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Abstract

In this paper we set out a test of the New Keynesian Phillips Curve
(NKPC) based on Vector Autoregressive (VAR) models. The proposed
technique does not rely on the Anderson and Moore (1985) method and
can be implemented with any existing econometric software. The idea is to
use a VAR involving the inflation rate and the forcing variable(s) as the ex-
pectation generating system and find the restrictions that nest the NKPC
within the VAR. The model can be estimated and tested through maxi-
mum likelihood methods. We show that the presence of feedbacks from
the inflation rate to the forcing variable(s) can affect solution properties
of the NKPC; when feedbacks are detected the VAR should be regarded
as the final form solution of a more general structural model. Possible
non-stationary in the variables can be easily taken into account within our
framework. Empirical results point that the standard “hybrid” versions of
the NKPC are far from being a good first approximation to the dynamics
of inflation in the Euro area.

Keywords: Inflation dynamics, New Keynesian Phillips Curve, Forward-
looking behavior, VEqCM.
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1 Introduction

The Phillips curve plays a central role in our understanding of business cycles
and the management of monetary policy. In recent years the literature on the
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so-called New Keynesian Phillips Curve (NKPC) has expanded rapidly albeit
with no clear-cut consensus on the empirical role of forward-looking components
in inflation dynamics1. Whereas Fuhrer and Moore (1995) and Fuhrer (1997)
present evidence on US inflation that seems to undermine the importance of
forward-looking components as relevant causes of inflation, the recent success of
the NKPC can be specially attributed to the papers by Galí and Gertler (1999)
(henceforth GG) and Galí et al. (2001) (henceforth GGLS), where “hybrid”
marginal-cost based versions of the Phillips curve are found to provide “good
first approximation” of inflation in the US and Euro area2.
The NKPC both in the “standard” or “hybrid” formulations, reads as a Lin-

ear Rational Expectation (LRE) model where the inflation rate depends on the
expected future value of inflation rate, lagged inflation (in the hybrid model) and
a measure of demand pressure, usually the output gap or the unemployment rate.
It can be derived through different routes within the New Keynesian paradigm
(Roberts, 1995). In GG and GGLS real unit labor costs are used as a proxy of real
marginal costs; the inclusion of lagged inflation terms in the base “pure forward-
looking” version of the model is usually motivated by assuming that a fraction of
producers set their prices according to a rule of thumb (GG and Steinsson, 2003),
or by referring to models with two (or more) period overlapping wage contracts
as in e.g. Fuhrer and Moore (1995)3. In this paper we shall refer to the hybrid
formulation of the model as the NKPC, except where indicated.
The estimation of the NKPC is carried out either through Generalized Method

of Moments (GMM) or Maximum Likelihood (ML) techniques with surprisingly
different results. The existing evidence seems to suggest that estimation methods
heavily affect the empirical assessment about the NKPC. In general, ML leads to
rejections whereas GMM tends to support the model. Comparative drawbacks
and merits of ML versus GMM have been widely discussed within the class of
RE models4. In principle GMM are “ideal” because they are easy to compute
and require minimum assumption about exogenous (forcing) variables; however,
it is well recognized that GMM-based estimates can be markedly biased in small
samples and subject to “weak instruments” or “weak identification” issues (Stock
et al., 2002). On the other hand, ML requires a full specification of the model,

1The NKPC can be derived through different routes within the sticky prices paradigm of
the New Keynesian economics, see e.g. Roberts (1995) for a survey.

2See also Sbordone (2002).
3In practise the inclusion of lags of inflation in the baseline model allows to overcome the

“jump” dynamics that the non-hybrid specification would entail, making hard a reconciliation
among observed inflation patterns and the way actual central banks react to supply shocks.
Policy implications are different if one appeals to the standard or hybrid formulation of the
NKPC: according to the former monetary policy can drive a positive rate of inflation to zero
with virtually no loss of output and emplopyment (“disinflation without recession”). In the
latter disinflation experiments can not be accompanied by low sacrifice ratios.

4For instance Fuhrer et al. (1995) focus on the expectations-based linear-quadratic inventory
model and find that GMM tends to reject the model whereas ML supports it.
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including the process generating explanatory variables and its implementation
generally results in numerical optimization procedures5. A considerable bulk of
the recent literature on the NKPC tries to explain discrepancies of results through
different (often contrasting) arguments6.
The use of the NKPC as a model of inflation dynamics seems to disregard

(at least apparently) that there exist many possible sources of price growth7.
The present paper is in line with Hendry’s (2001) view that no “single cause”
explanation of inflation can be empirically provided for a given industrialized
economy. Moreover, when aggregated data are used as for the Euro area, it
should be argued that the aggregation process might blur the actual single-agent
behavioral relations connecting prices and other macroeconomic variables at the
country level.
However, as the Phillips curve traditionally sustains the debate of monetary

policy, the issue of properly testing the empirical validity of the NKPC can be
still regarded as a relevant question to address. To our knowledge Bårdsen et al.
(2002) is one of the papers in the recent literature where a number of relevant
issues characterizing the empirical analysis of the NKPC are highlighted. In
short, Bårdsen et al. (2002) argue and show that the empirical analysis of the
NKPC can be hardly carried out within a single-equation stationary framework.
Also Mavroeidis (2004) stresses that the properties of non-modelled variables are
crucial for the identification of the parameters of the NKPC, even when these are
thought to be exogenously given.
The aim of this paper is to provide a simple test of the empirical validity of

the NKPC. We use Vector Autoregressive (VAR) models and set out a simple
ML procedure which can be implemented with any existing econometric package.
The method is directly inspired by the technique proposed in Fanelli (2002) for
estimating and testing forward-looking models stemming from intertemporal op-
timization schemes. We show that our VAR-based expectations method to test
the NKPC leads to conclusions very similar, in spirit, to those in Bårdsen et al.
(2002) and Mavroeidis (2004) obtained through a different routes.
The proposed method differs in some aspects we discuss in the paper from

the ML procedure exploited in Fuhrer and Moore (1995) and Fuhrer (1997) also

5The debate among “limited-information” vs “full-information” methods in the estimation
and testing of LRE has a long tradition in the literature, see e.g. Wickens (1982).

