
STRUCTURE THEOREMS FOR EMBEDDED DISKS WITH MEAN

CURVATURE BOUNDED IN LP

GIUSEPPE TINAGLIA

Abstract. After appropriate normalizations an embedded disk whose second fun-
damental form has large norm contains a multi-valued graph, provided the L

p norm
of the mean curvature is sufficiently small. This generalizes to non-minimal surfaces
a well known result of Colding and Minicozzi.

Introduction

In [8] Colding and Minicozzi proved that a minimal disk embedded in R3 whose
Gaussian curvature is large at a point contains a multi-valued graph around that
point. This means that, locally, the disk looks like a piece of a suitably scaled helicoid
(see Figure 1). This was later generalized in [20] to the constant mean curvature
case. The structure theorem in [8] has been used as a key ingredient in their series
of papers [3, 7, 8, 9, 10] dealing with the geometry of embedded minimal surfaces of
fixed genus. Moreover, the new ideas provided by their recent work have been applied
by the authors to solve several longstanding problems in the field; see for instance
[2, 5, 13, 14].

Figure 1. Half of the the helicoid

In this paper we discuss the geometry of disks embedded in R3 for which the
Lp norm of the mean curvature, ‖H‖Lp, is suitably bounded. We point out that
‖H‖Lp is a natural quantity to consider as it appears, for instance, in such classical
results as the monotonicity formulae [19] and related applications [11, 12]. Loosely
speaking, the principle established in our main result is that an embedded disk whose
second fundamental form is bounded but large at the origin and whose Lq-norm of
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the gradient of the mean curvature is bounded, q > 2, must contain a multi-valued
graph if the Lp-norm of the mean curvature is suitably small. Here is a simplified
version of the main theorem.

Theorem 0.1. Given N ∈ Z+, T ≥ 0, q > 2 and p ≥ 1 there exist C1 = C1(N) > 0,
C2 = C2(N, T, p, q) > 0, and l = l(N, p) > 1 such that the following holds.
If Σ ⊂ R

3 is an embedded disk with 0 ∈ Σ ⊂ Bl(0), ∂Σ ⊂ ∂Bl(0), ‖H‖Lp ≤ C2,
‖∇H‖Lq ≤ T , and

sup
Σ∩Bl(0)

|AΣ| ≤ 2C1 = 2|AΣ|(0),

then Σ ∩ B1(0) contains an N-valued graph that forms around the origin.

Here Bl(0) is the euclidean ball of radius l centered at the origin. We recall that if
Σ is a surface and k1 and k2 are its principal curvatures, then the mean curvature is
H = k1+k2

2
. The norm of the second fundamental form is |AΣ| =

√

k2
1 + k2

2 and the
Gaussian curvature is KΣ = k1k2. A precise definition of an N -valued graph as well
as a finer quantative version of Theorem 0.1 is to be found in Section 4.

Our new generalization of the Colding-Minicozzi structure theorem is intended as a
first step towards classifying the singularities of the limit of a sequence of embedded
disks with ‖H‖Lp bounded. While this problem has been successfully studied for
minimal disks [3, 6, 10, 16], it remains unsolved in this more general setting. In fact,
if the norm of the second fundamental form of these disks is uniformly bounded, they
do converge to a well defined surface, although not necessarily an embedded one. The
main objective is therefore understanding what happens as the norm of the second
fundamental becomes large. As with minimal surfaces, the answer to this question
will surely provide new tools for the study of the global properties of surfaces with
‖H‖Lp bounded.

The proof of Theorem 0.1 uses a new compactness argument which, somewhat
unexpectedly, does not require a bound on the area.

