R(xk))−H∗yδ = 0
γk = R(xk)

until convergence

where maxit is the maximum number of allowed iterations and the starting
value λ0 is supposed to fulfil condition (7). The parameter ks defines the it-
eration for starting the secant method (12). Setting ks = maxit the bisection
method (9) is used until the maximum number of allowed iterations maxit is
reached.

In the solution of inverse ill-posed problems different kind of regularization
functionals R are used. From the algorithmic point of view, we distinguish
between the regularization operators that produce a linear system in the KKT
condition (17) and those that give raise to a nonlinear system. In the first case
a class of regularization functional that are widely applied is R(x) ≡ ‖Lx‖22
where L is either the identity matrix or a discrete approximation of a derivative
operator. In this case R is a convex function having its minimum at x = 0.
Substituting

∇x(R(xk)) = L∗Lxk

in the KKT conditions (5) we obtain a system of linear equations:

(H∗H + λkL∗L)xk = H∗yδ (27)

whose matrix is symmetric and positive definite provided that N (H)
⋂N (L) =

∅, (N (·) is the kernel operator).
The main computational load in algorithm TKit is given by the solution of

linear system (27). Iterative methods such as Conjugate Gradient (CG) can be
used to exploit the sparsity of the matrix L.

As an example of regularization functional that gives raise to a nonlinear
system in the KKT conditions (5) we consider here:

R(x) ≡
(

n∑

i=1

|xi|p
)

, 1 < p < ∞, p 6= 2. (28)

In this case the KKT conditions (5) are a system of nonlinear equations where:

(∇xR(x))i ≡ p · sgn(xi)|xi|p−1, i = 1, . . . , n

8

In this case R may be a non convex function depending on p and the values
of the vector x. In particular the Hessian matrix Z is a diagonal matrix with
components:

Zi = p(p− 1)|xi|p−2, i = 1, . . . , n

It is not well defined if xi = 0 and p < 2 and it is semi positive definite if xi = 0
and p > 2. In these cases we expect difficulties in the numerical solution of the
nonlinear system (5) and some suitable stopping criteria must be considered.

The solution of the nonlinear system (5) can be efficiently performed by the
Newton method [6] since the Jacobian matrix requires only a diagonal update:

J(x) = H∗H + λkZ.

The Newton directions can be efficiently computed by truncated Conjugate
Gradient iterations provided J(x) is nonsingular.

In the solution of ill-posed problems the parameter γ∗ ≡ R(x∗) is not known
and an approximate value γ̂ is usually heuristically given by the user. We
propose here to compute γ̂ as follows:

γ̂ = R(x̂) (29)

where x̂ is a rough approximation of solution of the least squares problem
min ‖Hx− yδ‖ obtained by performing several iterations of cgls algorithm [5].

We exploit the decreasing behavior of the norm of the residual vector rk ≡
H∗yδ −H∗Hxk, which is fast in the first few iterations and then becomes very
slow when the iterations increase. We observe that the ratio between the norm
of two successive residual vectors ‖rk‖/‖rk−1‖ is small in the first few iter-
ations an then it increases becoming very close to 1. An approximate solu-
tion x̂ is computed by stopping the iterations of the cgls method as soon as
‖rk‖/‖rk−1‖ ≥ 0.9. For the regularization properties of the CG iterations ([5],
[4]), x̂ can be considered as a low pass filtered version of the true solution x∗.

Since γ̂ 6= γ∗, the algorithm TKit converges to a an approximate solution
(x̃, λ̃) which is different from the optimal (x∗, λ∗). Therefore the truncation
of the iterative process is usually a better solution in terms of errors and time
efficiency. Hence, the stopping criterium used for the algorithm convergence is
the following:

if |λk+1 − λk| < Tol|λk|+ ε or λk+1 > λk then stop (30)

where ε ' 1.e− 16 and Tol is a fixed tolerance.
The criterium λk+1 > λk is based on the observation that, instead of exe-

cuting all the iterations until convergence, we stop them as soon as x(λk) is not
feasible, i.e. R(x(λk)) > γ̂. For the hypotheses in proposition 3, the algorithm
starts from a value of λ0 such that R(x(λ0)) ≤ γ̂ then it decreases its value as
long as x(λk) is an admissible point for the constraints (i.e. R(x(λk)) ≤ γ̂) and
increases it otherwise. Since the succession λk is decreasing in the first steps
and may oscillate near the limit λ̃, we choose to stop the iterations as soon as
λk+1 > λk.

