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Abstract

The capacitated arc routing problem (CARP) focuses on servicing
edges of an undirected network graph. A wide spectrum of applications
like mail delivery, waste collection or street maintenance outlines the rel-
evance of this problem. A realistic variant of the CARP arises from the
need of intermediate facilities (IFs) to load up or unload the service vehicle
and from tour length restrictions. The proposed Variable Neighborhood
Search (VNS) is a simple and robust solution technique which tackles the
basic problem as well as its extensions. Particularly, it outperforms all
known heuristics on four sets of benchmark instances.

Keywords: Capacitated Arc Routing Problem, Variable Neighborhood Search,
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1 Introduction

Routing problems are foremost problems of computational logistics, and of com-
binatorial optimization as a whole. Being of both practical and theoretical rele-
vance, they have provided a primary arena for validating new metaheuristics and
determining comparative efficiency. This was true also for Variable Neighbor-
hood Search (VNS) introduced by Mladenovics and Hansen in 1997 [30]. VNS
systems have proven their effectiveness on a number of variants of vehicle rout-
ing problems (VRP), e.g., the vehicle routing problem with time windows [9],
the vehicle routing problem with multiple depots and time windows [31], and in
real world routing problems [32]. The capacitated arc routing problem (CARP)
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is one of the prototypical routing problems, asking a fleet of vehicles to service a
set of clients which are distributed on the arcs of a road network. Every CARP
instance can be transformed into an equivalent VRP instance with a number
of nodes equal to the number of required arcs of the original CARP graph in
case of directed instances [28], to twice that number in case of fully undirected
instances [3], or to a combination thereof [29]. However, like most other efficient
CARP algorithms we do not use this transformation.

Several applications of real-world relevance can be modelled as CARP, fore-
most among them are urban waste collection, mail collection or delivery, snow
removal, street sweeping. The CARP was originally proposed as such by Golden
and Wong [18], and given its actual interest many researches have studied it.
Dror [11] collected a significant number of applications of CARP variants and of
corresponding solution methodologies. For a survey the reader is also referred
to [2].

A realistic variant of the CARP with respect to urban waste collection or
snow removal and winter gritting is the Capacitated Arc Routing Problem with
Intermediate Facilities (CARPIF). This problem was introduced by Ghiani et
al. [16]. Ghiani et al. have also introduced the capacitated arc routing prob-
lem with intermediate facilities and tour length restrictions (CLARPIF) a tour
length restricted version of the CARPIF [17]. In most cities the garbage col-
lecting vehicles are assigned to a depot whereas the garbage has to be dumped
at waste incinerating plants or special dump sites. Such a system was described
by Wirasinghe and Waters [36] for the city of Calgary in Canada. This is also
the case in snow plowing - the snow is dumped very often in some rivers at
special dump sites. In this problem types we have demand collections. There
exists also problems where we have demand deliveries. This is especially in the
situation of winter gritting or street cleaning. Here we have the situation that
intermediate facilities are located to pickup gritting material, salt or sand in the
case of winter gritting or water and cleaning chemicals for the street cleaning
situation.

In the literature, several exact and heuristic approaches have been proposed
for the CARP. Among the exact techniques Hirabayashi et al. [24] proposed a
Branch and Bound algorithm and Belenguer and Benavent [4] proposed valid
inequalities for this problem. Recently, Wøhlk developed new lower bounds for
the classical CARP [37]. Lower and upper bounds on the mixed CARP are
presented by Belenguer et al. [7]. In the mixed CARP the connections between
nodes can be arcs or edges. Arcs are oriented edges, whereas edges have no
orientation.

However, exact techniques can seldom cope with the dimension of real-world
instances. This calls for heuristic and metaheuristic approaches: among the
most recent proposals we mention the tabu search of Belenguer et al. [5], the
tabu search of Hertz et al. [22], the variable neighborhood descend of the same
authors [23], the guided local search of Beullens et al. [8], the scatter search of
Greistorfer [19], and the genetic algorithm of Lacomme et al. [27]. A memetic
algorithm developed by Lacomme et al. provides the best solution quality for
the standard benchmark CARP instances [25] so far.
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As for more real-world oriented researches, we refer to the work of Am-
berg et al. [1], who studied the M-CARP, that is a multi depot CARP with
heterogeneous vehicle fleet.

Xin [38] implemented a tabu search algorithm within a decision support
system for waste collection in rural areas based on a simple augment-merge
heuristic of Snizek et al. [33]. Maniezzo [28] developed a VNS for urban solid
waste collection for an Italian town.