1. Minimal Surfaces

1. Definition. Let Σ ⊂ R3 be a 2-dimensional smooth orientable surface (possibly
with boundary) with unit normal NΣ. Given a function φ in the space C∞

0 (Σ) of
infinitely differentiable (i.e., smooth), compactly supported functions on Σ, consider
the one-parameter variation

Σt,φ = {x + tφ(x)NΣ(x)/x ∈ Σ}

and let A(t) be the area functional,

A(t) = Area(Σt,φ).
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The so-called first variation formula of area is the equation (integration is with respect
to darea)

(1.1) A′(0) =

∫

Σ

φH,

where H is the mean curvature of Σ. When H is identically zero the surface Σ is a
critical point for the area functional and it is called a minimal surface [17, 4]; concrete
examples of minimal surfaces are planes, the helicoid and the catenoid.

In general, if Σ is given as graph of a function u then

(1.2) H = div

(

∇u
√

1 + |∇u|2

)

.

2. Limits of minimal surfaces. In this section we discuss limits of minimal sur-
faces. Some of this material is covered in great detail (including proofs) in [18, Section
4].

Let Σ be a surface in R3 and let TpΣ denote its tangent plane at p. Given p ∈ Σ
and r > 0 we label by

(1.3) D(p, r) = {p + v/v ∈ TΣ, |v| < r}

the tangent disk of radius r. W (p, r) stands for the infinite solid cylinder of radius r
around the affine normal line at p,

(1.4) W (p, r) = {q + tN(p)/q ∈ D(p, r), t ∈ R}.

Inside W (p, r) and for ε > 0, we have the compact slice

(1.5) W (p, r, ε) = {q + tN(p)/q ∈ D(p, r), |t| < ε}.

Definition 1.2. Let Σn be a sequence of surfaces embedded in an open set O. We
say that Σn converges Ck with finite multiplicity to a surface Σ∞ on compact sets if
for any K ⊂ O compact there exist r, ε > 0 such that

(1) for any p ∈ Σ∞ ∩ K, Σ∞ ∩ W (p, r, ε) can be represented as the graph of a
function u : D(p, r) → R;

(2) for all n large enough, Σn∩K∩W (p, r, ε) consists of a finite number of graphs
(independent of n) over D(p, r) which converge to u in the usual Ck topology.

Given a sequence of subsets {Fn}n in an open domain O, its accumulation set is
defined by {p ∈ O/∃pn ∈ Fn with pn −→ p}

The next two theorems are compactness theorems for sequences of embedded min-
imal surfaces. The first assumes a uniform bound on the area and on the norm of
the second fundamental form while the second is slightly more general and does not
assume a bound on the area. Their proofs are similar in nature. We will only sketch
the proof of Theorem 1.4, pointing out where to use the uniform bound on the area
to prove Theorem 1.3.
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Theorem 1.3. Let Σn be a sequence of minimal surfaces embedded in an open set O.
Suppose that Σn has an accumulation point and that there exist C1 and C2 such that

Area(Σn) < C1 and sup
Σn

|An| < C2

uniformly. Then, there exists a subsequence Σnk
and a minimal surface Σ embedded

in O such that Σnk
converges smoothly with finite multiplicity to Σ on compact subsets

of O.

Theorem 1.4. Let Σn be a sequence of minimal surfaces embedded in an open set O.
Suppose that there exists a sequence pn ∈ Σn converging to a point p ∈ O and that

sup
Σn

|An| < C

uniformly. Then, there exists a subsequence Σnk
and a connected minimal surface Σ

in O satisfying

(1) Σ is contained in the accumulation set of Σn;
(2) p ∈ Σ and |A|(pn) = lim |An|(pn);
(3) Σ is embedded in O;
(4) Any divergent path in Σ either diverges in O or has infinite length.

