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Expert Elicitation: Using the Classical
Model to Validate Experts’ Judgments

Abigail R. Colson* and Roger M. Cooke†

Introduction

Existing data andmodeling tools cannot provide decisionmakers with all of the information

they need to design and implement effective policies andmake optimalmanagement choices.

Thus decision makers often supplement other forms of information with the judgment of

experts. As noted by Morgan and Henrion (1990), if traditional science and statistics cannot

provide all of the inputs needed for a model or policy analysis, decision makers have few

alternatives to asking experts. Incorporating expert judgment is a way to quantify the uncer-

tainty about otherwise unknown parameters, and it can include methods as disparate as

asking a single expert for his or her best guess, informally surveying colleagues, or following

a formalized, documented procedure for obtaining and combining probabilistic judgments.

The third type of method is called expert elicitation.

In the first attempt to standardize the use of expert judgment, the U.S. Nuclear Regulatory

Commission (NRC) documented the elicitation process and opened it to scientific review

(U.S. Nuclear Regulatory Commission 1975). The NRC uncovered big differences in expert

opinion, raising questions about how to validate and combine information gathered from

experts (Oppenheimer, Little, and Cooke 2016). Since then, the nuclear safety community

has pioneered expert elicitation methods that address the challenges of validating and com-

bining expert judgments, and the techniques have spread to other fields (Cooke 2012), most

recently to assess future economic growth (Puig and Morales-N�apoles 2017).

In order to be accepted as scientific data, expert judgmentsmust adhere to the principles of

the scientific process, including accountability, neutrality, fairness, and the ability for em-

pirical control (Cooke 1991), the last of which is possible through validation. Validation of

expert judgments means both that the judgments reflect the beliefs of the expert and that

those beliefs reflect reality. O’Hagan et al. (2006) observe that it is not possible tomeasure the

former, as the only way of knowing the “true” beliefs of experts is through elicitation itself.

Validating that beliefs reflect reality, however, can be measured by comparing elicited judg-

ments to observed data where possible.
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Unfortunately, expert judgments are rarely validated by observing the variables of interest.

Modelers and analysts turn to experts when probabilities of interest are unknown, thus

making it difficult to validate the experts’ judgments against empirical data. Instead, pundits,

blue ribbon panels, and high-level committees ask audiences to trust their judgments based

on the credentials of the experts rather than on the experts’ track records of making accurate

predictions.1

Cooke, Mendel, and Thijs (1988) first proposed an expert judgment technique that scores

the experts according to their performance against empirical data. The use of these perfor-

mance scores for creating and validating combinations of expert judgments is called the

“classical model,” or structured expert judgment (Cooke 1991). The classical model has

been deployed extensively in a range of areas, including investment banking, volcanology,

public health, ecology, and aeronautics. In 2017, a joint report of the National Academies of

Science, Engineering, and Medicine recommended the approach for applications used to

evaluate the social cost of carbon (National Academies of Sciences, Engineering, and

Medicine 2017).

This article, which is part of a symposium on expert elicitation,2 examines the classical

model of structured expert judgment. In the next section we provide a brief introduction to

expert elicitation. Then we describe the classical model in more detail and review some

alternative approaches for validating and combining experts’ judgments. Next, we present

a case study of the use of the classical model to inform riskmanagement of invasive species in

the U.S. Great Lakes. This is followed by a description of thirty-three applications of the

classicalmodel conducted from2006 throughMarch 2015 and an analysis of the performance

of the experts and different schemes for combining and validating expert judgments. In the

penultimate section we discuss recent developments regarding the out-of-sample validity of

the classical model. We present a summary and conclusions in the final section.

Introduction to Expert Elicitation

Expert elicitation is the process of obtaining probabilistic belief statements from experts

about unknown quantities or parameters.3 Elicited probabilities can supplement other types

of evidence and serve as inputs to economic, decision analytic, and other modeling.

Elicitation involves carefully defining the target questions, writing and pilot testing an elic-

itation protocol, training the experts in subjective probability, conducting the interviews,

providing feedback to the experts, and analyzing and documenting the results.Major reviews

of best practice for eliciting and using expert judgments includeMorgan andHenrion (1990),

Cooke (1991), and O’Hagan et al. (2006), all of which discuss the need to carefully structure

1In some cases, a rigorous and transparent nomination process has beendocumented to demonstrate that the
term “expert” has been appropriately applied (Aspinall and Cooke 2013; Bamber and Aspinall 2013).
Although the University of Pennsylvania’s recent Good Judgment Project, a large-scale geopolitical event
forecasting competition, included some validation of the judgments of participants over a several-year
period (Mellers et al. 2015), only a small minority of practitioners perform validation.
2The other article is Verdolini et al. (2018), which discusses insights from expert elicitations concerning the
prospects for energy technologies.
3Experts can also provide decisionmakers with preferences and other qualitative information. However, our
focus here will be on using experts for quantitative inputs.
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elicitations to properly capture experts’ beliefs and the value of having experts express their

beliefs as probabilities.4

Expert elicitations typically include multiple experts to capture diversity of knowledge,

background, and opinion, but the subsequentmodeling or decision problem often requires a

single probability distribution for a parameter rather than a set of distributions from several

experts. Thus, combining elicited judgments is important. Clemen andWinkler (1999, 2007)

review available methods, which are classified as behavioral—involving group interaction to

arrive at a single consensus distribution—ormathematical—using analytic processes on the

individual expert assessments to yield one combined distribution,without expert interaction.

A common example of a behavioral approach is the Delphi method, which involves multiple

rounds of experts providing their assessments and reasoning, sharing that information with

all of the experts, and then allowing the experts to revise their assessments, hopefully moving

towards consensus (Rowe and Wright 1999).5 Mathematical techniques for aggregating

judgments include axiomatic and Bayesian approaches. Axiomatic methods use simple com-

bination rules to produce a single distribution; examples include the linear and logarithmic

opinion pools. Bayesianmethods are based on likelihood functions. Behavioral methods can

fail to overcome troublesome group dynamics (Cooke 1991). Bayesian methods are difficult

to use in practice, while axiomatic approaches are easier to understand and implement

(Clemen and Winkler 1999). We focus here on axiomatic combination approaches.

Expert judgment is not an appropriate tool for every quantitative question. For example,

Cooke and Goossens (2008) note that expert judgment is not needed when a quantity is

observable, such as the speed of light in a vacuum, and not appropriate when a field does not

have relevant scientific expertise and relatedmeasurements, such as asking about the behavior

of a god. They argue that the ideal target for expert judgment is an issue such as the toxicity of

a new substance in humans, which is measurable in theory but not in practice.6 Expert

judgment is also not needed if there are sufficient historical data and consensus about the

processes for translating that historical data into predictions (Hora 2007). Finally, if an

outcome is highly dependent on behavior, predictive expertise may not exist (Morgan 2014).

