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Abstract

In this paper we present an iterative method for the minimization
of the Tikhonov regularization functional in the absence of information
about noise. Each algorithm iteration updates both the estimate of the
regularization parameter and the Tikhonov solution. In order to reduce
the number of iterations, an inexact version of the algorithm is also pro-
posed. In this case the inner Conjugate Gradient (CG) iterations are
truncated before convergence. In the numerical experiments the methods
are tested on inverse ill posed problems arising both in signal and image
processing.

Keywords: Regularization methods, Tikhonov method, Truncated Conjugate Gra-
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Classification: 65R30, 65R32, 65F22.

1 Introduction

A large variety of applications give raise naturally to ill-posed problems when-
ever the underlying physical or technical problem is modeled by an integral
equation of the first kind with a smooth kernel. These inverse problems are
mathematically modeled by

Hx = y (1)

where H denotes a compact operator between Hilbert spaces X and Y.
The data y usually stem from measurements with a limited precision, i.e.,

only perturbed data yδ with an error bound

||y − yδ|| ≤ δ

are available. The inverse problem is ill-posed since H is not continuously
invertible or, equivalently, the set {x ∈ X : ‖Hx− y‖ ≤ δ} is unbounded. This
instability requires regularization methods for treating the inverse problem.
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One of the most used and well established regularization method is the
Tikhonov-Phillips regularization method which finds the solution xδ

λ to the fol-
lowing minimization problem:

min
x
‖Hx− yδ‖2 + λ‖Lx‖2 (2)

where λ is known as regularization parameter whose value must be determined.
The operator L is used to impose some constraints about the smoothness of the
solution.

The aim of this paper is to describe an iterative algorithm which computes
a good approximate solution of the problem (2) within a practically acceptable
number of iterations without any information about noise.

The computation of the regularization parameter is a delicate subject. There
exists a significant amount of research in the development of appropriate strate-
gies for selecting regularization parameters (see [5, 2, 1, 3, 6]). Some of these
techniques, such as Generalized Cross Validation (GCV) and L-Curve, need to
try a large number of regularization parameters in order to find a reasonably
good value. This can be very time-consuming. Some other techniques require
some additional information about the noise present in the data or about the
amount of regularization prescribed by the optimal solution. In this work we
assign the value of the ratio between the regularization part ‖Lx‖2 and the value
of the Tikhonov functional ‖Hx − yδ‖2 + λ‖Lx‖2, in the hypotheses that the
regularization part should somehow preserve the fidelity to the data represented
by the residual norm ‖Hx− yδ‖2. We propose a method for updating the value
of the regularization parameter which decreases the Tikhonov functional if the
regularization part is too large and increases it otherwise. In order to gain more
efficiency by limiting the number of inner CG iterations, we use the properties
of the given update method to stop the CG iterations and update the regular-
ization parameter using only the solution and residual vectors computed in the
inner CG iterations.

In section 2 we propose a general framework for updating the value of the
regularization parameter and we derive the increase/decrease properties of the
Tikhonov functional. We obtain an iterative algorithm without truncating the
inner CG iterations. In section 3 a an inexact version of the algorithm is pro-
posed by truncating the inner CG iterations. In section 4 we report the numer-
ical examples relative to the methods proposed in sections 2 and 3 and finally
the conclusions are given in section 5.

2 Tikhonov Iterative Method

The Tikhonov method is based on the property that the functional

Θ(x, λ) = ‖Hx− yδ‖2 + λ‖Lx‖2 (3)

has a unique minimizer for any value λ > 0, provided that

N (H) ∩N (L) = {0}
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where N (·) is the null space of a matrix. Denoting xλ such a minimizer, it can
be characterized as the solution of the system:

(H∗H + λL∗L)xλ = H∗yδ (4)

or in variational form:

(Hxλ,Hv) + λ(Lxλ, Lv) = (yδ,Hv) ∀v ∈ X (5)

We define an iterative procedure to compute the values (xk, λk), where λk is
obtained by means of an additive update method and xk is computed applying
CG iterations to (4) with λ = λk.

In the following propositions we state some properties of the Tikhonov func-
tional Θ (3) as a consequence of the regularization parameter update method.