Sketch of the proof of 1, 2 and 3. As pn accumulates at p ∈ O, the uniform bound
on the second fundamental form implies that there exists r > 0 such that for ε small,
W (pn, r, ε)∩Σn consists of a collection of graphs, uk

n, over D(pn, r) (a uniform bound
on the area would give a bound for the number of graphs which is independent of
n). After going to a subsequence we can assume that Tpn

Σn converges to a plane
π and that the graphs uk

n are graphs over π. Moreover, |uk
n|, |∇uk

n| and |∇2uk
n|

are uniformly bounded. Since un is a minimal graph, thanks to the minimal graph
equation we have uniform C2,α estimates for uk

n. In this situation, Arzela-Ascoli’s
Theorem implies that a subsequence of uk

n converges C2 to a graph u. Due to the C2

convergence, u is also a minimal graph. An analytic prolongation argument allows us
to construct a subsequence Σk and a maximal sheet Σ in the accumulation set of Σk

which extends the graph u. By construction, the minimal surface Σ satisfies items
1 and 2. Σ must be embedded because transversal self-intersections of it would give
rise to transversal self intersection of Σn for n large and tangential self-intersections
would contradict the maximum principle, thus we have 3. �

2. Compactness Theorem

In this section we prove more general compactness theorems which will be used in
the proof of the structure theorem. We start generalizing Theorem 1.3 and 1.4 to
more general surfaces. Before doing that, we need to establish some notation. Let f
be a function defined over Σ and let p ≥ 1, then ‖f‖Lp(Σ) is the Lp norm of f , while

[f ]α := supΣ
|f(x)−f(y)|
distΣ(x,y)

.
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Theorem 2.5. Let Σn be a sequence of surfaces embedded in an open set O. Suppose
that Σn has an accumulation point and that there exist C1, C2, and T such that

Area(Σn) < C1, sup
Σn

|An| < C2 and [Hn]α < T uniformly.

Suppose also that ‖Hn‖Lp(Σn) is going to zero. Then, there exists a subsequence Σnk

and a minimal surface Σ embedded in O such that Σnk
converges C2 with finite mul-

tiplicity to Σ on compact sets of O.

Theorem 2.6. Let Σn be a sequence of surfaces properly embedded in an open set O.
Suppose that there exists a sequence pn ∈ Σn converging to a point p ∈ O and that
there exist C and T such that

sup
Σn

|An| < C and [Hn]α < T.

Suppose also that ‖Hn‖Lp(Σn) is going to zero. Then, there exists a subsequence Σnk

and a connected minimal surface Σ in O satisfying

(1) Σ is contained in the accumulation set of Σn;
(2) p ∈ Σ and |A|(pn) = lim |An|(pn);
(3) Σ is embedded in O;
(4) Any divergent path in Σ either diverges in O or has infinite length.

Their proofs are a slight modification of the proofs of Theorem 1.3 and 1.4. As
before, the uniform bound on the second fundamental form implies that W (pn, r, ε)∩
Σn consists of a collection of graphs. In the proofs of Theorem 1.3 and 1.4 we needed
the surfaces to be minimal in order to obtain uniform C2,α estimates for these graphs.
In fact, it can be shown that in order to obtain C2,α estimates, it suffices to know
that ‖Hn‖Lp(Σn) and [H]α are bounded. Once uniform C2,α estimates are obtained we
can apply Arzela-Ascoli Theorem to extract a subsequence of graphs which converges
C2 to a graph. The fact that ‖Hn‖Lp(Σn) is going to zero is ultimately used to show
that the limit graph is minimal.

Recall that by the Sobolev embedding theorem, a bound on ‖|∇Hn|‖Lq(Σn), q > 2,
gives a bound on [H]α. We could therefore restate Theorem 1.3 and 1.4 replacing the
uniform bound on [H]α with a uniform bound on ‖∇Hn‖Lq(Σn), q > 2. Furthermore,
if [H]α is not bounded uniformily, although we are not able to exctract a subsequence
of graphs which converges C2 to a minimal graph, it is still possible to exctract a
subsequence of graphs which converges C1 to a minimal graph. Moreover, an upper
bound on the norm of the second fundamental form of the limit is still valid. In other
words, the following theorem follows.

