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Abstract. The concept of natural pseudo-distance has proven to be a pow-

erful tool for measuring the dissimilarity between topological spaces endowed

with continuous real-valued functions. Roughly speaking, the natural pseudo-

distance is defined as the infimum of the change of the functions’ values, when

moving from one space to the other through homeomorphisms, if possible. In

this paper, we prove the first available result about the existence of optimal

homeomorphisms between closed curves, i.e. inducing a change of the function

that equals the natural pseudo-distance.

Introduction

Formalizing the concept of shape for topological spaces and manifolds, as well as
providing an efficient comparison of shapes, has been a widely researched topic in
the last decade. As such, a class of methods has been developed with the purpose of
performing a topological exploration of the shape, according to some quantitative
geometric properties provided by a real function chosen to extract shape features
[1, 3, 18, 20, 25].

In this context, Size Theory was introduced at the beginning of the 1990s [12,
13, 15], supported by the adoption of a suitable mathematical tool: the natural
pseudo-distance [7, 8, 10].

In the formalism of Size Theory, a shape is modelled as a pair (X,ϕ), where X
is a topological space and ϕ : X → R is a continuous function [1, 15]. Such a pair is
called a size pair and ϕ is called a measuring function. The role of ϕ is to take into
account only the properties considered relevant for the shape comparison problem
at hand, while disregarding the irrelevant ones, as well as to impose the desired
invariance properties.

The natural pseudo-distance is a measure of the dissimilarity between two size
pairs (X,ϕ), (Y, ψ). Roughly speaking, it is defined as the infimum of the variation
of the values of ϕ and ψ, when we move from X to Y through homeomorphisms,
if possible (see Definition 1.2). Therefore, two objects have the same shape if they
share the same shape properties, expressed by the measuring functions’ values, that
is, their natural pseudo-distance vanishes.

Earlier results about the natural pseudo-distance can be divided into two classes.
One class provides constraints on the possible values taken by the natural pseudo-
distance between two size pairs (X,ϕ), (Y, ψ). For example, if the considered topo-
logical spaces X and Y are smooth closed manifolds and the measuring functions
are also smooth, then the natural pseudo-distance is an integer sub-multiple of the
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Euclidean distance between two suitable critical values of the measuring functions
[8]. In particular, this integer can only be either 1 or 2 in the case of curves [7],
while it cannot be greater than 3 in the case of surfaces [10].

The other class of results furnishes lower bounds for the natural pseudo-distance
[9, 17]. In particular it is possible to estimate the natural pseudo-distance by using
the concept of size function [5, 9]. Size functions are shape descriptors able to
reduce the comparison of shapes to the comparison of certain countable sets of
points in the real plane [11, 14, 16]. This reduction allows us to study the space of
all homeomorphisms between the considered topological spaces, without actually
computing them.

The research on size functions has led to a formal setting, which has turned out
to be useful, not only from a theoretical point of view, but also on the applicative
side (see, e.g., [2, 4, 6, 23, 24]).

Besides being a useful theoretical tool for applications in shape comparison, the
natural pseudo-distance is challenging from the mathematical point of view, and
several questions about its properties need for further investigation. One among
them consists in establishing the hypotheses ensuring the existence of optimal home-
omorphisms between size pairs, i.e. homeomorphisms realizing the natural pseudo-
distance. It is possible to show that, in general, such homeomorphisms do not exist
(see, e.g., Section 2).

In this paper, we provide the first available result about the existence of optimal
homeomorphisms. To be more precise, we prove that, under appropriate conditions,
it is always possible to construct a homeomorphism between two closed curves (i.e.
compact and without boundary 1-manifolds), satisfying the property of optimality
(Theorem 3.5). This result can be seen as a necessary first step towards the study of
this problem in a more general setting, e.g. when manifolds of arbitrary dimensions
are involved.

The subject of our work fits in the current mathematical research and interest
in simple closed curves, motivated by problems concerning shape comparison in
Computer Vision (cf. e.g., [21, 22]).

The paper is divided into three sections. Section 1 deals with some of the stan-
dard facts on the comparison of size pairs via the natural pseudo-distance. In
particular, the definition of the natural pseudo-distance δ and its main properties
are given, focusing on the concept of d-approximating sequence. Section 2 is de-
voted to the description of some simple and meaningful examples showing that none
of the conditions we require in stating our main result can be dropped. In Section
3 we prove our main result concerning the existence and the construction of an
optimal homeomorphism between two smooth closed curves endowed with Morse
measuring functions (Theorem 3.5).