Proposition 1. Let (xk, λk) be such that λk > 0 and

(Hxk,Hv) + λk(Lxk, Lv) = (yδ,Hv) ∀v ∈ X . (6)

By setting
λk+1 = λk + µ with |µ| < λk (7)

then the Tikhonov functional Θ has the following properties:

0 < Θ(xk, λk+1) < Θ(xk, λk), if µ < 0 (8)
0 < Θ(xk, λk) < Θ(xk, λk+1) < Θ(xk, 2λk), if µ > 0 (9)

Proof. Using (7) we have:

Θ(xk, λk+1) = ‖Hxk − yδ‖2 + (λk + µ)‖Lxk‖2

If µ < 0 then 0 < λk+1 < λk and this proves: (8)

Θ(xk, λk+1) < Θ(xk, λk).

If µ > 0 then 0 < λk < λk+1 < 2λk and we have

Θ(xk, λk) < Θ(xk, λk+1) < Θ(xk, 2λk).

Proposition 2. Let λk+1 > 0 as in (7) and xk+1 the minimizer of the Tikhonov
functional Θ(x, λk+1). Then

0 < Θ(xk+1, λk+1) < Θ(xk, λk+1), if µ < 0 (10)
0 < Θ(xk, λk) < Θ(xk+1, λk+1) < Θ(xk, λk+1) if µ > 0. (11)
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Proof. The relation (10) and the right inequality of (11) follow immediately by
observing that

Θ(xk+1, λk+1) < Θ(x, λk+1), ∀x ∈ X .

In order to prove the left inequality in (11) we have:

Θ(xk+1, λk+1) = ‖Hxk+1 − yδ‖2 + λk+1‖Lxk+1‖2 =

= ‖Hxk+1 − yδ‖2 + λk‖Lxk+1‖2 + µ‖Lxk+1‖2. (12)

Since µ > 0:

Θ(xk+1, λk+1) > ‖Hxk+1 − yδ‖2 + λk‖Lxk+1‖2 = Θ(xk+1, λk)

Since Θ(xk, λk) is the minimum of Θ(x, λk), then Θ(xk+1, λk) > Θ(xk, λk).

In the case L = I different approaches can be found in the literature to obtain
an iterative implementation of the Tikhonov method. In [6] the discrepancy
principle is used to compute a solution xδ

λ such that ‖Hxδ
λ − yδ‖2 < τδ with

τ > 1 where λk = 1/2k, k > 0. In this case the noise δ must be estimated and
λk is a decreasing sequence with a prescribed behavior which does not depend
on the problem. In [8],[7] the Tikhonov problem is seen as a special instance of
trust-region subproblem:

min ‖Hx− yδ‖2 : ‖x‖ < ∆

requiring the value ∆ which prescribes the regularity of the solution. The com-
putation of the regularization parameter requires the solution of a large scale
eigenvalue problem at each outer iteration and does not apply to the case L 6= I.
Aim of this work is to compute a good approximating sequence of regularized
solutions xk and regularization parameters λk in the general case L 6= I. We
implement an iterative algorithm to solve the Tikhonov problem (2) with an
outer iteration loop to update the regularization parameter λ and an inner it-
eration loop to solve the equation (4). The inner loop is implemented by CG
iterations while the outer loop is performed by using some additional knowledge
about the problem.

In order to update the value of λ, we consider the Tikhonov functional Θ as
a weighted sum of the residual norm ‖Hx−yδ‖2 related to the data fidelity and
the regularization norm ‖Lx‖2 which takes into account the required regularity
of the solution.

Definition 3. Let γ̂ the prescribed weight of regularization part ‖Lx‖2 with
respect to the Tikhonov functional. For each given value of λk we compute xk

by solving (2) and γk as:

γk =
‖Lxk‖2

Θ(xk, λk)
.

Using the following rule to update the regularization parameter:

µ = λk/2, λk+1 = λk + sign(γ̂ − γk)µ,
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sign(y) =





1 if y > 0
−1 if y < 0
0 if y = 0

we define the Tikhonov CG Algorithm (TKCG) for obtaining a suitable regu-
larized solution of (2).

Algorithm 1 (TKCG Algorithm).
Choose λ0 > 0 and set µ = λ0.
Choose γ̂ > 0
for k = 0, 1, 2, . . .