Theorem 2.7. Let Σn be a sequence of surfaces embedded in an open set O. Suppose
that there exists a sequence pn ∈ Σn converging to a point p ∈ O and that there exist
C such that

sup
Σn

|An| < C.
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Suppose also that ‖Hn‖Lp(Σn) is going to zero. Then, there exists a subsequence Σnk

and a connected minimal surface Σ in O satisfying

(1) Σ is contained in the accumulation set of Σn;
(2) supΣ |A| < C;
(3) Σ is embedded in O;
(4) Any divergent path in Σ either diverges in O or has infinite length.

In the next theorem we use Theorem 2.7 to describe more accurately the accumu-
lation set of a suquence of surface whose ‖Hn‖Lp is going to zero.

Theorem 2.8. Let Σn be a sequence of surfaces embedded in Bn(0) such that 0 ∈
Σ ⊂ Bn(0), ∂Σ(if non-empty) ⊂ ∂Bn(0). Suppose that there exists a constant C such
that supΣn

|An| < C and that ‖Hn‖Lp is going to zero as n goes to infinity then, up
to a subsequence, the accumulation set of Σn is non-empty and it consists either of a
connected complete properly embedded minimal surface Σ or of a collection of parallel
planes.

Moreover, Σ1
n converges C1 with multeplicity one to Σ1, where Σ1

n is the connected
component of Σn ∩ B1(0) which contains the origin and Σ1 is, depending on the
accumulation set, the connected component of Σ∩B1(0) which contains the origin or
a unit disk centered at the origin.

Proof. Supposing that it is false, let Σn be a sequence of surfaces embedded in Bn(0)
such that 0 ∈ Σn ⊂ Bn(0), ∂Σn ⊂ ∂Bn(0) and ‖Hn‖Lp < 1

n
. Theorem 2.7 implies

that there exists a complete connected embedded minimal surface, Σ, which contains
the origin and it is contained in the accumulation set of Σn. Furthermore, Σ has
bounded second fundamental form and therefore it is properly embedded, see [15]. If
Σn has another accumulation point which is not in Σ then the same argument shows
that there exists another complete connected properly embedded minimal surface,
Σ′, which is contained in the accumulation set of Σn and it is disjoint from Σ. The
results in [1, 21] imply that they must be parallel planes.

Let ε > 0 and let TN(ε) be an embedded tubular neighborhood of Σ1 of size
ε. Choose r and ε, r > 2ε > 0 such that for any p ∈ Σ, W (p, r, ε) ∩ Σ1

n consist
of a collection of graphs. Let u0 be the minimal graph over D(0, r) which locally
rapresents Σ1, and let un

0 be the graph in W (p, r, ε)∩Σn
1 containing the origin. From

the way Σ has been obtained, un
0 converges C1 to u0. For any q ∈ ∂W (0, r, ε) if

we let uq represents W (q, r, ε) ∩ Σ1 and un
q represents the connected component of

W (q, r, ε) ∩ Σ1
n which intersects un

0 , then we can assume that un
q converges C1 to uq.

Since Σ is properly embedded, Σ1 is compact. After finitely many steps it is possible
to continue un

0 to get a one sheeted cover of Σ1. �

Loosely speaking, in the next theorems we describe the geometry away form the
boundary of a surface whose Lp norm of the mean curvature is small.

6



Theorem 2.9. Given C > 0 there exist R = R(C) > 2, ε = ε(C) > 0 such that the
following holds.

Let Σ be a surface embedded in BR(0) such that 0 ∈ Σ ⊂ BR(0), ∂Σ(if non-empty) ⊂
∂BR(0) and ‖H‖Lp < 1

R
then Σ1 is properly embedded and has an embedded tubular

neighborhood of size ε.

