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A new parameter is introduced, termed the density index, which enables the solar activity 

cycle to be captured in a new analytical atmospheric density model. Consequentially, a new 

solar activity model is developed that uses a single independent variable per solar cycle to 

describe the solar activity across that cycle, as indicated by the F10.7 index. These models are 

combined and applied to a well-known general perturbations method for satellite orbit 

lifetime analysis, which is first modified using modern mathematical tools to remove 

simplifications in the derivation. Validation against historical data shows an improvement in 

orbit lifetime estimates from an average error of 50.44 percent with a standard deviation of 

24.96 percent, to an average error of 3.46 percent with a standard deviation of 3.25 percent. 

Furthermore, the new method with applied atmospheric and solar activity models is found 

to compare favorably against other general and special perturbations methods, including 

third party, and commercial software, the most accurate of which was found to have an 

average error of 6.63 percent and standard deviation of 7.00 percent. A case study, the 

UKube-1 spacecraft, is presented and it is found that the spacecraft was inserted into an 

orbit 54km lower than required to comply with best-practice guidelines, and that with 1ı 

confidence its orbit will decay in June 2028 ± 2 years, and June 2028 ± 4 months if the next 

solar cycle is an average magnitude cycle. 
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I. Introduction 

NCREASING concern over littering of the space environment with so-called space debris is driving efforts 

towards improved orbit lifetime estimation approaches, and towards improved regulations on the behavior of 

spacecraft launched into particular regions of the near-Earth environment. Among the most prominent of relevant 

documents are the Inter-Agency space Debris coordination Committee (IADC) “Space Debris Mitigation 

Guidelines”, and the International Organization for Standardization (ISO) “Space systems - Space debris mitigation 

requirements” [1,2]. Both of these documents state that a spacecraft should be removed within 25 years of 

decommissioning if it travels through either of the protected regions detailed in the guidelines: Low Earth Orbit 

(LEO) and Geostationary Earth Orbit (GEO). As these guidelines specify a time period in which spacecraft should 

be removed, a further standard has been generated by ISO discussing the estimation of orbit lifetime [3]. This 

standard and the work done to generate it, particularly the work by Oltrogge and Chao [4], discuss the advantages 

and disadvantages of three different methods for orbit lifetime estimation and give guidance on how to use each 

method effectively. The methods detailed are, high precision numerical integration, rapid semi-analytical orbit 

propagation, and numerical table look-up analysis and fit formula evaluations. There is however one further method 

not considered, general perturbations methods, often termed as analytical methods. This method is often dismissed 

for long-term orbit propagation due to problems with accuracy [5]; this paper addresses and resolves this challenge.   

 Primary body atmospheric friction (commonly referred to as ‘atmospheric drag’) acts against the velocity 

vector resulting in a reduction in orbit energy, and hence semi-major axis. Consequently, it is the principal 

contributor to artificial satellite orbit decay in Earth orbit below 1000 km altitude. The magnitude of this frictional 

force is directly proportional to the atmospheric density, which is intrinsically time-variant due the influence of solar 

activity, leading to significant variations in the atmospheric density over time at even the same altitude [6]. Naasz, 

Berry, and Schatten use propriety third-party software, applying special perturbations methods, to show the impact 

of variations in solar activity on satellite orbital lifetime predictions [7], confirming the correlation between high 

solar activity levels and shorter orbit lifetimes, and conversely low solar activity levels and longer orbit lifetimes. 

Vallado and Finkleman extend that work to consider the effect of solar cycle variations on orbit lifetime predictions, 

once again applying special perturbations methods to find a direct relationship between solar activity and orbit 

lifetime [8]. More specifically, they found that solar activity was the largest contributor to variation in atmospheric 

density at a fixed altitude. Consequently, the effect of solar activity cannot be neglected. However, general 
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perturbations methods taking into consideration atmospheric drag commonly neglect solar activity, leading to a 

significant lack of accuracy in such methods. 

Vallado and Finkleman also discuss the solar radio flux at wavelength 10.7 cm (2800 MHz), the F10.7 index, 

which is commonly used as an indicator of the solar activity level, and its use in empirical models of atmospheric 

density, finding that it is the most suitable proxy for solar activity [8]. The F10.7 index is used herein as the measure 

of solar activity. 

 The most commonly cited general perturbations method for predicting the orbital lifetime of low-eccentricity 

satellites in the presence of a time-invariant and a spherically symmetrical retarding atmosphere is the method 

presented by Cook, King-Hele and Walker, but later expanded by King-Hele. Herein referred to as the King-Hele 

method [9,10]. This method is based on power series expansions of the eccentricity, semi-major axis, and eccentric 

anomaly. It is also worth mentioning that there are many other methods of orbit lifetime prediction such as that 

presented by Swinerd and Boulton, who adopt Cook, King-Hele and Walker’s power expansion method and produce 

orbital lifetime equations incorporating the effect of atmospheric oblateness with diurnal density variations [11]. 

Griffin and French also built on the work of Cook, King-Hele and Walker, introducing a new equation for the orbit 

lifetime of spacecraft in initially circular orbits [12]. In a series of papers Sharma takes a different approach, using 

K-S elements to build the analytical solution for orbit lifetime prediction [13–16]. Sharma first explores a basic 

method with test cases covering the eccentricity range from 0.001 to 0.1. The method is then improved by expanding 

to include higher order terms with test cases with eccentricities in the range 0.001 to 0.8. Martinusi, Dell’Elce and 

Kerschen have demonstrated an averaging technique used to obtain a first-order approximate solution for the motion 

of a satellite in low Earth orbit [17,18]. However, no author has published so extensively, and with such a thorough 

approach, as King-Hele and his various co-authors, who over the years have systematically presented papers 

detailing the impact of various effects on the orbit decay of satellites in Earth orbit. An 8-part series of papers titled 

“The Contraction of Satellite Orbits Under the Influence of Air Drag” explores various effects and the 

corresponding orbit lifetime prediction methods dealing with these effects. Part 1 in the series introduces a basic 

method for orbit lifetime prediction of satellites in low eccentricity (e<0.2) orbits, which is then expanded in part 2 

to address the issue of an oblate atmosphere [9,19]. Part 3 addresses higher eccentricity orbits (0.2 ≤ e <  1) [20]. Part 

4 builds on part 1 to include the effect of variations in scale height with altitude [21]. Then part 5 builds on part 2 to 

include the day-to-night variation in atmospheric density [22]. Part 6 builds on part 5 looking in more depth at the 



effects of day-to-night variation in density on near-circular orbits [23]. Part 7 combines work from parts 3 and 5 by 

examining the effects of altitude varying scale height on high eccentricity orbits [24]. Finally, part 8 looks at how 

perturbations due to odd zonal harmonics of the geopotential affect the orbit lifetime of a satellite in an oblate 

atmosphere [25]. It is noteworthy that despite this detailed and methodical approach that the effect of solar activity 

was not addressed in this series of papers. Another important point of interest is that in many cases general 

perturbations methods are not validated. Where validation is considered, typically the methods are compared with 

numerical methods to ascertain their accuracy. There is, in this comparison, an inherent presumption that the 

numerical method is accurate, however numerical methods are still approximations, though to a lesser degree than 

analytical models, and are therefore subject to error when compared to real cases. Therefore, in this work validation 

is done using historical data from real missions, removing the uncertainty attached to a numerical method 

comparison.  

At this stage it is worth noting the promising results from Barrio and Palacián [26]; they propose a method for 

orbit lifetime analysis of high eccentricity orbits based on Lie transformations. The results suggest their theory may 

be useful in simulating geosynchronous transfer orbits, whilst herein an initial application focus is placed on low 

eccentricity orbits, though the methods developed can be applied to any orbit model. The work of Titov, Burt and 

Josyula is also of interest as they demonstrate the importance of understanding the accuracy of input parameters and 

their uncertainties [27]. They particularly focus on quantifying uncertainties in the computed flow parameters from a 

hypersonic aerothermodynamic particle implementation of a direct simulation Monte Carlo solution for spacecraft 

drag. They show that uncertainties in the atmospheric density input parameter are the main contributor to uncertainty 

in the drag force; however, no consideration was given to separating the solar activity as a source of uncertainty. 

They also discuss propagating the input parameter uncertainties through the model to produce an estimate of the 

contribution to the resulting output uncertainty.  

To the best of the author’s knowledge, the only attempt made to consider the effect of solar activity in general 

perturbations methods was made by King-Hele and Walker [28]. They incorporate the solar activity using a so-

called ‘solar cycle factor’, which is a basic correction factor applied to the orbit lifetime estimate after the prediction 

(neglecting solar activity) has been made.  While this method could be employed for back-of-an-envelope 

calculations, it does not capture the mechanism by which solar activity affects the spacecraft drag calculation, and as 

such it would be unlikely to give reliable results.  



