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1. Introduction and Summary

Hankel operators on the Hardy space of the disk, H2 (D) , can be studied as
linear operators from H2 (D) to its dual space, as conjugate linear operators from
H2 (D) to itself, or, in the viewpoint we will take here, as bilinear functionals on
H2 (D) × H2 (D) . In that formulation, given a holomorphic symbol function b we
consider the bilinear Hankel form, defined initially for f, g in P (D) , the space of
polynomials, by

Sb (f, g) := 〈fg, b〉H2 .

The norm of Sb is

‖Sb‖H2×H2 = sup {|Sb (f, g)| : ‖f‖H2 = ‖g‖H2 = 1} .
Nehari’s classical criterion for the boundedness of Sb can be cast in modern language
using Fefferman’s duality theorem. We say a positive measure µ on the disk is a
Carleson measure for H2 if

‖µ‖CM(H2) := sup
{∫

D
|f |2 dµ : ‖f‖H2 = 1

}
<∞

and that b is in the space BMO if

‖b‖BMO := |b(0)|+
∥∥∥|b′(z)|2 (1− |z|2)dA

∥∥∥
CM(H2)

<∞.

Nehari’s theorem [15] is the equivalence ‖Sb‖H2×H2 ≈ ‖b‖BMO .
Our main result is an analogous statement for a similar class of bilinear forms

on the Dirichlet space D (D) = D. We will give the definitions and statement now
with further background discussion in the next section. Recall that D is the Hilbert
space of holomorphic functions on the disk with inner product

〈f, g〉D = f(0)g(0) +
∫

D
f ′(z)g′(z) dA,

and normed by ‖f‖2D = 〈f, f〉D . We consider a holomorphic symbol function b and
define the associated bilinear form, initially for f, g ∈ P (D) , by

Tb (f, g) := 〈fg, b〉D .
The norm of Tb is

‖Tb‖D×D = sup {|Tb (f, g)| : ‖f‖D = ‖g‖D = 1} .
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We say a positive measure µ on the disk is a Carleson measure for D if

‖µ‖CM(D) := sup
{∫

D
|f |2 dµ : ‖f‖D = 1

}
<∞,

and that the function b is in the space X if

‖b‖X := |b(0)|+
∥∥∥|b′(z)|2 dA∥∥∥

CM(D)
<∞.

Our main result is

Theorem 1.
‖Tb‖D×D ≈ ‖b‖X

In the next section we give some background and show how Theorem 1 can
be reformulated as a duality result for a space which is presented by its weak
factorization. In notation introduced there we show that (D �D)∗ = X . We also
combine our result with earlier work to conclude that I (DD �D) = D �D.

The third section contains the proof of the main theorem. It is easy to see that
‖Tb‖D×D ≤ C ‖b‖X . To obtain the other inequality we must use the boundedness
of Tb to show |b′|2 dA is a Carleson measure. Analysis of the capacity theoretic
characterization of Carleson measures due to Stegenga allows us to focus attention
on a certain set V in D and the relative sizes of

∫
V
|b′|2 and the capacity of the

set V̄ ∩ ∂D̄. To compare these quantities we construct Vexp, an expanded version of
the set V which satisfies two conflicting conditions. First, Vexp is not much larger
than V , either when measured by

∫
Vexp

|b′|2 or by the capacity of the Vexp ∩ ∂D̄.
Second, D\Vexp is well separated from V in a way that allows the interaction of
quantities supported on the two sets to be controlled. Once this is done we can
construct a function ΦV ∈ D which is approximately one on V and which has Φ′V
approximately supported on D\Vexp. Using ΦV we build functions f and g with the
property that

|Tb(f, g)| =
∫

V

|b′|2 + error.

The technical estimates on ΦV allow us to show that the error term is small and
the boundedness of Tb then gives the required control of

∫
V
|b′|2.

2. Background on Hankel Forms

2.1. Bilinear Hankel Forms. Similar bilinear forms can be defined for many
spaces of holomorphic functions. Suppose H is a Hilbert space of holomorphic
functions on a domain Ω and suppose for convenience that P (Ω) ⊂ H. Given a
function b holomorphic in Ω and f, g ∈ P (Ω) we can define a Hankel form, Kb, by

Kb(f, g) = 〈fg, b〉H .
One can then ask what conditions on b are necessary and sufficient for Kb to be
bounded. These questions have been studied in very many contexts; examples
include [15], [9], [12], [6] [11], [13], [20]. Also, in a context not involving function
theory, the boundedness result of Maz’ya and Verbitsky, [14], also appears to be
part of this pattern. It is fascinating that although there is a great deal of variety
in the techniques used in the proofs, there is a surprising similarity in the answers
obtained. The answer, quite generally, is that for some differential operator D,
|Db|2 can be used to define a Carleson measure for H. And, although this paper
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provides another instance of this, the authors do not have a heuristic explanation
for the pattern.

There is a close connection between boundedness results for this type of bilin-
ear form, duality theorems for function spaces, and weak factorization results for
function spaces; see for instance [1] and [8]. Here is how those ideas play out in
this context. Define the weakly factored space D�D to be the completion of finite
sums h =

∑
fjgj under the norm

‖h‖D�D = inf
{∑

‖fj‖D ‖gj‖D : h =
∑

fjgj

}
.

A corollary of Theorem 1 is

Corollary 1. With the pairing (h, b) = 〈h, b〉D = Tb(h, 1) we have that (D�D)∗ =
X . That is, if Λ ∈ (D �D)∗, there is a unique b ∈ X with Λh = Tb (h, 1) for
h ∈ P (D), and ‖Λ‖ = ‖Tb‖ ≈ ‖b‖X .

Proof. If b ∈ X and h ∈ D�D, say h =
∑
figi with

∑
‖fi‖D ‖gi‖D ≤ ‖h‖D�D + ε,

then

|〈h, b〉D| =

∣∣∣∣∣
∞∑

i=1

〈figi, b〉D

∣∣∣∣∣ =
∣∣∣∣∣
∞∑

i=1

Tb 〈fi, gi〉

∣∣∣∣∣
≤ ‖Tb‖

∣∣∣∣∣
∞∑

i=1

‖fi‖D ‖gi‖D

∣∣∣∣∣ ≤ ‖Tb‖
(
‖h‖D�D + ε

)
.

It follows that Λbh = 〈h, b〉D defines a continuous linear functional on D �D with
‖Λb‖ ≤ ‖Tb‖.

Conversely, if Λ is a continuous linear functional on D�D with norm ‖Λ‖, then

|Λh| = |Λ (h · 1)| ≤ ‖Λ‖ ‖h‖D ‖1‖D = ‖Λ‖ ‖h‖D ,
for h ∈ D, and so there is a unique b ∈ D such that Λh = Λbh for h ∈ D. Finally,
if h = fg with f, g ∈ D we have

|Tb (f, g)| = |〈fg, b〉D| = |Λbh| = |Λh|
≤ ‖Λ‖ ‖h‖D�D ≤ ‖Λ‖ ‖f‖D ‖g‖D ,

which shows that Tb extends to a continuous bilinear form on D � D with ‖Tb‖ ≤
‖Λ‖. By the theorem we conclude b ∈ X and also, with the other estimates, that
‖Λ‖ = ‖Tb‖ ≈ ‖b‖X .

The corresponding statement in the Hardy space is Fefferman’s duality theorem,(
H2 �H2

)∗ = BMO. However our result is only a partial analog. In the Hardy
space context one also has internal characterizations of the spaces involved. That is,
not only is H2�H2 = H1 but H1 can be defined intrinsically using integral means;
similarly BMO can be defined using oscillation and without reference to Carleson
measures..In contrast we do not have a satisfactory intrinsic characterization of
either the functions in D �D of those in X .

2.2. Other Hankel Forms. On the Hardy space, letting P denote the projection
from L2(T) to H2, we have, for any f, g ∈ H2,

Sb (f, g) = 〈fg, b〉H2 = 〈f, ḡb〉H2 = 〈f, P (ḡb)〉H2

Hence the study of Sb is roughly equivalent to the study of the conjugate linear map
S̃b : g → P (ḡb). (The use of conjugate linear operators is an inessential convenience.)
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Similar comments apply for Hankel forms on, for example, the Bergman space.
However this type of rewriting does not work in D because it is not true that for
three holomorphic functions f, g, and b we have 〈fg, b〉D = 〈f, ḡb〉D .