9

4 Numerical results

In this section we present the numerical results obtained with the proposed
method. The numerical tests have been performed on a Pentium PC 2GHz
equipped with 2Gb of RAM and using Matlab 7.4.0.

In paragraph 4.1 we analyze the convergence of algorithm TKit both in
absence and presence of noise. To this purpose we define test problems with
known solution (x∗, λ∗); in this case γ∗ ≡ R(x∗) is used in (3).

Successively (par. 4.2) we report the results obtained in the solution of ill-
posed test problems. Only the true solution x∗ is known and the parameter γ∗

is substituted by the estimate γ̂ computed in (29). The algorithm is tested both
in the linear and nonlinear case.

Finally (par. 4.3) we compare the results obtained by TKit with the func-
tions available in Hansen’s regtool based on the Generalized Singular Values
Decomposition.

4.1 Tests with assigned γ∗

In these test problems we used the data vector y and the matrix H obtained
from the Matlab functions Shaw and Phillips of Hansen Regtool package [9]
with problem size n = 100. Then we fixed a value for λ∗ (i.e. λ∗ = 0.1) and
computed x∗ solving (17). Finally the value γ∗ si computed from (18). We
eventually added white noise to y in order to obtain the noisy data yδ.

These test problems constitute examples of different kind of ill-posedness.
In the first case (Shaw) the singular values decay to values smaller than machine
epsilon, showing that the regularization parameters are affected mainly by the
amount of noise present in yδ (figure 1(a)). In the second case (Phillips) the
singular values decay to ≈ 10−5 (figure 1(b)). In this case not only the noise
present in yδ but also the data errors affect the regularization parameter [8].

The regularization functions R(x) are computed by the Regtool function
get l(n,d):

R(x) = ‖Lx‖2 where L =





I (d = 0)
D1 (d = 1)
D2 (d = 2)

(31)

where the matrix D1 ∈ R(n−1)×n is the forward difference approximation of the
first derivative and the matrix D2 ∈ R(n−2)×n is the difference approximation
of the second derivative computed in the interior points:

D1(i, j) =




−1 j = i
1 j = i + 1
0 otherwise

D2(i, j) =




−1 j = i, i + 2
2 j = i + 1
0 otherwise.

The iterations of the algorithm TKit are stopped by means of the absolute error
criterium (16):

‖xk − x∗‖2 + |λk − λ∗|2 < Tol, TOL = 10−10.

10

In the first experiment we ran TKit without noise added using both the
bisection method (i.e. ks = maxit) and the secant method with ks = 3. In
tables 1 and 2 we report the number of iterations performed (it) and the relative
errors for the computed solution (xit, λit):

Erelx = ‖xit − x∗‖/‖x∗‖, Erelλ = |λit − λ∗|/λ∗, (32)

with the initial value λ0 = 1. We observe a better performance of the secant

method d it Erelx Erelλ
Bisect 0 37 4.384e-012 8.731e-011

1 37 7.254e-012 8.731e-011
2 35 1.982e-012 3.492e-010

Secant 0 10 2.934e-014 3.192e-015
1 12 1.195e-013 6.273e-014
2 10 5.015e-013 8.841e-012

Table 1: TKit algorithm with bisection and secant methods applied to noise-
less data: Shaw test problem. d: regularization functional (31); it: number of
iterations; Erelx, Erelλ: relative errors(32).

method d it Erelx Erelλ
Bisect 0 34 1.836e-011 2.328e-010

1 34 7.206e-012 2.328e-010
2 34 2.726e-012 2.328e-010

Secant 0 9 8.504e-014 5.024e-014
1 10 5.915e-012 1.654e-012
2 10 8.470e-013 4.395e-011

Table 2: TKit algorithm with bisection and secant methods applied to noiseless
data: Phillips test problem. d: regularization functional (31); it: number of
iterations; Erelx, Erelλ: relative errors(32).

method in terms of iterations and relative errors. An example of the converging
behavior of the sequence λk is shown in figure 2 both for the shaw and the
phillips test problems with λ0 6= 1.