The waste collecting bins have to be emptied in regular periods, therefore
the problem of waste collection can also be considered as a periodic arc routing
problem. First works on periodic CARPs were published by Lacomme et al. [26]
and by Chu et al. [10]. Fleury et al. [14] considered a variant of the CARP where
the amount of waste which has to be collected is stochastic.

The paper is organized as follows. Section 2 describes the CARP and the
adaption of intermediate facilities, Section 3 illustrates the proposed solution
procedure, Section 4 reports about the obtained computational results, whereas
Section 5 summarizes the results and the relevant aspects of the applied algo-
rithm.

2 Problem Description

The CARP can be defined as follows. A connected and undirected graph G =
(V,E) representing a road network and a vehicle fleet are given. Each edge
(ij) ∈ E has a traversal cost cij . Furthermore, the subset R of E contains all
required edges which can be associated with a customer with demand qij . All
vehicles have identical capacity Q and are stationed at a depot, being one of the
nodes of the graph G. The CARP asks for designing the vehicle routes, so that
each vehicle starts and ends at the depot, each customer is serviced by one and
only one vehicle, the sum of the requests of the customers serviced by a vehicle
does not exceed the vehicle capacity, and the total travel cost is minimized.

In the CARPIF, the set V contains a subset I of intermediate facilities
(IFs), possibly including the depot. The aim is to determine a least-cost tour
of all edges of R such that the total vehicle load at any time, does not exceed
Q. In other words, starting from the depot, the vehicle traverses edges of E,
collects demands on required edges, and visits IFs to unload. The total demand
accumulated between the depot and the first IF or between two successive IFs
may never exceed Q. If the last IF on the tour is not the depot, then the final
chain between that facility and the depot does not have any positive demand and
is therefore unconstrained (see [16]). A variant of the CARPIF is the CLARPIF,
where the length of any route may not exceed a preset bound L.

The CARP is closely akin to the VRP, and it is NP-hard [15], even in the
single-vehicle case called Rural Postman Problem (RPP).
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3 Solution Techniques

To solve the problem described in the previous section a metaheuristic called
Variable Neighborhood Search (VNS) is applied. The basic scheme of VNS
was proposed by Mladenović and Hansen in [30]. Further principles for solving
combinatorial optimization problems and applications were introduced in [20]
and [21].

The basic idea is a systematic change of neighborhood within a local search.
Here, several neighborhood structures are used instead of a single one, as it
is generally the case in many local search implementations. Furthermore, the
systematic change of neighborhood is applied during both a descent phase and
an exploration phase, allowing to get out of local optima.

More precisely, VNS follows the concept of exploring increasingly distant
neighborhoods of the current solution. The search jumps from its current point
in the solution space to a new one if and only if an improvement has been
made. ”In this way often favorable characteristics of the incumbent solution,
e. g., that many variables are already at their optimal value, will be kept and
used to obtain promising neighboring solutions. Moreover, a local search routine
is applied repeatedly to get from these neighboring solutions to local optima.”1

The steps of the basic VNS are shown in Figure 1. Here, Nκ(κ = 1, . . . , κmax)
is a finite set of pre-selected neighborhood structures. The stopping condition
may be, e. g., maximum CPU time allowed, maximum number of iterations or
maximum number of iterations between two improvements.

Initialization. Select the set of neighborhood structures Nκ(κ = 1, . . . , κmax),
that will be used in the search; find an initial solution x; choose a stopping
condition;
Repeat the following until the stopping condition is met:

1. Set κ ← 1;

2. Repeat the following steps until κ = κmax:

(a) Shaking . Generate a point x′ at random from κth neighborhood of x
(x′ ∈ Nκ(x));

(b) Local search. Apply some local search method with x′ as initial so-
lution; denote with x′′ the so obtained local optimum;

(c) Move or not . If this local optimum x′′ is better than the incumbent
x, move there (x ← x′′), and continue the search with N1 (κ ← 1);
otherwise, set κ ← κ + 1;

Figure 1: Steps of the basic VNS (c. f. [21])

The basic VNS consists of both a stochastic component, i. e., the randomized
selection of a neighbor in the shaking phase, and a deterministic component,

1see [21], p. 450
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that is the application of a local search in each iteration. Finally, the solution
obtained is compared to the incumbent one and will be accepted as new starting
point if an improvement was made, otherwise it will be rejected. Thus, the pro-
cedure is a descent, first improvement method with randomization. However, as
pointed out in [21], it could be transformed into a descent-ascent method with-
out much additional effort. Thereby x is also set to x′′ with some probability,
even if the solution is worse than the incumbent.