Focusing for the moment on functions which vanish at the origin, we have

Tb (f, g) =
∫

(fg)′ b′ dA

=
∫

(f ′g + fg′)b′ dA.

=
∫
f ′gb′dA+

∫
fg′b′ dA.

Let PB be the orthogonal projection of L2(D, dA) onto the Bergman space. We can
analyze the first summand as

∫
f ′gb′dA =

∫
gf ′b′dA

=
∫
gPB(f ′b′)dA

=
〈
g, I2PB(f ′b′)

〉
D .

Here I is the operator of indefinite integration. This operator is similar in spirt to
S̃b but some symmetry has been lost; it is not true that

〈
f, T̃bg

〉
equals

〈
g, T̃bf

〉
and in fact both terms are needed to reconstruct Tb (f, g) . Operators such as S̃b.
and T̃b are also sometimes called Hankel operators. It is shown in [17] that T̃b is
bounded exactly if ‖b‖X <∞. An analogous result for real variable operators is in
[10].

Define the space I (DD �D) to be the completion of the space of functions h
such that h′ can be written as a finite sum, h′ =

∑
f ′jgj ,with the norm

‖h‖I(DD�D) = inf
{∑

‖fj‖D ‖gj‖D : h′ =
∑

f ′jgj

}
.

Define X0 to be the norm closure in X of the polynomials.

Corollary 2. X ∗
0 = I (DD �D) = D �D.

Proof. It is shown by Wu in [18] that the first two spaces are the same. It is
immediate that D � D ⊂ I (DD �D) . It is shown in [17] that I (DD �D)∗ = X .
Combining that with the previous corollary we see that the second and third spaces
have the same dual. Hence by the Hahn-Banach theorem the two spaces agree.

2.3. Preliminary Steps of the Proof.
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2.3.1. The Easy Direction. Suppose that µb is a D-Carleson measure. For f, g ∈
P (D) we have

|Tb (f, g)| =

∣∣∣∣∣∣f (0) g (0) b (0) +
∫
D

(f ′ (z) g (z) + f (z) g′ (z)) b′ (z)dA

∣∣∣∣∣∣
≤ |f (0) g (0) b (0)|+

∫
D

|f ′ (z) g (z) b′ (z)| dA+
∫
D

|f (z) g′ (z) b′ (z)| dA

≤ |(fgb)(0)|+ ‖f‖D

∫
D

|g|2 dµb

 1
2

+ ‖g‖D

∫
D

|f |2 dµb

 1
2

≤ C
(
|b (0)|+ ‖µb‖D−Carleson

)
‖f‖D ‖g‖D .

= C ‖b‖X ‖f‖D ‖g‖D .
Thus Tb has a bounded extension to D ×D with ‖Tb‖ ≤ C ‖b‖X

We also note for later use that if Tb extends to a bounded bilinear form on D
then b ∈ D. Setting g = 1 we obtain

|〈f, b〉D| = |Tb (f, 1)| ≤ ‖Tb‖ ‖f‖D ‖1‖D
for all polynomials f ∈ P (D), which shows that b ∈ D and

(2.1) ‖b‖D ≤ C ‖Tb‖ .

2.3.2. Capacity and Tree Extremal Functions. For an interval I in the circle we let
Im be its midpoint and z(I) =

(
1− |I|

2π

)
z be the associated index point in the disk.

In the other direction we set I(z) to be the interval such that z(I(z)) = z. We set
T (I), the tent over I to be the convex hull of I and z(I) and let T (z) = T (z (I)) :=
T (I). More generally, for any open subset H of the circle T, we set

T (H) = ∪I⊂HT (I)

To complete the proof we will show that µb given by

µb = |b′|2 dA
is a D-Carleson measure by verifying a condition due to Stegenga [19]. He works
with a capacity defined by, for G in the circle T,

(2.2) CapD G = inf
{
‖ψ‖2D : ψ (0) = 0,Reψ (z) ≥ 1 for z ∈ G

}
.

and shows that µ is a Carleson measure exactly if for any finite collection of disjoint
arcs {Ij}N

j=1 in the circle T we have

(2.3) µ

(
·
∪

N

j=1T (Ij)
)
≤ C CapD

(
·
∪

N

j=1Ij

)
.

In our proof we use functions which are approximate extremals for measuring ca-
pacity, that is functions for which the equality in (2.2) is approximately attained.

We will also need to understand how the capacity of a set changes if we expand
it in certain ways. More precisely for I an open arc and 0 < ρ ≤ 1, let Iρ be the
arc concentric with I having length |I|ρ. For G open in T let

Gρ = ∪I⊂GT (Iρ) .
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In both our study of approximate extremals and of capacity of expanded sets we
find it convenient to transfer our arguments to and from rotations of the Bergman
tree T1 associated with D and to work with tree capacities instead. A detailed
description and properties of these trees are presented in [4] and we follow that
treatment.

Consider a dyadic tree T together with the following notation. If x is an element
of the tree T , x−1 denotes its immediate predecessor in T . If z is an element of the
sequence Z ⊂ T , Pz denotes its predecessor in Z: Pz ∈ Z is the maximum element
of Z ∩ [o, z) (we assume o ∈ Z for convenience). Let T1 (θ) be the rotation of the
tree T1 by the angle θ, and let Capθ be the tree capacity associated with T1 (θ):

Capθ (G) = inf

 ∑
κ∈T1(θ)

f (κ)2 : f (o) = 0, f (β) ≥ 1 for β ∈ T1 (θ) , I (β) ⊂ G

 .

We say that S ⊂ T1 is a stopping region if every pair of distinct points in S are
incomparable in T1.

Let Ω ⊆ T . A point x ∈ T is in the interior of Ω if x, x−1, x+, x− ∈ Ω. A
function H is harmonic in Ω if

(2.4) H(x) =
1
3
[H(x−1) +H(x+) +H(x−)]

for every point x which is interior in Ω. Let Ih (x) =
∑

y∈[o,x] h (y). If H = Ih is
harmonic in Ω, then we have that

(2.5) h(x) = h(x+) + h(x−)

whenever x is in the interior of Ω.
The following proposition and remark are essentially proved in [4].

Proposition 1. Let T be a dyadic tree and suppose that E and F are subsets as
above.

(1) There is an extremal function H = Ih such that Cap(E,F ) = ‖h‖2`2 .
(2) The function H is harmonic on T \ (E ∪ F ).
(3) If S is a stopping region in T1, then

∑
κ∈S |h (κ)| ≤ 2Cap(E,F ).

(4) The function h is positive on geodesics joining a point of E to a point of
F , and zero everywhere else.

Remark 1. There is the following useful formula for computing capacities: given
z < ζ and U± ⊂ S (ζ±) ⊂ S (z+),

(2.6) Cap(z, U+ ∪ U−) =
Cap(ζ, U+) + Cap(ζ, U−)

1 + d(z, ζ)[Cap(ζ, U+) + Cap(ζ, U−)]
.

2.3.3. The Capacity of Tree Blowups. We also need the tree analogue Gρ (θ) of the
blowup Gρ of an open set G:

Gρ (θ) = ∪{T (Aρκ) : κ ∈ T1 (θ) with I (κ) ⊂ G} ,

where Aρκ denotes the unique element in the tree T1 (θ) satisfying

o ≤ Aρκ ≤ κ,

ρd (κ) < d (Aρκ) ≤ ρd (κ) + 1.
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Consider a subtree {o, κ, β, γ} of distinct elements in the dyadic tree T1 where
o < κ = β ∧ γ and β, γ are incomparable. Given ε > 0, suppose that β < β∗ and
γ < γ∗ where

d (β∗)
d (β)

≤ 1 + ε and
d (γ∗)
d (γ)

≤ 1 + ε.

We claim that

(2.7)
Capo {β, γ}
Capo {β∗, γ∗}

≤ 1 + ε.