Proof. Let us first show that Σ1 is properly embedded. Assuming false, let Σn be a
sequence of surfaces embedded in Bn(0) such that 0 ∈ Σn ⊂ Bn(0), ∂Σ ⊂ ∂Bn(0) and
‖Hn‖Lp < 1

n
. Theorem 2.8 implies that, after going to a subsequence, Σ1

n converges C1

with multeplicity one to a compact properly embedded minimal surface. This implies
that Σ1

n must be properly embedded for n large. This contradicts our assumption
and proves that Σ1 is properly embedded.

The fact that Σ1 is properly embedded implies that it admits an embedded tubular
neighborhood. However, its size might depend on Σ1. Arguing by contradiction and
using a compacteness argument as above one can prove that the size of the tubular
neighborhood does not depend on Σ1. In fact, it becoming smaller would contradict
the multiplicity one convergence. �

Note that embeddedness is the only topological assumption. For instance, we are
not assuming that the surface separates the ball or any restriction on the genus.

Another easy consequence of Theorem 2.9 is some bound on the area of an em-
bedded surface with bounded Lp norm of the mean curvature and bounded second
fundamental form. Although the area of such a surface is not necessarily bounded, we
show that it is possible to bound the area of connected pieces which are sufficiently
away from the boundary.

Corollary 2.10. Given C > 0 there exist K = K(C) > 0 and R = R(C) > 2 such
that the following holds.
Let 0 ∈ Σ be an embedded surface such that Σ ⊂ BR(0), ∂Σ ⊂ ∂BR(0), ‖H‖Lp < 1

R

and supΣ |A| < C then the area of Σ1 is bounded by K.

In the following compactness theorem we prove that if the elements of the sequence
in Theorem 2.9 are embedded disks, so is the limit.

Theorem 2.11. Given C > 0 there exists R = R(C) > 2 such that the follow-
ing holds. Let Σn be a surface embedded in BR(0) such that 0 ∈ Σ ⊂ BR(0),
∂Σ(if non-empty) ⊂ ∂BR(0) and supΣn

|An| < C. Suppose also that ‖H‖Lp is go-
ing to zero as n goes to infinity and then Σn is simply connected. Then, up to a
subsequence, Σ1

n converges C1 to a properly embedded minimal disk Σ1.

Proof. In light of Theorem 2.9, all that needs to be showed is that Σ1
n is a disk. This

will be discussed in the next section. �
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3. Weak Convex Hull Properties

In this section we prove a weak convex hull property for surfaces with bounded Lp

norm of the mean curvature.
In the next lemma we prove that if Σ is surface contained in a compact set, its

second fundamental form is bounded and its boundary is contained in a certain ball
then, if the Lp norm of the mean curvature is small enough, the surface cannot
live too far outside the ball. The proof is by contradiction and uses a compactness
argument. The idea is that after taking a convergent subsequence, since the limit
minimal surface satisfies a convex hull property, an analogous property has to be
satisfied by the elements in the sequence. Notice that we need the elements of the
sequence to be contained in a compact set otherwise one could take a sequence of
spheres with radii going to infinity. The Lp norm of the mean curvature of these
spheres is going to zero, p > 2, but they do not satisfy any weak convex hull property.

Lemma 3.12. Given l > 1, ε > 0 and 1 ≤ p < ∞ there exists an n = n(l, ε, p) > 0
such that the following holds.

Suppose Σ is a compact surface such that Σ ⊂ Bl(0), ‖H‖Lp < 1
n

and supΣ |A| < C
and let Σ1 ⊂ Σ be a surface such that ∂Σ1 ⊂ B1(0). Then Σ1 ⊂ B1+ε(0).

Proof. The proof is a proof by contradiction. Assume that there exists a sequence of
Σn and Σ1

n ⊂ Σn such that Σn ⊂ Bl(0), ‖Hn‖Lp < 1
n
, supΣn

|An| < C, ∂Σ1
n ⊂ B1(0)

and Σ1
n 6⊂ B1+ε(0). Let pn ∈ Σ1

n such that

(3.6) l ≥ |pn| = max
q∈Σ1

n∩R3\B1(0)
|q| > 1 + ε.