1. Computation of the approximate solution xk

Compute xk by applying the CG method to (4) setting λ = λk;
2. Computation of the weight factor γk

γk = ‖Lxk‖2/Θ(xk, λk);
3. Update the regularization parameter

Set µ = µ/2;
Set λk+1 = λk + sign(γ̂ − γk)µ;

4. Set k = k + 1;
end

The TKCG method represents an extension to the method presented in
[9] where the Tikhonov functional Θ(xk, λk) has a decreasing behavior. In
algorithm 1 the value of the Tikhonov functional decreases when γk > γ̂ and
increases otherwise. Indeed using the propositions 1 and 2 we obtain that:

• if γk > γ̂ then Θ(xk+1, λk+1) < Θ(xk, λk)

• if γk < γ̂ then Θ(xk, λk) < Θ(xk+1, λk+1) < Θ(xk, 2λk).

The complexity of this procedure is given by the number of CG iterations re-
quired in the solution of the system (H∗H + λkL∗L)xk = H∗yδ, k = 0, 1, . . ..
The number of CG iterations can become quite large as the value of λ decreases,
hence the idea of truncating the iterations of the Conjugate Gradient method
is quite common in the literature. As observed by some authors ([6], [3]), it is
not necessary to search for an accurate solution xk when λk is far from being
accurate.

3 Inexact Tikhonov Iterations

In this section we define an inexact version of the method presented in the
previous section, where the CG iterations are stopped as soon as a suitable
value for the update µ is computed.

5



We remind that the regularization parameter is computed by means of the
following update formula:

λk+1 = λk + sign(γ̂ − γk)µ, µ > 0 (13)

The first strategy to obtain the value of µ is derived by the variational form (5).
Let z(m) be the m-th iterate of the CG method applied to the normal equations
(4) started with z(0) = xk−1 and λ = λk, then:

(H∗H + λkL∗L)z(m) = H∗yδ − r(m) (14)

which is equivalent to the variational formulation:

(Hz(m),Hv) + λk(Lz(m), Lv) = (yδ,Hv)− (r(m), v) ∀v ∈ X . (15)

We define λk+1 such that:

(r(m), v) = 0 ∀v ∈ X
i.e.

(Hz(m),Hv) + λk+1(Lz(m), Lv) = (yδ, Hv) ∀v ∈ X . (16)

Subtracting (15) from (16)we have that:

(λk+1 − λk)(Lz(m), Lv) = (r(m), v) ∀v ∈ X .

We define a suitable value for the parameter µ by computing |λk+1 − λk| and
choosing v = z(m):

Rule 1. µ =

∣∣(r(m), z(m))
∣∣

‖Lz(m)‖2 . (17)

An alternative rule to compute µ is obtained by imposing that λk+1 and z(m)

satisfy the normal equations system:

(H∗H + λk+1L
∗L)z(m) = H∗yδ. (18)

Subtracting (14) from (18), we have:

(λk+1 − λk)L∗Lz(m) = r(m).

We solve the least squares problem

min
σ
‖σL∗Lz(m) − r(m)‖22

and set µ = |σ|:
Rule 2. µ =

|(Lz(m))∗Lr(m)|
‖L∗Lz(m)‖2 . (19)

In several applications, when the Rule 1 produces small values of µ, we propose
an alternative update formula:

Rule 3. µ = λk|(r(m), z(m))|/‖r(m)‖2. (20)
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The index m where the CG iterations are stopped is such that µ < λk in order
to satisfy the proposition 1.

In the case of Rule 1 and Rule 2 we observe that r(m) is the residual vector
of the normal equations system (18) where the matrix is symmetric positive
definite, then ‖r(m)‖ → 0 when m → ∞ and it is possible to find an index m
such that (r(m), z(m)) or (Lz(m), Lr(m)) is sufficiently small. In the case of Rule
3, the condition λk+1 > 0 is equivalent to the condition:

|(r(m), z(m))|/‖r(m)‖2 < 1.

This condition is likely to be satisfied only in the first few CG iterations, where
the residual norm is still large and the solution norm is small. Since it may not
be verified for large values of m, in the algorithm implementation, we stop the
CG iterations at the first index m that satisfies Rule 1 or Rule 3.

Definition 4. We define the steps of the inexact Tikhonov CG Algorithm
(TKTRCG) as follows:

Algorithm 2 (TKTRCG Algorithm).
Choose γ̂ > 0, z(0) = 0 and λ0 > 0.

for k = 0, 1, 2, . . .
1. Computation of the approximate solution xk

Perform CG iterations in (14) until:
µ < λk ( (17) or (19) or (20)).
Let m be number of performed iterations and
z(m) the computed solution;
Set xk = z(m);

2. Computation of the weight factor γk

γk = ‖Lxk‖2/Θ(xk, λk);
3. Update the regularization parameter by (13)
4. Set k = k + 1;

end

The starting value of λ0 has usually been set equal to 1. In the case the
algorithm requires too many external iterations, the value λ0 may be changed
to a more suitable value. Good heuristic initial estimates have been computed
by performing one CG iteration and computing λ0 = |(r(1), z(1))| where r(1) =
H∗yδ −H∗Hz(1).