Indeed, with a = d (κ), b = d (κ, β), c = d (κ, γ) and b∗, c∗ defined by

a+ b∗ = (1 + ε) (a+ b) and a+ c∗ = (1 + ε) (a+ c) ,

we have
1

Capo {β, γ}
= d (κ) +

1
1

d(κ,β) + 1
d(κ,γ)

= a+
1

1
b + 1

c

= a+
bc

b+ c
,

and
1

Capo {β∗, γ∗}
= d (κ) +

1
1

d(κ,β∗) + 1
d(κ,γ∗)

≤ a+
1

1
b∗ + 1

c∗

= a+
b∗c∗

b∗ + c∗

= a+
[b+ ε (a+ b)] [c+ ε (a+ c)]

[b+ ε (a+ b)] + [c+ ε (a+ c)]

=
1

Capo {β, γ}

+
[b+ ε (a+ b)] [c+ ε (a+ c)]

[b+ ε (a+ b)] + [c+ ε (a+ c)]
− bc

b+ c
.

Thus we need to prove that

[b+ ε (a+ b)] [c+ ε (a+ c)]
[b+ ε (a+ b)] + [c+ ε (a+ c)]

− bc

b+ c
≤ ε

Capo {β, γ}
= ε

(
a+

bc

b+ c

)
.

A calculation reveals that the left side is

(b+ c) [b+ ε (a+ b)] [c+ ε (a+ c)]− bc {b+ c+ ε (2a+ b+ c)}
{b+ c+ ε (2a+ b+ c)} (b+ c)

= ε
(b+ c) (ab+ ac+ 2bc)− bc (2a+ b+ c)

{b+ c+ ε (2a+ b+ c)} (b+ c)

+ε
ε (a+ b) (a+ c)

{b+ c+ ε (2a+ b+ c)}
,

so that after dividing by ε and multiplying by b+ c, we are left with showing that

(b+ c) (ab+ ac+ 2bc)− bc (2a+ b+ c) + ε (a+ b) (a+ c) (b+ c)
{b+ c+ ε (2a+ b+ c)}

≤ ab+ ac+ bc.
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The left hand side is of the form f(ε) = (α+ βε) / (γ + δε) with all the quantities
positive. Hence f ′ (ε) is continuous and of constant sign and it suffices to verify the
inequality at ε = 0 and in the limit as ε→∞. At ε = 0 we have

(b+ c) (ab+ ac+ 2bc)− bc (2A + b+ c)
(b+ c)

= ab+ ac+ bc− 2abc
b+ c

≤ ab+ ac+ bc.

For the limit as ε→∞ we need to check
(a+ b) (a+ c) (b+ c)

2a+ b+ c
≤ ab+ ac+ bc.

or
(a+ b) (a+ c) (b+ c) ≤ (2a+ b+ c) (ab+ ac+ bc) .

When we do the multiplication the same monomials appear on both sides and the
coefficients on the left are never larger.

The analogue of (2.7) holds by the same proof for the ”virtual edges” created
in the algorithm for computing capacities in [4]. Applying induction we obtain the
following result.

Proposition 2. Let Z = {zj}N
j=1 be a stopping time in T1. Choose elements

z∗j ≥ zj such that d
(
z∗j
)
≤ (1 + ε) d (zj) for 1 ≤ j ≤ N . Then with Z∗ =

{
z∗j
}N

j=1

we have
CapoZ

CapoZ∗
≤ 1 + ε.

We will use the following corollary. Given a point w ∈ T1 and 0 < ρ < 1, define
wρ to be the unique point in T1 satisfying o ≤ wρ ≤ w and

ρd (w) < d (wρ) ≤ ρd (w) + 1.

Corollary 3. Let W = {w`}M
`=1 be a stopping time in T1. Suppose 0 < ρ < 1 and

let Z = {zj}N
j=1 consist of the minimal tree elements in the set {wρ

` }
M

`=1
. Then

CapoZ <
1
ρ
CapoW.

Proof. For each j, there is w` such that zj = wρ
` . Fix such a choice and let z∗j = w`.

Then
d
(
z∗j
)

= d (w`) <
1
ρ
d (wρ

` ) =
1
ρ
d (zj)

for 1 ≤ j ≤ N . The corollary now follows from Proposition 2 with 1
ρ = 1 + ε.

The conclusion of the corollary can be stated

Cap ({o} , Z) <
1
ρ
Cap ({o} ,W ) .

Unfortunately we cannot extend these arguments in the opposite direction to obtain
a condenser estimate,

Cap (Z,W ) <
1

1− ρ
Cap ({o} ,W ) .

Indeed, the left side can even be finite while the right side is finite as shown by
an example below. Thus the geometric blowup construction does not lead to a
useful capacity estimate for the condenser Cap (W ρ,W ). On the other hand we do
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have a useful capacity estimate for W ρ in terms of CapW while achieving a good
geometric separation between W ρ and W , a fact that plays a crucial role in using
Schur’s test to estimate an integral below, as well as in estimating an error term
near the end of the paper.

To construct an appropriate condenser, we will instead use a method based on
a capacitary extemal and a comparison principle. Let W be a stopping time in T1.
By Proposition 1, there is a unique extremal function H = Ih such that

H (o) = 0,(2.8)
H (x) = 1 for x ∈W,
CapW = ‖h‖2`2 ,

where Cap denotes tree capacity in T1. Given stopping times E,F ⊂ T1 we say
that E � F if for every x ∈ E there is y ∈ F with y < x. For stopping times E � F
denote by G (E,F ) the union of all those geodesics connecting a point of x ∈ E to
the point y ∈ E lying above it, i.e. y < x.

Given a stopping time W , the corresponding extremal H satisfying (2.8), and
0 < ρ < 1, define the capacitary blowup W̃ ρ of W (as opposed to the geometric
blowup W ρ of W ) by

W̃ ρ = {t ∈ G ({o} ,W ) : H (t) ≥ ρ and H (x) ≤ ρ for x < t} .

Lemma 1. CapW̃ ρ ≤ 1
ρ2CapW.

Proof : Let Hρ = 1
ρH and hρ = 1

ρh where h = 4H and H is the extremal for
W in (2.8). Then Hρ is a candidate for the infimum in the definition of capacity
of W̃ ρ, and hence by the ”comparison principle”,

CapW̃ ρ ≤ ‖hρ‖2`2 =
(

1
ρ

)2

‖h‖2`2 =
1
ρ2
CapW.

This capacitary blowup W̃ ρ, unlike the geometric blowupW ρ, does indeed satisfy
a condenser inequality. Note that by (2.22) below, it suffices to obtain a condenser
inequality only for W with small capacity.

Lemma 2. Cap
(
W, W̃ ρ

)
≤ 4

(1−ρ)2
CapW provided CapW ≤ 1

4 (1− ρ)2 .

Proof : Let H be the extremal for W in (2.8). For t ∈ W̃ ρ we have by our
assumption,

h (t) ≤ ‖h‖`2 ≤
√
CapW ≤ 1

2
(1− ρ) ,

and so
H (t) = H (At) + h (t) ≤ ρ+

1
2

(1− ρ) =
1 + ρ

2
.

If we define H̃ (t) = 2
1−ρ

{
H (t)− 1+ρ

2

}
, then H̃ ≤ 0 on W̃ ρ and H̃ = 1 on W .

Thus H̃ is a candidate for the capacity of the condenser and so by the ”comparison
principle”,

Cap
(
W, W̃ ρ

)
≤

∥∥∥4H̃∥∥∥2

`2(G(gW ρ,W))
≤
∥∥∥4H̃∥∥∥2

`2(T1)

=
(

2
1− ρ

)2

‖h‖2`2(T1)
=

4
(1− ρ)2

CapW.
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Corollary 4. Let Z be a stopping time in T1 and suppose that 0 < γ < α < 1. Set
E = Zα and F = Ẽρ where ρ =

√
γ
α . Then

CapF ≤ 1
γ
CapZ,

Cap (E,F ) ≤ 4

α
(
1−

√
γ
α

)2CapZ.
Proof : We have from Lemma 1 and Corollary 3,

CapF = CapẼρ ≤ 1
ρ2
CapE =

α

γ
CapZα <

α

γ

1
α
CapZ =

1
γ
CapZ,

and then from Lemma 2 and Corollary 3,

Cap (E,F ) = Cap
(
E, Ẽρ

)
≤ 4

(1− ρ)2
CapE <

4
α (1− ρ)2

CapZ.