To incorporate solar activity induced variations on atmospheric density the stochastic nature of solar activity 

must be considered. When this is introduced to the atmospheric density calculation, which in turn is applied to the 

orbit calculation, the solution becomes time dependent due to the variability in solar activity, within the current 

cycle and from cycle to cycle. Therefore the mission epoch must be considered.  

Modelling the solar activity cycle accurately is critical to gaining an accurate model atmospheric density. 

Considerable attention has been given to predicting variations in the solar activity cycle. For example, Schatten has 

published extensively in collaboration with various authors on the solar activity cycle and solar activity [29–32]. To 

study the solar activity cycle in general terms, many authors have focused specifically on the shape of the cycle and 

its apparent deviation from a typical periodic sinusoid [33–35]. A similar approach is developed herein. 

A new parameter, the ‘density index’, is introduced to incorporate the effect of solar activity in the calculation of 

the atmospheric density used in orbit predictions. The King-Hele method is modified using modern mathematical 

tools to remove some of the simplifications in the derivation of the orbital lifetime equations. The Modified King-

Hele method is applied, with the new solar activity and atmospheric density models, to a set of historical missions in 

order to validate the method. Furthermore, an accuracy comparison of the Modified King-Hele method to other orbit 

lifetime estimation methods is drawn. The method is also applied within a Monte Carlo analysis to give a confidence 

interval as well as an orbit lifetime estimation. Finally, the method is applied to a case study of the UKube-1 

spacecraft (COSPAR spacecraft identification 2014-037F) to demonstrate its use on non-historical spacecraft [10]. It 

should be noted, notwithstanding the application focus herein to long-duration trajectory propagation using the 

Modified King-Hele method for low eccentricity orbits that the methods developed herein can be applied to any 

orbit general perturbations or semi-analytical/semi-numerical model. 

II. Atmospheric Density Model 

Calculating atmospheric density at a given altitude is, as previously noted, challenging due to the time-variant 

nature of the atmosphere and the complexity of the interactions affecting it. Atmospheric models can be static 

profiles, global analytical fits, or time-variant [6]. Time-variant models aim to capture causes of temperature 

fluctuations in the upper atmosphere. For example, extreme ultraviolet radiation from the Sun causes near-

instantaneous heating of the upper atmosphere, and hence rapidly effects atmospheric density [6]. Meanwhile, other 



causes of atmospheric heating, such as geomagnetic activity, exhibit a cause and effect delay making their effects 

much more difficult to capture [6]. 

Using total atmospheric density data from the Committee on Space Research International Reference 

Atmosphere [36], commonly known as CIRA or CIRA-12, an analytical equation for the Earth’s atmospheric 

density is derived using regression analysis, as will be detailed later. The CIRA model was chosen as it incorporates 

many of the most notable atmosphere models in current literature; including, but not limited to, NRLMSISE-00 [37], 

JB2008 [38,39], GRAM-07 [40], and DTM [41]. As will be discussed later, the new density index parameter is then 

applied to capture solar activity effects. The approach taken to develop a global analytical fit for the Earth’s 

atmospheric density negates the need for input parameters such as the local apparent solar time, or geodetic latitude 

and longitude, which are both typically required by empirical and time-variant models. However, it does potentially 

limit the methods applicability to, for example, non-Sun-synchronous orbits where the fixed local apparent solar 

time, and hence the atmospheric diurnal effects, may not be well-captured.  

Regression analysis, specifically curve fitting, is used to fit an equation to the CIRA data. Traditionally, an 

exponential curve fit is used, however such curves are generally only applicable when considering altitudes up to 

100km; when considering higher altitudes they become less accurate [5]. Macdonald et al. proposed a power fit 

model however did not expand on how accurate it may be in comparison to the exponential fit [42].  

The exponential model connects the altitude to atmospheric density as 

ߩ  ൌ ௥݁௛ೝି௛ுߩ  (1) 

where ʌ is the atmospheric density, ʌr is the atmospheric density at a reference altitude, h is the altitude, hr is the 

reference altitude and H is the density scale height. For elliptical orbits the altitudes are typically taken at periapsis. 

The difficulty in using this formulation is that it hinges on the use of a reference density and scale height, which are 

arbitrarily chosen. An expert in atmospheric modelling could arguably use this formulation effectively; however a 

layman would be unlikely to. The power model connects the altitude to the atmospheric density as  

ߩ  ൌ  ஻ (2)݄ܣ

where A and B are independent variables derived in the curve fitting. 

The exponential model, being the traditional approach, is more often discussed but as can be seen in Fig. 1 the 

power model provides a visibly more accurate fit. The coefficients of determination, R
2
, of each of the two curves 

are shown in Fig. 1, verifying mathematically that the power curve is the better fit. 



 

Fig. 1 Power and exponential curve-fit model comparison for average total atmospheric 

density; with CIRA-12 data also shown as crosses (N.B. logarithmic y-axis). 

The curves shown in Fig. 1 model the average total atmospheric density data. However, the CIRA model 

provides data for low, average, and high solar activity conditions, corresponding to values of 70, 140, and 250 Solar 

Flux Units, SFU, respectively [36]. This data is therefore used to generate two further power curves, see Fig. 2, to 

describe the total atmospheric density with relation to altitude and solar activity level. The coefficients required to 

reproduce the curve fits shown in Fig. 2, using Eq. (2), can be found in the appendix to this paper.  

 

Fig. 2 Power curve-fit for atmospheric density at low, average, and high solar activity levels; 

with CIRA-12 data also shown by markers (N.B. logarithmic y-axis). 
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It can be seen visually in Fig. 2 that the density at any solar activity level is not as accurately described for all 

altitudes by one complete curve as may be desired. Therefore a series of curves is derived by separating the CIRA 

density data into subsets of 100km altitude ranges to better fit the data. These series are produced for each of the 

three solar activity level data sets; the results are shown in Fig. 3. The coefficients required to reproduce the curve 

fits shown in Fig. 3, using Eq. (2), can be found in the appendix to this paper. 

 

Fig. 3 Segmented power curve-fit for atmospheric density at low, average, and high solar 

activity levels; with CIRA-12 data also shown by markers (N.B. logarithmic y-axis). 
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300km data subsets are extended to find the point of intersection; for this particular data set and curve fit this is at 

180km rather than 200km. This point is then used as the transition altitude to avoid discontinuities in the model. The 

improvement in accuracy provided by moving from single to multiple curves is minor when considering the R
2
 

values. However, as will be seen, this minor improvement translates directly into an improvement in lifetime 

predictions.  

The Solar Cycle  

The solar activity cycle is a 22-year cycle including two polar reversals. Due to the insensitivity of the F10.7 index 
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only loosely considered 11 years as each cycle is unique; there have been individual cycles recorded as short as 9 

years and as long as 14 years [35]. As shown in Table 1 cycles vary between approximately 9.9 and 11.8 years. Note 

variables ߔ, ߰, ߭, Ɍ and t0 will be discussed in the next section. 

Table 1 Solar activity curve fit properties 

Cycle No. ߔ ߰ ߭ Ɍ t0 (Date) t0 (Months) Duration (Years) 

18 0.003248 43.63 0.71 70 01-01-1944 0 10.4 

19 0.005198 40.14 0.71 70 01-06-1954 125 10.2 

20 0.001296 52.58 0.71 70 01-08-1964 247 11.8 

21 0.002795 44.89 0.71 70 01-05-1976 388 10.3 

22 0.004192 41.66 0.71 70 01-08-1986 511 9.9 

23 0.001923 48.35 0.71 70 01-07-1996 630 11.8 

24 0.001404 45.73 0.71 70 01-06-2009 785 - 

 

The most respected model of the sun, in current literature, is the magneto-hydrodynamic dynamo model, 

specifically the Babcock-Leighton dynamo as discussed by Schatten and Pesnell [32]. This model provides a 

reasonable explanation of the mechanism behind the solar activity cycle. However, it does not well-explain the 

variation in amplitude of individual cycles. This uncertainty in cycle-to-cycle amplitude means that there is an 

unavoidable challenge in predicting future cycles [32,44]. 

The irregular nature of solar activity is often represented using the F10.7 index. Fluctuations caused by solar 

storms are inherently unpredictable and can cause short term spikes in the F10.7 index and subsequently the 

atmospheric density. Generally such spikes average out over time, allowing them to be neglected when considering 

time periods significantly greater than the duration of the spikes. However, depending on the timeframe being 

considered an uncertainty should be introduced to account for these spikes. Finally, it should be noted that the use of 

daily or monthly averaged solar activity data, as applied herein, introduces uncertainty to the input data. Such 

smoothed data does not demonstrate the true maxima and minima, rather said spikes in solar activity due to, say, 

solar storms, are smoothed, giving lower maxima and higher minima. Consequently, when averaging this average as 

performed herein, further uncertainty is introduced.  