Below, the implementation of the main parts of the VNS for solving the
CARP and its variants is described. The description includes the building of an
initial solution, the shaking phase with the proper exchange operator, the local
search method, and the acceptance decision in the Move or not phase.

3.1 Initial Solution

The sole criterion for the initial solution used as a starting point generator for
the VNS is to come up with a feasible solution. The fastest and simplest way
to do so is to sequentially read in the required edges from the instance file and
add them to the end of the current tour. However, if the insertion will exceed
the capacity constraint or the depot node lies on the shortest path between the
last node of the previous edge and the first node of the new edge, the latter one
becomes the initial edge of a new tour.

Alternatively, we implemented the construction heuristic of Ulusoy [35].
Here one or more giant tours are generated which cover all mandatory edges.
To obtain such a giant tour the graph has to be potentially extended by least
cost edges so that the degree of every vertex is even. Afterwards the tour has
to be split into feasible trips with respect to the capacity constraints. Therefore
a directed auxiliary graph is built of all feasible subtours within the giant tour.
The splitting can be done optimally by finding the shortest path of the auxiliary
graph which starts and ends at the depot.

3.2 Shaking

The set of neighborhood structures used for shaking is the core of the VNS.
To define a neighborhood of the current solution an appropriate function or
operator must be specified. The main issue is that the neighborhood operator
should sufficiently perturb the incumbent solution while still making sure that
the new solution keeps important parts of the incumbent.

An operator which enables sufficient changes of a solution while preserving
well composite sequences is called CROSS-exchange and was proposed in [34]
for the Vehicle Routing Problem with Time Windows. Its effectiveness was also
demonstrated in [31]. The main idea of this exchange is to take two segments
of different routes and exchange them as illustrated in Figure 2. Hereby the
orientation of the sequences keeps preserved.

In every shaking phase two routes are randomly chosen. By treating it as a
special case it is allowed to select the same route twice. One of the routes can
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Figure 2: The CROSS-exchange operator applied to edges

also be a new empty route as well. After the selection of the routes the CROSS-
exchange operator is applied to swap the sequences of successive serviced edges.

Let us denote the number of serviced edges of route i with Ti and the min-
imum number of selected edges with αi. The length of the subsequence which
gets swapped is uniformly distributed on the interval [αi,min{Ti, κ}]. In order
to permit more dramatic changes without having to choose a high κmax, the
upper bound of the interval is simply replaced by Ti if κ = κmax. The latter
case allows an exchange of all mandatory edges from one tour to the other. Fur-
thermore, as it is done by default, setting α1 = 1 and α2 = 0 enables a simple
move of edges.

The described application of the CROSS-exchange operator results in a
strong bias towards smaller sequence lengths which focuses the search rather
close to the incumbent solution whereas the possibility of large changes retains.

3.3 Local Search

A solution obtained through shaking is afterwards submitted to a local search
procedure to come up with a local optimal solution. While the neighborhood
operator was designed to preserve the orientation of the selected sequences,
the local search has to compensate the missing functionality of systematically
inverting the edges.

Starting with the first mandatory edge of a tour the algorithm inverts each
serviced edge and calculates the cost reduction of the new shortest paths needed
to reconnect the edge into the tour. In an analogous manner the inverting is
done for all combinations of successive serviced edges of a tour. Optionally, the
number of involved edges can be restricted to the value of parameter λ.

Another important issue related to algorithm effectiveness is that the local
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search is applied only on a route basis. Thus, after each shaking only the two
routes that have changed need to be re-optimized. Finally, as it is commonly
done, the local search restarts instantly after an improving move was found.

3.4 Acceptance decision

After the shaking and the local search procedures have been performed, the
solution thus obtained has to be compared to the incumbent solution to be able
to decide whether or not to accept it.

The restricted use of the CROSS-exchange operator in the shaking phase
makes it more difficult to leave a local optima. Therefore we use a modified
acceptance decision which is based on Threshold Accepting ideas (c. f. [12]) to
allow non-improving (ascending) moves. A move yielding an improvement is
always accepted, while ascending moves are accepted as long as their objective
value does not exceed a fixed threshold. This threshold is given by θ% of the
so far best found solution value. As proposed in Polacek et al. [31] ascending
moves are only performed after a minimum number of σ iterations counted from
the last accepted move.

4 Computational Analysis

In this section the VNS implementation proposed above will be analyzed and
its performance on basic CARP will be compared to the results of the Memetic
Algorithm (MA) described in [25]. For the CARPIF and CLARPIF its perfor-
mance will be compared to the results of the CARP-based heuristic and the
Tabu Search (TS) published in [16] and [17] respectively.