Recall that T (G) is the tent above G as defined in the tree T1, and similarly
for T (Gt), 0 < t < 1. Given a stopping time Z we let SZ be the shadow of
Z on the circle T, so that T0 (SZ) = Z. Consider the condenser (E,F ) where
E = T0 (Gα) = {wα

k }k and F = Ẽ
√

γ
α = {wγ

k}k
. Note that each point wα

k in E is
a descendent of a unique wγ

` in F . By Proposition 1, there is a unique extremal
function H = Ih such that

H = 0 on F,
H = 1 on E,

Cap (E,F ) = ‖h‖2`2 ,

where Cap denotes tree capacity in T1. It follows from Corollary 4 that

(2.9) Cap G ≤ Cap (E,F ) ≤ 4

α
(
1−

√
γ
α

)2Cap G.
Notation 1. Let 0 < β < γ < α < 1. We will use the shorthand notations

V α
G = T (Gα) ,

V γ
G = Ṽ α

G

√
γ
α
,

V β
G = T

(
S

β
γ

V γ
G

)
.

We also define maximal intervals {Jα
k }k , {J

γ
k }k

,
{
Jβ

k

}
k

such that

V α
G = ∪T (Jα

k ) and V γ
G = ∪T (Jγ

k ) and V β
G = ∪T

(
Jβ

k

)
.
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Thus V α
G is a geometric blowup of T (G), V γ

G is a capacitary blowup of V α
G , and V β

G

is again a geometric blowup of V γ
G . We have from above the estimates

Cap (V α
G ) <

1
α
CapG,

Cap (V γ
G) <

1
γ
CapG,

Cap
(
V β

G

)
<

1
β
CapG,

Cap (V α
G , V

γ
G) < Cα,γCapG.

Remark 2. The geometric blowups have good geometric separation properties (use-
ful when estimating Bergman type kernels) while the capacitary blowup has a good
condenser estimate (useful in constructing holomorphic extremals). The geometric
separation between V α

G and T (G) is used in (2.25) below in conjunction with the
Schur test, the good condenser estimate of (V α

G , V
γ
G) is used in the construction

of a holomorhic extermal in Lemma 3 below, and finally the geometric separation
between V β

G and V γ
G is used in estimating term (4ABA) near the end of the paper.

2.3.4. Holomorphic Approximate Extremals and Capacity Estimates. Now we de-
fine a holomorphic approximation Φ to the function H = Ih on T1 constructed in
Proposition 1. We will use a parameter s. In addition to specific assumptions made
at various places we will always assume

s > −1.

Define ϕκ (z) =
(

1−|κ|2
1−κz

)1+s

and

(2.10) Φ (z) =
∑
κ∈T1

h (κ)ϕκ (z) =
∑
κ∈T1

h (κ)

(
1− |κ|2

1− κz

)1+s

.

Note that ∑
κ∈T1

h (κ) Iδκ (z) = I

(∑
κ∈T1

h (κ) δκ

)
(z) = Ih (z) = H (z) ,

and so

(2.11) Φ (z)−H (z) =
∑
κ∈T1

h (κ) {ϕκ − Iδκ} (z) .

We will also need to write Φ in terms of the projection operator

(2.12) Γsh (z) =
∫

D
h (ζ)

(
1− |ζ|2

)s

(
1− ζz

)1+s dA,

namely as Φ = Γsg where

(2.13) g (ζ) =
∑
κ∈T1

h (κ)
1
|Bκ|

(
1− ζκ

)1+s(
1− |ζ|2

)s χBκ (ζ) ,

and Bκ is the Euclidean ball centered at κ with radius c (1− |κ|) for a sufficiently
small positive constant c to be chosen later. The function Φ satisfies the following
estimates.
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Lemma 3. Suppose z ∈ T1 and s > −1. Then we have

(2.14)


|Φ (z)− Φ (wα

k )| ≤ CCap (E,F ) , z ∈ T (Jα
k )

Re Φ (wα
k ) ≥ c > 0, 1 ≤ k ≤Mα

|Φ (wα
k )| ≤ C, 1 ≤ k ≤Mα

|Φ (z)| ≤ CCap (E,F ) , z /∈ V γ
G

.

Lemma 4. Furthermore, if s > − 1
2 then Φ = Γsg where

(2.15) |g (ζ)|2 dA ≤ CCap (E,F ) .

Corollary 5. For s > 1
2 , (2.15) and Lemma 2.4 of [5] show that

(2.16) ‖Φ‖2D ≤
∫

D
|g (ζ)|2 dA ≤ CCap (E,F ) .

Remark 3. In the case that V α
G = T (Jα

1 ) consists of a single arc, we may divide
the function Φ (z) by Φ (wα

k ) to obtain a holomorphic function that is close to 1 on
V α

G and small outside V γ
G as in Lemma 4.1 in [5].

Proof. From (2.11) we have

|Φ (z)−H (z)| ≤
∑

κ∈[o,z]

|h (κ) {ϕκ (z)− 1}|+
∑

κ/∈[o,z]

|h (κ)ϕκ (z)|

= I (z) + II (z) .

We also have that h is nonnegative and supported in V γ
G \ V α

G . We first show that

II (z) ≤
∑

κ/∈[o,z]

h (κ)

∣∣∣∣∣1− |κ|21− κz

∣∣∣∣∣
1+s

≤ CCap (E,F ) .

For A > 1 let

Ωk =

{
κ ∈ T1 : A−k−1 <

∣∣∣∣∣1− |κ|21− κz

∣∣∣∣∣ ≤ A−k

}
.

If we choose A sufficiently close to 1, then for every k the set Ωk is a stopping time
for T1, i.e. any two distinct elements in Ωk are incomparable in T1. Now we use
the stopping time property 3 in Proposition 1 to obtain∑

κ∈Ωk

h (κ) ≤ CCap (E,F ) , k ≥ 0.

Altogether we then have

II (z) ≤
∞∑

k=0

∑
κ∈Ωk

h (κ)A−k(1+s) ≤ CsCap (E,F ) .

If z ∈ T1 \ V γ
G , then I (z) = 0 and H (z) = 0 and we have

|Φ (z)| = |Φ (z)−H (z)| ≤ II (z) ≤ CsCap (E,F ) ,

which is the fourth line in (2.14).
If z ∈ V α

G ∩ T1, let k be such that z ≥ wα
k . Then for κ /∈ [o, z] we have

|ϕκ (wα
k )| ≤ C |ϕκ (z)| ,
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and for κ ∈ [o, z] we have

|ϕκ (z)− ϕκ (wα
k )| =

∣∣∣∣∣∣
(

1− |κ|2

1− κz

)1+s

−

(
1− |κ|2

1− κwα
k

)1+s
∣∣∣∣∣∣ ≤ Cs

|z − wα
k |

1− |κ|2
.

Thus

|Φ (z)− Φ (wα
k )| ≤

∑
κ∈[o,wα

k ]
h (κ) |ϕκ (z)− ϕκ (wα

k )|+ C
∑

κ/∈[o,z]

h (κ) |ϕκ (z)|

≤ Cs

∑
κ∈[o,wα

k ]
h (κ)

|z − wα
k |

1− |κ|2
+ CII (z)

≤ CsCap (E,F ) ,

since h (κ) ≤ CCap (E,F ) and
∑

κ∈[o,wα
k ]

1
1−|κ|2 ≈

1

1−|wα
k |2

. This proves the first

line in (2.14).
Moreover, we note that for s = 0 and κ ∈ [o, wα

k ],

Reϕκ (wα
k ) = Re

1− |κ|2

1− κwα
k

= Re
1− |κ|2

|1− κwα
k |

2

(
1− κwα

k

)
≥ c > 0.