After going to a subsequence we can assume that pn converges to a point p ∈
Bl(0)\B1+ε(0). Consider δ ≤ ε

2
such that the connected component of W (pn, δ, δ)

that contains pn consists of a graph over D(pn, δ). In particular, after going to a
subsequence, the graph containing pn would converge C1 to a minimal graph which is
tangent to B|p|(0) and contained inside its convex side. This contradicts the maximum
principle and proves the theorem. �

In the case when p = ∞ a stronger weak convex hull property that does not
require a bound on the second fundamental form and can be proved without using a
compactness argument.

Lemma 3.13. Fix l > 1 and let Σ be an embedded surface such that Σ ⊂ Bl(0),
supΣ |H| < 1

2l
. Let Σ′ ⊂ Σ be a compact surface such that ∂Σ′ ⊂ Br(p), r > 0, then

Σ′ ⊂ Br(p).

Proof. If Σ′ is not contained in Br(p) then there exists an R, r < R < 2l, such that
Σ′ is contained inside BR(p) and it is tangent to its boundary. Let k1(q) and k2(q)
be the principal curvatures at q. Clearly, k1(q) and k2(q) have the same sign, and
|ki(q)| ≥

1
R

> 1
2l

. Consequently, |H(q)| ≥ 1
2l

. This contradicts the assumption and
proves the lemma. �
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4. Structure Theorem

In this section we prove the structure theorem for embedded disks with bounded
Lp norm of the mean curvature, p ≥ 1, and bounded Lq norm of the gradient of the
mean curvature, q > 2. For simplicity we are going to state the theorems when p = ∞
and assuming a bound on [H]α.

This is the definition of multi-valued graph:

Definition 4.14 (Multi-valued graph). Let Dr be the disk in the plane centered at
the origin and of radius r and let P be the universal cover of the punctured plane C\0
with global coordinates (ρ, θ) so ρ > 0 and θ ∈ R. An N-valued graph of a function u
on the annulus Ds\Dr is a single valued graph over {(ρ, θ)|r ≤ ρ ≤ s, |θ| ≤ Nπ}.

When dealing with multi-valued graphs, the surface to keep in mind is the helicoid,
Fig. 1. A parametrization of the helicoid that illustrates the existence of such an
N -valued graph is the following

(s sin t, s cos t, t) where (s, t) ∈ R
2.

It is easy to see that it contains the N -valued graph φ defined by

φ(ρ, θ) = θ where (ρ, θ) ∈ R
+\0 × [−Nπ, Nπ].

This is what Colding and Minicozzi proved:

Theorem 4.15. [8, Theorem 0.4.] Given N ∈ Z+, ω > 1 and ε > 0, there exist
C = C(N, ω, ε) > 0 such that the following holds.

Let 0 ∈ Σ ⊂ BR ⊂ R3 be an embedded minimal disk such that ∂Σ ⊂ ∂BR. If

sup
Σ∩Br0

|A|2 ≤ 4C2r−2
0 and |A|2(0) = C2r−2

0

for some 0 < r0 < R, then there exists R < r0

ω
and (after a rotation) an N-valued

graph Σg ⊂ Σ over DωR\DR with gradient ≤ ε and distΣ(0, Σg) ≤ 4R.

This is our main result:

Theorem 4.16. Given N ∈ Z+, ω > 1, ε > 0, p ≥ 1, and T > 0 there exist
C1 = C1(N, ω, ε) > 0, C2 = C2(N, ω, ε, T, p) > 0, and l = l(N, ω, ε, p) > 1 such that
the following holds.

