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Abstract 

 
Classification of hyperspectral images (HSI) has been a challenging problem under active investigation for years 

especially due to the extremely high data dimensionality and limited number of samples available for training. It is 

found that hyperspectral image classification can be generally improved only if the feature extraction technique and 

the classifier are both addressed. In this paper, a novel classification framework for hyperspectral images based on the 

joint bilateral filter and sparse representation classification (SRC) is proposed. By employing the first principal 

component as the guidance image for the joint bilateral filter, spatial features can be extracted with minimum edge 

blurring thus improving the quality of the band-to-band images. For this reason, the performance of the joint bilateral 

filter has shown better than that of the conventional bilateral filter in this work. In addition, the spectral 

similarity-based joint SRC (SS-JSRC) is proposed to overcome the weakness of the traditional JSRC method. By 

combining the joint bilateral filtering and SS-JSRC together, the superiority of the proposed classification framework 

is demonstrated with respect to several state-of-the-art spectral-spatial classification approaches commonly employed 

in the HSI community, with better classification accuracy and Kappa coefficient achieved. 
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I. INTRODUCTION 

By utilizing  hundreds of continuous spectral bands in a broad range,  hyperspectral imaging (HSI)  has been an important 

surveillance and reconnaissance technology  for military  [1] as well as other civil applications such as food quality assessment [2, 

3], pharmaceutical analysis [4], security control [5], etc. Among all HSI-based applications, land cover analysis has been an active 

topic in remote sensing field. To achieve high classification accuracy in the high dimensional data such as hyperspectral images, 

sufficient training samples are needed to cope with the curse of dimensionality, i.e., Hughes phenomenon [6]. However, it is not 

feasible at times having enough of samples for training in real world. Besides, due to the sensor noise and material variability, the 

same class of material may exhibit somewhat different spectral characteristic and even so different categories of samples may have 

very similar spectral signatures [7]. These factors inevitably influence the classification accuracy significantly. 

Efforts such as the extraction of more effective features in both spatial and spectral domains, and to construct suitable 

classification models for the raw/extracted feature, are suggested to overcome these classification issues and to improve accuracy. 

Previous work in spectral feature extraction techniques have been principal component analysis (PCA) [8–10], independent 

component analysis (ICA) [11], minimum noise fraction (MNF) [12], non-negative matrix factorisation (NMF) [13] and 

one-dimensional singular spectrum analysis (1D-SSA) [14, 15], where effective spectral features are achieved in the transform 

domain.  

In addition to spectral feature extraction, spatial feature extraction is found more attractive through its effective exploitation of 

contextual information. For instance, two-dimensional empirical mode decomposition (2D-EMD) [16, 17] and two-dimensional 

singular spectrum analysis (2D-SSA) [18], which can decompose each band into a few components containing the spatial structural 

content, have been proven to be superior in extracting spatial features. However, the computational complexity of 2D-EMD on a 

single band image is high, let alone hundreds of bands in a hyperspectral image [7]. Besides, it is noticed that the extracted spatial 

information using 2D-SSA could over-smooth the data with blurred feature artefacts, leading to classification error especially around 

the edges of objects. Another popular approach for spatial feature extraction is based on the morphological profile (MP) constructed 

by opening/closing operators using a series of structure elements (SEs) with different sizes and it has been developed as valuable 

technique for extracting spatial geometrical details. As shown in [19] and [20], MP and morphological attribute profile (MAP) were 

applied to the first a few principle components achieved from a hyperspectral image, generating the extended MP (EMP) and the 

extended MAP (EMAP). 

For data classification in hyperspectral imaging, various machine-learning techniques have been proposed, including maximum 

likelihood [21, 22] or Bayesian estimation methods [23, 24], decision trees [25, 26], artificial neural networks [27, 28], etc. Among 

all approaches, the support vector machine (SVM) has demonstrated to be more superior in supervised hyperspectral image 
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classification [3, 6, 10] as it can handle large input spaces and less sensitive to the Hughes phenomenon compared to that of 

artificial neural networks [29]. In recent years, sparse representation has received considerable attention in fields of signal/image 

processing, computer vision and pattern recognition. Sparse representation is an indispensable prerequisite of the compressed 

sensing (CS) framework [30– 32], which demonstrated that most natural signals can be precisely reconstructed by only a few 

measured values. Thus, sparse representation can be an outstanding tool for classification of high dimensional data such as [33] for 

face recognition where the test image can be sufficiently represented by samples extracted from the same category. 