Solar Forecasting 

Following consideration of a range of techniques, including the spectral method, or using precursors [30], 

regression analysis is found to be the only technique with the maturity and easily malleable nature required for 



application herein. Methods such as the spectral method are valid over short periods, however historically they are 

not accurate when projecting further than a few months. While precursors are a promising technique, particularly the 

SODA precursor developed by Schatten and Pesnell [32], more research is required to verify their accuracy over 

long time periods.  

The McNish-Lincoln method provides the basis for many other regression analysis methods [45]. It predicts the 

solar activity cycle up to one year in advance using an average solar activity cycle constructed by sampling a 

thirteen-month smoothed-cycle running mean at twelve month intervals [46]. Curve fitting is an alternative form of 

regression analysis; essentially, it uses equations describing the shape of the cycle to predict solar activity up to the 

end of the current cycle. This is most effective for the middle of the cycle. This is also an inherent weakness as it is 

only effective from year 2 to year 9 of a typical 11-year cycle; beyond this interval, predictions are more estimation 

than scientific prediction [46]. The use of an imprecise solar forecast is, however, still recommended over not 

including solar activity effects at all.  

The solar activity cycle is often over-simplified and represented by a sine function. However, there is an 

asymmetry to the cycle that the sine function cannot properly represent; therefore a different form is required. 

Changes in cycle length (period) and strength (amplitude) mean that data must be sub-divided into individual 

periods to accurately describe each cycle. Furthermore, the rising and falling portions of each cycle are often of 

different durations, as can be seen in close examination of Fig. 4, further complicating the modelling process. The 

Stewart and Panofsky method was found to fit some cycles relatively well, however some others very poorly [33]. 

Elling and Schwentek proposed another fit using five independent variables and while it was more successful, it is 

not ideal for an engineering application, such as that proposed in this paper, due to its complex form and number of 

variables [34]. However, Hathaway, Wilson, and Reichmann discuss an equation that fits the distribution at least as 

accurately, while using only 2 independent variables [35]. Their formulation, based on the sunspot number (SSN) 

data, is 

 ܵܵܰሺݐሻ ൌ ݐሺߙ െ ଴ሻଷ݁ሺ௧ି௧బሻమఊమݐ െ  ǡ (3)  ߢ

where t is the time (in months measured relative to a user-selected date), and Į, Ȗ, ț, and t0 whilst constant within 

each cycle vary from cycle to cycle; Į is the amplitude of the cycle, Ȗ is related to the time taken to rise from the 

initial minimum to maximum, ț provides the asymmetry of the cycle, and t0 is the starting time (in months measured 



relative to a user-selected date) of the particular cycle being considered. Hathaway et al. found that by setting the 

starting time for a cycle at the solar minimum ț could be fixed to a constant value of 0.71 for all past cycles for 

which there was sufficient data.  With ț fixed, a relationship between Ȗ and Į can be developed. This relationship 

could be attributed to the Waldmeier effect, which states that larger amplitude cycles take less time to reach their 

maximum than smaller amplitude cycles [47]. There is, however, an argument that this effect is just a statistical 

fluke that exists in the Wolf sunspot number data rather than a physical property of the solar cycle [48]. For the 

purposes of this work this relationship is considered to be a true effect that will exist in future cycles. 

There is an inherent correlation between sunspot number and solar activity [8]. This correlation means that the 

Hathaway et al. formulation can be modified to model solar activity. The major difference between the two data sets 

is the vertical shift, so an independent variable, Ɍ, is added to the formulation allowing it to be applied to the solar 

activity distribution rather than sunspot number distribution. The curve fit constants must then be re-derived using 

the solar activity data. The solar radio flux, SF, (measured in SFU) is then calculated as 

ሻݐሺܨܵ  ൌ ݐሺߔ െ ଴ሻଷ݁ሺ௧ି௧బሻమటమݐ െ ɓ ൅  ǡ (4) ߦ

where 

 ߰ሺߔሻ ൌ ʹʹǤͷʹ͵ ൅ ͵͵ǤʹͲͻሺߔ ൈ ͳͲଷሻబǤయఴఱ  ǡ (5) 

and Ɍ provides the vertical shift. All other parameters are defined the same as in the Hathaway et al. formulation, ߔ 

replacing Į, ߰ replacing Ȗ and ߭ replacing ț. Eq. (5) differs from the Hathaway et al. formulation due to the change 

in the input data set, from sunspot to solar activity data. This new extension of the Hathaway et al. formulation 

allows a user to bypass the sunspot number and directly calculate the solar activity. It should be noted that, for this 

and other formulations, the curve fit generated depends on the solar activity data used to generate the curve. 

Whether the solar activity data is hourly, daily, monthly or yearly averaged will impact the curves parameters; 

however the formulation itself will remain unchanged. Herein, for ease of processing, monthly averaged solar 

activity data is used [43]. 

Solar cycles 18 through 24 are modelled using Eq. (4), see Fig. 4. A prediction for solar activity during the 

remainder of the current cycle, cycle 24, is also shown in Fig. 4. 



 

Fig. 4 Solar cycle data. 

A series of values for ߔ, ߰, ߭, Ɍ and t0 are determined and used to describe each cycle. Note that in the re-

derivation ߭ and Ɍ were found to vary slightly from cycle to cycle, however the curve fit was insensitive to these 

variations so ߭ and Ɍ were set at 0.71 and 70 respectively; meaning only one independent variable, ߔ, is required.  

The values used to generate the curve fit shown in Fig. 4 are given in Table 1.  

Density Index 

The atmospheric density is calculated by introducing a new parameter, the density index, which is a measure of 

the intensity of solar activity. This parameter is introduced to allow interpolation between the three atmospheric 

density curves in Fig. 2. The density index is described as 

ሻݐሺܫܦ  ൌ  ௌிିௌி೘೔೙ௌி೘ೌೣିௌி೘೔೙  ൌ ௌிି଻଴ଵ଼଴ , (6) 

where DI is the density index, and SF is the solar radio flux. Recall that the values for SFmin and SFmax are taken as 

70 and 250 Solar Flux Units, corresponding respectively to low and high solar activity states as given by the CIRA 

model. The density index is a dimensionless parameter with a value between 0 and 1, this interval is arbitrary. For 

the purpose of this work values of 0 and 1 are assigned to a minimum solar activity state and a maximum solar 

activity states respectively. A value of approximately 0.39 would indicate an average solar activity state due to the 
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unequal nature of the minimum to average, and average to maximum intervals. The density index effectively allows 

the extrapolation of an infinite number of solar activity specific curves; meaning atmospheric density calculations 

are unconfined by minimum, average or maximum states of solar activity, and can instead be discretized by the 

suitable solar activity specific curve for the problem. 

Directly selecting a density index is problematic due to the implicit nature of the problem; the density index 

required to solve for the orbit lifetime is the average density index calculated over the entire orbit lifetime. For 

example, if the orbit lifetime is 30 days the density index needed is the average density index over those 30 days.  

Therefore, an iterative method based on the predicted orbit lifetime is used to converge on the averaged density 

index and the predicted orbit lifetime.   

The atmospheric density is calculated by interpolating between minimum and maximum solar conditions using 

the density index, giving 

ߩ  ൌ ௟ߩ  ൅ ௛ߩሺܫܦ െ  ௟ሻ (7)ߩ

where subscripts l, and h indicate low and high solar activity respectively, as defined by the minimum and maximum 

solar activity states given in the CIRA model.  

III. Re-derivation of the King-Hele Model 

The solar activity and atmospheric density models developed herein could be applied to any general 

perturbations or semi-analytical/semi-numerical method. However, for demonstration the King-Hele method is 

modified to include the new atmospheric model and density index. Before the models are applied, the King-Hele 

orbit lifetime equations are re-derived using modern mathematical toolsets to remove some of the simplifications 

made.  

Following King-Hele’s derivation, the decay of an orbit can be largely characterized by the changes in two of the 

Keplerian elements: the decrease in the semi-major axis and the decrease in the eccentricity [10]. These can be 

found directly from Lagrange’s Planetary Equations, or from first principles [5]. Lagrange’s Planetary Equations can 

be simplified, for a decaying orbit subject to aerodynamic drag, to  

 ሶܽ ൌ ʹܽଶߤݒ  ்݂  (8) 

and   



 ሶ݁ ൌ ͳݒ ሾʹ ்݂ ሺ݁ ൅ cos  ሻሿ ǡ (9)ߠ

where v is the velocity of the body in orbit, µ is the standard gravitational parameter of the central body, fT is the 

tangential component of drag perturbing the orbit, and ș is the true anomaly.  