If Σ ⊂ R
3 is an embedded disk with 0 ∈ Σ ⊂ Br0l(0), ∂Σ ⊂ ∂Br0l(0),

sup
Σ∩Br0l(0)

|A|2 ≤ 4C2
1r

−2
0 and |A|2(0) = C2

1r
−2
0 ,

(4.7) ‖H‖Lp ≤ r
2−p

p

0 C2 and r1+α
0 [H]α ≤ T

for some r0 > 0, then there exists R < r0

ω
and (after a rotation) an N-valued graph

Σg ⊂ Σ over DωR\DR with gradient ≤ ε and distΣ(0, Σg) ≤ 4R.
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Proof. Theorem 4.16 will follow by rescaling after we prove it for r0 = 1. Assuming
r0 = 1 the hypotheses become 0 ∈ Σ ⊂ Bl(0), ∂Σ ⊂ ∂Bl(0),

sup
Σ∩B

l
(0)

|A|2 ≤ 4C2
1 and |A|2(0) = C2

1 ,

|H| ≤ C2 and [H]α ≤ T.

We have to prove that fixed T > 0 there exists C2 such that if the above is true, then
Σ contains a multi-valued graph in the ball of radius 1. The proof is by contradiction
and uses a compactness argument.

Assuming that the theorem is false, let C1 be as big as given by Theorem 4.15, let
l be as given by Theorem 2.11 and let Σn be a sequence of embedded disks satisfying
the hypotheses of the statement that does not contain a multi-valued graph and with
|H| less than 1

n
. As n goes to infinity, Theorem 2.11 gives that, up to a subsequence,

Σ1
n (the connected component of Σn ∩B1(0) containing the origin) converges C2 with

multiplicity one to a minimal disk Σ1. The minimal disk containing the origin satisfies
the hypotheses of Theorem 4.15 and therefore it contains a multi-valued graph. Since
the limit contains a multi-valued graph, Σ1

n must also contain a multi-valued graph
for n large. This gives a contradiction and proves the theorem. �

Notice that the C2 convergence guarantees that not only does Σn contain an N -
valued graph, but the properties of this graph, such as the upper bound on the
gradient, are preserved.

When the mean curvature is bounded in L∞ we can prove the next two corollaries.
This is due to the fact that in such a case we have a stronger weak convex hull property.
For simplicity we will not state them in full generality as we did for Theorem 4.16.
The general versions can be easily obtained using a rescaling argument.

In the next corollary we prove that if the second fundamental form of an embedded
disk at a point is bigger than what it is necessary to prove existence of an N -valued
graph and it is almost its maximum, and the disk satisfies (4.7) in Theorem 4.16 then
the disk contains a multi-valued graph, possibly on a smaller scale.

Corollary 4.17. Given N ∈ Z+, ω > 1, ε > 0, and T > 0 there exist C1 =
C1(N, ω, ε) > 0, C2 = C2(N, ω, ε) > 0, and l1 = l1(N, ω, ε) > 1 such that the
following holds.

If Σ ⊂ R3 is an embedded disk with 0 ∈ Σ ⊂ Bl(0), ∂Σ ⊂ ∂Bl(0),

sup
Σ∩Bl(0)

|A|2 ≤ 4(C + β)2 and |A|2(0) = (C + β)2,

|H| ≤ min(C2,
1

2l
) and [H]α ≤ T

for some α > 0, l > l1 then there exists R < C
ω(C+β)

and (after a rotation) an N-valued

graph Σg ⊂ Σ over DωR\DR with gradient ≤ ε.
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Proof. Consider the rescaled surface Σ′ = C+β

C
Σ and let Σ′′ be the connected compo-

nent of Σ′ ∩Bl(0) that contains the origin. Thanks to the weak convex hull property
Σ′′ is still a disk and since C+β

C
> 1 it satisfies the hypothesis of Theorem 4.16. It

follows that there exists R < 1
ω

and (after a rotation) an N -valued graph Σg ⊂ Σ′′

over DωR\DR with gradient ≤ ε. Thus, rescaling back proves the corollary. �

In the next corollary we prove that if the second fundamental form of an embedded
disk is big at a point but not necessarily almost its maximum, and the disk satisfies
(4.7) in Theorem 4.16 then the disk contains a multi-valued graph, possibly around
another point.