The convergence of TKit algorithm is also tested in the case of noisy data
yδ computed as follows:

yδ = y + δη, ‖η‖ = 1,

with η random unitary vector. The noisy problem (15) is solved with different
values of δ. In this case we consider a hybrid bisection-secant algorithm setting
ks = 5. In order to fulfil the hypotheses of proposition 1, we estimated the
starting value λ0 by setting:

λ0 = min
`

` + 1
2

, ` = 0, 1, . . . so that R(x(λ0)) < γ∗

11

Usually ` ≤ 2.
In table 3 we report the results obtained with three noise levels: δ = 10−6

(low noise), δ = 10−4 (medium noise) and δ = 10−2 (high noise). From the

Test d δ it Erelx Erelλ
Shaw 0 1.e-006 12 1.696e-006 7.428e-006

1.e-004 12 1.697e-004 7.424e-004
1.e-002 12 1.736e-002 6.979e-002

1 1.e-006 13 3.029e-005 2.721e-004
1.e-004 13 3.080e-003 2.702e-002
1.e-002 13 4.505e-001 3.660e-001

2 1.e-006 12 1.540e-004 3.447e-003
1.e-004 13 1.554e-002 1.530e-001
1.e-002 14 1.017e+000 3.395e+001

Phillips 0 1.e-006 11 1.647e-005 1.124e-004
1.e-004 11 1.656e-003 1.100e-002
1.e-002 12 1.342e-001 3.483e-001

1 1.e-006 12 4.574e-005 3.522e-003
1.e-004 12 5.513e-003 2.093e-001
1.e-002 15 6.464e-002 7.610e+001

2 1.e-006 12 1.543e-004 3.241e-002
1.e-004 13 1.273e-002 4.547e-001
1.e-002 23 6.538e-002 2.712e+003

Table 3: TKit regularization algorithm with hybrid method (ks = 5), shaw and
Phillips test problems. d: regularization functional (31); δ noise level; it:
number of iterations; Erelx, Erelλ: relative errors(32).

values reported we can see that the iteration number does not strongly depend
on the noise levels since 11 ≤ it ≤ 13 in all cases where max(Erelx, Erelλ) < 1
(i.e. when a good approximation is obtained). The relative errors (Erelx ,
Erelλ) are very strictly connected to the noise level δ. In some cases (shown
in boldface type in table 3) the relative errors are high. In order to better
understand this phenomenon, we try to estimate the value of the parameter τ
of (16). We compute the values

M(δ) =
1
δ

√
‖xit − x∗‖2 + |λit − λ∗|2

‖x∗‖2 + |λ∗|2 (33)

where xit and λit are the computed solution and regularization parameter, re-
spectively, using 100 values of δ from a logarithmical distribution in the interval
[10−6, 10−2] and obtaining the mean value M for each test problem and each
value of d. The value M

2
can be considered as an estimate of the parameter τ

of proposition 3, i.e.
τ ≈ M

2
.

12

Then, substituting it in (16) we have:
√
‖xδ − x+‖2 + |λδ − λ+|2 < Mδ.

The data reported in table 4 show the different values M obtained. When the
product M · δ is high, the errors on the computed values of x or λ are high, too.
This is, for example, the case of the shaw test problem with δ = 10−2 and d = 2
(M = 2 in this case).

M
d Shaw Phillips
0 1.7 1.7e+1
1 3.5e+1 1.4e+2
2 1.5e+2 5.3e+2

Table 4: Mean value M of M(δ) computed from 100 values of δ with loga-
rithmical distribution in the interval [10−6, 10−2]. d: regularization functional
(31).

4.2 Regularization tests

In this section we report the results obtained from the previous Shaw and
Phillips test problems.

In this case the data vector y and the matrix H and the true solution x∗

are obtained from the Matlab functions Shaw and Phillips with problem size
n = 100. The noisy vector yδ is obtained by adding white noise as described
before. Numerical experiments are performed using γ∗ ≡ R(x∗) and computing
the estimate γ̂ as in (29). We are interested in the regularized solution xreg that
filters out the noise present in the data.