The TKTRCG algorithm relies on matrix vector products only and has fixed
storage requirements features that make it suitable for large scale computations.
All the values required by the update formulas of the regularization parameter
are computed in the inner CG iterations. The outer iterations can be terminated
using criteria based on the value of µ as well as Θ(xk, λk) as presented in [9]:

7



1. |λk+1 − λk| < τλ with τλ ' 10−6;

2. |Θ(xk, λk)−Θ(xk+1, λk+1)| < τΘΘ(xk, λk) with τΘ ' 10−3.

4 Numerical results

In this section we report some numerical results showing the behavior of the
algorithms 1 and 2 presented in the previous sections.

The first test problem is the blur test problem from the Regularization
Tool [4]. It arises from the discretization of a first kind Fredholm integral
equation on 100 points. White noise of levels 10−4 and 10−3 have been added
in order to simulate noisy data. It has been solved both with the TKCG and
the TKTRCG methods, by using the proposed criteria 17 (TKTRCG(1)) and
19(TKTRCG(2)). The algorithms has been stopped after a fixed number of
external iterations and the best results in terms of relative error Erel:

Erel =
‖x− x̃‖2
‖x‖2

between the exact and the computed solutions (x and x̃, respectively) has been
considered. The value of the parameter γ̃ used in this test problem is γ̂ =
10−6. Figure 1 shows the exact (continuous line) and reconstructed signal with
TKTRCG (dotted line) in the case of L = I and noise of level 1.e − 3. Table
1 reports all the results obtained on this test problem. The second column
indicates the order d of the differential operator used as regularization matrix:
d = 0 is used to indicate the identity operator L = I, d = 1 is a first order
differential operator L = ∇ and d = 2 indicates the second order Laplace
operator L = ∇2. The third column is the level of white noise introduced, the
fourth column reports the number of performed iterations (external between
parentheses), and λ is the value of the regularization parameter obtained by
the method and used in the computation of the solution. When d = 0 (L =
I) the two criteria are the same and only one of the two results is reported.
From the table, we can conclude that the TKCG method converge towards a
good regularized solution. Moreover, when the TKTRCG algorithm is used
the number of iterations (and the computational time) dramatically decreases
without affecting the accuracy of the solution, for at least one of the two stopping
criteria. Usually the rule 1 (17) works better.

In table 2 we report the results obtained on the same test problem by com-
puting the regularization parameter with the Lcurve [5] and the Generalized
Cross Validation (GCV) [2] methods. We used the functions implemented in
the Regularization Toolbox. The ErelLc and ErelGCV values are the relative
errors between the exact solution and the solutions obtained with the regular-
ization parameter computed by the Lcurve (λLc) and GCV (λGCV ) methods,
respectively. From the table it is evident that the GCV method gives better
results than L-curve in this test problem and the L-curve fails in some cases
(see, for example, the case d = 2 with noise 10−3). The GCV results are similar
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to those of the TKTRCG method, but the computational time required by the
GCV method is extremely high, especially when the problem size increases.

The last test problem is an image restoration problem. The discrete model,
deriving from the discretization of a Fredholm integral equation of the first kind,
is given by:

Hf = g

where H represents the Point Spread Function (PSF), f is the object, i.e. the
exact image, and g is the blurred and noisy image. We considered two different
objects f : a 256 × 256 pixels photographic image (the peppers image, figure
2) and a 128 × 128 pixels Magnetic Resonance image (the mri image, figure
3). The blurred image g was obtained by convolving f with a gaussian PSF
implemented in the blur function of the Regularization Tool [4] and by adding
gaussian white noise.

In this case we used only the identity operator (L = I) and the rule (20)
for the regularization parameter update. The images have been restored by
using both the TKCG and the TKTRCG methods. In these test problems we
used the value: γ̂ = 10−5. The Tikhonov method has also been applied with
a suitable heuristic choice of the regularization parameter, in order to compare
the results obtained (the L-curve and GCV method have prohibitive costs in
the case of images). The errors have been measured through the relative error
Erel between the exact and reconstructed images. The results are presented in
table 3. The table shows that the errors obtained with the TKTRCG method
are lower than the best result with the Tikhonov method. The computed values
of the regularization parameter are very similar to the best heuristic value for
the peppers image, while they differ in the case of the mri image.