The most significant perturbation affecting a spacecraft in a low altitude orbit about a body with an atmosphere 

is atmospheric drag. Therefore the drag force must be calculated, this is done using the standard drag equation [5],  

ܦ  ൌ െ ͳʹ  ǡ ܵܨ஽ܥଶݒߩ
 

(10) 

where ȡ is atmospheric density at a given altitude, v is the velocity of the body through the atmosphere, CD is the 

coefficient of drag of the body, S is the cross-sectional area of the body perpendicular to the direction of travel, and 

F is a factor taking into account the rotation of the atmosphere, which can be calculated as  

ܨ  ൌ ቀͳ െ ݒ߱ݎ cos ݅ቁଶ ǡ (11) 

where r is the orbits radius, Ȧ is the rotational velocity of the atmosphere, and i is the inclination of the orbit. The 

component of drag in the instantaneous direction of travel, termed the tangential component, fT is then found by 

letting  

ߜ  ൌ ஽݉ܥ ܵ ܨ  ǡ (12) 

such that  

 ்݂ ൌ െ ͳʹ  Ǥ (13) ߜଶݒߩ

The component of acceleration due to lift is generally considered to be negligible; it is therefore disregarded for the 

purposes of this work. Substituting Eq. (13) back into and rearranging Eq.’s (8) and (9), they become; 

 ሶܽ ൌ െ ߤߜଷݒଶܽ ߩ  (14) 

and   

 ሶ݁ ൌ െ ߜݒߩሺ݁ ൅ cos  ሻ Ǥ (15)ߠ

It is, however, more convenient to work in terms of eccentric anomaly. The geometry of an elliptical orbit 

demonstrates the connection between the eccentric anomaly, E and true anomaly, ș which can be used to transform 

Eq. (15) so that it becomes 



 ሶ݁ ൌ െ ߜݒߩ ቀܽݎ ሺͳ െ ݁ଶሻ cos  ቁ Ǥ (16)ܧ

Then, following the King-Hele derivation method [10], performing an integration with respect to eccentric anomaly 

such that 

ܧ݀݁݀  ൌ ݐ݀݁݀ ൘ݐܧ݀݀  ǡ (17) 

where dE/dt is calculated as 

Ǥܧ  ൌ ͳݎ ቀܽߤቁଵଶ ǡ (18) 

Eq. (17) becomes  

ܧ݀݁݀  ൌ െ ߜܽߩ ቀܽݎቁଵଶ ቆݒݎଶߤ ቇଵଶ ሺͳ െ ݁ଶሻ cos  Ǥ (19)ܧ

Through extensive manipulation this becomes 

ܧ݀݁݀  ൌ െ ߜܽߩ ൬ͳ ൅ ݁ cos ͳܧ െ ݁ cos ൰ଵଶܧ ሺͳ െ ݁ଶሻ cos  Ǥ (20)ܧ

Through a similar process Eq. (14) may be manipulated and da/dE can be found as 

ܧ݀ܽ݀  ൌ െ ܽߩଶߜ ሺͳ ൅ ݁ cos ሻଷଶሺͳܧ െ ݁ cos  ሻଵଶ  Ǥ (21)ܧ

Letting ݔ ൌ ܽ݁, dx/dE is calculated as 

ܧ݀ݔ݀  ൌ ܽ ܧ݀݁݀ ൅ ݁  ǡ (22)  ܧ݀ܽ݀

and substituting Eq.’s (20) and (21) in, Eq. (22) becomes 

ܧ݀ݔ݀  ൌ െܽߩଶߜ ൬ͳ ൅ ݁ cos ͳܧ െ ݁ cos ൰ଵଶܧ ሺcos ܧ ൅ ݁ሻ Ǥ (23) 

Equations (21) and (23) are expanded using a power series expansion. The King-Hele method excludes terms of the 

order ݁ଷ and higher, thus from this point forward is the Modified King-Hele method. This expansion gives 

 

ܧ݀ܽ݀ ൌ െߩ଴অ൫ఉሺ௔బି௔ି௫బሻ൯ܽଶߜ ൤ͳ ൅ ʹ݁ cos ܧ ൅ Ͷ͵ ݁ଶሺcos ܧʹ ൅ ͳሻ
൅ ͳͶ ݁ଷሺcos ܧ͵ ൅ ͵ cos ሻ൨ܧ অሺఉ௫ ୡ୭ୱ ாሻ (24) 

and 



ܧ݀ݔ݀  ൌ െܽଶߩ଴অ൫ఉሺ௔బି௔ି௫బሻ൯ߜ ሾܿݏ݋ ܧ ൅ ͳʹ ݁ሺܿݏ݋ ܧʹ ൅ ͵ሻ ൅ ͳͅ ݁ଶሺܿݏ݋ ܧ͵ ൅ ͳͳ ݏ݋ܿ  ሻܧ

൅ ଵଵ଺ ݁ଷሺܿݏ݋ Ͷܧ ൅ ͺ ݏ݋ܿ ܧʹ ൅ ͹ሻሿঅሺఉ௫ ௖௢௦ ாሻ  , (25) 

respectively, where ȕ is the inverse of the density scale height [10] and the subscript 0 denotes initial conditions. 

Simplifying using the integral form of the Modified Bessel function, then integrating Eq.’s (24) and (25) gives 

ܽ߂  ൌ െߩ଴অ൫ఉሺ௔బି௔ି௫బሻ൯ܽଶߜሺʹߨሺܫ଴ሾݔߚሿ ൅ ሿݔߚଵሾܫ݁ʹ ൅ ଷସ ݁ଶሺܫଶሾݔߚሿ ൅ ሿሻݔߚ଴ሾܫ ൅ ଵସ ݁ଷሺܫଷሾݔߚሿ ൅͵ܫଵሾݔߚሿሻሻሻ  

(26) 

and 

ݔ߂  ൌ െߩ଴অ൫ఉሺ௔బି௔ି௫బሻ൯ܽଶߜሺʹߨሺܫଵሾݔߚሿ ൅ ଵଶ ݁ሺ͵ܫ଴ሾݔߚሿ ൅ ሿሻݔߚଶሾܫ ൅ ଵ଼ ݁ଶሺͳͳܫଵሾݔߚሿ ൅ ሿሻݔߚଷሾܫ ൅
ଵଵ଺ ݁ଷሺ͹ܫ଴ሾݔߚሿ ൅ ͺܫଶሾݔߚሿ ൅  .  ሿሻሻሻݔߚସሾܫ

(27) 

After simplifying by letting z=ȕx and, 

௡ݕ  ൌ ூ೙ሾ௭ሿூభሾ௭ሿ  (28) 

and dividing Eq. (26) by Eq. (27), da/dx can be calculated as   

ݔ݀ܽ݀  ൌ ଴ݕ ൅ ʹ݁ ൅ Ͷ͵ ݁ଶሺݕଶ ൅ ଴ሻݕ ൅ ͳͶ ݁ଷሺݕଷ ൅ ͵ሻͳ ൅ ͳʹ ݁ሺ͵ݕ଴ ൅ ଶሻݕ ൅ ͳͅ ݁ଶሺͳͳ ൅ ଷሻݕ ൅ ͳͳ͸ ݁ଷሺ͹ݕ଴ ൅ ͺݕଶ ൅   ସሻݕ
.  

(29) 

Finally, expanding using a power series Eq. (29) becomes 

 ௗ௔ௗ௫ ൌ ଴ݕ ൅ ଵଶ ݁ሺͶ െ ଴ଶݕ͵ െ ଶሻݕ଴ݕ ൅ ଵ଼ ݁ଶሺെʹͻݕ଴ ൅ ͳͺݕ଴ଷ െ ଶݕʹ ൅ ͳʹݕ଴ଶݕଶ ൅ ଶଶݕ଴ݕʹ െ ଷሻݕ଴ݕ ൅
ଵଵ଺ ݁ଷሺെ͵ʹ ൅ ͳͳ͵ݕ଴ଶ െ ͷͶݕ଴ସ ൅ ͵ͺݕ଴ݕଶ െ ͷͶݕ଴ଷݕଶ ൅ ଶଶݕʹ െ ͳͺݕ଴ଶݕଶଶ െ ଶଷݕ଴ݕʹ ൅ ͸ݕ଴ଶݕଷ ൅ʹݕ଴ݕଶݕଷ െ   ସሻ Ǥݕ଴ݕ

(30) 

To move ahead it is necessary to split into various cases according to eccentricity to treat each more accurately. 

The cases considered herein are low eccentricity (e <  0.02) and circular (e =  0). The choice of e <  0.02 for the low 

eccentricity case follows King-Hele’s derivation; this assumption is found to be sound for the limited number of 

cases considered in the validation section of this paper.  