In these experiments he algorithm is tested both in the linear and nonlinear
cases. The algorithm has been stopped with the criterium (30), with Tol =
10−3.

As an example we report in table 5 the results obtained in the case of R(x) =
‖Lx‖22 with noise ranging from 10−6 (low noise) to 10−2 (high noise). The table
is split into two parts, in order to compare the results obtained with exact γ∗

(columns T1) and with approximated γ̂ (columns T2). Columns k(itcg) report
the number k of external iterations to compute λk and the total number itcg

of CG iterations required by the solution of the linear system (5). In all the
experiments the CG iterations are stopped with a relative tolerance of 10−12.

Analyzing the results reported in table 5 we point out the following issues.

• The estimated parameter γ̂ is generally a good approximate value of γ∗

and it depends by the data noise: it decreases when the noise increases.
This produces large values in the regularization parameters λ that can be
observed in the T2 column with respect to the same column in T1.

13

• In the 61, 1% of the cases, the values in column Erelx reported in T2
are smaller or equal to those reported in T1. Thus proving that the
parameter γ̂ together with the stopping criterium (30) eventually enhances
the quality of the regularized solution. The remaining cases (38.9% in table
5) are mostly related to low noise tests.

• An increase in the computational efficiency can be observed by comparing
the smaller number of total CG iterations in columns T2 with respect to
those in column T1.

We can conclude that algorithm TKit can be used to efficiently compute regu-
larized solutions in presence of medium/high data noise.

As an example of algorithm TKit in the non linear case we report in table 6
the results obtained with regularization function as in (28) with p = 1.4 for the
Shaw test problem and p = 1.8 Phillips test problem.

The Newton steps in the solution of nonlinear equations (5) are stopped
when the step size is less or equal to 10−3, while the CG inner iterations are
stopped with a relative tolerance of 10−3.

The good quality of regularized solutions for different noise levels can also
be observed in this case.

4.3 Comparison with other methods

In this section we compare the results obtained by solving the regularization
problem with R(x) = ‖Lx‖22 with the TKit algorithm with those obtained by the
tikhonov and the lsqi functions available in Hansen’s Regtool. These functions
are based on the Generalized Singular Value Decomposition gsvd [3] and because
of the high computational complexity and memory requirements are not suitable
for large size problems. In the case of tikhonov function, the regularization
parameter λ is computed by means of the Generalized Cross Validation function
gcv [15], while the function lsqi computes the regularization parameter by
solving the nonlinear equation (6) using the Hebden method [1].

In table 7 we report the relative error Erelx and the regularization parameter
λ in the cases of tikhonov, lsqi called with γ∗ and lsqi called with γ̂.

Comparing the columns of the relative errors Erelx obtained with approx-
imated values γ̂ in tables 5 and 7, we observe that the errors Erelx obtained
with the proposed algorithm TKit are better than those obtained with the lsqi
function in the case of γ∗ (i.e. compare columns T1 in 5 and LSQI(γ∗)). When
the estimate γ̂ is used, algorithms TKit and LSQI(γ̂) give very similar errors.

For what concerns the Tikhonov algorithm, the main difficulty is the com-
putation of the regularization parameter: if the gcv function computes a good
regularization parameter, then the errors are small and comparable to TKit (as
in the shaw test problem); otherwise the errors are not comparable with those
obtained with the TKit algorithm (as in the phillips test problem). As an
example we report in figure 3 the solutions obtained with all the methods in the
case of the shaw test problem with (d=1) and δ = 5 · 10−4.

14

We can conclude that algorithm TKit with γ̂ computed by (29) computes
good regularized solutions at a low computational cost.

5 Conclusions

We defined an iterative algorithm TKit which computes a succession of solution
approximations xk and regularization parameters λk that converge (in absence
of data noise) to the solution of (3). In the case of noisy data we proved that the
method finds a solution (xδ, λδ) that converges to the noisy free solution (x∗, λ∗)
as δ → 0. Finally we introduced an estimation procedure of the parameter γ∗

and suitable stopping criteria to compute efficient regularized solutions.
The numerical experiments carried out on linear and nonlinear regulariza-

tion problems prove that TKit is an efficient method that can be easily applied
to large size regularization problems. Future developments concern the exten-
sion to different non linear regularization functionals such as the total variation
functional applied to large size inverse problems in imaging.