6Rudd and Whelan (2002) and Lindé (2003) point the specification bias associated with GG
GMM approach through opposite arguments. Galí and Gertler (2003) reply to these criticisms
by showing that their GMM results are robust to a variety of estimation procedures. See also,
inter alia, Ma (2002), Mavroeidis (2002, 2004), Jondeau and Bihan (2003) and Søndergaard
(2003).

7For instance, using data from the eighties onwards, Gerlach and Svensson (2003) refer to
a backward-looking formulation of the Phillips curve where both the output gap and the real
money gap (the difference between the real money stock and the long run equilibrium real
money stock) paly a role. They find that both contain considerable information on future
inflation in the Euro area.
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based on VARs. In our set up a VAR system involving the inflation rate and
the explanatory (forcing) variable(s) is used as an approximated solution to the
NKPC8. The VAR is used as the expectation generating system (or the final form
solution to the NKPC) so that applying the Undetermined Coefficient method
it is possible to find the cross restrictions between its parameters and those of
the NKPC. These restrictions can be used to test the model and to recover ML
estimates of structural parameters. We show that under certain conditions the
absence of Granger-causality from the inflation rate to the forcing variable can be
sufficient for the existence of a unique and stable solution to the NKPC. Never-
theless, the absence of feedbacks from inflation to e.g. wages, the unemployment
rate or the output gap is rather implausible in practise. Following the arguments
in Timmerman (1994), feedbacks from the decision to the forcing variable(s) in
LRE models might signal that relevant economic mechanisms (for instance “the
other side of the market”) have not been modelled. For the situations where
feedbacks from the inflation to the forcing variable(s) are detected, we do not
impose any explicit saddlepath restrictions on the parameters of the VAR; rather
we argue that in these situations solution properties of the NKPC should be in-
vestigated within a structural system involving for instance a structural wage (or
unemployment or output gap) equation and so on.
We also show that non-stationarity and the possibility of cointegration can be

easily accommodated within our framework by appealing to Vector Equilibrium
Correction (VEqC) representations of the VAR.
Our tests of the NKPC based on Euro area data and the 1970-1998 period

show that even using different measures of the forcing variable (wage share, out-
put gap, unemployment rate) the empirical evidence is not supportive of the
NKPC, at least in the standard “hybrid” formulation currently very popular in
the literature. This does not rule out that more dynamically complex forward-
looking specifications might be appropriate for describing Euro area inflation.
Moreover, using a simple spurious regression argument our results point that
when estimating the NKPC through GMM as if variables were stationary may
lead to misleading inference. Indeed we find that the persistence of the inflation
rate and driving variables over the 1970-1998 period can be well described as
that of unit-roots processes. Moreover, feedbacks from the inflation rate to the
driving variables are found, suggesting that the single-equation based estimation
of the NKPC might be based on a LRE model with no stable solution.
The paper is organized as follows. In Section 2 we introduce the “hybrid”

version of the NKPC and in Section 3 we discuss solution properties in the pres-
ence of feedbacks from the inflation rate to the explanatory variable. In Section

8Throughout we shall use the terms “explanatory variable”, “forcing variable” and “driving
variable” interchangeably. Indeed, though the term “forcing variable” should refer to a variable
exogenously given within the model, we show that the variables which are commonly selected
to play this role in single-equation NKPC specifications are likely to be Ganger-caused by the
inflation rate.
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4 we define out VAR-based test of the NKPC. We identify three different cases
depending on the stationarity- integration/cointegration properties of variables.
In Section 5 we summarize the empirical results for the Euro area. Section 6
contains a summary and some insights for further research.

2 The New Keynesian Phillips curve

Following Galí and Gertler (1999), Galí et al. (2001) in its “final” structural form
the model can be formulated as

πt = γfEtπt+1 + γbπt−1 + λxt (1)

where πt is the inflation rate at time t, xt a forcing (driving) variable, usually
a measure of representative firm’s real marginal costs (percent deviations from
its steady state value), i.e. the labor share in output or the output gap, Etπt+1
is the expected value at time t of the inflation rate prevailing at time t + 1 and
λ, γf and γb are structural (positive) parameters. Expectations are conditional
on the information set available at time t, i.e. Etπt+1 = E(πt+1 | Ft) where
{πt, xt , πt−1, xt−1, ...} ⊆ Ft.
The equation (1) is derived in Galí and Gertler (1999), Galí et al. (2001) by

appealing to the RE staggered-contracting model of Calvo (1983). Within this
framework the parameters of (1) are given by

γf = ρθφ−1

γb = ωφ−1

λ = (1− ω)(1− θ)(1− ρθ)φ−1

where φ = θ + ω[1 − θ(1 − ρ)] and 0 < ρ < 1, 0 < θ < 1 and 0 ≤ ω < 1
are the “deep” parameters measuring respectively the discount factor, the degree
of price stickiness and the degree of “backwardness” in price setting. Therefore
(1) incorporates two types of firms: firms that behave in the forward-looking
manner as in Calvo (1983), and firms that behave according to a simple “rule of
thumb” where prices are set according to past evolution in order to incorporate
structural inertia and persistence in inflation dynamics. In general γf ≥ 0, γb ≥ 0
and γb + γf ≤ 1.
On the other hand, a version of (1) with γb = 1/2 = γf is derived in Fuhrer

and Moore (1995) and Fuhrer (1997) by appealing to a two-period version of the
Taylor staggered contracting framework. Within this framework a more general
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dynamic specification can be formulated as

πt = ϕ

·
1

3
(πt−1 + πt−2 + πt−3)

¸
+ (1− ϕ)

·
1

3
Et(πt+1 + πt+2 + πt+3)

¸
+ λxt (2)

where the parameter ϕ indexes the weight on the past relative to expectations of
the future (Fuhrer, 1997).
Turning on the equation (1), observe that with γb = 0 the model collapses to

the “standard” formulation of the NKPC. The forward-solution associated to (1)
is given by

πt = δ1πt−1 +
λ

δ2γf

∞X
j=0

µ
1

δ2

¶j
Etxt+j (3)

where δ1 and δ2 are respectively the stable and unstable roots of the characteristic
equation