1. Preliminaries

In Size Theory, a size pair is a pair (X,ϕ), where X is a non-empty, compact,
locally connected Hausdorff space and ϕ : X → R is a continuous function called
a measuring function. Let Size be the collection of all the size pairs, and let
(X,ϕ), (Y, ψ) be two size pairs. We denote by H(X,Y ) the set of all homeomor-
phisms from X to Y .
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Definition 1.1. If H(X,Y ) 6= ∅, the function Θ : H(X,Y ) → R given by

Θ(f) = max
x∈X

|ϕ(x) − ψ(f(x))|

is called the natural size measure with respect to the measuring functions ϕ and ψ.

Roughly speaking, Θ(f) measures how much f changes the values taken by the
measuring functions, at corresponding points.

Definition 1.2. We shall call natural pseudo-distance the pseudo-distance δ :
Size× Size→ R ∪ {+∞} defined as

δ ((X,ϕ), (Y, ψ)) =

{
inf

f∈H(X,Y )
Θ(f), if H(X,Y ) 6= ∅

+∞, otherwise.

Note that δ is not a distance, since two different size pairs (X,ϕ), (Y, ψ) can
have a vanishing pseudo-distance. In that case, X and Y are only sharing the
same shape properties with respect to the chosen functions ϕ and ψ, respectively.
Moreover, we observe that the infimum of Θ(f) for f varying in H(X,Y ) is not
always attained. When it is, we shall say that each homeomorphism f ∈ H(X,Y )
with Θ(f) = δ ((X,ϕ), (Y, ψ)) is an optimal homeomorphism. On the other hand,
Definition 1.2 implies that, if H(X,Y ) 6= ∅, we can always find a sequence (fk) of
homeomorphisms from X to Y , such that lim

k→∞
Θ(fk) = δ ((X,ϕ), (Y, ψ)).

Definition 1.3. Let (X,ϕ), (Y, ψ) be two size pairs, with X,Y homeomorphic and
δ ((X,ϕ), (Y, ψ)) = d. Every sequence (fk) of homeomorphisms fk : X → Y such
that lim

k→∞
Θ(fk) = d is said to be a d-approximating sequence from (X,ϕ) to (Y, ψ).

Remark 1.4. We observe that (fk) is a d-approximating sequence from (X,ϕ) to
(Y, ψ) if and only if (f−1

k ) is a d-approximating sequence from (Y, ψ) to (X,ϕ).

The main goal of this paper is to show that an optimal homeomorphism exists
between two size pairs (X,ϕ) and (Y, ψ), under the following conditions:

(a) (X,ϕ) and (Y, ψ) have vanishing natural pseudo-distance, i.e. it holds that
δ((X,ϕ), (Y, ψ)) = 0;

(b) X and Y are two curves of class C2;
(c) ϕ and ψ are Morse (i.e., smooth and having invertible Hessian at each

critical point) measuring functions.

This result will be formally given and proved later (Theorem 3.5), in the case
of closed curves. However, we remark that the hypothesis of closed curves will be
assumed only for the sake of simplicity. Indeed, it can be weakened to compact
1-manifolds having non-empty boundary, without much affecting the following rea-
sonings.

Remark 1.5. The reader may wonder why we are defining the natural pseudo-
distance δ in terms of homeomorphisms instead of diffeomorphisms, since the above
assumption (c) requires that the measuring functions are Morse. The answer is
that, under condition (b), Definition 1.2 is invariant with respect to such a choice.
Indeed, it is well known that each homeomorphism between compact differentiable
1-manifolds can be approximated arbitrarily well by diffeomorphisms. On the other
hand, dealing with homeomorphisms allows us to slim down examples and proves
from useless technical steps.
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2. Meaningful examples

We provide here three meaningful examples showing that the assumptions (a),
(b), (c) introduced in Section 1 are the less restrictive we can consider in order to
ensure the existence of an optimal homeomorphism between two size pairs (X,ϕ)
and (Y, ψ). Indeed, if one among them is dropped, then Theorem 3.5 does not hold.

First of all, let us observe that for every size pair (Z, ω) with Z a closed curve of
class Ck, an embedding h : Z → R3 of class Ck exists such that z(p) = ω(h−1(p)) for
each point p = (x(p), y(p), z(p)) ∈ h(Z). Moreover, if ω is Morse, we can assume
that z is Morse on h(Z), too. In other words, there is no lack of generality in
assuming that the measuring function associated with Z is obtained by restriction
of the z-coordinate in R3.