References

[1] T. F. Chan, J. A. Olkin, and D. W. Cooley, Solving quadratically con-
strained least squares using black box solvers, BIT 32 (1992), 481–495.

[2] H. W. Engl, M. Hanke, and A. Neubauer, Regularization of inverse prob-
lems, Kluwer Academic Publishers, 1996.

[3] G. H. Golub and F. Van Loan, Matrix computations, The Johns Hopkins
University Press, 1996.

[4] M. Hanke, Conjugate gradient type methods for ill posed problems, Pitman
Reserch Notes in Mathematics Series, Longman, 1995.

[5] P. C. Hansen, Rank–deficient and discrete ill–posed problems, SIAM, 1997.

[6] J.E.Dennis and R.B. Schnabel, Numerical methods for unconstrained opti-
mization and nonlinear equations, SIAM, 1996.

[7] Rainer Kress, Linear integral equations, Applied Mathematica Sciences,
vol. 62, Springer,, 1999.

[8] P.C.Hansen, The discrete Picard condition for discrete ill–posed problems,
BIT 30 (1990), 658–672580.

[9] , Regularization Tools: A Matlab package for analysis and solution
of discrete ill–posed problems, Numeric. Algor. 6 (1994), 1–35.

[10] D. P. O’Leary P.C.Hansen, The use of the L–curve in the regularization of
discrete ill–posed problems, SIAM J. Sci. Comp. 14 (1993), 1487–1503.

15

0 20 40 60 80 100
10

−20

10
−15

10
−10

10
−5

10
0

10
5

(a)

0 20 40 60 80 100
10

−6

10
−4

10
−2

10
0

10
2

(b)

Figure 1: Singular Values: (a) Shaw test problem (b)Phillips test problem

0 5 10 15 20 25 30 35
−1

−0.5

0

0.5

1

1.5

2

secant
bisect

(a)

0 5 10 15 20 25 30 35
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

bisection
secant

(b)

Figure 2: Converging behavior of the λk succession with bisection and secant
methods and (d=1). (a) shaw test problem (b) phillips test problem

16

[11] A. Frommer P.Maass, Fast cg–based methods for tikhonov–phillips regular-
ization, SIAM J. Sci. Comput. 20 (1999), no. 6, 1831–1850.

[12] M. Rojas, S. Santos, and D. Sorensen, Lstrs a. matlab software for large
scale trust-region subproblems and regularization, ACM Trans. on Math.
Software 32 (2008), no. 2.

[13] M. Rojas and D. Sorensen, A trust regions approach to the regularization of
large-scale discrete forms of ill-posed problems, SIAM J. on Sci. Comput.
23 (2002), no. 6, 1842–1860.

[14] T. Steihaug, The conjugate gradient method and trust regions in large scale
optimization, SIAM J. Numer. Anal. 20 (1983), no. 3, 626–637.

[15] G. Wahba, Practical approximate solutions to linear operator equations
when the data are noisy, SIAM J. Num. Anal. 14 (1977), 651–667.

[16] F. Zama and E. Loli Piccolomini”, A Descent Method for Regularization
of Ill–Posed Problems, Journal on Optimization Methods and Software 20
(2005), no. 14-5, 615–628.

17

T
es

t
d

δ
T

1
T

2
k
(i

t c
g
)

E
re

l x
λ

γ
∗

k
(i

t c
g
)

E
re

l x
λ

γ̂
S
h
a
w

0
1e

-0
06

29
(5

22
)

2.
53

5e
-0

02
1.

86
3e

-0
09

9.
96

4e
+

00
1

15
(1

63
)

4.
78

9e
-0

02
9.

15
5e

-0
05

9.
90

8e
+

00
1

0
1e

-0
04

19
(2

72
)

8.
82

3e
-0

02
1.

90
7e

-0
06

9.
96

4e
+

00
1

15
(1

72
)

5.
45

4e
-0

02
9.