Eliciting expert judgments is an involved process, requiring time and effort from both the

analyst(s) and experts. Quantifying uncertainty may not be worthwhile if it has little impact

on the end decision or outcome (Hora 2007). Thus analysts should identify the key potential

uncertainties in a problem area prior to conducting an expert judgment study.

Introduction to the Classical Model

The classical model is an approach for eliciting and mathematically aggregating expert judg-

ments, with validation incorporated as a core feature. Experts quantify their uncertainty for

two types of questions: target questions and calibration questions. The variables of interest are

the target questions, that is, those that cannot be adequately answered with other methods

4Cooke (2015) reviews nonprobabilistic approaches.
5If consensus is not reached after a number of rounds,mathematical aggregation can then be used to produce
a single assessment.
6Related measurements—like the substance’s toxicity in other organisms—may exist, and these could be a
starting point for expert judgments.

Expert Elicitation: Using the Classical Model to Validate Experts’ Judgments 3
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and thus require expert judgment. Experts also assess a set of calibration questions, which are

items from the experts’ field that are uncertain to the experts (i.e., the experts do not know the

true values or do not have the true values readily accessible), but are either known to the

analysts at the time of the elicitation or will be known during the analysis period. Experts are

scored based on their performance on the calibration questions, and their assessments are

weighted (according to their scores) and combined. This performance-based combination is

also scored on the calibration questions. Thus the classical model validates both individual

expert assessments and the performance-based combinations against observed data.

In the remainder of this section we describe the classical model’s approach to eliciting and

validating expert judgments and its scoring mechanisms. We also discuss calibration ques-

tions in more detail.

Eliciting and Validating Judgments

In the classical model, each expert quantifies his or her uncertainty for each calibration

question and variable of interest. This uncertainty quantification could take many forms,

but to ensure comparability over a range of applications, the classical model imposes a

common structure: experts typically state their fifth, fiftieth, and ninety-fifth percentiles

for the estimate of each uncertain item (Cooke 1991; Cooke andGoossens 2008).7The fiftieth

percentile is the median estimate; the expert thinks it is equally likely that the true value for

that item falls above or below the provided value. The fifth and ninety-fifth percentiles create

a ninety percent credible range—the expert believes there is a ninety percent chance that the

true value falls between those bounds. Sometimes the twenty-fifth and seventy-fifth percen-

tiles are elicited as well, forming a fifty percent credible range (Colson and Cooke 2017).

By providing values for specific percentiles, each expert provides a statistical hypothesis.

She says in effect that there is a five percent chance that the true value of the quantity in

question falls beneath the fifth percentile, a fifty percent chance the true value falls beneath the

fiftieth percentile, and a ninety-five percent chance that the true value falls beneath the ninety-

fifth percentile. If she provides assessments for several independent items for which analysts

have actual values, then an analyst can observe how frequently the true values fall in the

expert’s different interpercentile intervals. This provides a mechanism for validation.

To illustrate, if an expert assesses fifth and ninety-fifth percentiles for ten items, she should

expect that one of the ten actual values will fall outside the provided interval. Suppose that

three realizations fall outside this interval. How poor are the expert’s assessments? Assuming

the expert’s probability statements are correct (i.e., there is a ninety percent chance the true

value falls within the ranges given by the expert), the probability of seeing three or more

realizations fall outside the ninety percent credible range is 0.07. This means that if we

“rejected” this expert, we would have a seven percent chance of rejecting a good expert

who had bad luck on these items; 0.07 is the “P-value” at which we would falsely reject the

hypothesis that the expert is statistically accurate. If, instead, four realizations fell outside the

fifth to ninety-fifth percentile intervals, then the P-value drops to 0.01, and if five realizations

fall outside the intervals, the P-value drops again, to 0.002.

7The percentiles elicited are also called quantiles.

4 A. R. Colson and R. M. Cooke
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Measuring Statistical Accuracy

The P-value is a measure for assessing the goodness of fit between a statistical hypothesis—in

this case, the expert’s assessments—and the data. The P-value is the cornerstone of validation

in the classical model, and it is referred to as the expert’s statistical accuracy score.8 Statistical

accuracy scores range from 0 to 1, with higher scores being better. The P-value is not used to

accept or reject experts. Rather, the P-value is used because it is a familiar measure of the

degree to which a statistical hypothesis is supported by data.

Measuring Information

In the classicalmodel, statistical accuracy is one characteristic of an expert’s performance. The

second characteristic is how much information is provided in the expert’s assessments. For

example, consider an uncertain quantity that can vary between zero and one (e.g., the pro-

portion of a population that has been exposed to a hazard). A ninety percent credible range

from 0.03 to 0.90 is less informative than a credible range from 0.05 to 0.10. Among statis-

tically accurate assessments, narrower informative assessments are more useful than wide,

uninformative assessments. Thus the classical model assigns each expert an information

score, which is based on the density of the expert’s assessments relative to a background

distribution.9 To illustrate, if Expert A provides a narrower interval for her ninety percent

credible range than Expert B, then Expert A’s assessment is more densely concentrated and

her information score is higher. The information score is scale invariant (i.e., the score does

not depend on the units of the items) and insensitive to a distribution’s tails. For more detail

on the calculation of both the information and statistical accuracy scores, see, e.g., Cooke

(1991), Cooke and Goossens (2008), Koch et al. (2015), and Wittmann et al. (2015).

Combining Experts’ Judgments

The statistical accuracy and information scores aremultiplied to create an expert’s combined

score. Information scores typically vary between experts by a factor of about three in a given

study, whereas statistical accuracy scores vary over several orders of magnitude (Cooke and

Goossens 2008; Colson and Cooke 2017). As a result, the combined score is influenced more

by an expert’s statistical accuracy than by her information. This means that in the overall

combined score an expert cannot overcome poor statistical performance by providing very

narrow credible ranges (and thus having a high information score).

Combined scores serve as the mechanism for producing performance-based weights for

combining the experts’ assessments (Cooke 1991; Cooke and Goossens 2008). In general,

expert weights should be determined according to a strictly proper scoring rule, meaning that

8Statistical accuracy is sometimes also referred to as “calibration” (e.g., Cooke and Goossens 2008; Quigley
et al. 2018). However, this can lead to the mistaken belief that analysts “calibrate” or adjust experts’
assessments in the same way that scientists calibrate their instruments.
9The background distribution is chosen by the analyst, with the standard choice being a uniform (or log-
uniform) distribution that includes the range of values provided by the experts, the actual value for that
question (if an actual value exists), and an overshoot that extends the distribution’s range on either side by
plus andminus ten percent. For each expert and item, a density is fit to the background distribution, which
adds the least information to the background while complying with the experts’ quantile assessments.

Expert Elicitation: Using the Classical Model to Validate Experts’ Judgments 5
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an expert will maximize her expected score if and only if she states her true beliefs (Cooke

1991). The classicalmodel is based on an asymptotic strictly proper scoring rule,10whereby an

optimal cutoff value for statistical accuracy is used.11 Experts with statistical accuracy scores

below the cutoff value receive aweight of zero, whichmeans their assessments are unweighted

in the subsequent combination of the experts’ judgments.

