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Abstract. The image denoising and segmentation is a fundamen-
tal task in many medical applications based on magnetic resonance
image processing. This problem can be solved by means of non-
linear diffusive filters requiring the solution of evolutive partial
differential equations. In this work a coupled system of linear and
nonlinear diffusion-reaction equations is proposed and tested for
denoising and segmentation of magnetic resonance images. The
discretization of the coupled system by means of the Finite Ele-
ment method is reported. The effectiveness of the model has been
tested on MR images affected by gaussian, impulsive noise and also
in the case of dynamic magnetic resonance images where the data
are affected by noise in the frequency domain.

Magnetic Resonance Imaging, Nonlinear Diffusive Filtering, Segmen-
tation, Total Variation, Coupled Pde

1. Introduction

Segmentation of brain tissues in Magnetic Resonance (MR) images
plays an indispensable role in medical research and clinical applications
such as pathology, radiotherapy treatment and planning, simulations
and diagnosis. It is the prerequisite for three dimensional volume visu-
alization, quantitative morphometric analysis and partial volume cor-
rection. In dynamic functional brain studies a temporal series of MR
images of the same slice of the imaged structure is acquired. Unfor-
tunately the technology and physiological limits on the MR technique
make difficult to have simultaneously high temporal and spatial reso-
lution. The reduced-encoding method speeds-up the acquisition time
by acquiring a time series of reduced dynamic data sets and one high
resolution reference data, collected before the dynamic process. The
dynamic data set consists of a small and central part (k-hole) of the
k-space (a frequency 2D domain) constituted by the low frequencies
along the phase encoded direction. The reference data set provides
the a-priori information concerning the high frequencies uncollected
during the dynamic process. The k-hole method [2] consist in recon-
structing the dynamic images by a 2D inverse Fourier Transform of
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the low resolution dynamic data completed with the high frequencies
obtained by the reference image. This method is extremely fast but
suffers from ringing and Gibbs artifacts that can be compensated by
more sophisticated reconstruction methods, such as generalized-series
reconstruction methods (RIGR) [2] or by using a posteriori enhance-
ment methods such as the Total Variation (TV) regularization method
[4, 3, 18]. TV regularization is a popular approach used in image pro-
cessing for reducing noise while preserving the edges [1, 5]. In the
present work the TV functional is used to define an anisotropic filter
to perform image denoising and segmentation at the same time.

Image denoising and segmentation can be formulated using varia-
tional principles which in turn require the solution of partial differential
equations. In [6] Perona and Malik proposed an anisotropic diffusion
scheme for image smoothing. The basic idea of this scheme was to
smooth the image while preserving the edges. This was done by using
the diffusion equation ut = ∇ · (g(∇u)∇u) where u is the image to be
smoothed and ut represents the evolution over time. The function g(·)
represents a decreasing diffusivity function. Segmentation is obtained
by finding the edges in the smoothed image. The ill-posedness of the
Perona Malik scheme has been overcome by several modifications pro-
posed in [7], [9], [8]. Since then numerous models of linear and nonlinear
diffusion schemes have been proposed in the literature, a survey of non-
linear methods can be found in [12]. The linear models, involving the
standard heat equation, blur image features such as edges displacing
them when moving from fine to coarser scales. Nonlinear anisotropic
diffusion has been proposed by many researchers, [7], [9], [10]. All
these models differ in the diffusivity function. Some of them are also
supplemented by a reactive term. Following [13] we present system
of two PDEs where a nonlinear diffusion-reaction equation is coupled
with a linear diffusion-reaction equation used for enhancing the edge
detection process. The solution is computed by means of the Finite
Element method (FEM) using the Comsol Multiphysics (CM) prim-
itives integrated with the Matlab functions of the Image Processing
Toolbox (IPT) for image image acquisition and display. The numerical
implementation of the FEM solution of the proposed coupled is a great
programming task. By using the CM primitives it is possible to imple-
ment quite easily a matlab based application that allows us to evaluate
the results obtained with different parameter values and noise models
given by the IPT imnoise function. The effectiveness of the model has
been tested on MR images affected by gaussian, impulsive noise and
also in the case of functional magnetic resonance images affected by
noise in the frequency domain.