Accordingly, in the examples and figures we describe here, we shall always assume
that the spaces X and Y are endowed with the z-coordinate function, and use the
symbol z to denote both z|X and z|Y .

Example 1 (Hypothesis (a) fails). We report an example introduced in [8]. It
shows that if two size pairs satisfy hypotheses (b) and (c), but have non-vanishing
natural pseudo-distance, then an optimal homeomorphism does not always exist.PSfrag replacements

xA

xB

xC

x ε
D

x ε
E

y ε
E

yC

y ε
D

gε

z

2ε

X Y

max z

min z

Figure 1. An example of two closed curves X, Y endowed with the Morse

function z. No optimal homeomorphism exist between (X, z), (Y, z) because
their natural pseudo-distance is non-zero.

Let us consider the two size pairs (X, z), (Y, z) depicted in Figure 1, where X
and Y are smooth closed curves in R3, embedded in the real plane. The functions
z|X and z|Y are Morse.

As can be seen in Figure 1, the points xA, xB ∈ X are critical points of the
function z and z(xC) = 1

2 (z(xA) + z(xB)) = z(yC). In [7] it has been proved that
the natural pseudo-distance between homeomorphic smooth closed curves, endowed
with Morse measuring functions, is always obtainable in terms of some critical values
of the measuring functions. Actually, in this example it is possible to show that the
natural pseudo-distance between (X, z) and (Y, z) takes the value d = 1

2 (z(xA) −
z(xB)). On the other hand, it will also be proved that no optimal homeomorphism
exists. Indeed, we can construct a sequence of homeomorphisms (fk), such that
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lim
k→∞

Θ(fk) = 1
2 (z(xA)− z(xB)), and show that Θ(f) > 1

2 (z(xA)− z(xB)) for every

homeomorphism f ∈ H(X,Y ). The first step consists in proving that, for every ε >
0, a homeomorphism gε : X → Y exists, such that Θ(gε) ≤

1
2 (z(xA)− z(xB)) + 2ε.

Accordingly, consider the points x ε
D, x ε

E , y ε
D and y ε

E in Figure 1, verifying z(x ε
D) =

z(y ε
D) = z(xC) + ε and z(x ε

E) = z(y ε
E) = z(xC) − ε. Choose a homeomorphism gε,

taking the arc x ε
D xCx

ε
E to the arc y ε

D yCy
ε
E in such a way that gε(x

ε
D) = y ε

D and
gε(x

ε
E) = y ε

E . Outside the arc x ε
DxCx

ε
E in X define gε by mapping, in the unique

possible way, every point x to a point gε(x) satisfying z(x) = z(gε(x)). For every
k ∈ N\{0} set fk = g 1

k

. It can be easily verified that lim
k→∞

Θ(fk) = 1
2 (z(xA)−z(xB)).

It only remains to prove that Θ(f) ≤ 1
2 (z(xA) − z(xB)) for no homeomorphism

f ∈ H(X,Y ). If such a homeomorphism existed, for every x ∈ X we would have
|z(x) − z(f(x))| ≤ 1

2 (z(xA) − z(xB)), and hence z(f(xA)) ≥ z(yC) ≥ z(f(xB)).

Therefore, points x ∈ X such that |z(x) − z(f(x))| > 1
2 (z(xA) − z(xB)) could be

easily found, contradicting our assumption.

Example 2 (Hypothesis (b) fails). This example, introduced in [8], shows that
there does not always exist an optimal homeomorphism between two size pairs
satisfying hypotheses (a) and (c), but missing hypothesis (b).

PSfrag replacements
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f ◦ γ

y ε
D

γ

f

z

X Y

Figure 2. An example of two size pairs (X, z) and (Y, z), whose natural
pseudo-distance is zero. No optimal homeomorphism exist between (X, z),

(Y, z) because X an Y are not closed curves.