A combination of expert assessments is called a decision maker. The classical model can

produce two types of performance-based decision makers: the global weight decision maker

and the item weight decision maker. The global weight decision maker assigns each expert a

constant weight for all items, based on the experts’ average information score over all cali-

bration questions. The itemweight decisionmaker, however, assigns each expert aweight that

varies for each item, based on the experts’ information scores for that given item. With item

weights, if an expert has statistical accuracy above the cutoff threshold and generally has high

information scores but has a low information score on one question, she will receive less

weight on that question relative to the others.

The performance of these two combined assessments can also be validated based on the

calibration questions. In practice, in the classical model, analysts typically compare one or

both performance-weight (PW)decisionmakers to a combination thatweights all the experts

equally, regardless of their performance. This is known as the equal-weight (EW) decision

maker.

Calibration Questions

In practice, the classical model validates experts’ assessments and scores expert performance

through calibration questions, which are also called seed questions. Calibration questions

serve three purposes in the classical model: they validate expert performance, enable

performance-based expert weighting, and provide a mechanism for evaluating different

combinations of the experts’ assessments (Cooke et al. 2014). Although experts are not

expected to know the precise true values for calibration questions, they are expected to

provide reasoned quantifications of their uncertainty.

Calibration questions should not be general knowledge or almanac-type questions (e.g.,

What is the population of Venice, Italy?), as experts do not perform better on these questions

than nonexperts and an expert’s performance on these types of questions does not predict her

performance on the variables of interest questions in her field (Cooke, Mendel, and Thijs

1988). Source data for calibration questions can include forthcoming reports, unpublished

data sources, or analysis of unique combinations or subgroups of existing data.12

Finding potential calibration questions is a challenge that requires a strong understanding

of the elicitation’s subject matter. Calibration questions should be closely related to the

variables of interest and should reflect the field(s) of the participating experts. Like the

variables of interest, these questions need to be well specified to ensure that the experts

10This means that for large sets of assessments, an expert will maximize her expected score by expressing her
true beliefs.

11For full mathematical details, see Cooke (1991) and the online supplementary materials for Colson and
Cooke (2017).

12Quigley et al. (2018) discuss strategies for identifying calibration questions and include examples from
several elicitation protocols.

6 A. R. Colson and R. M. Cooke
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interpret andunderstand the questions similarly. Because the calibration questions enable the

performance-based expert weights, they must be high quality for the study to be credible. If

reviewers or decision makers in the field do not believe that performance on the calibration

questions is an appropriate indicator of ability to assess the variables of interest, then theywill

reject expert weights that are based on those questions.

Alternative Approaches to Aggregating Expert Judgments

The classical model combines experts’ assessments in a linear opinion pool with weights

determined by expert performance, thus incorporating an element of validation. Other types

of weights and combination mechanisms have also been considered, some of which are

reviewed here.

Likelihood-Based and Social Network Weights

Cooke, ElSaadany, and Huang (2008) compared classical model–based performance weights

with two alternative approaches: likelihood-based weights and social network weights. They

state that likelihoodweights should be avoided because they rely on an improper scoring rule:

they reward an expert for overstating her confidence rather than for expressing her true

beliefs. Moreover, they find that the likelihood weight–based combinations do not outper-

form the classical model’s weights in terms of statistical accuracy, information, or even like-

lihood scores. They also find that social network weights, which are based on an expert’s

scientific citations, can result in combined assessments with “unacceptably low” statistical

accuracy. Focusing on citationsmay also restrict the expert pool to include only those experts

with an established track record of publications, and the authors did not find support for such

a restriction.

Peer Weights

Burgman et al. (2011) and Aspinall and Cooke (2013) explored the use of peer weights rather

than performance weights, an idea that dates back to DeGroot (1974). Peer weights sound

compelling: experts in a field are familiar with each other and each other’s work. Thus, if

experts agreed onwhose opinion should receive themostweight, calibration questionswould

not be needed. However, the data from the few studies that examine this approach warn

against it. For example, Aspinall and Cooke (2013) found that peer rankings, in which the

experts rate each other’s expertise, do not correspond well to rankings according to perfor-

mance. In a review of six expert panels, Burgman et al. (2011) found that peer rankings

correlate with the traditional hallmarks of expertise—for example, years of experience and

publication record—but not with actual expert performance. This highlights the need for a

method that emphasizes testing and validation, like the classical model.

Averaging Experts’ Quantiles versus Averaging Distributions

Beyond the use of alternative linear pooling mechanisms, one additional issue that has re-

ceived attention in the recent expert elicitation literature is whether analysts should average

Expert Elicitation: Using the Classical Model to Validate Experts’ Judgments 7
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experts’ quantiles (i.e., the fifth, fiftieth, and ninety-fifth percentiles elicited from the experts)

or the experts’ distributions. Although most approaches—including the classical model—

average distributions, Lichtendahl, Grushka-Cockayne, and Winkler (2013) argue that av-

eraging quantilesmay be the preferred approach because it concentratesmore of the resulting

distribution around the median, thus reducing the alleged problem of wide uncertainty

distributions in combined assessments.13 Although this approach may sound appealing,

we show later that averaging quantiles rather than distributions has substantial performance

costs.

Median versus Mean of Quantiles

Hora et al. (2013) propose an aggregation of expert assessments that takes the median rather

than the mean of the elicited quantiles. They show that this method performs well when

experts are well calibrated and independent, but that mean-based approaches do better when

those assumptions are relaxed.14

ACase Study of the Classical Model

To illustrate how the classical model has been applied and its policy relevance, we examine an

application related to managing invasive species in the U.S. Great Lakes.15 Researchers used

the classicalmodel to investigate the impact of existing invasive species on the economic value

of ecosystem services (Rothlisberger et al. 2012), the possible future ecological impact of an

Asian Carp invasion in the Great Lakes (Wittmann et al. 2015), and the effectiveness of

various strategies to prevent the establishment of Asian carp in the Great Lakes (Wittmann

et al. 2014). In addition, Zhang et al. (2016) use outputs fromWittmann et al. (2015), along

with other data, to further consider the impact of Asian carp in the Great Lakes. Lodge et al.

(2016) discuss other methods that have been used to understand the risks of invasive species,

emphasizing the potential role of expert elicitation in supplementing gaps in empirical data

and existingmodels.We focus here onRothlisberger et al. (2012) to illustrate how the classical

model can be directly applied to environmental policy decisionmaking.More specifically, we

describe the study’s purpose and design, the elicitation process, how the experts performed,

and the study’s results.

Study Background and Setting

Rothlisberger et al. (2012) estimated the economic costs associated with the second wave of

nonindigenous invasive species into the Great Lakes following the opening of the St.