γbz
2 − z − γf = 0 (4)

see e.g. Pesaran (1987, Section 5.3.4)9.
From the policy point of view the NKPC (1) implies that a fully credible

disinflation implies a positive sacrifice ratio which increases with the fraction of
backward-looking firms. On the other hand if γb = 0 the purely forward-looking
NKPC entails that a fully credible disinflation has no output costs.
Formally the equations (1) and (3) are specified as “exact” LRE models in

the sense of Hansen and Sargent (1991). This means that no term unobservable
for the econometrician is included on the right-hand-side of (1) (and (3)). The
“exact” formulation of the NKPC is used in e.g. GG and GGLS, whereas speci-
fications where a disturbance term is added on the right hand side of (1) may be
found, inter alia, in Bårdsen et al. (2002) and in Galí and Gertler (2003). The
inclusion of an exogenous disturbance term on the right and side of (1) is usually
interpreted as a cost push shock or simply as a pricing error. The inclusion of
such term in the model is not irrelevant for solution properties and estimation
issues.

3 Solution properties

The NKPC (1) belongs to the class of LRE models with future expectations on
the endogenous variables. It is well recognized that LRE models which include
forward-looking terms typically imply equations of motion with unstable roots.

9Althought in a different context Fanelli (2002) shows that making inference on (1) or in
the forward counterpart (3) may imply no loss of information if the link (4) characterizing the
parameters of the two models is taken into explicit accout.
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The solutions of models similar to (1) are explicitly discussed in e.g. Pesaran
(1987), Chap. 6 and 7 for the cases where there are no feedbacks from the
decision to the forcing variables (i.e. from πt to xt). As shown by Timmermann
(1994) in the context of present-value models the presence of feedbacks from the
forcing to the decision variables may potentially affect stability and uniqueness
of solutions. In this section we discuss the stability of solutions to (1) in the
presence of Granger-causality from πt to xt. In Section 5 we will show that this
assumption is not at odd with the empirical evidence in the Euro area10.
To discuss solution properties we exploit a Blanchard and Kahn (1980) (hence-

forth BK) representation of the NKPC. First, to make discussion more general,
we add a disturbance term ut on the right-hand side of (1) such that Etut+1 = 0.
By rewriting terms opportunely we get the expression

Etπt+1 − γ−1f πt + γ−1f γbπt−1 + γ−1f λxt = γ−1f ut. (5)

Let us assume for the moment that the process generating xt is given by the
Autoregressive model (AR(2))

xt = a11xt−1 + a12xt−2 + εxt (6)

where a1j, j = 1, 2 are parameters such that the roots of the characteristic equa-
tion

1− a11s− a12s2 = 0 (7)

lie outside the unit circle (| s |> 1) and εxt is a White Noise term. For simplicity
we consider a two-lag model in (6) without loss of generality.
It is then possible to represent (6) and (5) jointly in companion formµ

Xt+1
EtPt+1

¶
= A

µ
Xt
Pt

¶
+ γZt (8)

where

µ
Xt+1
EtPt+1

¶
=


xt+1
xt

Etπt+1
πt

 ; A =


a11 a12 0 0
1 0 0 0

−γ−1f λ 0 γ−1f −γ−1f γb
0 0 1 0


10To my knowledge Petursson (1998) is the only paper where it is not found Granger causality

from the inflation rate to the forcing variables in a forward-looking type model of price deter-
mination of the Icelandic economy. Petursson (1998) derives his NKPC-type equation from
an intertemporal optimizing problem similar to Rotemberg’s (1982) model, where the forcing
variables are the wage rate and import prices.
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γ = I4 ; Zt =


εxt+1
0

−γ−1f ut
0

 .
System (8) is a representation consistent with Blanchard and Kahn (1980) model;
here m = 1 represents the number of non-predetermined (forward-looking) vari-
ables of the system. The advantage of the BK representation (8) is that properties
of solutions (uniqueness and stability) can be easily characterized through the
eigenvalues of the A matrix. Following Blanchard and Kahn (1980), Proposition
1, 2 and 3, if the number h of eigenvalues of A outside the unit circle is equal to
the number of non-predetermined (forward-looking) variables (h = 1), then there
exists a unique stable solution. If h > 1 then there is no stable solution for the
model (8); finally, if all eigenvalues lie inside (or on) the unit circle then there is
an infinity of (stable) solutions.
The eigenvalues of A in (8) are given by

1

2γf

µ
1 +

q¡
1− 4γfγb

¢¶
,
1

2γf

µ
1−

q¡
1− 4γfγb

¢¶
1

2
a11 +

1

2

q
(a211 + 4a12) ,

1

2
a11 − 1

2

q
(a211 + 4a12)

where the last two lie inside the unit circle by construction (they correspond to
the inverse of the roots of (7)). As concerns the first two eigenvalues, it can be
shown that if γf + γb < 1 one lie inside and the other outside the unit circle, i.e.
the NKPC has a unique stable solution (see also Mavroeidis, 2002, footnote 14);
if γf + γb = 1 one of the two eigenvalues is exactly at one whereas the other can
be greater or less than one depending on whether γf is less or greater than 1/2
11.
Suppose now that (6) is replaced by

xt = a11xt−1 + a12xt−2 + f11πt−1 + f12πt−2 + εxt (9)

where, other things remaining unchanged, f1j 6= 0 at least for one j = 1, 2. Here
the inflation rate πt Granger-causes xt. It is still possible to represent (9) and
(5) jointly as in (8) but with the A matrix given by

Af =


a11 a12 f11 f12
1 0 0 0

−γ−1f λ 0 γ−1f −γ−1f γb
0 0 1 0


11If γf + γb > 1 no stable solution exists.
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where we used the subscript “f” to highlight the presence of feedbacks. Now the
eigenvalues of Af correspond to the roots, ρ, of the following polynomial:

ρ4γf +
¡−1− a11γf¢ ρ3 + ¡γb − γfa12 + λf11 + a11

¢
ρ2

− (a11γb − a12 − λf12) ρ− a12γb = 0

where it is evident that the feedback parameters f1j, j = 1, 2, affect roots proper-
ties. It is not guaranteed now that just one root falls outside the unit circle, unless
parameters are properly constrained. The point here is: is there any economic
reason for such constraints to hold?
Consider as an example the following set of values taken from Table 2 in