15
5e

-0
05

9.
89

6e
+

00
1

0
1e

-0
02

8(
88

)
2.

06
4e

-0
01

3.
90

6e
-0

03
9.

96
4e

+
00

1
6(

48
)

1.
74

8e
-0

01
4.

68
8e

-0
02

9.
18

0e
+

00
1

1
1e

-0
06

25
(2

96
8)

1.
93

0e
-0

02
2.

98
0e

-0
08

3.
63

2e
-0

01
11

(1
09

5)
4.

16
9e

-0
02

1.
46

5e
-0

03
3.

36
1e

-0
01

1
1e

-0
04

14
(1

55
9)

6.
61

3e
-0

02
6.

10
4e

-0
05

3.
63

2e
-0

01
11

(1
09

4)
4.

31
8e

-0
02

1.
46

5e
-0

03
3.

27
0e

-0
01

1
1e

-0
02

5(
55

5)
8.

28
2e

-0
01

3.
12

5e
-0

02
3.

63
2e

-0
01

5(
43

7)
8.

28
2e

-0
01

9.
37

5e
-0

02
2.

39
1e

-0
01

2
1e

-0
06

21
(6

75
7)

8.
18

9e
-0

03
4.

76
8e

-0
07

6.
98

1e
-0

03
13

(2
98

1)
3.

40
0e

-0
02

3.
66

2e
-0

04
5.

34
5e

-0
03

2
1e

-0
04

12
(3

00
2)

1.
30

2e
-0

01
2.

44
1e

-0
04

6.
98

1e
-0

03
9(

18
31

)
9.

64
9e

-0
02

5.
85

9e
-0

03
5.

23
3e

-0
03

2
1e

-0
02

3(
68

2)
1.

10
8e

+
00

0
8.

75
0e

-0
01

6.
98

1e
-0

03
3(

46
3)

1.
10

8e
+

00
0

2.
62

5e
+

00
0

4.
01

9e
-0

03

P
h
i
l
l
i
p
s

0
1e

-0
06

8(
15

2)
1.

12
6e

-0
02

3.
90

6e
-0

03
8.

99
6e

+
00

0
10

(1
83

)
6.

21
1e

-0
03

2.
93

0e
-0

03
8.

99
8e

+
00

0
0

1e
-0

04
9(

20
9)

1.
57

9e
-0

02
1.

95
3e

-0
03

8.
99

6e
+

00
0

10
(2

09
)

1.
90

6e
-0

02
2.

93
0e

-0
03

8.
99

8e
+

00
0

0
1e

-0
02

4(
74

)
1.

47
0e

-0
01

6.
25

0e
-0

02
8.

99
6e

+
00

0
3(

34
)

9.
86

9e
-0

02
3.

75
0e

-0
01

8.
67

4e
+

00
0

1
1e

-0
06

9(
67

1)
4.

14
6e

-0
03

1.
95

3e
-0

03
4.

72
5e

-0
02

4(
22

2)
1.

28
1e

-0
02

1.
87

5e
-0

01
4.

68
6e

-0
02

1
1e

-0
04

7(
59

2)
1.

50
6e

-0
02

7.
81

3e
-0

03
4.

72
5e

-0
02

5(
33

2)
1.

43
3e

-0
02

9.
37

5e
-0

02
4.

69
0e

-0
02

1
1e

-0
02

8(
71

0)
5.

28
4e

-0
02

6.
85

2e
+

00
0

4.
72

5e
-0

02
8(

63
6)

5.
28

4e
-0

02
2.

05
6e

+
00

1
4.

09
9e

-0
02

2
1e

-0
06

18
(2

94
7)

1.
90

4e
-0

03
3.

43
3e

-0
05

7.
28

6e
-0

04
2(

15
6)

1.
91

4e
-0

02
6.

75
0e

+
00

0
6.

52
4e

-0
04

2
1e

-0
04

8(
14

13
)

1.
80

8e
-0

02
3.

51
6e

-0
02

7.
28

6e
-0

04
3(

31
3)

1.
83

4e
-0

02
3.

37
5e

+
00

0
6.

54
1e

-0
04

2
1e

-0
02

12
(3

56
0)

6.
72

6e
-0

02
1.

32
6e

+
00

2
7.