Consider the smooth surfaces X and Y displayed in Figure 2 and the corre-
sponding measuring function z. The dotted lines are level curves for the measuring
function z. It is easy to show that the natural pseudo-distance between the two
size pairs is zero. Indeed, it is possible to isotopically deform the left surface to
the right one by “torsion”, exchanging the positions of the two smallest humps.
This deformation can be performed by an arbitrarily small change in the values of
the height z. Therefore, a sequence of homeomorphisms (fk) from X to Y can be
constructed, such that lim

k→∞
Θ(fk) = 0.
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However, no optimal homeomorphism exists between the two size pairs. Suppose
indeed there exists a homeomorphism f such that Θ(f) = 0. Consider a path γ as
in Figure 2, chosen in such a way that, in the image of the path, z(x) = z(xA) for
no point x ∈ X different from xA. It can be easily verified that the image of the
path f ◦ γ has to contain more than one point at which z takes the value z(xA).
This contradicts the assumptions, since Θ(f) = 0 implies z(f(x)) = z(x) for every
x in the image of γ.

Example 3 (Hypothesis (c) fails). This last example shows that there does not
always exist an optimal homeomorphism between two closed curves having vanish-
ing natural pseudo-distance, if such curves are endowed with measuring functions
missing hypothesis (c).

PSfrag replacements

xA xB yC

x ε
A x ε

B y ε
A y ε

B

gε

z

ε

X Y

Figure 3. An example of two size pairs (X, z) and (Y, z), whose natural

pseudo-distance is zero. No optimal homeomorphism exist between (X, z),
(Y, z) because z|X is not Morse.

Let us consider the two size pairs (X, z) and (Y, z) in Figure 3, where X and Y
are smooth closed curves. As can be seen, the measuring function z is not Morse
on X.

We see that the natural pseudo-distance between (X, z) and (Y, z) is vanishing,
but an optimal homeomorphism does not exist. Indeed, it is possible to give a
sequence of homeomorphism (fk), such that lim

k→∞
Θ(fk) = 0, and verify that Θ(f) >

0 for every homeomorphism f ∈ H(X,Y ). Similarly to the previous example, for
every ε > 0 we first construct a homeomorphism gε : X → Y , moving each point
x ∈ X less then or equal to ε with respect to the measuring function z. This can
be done by considering a homeomorphism gε taking the arc x ε

Ax
ε
B , containing the

segment xAxB , to the arc y ε
AyCy

ε
B . Observe that z(x) = z(yC) for every x ∈ xAxB ,

and z(x ε
A) = z(x ε

B) = z(y ε
A) = z(y ε

B) = z(yC) − ε. Outside the arc x ε
Ax

ε
B in X

we define gε by mapping every point x to a point gε(x) satisfying z(x) = z(gε(x)).
For every k ∈ N \ {0} set fk = g 1

k

. It can be easily verified that lim
k→∞

Θ(fk) = 0.

However, an optimal homeomorphism f : X → Y does not exist. Indeed, such a
map should verify max

x∈X
|z(x)− z(f(x))| = 0, and therefore it should take each point

of the segment xAxB to the point yC , against the injectivity.
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3. Main theorem

In this section we prove the main theorem of this paper which states that an
optimal homeomorphism exists between two closed curves of class C2, endowed
with Morse measuring functions, and whose natural pseudo-distance is zero (see
Theorem 3.5). Roughly speaking, the proof involves the idea to construct such a
homeomorphism between the two curves as a continuous extension of a uniformly
continuous, bijective map existing between dense subsets of the curves (see Propo-
sition 3.3 and Remark 3.4). The optimality is finally showed in Theorem 3.5.

Let us now introduce some notations and assumptions we shall adopt in the rest
of this section.

Let (X,ϕ), (Y, ψ) be two size pairs, with X, Y two C2 closed curves, and ϕ, ψ
Morse measuring functions, and suppose that δ ((X,ϕ), (Y, ψ)) = 0.

It is not restrictive to assume that X and Y are metric spaces, endowed with two
metrics dX and dY , respectively. Moreover, for the sake of simplicity, from now on
we shall assume that the considered curves are connected. However, note that this
last hypothesis can be weakened to any finite number of connected components,
without much affecting the following reasonings.

Let us now consider two parameterizations hX : S1 → X, hY : S1 → Y . The
clockwise orientation on S1 ⊂ R2, and the homeomorphisms hX , hY allow us to
induce an orientation on X and Y , respectively. For every x, x′ ∈ X (respectively

y, y′ ∈ Y ), we shall denote by xx′ (resp. yy′ ) the oriented path on X (resp. Y ),

induced by hX (resp. hY ), from the point x (resp. y) to the point x′ (resp. y′),
going clockwise along S1, and including both x and x′ (resp. y and y′).