DENOISING AND SEGMENTATION OF MR IMAGES BY COUPLED DIFFUSIVE FILTERS.3

In section 2 the diffusion reaction model is introduced. The FEM
discretization is reported in section 3. Finally in section 4 the results
obtained with test problems and different noise models are reported.
The conclusions are reported in section 5.

2. The Nonlinear Diffusion Model

The denoising and segmentation filter used in this work is originated
by the following nonlinear diffusion reaction equation [13]:

∂u

∂t
= |∇u|∇ ·

(
g

(|∇uσ|2
) ∇u

|∇u|
)

+ β|∇u| (u− u0) ,(1)

with boundary conditions:

n ·
(

g
(|∇uσ|2

) ∇u

|∇u|
)

= 0

where n is the outward unit vector on the domain boundary and ∇u
denotes the gradient of u. The initial condition are:

u(x, y, 0) = u0(x, y)

where u0 is the noisy image to be enhanced. The diffusivity function
g has the purpose of selecting locations in the image for smoothing.
Using the TV diffusivity function we have:

g(s) =
1

1 + s2/K

with K > 0. Here K plays the role of threshold for distinguishing
different regions of the image: points with s2 > K are regarded as
edges, where the diffusivity is small, whereas points with s2 < K are
considered to belong to the interior of a region where the diffusivity is
close to 1. The parameter σ is introduced as a smoothing parameter
with the purpose of better definition of the edges in the gradient image.
Usually uσ is computed by means of a convolution with a gaussian low
pass filter of prescribed standard deviation σ. As observed in [11,
14] uσ can be computed by means of one diffusion step with constant
diffusivity (g = 1), i.e. solving the diffusion equation:

∂uσ

∂t
= ∇ · (∇u)

at time step t =
√

2σ. This shows that σ is actually proportional to the
time (scale parameter) of the diffusion process. Using this consideration
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we derive the following coupled model:

∂w

∂t
= ∇ · (k∇w) + γ(u− w),

∂u

∂t
= |∇u|∇ ·

(
g

(|∇w|2) ∇u

|∇u|
)

+ β|∇u| (u0 − u)(2)

and the following boundary and initial conditions:

n ·
(

g
(|∇w|2) ∇u

|∇u|
)

= 0,

n · (k∇w) = 0,

u(x, y, 0) = u0(x, y)

w(x, y, 0) = u(x, y, 0)

where k is the diffusivity coefficient used to control the gaussian smooth-
ing over integration time and a reaction coefficient γ is introduced in
the diffusion model to control distance of the solution w with respect
to u.

3. Finite element discretization

Finite Element Methods (FEM) are widely used to discretize and
implement the diffusion based models. In this section we describe FEM
to solve our coupled model (2).

Let u(t, x, y) be the intensity value of the 2D image defined on the do-
main Ω ≡ [0, nx]× [0, ny], (nx, ny ∈ N), and the time domain J = [0, T ]
such that (t ∈ J). Let Th be a member of quasi uniform triangulations
of Ω with

max
τ∈Th

diam(τ) ≤ h

where diam(τ) is the maximum distance among the vertices of the
triangle τ . Let us define Sh as the finite dimensional space of continuous
function on Ω that reduce to linear functions in each of the triangles
of Th, we pose the semi discrete problem to find u,w : J −→ Sh such
that:

(wt, ν) + (k∇w,∇ν) = γ(u− w, ν),(
ut

|∇u|ε , ν
)

+

(
g(|∇w|2)
|∇u|ε ∇u,∇ν

)
= β (u0 − u, ν) ,

∀ν ∈ Sh t ∈ J,(3)

where (·, ·) denotes the inner product in L2(Ω) and |∇u|ε =
√
|∇u|+ ε

is used to avoid the problem of possible zero gradients. Representing
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the solution as

u(t, x, y) =

Nh∑
j=1

uj(t)Φj(x, y), w(t, x, y) =

Nh∑
j=1

wj(t)Φj(x, y)

where {Φj(x, y)}Nh

j=1 are the standard basis pyramidal functions, prob-

lem (3) can be written as a system of nonlinear ordinary differential
equations [17]:

Nh∑
j=1

w′
j(t) (Φj, Φk) +

Nh∑
j=1

wj(t) (k∇Φj,∇Φk) =

= γ

Nh∑
j=1

(uj(t)− wj(t)) (Φj, Φk)

Nh∑
j=1

u′j(t)
(

Φj

|∇u|ε , Φk

)
+

Nh∑
j=1

uj(t)

(
g(|∇w|2)
|∇u|ε ∇Φj,∇Φk

)
=

= β

Nh∑
j=1

(αj − uj(t)) (Φj, Φk) , k = 1, 2, . . . , Nh(4)

Setting u = (u1(t), u2(t), . . . , uNh
(t)) and w = (w1(t), w2(t), . . . , wNh

(t))
and introducing the mass matrices M and M ε, the stiffness matrices
K and B such that:

Mk,j = (Φj, Φk) , M ε
k,j =

(
Φj

|∇u|ε , Φk

)
, k, j = 1, . . . , Nh

Kk,j = (∇Φj,∇Φk) , Bk,j(w) =

(
g(|∇w|2) ∇Φj

|∇u|ε ,∇Φk

)

the system on (4) can be written in matrix form as:

Mw′ + Kw = γM(u− w), with w0 = u0(5)

Mεu
′ + B(w)u = K(u0 − u), with u0 = fh

where fh =
∑Nh

`=1 α`Φ` is the projection of the initial data on the space
generated by the basis functions Φ`, ` = 1, . . . , Nh. The domain is
discretized by a structure mesh whose vertices coincide with the image
pixels. Both rectangular and triangular mesh elements can be used.
The implementation of numerical methods for the solution of this cou-
pled model is a difficult programming task. The problem stated in (5) is
a system of nonlinear Ordinary Differential Equations which, depend-
ing on the parameter values, has a stiff behavior in the transient part of
the solution (small time values) and the tends to converge to a smooth
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equilibrium solution for large values of the time t. Therefore variable
times steps and implicit or Backward Difference Methods are required.
In order to evaluate the quality of the results on test images with differ-
ent model parameters, we implemented the model equations using the
Comsol Multiphysics environment (CM). The FEM solution is com-
puted by means of the CM femtime function using linear lagrangian
basis functions. CM provides an efficient ODE solver, the DASPK rou-
tine [15], which implements variable-order variable-stepsize backward
differentiation formulas (BDF). Integrating the CM primitives with the
Image Processing Toolbox of Matlab it is possible to build an appli-
cation for testing the model (2) with different parameters and image
noise types. A matlab script calling IPT and CM functions can be
implemented with the following scheme:

• Image acquisition and noise perturbation (IPT);
• FEM solution (CM):

– Mesh definition;
– Model parameter setting;
– Initial and boundary conditions setting;
– Solution of the evolution problem (femtime);

• Results visualization and postprocessing (IPT).

CM provides a user friendly interactive interface for the setup of the
FEM problem in the form given by (2). Once the solution is correctly
defined it is possible to save it as an .m file that can be used as a matlab
script changing the model parameter values for testing purpose.

4. Numerical Experiments

In this section we report the results obtained by smoothing and seg-
mentation of some images using equations (2) applied to simulated and
real dynamic MR data. The Gaussian and impulsive noise models are
tested on different MR images obtaining good results in terms of noise
removal and edge detection (see paragraphs 4.1 and 4.2).
In order to fairly compare the performance of the two models, we adopt
the Improvement in Signal to Noise Ratio parameter (ISNR) [16]:

ISNR = 10log10

(∑
i,j |fi,j − gi,j|2∑
i,j |fi,j − f̂i,j|2

)

where fi,j, gi,j and f̂i,j denote the original, degraded and filtered im-
ages, respectively. In general, the larger the ISNR value, the better
the performance.
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The good performance of this model is also obtained in case of re-
duced encoding acquisition with noise in the Fourier data space (see
paragraph 4.3).