Lawrence Seaway.16 The economic benefits of the seaway are easily quantified as

13Averaging quantiles is the same as harmonically weighting the experts’ densities (Bamber, Aspinall, and
Cooke 2016; Colson and Cooke 2017).

14Later we will examine whether the assumption of well-calibrated experts holds in data from thirty-three
structured expert judgment studies conducted between 2006 and March 2015.

15This work was led by researchers at the University of Notre Dame and funded by the U.S. National Oceanic
and Atmospheric Administration (NOAA) and the U.S. Environmental Protection Agency (EPA).

16The St. Lawrence Seaway is a system of locks, canals, and channels that permit oceangoing vessels to travel
from the Atlantic Ocean to the Great Lakes as far inland as the western end of Lake Superior.
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transportation cost savings. However, the economic costs of degraded ecosystem services are

not directly observable and thus may be discounted or ignored in policy discussions. Expert

elicitation allowed the researchers to conduct a policy thought experiment: whatwould be the

value of ecosystem services in theU.S.Great Lakes region if the St. Lawrence Seawayhadnever

opened and hence there were no shipborne invasive species? This enabled them to calculate

the costs of invasive species without requiring long-term data on the value of ecosystem

services and all of the potential confounding variables before and after the St. Lawrence

Seaway was opened.

The Elicitation

Rothlisberger et al. (2012) considered damages related to four ecosystem services: commer-

cial fishing, sportfishing, wildlife viewing, and raw water usage. The experts were asked to

quantify their uncertainty about these services in the current (i.e., invaded) condition and in a

hypothetical counterfactual (i.e., if shipborne invasive species were not present but all other

factors remained unchanged). The expert estimates were then converted into dollar values,

thus providing an estimate of the economic loss from degraded ecosystem services.

Rothlisberger et al. (2012) identified experts through a review of the relevant scientific

literature and recommendations from other senior researchers in the field. Experts included

academics, consultants, and government scientists whoworkedon issues related to ecosystem

services in the Great Lakes. Nine experts participated, and they assessed thirteen calibration

questions and forty-one variables of interest. Calibration questions asked about the following

ecosystem services in 2006: pounds of commercially landed fish, angler days of sportfishing,

expenditure on sportfishing, participant days of wildlife watching, and costs to raw water

users. True values of these questions were unknown at the time of the elicitations, but the

values were later released in annual reports from the U.S. Fish and Wildlife Service and the

U.S. Geological Survey. The variables of interest concerned predictions of the same items in

2025 and estimates of what the values would have been in 2006 and 2025 if shipborne invasive

species had never been introduced into the Great Lakes (i.e., if the St. Lawrence Seaway had

never opened).

Expert and Decision-Maker Performance

Rothlisberger et al. (2012) found that the statistical accuracy of the experts varied over several

orders of magnitude, from 0.45 to 1.2E-9.17 This highlights the importance of external val-

idation of the experts: although all nine experts had extensive subject matter expertise, as

indicated by their positions and professional qualifications, they differed in their ability to

make statistically accurate probabilistic statements quantifying their uncertainty. Assigning

each expert equal weight, regardless of individual performance, produces a decision maker

with a statistical accuracy score of 0.044. Thismeans that the hypothesis that the EWdecision-

maker’s probability statements are statistically accurate given the actual values of the thirteen

calibration questions is below the traditional five percent level for rejecting statistical hy-

potheses. The PW decision maker had a much higher statistical accuracy score (0.928),

17The scores of the individual experts and the EW and PW combinations are presented in Appendix table 1.
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indicating its better statistical performance in assessing the calibration questions. The PW

decision maker assigns positive weight to only two experts (all of the other experts are

unweighted), both of whom displayed good statistical accuracy.

Rothlisberger et al. (2012) found that even though seven of the experts are unweighted in

the PW decision maker, the median estimated impacts from the PW decision maker were

similar to those from the EW decision maker. However, the 90% credible ranges of the EW

decisionmaker were, on average, 34% larger than those of the PWdecisionmaker, indicating

that the performance-weight decision maker was more informative.

Study Results

Based on the PW combination of the experts, Rothlisberger et al. (2012) estimated that the

median annual loss to commercial fishing due to the impact of shipborne invasive species was

$5.3 million. The experts estimated the impact on sportfishing to be greater, but also more

uncertain; the estimated median annual loss was $106 million, but there was a five percent

chance the impact exceeded $800 million. The median annual costs due to the impact of

biofouling (i.e., the accumulation of organisms onunderwater equipment or surfaces) on raw

water usage, aggregated over all U.S. Great Lakes facilities, was estimated to be $27 million.

Rothlisberger et al. (2012) dropped the costs associated with wildlife viewing from the anal-

ysis because the experts’ uncertainty about the impact of invasive species on wildlife viewing

was extremely wide. Thus the total ecosystem service losses were estimated to be $138.3

million annually.

Next Rothlisberger et al. (2012) estimated the cumulative economic loss associated with

these annual impacts. Assuming a three percent discount rate and that the cost of invasive

species over the next fifty years increases at the same rate as it has in the past, they extrapolate

from the structured expert judgment and estimate that over the next fifty years, preventing

future shipborne invasions would avoid more than $1.45 billion in cumulative losses in the

United States from degraded ecosystem services. They also extrapolate from the estimated

annual transportation cost savings associated with the St. Lawrence Seaway (see Taylor and

Roach 2009) and find that the total cumulative transportation savings over fifty years is $1.41

billion. Thus the ecological services losses exceed the transportation savings. Rothlisberger

et al. (2012) find that the most extreme countermeasure to shipborne invasive species in the

Great Lakes—completely closing the St. Lawrence Seaway to oceangoing ships—would not

produce net benefits for forty-nine years. Less extreme (and thusmore realistic) options, such

as deep ocean ballast water exchange, have shorter payback times.

In summary, Rothlisberger et al. (2012) present new information on the present and future

costs of invasive species in theGreat Lakes. Their estimates,which are possible only through the

use of structured expert judgment, allow for a more robust discussion of the different policies

available to control invasive species entering the Great Lakes through the St. Lawrence Seaway.

Applications and Performance of the Classical Model

We next review expert performance in recent applications of the classical model. First, we

describe a dataset of thirty-three applications conducted between 2006 and March 2015.

10 A. R. Colson and R. M. Cooke
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Then we analyze the performance of the experts from these studies and compare the perfor-

mance of three different weighting schemes: equal weighting, performance-based weighting

(i.e., the weights produced by the classical model), and harmonic weighting.