GGLS: γf = 0.69, γb = 0.27, λ = 0.006 where xt is measured as the wage share.
These values are in GGLS GMM estimates of the parameters of the NKPC (1)
obtained over the quarterly data 1970-1998, but here we treat them as the “true”
structural values. Assume further that in (9) a11 = 0.89, a12 = 0, f11 = 0 ,
f12 = 0.21; then the eigenvalues of Af are: 1. 08, 0. 91, 0. 35, 0 and a unique
and stable solution occurs. However, if ceteris paribus, the parameters of (9) are
a11 = 0.95, a12 = 0, f11 = 0 , f12 = 0.53, the eigenvalues of Af are: 1. 03±0.042i,
0. 35, 0 and no stable solution exists.
These simple examples show that in the presence of feedbacks from the infla-

tion to the driving variable it is not clear whether the NKPC can be reconciled
with a non-explosive inflation process, unless the parameters of the model are
opportunely constrained. These example also highlight that GMM-based esti-
mation of the NKPC (1) (or equivalently (3)) that ignores the properties of the
process generating xt is based on an implicit stability condition.
Finally, it is worth noting that in the presence of feedbacks from πt to xt

a unique and stable solution may occur even if γf + γb > 1; if for example:
γf = 0.75, γb = 0.30, λ = 0.5, a11 = 0.89, a12 = 0, f11 = 0.03 , f12 = −0.09, the
eigenvalues of Af are: 1. 12, 0. 55± . 26i, 0.
As already observed, feedbacks might signal the presence of non modelled

relationships. For instance, assume that xt in (1) represents the output gap and
that the model generating xt can be described as

xt = ςEtxt+1 + (1− ς)xt−1 − φ(rt −Etπt+1) + κt (10)

consistently with a demand equation (or IS) equation derived from a repre-
sentative agent intertemporal utility maximizer with external habit persistence
(Fuhrer, 2000). In (10) ς and φ are structural parameters, rt is a short term
nominal interest rate and κt can be regarded as a demand shock. The model
can be closed by specifying the monetary policy rule for rt as in e.g. Clarida
et al. (2000); to the purposes of our analysis it is sufficient to observe that by
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deriving Etπt+1 from (1) and substituting into (10), πt Granger causes xt. In this
case solution properties of the NKPC should be investigate within a complete
LRE structural model comprising (1), (10) and the policy rule as in e.g. Moreno
(2003).

4 Testing the NKPC

In this section we discuss a simple test of the NKPC. We refer, for simplicity, to
the “exact” specification of the model, nevertheless we show that the approach
can be extended with minor modifications to non-exact specifications.
The idea motivating our test is that if the unique and stable solution of the

NKPC can be approximated as a VAR involving πt and xt, then it is possible
to find the cross restrictions between the parameters of the two model by the
Undetermined Coefficient method. Then estimation issues can be easily addressed
within the restricted VAR12. In addition, possible cointegration properties of
variables can be suitably captured by referring to a VEqCM representation of
the VAR.
This approach for testing “exact ” LRE through VARs was originally pro-

posed in Baillie (1989) and then exploited in Johansen and Swensen (1999) for
cointegrated LRE models. It differs in some respects from the ML procedure
exploited in Fuhrer and Moore (1995) and Fuhrer (1997) also based on VARs.
First, the procedure used by Fuhrer and Moore (1995) and Fuhrer (1997) is

based on the Anderson and Moore (1985) solution technique. It first converts
the joint process involving the structural model (the NKPC) and the process
generating the forcing variables into a companion form, then uses an eigensys-
tem calculation to derive the unique stable solution of the forward-looking LRE
model in the form of a VAR embodying “saddlepath” parametric restrictions13.
It proves to be computationally efficient and straightforward to implement and
allows the presence of feedbacks from the inflation rate to the forcing variable(s).
However, in the computation of the saddlepath solution to the model the proce-
dure does not provide any insight or economic justification for the “stabilizing”
(equilibrium) forces at work. Hence if the are feedbacks from the inflation rate
to the forcing variable(s) the parameters of the model are suitably restricted to
generate a unique stationary solution without providing any economic justifica-
tion of the reasons why such restrictions should apply. In our set up the VAR
is used as an approximated solution to the NKPC14. By means of the Undeter-
mined Coefficient method it is possible to find the cross restrictions between the
12The identification of the model can be investigated by following the same route as Fanelli

(2002). It can be proved that given (1) a necessary condition for the identification of the
structural parameters if that the number of lags in the VAR is greater or equal to 2. See also
Mavroeidis (2002) for a similar result.
13See also Fuhrer et al. (1995) for an extensive summary.
14Throughout we shall use the terms “explanatory variable”, “forcing variable” and “driving
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parameters of the VAR and those of the NKPC and these restrictions can be
suitably used to test the model and to recover ML estimates of structural param-
eters. We show that under certain conditions the absence of Granger-causality
from the inflation rate to the forcing variable can be sufficient for the existence
of a unique and stable solution to the NKPC. Nevertheless, the absence of feed-
backs from inflation to e.g. wages, the unemployment rate or the output gap is
rather implausible in practise. Following the arguments in Timmerman (1994),
feedbacks from the decision to the forcing variable(s) in LRE models might signal
that relevant economic mechanisms (for instance “the other side of the market”)
have not been modelled. For the situations where feedbacks from the inflation
to the forcing variable(s) are detected, we do not impose any explicit saddlepath
restrictions on the parameters of the VAR; rather we argue that in these situa-
tions solution properties of the NKPC should be investigated within a structural
system involving for instance a structural wage (or unemployment or output gap)
equation and so on.
Second, in structural LRE models, decision rules depend on present value

calculations that are sensitive to the degree of persistence of the driving process.
However, the econometric analysis of the NKPC is generally carried out as if
variables were stationary, without any concern on the statistical properties of
variables within the selected sample15. A well recognized fact in dynamic mod-
elling is that knowledge about the presence and location of unit roots is crucial in
determining the appropriate choice of asymptotic distribution for coefficients and
test statistics. We show that non-stationarity and the possibility of cointegra-
tion can be easily accommodated within our framework by appealing to Vector
Equilibrium Correction (VEqC) representations of the VAR.
We consider three cases: the case where πt and xt are generated by a stationary