4.1. Gaussian Noise . In the first experiment Gaussian white noise is
added to the Brain image with SNR=10db. The original image is shown
in figure (1(a)) and figure (1(b)) shows the noisy version of (a) obtained
by adding gaussian white noise. Figures (2(a)) and (2(b)) respectively
show the smoothed image u and the magnitude of g(∇(w)) obtained
with model (2) at the higher ISNR value (ISNR = 5.5 at time t = 22).
The parameter settings used to obtain these results where: β = 0.01,
K = 200 and k = γ = 0.1.

(a) (b)

Figure 1. MR image (128 × 128): (a) original image;
(b) Noisy Image: Gaussian additive white noise
(SNR=10)

4.2. Impulsive Noise. In the second experiment we report the results
obtained by the filter (2) in case of impulsive noise salt and pepper. The
impulsive noise is added to the same image with SNR = 10 (see figure
3(a)). The edges of the noisy images are reported in figure 3(b) in
terms of the magnitude of g(∇(w)). Figure (4) show the smoothed
image u (figure 4(a)) and the magnitude of g(∇(w)) obtained at time
t = 3 (figure 4(b)). The number of steps performed are 36 and the
smallest integration step time used is 0.045.

The global behavior of the improvement parameter ISNR over the
entire integration interval shows the filtering performance of the model
(2) with respect to the different noise models (figures 5(a) and 5(b)).
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(a) (b)

Figure 2. Smoothing and segmentation results of the
noisy Mri image (128 × 128) using model (2); (a)
Smoothed Image (t=22); (b) magnitude of g(|∇(w)|)

(a) (b)

Figure 3. MR image (128×128): (a) Noisy Image: Salt
and Pepper Noise (SNR=10); (b) magnitude of g(|∇(w)|)

4.3. Dynamic MR experiment. The dynamic MR test problem is
constituted of a reference image (figure (6(a))) and a dynamic image
(figure (6(b))) of 128 × 128 pixels. A set of 128 × NL (NL = 64)
data encodings are extracted from the dynamic image in the k-space
and perturbed with additive gaussian white noise. Then the keyhole
method is used to recover an approximation of the true dynamic image
(figure (7(a))). In our test problem only the dynamic data are supposed
to be affected by noise while the reference data are noiseless. In order to
suppress the noisy artifacts of the Keyhole image the coupled diffusion
filter is applied with t ∈ [0, 3], using parameters values k = 10 and
γ = 10; the smoothed image is shown in figure (7(b)). The noise
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(a) (b)

Figure 4. Smoothing and segmentation results of the
noisy Mri image (128 × 128) using model (2); (a)
Smoothed Image (t=3); (b) magnitude of g(|∇(w)|)
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Figure 5. Parameter ISNR over the entire integration
interval: (a) [0, 32] gaussian noise. (b) [0, 10] Salt and
Pepper noise.

reduction is particularly evident in terms of better edge detection as
shown in figures(8(a)) and (8(b)).

The number of times steps required by the integration process is 25
and the smaller value of time interval is 0.0005. The size of the problem
is 32768 degrees of freedom (DOF) the total computation time is 160
sec. on a 1.8Ghz Intel processor.

5. Conclusions

A matlab based application has been implemented to solve the de-
noising segmentation problem by means of a diffusion reaction coupled
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(a) (b)

Figure 6. Functional Mri image (128 × 128): (a) Ref-
erence image; (b) Dynamic Image;

(a) (b)

Figure 7. (a) Keyhole reconstruction from 128 × 64
k-space samples with gaussian noise of variance 6. (b)
Smoothed image at t = 3

PDE filter. The system is tested using Magnetic Resonance images
affected by gaussian and impulsive noise obtaining an improvement of
about 6db. Furthermore functional magnetic resonance images are re-
constructed from undersampled noisy data in the k-space, reporting
good results in terms of artifacts removing and edges localization. A
future development is the extension of this application to other more
sophisticated coupled PDE filters.
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