Applications of the Classical Model

Cooke and Goossens (2008) compiled, analyzed, and publicly released the forty-five known

applications of the classical model conducted through 2006. These data, which included

studies with numbers of experts ranging from four to seventy-seven and numbers of calibra-

tion questions ranging from five to fifty-five, allowed other researchers to further study the

classicalmodel and consider how to validate and combine expert judgments (see e.g., Clemen

2008; Lin and Bier 2008; Lin and Cheng 2008; Lin and Huang 2012; Eggstaff, Mazzuchi, and

Sarkani 2014). The pre-2006 data, however, include studies from the initial days of the

classical model, before study design and procedures became more standardized. Moreover,

use of the classical model has expanded greatly since 2006, driven in part by applications in

high-visibility journals (e.g., Aspinall 2010; Bamber and Aspinall 2013), thus making the

Cooke and Goossens (2008) dataset very out of date.

We are aware of thirty-three professionally contracted classical model studies that were

performed between 2007 and March 2015.18 All of these studies follow the general process

outlined in a procedures guide for the classical model (Cooke and Goossens 1999) but are

typically better documented than earlier studies. We conducted an analysis of these thirty-

three applications of the classical model using Excalibur (Cooke and Solomatine 1992).19

In these thirty-three studies, 322 experts assessed between seven and seventeen calibration

questions.20 Studies included between four and twenty-one experts, andmost studies had ten

calibration questions (figure 1). More than one-third of the experts assessed ten calibration

questions.

Performance of Experts

Although an expert’s statistical accuracy score depends on the number of calibration questions

assessed, for most experts the number of questions is similar, so we can make a rough com-

parison.We find that only eighty-sevenof the experts have statistical accuracy greater than 0.05,

which means we can reject the hypothesis that the other 233 experts provided statistically

accurate assessments. More than half of the experts have statistical accuracy that is less than

0.005, and about one-third have scores of less than 0.0001 (figure 2). Again, this highlights the

need for validation of expert judgments. Although all of the participants in these studies are

established experts in their respective fields, their knowledge does not necessarily translate into

statistically accurate probabilistic statements about unknown quantities.

18See the online supplementary materials for a list of the thirty-three applications of the Classical Model
conducted between 2006 and March 2015, with references for the study documentation, where available.

19This is a freely available program now maintained by LightTwist Software and available at http://www.
lighttwist.net/wp/excalibur.

20We excluded two experts who did not provide assessments for all the calibration questions in their re-
spective panels. We also excluded one expert from the Koch et al. (2015) study because the expert was not
included in the study’s analysis.
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Although the majority of experts had statistical accuracy scores of less than 0.05, most

studies had at least one statistically accurate expert—that is, an expert with a score greater

than 0.05 (see figure 3). About twenty percent of the studies had no statistically accurate

experts, and one study had twelve accurate experts. Approximately two-thirds of the studies

had two or more statistically accurate experts. These results suggest that identifying the top

Figure 1 The number of experts and calibration questions in the thirty-three studies.

Source: Authors’ calculations based on the 2006–March 2015 study dataset.

Figure 2 Distribution of expert statistical accuracy scores.

Source: Authors’ calculations based on the 2006–March 2015 study dataset.
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experts in each study and relying on their judgments would be better than relying on expert

judgments that have not been validated.

Performance of the Classical Model

As discussed earlier, the classical model identifies the optimal combination of judgments

based on their performance (Cooke 1991; Cooke and Goossens 2008). In this subsection we

will show that the scoring mechanism of the classical model further improves the quality of

the expert data. More specifically, we compare the PW decision maker to the EW decision

maker, which assigns equal weight to all of the experts without considering expert

performance.

ThePWdecisionmaker can bebased on itemweights or global weights (as described earlier).

In either case, theweight for each expert can range fromzero (meaning the expert is unweighted

in the PW decision maker) to one (meaning the expert is the only weighted expert in the PW

decision maker; all other experts in that study are unweighted). The item weights decision

maker gives nonzero weight to only one expert in thirteen of the thirty-three studies, while the

global weights decision maker gives nonzero weight to one expert in fifteen cases. This means

that only the expert with the highest statistical accuracy score in those studies is included in the

PWdecisionmaker; the other experts are all unweighted.This canmean that the classicalmodel

determined that only one of the experts in the study performedwell or,more commonly, it can

indicate that adding another expert’s assessments to those of the best expert does not improve

the overall performance; it just dilutes the assessments of the best expert.

Figure 3 Number of statistically accurate experts per study.

Source: Authors’ calculations based on the 2006–March 2015 study dataset.
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The combined score of the PW decision maker based on global weights is greater than the

combined score of the PWdecisionmaker based on itemweights in only six of the thirty-three

studies. Because itemweights aremore commonly used in practice and typically are the same

as or outperform global weights, unless otherwise specified, in the remainder of this section

the PW decision maker will refer to the item weights decision maker.

Figure 4 compares the statistical accuracy, information, and combined scores of the PW

and EW decision makers for each of the thirty-three studies. In twenty-six of the studies the

statistical accuracy is greater for the PWdecisionmaker than for the EWdecisionmaker. This

pattern is even more pronounced for information and the combined score; the PW decision

maker outperforms the EW decision maker on information in thirty-two studies and on the

combined score in thirty-one studies. These results indicate that performance-based weight-

ing enables us to calculate a combination of the experts’ judgments that is generally at least as

statistically accurate as the equally weighted combination but is much more informative.

Performance of Harmonic Weighting

The classical model averages probability densities. Lichtendahl et al. (2013) argue for a

different approach, which instead averages the experts’ quantiles. This is equivalent to

harmonic weighting (Bamber, Aspinall, and Cooke 2016). Implementing such harmonic

weights without performance-based scoring does not require calibration questions, which

means the elicitation process would be quicker and cheaper than in a full classical model

study. Thus if harmonic weighting improved information relative to equal weighting while

maintaining statistical accuracy, it would be an alluring alternative to performance-based

weighting.

However, figure 5, which compares the performance of the harmonic-weight (HW)

decision maker with the EW and PW decision makers,21 cautions against such an

Figure 4 Statistical accuracy, information, and combined scores of the equal-weight (EW) and

performance-weight (PW) decision maker for each of the thirty-three studies.

Notes: The shaded regions show statistical accuracy of less than 0.05. Each point is a single study and the x¼ y

line is drawn to show whether the score is higher for the EWor PW decision maker in that study.

Source: Authors’ calculations based on the 2006–March 2015 study dataset.

21Note that this HW decision maker, like the EW decision maker, is based on all of the experts’ assessments,
with no element of performance-based weighting.
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approach. Although the HW decision maker is more informative than the EW decision

maker in all studies except one (figure 5, panel A2), its drop in statistical accuracy is

drastic. In fact, the HW decision maker’s statistical accuracy score is less than 0.05 in

eighteen cases (Bamber, Aspinall, and Cooke 2016), less than 0.005 in twelve cases, and

less than 0.0001 in four cases (figure 5, panel A1). In contrast, the lowest observed sta-

tistical accuracy for an EWdecisionmaker is 0.04. Because themagnitude of the difference

in statistical accuracy scores is larger than the difference in information scores, the EW

decision maker has a higher combined score than the HW decision maker in all but ten

studies (figure 5, panel A3). The PW decision maker compares favorably with the HW

decision maker, with its combined score being higher than the HW decision maker’s

combined score in all but three studies (figure 5, panel B3). Thus, although harmonic

weighting does improve information compared to equal weighting, it exacts a very high

price in terms of statistical accuracy. In sum, if the goal of a weighting scheme is to yield

good performance, it is important to measure and verify performance, as is done in the

classical model.