Corollary 4.18. Given N ∈ Z+, ω > 1, ε > 0, and T > 0 there exist C1 =
C1(N, ω, ε) > 0, C2 = C2(N, ω, ε) > 0, and l1 = l1(N, ω, ε) > 1 such that the
following holds.

If Σ ⊂ R3 is an embedded disk with 0 ∈ Σ ⊂ Bl(0), ∂Σ ⊂ ∂Bl(0), |A|(0) = C,

|H| ≤ min(C2,
1

2l
) and [H]α ≤ T

for some l > l1 then there exist p ∈ Σ, R < 1
ω
, and 0 < δ < 1 such that, after

a translation that takes p to the origin and possibly after a rotation, Σ contains an
N-valued graph Σg over DδωR\DδR with gradient ≤ ε.

Proof. If

sup
Σ

|A|2 ≤ 4C2

then we are done, because of Theorem 4.16.
If instead supΣ |A|2 > 4C2 then consider the non negative function F (x) = (l −

|x|)2|A(x)|2. F is zero on the boundary of Σ therefore it obtains its maximum at a
point in the interior. Let p be that point, i.e.

F (p) = max
Σ

F (x) = (|p| − l)2|A|2(p) ≥ F (0) > 4l2C2.

Let 2σ < l − |p| such that

4σ2|A|2(p) = 4l2C2.

Since F achieves its maximum at p,

(4.8) sup
Bσ(p)∩Σ

σ2|A|2 ≤ sup
Bσ(p)∩Σ

σ2 F (x)

(|x| − l)2
≤

≤
4σ2

(|p| − l)2
sup

Bσ(p)∩Σ

F (x) =
4σ2

(|p| − l)2
F (p) = 4σ2|A|2(p).

From the weak convex hull property we know that Bσ(p) ∩ Σ consists of a collection
of disks. Rescale Bσ(p) ∩ Σ by a factor of l

σ
≥ 1 and translate p to the origin. Let
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Σ′ ⊂ Bl(0) be the rescaled connected component that contains the origin. Σ′ is an
embedded disk such that the following holds: Σ′ ⊂ Bl(0), ∂Σ′ ⊂ ∂Bl(0),

|H ′| ≤
σ

l
min(C2,

1

2l
) ≤ min(C2,

1

2l
), [H ′]α ≤ (

σ

l
)1+αT ≤ T and sup

Σ′

≤ 4C2 = 4|A|2(0).

Theorem 4.16 gives that there exists R < 1
ω

and (after a rotation) an N -valued
graph Σg ⊂ Σ′ over DωR\DR with gradient ≤ ε. Thus, rescaling back proves the
corollary. �

5. Counterexamples

In this section we are going to show that in order to have a multi-valued graph
form in a smooth surface, it is not enough to assume that the mean curvature is small
relative to the second fundamental form, which is big. How small the mean curvature
has to be must also depend on the Holder norm of the mean curvature.

Let us consider the graph of the function

u(x, y) = xy log
√

x2 + y2.

Let r =
√

x2 + y2 then the following holds.

(1) ∇u = (y log r + x2y

r2 , x log r + y2x

r2 )
(2) ∆u = 4xy

r2

(3) uxy = log r + 1 − 2x2y2

r4

Let us take a sequence of mollification uσ(x, y) that approximates u. As σ goes
to zero max Hess(uσ) goes to infinity. For any C > 0 consider the new sequence of
graphs C

max Hess(uσ)
uσ. This is a sequence of graphs whose mean curvature is going

to zero and that is converging C1 to a plane, but whose maximum of the second
fundamental form is C. Clearly though, a graph does not contain a multi-valued
graph around any point.
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