A similar result holds for s > −1 provided the Bergman tree T1 is constructed
sufficiently thin depending on s. It then follows from

∑
κ∈[o,wα

k ] h (κ) = 1 that

Re Φ (wα
k ) =

∑
κ∈[o,wα

k ]
h (κ) Reϕκ (wα

k ) +
∑

κ/∈[o,z]

h (κ) Reϕκ (wα
k )

≥ c
∑

κ∈[o,wα
k ]
h (κ)− CCap (E,F ) ≥ c′ > 0.

We trivially have

|Φ (wα
k )| ≤ I (z) + II (z) ≤ C

∑
κ∈[o,wα

k ]
h (κ) + CCap (E,F ) ≤ C,

and this completes the proof of (2.14).
Finally we prove (2.15). From property 1 of Proposition 1 we obtain∫

D
|g (ζ)|2 dA =

∫
D

∣∣∣∣∣∣
∑
κ∈T1

h (κ)
1
|Bκ|

(
1− ζκ

)1+s(
1− |ζ|2

)s χBκ (ζ)

∣∣∣∣∣∣
2

dA

=
∑
κ∈T1

|h (κ)|2 1
|Bκ|2

∫
Bκ

∣∣1− ζκ
∣∣2+2s(

1− |ζ|2
)2s dA

≈
∑
κ∈T1

|h (κ)|2 ≈ Cap (E,F ) .

Corollary 6. Let G be a finite union of arcs in the circle T. Then

(2.17) CapT1 (G) ≈ CapD (G) ,

where CapD denotes Stegenga’s capacity on the circle T.
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Proof. The inequality / follows easily from Lemma 3 which provides a candidate for
testing the Stegenga capacity of G. Indeed, let c, C be the constants in Lemma 3,
and suppose that Cap (E,F ) ≤ c

3C
. Set Ψ (z) = 3

c (Φ (z)− Φ (0)). Then Ψ (0) = 0,

Re Ψ (z) =
3
c
{Re Φ (z)− Re Φ (0)}

≥ 3
c
{c− 2C Cap (E,F )} ≥ 1, z ∈ V α

G ,

and by (2.16) we have

‖Ψ‖2D =
(

3
c

)2

‖Φ‖2D ≤
(

3
c

)2

CCap (E,F ) .

Continuing by invoking Corollary ?? we obtain that for G ⊂ T,

‖Ψ‖2D ≤
(

3
c

)2

CCap (E,F ) ≤ CCapT1G.

Conversely, to obtain the inequality ', let ψ ∈ D be an extremal function for
CapDG. Define h (o) = 0 and

h (κ) = (1− |κ|)
∫

Q(κ)

|ψ′ (z)| dλ (z) , κ ∈ T1 \ {o} ,

where Qh (κ) is the hyperbolic cube corresponding to κ in T1, and dλ (z) is invariant
measure on the disk D. One easily verifies as in [2] that Ih (o) = 0,

‖Ih‖2B2(T1)
= ‖h‖2`2(T1)

=
∑
κ∈T1

(1− |κ|)2
(∫

Q(κ)

|ψ′ (z)| dλ (z)

)2

≤ C
∑
κ∈T1

∫
Q(κ)

|ψ′ (z)| dA = C ‖ψ‖2D ,

and

Ih (β) =
∑

κ∈[o,β]

h (κ) ≥ Reψ (β) ≥ c > 0, for S (β) ⊂ G,

since if Bh (κ,R) is the hyperbolic ball of radius R about κ, then for R large enough,

|ψ (β)| ≤
∑

κ∈[o,β]

∣∣ψ (κ)− ψ
(
κ−1

)∣∣
≤

∑
κ∈[o,β]

∣∣∣∣∣ 1
|Bh (κ, 1)|

∫
Bh(κ,1)

ψ (z) dA− 1
|Bh (κ−1, 1)|

∫
Bh(κ−1,1)

ψ (z) dA

∣∣∣∣∣
≤ C

∑
κ∈[o,β]

1− |κ|2

|Bh (κ, 1)|

∫
Bh(κ,R)

|ψ′ (z)| dA

≤ C
∑

κ∈[o,β]

(
1− |κ|2

)∫
Q(κ)

|ψ′ (z)| dλ (z) = C
∑

κ∈[o,β]

h (κ) ,
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where the final inequality is the submean value property for |ψ′ (z)|. It follows that

CapT1G = inf
{
‖H‖2B2(T1)

: H (0) = 0,ReH (κ) ≥ 1 if S (κ) ⊂ G
}

≤
∥∥∥∥1
c
Ih

∥∥∥∥2

B2(T1)

≤ C

c2
‖ψ‖2D =

C

c2
CapDG.

Lemma 2.14 of Bishop [7] says that

(2.18) CapD
(
∪N

j=1I
ρ
j

)
≤ CρCapD

(
∪N

j=1Ij
)
,

for a constant Cρ depending only on ρ < 1. In the next Corollary we use the uniform
versions of this, i.e Cρ ↘ 1 as ρ↗ 1, given by Proposition 2 and its corollaries. Set
dσ = dσ/2π on T.

Now let G be an open set in T such that

(2.19)

∫
T µb (Tθ (G)) dσ∫
T Capθ (G) dσ

= M := sup
E open ⊂T

∫
T µb (Tθ (E)) dσ∫
T Capθ (E) dσ

.

Corollary 7. With M as in (2.19) we have ‖µb‖2D−Carleson ≈M.

Proof. Using Corollary 6 and Tθ (E) ⊂ T (E), we have

M ≤ C sup
E open ⊂T

∫
T µb (T (E)) dσ∫
T CapD (E) dσ

= C sup
E open ⊂T

µb (T (E))
CapD (E)

≈ ‖µb‖2D−Carleson ,

where the final comparison is Stegenga’s theorem. Conversely, one can verify using
the argument in (2.21) above that for 0 < ρ < 1,

µb (E) ≤ C

∫
T
µb (Tθ (Eρ)) dσ

≤ CM

∫
T
Capθ (Eρ) dσ

≈ CMCapD (Eρ)
≤ CMCapD (E) ,

where the third line uses (2.17) with Eρ and T1 (θ) in place of G and T1, and the
final inequality follows from (2.18). Thus from Stegenga’s theorem we obtain

‖µb‖2D−Carleson ≈ sup
E open ⊂T

µb (E)
CapD (E)

≤ CM.

We need to know that µb(V
β
G \ VG) is small.

Proposition 3. Given ε > 0 we can find β = β(ε) < 1 to that

(2.20) µb(V
β
G \ VG) ≤ εµb (VG) ,
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Proof. Corollary 3 shows that Capθ (Gρ (θ)) ≤ ρ−1Capθ (G) , 0 ≤ θ < 2π,and if we
integrate on T we obtain∫

T
Capθ (Gρ (θ)) dσ ≤ 1

ρ

∫
T
Capθ (G) dσ.

From (2.19) we thus have∫
T
µb (Tθ (Gρ (θ))) dσ ≤ M

∫
T
Capθ (Gρ (θ)) dσ

≤ M
1
ρ

∫
T
Capθ (G) dσ

=
1
ρ

∫
T
µb (Tθ (G)) dσ.

It follows that ∫
T
µb (Tθ (Gρ (θ)) \ Tθ (G)) dσ

=
∫

T
µb (Tθ (Gρ (θ))) dσ −

∫
T
µb (Tθ (G)) dσ

≤
(

1
ρ
− 1
)∫

T
µb (Tθ (G)) dσ.

Now with σ = ρ+1
2 halfway between ρ and 1,∫

T
µb (Tθ (Gρ (θ)) \ Tθ (G)) dσ(2.21)

=
∫

T

∫
Tθ(Gρ(θ))\Tθ(G)

dµb (z) dσ

≥
∫

T

∫
Tθ(Gρ(θ))\T (G)

dµb (z) dσ

=
∫

D

{
1
2π

∫
{θ:z∈Tθ(Gρ(θ))\T (G)}

dσ

}
dµb (z)

≥ 1
2

∫
T (Gσ)\T (G)

dµb (z) ,

since every z ∈ T (Gσ) lies in Tθ (Gρ (θ)) for at least half of the θ’s in [0, 2π). Here
we may assume that the components of Gρ have small length since otherwise we
trivially have

∫
T CapT1(θ) (G) dσ ≥ c > 0 and so then

(2.22) M ≤ 1
c

∫
dµb ≤

1
c
‖b‖2D ≤

C

c
‖Tb‖2 .