Figure 5 Statistical accuracy, information, and combined scores of the equal-weight (EW), performance-

weight (PW), and harmonic-weight (HW) decision makers for each of the thirty-three studies.

Notes: The shaded regions show statistical accuracy of less than 0.05. Each point is a single study and the x¼ y

line is drawn to show whether the score is higher for the EWor PW decision maker in that study.

Source: Authors’ calculations based on the 2006–March 2015 study dataset.
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Out-of-Sample Validation

The fact that the PW decision maker regularly has higher statistical accuracy, informa-

tion, and combined scores than individual experts or the EWdecisionmaker indicates the

classical model’s in-sample validity. This means that the classical model’s weighting sys-

tem performs well when it is evaluated against the calibration questions (i.e., the same

data used to determine the weights). However, it is important to also examine how the

model performs when it is tested on out-of-sample data. This section reviews recent work

in this area.

Unfortunately, true out-of-sample validation is rarely possible for applications of the

classical model because expert judgment is needed only when there are no data for the

variables of interest. In fact, observations for the variables of interest were collected after the

elicitation for only two of the forty-five cases in the Cooke and Goossens (2008) database,

and none of the studies included in the data presented here have observations for the

variables of interest. Thus, in lieu of evaluating true out-of-sample validity, the research

has focused on techniques for cross validation, whereby a subset of the calibration questions

is used to compute expert weights for a PW decision maker and the PW decision maker’s

performance is evaluated against the remainder of the calibration questions (i.e., the com-

plementary subset). The first subset is called the training set, and the second subset is call the

test set.

A common approach to cross validation is to remove one calibration question at a time,

recalculate the combined scores and PW decision makers, and evaluate the decision

makers’ performance for the removed item (Clemen 2008; Lin and Cheng 2008,

2009).22 In addition to the remove-one-at-a-time technique, researchers have investi-

gated fifty–fifty splits of the calibration questions (Cooke 2008) and seventy–thirty splits

(Flandoli et al. 2011). Eggstaff, Mazzuchi, and Sarkani (2014) take the most comprehen-

sive approach, splitting a study’s calibration question into all possible combinations of

two subsets. This idea has also been applied in recent applications, which look at the data

from an individual study (Cooke et al. 2014; Koch et al. 2015), but knowing how best to

categorize a study’s out-of-sample validity based on this procedure is difficult. Small

training sets make it difficult to resolve differences in the statistical accuracy of the

experts, and small test sets make it difficult to resolve differences between the EW and

PWdecisionmakers (Cooke 2014; Cooke et al. 2014). Colson and Cooke (2017) propose a

summary measure that balances these issues and find that the PW decision maker out-

performs the EW decision maker out of sample in twenty-six of the thirty-three 2006 to

March 2015 studies. They also find that out-of-sample performance is correlated with the

best and second-best experts’ statistical accuracy scores but not with study characteristics

that are easily within an analyst’s control.23

22However, Cooke (2008, 2012a) noted that this procedure compounds the errors of increasing the weight of
experts who assess the removed items badly, which results in significant bias.

23Colson and Cooke (2017) find that out-of-sample performance is not correlated with study characteristics
such as the number of experts or calibration questions, whether the elicitations were done one on one or in
plenary sessions, or whether three or five quantiles were elicited (typically the five, fifty, and ninety-five
percentiles or the five, twenty-five, fifty, seventy-five, and ninety-five percentiles).
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This recentwork on the classicalmodel’s out-of-sample performance further demonstrates

the validity of performance-basedweighting of experts. Futurework related to out-of-sample

validation could be used to improve our understanding of the robustness of the results from a

single study or to improve elicitation design.

Conclusions

Expert judgment plays an important (and unavoidable) role in risk management, uncer-

tainty analysis, and decision making. Fortunately, techniques exist for collecting and val-

idating expert judgments in a structured and scientifically sound manner. The classical

model is one approach for validating and combining expert judgments, and it has been

applied in more than one hundred expert panels to date, including the thirty-three single-

panel applications conducted between 2006 and 2015 that we have discussed here. We have

shown that the classical model’s scoring system can identify the experts that are best able to

quantify their uncertainty with meaningful probabilistic statements. Weighting the experts

according to performance produces decision makers that consistently outperform combi-

nations based on equal and harmonicweights in the thirty-three studies. Thus, for decisions

or policies with a large potential impact on society, we would argue that the classical model

and its validated assessments are the best tool for incorporating expert judgments when

they are needed.

The classicalmodel has been applied in a number of disciplines, but, aswe have discussed, it

is not appropriate in all circumstances. Even when expert judgment is needed, aggregating

individual expert assessments into a single distribution may not be best in every application

(Morgan 2014). More generally, expert judgment should not provide the final word on any

issue; rather, it should guide future data collection, modeling, and analysis related to the

topic.

Almost all of the thirty-three structured expert judgment studies were conducted in-

person, either in one-on-one interviews or in plenary sessions. Recent World Health

Organization elicitations, which we have not included here because they consist of a large

number of overlapping expert panels, were conducted via remote elicitation (Aspinall et al.

2016). The experts in those panels did not perform aswell as the experts in the panels reported

here. This could be due to the remote elicitation. Thus, further work is needed to develop

robust remote elicitation tools and to ensure that expert performance does not systematically

decline with remote elicitation. Remote tools will make it easier to elicit, validate, and com-

bine expert knowledge from around the world, potentially on an even larger scale than is

currently done with the classical model.

Expert Elicitation: Using the Classical Model to Validate Experts’ Judgments 17

Downloaded from https://academic.oup.com/reep/advance-article-abstract/doi/10.1093/reep/rex022/4835830
by University of Strathclyde user
on 08 February 2018

Deleted Text:  
Deleted Text: e
Deleted Text: l


References

Aspinall, W. P. 2010. A route to more tractable

expert advice. Nature 463(7279):294–95.

Aspinall, W. P., and R. M. Cooke. 2013.

Quantifying scientific uncertainty from expert

judgement elicitation. In Risk and Uncertainty

Assessment for Natural Hazards, ed. J. Rougier, S.

Sparks, and L. Hill, 64–99. Cambridge: Cambridge

University Press.

Aspinall, W. P., R. M. Cooke, A. H. Havelaar, S.

Hoffmann, and T. Hald. 2016. Evaluation of a

performance-based expert elicitation:WHO global

attribution of foodborne diseases. PLoS One

11(3):e0149817.

Bamber, J. L., and W. P. Aspinall. 2013. An expert

judgement assessment of future sea level rise

from the ice sheets. Nature Climate Change

3(4):424–27.