In [34], sparse representation classification (SRC) was applied for hyperspectral image classification and a joint sparse 

representation classification (JSRC) method was proposed by assuming all pixels around the centre test pixel in the neighbourhood 

window shared a common sparsity pattern. In this work the hyperspectral image classification problem was approached  by a joint 

sparsity model (JSM) [35, 36] that utilizes spatial information and the classification accuracy was found greatly enhanced 

compared with that of the pixel-wise spectral SRC method. In the original JSRC method, all pixels around the centre test pixel in 

the neighbourhood window had been assigned equal when the JSM was constructed. This would induce error particularly when the 

region of interest consisted of multiple classes. To address this problem, Zhang et al. [37] proposed a nonlocal weighted joint 

sparse representation classification (NLW-JSRC) method to determine the weighted contribution of neighbouring pixels. In the 

NLW-JSRC method, the weight of each neighbouring pixel was calculated by comparing the structural similarity between an 

image patch around that pixel and the patch that surround the centre test pixel. In this way, the classification accuracy was found 

improved by considering both the spectral information between these two pixels and the geometrical details between these two 

nonlocal image patches. 

Another approach for improving hyperspectral data classification has been post-processing of preliminarily classified 

results. In both [38] and [39], the authors proposed to use edge-preserving filter for smoothing the pixel-wise classification 

map under the smoothness of class boundary assumption. Results showed that the filtering -based post- processing could 

improve classification accuracies of some hyperspectral scenes significantly.  

The edge-preserving filtering approach such as the use of bilateral filter has lately become a popular topic in the area of 

image processing and recently hyperspectral image analysis [40]. Most work in the area had been using bilateral filtering for 

enhancing hyperspectral image quality [41], however, the application of the technique for feature extraction in hyperspectral  

image is seldom. In this paper, a spectral-spatial classification framework based on bilateral filter and sparse representation is 

proposed for improving classification accuracy. It is demonstrated in this work that the proposed spatial/spectral feature 

extraction enhances classification over that using the contextual features extracted by the conventional JSRC method. The 

proposed method consists of spatial feature which is firstly extracted by a joint bilateral filter using the first principal 

component as the guidance image. It is observed that the quality of the extracted features have been effectively enhanced 
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particularly for those spatially low contrast bands. Although the NLW-JSRC could have achieved better classification than 

that of the JSRC, the choice of appropriate Gaussian kernels and the huge computational cost in NLW-JSRC would be a 

complex issue to consider. Hence, a spectral similarity-based JSRC (SS-JSRC) method that utilizes the statistics of 

neighborhood window to exclude irrelevant pixels has been proposed as an alternative method for enhanced classification in 

this paper. 

The layout of this paper is as follows. The background principles of the bilateral filter and SRC are discussed in Section II. 

Section III explains the proposed feature extraction and classification framework, followed by experimental data sets and setup in 

Section IV. Classification results on two hyperspectral images are given in Section V, and conclusion is drawn in Section VI. 

II. BACKGROUND PRINCIPLES 

Bilateral filtering and SRC are the two main concepts adopted in the proposed classification framework. The background 

principles of these two techniques are briefly introduced below. 

A. Bilateral Filtering 

The bilateral filtering proposed by Tomasi and Manduchi [42] in 1998 is a non-linear filtering technique that combines domain 

and range filtering together to smooth images while preserving edges. This filtering technique replaces the pixel value at one 

location (test pixel) by the weighted sum of nearby pixel intensities based on their geometric closeness  and  photometric similarity 

with respected to the test pixel. Given an input image )(xf  and by adopting the same notation as that used in [42], the 

bilateral-filtered image )(xh  is achieved mathematically as follows: 




dxffsxcf
x

xh ))(),((),()(
)(

1
)( 





         (1) 

where ),( xc  is a function that measures the geometric closeness  (in the domain) between the neighborhood center x  and 

a neighboring pixel  . The function ))(),(( xffs   calculates the photometric similarity (in the range) between x  and 

 , where the normalization factor is given by 






  dxffsxcx ))(),((),()(             (2) 

In this work both the closeness function ),( xc   and the similarity function ))(),(( xffs   in a bilateral filter are 

represented by Gaussian functions [42] for simplicity. The discrete representation of bilateral filtering commonly used for 

image processing with an input image I  at the location ),( ji  can be expressed as [40]: 



 5 

)},()),(),((

),({
),(

1
),(

),(

qpIqpIjiIG

qjpiG
ji

jiI

r

d

wqp

BF



 




           (3) 

with the normalization factor 

))},(),((

),({),(
),(

qpIjiIG

qjpiGji

r

d

wqp



 





             (4) 

where ),( qp  represents the location of pixels in the )12()12(  dd   local window w  around the pixel at ),( ji . 