Combining the above inequalities and using σ = ρ+1
2 , 1

2 ≤ ρ < 1, we obtain

µb (T (Gσ) \ T (G)) ≤ 2
(

1
ρ
− 1
)∫

T
µb (Tθ (G)) dσ

= 2
(

1
ρ
− 1
)∫

T
µb (Tθ (G)) dσ

≤ 8
3

(1− σ)
∫

T
µb (Tθ (G)) dσ,
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for 3
4 ≤ σ < 1. Recalling V σ

G = T (Gσ) and VG = T (G) this becomes

µb (V σ
G \ VG) ≤ 8

3
(1− σ)

∫
T
µb (Tθ (G)) dσ ≤ 8

3
(1− σ)µb (VG) ,

3
4
≤ σ < 1,

since Tθ (G) ⊂ T (G) = VG for all θ. Thus given ε > 0 it is possible to select β to
that (2.20) holds.

2.3.5. Schur Estimates and a Bilinear Operator on Trees. We begin with a bilinear
version of Schur’s well known theorem.

Theorem 2. Let (X,µ), (Y, ν) and (Z, ω) be measure spaces and H (x, y, z) be a
nonnegative measurable function on X × Y × Z. Define

T (f, g) (x) =
∫

Y×Z

H (x, y, z) f (y) dν (y) g (z) dω (z) , x ∈ X,

at least initially for nonnegative functions f, g. Then if 1 < p < ∞, T is bounded
from Lp (ν) × Lp (ω) to Lp (µ) if and only if there are positive functions h, k and
m on X, Y and Z respectively such that∫

Y×Z

H (x, y, z) k (y)p′
m (z)p′

dν (y) dω (z) ≤ (Ah (x))p′
,

for µ-a.e. x ∈ X, and∫
X

H (x, y, z)h (x)p
dµ (x) ≤ (Bk (y)m (z))p

,

for ν × ω-a.e. (y, z) ∈ Y × Z. Moreover, ‖T‖operator ≤ AB.

Proof. The necessity (which we don’t use) is a standard iteration argument. For
the sufficiency, we have∫

X

|Tf (x)|p dµ (x)

≤
∫

X

(∫
Y×Z

H (x, y, z) k (y)p′
m (z)p′

dν (y) dω (z)
)p/p′

×
(∫

Y×Z

H (x, y, z)
(
f (y)
k (y)

)p

dν (y)
(
g (z)
m (z)

)p

dω (z)
)
dµ (x)

≤ Ap

∫
Y×Z

(∫
X

H (x, y, z)h (x)p
dµ (x)

)(
f (y)
k (y)

)p

dν (y)
(
g (z)
m (z)

)p

dω (z)

≤ ApBp

∫
Y×Z

k (y)p
m (z)p

(
f (y)
k (y)

)p

dν (y)
(
g (z)
m (z)

)p

dω (z)

= (AB)p
∫

Y

f (y)p
dν (y)

∫
Z

g (z)p
dω (z) .

This theorem can be used along with the estimates

(2.23)
∫

D

(
1− |w|2

)t

|1− wz|2+t+c dw ≈


Ct if c < 0, t > −1

−Ct log(1− |z|2) if c = 0, t > −1
Ct(1− |z|2)−c if c > 0, t > −1

, .

to prove the following Corollary which we will use later. It is proved as Theorem
2.10 in [21].
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Corollary 8. Define

Tf (z) = (1− |z|2)a

∫
D

(1− |w|2)b

(1− wz)2+a+b
f (w) dw,

Sf (z) = (1− |z|2)a

∫
D

(1− |w|2)b

|1− wz|2+a+b
f (w) dw,

where the kernel of S is the modulus of the kernel of T . Suppose that t ∈ R and
1 ≤ p <∞ and set

dνt (z) = (1− |z|2)tdA.

Then T is bounded on Lp (D, dνt) if and only if S is bounded on Lp (D, dνt) if and
only if

(2.24) −pa < t+ 1 < p (b+ 1) .

We now apply Theorem 2 to prove a lemma about a bilinear operator mapping
`2 (A)× `2 (B) to L2 (D) where A and B are subsets of T which are well separated.

Lemma 5. Suppose A and B are subsets of T , h ∈ `2 (A) and k ∈ `2 (B) , and
1
2 < α < 1. Suppose further that A and B satisfy the separation condition: ∀κ ∈ A,
γ ∈ B we have

(2.25) |κ− γ| ≥ (1− |γ|2)α.

Then the bilinear map of (h, k) to functions on the disk given by

T (h, b∗) (z) =

(∑
κ∈A

h (κ)
(1− |κ|2)1+s

|1− κz|2+s

)∑
γ∈B

b∗ (γ)
(1− |γ|2)1+s

|1− γz|1+s


is bounded from `2 (A)× `2 (B) to L2 (D).

Proof. We will verify the hypotheses of the previous theorem. The kernel function
here is

H (z, κ, γ) =
(1− |κ|2)1+s

|1− κz|2+s

(1− |γ|2)1+s

|1− γz|1+s , z ∈ D, κ ∈ A, γ ∈ B,

with Lebesgue measure on D, and counting measure on A and B. We will take as
Schur functions

h (z) =
(
1− |z|2

)− 1
4

, k (κ) =
(
1− |κ|2

) 1
4

and m (γ) = (1− |γ|2) ε
2 ,

on D, A and B respectively, where ε > 0 will be chosen sufficiently small later. We
must then verify

(2.26)
∑
κ∈A

∑
γ∈B

(
1− |κ|2

) 3
2+s

|1− κz|2+s

(
1− |γ|2

)1+ε+s

|1− γz|1+s ≤ A2
(
1− |z|2

)− 1
2
,

for z ∈ D, and ∫
D

(
1− |κ|2

)1+s

|1− κz|2+s

(
1− |γ|2

)1+s

|1− γz|1+s

(
1− |z|2

)− 1
2
dA(2.27)

≤ B2
(
1− |κ|2

) 1
2
(
1− |γ|2

)ε

,
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for κ ∈ A and γ ∈ B.
To prove (2.26) we write

∑
κ∈A

∑
γ∈B

(
1− |κ|2

) 3
2+s

|1− κz|2+s

(
1− |γ|2

)1+ε+s

|1− γz|1+s

=

∑
κ∈A

(
1− |κ|2

) 3
2+s

|1− κz|2+s


∑

γ∈B

(
1− |γ|2

)1+ε+s

|1− γz|1+s

 .

Then from (2.23) we obtain

∑
κ∈A

(
1− |κ|2

) 3
2+s

|1− κz|2+s ≤ C

∫
D

(
1− |w|2

)− 1
2+s

|1− wz|2+s dw ≤ C
(
1− |z|2

)− 1
2

and

∑
γ∈B

(
1− |γ|2

)1+ε+s

|1− γz|1+s ≤ C

∫
ζ∈VG

(
1− |ζ|2

)−1+ε+s

∣∣1− ζz
∣∣1+s dA ≤ C,

which yields (2.26).
The proof of (2.27) will use (2.25). We have

∫
D

(
1− |κ|2

)1+s

|1− κz|2+s

(
1− |γ|2

)1+s

|1− γz|1+s

(
1− |z|2

)− 1
2
dA

=
∫

|z−γ∗|≤1−|γ|2

+
∫

1−|γ|2≤|z−γ∗|≤ 1
2 |κ−γ|

+
∫

|z−κ∗|≤1−|κ|2

+
∫

1−|κ|2≤|z−κ∗|≤ 1
2 |κ−γ|

+
∫

|z−γ∗|,|z−κ∗|≥|κ−γ|

...dA

= I + II + III + IV + V.