I(0) process, the case where πt and xt are generated by an I(1) cointegrated
processes in the sense of Johansen (1996) and the case where they are generated by
an I(1) non cointegrated process. For expositional convenience in the discussion

variable” interchangeably. Indeed, though the term “forcing variable” should refer to a variable
exogenously given within the model, we show that the variables which are commonly selected
to play this role in single-equation NKPC specifications are likely to be Ganger-caused by the
inflation rate.
15Modelling the inflation process as stationary over a period where it is not may lead to bias

downward its persistence and hence to misunderstand the related policy interventions. The
paper of Fuhrer and Moore (1995) represent an example where efforts are made to characterize
the linkages characterizing the inflation rate and its driving variable(s) at both low and higher
frequencies. By specifying a VAR including the inflation rate, a short term interest rate and
a measure of the output gap for the US economy, Fuhrer and Moore (1995), p. 135 conclude
that: “While we cannot reject the hypothesis that the data contain one or two unit roots, we
chose a stationary representation of the data for two reasons. [...]. By viewing inflation as an
I(0) process instead of an I(1) process we bias downward our estimate of inflation persistence,
and we strengthen the argument that the standard contracting model cannot adequately explain
inflation persistence”.
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that follows we shall consider bi-variate VARs including two or three lags; it is
clear, however, that the proposed method can be easily extended to more general
situations.

4.1 Case1: I(0) variables

We consider the vector Yt = (πt , x0t)
0 where xt can be a single scalar or a vector

of explanatory variables, and the following process

Yt = A1Yt−1 + . . .+AkYt−k + µ+ εt (11)

whereA1, . . . , Ak are (p×p)matrices of parameters, µ is a (p×1) constant, k is the
lag length, Y−p, ..., Y−1, Y0, are given and εt = Yt−Et−1Yt is a (p×1) martingale
difference process with respect to the informations set {Yt, Yt−1, ..., Y1} ⊆ Ft.
p, the dimension of the vector Yt, will be equal to two if just one driving variable
is considered, or greater than two if more than one driving variable is included
in the analysis. We further assume that εt ∼ N(0, Ω) and that the parameters
(A1, . . . , Ak, µ, Ω) are time invariant. Finally, the roots of the characteristic
equation

det(A(z)) = det(Ip −A1z −A2z2 − ...−Akzk) = 0 (12)

are such that | z |> 1 so that the VAR is (asymptotically) stable.
Consider the case where xt is a scalar and k = 2; the two equations of (11)

read as

πt = a11πt−1 + a12xt−1 + a13πt−2 + a14xt−2 + µπ + επt (13)

xt = a21πt−1 + a22xt−1 + a23πt−2 + a33xt−2 + µx + εxt (14)

therefore

Etπt+1 = a11πt + a12xt + a13πt + a14xt−1 + µπ. (15)

From (1):

Etπt+1 =
1

γf
πt − γb

γf
πt−1 − λ

γf
xt (16)

so that equating (15) and (16) and abstracting from the constant, the following
set of constraints must hold:

a11 =
1

γf
, a13 = −γb

γf
, a12 = − λ

γf
, a14 = 0. (17)
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The hypothesis of absence of Granger non-causality from πt to xt (which
guarantees, if γf + γb < 1, the existence of a unique stable solution, see Section
3) corresponds to

a21 = 0 , a23 = 0. (18)

It is evident that (17)-(18) define a set of restrictions that can be easily tested
(separately or jointly) in the context of the stationary VAR (11). For instance,
under the zero constraints in (17)-(18) (or in (17) alone), the ML estimator
of the parameters of the VAR corresponds to the Generalized Least Squares
(GLS) estimator, and Wald-type or Likelihood Ratio (LR) tests have standard
χ2-distribution with degree of freedom equal to the number of restrictions being
tested (Lütkepohl, 1993)16.
Abstracting from the Granger-causality between πt and xt, a simple test of

the NKPC (1) can be carried out by checking whether the zero forward-looking
restrictions in (17) are fulfilled or not; this can be interpreted as a test on the
“necessary conditions” for the NKPC to hold. If the zero forward-looking restric-
tions are not rejected, indirect ML estimates of the structural parameters γf , γb,
λ can be obtained from the ML (GLS) estimates of the VAR obtained under the
zero restrictions alone. Indeed by inverting the relations in (17) one gets:

bγf = ba−111 , bγb = −ba13 ba−111 , bλ = −ba12 ba−111
where ba11, ba12 and ba13 are the ML (GLS) estimates of the non-zero parameters
of the VAR. Alternatively, FIML estimates of the structural parameters can be
directly achieved by applying conventional numerical optimization procedures
for estimating the VAR (11) subject to the constraints implied by (17) (or by
(17)-(18)).
Before moving to the other cases we briefly discuss how the proposed method

can be implemented when the focus is on “non-exact” versions of the NKPC. In
these situations the expression in (5) reads as

Etπt+1 =
1

γf
πt − γb

γf
πt−1 − λ

γf
xt − 1

γf
ut

so that applying the law of iterated expectations and using Et−1ut = 0 it follows

Et−1πt+1 =
1

γf
Et−1πt − γb

γf
πt−1 − λ

γf
Et−1xt. (19)

From the equations (13)-(14) it is possible to compute expressions for Et−1πt+1,
Et−1πt and Et−1xt, which substituted into (19) allow to find the restrictions
between the parameters of the VAR and those of the NKPC.