The kernels for domain and range filtering are defined as follows: 
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where the value of d  determines the neighborhood window under consideration and the value of r   defines the weight of 

contribution from neighboring pixels [42]. Although optimal selection of these two parameters seems image-dependent, for 

particular applications it could be possible to be determined automatically. 

B. Sparse Representation Classification 

As pixels in an image or a hypercube can be sparsely represented by a linear combination of a few training samples from M  

distinct classes, sparse representation in combination with supervised classification has been successfully applied for 

applications such as face recognition and land cover mapping [33, 34]. Assuming there are mN  training samples of the 
thm  

class in a B -dimensional hyperspectral data cube, denoted as mNBmmmm aaa
 ]...[ 121A , any test sample 

Bx

from the same class could approximately be represented by a linear combination of the training samples associated with class 

m : 

mm
N

i

m

i

m

i

m

ĮAax 
1

               (7) 

where 
mĮ  is an mN -dimensional coefficient vector with only a few non-zero entries in the sparsity model. Since normally the 

label for a test sample is unknown, a new matrix A  should be defined by concatenating all training samples from all classes: 

NBM  ]...[ 21
AAAA          (8) 

where  


M

m mNN
1

. Then, the test sample x  can be approximated by 
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where Į  is an N  -dimensional sparse coefficient vector with most of entries as zero. 

The task of hyperspectral image SRC is to achieve the sparse vector Į  and to assign a label to the test sample according 

to Į . The sparse solution of Į  can be obtained by solving the following optimisation problem: 

xAĮĮĮ  ..minargˆ
0

ts          (10) 

where 
0

.  is the 
0 -norm representing the number of non-zero entries in a vector. The optimisation problem in (10) can be 

also modified by minimising the reconstruction error with a pre-defined sparsity level 0K  [34]: 

002
..minargˆ Kts  ĮxĮAĮ         (11) 

The problem in (11) is a NP-hard problem that could be solved by greedy pursuit algorithms, such as orthogonal matching 

pursuit (OMP) [43] or subspace pursuit (SP) [44]. In this paper, OMP was used to solve the problem where the support set is 

augmented by one index for each iteration until 0K  non-zero entries are selected, and the computational complexity is in the 

order of )( 0BNKO . With the obtained sparse vector Į , the label of x  could be assigned to the class with lowest residue: 

],1[

))(min(arg)Class(
Mm

mr


 xx              (12) 

where the residue ],1[| Mmrm   is calculated for each class separately as follows: 

2
ˆ)( mmmr ĮAxx                  (13) 

For a  hypercube, the spectral profiles of neighbouring pixels in a small window are usually highly correlated. By assuming 

that pixels within the neighbourhood window lie in a common subspace, Chen et al. [34] proposed the JSRC method for 

enhancing hyperspectral image analysis. Considering that the investigated test sample 1x  is located at the centre of the 

neighbourhood window, the sample matrix for the window with T  pixels can be modelled as 
TB

T

 ]...[ 21 xxxX

. Applying the joint sparsity model, the sample matrix X  can be represented by: 
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T

T
            (14) 

where 
TBS is the set of sparse coefficient vectors for all pixels within the neighbourhood window. The sparsity support 

for each pixel is the same, but the associated coefficients are different. Similarly, the task of JSRC is to obtain the sparse matrix 

S  by solving the following optimisation problem: 

XASSS  s.t.minargˆ
0,row

           (15) 
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The symbol 
0,row

  stands for the number of non-zero rows in the denoted matrix. In the same way as (11), the 

optimisation problem in (15) can be rewritten as: 

00,
..minargˆ Kts

rowF
 SXASS        (16) 

where 
F
  is the Frobenius norm. In this paper, a greedy pursuit algorithm named as simultaneous OMP (SOMP) [35] is used 

to solve the NP-hard problem in (16). Given the solved sparse matrix S , the investigated test pixel centred at the neighbourhood 

window can be assigned to the class with the smallest residue, as shown below: 

],1[

],1[
1

ˆminarg

))(min(arg)Class(
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III. THE PROPOSED APPROACH 

The spectral-spatial classification framework proposed in this paper combines feature extraction and classification processes 

together. The effective feature extraction step is achieved by joint bilateral filtering with the first principal component as the 

guidance image, and the filtered image is classified using the SS-JSRC method. The details of the proposed classification 

framework will be described in the following section.  