Low Eccentricity; e < 0.02 

Using the expression  



 ܶܶ଴ ൌ ൬ ܽܽ଴൰ଷଶ ǡ (31) 

where T is the orbit period, and allowing that for one revolution  

ݐ߂  ൌ ଴ܶ ൬ ܽܽ଴൰ଷଶ ǡ (32) 

where t is the orbit lifetime, dividing Eq. (27) by Eq. (32) and expanding further, dx/dt is calculated as 

 ௗ௫ௗ௧ ൌ ିଶగఋ௔బమఘబబ் অቂቀଵିయಹೌబቁ௅௡ቂ೥బ಺భሾ೥బሿ೥಺భሾ೥ሿ ቃାమಹೌబቀ௭బ಺బሾ೥బሿ಺భሾ೥బሿି௭಺బሾ೥ሿ಺భሾ೥ሿቁିೣబಹ ቃ ቀͳ െ ு௔బ ݊ܮ ቂ௭బூభሾ௭బሿ௭ூభሾ௭ሿ ቃቁభమ ൬ܫଵሾݖሿ ൅ ଵଶ ݁ሺ͵ܫ଴ሾݖሿ ൅
  ,ሿሻ൰ݖଶሾܫ

(33) 

where H is the density scale height. Replacing z and e, Eq. (33) becomes  

 ௗ௭ௗ௧ ൌ ଵு ቈିଶగఋ௔బమఘబబ் ቀͳ െ ு௔బ ݊ܮ ቂ௭బூభሾ௭బሿ௭ூభሾ௭ሿ ቃቁభమ ቀ௫బூభሾ௭బሿு௭ூభሾ௭ሿ ቁ כ অቂିయಹೌబ௅௡ቂ೥బ಺భሾ೥బሿ೥಺భሾ೥ሿ ቃାమಹೌబቀ௭బ಺బሾ೥బሿ಺భሾ೥బሿି௭಺బሾ೥ሿ಺భሾ೥ሿቁି௭బቃ כ
ቆܫଵሾݖሿ ൅ ௭ுଶ௔బ ሺ͵ܫ଴ሾݖሿ ൅  ሿሻቇ቉ . (34)ݖଶሾܫ

To simplify Eq. (34) a term B’ is introduced as  

ᇱܤ  ൌ ଴ߨܶʹ  ଴ሿঅሾି௭బሿǤ (35)ݖଵሾܫ଴ݔ଴ߩߜ

Using B’ Eq. (34) then becomes 

 ௗ௭ௗ௧ ൌ െ ௔బమ஻ᇲுమ௭ ቀͳ െ ு௔బ ݊ܮ ቂ௭బூభሾ௭బሿ௭ூభሾ௭ሿ ቃቁభమ ቆͳ ൅ ௭ுଶ௔బ ሺ͵ݕ଴ ൅ ଶሻቇݕ כ অቂିయಹೌబ௅௡ቂ೥బ಺భሾ೥బሿ೥಺భሾ೥ሿ ቃାమಹೌబ ቀ௭బ಺బሾ೥బሿ಺భሾ೥బሿି௭಺బሾ೥ሿ಺భሾ೥ሿቁቃ . (36) 

Eq. (36) can then be simplified by rearranging, expanding and using the approximations  

ଶݕ  ൌ ଴ݕ െ  (37) ݖʹ

and 

଴ݕݖ  ൌ ʹ ൅ ଵହ  ଶ. (38)ݖ

Eq. (36) therefore becomes 

 െ ܽ଴ଶܤᇱܪଶ ݖ݀ݐ݀ ൌ ݖ ൅ ͹ݖܪʹܽ଴ ଴ሿ൧ݖଵሾܫ଴ݖൣ݊ܮ െ ଴ଶͷܽ଴ݖݖܪʹ െ ͷܽݖܪ଴ െ ͹ܪʹܽ଴ ൭ ݖ݀݀ ൬ͳʹ ሿ൧൰൱ݖଵሾܫݖൣ݊ܮଶݖ െ ͹ܪͳͲܽ଴  ଷ Ǥ (39)ݖ

By integrating and rearranging, Eq. (39) becomes 



ᇱ߬ܤ  ൌ ͳʹ ݁଴ଶ ቌቆͳ െ ଴ଶቇݖଶݖ ൭ͳ െ ଴ܪܽ ቆͷ ൅ ͳͳݖ଴ଶʹͲ െ ͹ݖଶʹͲ ቇ൱ െ ͹ݖܪଶͶܽ଴ݖ଴ଶ ݊ܮ ቈݖ଴ܫଵሾݖ଴ሿܫݖଵሾݖሿ ቉ቍ Ǥ (40) 

Finally the lifetime can be found by substituting z=0 into Eq. (40); the equation for lifetime is  

ࡸ࣎  ൌ ᇱ࡮૙૛૛ࢋ ൭૚ െ ૙ࢇࡴ ቆ૞ ൅ ૚૚ࢠ૙૛૛૙ ቇ൱ Ǥ (41) 

Circular; e = 0 

The case for zero eccentricity is much simpler, as all eccentricity terms can be removed early in the derivation.  

As e=0, Eq. (26) becomes 

ܽ߂  ൌ െʹߩߨ଴ܽଶߜঅ൫ఉሺ௔బି௔ሻ൯ Ǥ (42) 

Dividing Eq. (32) by Eq. (42), dt/da is calculated as 

ܽ݀ݐ݀  ൌ ଴ܶ ቀ ܽܽ଴ቁଷଶ െʹߩߨ଴ܽଶߜঅሺఉሺ௔బି௔ሻሻ Ǥ (43) 

Integrating, Eq. (43) becomes 

଴ݐ  െ ݐ ൌ ܪ ଴ܶʹߩߨ଴ܽ଴ଶߜ ൫অ൫ఉሺ௔ି௔బሻ൯ െ ͳ൯ ǡ (44) 

and finally substituting in Eq. (31) the lifetime for a spacecraft in circular orbit is  

ࡸ࣎  ൌ ࢾ૙૛ࢇ૙࣋࣊૙૛ࢀࡴ ێێێۏ
૚ۍ െ অࢇࢼ૙ቐ൬ࢀࢌࢀ૙൰૛૜ି૚ቑ

ۑۑۑے
 Ǥ (45) ې

 The solution found here is identical to that found by King-Hele [10]. This is because the simplifications made in 

the low eccentricity case when following the King-Hele derivation method were to ignore higher order eccentricity 

terms, which is not necessary in the zero eccentricity case. Due to the approximations made in the derivation of the 

low eccentricity method, simply substituting in e =  0 into Eq. (41) does not yield Eq. (45); however the resulting 

orbit lifetime estimation given by both methods for spacecraft with very low initial eccentricities (e <  0.001) are 

comparable, as will be seen in the validation section of this paper. In both cases the ߩ଴ term can be determined using 

Eq. (7). 



IV. Model Validation Using Historical Data 

Validation is conducted using data from historical missions, as detailed in Table 2.  With the mass, cross-

sectional area, drag coefficient, initial epoch, and orbit of the mission defined from [49–51]. As such, all the 

parameters affecting the lifetime calculations are fixed and invariable within this validation.  

Table 2 Validation mission spacecraft characteristics 

Spacecraft Name 
NORAD  

Catalogue No. 

Initial 

Epoch 
Mass (kg) 

Cross-Sectional 

Area (m
2
) 

Drag  

Coefficient 

ODERACS-A 22990 10/02/1994 1.482 0.0081 1.93 

ODERACS-B 22991 10/02/1994 1.482 0.0081 1.99 

ODERACS-E 22994 11/02/1994 5 0.0182 1.96 

ODERACS-F 22995 11/02/1994 5 0.0182 2.01 

ODERACS-2A 23471 06/02/1995 5 0.0182 1.97 

ODERACS-2B 23472 05/02/1995 1.482 0.0081 1.96 

GFZ-1 23558 20/04/1995 20.63 0.0362 2.16 

Starshine-1 25769 05/06/1999 39.46 0.181 2.16 

Starshine-2 26929 16/12/2001 38.56 0.181 2.15 

Starshine-3 26996 30/09/2001 90.04 0.6939 2.01 

ANDE-Castor 35694 31/07/2009 50 0.183 2.20
‡
 

ANDE-Pollux 35693 31/07/2009 25 0.183 2.20
‡
 

Calsphere-3 04957 01/01/1983 0.73 0.0507 2.03 

Calsphere-4 04958 01/01/1983 0.73 0.0507 2.03 

Calsphere-5 04963 06/01/1984 0.73 0.0507 2.03 

Cosmos 1427 (Yug-2) 13750 29/12/1982 750 3.141593 2.05 

Cosmos 1615 (Yug-3) 15446 20/12/1984 750 3.141593 2.05 

Cosmos 2137 (Yug-4) 21190 19/03/1991 750 3.141593 2.05 

Cosmos 1450 (T2-1) 13972 06/04/1983 750 3.163622 2.18 

Cosmos 1534 (T2-2) 14668 26/01/1984 750 3.163622 2.18 

Cosmos 1631 (T2-3) 15584 27/02/1985 750 3.163622 2.18 

 

Attitudes of a decaying spacecraft can be difficult to predict, as most will have lost power by re-entry they are 

unable to maintain a steady attitude and will tumble, altering the drag coefficient and cross-sectional area, and 

complicating the analysis. However, each of the satellites in Table 2 was chosen for this validation as they are 

approximately spherical, removing the uncertainty that would be introduced by the attitude awareness problem. 