16Observe that in (17)-(18) the number of zero restrictions is 3, one of which corresponds to
(17) alone.
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4.2 Case2: I(1) cointegrated variables

The VAR (11) can be written in the Vector Equilibrium Correction (VEqC) form

∆Yt = ΠYt−1 + Φ1∆Yt−1 + . . .+ Φk∆Yt−k+1 + µ+ εt (20)

where Π = −(Ip−
Pk

i=1Ai) is the long run impact matrix and Φj = −
Pk

i=j+1Ai,
j = 1, ..., k−1. Assume now that the roots of the characteristic equation (12) are
such that | z |> 1 or z = 1. The rank of theΠmatrix determines the cointegration
properties of the system (Johansen, 1996); if rank(Π) = r, 0 < r < p, then the
I(1) system is cointegrated and Π = αβ0, where α and β are two p× r full rank
matrices, where β0Yt are the cointegrating (equilibrium) relations of the system
and the elements of α measure the adjustment of each variable to deviations from
equilibrium.
Again, consider the case where xt is a scalar, k = 3 and πt and xt are linked

by the cointegrating relation: β0Yt = πt − β12xt ∼ I(0). The two equations of
(20) read as

∆πt = α11(πt−1 − β12xt−1) + φ11∆πt−1 + φ12∆xt−1 + φ13∆πt−2 + φ14∆xt−2 + µπ + επt

∆xt = α21(πt−1 − β12xt−1) + φ21∆πt−1 + φ22∆xt−1 + φ23∆πt−2 + φ24∆xt−2 + µx + εxt

therefore

Et∆πt+1 = α11(πt − β12xt) + φ11∆πt + φ12∆xt + φ13∆πt−1 + φ14∆xt−1 + µπ.
(21)

By simple algebra the NKPC1 (1) can be expressed in the error-correcting
form

Et∆πt+1 =

µ
1− γf − γb

γf

¶
(πt − ω xt) +

γb
γf

∆πt

where ω = λ
1−γf−γb , provided γf +γb 6= 1. Equating the last expression with (21)

the restrictions between the two models are given by

β12 =
λ

1− γf − γb
; (22)

α11 =

µ
1− γf − γb

γf

¶
; (23)

φ11 =
γb
γf

, φ12 = 0 , φ13 = 0 , φ14 = 0 (24)

whereas in order to rule out feedbacks from πt to xt:

α21 = 0 , φ21 = 0. (25)
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Also in this case, provided the zero constraints implied by the forward-looking
hypothesis are not rejected, it is possible to invert the relations in (22)-(24) to
recover indirect ML estimates of the structural parameters from those of the
cointegrated VEqC. Indeed, by solving (22), (23) and (24) with respect to the
structural parameters:

bλ = bβ12
Ã bα11bα11 + bφ11 + 1

!

bγf =
bφ11bα11 + bφ11 + 1bγb =
1bα11 + bφ11 + 1

where bβ12 is the super-consistent and efficient ML estimate of the cointegrat-
ing parameter and bα11 and bφ11 are the ML (GLS) estimates of the short run
parameters of the VEqC17.

4.3 Case 3: I(1) not cointegrated variables

Assume again that the roots of the characteristic equation (12) are such that
| z |> 1 or z = 1 but, ceteris paribus, in (20) rank(Π) = 0, i.e. variables are I(1)
but not cointegrated. The two equations of the VEqC correspond to those of the
following VAR in first differences:

∆πt = φ11∆πt−1 + φ12∆xt−1 + φ13∆πt−2 + φ14∆xt−2 + µπ + επt (26)

∆xt = φ21∆πt−1 + φ22∆xt−1 + φ23∆πt−2 + φ24∆xt−2 + µx + εxt (27)

therefore

Et∆πt+1 = φ11∆πt + φ12∆xt + φ13∆πt−1 + φ14∆xt−1 + µπ.

By differentiating (1) we get what one could an “accelerationist”-type NKPC:

∆πt = γfEt∆πt+1 + γb∆πt−1 + λ∆xt (28)

which on turn implies that

Et∆πt+1 =
1

γf
∆πt − γb

γf
∆πt−1 − λ

γf
∆xt.

17It is worth noting that if γf + γb < 1, then under the forward-looking constraints (22)-
(24) the parameter α11, which measures the adjustment of the acceleration rate (∆πt) to the
disequilibria, must be positive for a unique and stable solution to occur, as γf + γb < 1 implies
α11 > 0. Thus when in the cointegrated VEqC it is found that (25) holds but the adjustment
parameter is significantly negative, this indicicates that the NKPC (1) can not hold empirically.
However, as observed in Section 3 a unique and stable solution might even occur with γf+γb > 1
for particular parametric configurations in which (25) is violated.
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In this case the restrictions are given by

φ11 =
1

γf
, φ12 = −

λ

γf
, φ13 = −

γb
γf

, φ14 = 0. (29)

whereas feedbacks from ∆πt to ∆xt are ruled out if

φ21 = 0 , φ23 = 0. (30)

The estimation of the structural parameters and a test of the NKPC can be car-
ried out exactly as in Case 1 with the difference that the model involve variables
in first differences. Standard techniques apply.

5 Results for the Euro area

We consider quarterly data on the Euro area taken from Fagan et al. (2001).
Several VARs of the form Yt = (πt, xt)0 are specified with xt a scalar measured
respectively as: (a) the wage share; (b) the output gap; (c) the unemployment
rate. We also consider three-dimensional VARs of the form Yt = (πt, xt, it)0 with
xt measured as in (a), (b) and (c) above and with it the short term nominal
interest rate. As argued in Fuhrer and Moore (1995), the short-term nominal
rate is closely linked to real output and is thus essential to forming expectations
of output and closely related variables as the unemployment rate. The output
gap in (b) is defined in two different ways: as deviation of real GDP from po-
tential output measured as a constant-returns-to-scale Cobb-Douglas production
function and neutral technical progress, and as deviation of real GDP from a
quadratic trend. Mnemonics and series definitions are listed in Table 1.
Each VAR was estimated over the 1970:1 - 1998:2 period (T = 114 obser-

vations) with the sample including initial values (hence only T − k quarterly
observations are really exploited in estimation, with k being the lag length)18.
In all VARs we included a constant and a deterministic seasonal dummy taking
value 1 at the fourth quarter of 1974 in correspondence of the inflationary pick
due to the oil shock and zero elsewhere. We selected k = 5 lags in all estimated
models and obtained well-behaved Gaussian-distributed residuals. Simple com-
parison between the dynamic structure implied by model (1) and that of a VAR
with 5 lags suggests that further dynamics should be perhaps incorporated in the
forward-looking model to be consistent with the data.