Consider the sets XQ = {x = hX((cos θ, sin θ)) : θ ∈ Q} and YQ = {y =
hY ((cos θ, sin θ)) : θ ∈ Q}, and a sequence (fk) of 0-approximating homeomor-
phisms from (X,ϕ) to (Y, ψ), i.e. such that lim

k→∞
Θ(fk) = 0. By using the Can-

tor’s diagonalization argument, and from the compactness of X and Y , we can
assume (possibly by considering a subsequence) that there exist lim

k→∞
fk(x) for ev-

ery x ∈ XQ, and lim
k→∞

f−1
k (y) for every y ∈ YQ. We shall set lim

k→∞
fk(x) = yx ∈ Y

for every x ∈ XQ, and lim
k→∞

f−1
k (y) = xy ∈ X for every y ∈ YQ.

Furthermore, since homeomorphisms between closed curves can be orientation-
preserving or not, for the sake of simplicity we shall assume (possibly by considering
a subsequence) that the orientation is maintained by each fk. Indeed, if this is not

the case, we can consider a new parametrization ĥY having opposite orientation
with respect to hY .

Let us now set Ỹ = {yx : x ∈ XQ} and X̃ = {xy : y ∈ YQ} and denote by X∗, Y∗
the sets XQ ∪ X̃ and YQ ∪ Ỹ , respectively. We can define a relation ρ ⊆ X∗ ×Y∗ by
setting

(x, y) ∈ ρ⇔ (x ∈ XQ and y = yx ∈ Ỹ ) or (y ∈ YQ and x = xy ∈ X̃).(1)

Remark 3.1. Note that the equality ϕ(x) = ψ(y) holds for every (x, y) ∈ ρ. Indeed,

since (fk) is a 0-approximating sequence, if x ∈ XQ and y = yx ∈ Ỹ , then |ϕ(x) −
ψ(yx)| = |ϕ(x) − ψ( lim

k→∞
fk(x))| = lim

k→∞
|ϕ(x) − ψ(fk(x))| = 0; if y ∈ YQ and

x = xy ∈ X̃, by Remark 1.4 it follows that |ϕ(xy) − ψ(y)| = |ϕ( lim
k→∞

f−1
k (y)) −

ψ(y)| = lim
k→∞

|ϕ(f−1
k (y)) − ψ(y)| = 0.
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Following the rough outline exposed at the beginning of this section, we shall first
construct a suitable function between X∗ and Y∗, proving that it is bijective and
uniformly continuous. Such a function can be obtained directly from the relation
ρ, by virtue of the following technical lemma.

Lemma 3.2. The following statements hold:

(i) For every real number ε > 0, there exists η > 0 such that, for every
(x, y), (x′, y′) ∈ ρ with dX (x, x′) < η (respectively dY (y, y′) < η), the
inequality dY (y, y′) < ε (resp. dX (x, x′) < ε) holds.

(ii) For every x ∈ X∗ (respectively y ∈ Y∗), there exists y ∈ Y∗ (resp. x ∈ X∗)
such that (x, y) ∈ ρ;

(iii) For every (x, y), (x′, y′) ∈ ρ, x = x′ if and only if y = y′.

Proof. Let us start by proving assertion (i). We shall confine ourselves to prove that
for every real number ε > 0, there exists η > 0 such that, for every (x, y), (x′, y′) ∈ ρ

with dX (x, x′) < η, the inequality dY (y, y′) < ε holds. Indeed, the proof of the
other case is analogous.

We shall prove the statement by contradiction, i.e. by supposing the existence
of a real number ε̄ > 0 such that, for every η > 0, two pairs (xη, yη), (x′η, y

′
η) ∈ ρ

exist with dX

(
xη, x

′
η

)
< η and dY

(
yη, y

′
η

)
≥ ε̄. Let us consider two sequences

((xn, yn)), ((x′n, y
′
n)) of elements in ρ, with dX(xn, x

′
n) < 1

n
and dY (yn, y

′
n) ≥ ε̄ for

every n ∈ N.

SinceX∗ = XQ∪X̃, it can be assumed (possibly by considering two subsequences)
that xn, x

′
n ∈ XQ for every index n. Indeed, if this is not the case, we can alterna-

tively assume that xn, x
′
n ∈ X̃ for every index n, or that xn (respectively x′n) ∈ XQ

and x′n (resp. xn) ∈ X̃ for every index n, without much affecting the following

reasonings. Observe that our assumption implies that yn, y
′
n ∈ Ỹ for every index

n.
By the compactness of X, we can hypothesize (possibly by extracting a subse-

quence) that the sequence (xn) converges to a point x̄ ∈ X. Obviously, it holds
that lim

n→∞
dX(xn, x

′
n) = 0 and hence dX(x̄, x′n) → 0 for n → ∞, that is also (x′n)

converges to x̄.