The basic bilateral filtering method as introduced in Section II evaluates the Gaussian kernel for range filtering  based on the 

image intensities of a small patch. If the pixel at ),( lk  in the image patch has a similar intensity with the ‘to-be-smoothed’ 

pixel at ),( ji , the weight of pixel ),( lk  will be large. This is how the edge information in the image is preserved using 

bilateral filtering. 

Hyperspectral image often consists of spatially low contrast images in a number of spectral bands. If the range filtering kernel 

was calculated using these low contrast images, the edge information would be further degraded after bilateral filtering was 

applied. Therefore, in this paper, it is proposed to use a joint bilateral filter by using the first principal component as the guidance 

image since the first principal component after PCA accounts for as much of the variability in the hyperspectral image as possible. 

Thus, Eq. (3) can be modified as follows: 
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where PCI  represents the first principal component (PC), b  is the spectral band index and JBFI  is the output of joint 

bilateral filtering (JBF). The normalisation factor is also changed as follows: 
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Fig. 1.  The performance of joint bilateral filtering with different sets of parameters. (a) Input band image from the Indian Pines data set, (b) the first principal 

component, (c) filtered images with different range parameters, and (d) filtered images with different domain parameters. 

 

The input band image and the first principal component of the Indian Pines data set [45] are shown in Fig.1 (a) and Fig.1 (b), 

respectively, while (c) and (d) show the JBF-filtered images with different sets of domain and range ),( rd   parameters. Before 

applying the JBF, the radiances of the hyperspectral image is normalised to the range [0,1]. In Fig. 1(c), the kernel parameter of 

domain filter d  is set to 2 and the kernel parameter of range filter r  is changed from 0.1 to 0.4. It is seen that JBF increases 

Gaussian blurring with increasing ır . Hence, the range parameter ır is chosen to be small at 0.1 as the edge-preserving factor 

and the domain parameter d  is varied from 1 to 4 to compare the effects as shown in Fig. 1(d). By judging from the quality of 

the filtered images that presented in Fig. 1, it can be seen that a higher domain parameter leads to smoother features, therefore, 

the domain parameter d  has been chosen as 4 in the following experiments. 

As mentioned above, JBF has been employed in this work instead of using the conventional bilateral filtering for improving 

image qualities particularly for those low-contrast image bands. Fig. 2(a) illustrates the image of a low contrast band of the Indian 

Pine with the first principal component presented in Fig. 2(b). The resulting images after the application of the normal bilateral 

filtering and JBF using the same parameter set ( 4d , 1.0r ) are shown in Fig. 2(c) and (d), respectively. It is noted that all 

the edge information has been kept and enhanced when JBF is applied. 
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Fig. 2. Comparison of bilateral filtering and joint bilateral filtering on low-contrast image. (a) Input band image from the Indian Pines data set, (b) the first 

principal component, (c) output image using bilateral filtering, and (d) output image using joint bilateral filtering with the first principal component as the guidance 

image. 

 

Using the first principal component for spatial filtering and feature extraction has been widely used by many others. These 

include extraction of morphological profiles [49], shape-adaptive local smoothing [52] and creating convolutional neural networks 

for classification [53]. To include more information for more effective feature extraction, it is feasible to fuse the first principal 

component with other principal components or even selected band images [49], which will be further investigated as our future 

work. In addition, it is worth noting that the smoothed image in Fig. 2(d) appears to be brighter than Fig. 2(c) is due to the higher 

intensity from the guidance image used in JBF, i.e. Fig. 2(b). As the proposed filter can successfully remove noise and potentially 

suppress the range of the band image, the detail from the resulting image can be enhanced even with increased brightness when the 

intensity is re-scaled to [0,255]. 