The VNS was implemented in C++ using elements of the Standard Template
Library (STL). Experiments were performed on a Pentium IV processor with
3.6 GHz. In order to compare the runtimes with the MA of Lacomme et al.,
the VNS was additionally executed on a Pentium III processor with 933 MHz.

The first set of problem instances (val files) used for the analysis originates
from Belenguer, Benavent and Cognata [5]. It consists of 34 instances with
24-50 nodes and 34-97 edges which all have to be serviced. The second set
(egl files) contains more complex instances which originate from a winter grit-
ting problem for the road network of the county of Lancashire (UK) proposed
by Eglese [13]. Based on this data set Belenguer and Benavent [6] generated
24 problem instances with 77-140 nodes and 98-190 required and non-required
edges.

For the CARPIF benchmark the first set of problem instances (val files) is
reused as it is done in [16] by adding two IFs which are located at vertices
b|V |/2c and 2b|V |/2c. The first 28 instances of this third set are also used by
Ghiani et al. [17] to generate test examples for the CLARPIF. According to
this the fourth set contains a tour length restriction L which was chosen in such
a way that the number of routes is uniformly distributed between 5 and 20.
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Because of the fact that the last two sets both originate from the first one all
edges are again required.

To analyze the influence of the initial solution to the final solution quality we
compared our simple sequential appending method with the more sophisticated
process of Ulusoy described in [35] (see 3.1). In Table 1 and Table 2 results
are presented according to the number of generated Ulusoy solutions for the
val files and egl files respectively. More precisely the first row represents the
results of our simple algorithm whereas the following rows contain the results
of the Ulusoy method. The second column shows the time it took to generate
the given number of solutions and the third column reports the runtimes for
the VNS to obtain the final solution. Hereby the total time in the next column
and the values of the previous ones are all measured in seconds. The last three
columns focus on the achieved solution quality. So the relative percentage of
deviation (RPD) compares the values of the initial solutions with the values of
the final solutions obtained by the VNS. With respect to the Ulusoy values the
best result of the given number of generated solutions was chosen as starting
point. The results of the comparison outline two important issues. Firstly, an
expedient use of the Ulusoy method can significantly reduce the total runtime.
Secondly, the robustness of the VNS was demonstrated by achieving results of
consistently high quality independently of the quality of the initial solution.

Ulusoy Solutions Ulusoy Time VNS Time Total Time Initial Values VNS Values RPD

0 0.00 1494.19 1494.19 16116 11717 -27.30%

1 0.97 1185.38 1186.35 13227 11716 -11.43%

10 1.02 1015.05 1016.02 12733 11715 -7.99%

100 1.52 1185.30 1186.81 12491 11716 -6.21%

1000 7.27 1016.14 1023.41 12307 11718 -4.79%

10000 64.59 1257.58 1322.17 12219 11718 -4.10%

100000 647.00 1092.30 1739.30 12107 11713 -3.25%

Table 1: Effect of initial solutions for the val files

Ulusoy Solutions Ulusoy Time VNS Time Total Time Initial Values VNS Values RPD

0 0.00 16362.49 16362.49 288581 235108 -18.53%

1 8.40 14001.55 14009.95 266699 235154 -11.83%

10 8.59 14964.90 14973.49 261392 235137 -10.04%

100 10.41 14260.28 14270.68 257789 235095 -8.80%

1000 28.30 13470.37 13498.67 255335 235069 -7.94%

10000 206.41 14365.35 14571.75 252646 235123 -6.94%

100000 1962.08 13234.66 15196.74 251147 235126 -6.38%

Table 2: Effect of initial solutions for the egl files
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To further underline the robustness of the applied VNS we used a standard
parameter setting for all four classes of benchmark instances. Here we set the
neighborhood parameter κmax = 6, the ascending move threshold θ = 120%
and the idle iteration parameter σ = 106. The optional restriction parameter λ
in the local search was not used by default. The usage of only three parameters
in the standard setting also indicates the simplicity of the algorithm.

The first two benchmark sets cover the basic CARP and results are presented
in Table 3 and Table 4 for the val files and the egl files respectively. Hereby the
results are compared to the so far best known solutions obtained by the MA of
Lacomme, Prins and Ramdane-Cherif in [25].