Let us now consider the sequences (yn), (y′n) in Ỹ . By the compactness of Y ,
we can assume that they converge to ȳ, ȳ′ ∈ Y , respectively. Moreover, by the
hypothesis dY (yn, y

′
n) ≥ ε̄ for every index n, it means that ȳ 6= ȳ′. On the other

hand, by the continuity of ϕ and ψ, we have lim
n→∞

ϕ(xn) = ϕ(x̄), lim
n→∞

ϕ(x′n) = ϕ(x̄),

lim
n→∞

ψ(yn) = ψ(ȳ), lim
n→∞

ψ(y′n) = ψ(ȳ′), and by Remark 3.1 we can write ϕ(x̄) =

ψ(ȳ) = ψ(ȳ′) = c ∈ R. In other words, we have ȳ 6= ȳ′ with ψ(ȳ) = ψ(ȳ′). Since

ψ is a Morse function, it is necessarily non-constant on the path ȳȳ′ , therefore

there exists a point y′′ ∈ ȳȳ′ verifying |ψ (y′′)−c| = C > 0 (obviously, y′′ 6= ȳ, ȳ′).

Furthermore, by recalling that (yn) = ( lim
k→∞

fk(xn)) converges to ȳ and (y′n) =

( lim
k→∞

fk(x′n)) converges to ȳ′, we can find an index N such that, for every n > N ,

an index K = K(n) exists with y′′ ∈ fk(xn)fk(x′n) for every k > K, implying

that f−1
k (y′′) ∈ xnx

′
n for large enough indices n and k.



OPTIMAL HOMEOMORPHISMS BETWEEN CLOSED CURVES 9

Since lim
n→∞

xn = lim
n→∞

x′n = x̄, it can be assumed that f−1
k (y′′) converges to x̄.

Indeed, if f−1
k (y′′) did not converge to x̄, then we could consider another point

y′′′ ∈ ȳ′ȳ (i.e. the clockwise oriented path from ȳ′ to ȳ), verifying |ψ (y′′′) − c| =

C ′ > 0 (obviously, y′′′ 6= ȳ, ȳ′), and such that f−1
k (y′′′) converges to x̄.

Therefore, by Definition 1.3 and Remark 1.4, both of them in the case d = 0, we
have 0 = lim

k→∞
|ϕ(f−1

k (y′′))−ψ(y′′)| = |ϕ(x̄)−ψ(y′′)| = |c−ψ(y′′)|, i.e. C = 0, thus

getting a contradiction. This concludes the proof of (i).
The proof of statement (ii) is trivial, and directly follows by the definition of the

relation ρ in (1).
Let us now prove (iii). Let (x, y), (x′, y′) ∈ ρ, with x = x′. This means that

dX(x, x′) < η for every real value η > 0. Since (x, y), (x′, y′) ∈ ρ, assertion (i)
implies that dY (y, y′) < ε for every real value ε > 0, i.e. y = y′. Conversely, a
similar proof can be given, by exchanging the roles of x, x′ and y, y′ and applying
once more assertion (i). �

In plain words, assertions (ii) and (iii) of Lemma 3.2 tell us that it is possible
to define a bijective function f∗ : X∗ → Y∗ directly from the relation ρ, by setting

f∗(x) = y ⇔ (x, y) ∈ ρ.

Moreover, statement (i) of Lemma 3.2 implies that f∗ is uniformly continuous
together with its inverse. Finally, we observe that Remark 3.1 implies ϕ(x) =
ψ(f∗(x)) for every x ∈ X∗. In other words, we have just proved the following
proposition.

Proposition 3.3. f∗ : X∗ → Y∗ is a bijective, uniformly continuous map with
uniformly continuous inverse, and such that ϕ(x) = ψ(f∗(x)) for every x ∈ X∗.

Remark 3.4. Proposition 3.3 allows us to easily obtain a continuous map from X

to Y . Indeed, it is well known that a uniformly continuous function between two
metric spaces can be univocally extended to a continuous map between two given
completions of the spaces themselves.