Atmospheric Density Model: Single Curves vs. Multiple Curves  

The Modified King-Hele Method is applied to the spacecraft detailed in Table 2 to test the accuracy of the 

produced lifetime predictions. Before the method proposed herein is compared to other methods, the single curve 

                                                           

‡
 As no drag coefficient is cited in the literature for these missions the ISO standard value of 2.2 was used [3].  



and multiple curve models for atmospheric density, as displayed in Fig. 2 and Fig. 3 respectively, are compared. It 

should be noted that for all predictions made using the new solar activity model, the solar activity data used is only 

that which would have been available to each mission prior to launch.  

Table 3 Lifetime analysis results vs. true lifetimes of validation missions 

 Single Density Curves Multiple Density Curves  

Spacecraft Name 

True 

Lifetime 

(Days)[51] 

Predicted 

Lifetime 

(Days) 

% Error 

Es  

Predicted 

Lifetime 

(Days) 

% Error 

Em 
|Em| - |Es| 

ODERACS-A 235.1 240.4 2.2 234.7 -0.2 -2.0 

ODERACS-B 235.4 240.0 1.9 233.8 -0.7 -1.2 

ODERACS-E 384.4 380.1 -1.1 369.1 -4.0 2.9 

ODERACS-F 378.6 374.2 -1.1 363.1 -4.1 2.9 

ODERACS-2A 401.4 380.5 -5.2 383.1 -4.6 -0.6 

ODERACS-2B 236.1 236.8 0.3 239.4 1.4 1.1 

GFZ-1 1523.5 1643.7 7.9 1465.6 -3.8 -4.1 

Starshine-1 258.3 314.6 21.8 261.9 1.4 -20.4 

Starshine-2 130.7 156.5 19.7 146.0 11.7 -8.1 

Starshine-3 477.9 540.0 13.0 447.2 -6.4 -6.6 

ANDE-Castor 383.3 343.4 -10.4 359.7 -6.2 -4.2 

ANDE-Pollux 240.9 198.7 -17.5 212.6 -11.7 -5.8 

Calsphere-3 2479.0 2442.7 -1.5 2419.3 -2.4 0.9 

Calsphere-4 2451.7 2419.1 -1.3 2377.5 -3.0 1.7 

Calsphere-5 2191.5 2170.2 -1.0 2162.9 -1.3 0.3 

Cosmos 1427 (Yug-2) 2469.8 2811.5 13.8 2357.2 -4.6 -9.3 

Cosmos 1615 (Yug-3) 1939.2 2368.6 22.1 1969.5 1.6 -20.6 

Cosmos 2137 (Yug-4) 1474.3 1848.0 25.3 1464.1 -0.7 -24.6 

Cosmos 1450 (T2-1) 2609.2 3122.3 19.7 2543.5 -2.5 -17.1 

Cosmos 1534 (T2-2) 2426.3 3001.4 23.7 2423.1 -0.1 -23.6 

Cosmos 1631 (T2-3) 2109.1 2682.3 27.2 2104.7 -0.2 -27.0 

Average absolute error 11.33 % 3.46 %  

Absolute error standard deviation 9.44 % 3.25 %  

 

Comparing the average errors, which are calculated by averaging the absolute error from all of the lifetime 

estimates given in Table 3, it is seen that in using multiple curves to model atmospheric density the method produces 

errors much smaller than those produced by the same method incorporating the single atmospheric density curves. 

This can be attributed to the increase in accuracy of the density model; in some cases the single curve density is an 

order of magnitude different to the multiple curve density, which introduces a huge error in the orbit lifetime 

calculation.  

When considering the multiple curves method it can be seen that with the exception of two missions, the 

predictions generally fall within the 10% range, in fact the average error is 3.46% and the standard deviation in error 

is 3.25%. It should be noted that one of the exceptions is the ANDE-Pollux mission which has an undefined drag 



coefficient, therefore that result is not necessarily reliable. The other is Starshine-2, which was by far the shortest 

mission duration considered. Further analysis would be required to confirm, however it can be surmised that due to 

short-term spikes in solar activity, short period errors are not well-captured within the input monthly averaged solar 

activity data, and that using weekly or even daily averaged data could reduce the error for this spacecraft. Table 3 is 

shown in graphical form in Fig. 5. 

 

Fig. 5 Method validation for historical spacecraft detailed in Table 2. 

When considering the validation results graphically it becomes clear that, while the error in the single curve 

results mask the trend, the largest errors in the multiple curve method tend to occur in the lowest lifetime missions. 

This is likely due to a short duration spike in solar activity, which over a longer lifetime is averaged out, but causes a 

greater uncertainty in the atmospheric density in the short duration. Applying a Monte Carlo analysis with the solar 

condition input as a variable would address this uncertainty.  

If we remove the ANDE spacecraft (the two spacecraft with undefined drag coefficients) from the list the 

average error from the remaining lifetime estimations decreases to 2.88%. Using this to define upper and lower 

lifetime boundaries, a range for the drag coefficient of each of these two spacecraft can be derived from the true 

lifetime: ANDE-Castor likely had a drag coefficient in the range 2.01-2.13, while ANDE-Pollux likely had a 

coefficient in the range 1.89-2.00. 
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Equations (41) and (45) are derived based on the eccentricity of the initial orbit; below 0.02 and zero, 

respectively. The formulation of Eq. (45) is simpler when compared to Eq. (41), which includes a Bessel function, 

and hence may be preferred for initial analysis. In order to determine the influence of eccentricity on the accuracy of 

the two lifetime equations the difference in absolute percentage errors in the orbit lifetime estimations given by each 

equation is examined. This difference is calculated as,  

݂݂݅ܦ  ൌ ஼ܧ െ ௅ܧ ൌ ቆ߬௅ሺ௘ୀ଴ሻ െ ߬௅ሺ௧௥௨௘ሻ߬௅ሺ௧௥௨௘ሻ כ ͳͲͲቇ െ ቆ߬௅ሺ௘ழ଴Ǥ଴ଶሻ െ ߬௅ሺ௧௥௨௘ሻ߬௅ሺ௧௥௨௘ሻ כ ͳͲͲቇǡ (46) 

where EL and EC are the absolute percentage errors in Eq. (41) and (45) respectively and ߬௅ is the orbit lifetime, 

estimated using Eq. (41) and (45) or the true orbit lifetime from historical record. By considering this difference in 

the absolute percentage error in the lifetime calculations against the initial orbit eccentricity for the 21 validation 

missions, see Fig. 6, it is seen that the difference decreases with decreasing eccentricity. Given the structure of Eq. 

(46), a positive difference in Fig. 6 shows that the low eccentricity equation is more accurate, while a negative 

difference shows that the circular equation is more accurate. Hence, from the trend shown in Fig. 6, and from the 

limited data set used, it could be inferred that when the eccentricity drops below approximately 0.001 the orbit may 

be assumed to be circular, and Eq. (45) could be used without loss of accuracy.   

 

Fig. 6 Comparison of Results using Eq. (41) and Eq. (45)  
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To further verify the proposed method it is tested against other available methods. Two analytical methods are 

considered: the original King-Hele method, and the Griffin and French method [9,10,12]. Third party software is 

also considered and while many options for orbit propagation and lifetime estimation exist, currently the most 

notable are: Systems Tool Kit (STK) from Analytical Graphics, General Mission Analysis Tool (GMAT) from 

NASA, and Semi-analytical Tool for End of Life Analysis (STELA) from CNES. STK has a Lifetime Analysis Tool 

that uses a special perturbations algorithm to compute the orbit lifetime of a spacecraft [52]. GMAT was originally 

designed as a trajectory optimization and mission analysis tool; however, it is capable of performing orbit lifetime 

analysis. Much like STK, GMAT is a special perturbations tool [53]. STELA was specifically designed to give 

reliable orbit lifetime estimations, for spacecraft in the LEO and GEO protected regions and in GTO, using a semi-

analytical algorithm [54].  It should be noted that neither of the analytical methods directly includes the effects of 

solar activity; however each of the 3
rd

 party options considered has inbuilt options to include these effects, which 

were employed in this study.  