18Actually, because of data availability the VAR involving the output gap measured as devi-
ation of real GDP from potential output measured as a constant-returns-to-scale Cobb-Douglas
production function and neutral technical progress is estimated over a shorter sample, see Table
1.
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On the basis of the results of the Trace cointegration test19 the zero forward-
looking restrictions implied by the NKPC were tested as described in Case 1, 2
and 3 of Section 4 (adapting opportunely the restrictions to the case of a VAR
with 5 lags); we disentangled the test for the zero forward-looking restrictions
from the test for the absence of Granger-causality from the inflation rate the
explanatory variable(s). As observed in Section 4 testing the zero forward-looking
restrictions implied by the NKPC amounts to test a set of necessary conditions for
the model to hold. Rejection of this subset of forward-looking constraints imply a
rejection of the whole model. However, in all cases before switching to the VEqC
representation of the VAR we first computed a LR test for the forward-looking
restrictions implied by the NKPC in the VAR in levels, i.e. treating variables as
if they were I(0) (Case 1)20. For the situations where a cointegrating relations
was found we reported the estimated cointegrating relation with corresponding
adjustment coefficients. Overall results are summarized in the tables from 2 to
9.
Results points that whatever is the driving variable(s) used in the analysis,

the system Yt = (πt, x0t)
0 is perceived as I(1) over the 1970-1998 period. For

instance, the results in Table 2 suggest that the inflation rate and the wage share
are I(1) and not cointegrated. A “spurious regression” argument can be then
advocated for GMM based estimates of the NKPC over the 1970-1998 period
when variable are treated as stationary; this issue is completely ignored in GGLS
and many other existing papers.
A cointegrating relation between the inflation rate and a single explanatory

variable is found in the situations where xt is proxied by: (i) the unemploy-
ment rate; (ii) deviations of real GDP from potential output measured as a
constant-returns-to-scale Cobb Douglas production function and neutral tech-
nical progress. In particular, the empirical evidence seems to be consistent with
the predictions of recently reappraised theories explaining the long run inflation-
unemployment trade-off (Karanassaou et al., 2003).
As expected feedbacks from the inflation rate to the explanatory variable(s)

xt are generally found (the only exception is the case of the unemployment rate,
see Table 4) suggesting that the NKPC should be probably investigated in the
context of a structural system of equations.

19Given the absence of deterministic linear trend in the variables, in the test for cointegration
rank the constant was restricted to belong to the cointegration space in all VARs. Critical values
are taken from Johansen (1996), Table 15.2.
20Sims et al. (1991) highlight the drawbacks associated with the use of standard asymptotic

theory when the variables in the VAR are actually I(1). For this reason in the tables from 2 to
9 below we do not report p-values associated with the tests of zero forward-looking restrictions
in the VAR in levels.
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6 Summary and suggestions for further devel-
opments

It might be argued that the possibility of disentangling empirically forward vs
backward looking behavior on the basis of aggregate macro-data represents a de-
bated question (Hendry, 1998, Cuthbertson, 1988, Ericsson and Hendry 1999).
This issue is probably true but should represent an incentive for further develop-
ments on the subject.
In this paper we have proposed a simple technique for testing the NKPC

through VAR models. The basic idea is that forward-looking agents compute
expectations by means of VARs involving the inflation rate and the driving vari-
able(s). This hypothesis allows to nest the NKPC within a VAR. A number
of econometric issues such as stability of parameters and the presence of feed-
backs can easily investigated within the VAR. The proposed method leads to ML
estimates and gives the possibility of taking into explicit non-stationarity and
cointegration. The procedure can be implemented with any existing econometric
software.
Referring to their estimates of the hybrid further-inflation-lags version of

the NKPC, GGLS, p. 1258 observe that: “Thus, it appears that the structural
marginal cost based model can account for the inflation dynamics with relatively
little reliance on arbitrary lags of inflation, as compared to the traditional Phillips
curve [...]”. Our empirical evidence on the NKPC for the Euro area appears in
sharp contrast with this claim for the following reasons.
First, feedbacks from the inflation rate to the explanatory variable are gener-

ally found suggesting that GMM-based single equation estimates of the NKPC
might be carried out on models that might give rise to explosive solutions. The
presence of such feedbacks reflects the omission of important structural relation-
ships characterizing variables. We argue that in these circumstances the NKPC
should be investigated within a more general structural model where feedbacks
are the consequences of behavioral relationships.
Second, the persistence of variables over the investigated span seems to be

consistent with that of unit-roots processes. A long run link among the inflation
rate and part of the driving variables represent a concrete possibility. Even
ignoring the problem of feedbacks, single-equation estimates of the NKPC should
be formulated accordingly.
Third, the restrictions implied by the NKPC on the parameters of the VAR

are sharply rejected in a “full information” framework. More than one lag of infla-
tion is generally required if one wishes to reconcile the forward-looking model of
inflation dynamics with the empirical evidence. This result suggests that specifi-
cations of the form (2) (or suitable variants of it) are probably more suited for the
forward-looking model. We postpone the empirical investigation of specifications
similar to (2) to further research.
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TABLES

Mnemonic Definition

pt log of the implicit GDP deflator
πt inflation rate on a quartely basis: pt − pt−4
wst log of deviations of real unit labor costs from its meanaey1t deviation of real GDP from potential outputbey2t deviation of real GDP from quadratic trend
ut unemployment rate
it short term nominal interest rate

Table 1: Quarterly data on Euro area 1970:1 - 1998:2, see Fagan et al. (2001).
a = computed as in GGL; b = potential output is assumed to be given by a
constant-returns-to-scale Cobb-Douglas production function and neutral techni-
cal progress; this series starts at 1971:4

VAR: Yt = (πt , wst)0 , lag length 5

H0: zero forward-looking restrictions (VAR in levels): LR: χ2(7)=22.96

Cointegration rank test
H0 : r ≤ j Trace 5% c.v.

j=0 11.08 19.96
j=1 1.70 9.24

Test of hypotheses on the VAR in differences

H0: No Granger causality from ∆πt to ∆wst : LR: χ2(4)=18.57 [0.00]

H0: zero forward-looking restrictions: LR: χ2(5)=22.15 [0.00]

Table 2: Test of the NKPC (1) in the Euro area over the 1970:1 - 1998:2 period.
See Table 1 for variable definitions.
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VAR: Yt = (πt , wst , it)0 , lag length 5

H0: zero forward-looking restrictions (VAR in levels): LR: χ2(11)=57.15

Cointegration rank test
H0 : r ≤ j Trace 5% c.v.

j=0 47.19 34.91
j=1 17.26 19.96
j=2 4.48 9.24

Estimated cointegrating relation and adjustment coefficientsbβ0Yt = πt − 0.81
(0.05)

wst + 0.176
(0.077)

it − 2.08
(0.12)bα0 = (0.08

(0.04)
, 0.26
(0.06)

, −0.11
(0.08)

)0

Test of hypotheses on the VEqC

H0: No Granger-causality from ∆πt to ∆wst , ∆it: LR: χ2(10)=32.82 [0.00]

H0: zero forward-looking restrictions: LR: χ2(11)=75.44 [0.00]

Table 3: Test of the NKPC (1) in the Euro area over the 1970:1 - 1998:2 period.
See Table 1 for variable definitions.