By (2.25) |κ− γ| ≥
(
1− |γ|2

)α

and so

I ≈

(
1− |κ|2

)1+s

|κ− γ|2+s

∫
|z−γ∗|≤1−|γ|2

(
1− |z|2

)− 1
2
dA

≈

(
1− |κ|2

)1+s (
1− |γ|2

) 3
2

|κ− γ|2+s ≤ C
(
1− |κ|2

) 1
2
(
1− |γ|2

) 3
2 (1−α)

.
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Similarly we have

II ≈

(
1− |κ|2

)1+s (
1− |γ|2

)1+s

|κ− γ|2+s

∫
1−|γ|2≤|z−γ∗|≤ 1

2 |κ−γ|

(
1− |z|2

)− 1
2

|z − γ∗|1+s dA

≈

(
1− |κ|2

)1+s (
1− |γ|2

)1+s

|κ− γ|2+s

(
1− |γ|2

) 1
2−s

=

(
1− |κ|2

)1+s (
1− |γ|2

) 3
2

|κ− γ|2+s ≤ C
(
1− |κ|2

) 1
2
(
1− |γ|2

) 3
2 (1−α)

.

Continuing to use |κ− γ| ≥
(
1− |γ|2

)α

we obtain

III ≈

(
1− |κ|2

) 1
2
(
1− |γ|2

)1+s

|κ− γ|1+s ≤ C
(
1− |κ|2

) 1
2
(
1− |γ|2

)(1+s)(1−α)

,

and similarly,

IV ≤ C
(
1− |κ|2

) 1
2
(
1− |γ|2

)ε

,

for some ε > 0. Finally

V ≈
∫

|z−γ∗|,|z−κ∗|≥|κ−γ|

(
1− |κ|2

)1+s

|z − κ∗|2+s

(
1− |γ|2

)1+s

|z − γ∗|1+s

(
1− |z|2

)− 1
2
dA

≈

(
1− |κ|2

)1+s (
1− |γ|2

)1+s

|κ− γ|
3
2+2s

≤ C
(
1− |κ|2

) 1
2
(
1− |γ|2

)(1+s)(1−α)

.

2.4. The Main Bilinear Estimate. To complete the proof we will show that µb

is a D-Carleson measure by verifying Stegenga’s condition (2.3); that is, we will
show that for any finite collection of disjoint arcs {Ij}N

j=1 in the circle T we have

µb

(
·
∪

N

j=1T (Ij)
)
≤ C CapD

(
·
∪

N

j=1Ij

)
.

In fact we will see that it suffices to verify this for the single set G =
·
∪

N

j=1Ij
described in (2.19). We will prove the inequality

(2.28) µb (VG) ≤ C ‖Tb‖2 CapD (G) .

Once we have this Corollary 6 yields

M =

∫
T µb (Tθ (G)) dσ∫
T Capθ (G) dσ

≤ µb (VG)∫
T Capθ (G) dσ

≤ C ‖Tb‖2 .

By Corollary 7 ‖µb‖2D−Carleson ≈ M which then completes the proof of Theorem
1.
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We now turn to the proof of the estimate (2.28). Let 1
2 < β < β1 < γ < α < 1

to be chosen later. We will obtain our estimate by using the boundedness of Tb on
certain functions f and g in D. The function f will be, approximately, b′χVG

and
the function g will be constructed using an approximate extremal function of the
type described in Subsection 2.3.4 and will be approximately equal to χVG

.
We have chosen G ; we now set

E = {wα
k }

Mα

k=1 and F = {wγ
` }

Mγ

`=1

where

Gα = ∪Mα

k=1J
α
k and Gγ = ∪Mγ

`=1J
γ
` .

Now construct a Bergman tree T for the disk D with uniform bounds (independent
of G) such that E ∪ F ⊂ T and both E and F are stopping times in T . Note that
every point wα

k in E is contained in a unique successor set S (wγ
` ) for a point wγ

` in
F . Now define Φ as in (2.10) above, so that we have the estimates in Theorem 3
and Corollary 5. From Corollaries 6 and ?? we obtain

(2.29) Cap (E,F ) ≤ CCapD G.

We will use g = Φ2 and

(2.30) f (z) = Γs

(
1

(1 + s) ζ
χVG

b′ (ζ)
)

(z)

as our test functions in the bilinear inequality

(2.31) |Tb (f, g)| ≤ ‖Tb‖ ‖f‖D ‖g‖D .

From (2.30) we have

f (z) =
∫

VG

b′ (ζ) (1− |ζ|2)s(
1− ζz

)1+s

dA

(1 + s) ζ
,

so that

f ′ (z) =
∫

VG

b′ (ζ) (1− |ζ|2)s(
1− ζz

)2+s dA

= b′ (z)−
∫

D\VG

b′ (ζ) (1− |ζ|2)s(
1− ζz

)2+s dA

= b′ (z) + Λb′ (z) ,

where

(2.32) Λb′ (z) = −
∫

D\VG

b′ (ζ) (1− |ζ|)s(
1− ζz

)2+s dA,

by the reproducing property of the generalized Bergman kernels (1−|ζ|2)s

(1−ζz)2+s . Now

if we plug f and g = Φ2 as above in Tb (f, g) we obtain Tb (f, g) = Tb

(
f,Φ2

)
=
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Tb (fΦ,Φ) which we analyze as

Tb

(
f,Φ2

)
= Tb (fΦ,Φ)(2.33)

=
∫

D
{f ′ (z) Φ (z) + 2f (z) Φ′ (z)}Φ (z) b′ (z)dA+ f (0)Φ (0)2 b (0)

= f (0)Φ (0)2 b (0) +
∫

D
|b′ (z)|2 Φ (z)2 dA

+2
∫

D
Φ (z) Φ′ (z) f (z) b′ (z)dA+

∫
D

Λb′ (z) b′ (z)Φ (z)2 dA

= (1) + (2) + (3) + (4).

Trivially, we have

(2.34) |(1)| ≤ C ‖b‖2D Cap (E,F ) ≤ C ‖Tb‖2 Cap (E,F ) .

Now we write

(2) =
∫

D
|b′ (z)|2 Φ (z)2 dA(2.35)

=

{∫
VG

+
∫

V β
G\VG

+
∫

D\V β
G

}
|b′ (z)|2 Φ (z)2 dA

= (2A) + (2B) + (2C).

The main term (2A) satisfies

(2A) = µb (VG) +
∫

VG

|b′ (z)|2
(
Φ (z)2 − 1

)
dA(2.36)

= µb (VG) +O
(
‖Tb‖2 Cap (E,F )

)
,

by (2.14) and (2.1). For term (2B) we use (2.20) to obtain

(2.37) |(2B)| ≤ Cµb

(
V β

G \ VG

)
≤ Cεµb (VG) .

Using (2.14) once more, we see that term (2C) satisfies

(2.38) |(2C)| ≤
∫

D\V β
G

|b′ (z)|2 (Cα,β,ρCap (E,F ))3 dA ≤ C ‖Tb‖2 Cap (E,F ) .

Altogether, using (2.34), (2.35), (2.36), (2.37) and (2.38) in (2.33) we have

(2.39) µb (VG) ≤
∣∣Tb

(
f,Φ2

)∣∣+Cµb

(
V β

G \ VG

)
+C ‖Tb‖2 Cap (E,F )+ |(3)|+ |(4)| .

We estimate (3) using Cauchy-Schwarz with ε > 0 small as follows:

|(3)| ≤ 2
∫

D
|Φ (z) b′ (z)| |Φ′ (z) f (z)| dA

≤ ε

∫
D
|Φ (z) b′ (z)|2 dA+

C

ε

∫
D
|Φ′ (z) f (z)|2 dA

= (3A) + (3B).
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Using the decomposition and argument surrounding term (2) we obtain

|(3A)| ≤ ε

{∫
VG

+
∫

V β
G\VG

+
∫

D\V β
G

}
|Φ (z) b′ (z)|2 dA(2.40)

≤ Cε
(
µb (VG) + C ‖Tb‖2 Cap (E,F ) .

)
To estimate term (3B) we use

|f (z)| ≤
∣∣∣∣Γs

(
1

(1 + s) ζ
χVG

b′ (ζ)
)

(z)
∣∣∣∣

≤
∫

VG

(
1− |ζ|2

)s

∣∣1− ζz
∣∣1+s |b

′ (ζ)| dA

≈
∑

γ∈T1∩VG

(
1− |γ|2

)1+s

|1− γz|1+s

∫
Bγ

|b′ (ζ)|
(
1− |ζ|2

)
dλ (ζ)

=
∑

γ∈T1∩VG

(
1− |γ|2

)1+s

|1− γz|1+s b∗ (γ) ,

where ∑
γ∈T1∩VG

b∗ (γ)2 ≈
∑

γ∈T1∩VG

∫
Bγ

|b′ (ζ)|2
(
1− |ζ|2

)2

dλ (ζ) =
∫

VG

|b′ (ζ)|2 dA.