The hyperspectral data is ready for classification after spatial features are extracted using joint bilateral filtering. As mentioned 

in Section II, all pixels in the neighborhood window within the JSRC method have been conventionally considered to be equally 

the same. However, in very inhomogeneous scene the window may include class boundaries with pixels belong to different 

categories and a different sparsity pattern should be assigned to these different classes of pixels. Hence we have adopted the 

SS-JSRC methodology to screen out different classes of pixels within the neighborhood window and the Flowchart of the 

algorithm is schematically illustrated in Fig. 3. 

The Indian Pines data set presented in Fig. 3 illustrates an example and it depicts the test sample 1x  at the center of a small 

neighborhood window which consists of pixel samples in matrix X  as in Eq.(14). In this example there are two classes of pixels 

labelled in blue and red colors respectively which are both contained in the window. The example illustrates with the center test 
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pixel belongs to class red, and it is necessary to exclude pixels from the class blue for the evaluation of the sparsity pattern of 1x .   

This can be achieved by performing a Euclidean distance (ED) measures for every pixels in the window with respected to the center 

test pixel. The standard deviation (SD) of this matrix can then be evaluated and a threshold based on the standard deviation can be 

set:  pixels with distances lower than the set threshold are considered to be spectrally similar to the center test pixel below: 









SDnED

SDnED
W

1

0
          (20) 

 

 

Fig. 3. Illustrates the flowchart of the proposed SS-JSRC method schematically. 

 

The threshold parameter n is set by experiment in the present work, which is normally set within [1.0, 3.0]. Then the joint 

sparsity model can be applied with the reduced sample matrix XW  and the classified label for the center test pixel can be 

achieved as follows: 

00,
s.t.minargˆ KW

rowF
 SXASS        (21) 
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          (22) 

For details of the SOMP algorithm which is used to solve (22), please refer to [34]. The sparsity level 0K  in this work is also 

set by experiment empirically. 
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IV. DATA SETS AND EXPERIMENTAL SETUP 

In this section, the experimental data sets as well as the model parameter setting for the proposed classification framework is 

presented. 

Two publicly available and widely used HSI remote sensing data sets are employed here to evaluate the performance of the 

proposed classification framework: the natural scene Indian Pines collected by the airborne visible/infrared imaging spectrometer 

(AVIRIS) [45] as well as the urban scene Pavia University data collected by the reflective optics system imaging spectrometer 

(ROSIS) [46]. 

The Pavia University data set was collected during a flight campaign over the Pavia district in north Italy, with a spatial 

resolution of 1.3 m per pixel [49]. There are originally 115 bands with a spectral coverage ranging from 430 to 860 nm. However, 

12 channels have been removed due to noise, leaving 103 bands with 610 × 340 pixels per band. Nine classes of interest are 

provided in the ground reference map, including urban, soil, vegetation features and so on. A small portion of the original data set 

with a size of 150×150 has been cropped in this work in order to save computing time. One of the image band randomly selected 

from the cropped Pavia University data set and its corresponding ground reference map containing 8 classes are shown in Fig. 4. 

 

 

Fig. 4 . The cropped Pavia University d a t a  set with a size of 150×150: band 70 out of 103 bands (left) and the 8-class ground reference map (right) with 

number of samples in each class shown at the bottom. 

 

The Indian Pines data set was collected in the Indian Pines test site in north western Indiana, USA in June 12, 1992. The scene 

consists of two-thirds agriculture, and one-third forest or other natural perennial vegetation [47]. Acquired in band interleaved 

(BIL) format, it has 145 by 145 pixels with a spatial resolution of 18 m, and 220 continuous spectral channels ranging from 400 to 

2500 nm covering the complete VIS-NIR-SWIR spectrum. The nominal spectral resolution is 10 nm and the radiometric resolution 

is 16 bits [48]. Due to atmospheric water absorption, bands 104-108, 150-163 and 220 do not contain useful information and are 

consequently removed to prevent from decreasing the classification accuracy, resulting in a reduced data set with 200 spectral 

bands. There are 16 classes in the ground reference map. One of the image band and the reduced ground reference map of the 

Indian Pines data set are shown in Fig. 5. 
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Fig. 5 . The Indian Pines data set: band 150 out of 200 bands (left) and the 16-class ground reference map (right) with number of samples in each class shown 

at the bottom. 