An orbit lifetime analysis of each of the selected historical missions in Table 2 is completed using each of the 

analytical and third party software methods. The results tabulated in Table 4 and plotted in Fig. 7, show the 

comparison of the method developed herein, applied to the Modified King-Hele, to the original King-Hele method 

updated to include the CIRA density multiple curve model and density index. Comparison is also made to the 

original King-Hele method updated to include just the CIRA density multiple curve model for average solar 

conditions (i.e. without the density index). Also included for comparison is the Griffin-French analytical method, 

which is similar to the original King-Hele method, and uses the CIRA density multiple curve model for average 

solar conditions to calculate lifetime using a standardized equation, however it’s derivation limits its appropriate 

application to initially circular orbits [12]. 

Table 4 Comparison of accuracy of discussed methods 

Method 
Average Absolute 

% Error 

Absolute Error 

Standard Deviation 

Modified King-Hele (CIRA density, with DI) 3.46 3.25 

Original King-Hele (CIRA density, with DI) 5.10 3.60 

Original King-Hele (CIRA density, average solar conditions, no DI) 50.44 24.96 

Griffin-French (CIRA density, average solar conditions, no DI) 50.73 25.88 

STK 11.39 10.69 

STELA 6.63 7.00 

GMAT 149.11 161.18 

 



 

 

Fig. 7 Accuracy comparison of discussed methods (N.B. logarithmic y-axis); (a) general 

perturbation methods (b) 3
rd

 party software.  

Table 4 shows that the Modified King-Hele method with the new atmospheric model produces the most accurate 

results.  It is the only method that produces an average error of less than 5%; the next best result coming from the 

original King-Hele method (including new atmospheric and solar activity models) with an average error of 5.1%. 

This result shows that the modifications made in the re-derivation of the King-Hele method improve accuracy, on 

average, by approximately 1.5%. However, perhaps of more importance is the comparison of the original King-Hele 

method with and without the density index included; the inclusion of the density index gives an improvement of 

around 45%. Thus, it has been shown that the inclusion of solar activity effects on density is vital.  The most 
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accurate third party software is STELA, with an average error of 6.63%. GMAT is found, in this limited trial, to be 

the least accurate of the compared solutions.  

Over the orbit lifetime, perigee, apogee and eccentricity can be plotted to determine exactly how the spacecraft 

de-orbits. While the projected progression of the decrease in altitude will roughly match between the various 

methods, the projected progression of the eccentricity will be different. This difference is due to the software giving 

semi-analytical or numerical solutions, while the Modified and original King-Hele methods are average solutions 

and thus fail to capture the oscillation in eccentricity.  

V. Extending the Modified King-Hele Method with Monte Carlo Analysis 

A benefit of general perturbations methods including the Modified King-Hele method is the ability to operate in 

a so-called batch mode, enabling a user to run multiple simulations, or perform a Monte Carlo analysis without 

drastically increasing the time taken to solve. The Modified King-Hele method took 8.5 seconds to run a Monte 

Carlo analysis of 10000 simulations on each of the 21 historical missions detailed in Table 2; amounting to a total of 

210000 simulations, each averaging just 40.5 microseconds. This test was done using non-optimized scripts within 

MATLAB R2014a, on a Windows 7 desktop computer with an Intel i7-3770 operating at 3.4 GHz and 16384 MB of 

RAM.  

Wrapping the Modified King-Hele method in a Monte Carlo analysis offers the chance to see how the variation 

in parameters such as the initial eccentricity, the spacecraft mass or even the launch date will affect the predicted 

orbit lifetime. A Monte Carlo analysis can also be used to provide confidence in the predicted lifetime by accounting 

for uncertainties introduced by including variations in parameters such as solar activity, thereby producing 

maximum and minimum orbit lifetime bounds for a mission. The probabilities produced by the Monte Carlo analysis 

can also be fed into higher levels of analysis, such as estimating mission costs, or regulatory compliance checks.  

Uncertainties in spacecraft and mission specifications can also be analyzed in the same way to produce estimated 

orbit lifetime bounds, or a probability distribution can be used to inform the analysis further. Uncertainties in the 

mass, cross-sectional area, drag coefficient, and launch date cause uncertainty in the lifetime predicted, and a 

probability distribution can be applied to each variation. Fig. 8 shows the relationship between the variations in each 

specific parameter to the predicted lifetime of the ODERACS-A spacecraft, while Fig. 9 shows the probability 

distributions generated by the same variations. These variations are produced using a normal distribution, centered 



on the value of each parameter from Table 2, the value for the estimated error in each parameter is selected based on 

how well defined the parameter is known. In the example case of ODERACS-A the error in mass was set at ±1%, as 

was the estimated error in cross-sectional area, as these parameters were measured pre-launch and as such are only 

subject to very small measurement errors. The estimated errors in drag coefficient and density index were ±5% as 

they are both inferred parameters and as such are more likely to be subject to large errors.  

 

Fig. 8 Monte Carlo analysis of ODERACS-A lifetime – Effects of variations in individual 

parameters. 

It can be seen that while the variation in mass is directly proportional to the orbit lifetime (that is to say, 

increasing the mass while holding the other parameters constant will increase the orbit lifetime), the cross-sectional 

area, and drag coefficient are both indirectly proportional. The relationship between the density index and lifetime is 

more complex; however there is a strong inverse correlation. It is seen here to have a relatively linear relationship; 

however this is not always the case. These relationships are as expected: increasing the mass, and or decreasing the 

drag coefficient, and or the cross-sectional area will increase the potential forward momentum of the spacecraft 

leading to an increased lifetime. Also a decrease in the density index implies a decrease in atmospheric density, 

which would lead to a longer lifetime.  

It should be noted that the launch date is actually a secondary parameter as it informs the density index, which 

then directly affects the predicted lifetime. These individual variations are overlaid for easy comparison, as seen in 

Fig. 9.  
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Fig. 9 Monte Carlo analysis of ODERACS-A lifetime – Overlay of individual parameter 

variations probability distributions. 

The overlay shown in Fig. 9 highlights that, for this case, the uncertainty in drag coefficient produced the largest 

uncertainty in the orbit lifetime predicted, while the uncertainty in the mass produced the smallest uncertainty in 

predicted orbit lifetime. This can be attributed directly to the percentage error applied due to the directly 

proportional relationship between variations in mass and lifetime. However upon examination of the spread 

produced by the density index and drag coefficient, both of which had the same percentage error estimation it 

becomes clear that variations in the density index has a much smaller effect on the lifetime of this spacecraft due to 

the complex nature of its relationship to lifetime.  

The predicted orbit lifetime of ODERACS-A is around 235 days, as seen in Fig. 9 and Table 3, with a standard 

deviation of approximately 4 days. This means that the probability of the actual lifetime being in the range 231-239 

days is approximately 68% (1ı), whilst the probability of the actual lifetime being in the range 227-243 days is 

approximately 95% (2ı) and the probability of the actual lifetime being in the range 223-247 days is approximately 

99.7% (3ı); the actual lifetime of ODERACS-A was in fact 235 days. By improving the knowledge behind the 

estimation of parameters, the standard deviation could be decreased and therefore the lifetime ranges produced can 

be narrowed, or the deviation can be better justified.  

210 220 230 240 250 260 270
0

5

10

15

20

25

Lifetime (days)

P
ro

b
a
b

il
it

y
 (

%
)

 

 
All

Cd

DI

S

m



Confidence intervals, such as those discussed previously for ODERACS-A, are applied to the entire set of 

validation missions to further demonstrate the accuracy of the Modified King-Hele method. The 95% (2ı) 

confidence intervals can be seen in Fig. 10, and the 99.7% (3ı) confidence intervals can be seen in Fig. 11. 

 

Fig. 10  Monte Carlo analysis of all validation missions with 95% confidence intervals. 

 

Fig. 11  Monte Carlo analysis of all validation missions with 99.7% confidence intervals. 

In Fig. 10 and Fig. 11 the ranges given are the confidence intervals, with diamond markers representing the mean 

orbit lifetime predictions, whilst the triangle markers show the true orbit lifetime of the spacecraft. It can be seen 
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that in approximately three-quarters of cases the true lifetime falls within the 95% interval whilst in all but two cases 

the true lifetime falls within the 99.7% interval. The two cases that exceed the 3ı interval are the same two missions 

that have errors above 10% (see Table 3), they are both short lifetimes and therefore though they fall outside of the 

interval the difference between the mean and the true lifetime is within 15 days. Since the confidence intervals are 

built using percentage variations on the input parameters, it is probable that the shorter the lifetime the more likely 

that the result will fall outside the confidence interval. And, as previously discussed, short term spikes in solar 

activity will be more influential in such missions yet are not well-captured in the monthly average data used as input 

herein.  