We now use the separation of D \ V α
G and VG. The facts that A = supp (h) ⊂

D \ V α
G and B = T1 ∩ VG ⊂ VG insure that (2.25) is satisfied. Hence we can use

Lemma 5 and the representation of Φ in 2.10 to continue with

(3B) =
∫

D
|Φ′ (z) f (z)|2 dA ≤ C

(∑
κ∈A

h (κ)2
)∑

γ∈B
b∗ (γ)2

 ,

We also have from (2.1) and Corollary 5 that(∑
κ∈A

h (κ)2
)∑

γ∈B
b∗ (γ)2

 ≤ CCap (E,F ) ‖Tb‖2 .

Altogether we then have

(2.41) (3B) ≤ CCap (E,F ) ‖Tb‖2 ,

and thus also

(2.42) |(3)| ≤ ε

∫
VG

|b′ (z)|2 + C ‖Tb‖2 Cap (E,F ) .

We begin our estimate of term (4) by

|(4)| =
∣∣∣∣∫

D
Λb′ (z) b′ (z)Φ (z)2 dA

∣∣∣∣(2.43)

≤

√∫
D
|b′ (z) Φ (z)|2 dA

√∫
D
|Λb′ (z) Φ (z)|2 dA
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Now we claim the following estimate for (4A) = ‖ΦΛb′‖L2(D):

(4A) =
∫

D
|Φ (z) Λb′ (z)|2 dA(2.44)

≤ Cµb

(
V β

G \ VG

)
+ C ‖Tb‖2 Cap (E,F )(2.45)

≤ εµb (VG) + C ‖Tb‖2 Cap (E,F ) .

Indeed, the second inequality follows from (2.20). From (2.32) we obtain

(4A) =
∫

D
|Φ (z)|2

∣∣∣∣∣
{∫

V β
G\VG

+
∫

D\V β
G

}
b′ (ζ) (1− |ζ|)s(

1− ζz
)2+s dA

∣∣∣∣∣
2

dA

≤ C

∫
D
|Φ (z)|2

(∫
V β

G\VG

|b′ (ζ)| (1− |ζ|)s∣∣1− ζz
∣∣2+s dA

)2

dA

+C
∫

D
|Φ (z)|2

∣∣∣∣∣
∫

D\V β
G

b′ (ζ) (1− |ζ|)s(
1− ζz

)2+s dA

∣∣∣∣∣
2

dA

= (4AA) + (4AB).

Corollary 8 shows that

|(4AA)| ≤
∫

D

(∫
V β

G\VG

|b′ (ζ)| (1− |ζ|)s∣∣1− ζz
∣∣2+s dA

)2

dA

≤ C

∫
V β

G\VG

|b′ (ζ)|2 dA = Cµb

(
V β

G \ VG

)
.

We write the second integral as

(4AB) =

{∫
V γ

G

+
∫

D\V γ
G

}
|Φ (z)|2

∣∣∣∣∣
∫

D\V β
G

b′ (ζ) (1− |ζ|)s(
1− ζz

)2+s dA

∣∣∣∣∣
2

dA

= (4ABA) + (4ABB),

where by Corollary 8 again,

|(4ABB)| ≤ CCap (E,F )2
∫

D
|b′ (ζ)|2 dA

≤ C ‖Tb‖2 Cap (E,F )2

≤ C ‖Tb‖2 Cap (E,F ) .

Finally, with β < β1 < γ < α < 1, Corollary 8 shows that the term (4ABA)
satisfies the following estimate. Recall that V γ

G = ∪Jγ
k and wγ

j = z (Jγ
k ). We set
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A` =
{
k : Jγ

k ⊂ Jβ1
`

}
and define ` (k) by the condition k ∈ A`(k). Then

|(4ABA)| ≤ C

∫
V γ

G

(∫
D\V β

G

|b′ (ζ)| (1− |ζ|)s∣∣1− ζz
∣∣2+s dA

)2

dA

≈ C
∑

k

∫
Jγ

k

|Jγ
k |

(
|b′ (ζ)| (1− |ζ|)s∣∣1− ζwγ

k

∣∣2+s dA

)2

dA

= C
∑

k

|Jγ
k |∣∣∣Jβ1

`(k)

∣∣∣
∣∣∣Jβ1

`(k)

∣∣∣ ∫
Jγ

k

(
|b′ (ζ)| (1− |ζ|)s∣∣1− ζwγ

k

∣∣2+s dA

)2

dA

≈ C
∑

`

∑
k∈A`

|Jγ
k |∣∣∣Jβ1

`

∣∣∣
∫

J
β1
`

(∫
D\V β

G

|b′ (ζ)| (1− |ζ|)s∣∣1− ζz
∣∣2+s dA

)2

dA

≤ C
∣∣∣V β1

G

∣∣∣ε(γ−β1)
∫

V
β1

G

(∫
D\V β

G

|b′ (ζ)| (1− |ζ|)s∣∣1− ζz
∣∣2+s dA

)2

dA

≤ C
∣∣∣V β1

G

∣∣∣ε(γ−β1)

‖b‖2D ≤ C ‖Tb‖2 Cap (E,F ) .

This completes the proof of (2.44).
Now we can estimate term (4) by

|(4)| =
∣∣∣∣∫

D
Λb′ (z) b′ (z)Φ (z)2 dA

∣∣∣∣(2.46)

≤

√∫
D
|b′ (z) Φ (z)|2 dA

√∫
D
|Λb′ (z) Φ (z)|2 dA

≤
√

(3A)/ε
√

(4A)(2.47)

≤
√
Cµb (VG) + C ‖Tb‖2 Cap (E,F )

×
√
εµb (VG) + C ‖Tb‖2 Cap (E,F )

≤
√
εµb (VG) + C

√
µb (VG)

√
‖Tb‖2 Cap (E,F )

+C ‖Tb‖2 Cap (E,F ) ,

using (2.44) and the estimate (2.40) for (3A) already proved above. Finally, we
estimate Tb

(
f,Φ2

)
= Tb (fΦ,Φ)by

|Tb (fΦ,Φ)| ≤ ‖Tb‖ ‖Φ‖D ‖Φf‖D ≤ C ‖Tb‖
√
Cap (E,F ) ‖Φf‖D .

Now

‖Φf‖2D ≤ C

∫
|Φ′ (z) f (z)|2 dA+ C

∫
|Φ (z) f ′ (z)|2 dA

≤ C |3A|+ C |3B |+ C

∫
|Φ (z) Λb′ (z)|2 dA

≤ Cµb (VG) + C ‖Tb‖2 Cap (E,F ) ,



26 N. ARCOZZI, R. ROCHBERG, E. SAWYER, AND B. WICK

by (2.44) and the estimates (2.40) and (2.41) for (3A) and (3B). When we plug this
into the previous estimate we get∣∣Tb

(
f,Φ2

)∣∣ ≤ C ‖Tb‖
√
Cap (E,F )

√
µb (VG) + ‖Tb‖2 Cap (E,F )(2.48)

≤ C

√
‖Tb‖2 Cap (E,F )(

√
µb (VG) + ‖Tb‖Cap (E,F )

1
2 ).

Using Proposition 3 and the estimates (2.42), (2.46) and (2.48) in (2.39) we
obtain

µb (VG) ≤
√
εµb (VG) + C ‖Tb‖2 Cap (E,F )

+C
√
‖Tb‖2 Cap (E,F )

√
µb (VG)

≤
√
εµb (VG) + C ‖Tb‖2 Cap (E,F ) .

Absorbing the first term on the right side, and using (2.29), we finally obtain

µb (VG) ≤ C ‖Tb‖2 Cap (E,F ) ≤ C ‖Tb‖2 CapDG,

which is (2.28).
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