28
6e

-0
04

11
(3

13
2)

4.
94

1e
-0

02
7.

95
4e

+
00

2
4.

79
9e

-0
04

T
ab

le
5:

R
es

ul
ts

ob
ta

in
ed

fr
om

T
K
l
i
n

w
it

h
γ
∗

an
d

γ̂
.

C
ol

um
ns

T
1

ar
e

re
la

ti
ve

to
T
K
l
i
n

w
it

h
γ
∗

an
d

it
er

at
io

ns
st

op
pe

d
w

it
h

ru
le

(?
?)

.
C

ol
um

ns
T

2
ar

e
re

la
ti

ve
to

T
K
l
i
n

w
it

h
γ̂

co
m

pu
te

d
by

(2
9)

an
d

th
e

it
er

at
io

ns
st

op
pe

d
w

it
h

ru
le

(3
0)

.
k

de
no

te
s

th
e

ex
te

rn
al

it
er

at
io

ns
w

hi
le

it
c
g

is
th

e
to

ta
l
nu

m
be

r
of

C
on

ju
ga

te
G

ra
di

en
t

it
er

at
io

ns
.

18

Test p δ k(itcg) Erelx λ γ̂
Shaw 1.4 1.e-6 22(1444) 6.202e-003 9.537e-007 8.864e+001

1.4 1.e-4 21(1337) 7.068e-002 1.907e-006 8.879e+001
1.4 1.e-2 10(420) 1.524e-001 3.906e-003 8.617e+001

Phillips 1.8 1.e-6 22(1403) 4.471e-003 9.537e-007 1.015e+001
1.8 1.e-4 14(644) 2.266e-002 2.441e-004 1.014e+001
1.8 1.e-2 6(147) 1.055e-001 6.250e-002 9.902e+000

Table 6: Results obtained from TKit with regularization function as in (28): p
is the norm parameter in (28); k denotes the external iterations while itcg is the
total number of inner Conjugate Gradient iterations performed by the Newton
steps. The values of γ∗ are 88.095 for Shaw and 10.137 for Phillips

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

x exact

TKit(γ*)

TKit(γ^)

(a)

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

x exact
TikhGcv

lsqi(γ*)

lsqi(γ^)

(b)

Figure 3: shaw test problem with (d=1) and δ = 5 · 10−4 (a) True solution,
TKit(γ∗), TKit(γ̂). (b) tikhonov function with λ computed by gcv, lsqi with
γ∗ and γ̂

19

T
es

t
d

δ
T

ik
h

G
cv

L
SQ

I
(γ
∗)

L
SQ

I
(γ̂

)
E

re
l x

λ
E

re
l x

λ
γ
∗

E
re

l x
λ

γ̂
S
h
a
w

0
1e

-0
06

2.
93

2e
-0

01
7.

48
0e

-0
06

2.
83

7e
-0

02
5.

28
6e

-0
05

9.
96

4e
+

00
1

4.
82

9e
-0

02
8.

33
7e

-0
03

9.
90

8e
+

00
1

0
1e

-0
04

5.
99

3e
-0

02
4.

64
6e

-0
03

9.
47

4e
-0

02
1.

69
2e

-0
03

9.
96

4e
+

00
1

5.
45

3e
-0

02
8.

16
5e

-0
03

9.
89

6e
+

00
1

0
1e

-0
02

1.
81

1e
-0

01
1.

20
0e

-0
01

2.
65

6e
-0

01
6.

48
7e

-0
02

9.
96

4e
+

00
1

1.
76

0e
-0

01
1.

95
6e

-0
01

9.
18

0e
+

00
1

1
1e

-0
06

3.
09

4e
-0

01
2.

04
4e

-0
05

2.
37

2e
-0

02
1.

82
6e

-0
04

3.
63

2e
-0

01
4.

34
4e

-0
02

3.
84

1e
-0

02
3.

36
1e

-0
01

1
1e

-0
04

5.
11

9e
-0

02
1.

66
5e

-0
02

7.
26

8e
-0

02
9.

52
3e

-0
03

3.
63

2e
-0

01
4.

48
8e

-0
02

3.
79

1e
-0

02
3.