Bamber, J. L., W. P. Aspinall, and R. M. Cooke.

2016. A commentary on ‘How to interpret expert

judgment assessments of twenty-first century sea-

level rise’ by Hylke de Vries and Roderik SW van de

Wal. Climatic Change 137(3–4):321–28.

Burgman, M. A., M. McBride, R. Ashton, A.

Speirs-Bridge, L. Flander, B. Wintle, F. Fidler, L.

Rumpff, and C. Twardy. 2011. Expert status and

performance. PLoS One 6(7):e22998.

Clemen, R. T. 2008. Comment on Cooke’s classical

method. Reliability Engineering & System Safety

93(5):760–65.

Clemen, R. T., and R. L.Winkler. 1999. Combining

probability distributions from experts in risk

analysis. Risk Analysis 19(2):187–203.

————. 2007. Aggregating probability distribu-

tions. In Advances in Decision Analysis: From

Foundations to Applications, ed. W. Edwards, R. F.

Miles, and D. Von Winterfeldt, 154–76.

Cambridge: Cambridge University Press.

Colson, A. R., and R. M. Cooke. 2017. Cross vali-

dation for the classical model of structured expert

judgment. Reliability Engineering & System Safety

163(July):109–20.

Cooke, R. M. 1991. Experts in Uncertainty: Opinion

and Subjective Probability in Science. New York:

Oxford University Press.

————. 2008. Discussion: Response to

Discussants. In Expert Judgement. Special issue,

Reliability Engineering & System Safety

93(5):775–77.

————. 2012. Uncertainty analysis comes to

integrated assessment models for climate

change. . .and conversely. Climatic Change

117(3):467–79.

Appendix Table 1 Scores and weights of the experts and combined assessments from the expert elici-

tation in Rothlisberger et al. (2012)

Expert or

combination

Statistical

accuracy

Information

(variables of interest)

Combined

score

Weight

1 4.03E-05 0.801 3.79E-05 0

2 0.0965 1.01 0.0677 0.3524

3 0.000117 1.52 0.000148 0

4 0.000117 1.51 0.000118 0

5 0.000747 0.578 0.000844 0

6 0.454 0.421 0.124 0.6476

7 0.000117 1.17 0.000116 0

8 4.86E-06 1.37 6.64E-06 0

9 1.91E-09 2.34 5.47E-09 0

Equal weight 0.0441 0.276 0.0135 –

Performance weight 0.928 0.424 0.240 –

18 A. R. Colson and R. M. Cooke

Downloaded from https://academic.oup.com/reep/advance-article-abstract/doi/10.1093/reep/rex022/4835830
by University of Strathclyde user
on 08 February 2018



————. 2012a. Pitfalls of ROATCross-Validation:

Comment on Effects of Overconfidence and

Dependence on Aggregated Probability

Judgments. Journal of Modelling in Management

7(1):20–22.

————. 2014. Validating expert judgment with

the classical model. In Experts and Consensus in

Social Science: Critical Perspectives from Economics,

ed. C. Martini and M. Boumans, 191–212. Cham,

Switzerland: Springer International.

————. 2015. Messaging climate change uncer-

tainty. Nature Climate Change 5(1):8–10.

Cooke, R. M., S. ElSaadany, and X. Huang. 2008.

On the performance of social network and

likelihood-based expert weighting schemes.

Reliability Engineering & System Safety

93(5):745–56.

Cooke, R. M., and L. L. H. J. Goossens. 1999.

Procedures guide for structured expert judgment.

EUR 18820. Delft, The Netherlands: Delft

University of Technology. https://cordis.europa.

eu/pub/fp5-euratom/docs/eur18820_en.pdf.

————. 2008. TU Delft expert judgment data

base.” Reliability Engineering & System Safety

93(5):657–74.

Cooke, R. M., M. Mendel, and W. Thijs. 1988.

Calibration and information in expert resolu-

tion; a classical approach. Automatica

24(1):87–93.

Cooke, R. M., and D. Solomatine. 1992.

EXCALIBUR—Integrated System for Processing

Expert Judgments, User’s Manual Version 3.0. Delft,

The Netherlands: Delft University of Technology

and SoLogic Delft.

Cooke, R. M., M. E. Wittmann, D. M. Lodge, J. D

Rothlisberger, E. S. Rutherford, H. Zhang, and D.

M. Mason. 2014. Out-of-sample validation for

structured expert judgment of Asian carp estab-

lishment in Lake Erie. Integrated Environmental

Assessment and Management 10(4):522–28.

DeGroot, M. H. 1974. Reaching a consensus.

Journal of the American Statistical Association

69(345):118–21.

Eggstaff, J. W., T. A. Mazzuchi, and S. Sarkani.

2014. The effect of the number of seed variables on

the performance of Cooke’s classical model.

Reliability Engineering & System Safety

121(January):72–82.

Flandoli, F., E. Giorgi, W. P. Aspinall, and A. Neri.

2011. Comparison of a new expert elicitation

model with the classical model, equal weights and

single experts, using a cross-validation technique.

Reliability Engineering & System Safety

96(10):1292–1310.

Hora, S. C. 2007. Eliciting probabilities from

experts. In Advances in Decision Analysis: From

Foundations to Applications, ed. W. Edwards, R. F.

Miles, and D. Von Winterfeldt, 129–53.

Cambridge: Cambridge University Press.

Hora, S. C., B. R. Fransen, N. Hawkins, and I.

Susel. 2013. Median aggregation of distribution

functions. Decision Analysis 10(4):279–91.

Koch, B. J., C. M. Febria, R. M. Cooke, J. D. Hosen,

M. E. Baker, A. R. Colson, S. Filoso, K. Hayhoe, J.

V. Loperfido, A. M. K. Stoner, and M. Palmer.

2015. Suburban watershed nitrogen retention: es-

timating the effectiveness of stormwater manage-

ment structures.” Elementa: Science of the

Anthropocene 3(July):000063.

Lichtendahl, K. C., Y. Grushka-Cockayne, and R.

L. Winkler. 2013. Is it better to average probabili-

ties or quantiles? Management Science

59(7):1594–611.

Lin, S.-W., and V. M. Bier. 2008. A study of expert

overconfidence. Reliability Engineering & System

Safety 93(5):711–21.

Lin, S.-W., and C.-H. Cheng. 2008. Can Cooke’s

model sift out better experts and produce well-

calibrated aggregated probabilities? In IEEE

International Conference on Industrial Engineering

and Engineering Management, 2008, 425–29. New

York: IEEE.

————. 2009. The reliability of aggregated prob-

ability judgments obtained through Cooke’s clas-

sical model. Journal of Modelling in Management

4(2):149–61.

Lin, S.-W., and S.-W. Huang. 2012. Effects of

overconfidence and dependence on aggregated

probability judgments. Journal of Modelling in

Management 7(1):6–22.