We can finally observe that in the numerical experiments considered the TK-
TRCG method usually gives better results with a lower computational cost. The
value of the regularization parameter λ obtained with the two proposed method,
TKCG and TKTRCG, is different. The value of λ obtained with the TKTRCG
method is smaller, because the truncated algorithm acts itself as regulariza-
tion. In order to recover a more accurate approximation of the regularization
parameter some heuristic a posteriori techniques need to be applied.

5 Conclusions

In this paper we presented a new method for the solution of an ill condi-
tioned problem with the Tikhonov regularization method. The proposed TKCG
method is an iterative method that estimates a suitable value for the regular-
ization parameter in the absence of information on the noise and computes the
solution of the Tikhonov functional. An inexact version, the TKTRCG method,
has also been proposed. The method is efficient especially for large size prob-
lems, because of its low computational cost when compared with some methods
known in literature, such as the L-curve or the GCV methods.

The methods have been tested on simulated problems represented by signal
and image reconstructions. The numerical experiments showed the efficiency of
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the methods in terms of both precision and computational time required.
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Figure 1: Shaw test problem.

(a) Exact image. (b) Blurred and noisy image.

(c) Reconstructed image with TKTRCG.

Figure 2: peppers test problem.
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(a) Exact image. (b) Blurred and noisy image.

(c) Reconstructed image with TK-
TRCG.

Figure 3: mri test problem.

method d noiselev it (it.est) erel λ
TKCG 0 10.e-4 486(25) 2.92e-2 4.57e-8
TKCG 0 1.0e-3 211(15) 5.53e-2 4.66e-5
TKCG 1 1.0e-4 3186(21) 2.66e-2 7.31e-7
TKCG 1 1.0e-3 1328(11) 4.32e-2 7.46e-4
TKCG 2 1.0e-4 4672(17) 1.92e-2 1.17e-5
TKCG 2 1.0e-3 1449(7) 9.06e-2 1.19e-2

TKTRCG(1) 1 1.0e-4 115(40) 3.69e-2 5.16e-6
TKTRCG(2) 1 1.0e-4 81(35) 3.69e-2 2.73e-7
TKTRCG(1) 1 1.0e-3 38(10) 4.22e-2 4.0e-5
TKTRCG(2) 1 1.0e-3 7(3) 1.6e-1 4.0e-5
TKTRCG(1) 2 1.0e-4 33(8) 3.31e-2 1.54e-9
TKTRCG(2) 2 1.0e-4 6(3) 1.67e-1 4.05e-3
TKTRCG(1) 2 1.0e-3 17(3) 4.85e-2 2.44e-6
TKTRCG(2) 2 1.0e-3 6(3) 1.67e-1 4.05e-3

Table 1: Numerical results for the Shaw test problem with the proposed TKCG
and TKTRCG methods.
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d noiselev ErelLc λLc ErelGCV λGCV

0 1.0e-4 8.378e-2 2.17e-3 5.993e-2 4.65e-3
0 1.0e03 1.338e-1 1.90e-2 1.282e-1 3.07e-2
1 1.0e-4 4.299e-2 2.93e-2 5.119e-2 1.66e-2
1 1.0e-3 5.439e-1 1.66 1.739e-1 9.91e-2
2 1.0e-4 1.167e-1 3.46e-1 9.683e-2 6.17e-2
2 1.0e-3 6.548e-1 5.06e+1 1.688e1 9.18e-1

Table 2: Numerical results for the Shaw test problem when the regularization
parameter is chosen by the Lcurve and GCV methods.

test problem method noiselev it (it.est) erel λ
peppers TKCG 3.e-2 197 (10) 7.6e-2 3.43e-2
peppers TKTRCG 3.e-2 78(11) 6.28e-2 2.61e-2
peppers Tikh 3.e-2 89 7.64e-2 3.2e-2

mri TKCG 5.e-2 230 (6) 1.33 e-1 2.05e-2
mri TKTRCG 5.e-2 13 (6) 1.29 e-1 4.44e-3
mri Tikh 5.e-2 137 1.47e-2 2.e-2

Table 3: Numerical results for the image restoration problems.
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