VI. Case Study – UKube-1 

To demonstrate the use of the Modified King-Hele method, with the embedded density index, on a non-historical 

mission the UKube-1 spacecraft (COSPAR spacecraft identification 2014-037F) is taken as a case study. Unlike the 

spacecraft used in the validation section, UKube-1 is a standard 3U CubeSat with 3 deployed solar panels. The 

method derived herein is applied, using the low eccentricity orbit lifetime equation, Eq. (41), to provide an estimate 

of the maximum altitude that the spacecraft could have been launched to whilst still complying with best practice 

guidelines (that a spacecraft should deorbit within 25 years of its end of life) [1,2]. Two different predictions for the 

orbit lifetime of UKube-1 are made. Firstly, conservatively, it is assumed the spacecraft is non-operational from the 

time it is launched, and hence its orbit must decay within 25 years of orbit insertion. Note that UKube-1 did operate 

following orbit insertion so this analysis is not a true-to-life prediction, however this analysis would have been 

applicable pre-launch for regulatory assessment purposes. Secondly, since the spacecraft is now inactive and attitude 

control actions have ceased [55], it can be assumed that the spacecraft is tumbling randomly. The difference between 

these predictions will give the benefit to the orbit lifetime from the attitude control.   

Pre-launch Orbit Lifetime Analysis 

Using UKube-1’s actual launch date, specifications and the relevant ISO standard, ISO27852, for drag 

coefficient and averaged projected area, as defined in Table 5, the maximum allowable altitude can be predicted and 

a graph of the initial altitude versus the predicted orbital lifetime produced [3]. Note the semi-major axis, 



eccentricity, and inclination are taken from orbital tracking data rather than pre-launch estimates, and as such are 

specified to the level of detail available [51].  

Table 5 Parameters used in UKube-1 orbit lifetime analysis 

 Launch Inactive 

Date 8th July 2014 9th
 
September 2016  

Total mass  3.98 kg 3.98 kg 

ISO projected area  0.0628 m
2
 0.0628 m

2 

Drag coefficient  2.2 2.2 

Semi-major axis  7006.23 km 6997.31 km 

Eccentricity 0.0003369 0. 0003628 

Inclination 98.4032° 98.3371° 

The current solar cycle, number 24, is considered a minimum cycle (explicitly its maximum is low when 

compared to other cycles); however, the magnitude of future cycles cannot be known. Therefore, three possibilities 

are considered as shown in Fig. 12; that cycles 25 and 26 will both be minimum, average, or maximum cycles. 

Conservatively, the curve for consecutive minimum cycles should be used to decide a maximum altitude as this will 

ensure that the spacecraft de-orbits within the 25-year guideline. In the case of UKube-1 it can be seen from Fig. 12 

that the maximum allowable altitude would have been approximately 680km, 54km above the actual insertion 

altitude. UKube-1 is therefore concluded to have been inserted into a lower orbit than necessary to comply with the 

25-year limit set out by the ISO and IADC guidelines.  

 

Fig. 12  UKube-1 predicted orbital lifetime versus initial altitude. 
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If the launch date was still undefined it can be set as a variable in, for example, 1 year steps. Fig. 13 shows the 

results given three possibilities that the current and future cycles are all minimum, average or maximum cycles.  The 

maximum allowable altitude then becomes a function of the launch date, varying between approximately 670 and 

800km depending on the launch date as can be seen in Fig. 13.  

 

Fig. 13 UKube-1 predicted orbital lifetime versus initial altitude with open launch date assuming 

consecutive low, average and high solar cycles. 

It is shown in Fig. 13 that there are points of convergence every 13 years for the group of low cycle curves, and 

every 12 and 11 years for the average and high cycle groupings, respectively. These points of convergence can be 

attributed to the cycle period. Thus, when launching to the initial altitudes corresponding to these points of 

convergence the orbit lifetime predicted will be set regardless of where in the solar cycle the launch occurs. 

However, the issue with this is that two consecutive solar cycles will never be identical in length and/or strength; 

this is thus an idealized case.   

A maximum allowable altitude prediction is an interesting application of the Modified King-Hele method, and 

pertinent for documenting compliance with regulatory requirements, however perhaps a more interesting result of 

the method is the orbit lifetime prediction for UKube-1 given its initial orbit parameters. Given the available data, 

and the assumptions made herein, it is found that the spacecraft would have deorbited approximately 13.2 years after 

orbit insertion.  
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Once the spacecraft is no longer operational it is assumed that it will begin to tumble randomly. Thus, the ISO 

standard for average projected area is applied [3]. From Table 5 it is known that during the period of operations 

UKube-1 decreased approximately 9 km in altitude. From orbit tracking data taken when UKube-1 is known to have 

been inactive, see Table 5, a further orbit lifetime prediction is made: with 1ı confidence, UKube-1 will de-orbit in 

approximately 11.8 ± 2 years (June 2026 – June 2030). The confidence bound given on this prediction is generated 

using a Monte Carlo analysis taking into account uncertainties in the projected area, mass, drag coefficient and solar 

activity cycle. The largest uncertainty included is the solar activity cycle. As the current cycle will end before 

UKube-1 decays, the next cycle, which is unknown at present, provides a large uncertainty. The next cycle was 

considered in the Monte Carlo analysis using a normal distribution fitted around the average solar activity cycle; 

meaning that it would vary from being a low cycle to a high cycle. However, if the next cycle is simply considered 

as an average cycle the confidence bounds would contract to 11.8 years ± 4 months (Feb 2028 – October 2028).  

When including the 2.2 years of operations this gives a total lifetime for UKube-1 of 13.9 years; meaning the 

attitude control gave UKube-1 approximately 8 months of extra time in orbit; this is likely the result of UKube-1 

maintaining an attitude with a lower projected area than that given by the ISO standard. The average projected decay 

of UKube-1, from when it is known to be inactive, is shown in Fig. 14. 

 

Fig. 14 Projected decay of UKube-1.  
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VII. Conclusion 

A single independent variable per solar cycle can be used to relate solar activity levels across a solar cycle. It is 

thereafter possible to incorporate solar activity into general perturbations solutions using a newly introduced 

parameter termed the density index. Doing so significantly improves the accuracy of the established solution. 

Furthermore, it is shown that simplifications, for example removing high-order eccentricity terms, made in the 

derivation of a well-known method for orbit lifetime prediction can be removed and the accuracy of the analysis 

improved. The method presented herein compares favorably against other analytical methods and third party tools, 

producing a significantly lower average error. Notably, the leading software packages examined, STK and STELA, 

produced predictions with higher average errors of 11.39% and 6.63% respectively, compared to 3.46% with the 

method presented herein. The improvement in accuracy enables the use of general perturbations methods in areas 

such as initial mission design and regulatory compliance with confidence.  
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Appendix: CIRA Total Atmospheric Density Curve Fit Coefficients 

Table 6 Coefficients required to reproduce the curve fits shown in Fig. 2 using Eq. (2) 

  Low Solar Activity  Average Solar Activity  High Solar Activity  

 

F10.7=70 SFU F10.7=140 SFU F10.7=230 SFU 

  A B A B A B 

100-900 km  4.8108354387E+18 -8.4316024345 4.0353801836E+16 -7.3287675685 1.6560406874E+14 -6.2297870621 

 

Table 7 Coefficients required to reproduce the curve fits shown in Fig. 3 using Eq. (2)  

  Low Solar Activity  Average Solar Activity  High Solar Activity  

 

F10.7=70 SFU F10.7=140 SFU F10.7=230 SFU 

  A B A B A B 

100-180 km  3.1401475314E+25 -11.5323873660 2.1302781218E+23 -10.4598697530 3.6572435859E+22 -10.0840784840 

180-300 km  3.5702302808E+17 -7.9870178011 3.6883393449E+13 -6.1111045267 4.4836934931E+11 -5.2304377430 

300-400 km  3.4883419067E+19 -8.7900136027 2.3760454376E+14 -6.4367101996 6.4653842042E+11 -5.2927120099 

400-500 km  3.4193579110E+21 -9.5577441366 1.3376579171E+16 -7.1098789385 8.0238678743E+12 -5.7133843080 

500-600 km  6.8121896048E+18 -8.5595105119 1.2599509491E+18 -7.8417840857 1.5746908534E+14 -6.1926697178 

600-700 km  9.0620295449E+11 -6.0836670624 5.1432928294E+19 -8.4221015808 5.2597040585E+15 -6.7412533040 

700-800 km  1.0934691244E+07 -4.3533902868 2.0822606336E+19 -8.2850698109 1.2783834984E+17 -7.2286463032 

800-900 km  1.1437831846E+05 -3.6702885332 2.1877054342E+16 -7.2588177982 4.9403188705E+17 -7.4310970797 
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