27
0e

-0
01

1
1e

-0
02

5.
62

6e
-0

01
3.

22
7e

+
00

0
8.

93
4e

-0
01

2.
09

6e
-0

01
3.

63
2e

-0
01

8.
18

6e
-0

01
2.

57
0e

-0
01

2.
39

1e
-0

01
2

1e
-0

06
3.

36
2e

-0
01

6.
51

7e
-0

05
1.

04
1e

-0
02

7.
72

2e
-0

04
6.

98
1e

-0
03

4.
32

8e
-0

02
2.

16
5e

-0
02

5.
34

4e
-0

03
2

1e
-0

04
9.

68
3e

-0
02

6.
16

7e
-0

02
1.

37
6e

-0
01

1.
71

2e
-0

02
6.

98
1e

-0
03

9.
46

1e
-0

02
6.

76
6e

-0
02

5.
23

3e
-0

03
2

1e
-0

02
6.

54
9e

-0
01

8.
77

0e
+

00
1

1.
12

2e
+

00
0

1.
25

9e
+

00
0

6.
98

1e
-0

03
1.

02
5e

+
00

0
1.

75
1e

+
00

0
4.

01
9e

-0
03

P
h
i
l
l
i
p
s

0
1e

-0
06

1.
25

9e
+

00
0

2.
26

4e
-0

06
8.

77
5e

-0
03

6.
61

3e
-0

02
8.

99
6e

+
00

0
7.

33
1e

-0
03

5.
36

7e
-0

02
8.

99
8e

+
00

0
0

1e
-0

04
1.

25
9e

+
00

2
2.

26
4e

-0
06

1.
61

1e
-0

02
5.

84
5e

-0
02

8.
99

6e
+

00
0

1.
70

5e
-0

02
5.

17
2e

-0
02

8.
99

8e
+

00
0

0
1e

-0
02

1.
25

9e
+

00
4

2.
26

4e
-0

06
1.

67
5e

-0
01

3.
16

1e
-0

01
8.

99
6e

+
00

0
9.

85
7e

-0
02

5.
00

5e
-0

01
8.

67
4e

+
00

0
1

1e
-0

06
1.

25
9e

+
00

0
1.

14
2e

-0
06

4.
02

2e
-0

03
5.

95
9e

-0
02

4.
72

5e
-0

02
1.

33
3e

-0
02

3.
75

5e
-0

01
4.

68
6e

-0
02

1
1e

-0
04

1.
25

9e
+

00
2

1.
14

2e
-0

06
1.

54
8e

-0
02

1.
19

3e
-0

01
4.

72
5e

-0
02

1.
52

9e
-0

02
3.

06
4e

-0
01

4.
69

0e
-0

02
1

1e
-0

02
1.

25
9e

+
00

4
1.

14
2e

-0
06

7.
08

3e
-0

02
2.

69
8e

+
00

0
4.

72
5e

-0
02

5.
47

1e
-0

02
4.

70
0e

+
00

0
4.

09
9e

-0
02

2
1e

-0
06

1.
25

9e
+

00
0

5.
74

6e
-0

07
2.

01
4e

-0
03

7.
09

3e
-0

03
7.

28
6e

-0
04

1.
93

1e
-0

02
2.

16
2e

+
00

0
6.

52
4e

-0
04

2
1e

-0
04

1.
25

9e
+

00
2

5.
74

6e
-0

07
1.

86
1e

-0
02

2.
55

5e
-0

01
7.

28
6e

-0
04

2.
01

0e
-0

02
1.

88
7e

+
00

0
6.

54
1e

-0
04

2
1e

-0
02

1.
25

9e
+

00
4

5.
74

6e
-0

07
7.

62
0e

-0
02

1.
45

1e
+

00
1

7.
28

6e
-0

04
6.

38
1e

-0
02

3.
19

1e
+

00
1

4.
79

9e
-0

04

T
ab

le
7:

R
es

ul
ts

ob
ta

in
ed

fr
om

t
i
k
h
o
n
o
v

fu
nc

ti
on

an
d

λ
co

m
pu

te
d

by
g
c
v

an
d
l
s
q
i

w
it

h
γ
∗

an
d

γ̂
.

20