The first three columns describe each instance by stating a name, the number
of edges and the number of vertices. Additionally, a lower bound is given for
every problem instance. The next two columns report the results of the MA
whereas the subsequent section provides results of 10 separate runs of the VNS.
Each run was performed on a Pentium IV processor with 3.6 GHz and the
maximal runtime was set to 10 minutes. The section starts with the average
times needed to find the best solutions within the predefined runtime. This
is followed by the so obtained average values and the RPD between them and
the results of the MA. As an additional information we provided the minimal
objective value of the best found solutions of these 10 runs. In order to make
the runtimes comparable to the MA results the next section contains data of
VNS runs performed on a Pentium III processor with 933 MHz. This type of
processor can be considered to be equivalent to the Pentium III processor with 1
GHz in [25]. For this comparable runs the maximal executing time was set to 5
minutes. We complete the tables with a comparison of the best found solutions
of both methods. Finally, the last row shows the sum of runtimes and objective
values and the averages of the RPDs.

For both benchmark sets it could be shown that the VNS outperforms even
the excellent results of the so far best known heuristic method. For the instances
of Belenguer et al. [6] 4 new best solutions were found and all other 30 best
known solutions were reproduced. Hereby on average better results could be
found by being about 20% faster. The same was true for the instances originated
by Eglese. However 17 new best solutions were found while for the remaining
7 instances the best known solutions were reproduced. An important aspect is
that even for the more complex instances of the egl files the VNS shows a better
scaling according to the runtimes. In both cases the Ulusoy procedure used to
generate better initial solutions and thereby reducing the runtime of the VNS
was not used.

Table 5 contains the results for the CARPIF instances. Two IFs were added
to each problem file where in the case of collecting goods the vehicles have
to unload all items. Hence, only unloaded vehicles can return to the depot.
The first three columns provide again information about the problem instances.
Then the table provides the best results obtained by Ghiani et al. [16]. This
includes the runtime performed on a Sun Ultra-10 station with 300 MHz as
well as the upper bound results achieved with a CARP-based heuristic denoted
as UB2. The following two sections of the table present the results obtained
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after 10 runs of the VNS with the standard setting and with the usage of the
restriction parameter λ in the local search. Here the strong restriction of the
inverted sequences with λ = 2 has two important advantages. Because of the
IFs a valid tour can consist of much more serviced edges as it was the case in
the basic CARP. So the first advantage is the obvious reduction of the runtime
per iteration. The other benefit lies in the stronger preservation of the subtours
between the IFs. For both settings a maximal runtime of 10 minutes was preset.
The last two columns show the best found solutions of VNS and the RPD
between these values and those of Ghiani et al.

For the CARPIF instances a restricted version of the local search with λ = 2
clearly achieves better results. While the average improvement compared to the
results of Ghiani et al. is 1.67% in the unrestricted case, it can be raised to 2.18%
by using the optional sequence length parameter. Further the VNS found 23
new best solutions. For the remaining 11 instances the best known solutions
were also achieved.

Table 5 reuses the structure of the previous tables. However, the fourth
column provides a tour length restriction which is the essential constraint for
the CLARPIF. Here the results obtained by 10 runs of VNS with standard
setting are compared to the results of the upper bound UB3 achieved with
the TS reported by Ghiani et al. in [17]. The TS was performed on Pentium
processor with 1 GHz. For the VNS which was executed on a Pentium processor
with 3.6 GHz the maximal runtime was set to 10 minutes per instance.

Here the VNS outperforms the TS on all 28 instances with an average im-
provement of 13.80%. The average runtime for the VNS performed on an equiv-
alent processor is 1999.92 seconds which is only 5.75% of the runtime for the
TS used to solve the CLARPIF.

5 Conclusion

The proposed VNS outperforms all known heuristics on four benchmark sets.
Two of them include the extension of IFs. Even for the well studied CARP
instances of Belenguer et al. 4 new best solutions were found while improving
all 28 solutions for the CLARPIF of Ghiani et al. with an average improvement
of 13.80%. For all 120 instances the best known solution could be found and in
72 cases a new best solution was achieved.

It could be shown that the VNS is a simple and robust method. More pre-
cisely, the algorithm uses only one exchange operator, i.e., the CROSS-exchange,
in the shaking phase and a simple inverting operator for the local search. Ob-
viously there is a similarity to the 3-opt and the 2-opt operator respectively.
Moreover the method gets by with only three parameters by default. A fourth
parameter can be used the restrict the functionality of the local search. The
robustness was demonstrated by solving different problem classes with the same
algorithm and using a standard parameter setting for all problems. The high
quality of the final solutions could be achieved independently of the quality of
the initial solution.
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Finally, even for the more complex instances originated by Eglese the VNS
shows an excellent scaling according to the runtimes such that it is particularly
suited for large real-world instances.
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