In our context, X and Y are compact metric spaces, and hence complete. This
means that every Cauchy sequence of elements in X (respectively Y ) has a limit in
X (resp. Y ). Moreover, X and Y are completions of their dense subsets X∗ and
Y∗, respectively. Finally, we observe that a uniformly continuous function takes
Cauchy sequences into Cauchy sequences. Following these considerations, it is easy
to show that f : X → Y with f|X∗

= f∗ and f( lim
n→∞

xn) = lim
n→∞

f∗(xn) for every

Cauchy sequence (xn) of elements in X∗, is a well-defined function, continuously
extending the map f∗ : X∗ → Y∗.

We are now ready to give the main result of this paper.

Theorem 3.5. Let (X,ϕ), (Y, ψ) be two size pairs, with X,Y closed curves of class
C2, and ϕ : X → R, ψ : Y → R Morse measuring functions. If δ ((X,ϕ), (Y, ψ)) =
0, then there exists an optimal homeomorphism f : X → Y .

Proof. We shall prove the statement by showing that the continuous function f

defined in Remark 3.4 is an optimal homeomorphism from X to Y .
Let us start by proving that f is a homeomorphism. To do so, we only need to

show that f is injective, since every continuous injection between compact Hausdorff
spaces is a homeomorphism [19, Thm. 2-103].
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Let x, x′ ∈ X and suppose x 6= x′. Then x = lim
n→∞

xn, x′ = lim
n→∞

x′n for two suit-

able sequences (xn) and (x′n) of elements inX∗, with lim
n→∞

xn 6= lim
n→∞

x′n. This means

that we can choose a real number ε̄ > 0 such that, for sufficiently large indices n, we
have dX(xn, x

′
n) > ε̄, allowing us to claim that lim

n→∞
f∗(xn) 6= lim

n→∞
f∗(x

′
n). Indeed,

the equality lim
n→∞

f∗(xn) = lim
n→∞

f∗(x
′
n) would imply the existence of a real number,

that is ε̄, such that, for every real value η > 0, two points f∗(xn), f∗(x
′
n) ∈ Y∗ would

exist, with dY (f∗(xn), f∗(x
′
n)) < η and dX(xn, x

′
n) > ε̄, thus contradicting the uni-

form continuity of the inverse of f∗ (see Proposition 3.3). Hence, the assumption
x 6= x′ implies that lim

n→∞
f∗(xn) 6= lim

n→∞
f∗(x

′
n), i.e. f(x) 6= f(x′), thus proving the

injectivity of f .
To conclude the proof, we still need to show the optimality of f , i.e. that the

equality ϕ(x) = ψ(f(x)) holds for every x ∈ X. By Proposition 3.3, this is true
when x ∈ X∗. On the other hand, if x ∈ X \ X∗, then there exists a sequence
(xn) in X∗ converging to x. So, by the continuity of ϕ, ψ and f , we can write
ϕ(x) = lim

n→∞
ϕ(xn) and ψ(f(x)) = lim

n→∞
ψ(f(xn)). Moreover, by recalling once more

that the restriction of f to X∗ coincides with f∗, and ψ ◦f∗ coincides with ϕ|X∗

, we
have |ϕ(x) − ψ(f(x))| = | lim

n→∞
ϕ(xn) − lim

n→∞
ψ(f(xn))| = lim

n→∞
|ϕ(xn) − ψ(f(xn))| =

lim
n→∞

|ϕ(xn) − ψ(f∗(xn))| = 0. �

4. Conclusions and future works

In this paper we have proved that there always exists an optimal homeomorphism
between two size pairs (X,ϕ), (Y, ψ) having vanishing natural pseudo-distance, un-
der the assumptions that X,Y are closed curves of class C2, and ϕ,ψ are Morse
measuring functions. We point out that this result is the first available one con-
cerning the existence of optimal homeomorphisms between size pairs. Indeed, until
now the research has been developed mainly focusing on the relations between the
natural pseudo-distance and the critical values of the measuring functions, as well
as on the estimation of natural pseudo-distance via lower bounds provided by size
functions. Our result opens the way to further investigations, in order to obtain
a generalization to the case of k-dimensional manifolds endowed with Rk-valued
measuring functions, with k > 1. In this context, an interesting research line ap-
pears to be, for example, to consider measuring functions having finite preimage for
each point in the range, or characterized by a behavior analogous to that of Morse
functions in the 1-dimensional case.
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