VAR: Yt = (πt , ut)0 , lag length 5

H0: zero forward-looking restrictions (VAR in levels): LR: χ2(7)=31.97

Cointegration rank test
H0 : r ≤ j Trace 5% c.v.

j=0 29.41 19.96
j=1 3.82 9.24

Estimated cointegrating relation and adjustment coefficientsbβ0Yt = πt + 1.38
(0.16)

ut − 0.17
(0.01)bα0 = (−0.07

(0.01)
, 0.005
(0.006)

)0

Test of hypotheses on the VEqC

H0: No Granger causality from ∆πt to ∆ut: LR: χ2(5)=9.27 [0.10]

H0: zero forward-looking restrictions: LR: χ2(7)=34.60 [0.00]

Table 4: Test of the NKPC (1) in the Euro area over the 1970:1 - 1998:2 period.
See Table 1 for variable definitions.
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VAR: Yt = (πt , ut , it)0 , lag length 5

H0: zero forward-looking restrictions (VAR in levels): LR: χ2(11)=49.21

Cointegration rank test
H0 : r ≤ j Trace 5% c.v.

j=0 47.68 34.91
j=1 16.90 19.96
j=2 5.57 9.24

Estimated cointegrating relation and adjustment coefficientsbβ0Yt = πt + 1.21
(0.14)

ut − 0.15
(0.01)

(LR: χ2(1)=1.77 [0.18])a

bα0 = (−0.07
(0.04)

, 0.005
(0.007)

, −0.098
(0.031)

)0

Test of hypotheses on the VEqC

H0: No Granger-causality from ∆πt to ∆ut , ∆it: LR: χ2(10)=21.81 [0.02]

H0: zero forward-looking restrictions: LR: χ2(11)=55.72 [0.00]

Table 5: Test of the NKPC (1) in the Euro area over the 1970:1 - 1998:2 period.
See Table 1 for variable definitions. Notes: a = test for overidentifying restrictions
on the cointegrating relation.

VAR: Yt = (πt , ey1t)0 , lag length 5
H0: zero forward-looking restrictions (VAR in levels): LR: χ2(7)=38.34

Cointegration rank test
H0 : r ≤ j Trace 5% c.v.

j=0 35.95 19.96
j=1 0.39 9.24

Estimated cointegrating relation and adjustment coefficientsbβ0Yt = πt − 0.09
(0.013)

ey1t − 0.09
(0.013)bα0 = (−0.025

(0.004)
, 1.31
(0.72)

)0

Test of hypotheses on the VEqC

H0: No Granger causality from ∆πt to ∆ey1t: LR: χ2(5)= 25.32 [0.00]

H0: zero forward-looking restrictions: LR: χ2(7)=40.51 [0.00]

Table 6: Test of the NKPC (1) in the Euro area over the 1970:1 - 1998:2 period.
See Table 1 for variable definitions.
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VAR: Yt = (πt , ey1t , it)0 , lag length 5
H0: zero forward-looking restrictions (VAR in levels): LR: χ2(11)=45.58

Cointegration rank test
H0 : r ≤ j Trace 5% c.v.

j=0 36.28 34.91
j=1 11.61 19.96
j=2 5.23 9.24

Estimated cointegrating relation and adjustment coefficientsbβ0Yt = πt − 0.11
(0.02)

ey1t − 0.10
(0.02)

(LR: χ2(1)=0.0.6 [0.80])a

bα0 = (−0.016
(0.004)

, 0.62
(0.65)

, −2.36
(0.79)

)0

Test of hypotheses on the VEqC

H0: No Granger-causality from ∆πt to ∆ey1t , ∆it: LR: χ2(10)=41.67 [0.00]

H0: zero forward-looking restrictions: LR: χ2(11)=43.36 [0.00]

Table 7: Test of the NKPC (1) in the Euro area over the 1970:1 - 1998:2 period.
See Table 1 for variable definitions. Notes: a = test for overidentifying restrictions
on the cointegrating relation.

VAR: Yt = (πt , ey2t)0 , lag length 5
H0: zero forward-looking restrictions (VAR in levels): LR: χ2(7)=39.98

Cointegration rank test
H0 : r ≤ j Trace 5% c.v.

j=0 17.81 19.96
j=1 0.35 9.24

Test of hypotheses on the VAR in differences

H0: No Granger causality from ∆πt to ∆ey2t: LR: χ2(4)=20.62 [0.00]

H0: zero forward-looking restrictions: LR: χ2(5)=20.27 [0.00]

Table 8: Test of the NKPC (1) in the Euro area over the 1970:1 - 1998:2 period.
See Table 1 for variable definitions.
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VAR: Yt = (πt , ey2t , it)0 , lag length 5
H0: zero forward-looking restrictions (VAR in levels): LR: χ2(11)=49.96

Cointegration rank test
H0 : r ≤ j Trace 5% c.v.

j=0 24.99 34.91
j=1 12.25 19.96
j=2 4.29 9.24

Test of hypotheses on the VAR in differences

H0: No Granger-causality from ∆πt to ∆ey2t , ∆it: LR: χ2(8)=27.04 [0.00]

H0: zero forward-looking restrictions: LR: χ2(8)=25.86 [0.001]

Table 9: Test of the NKPC (1) in the Euro area over the 1970:1 - 1998:2 period.
See Table 1 for variable definitions.
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