Lodge, D. M., P. W. Simonin, S. W. Burgiel, R. P.

Keller, J. M. Bossenbroek, C. L. Jerde, A. M.

Kramer, E. S. Rutherford, M. A. Barnes, M. E.

Wittmann, W. L. Chadderton, J. L. Apriesnig, D.

Beletsky, R. M. Cooke, J. M. Drake, S. P. Egan, D.

C. Finnoff, C. A. Gantz, E. K. Grey, M. H. Hoff, J.

Expert Elicitation: Using the Classical Model to Validate Experts’ Judgments 19

Downloaded from https://academic.oup.com/reep/advance-article-abstract/doi/10.1093/reep/rex022/4835830
by University of Strathclyde user
on 08 February 2018

https://cordis.europa.eu/pub/fp5-euratom/docs/eur18820_en.pdf
https://cordis.europa.eu/pub/fp5-euratom/docs/eur18820_en.pdf


G. Howeth, R. A. Jensen, E. R. Larson, N. E.

Mandrak, D. M. Mason, F. A. Martinez, T. J.

Newcomb, J. D. Rothlisberger, A. J. Tucker, T. W.

Warziniack, and H. Zhang. 2016. Risk analysis and

bioeconomics of invasive species to inform policy

and management. Annual Review of Environment

and Resources 41:453–88.

Mellers, B., E. Stone, T. Murray, A. Minster, N.

Rohrbaugh, M. Bishop, E. Chen, J. Baker, Y. Hou,

M. Horowitz, L. Ungar, and P. Tetlock. 2015.

Identifying and cultivating superforecasters as a

method of improving probabilistic predictions.

Perspectives on Psychological Science

10(3):267–81.

Morgan, M. G. 2014. Use (and abuse) of expert

elicitation in support of decisionmaking for public

policy. Proceedings of the National Academy of

Sciences of the United States of America

111(20):7176–84.

Morgan, M. G., and M. Henrion. 1990.

Uncertainty: A Guide to Dealing with Uncertainty in

Quantitative Risk and Policy Analysis. Cambridge:

Cambridge University Press.

National Academies of Sciences, Engineering, and

Medicine. 2017. Valuing Climate Changes:

Updating Estimation of the Social Cost of Carbon

Dioxide. Washington, DC. https://www.nap.edu/

catalog/24651/valuing-climate-changes-updating-

estimation-of-the-social-cost-of.

O’Hagan, A., C. E. Buck, A. Daneshkhah, J. R.

Eiser, P. H. Garthwaite, D. J. Jenkinson, J. E.

Oakley, and T. Rakow. 2006. Uncertain

Judgements: Eliciting Experts’ Probabilities. West

Sussex, UK: John Wiley & Sons.

Oppenheimer, M., C. M. Little, and R. M. Cooke.

2016. Expert judgement and uncertainty quantifi-

cation for climate change. Nature Climate Change

6(5):445–51.

Puig, D., and O. Morales-N�apoles. 2017. The ac-

countability imperative for quantifying the un-

certainty of emission forecasts: evidence from

Mexico. Climate Policy Forthcoming.

Quigley, J., A. R. Colson, W. P. Aspinall, and R. M.

Cooke. 2018. Elicitation in the classical model. In

Elicitation: The Science and Art of Structuring

Judgement, ed. L. C. Dias, A. M. Morton, and J.

Quigley, chap. 2. New York: Springer.

Rothlisberger, J. D., D. C. Finnoff, R. M. Cooke,

and D.M. Lodge. 2012. Ship-borne nonindigenous

species diminish Great Lakes ecosystem services.

Ecosystems 15(3):1–15.

Rowe, G., and G. Wright. 1999. The Delphi tech-

nique as a forecasting tool: issues and analysis.

International Journal of Forecasting 15(4):353–75.

Taylor, J. C., and J. L. Roach. 2009. Ocean shipping

in the Great Lakes: an analysis of industry trans-

portation cost savings. Transportation Journal

48(1):53–67.

U.S. Nuclear Regulatory Commission. 1975.

Reactor Safety Study. WASH-1400, NUREG-75/

014. Washington, DC: U.S. Nuclear Regulatory

Commission.

Verdolini, E., L. D. Anad�on, E. Baker, V. Bosetti,

and L. A. Reis. 2018. Future prospects for energy

technologies: insights from expert elicitations.

Review of Environmental Economics and Policy

19(2):133–153.

Wittmann, M. E., R. M. Cooke, J. D. Rothlisberger,

and D. M. Lodge. 2014. Using structured expert

judgment to assess invasive species prevention:

Asian carp and the Mississippi–Great Lakes

hydrologic connection. Environmental Science &

Technology 48(4):2150–56.

Wittmann, M. E., R. M. Cooke, J. D. Rothlisberger,

E. S. Rutherford, H. Zhang, D. M. Mason, and D.

M. Lodge. 2015. Use of structured expert judgment

to forecast invasions by bighead and silver carp in

Lake Erie. Conservation Biology 29(1):187–97.

Zhang, H., E. S. Rutherford, D. M. Mason, J. T.

Breck, M. E.Wittmann, R.M. Cooke, D.M. Lodge,

J. D. Rothlisberger, X. Zhu, and T. B. Johnson.

2016. Forecasting the impacts of silver and bighead

carp on the Lake Erie food web. Transactions of the

American Fisheries Society 145(1):136–62.

20 A. R. Colson and R. M. Cooke

Downloaded from https://academic.oup.com/reep/advance-article-abstract/doi/10.1093/reep/rex022/4835830
by University of Strathclyde user
on 08 February 2018

https://www.nap.edu/catalog/24651/valuing-climate-changes-updating-estimation-of-the-social-cost-of
https://www.nap.edu/catalog/24651/valuing-climate-changes-updating-estimation-of-the-social-cost-of
https://www.nap.edu/catalog/24651/valuing-climate-changes-updating-estimation-of-the-social-cost-of


Abstract

The inclusion of expert judgments along with other forms of data in science,
engineering, and decision making is inevitable. Expert elicitation refers to formal
procedures for obtaining and combining expert judgments. Expert elicitation is
required when existing data and models cannot provide needed information. This
makes validating expert judgments a challenge because they are used when other
data do not exist and thus measuring their accuracy is difficult. This article exam-
ines the classical model of structured expert judgment, which is an elicitation
method that includes validation of the experts’ assessments against empirical
data. In the classical model, experts assess both the unknown target questions
and a set of calibration questions, which are items from the experts’ field that
have observed true values. The classical model scores experts on their performance
in assessing the calibration questions and then produces performance-weighted
combinations of the experts. From 2006 through March 2015, the classical model
has been used in thirty-three unique applications. Less than one-third of the indi-
vidual experts in these studies were statistically accurate, highlighting the need for
validation.Overall, the performance-based combination of experts produced in the
classical model is more statistically accurate and more informative than an equal
weighting of experts. (JEL: C18, C19, C89)
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