 

Experiments have been repeated ten times using randomly selected training and test samples hoping to obtain a better 

presentation of results. For Indian Pines, 10% of the labelled samples from each class has been chosen for training the classifier, 

while a smaller percentage, 5%, has been used for the Pavia University data set. The classification performance is evaluated using 

the overall accuracy (OA), the average accuracy (AA) as well as the kappa coefficient ( ). OA refers to the percentage of all 

pixels that are correctly labelled and AA stands for the average percentage of correctly labelled pixels for each class. The kappa 

coefficient, also named as the kappa statistics, provides a standard for overall classification performance by comparing the 

agreement against the one that occurs by chance. The value of   ranges from -1 to 1, where -1 stands for complete disagreement 

and 1 stands for perfect agreement. 

In order to verify the efficacy of the proposed SS-JSRC method, it is firstly compared with the classical classifier SVM with the 

radial basis function (RBF) kernel [6], SRC [34], JSRC [34] and NLW-JSRC [37]. Optimal parameters for SVM have been 

achieved using ten-fold cross-validation. It is suggested to choose a larger neighborhood window size for images containing large 

homogeneous regions in [34]. As can be noticed that there are large homogeneous regions in both data sets, the neighborhood 

window size is chosen as 9 × 9. Since the Gaussian kernel parameter   used for the nonlocal weighting scheme was not provided 

in [37], we choose 2  for our experiments, while keeping other parameters the same. The sparsity level 0K  for all sparsity 

representation-based methods are tested for 0K  from 5 to 40. In Fig. 6, the effect of the sparsity level 0K  and the threshold 

parameter n  in the SS-JSRC method is revealed using both the Indian Pines dataset and the Pavia University dataset. As can be 

seen, the overall classification accuracies are generally high when the sparsity level 0K  is 5 and the threshold parameter n  is 

close to 2. Therefore, the value of n  is set to 2 for following experiments. 
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Fig. 6.  Effect of the sparsity level 0K  and the threshold parameter n  for Indian Pines (left) and Pavia University (right) with the proposed SS-JSRC 

method where the training ratios are 10% and 1%, respectively. 

 

After the evaluation of classifiers, the proposed classification framework (JSR-SS-JSRC) using the joint bilateral filtering 

together with the SS-JSRC method is compared with a few state-of-the-art spectral-spatial classification frameworks. For the 

bilateral filter, the domain parameter d  and the range parameter r  are set as 4 and 0.1 respectively as discussed in Section 

III. The first comparison method is SSA-SVM [18], where 2D-SSA is applied on each band for spatial feature extraction, followed 

by SVM for classification. Another popular method EMAP- SVM [20], where spatial features are achieved using a few attributes 

constructed on components extracted by PCA and classified by SVM, is included for comparison as well. The third comparison 

method proposes a spatial-aware dictionary learning (SADL) approach and the learnt sparse coefficients are classified using SVM 

[50]. Instead of only comparing with the ‘ feature extraction and classification’ family, the proposed framework is also compared 

with the ’classification and post-processing’ family. The method in [38], which utilizes an edge-preserving filter for 

post-processing the initial SVM-classified result, is adopted and represented as SVM-EPF. In order to show that the joint bilateral 

filtering is superior to the normal bilateral filtering, features learnt with these two filters are classified using SVM for comparison 

as well and these two approaches are abbreviated as BF-SVM and JBF-SVM respectively. 

 

V. RESULTS AND DISCUSSIONS 

With the two data sets and the experimental setup discussed in Section IV, experiments have been carried out and results are 

shown in the following subsections. 

A. Evaluation of Classifiers 

First, results from the SS-JSRC method are compared with those using SVM, SRC, JSRC and NLW-JSRC. The mean value and 
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the standard deviation with ten experiments for Indian Pines and Pavia University are given in Table I and Table II, together 

with chosen value for the sparsity level 0K . 

TABLE I 

MEAN CLASS-BY-CLASS, AVERAGE, OVERALL ACCURACIES (%) AND THE KAPPA COEFFICIENT OF DIFFERENT CLASSIFIERS FOR THE  

INDIAN PINES DATA SET WITH 10% OF DATA USED FOR TRAINING, FOLLOWED BY THE STANDARD DEVIATION. 

 

Class 

Classifiers 

SVM 
SRC JSRC NLW-JSRC SS-JSRC 

K0=5 K0=30 K0=30 K0=5 

1 72.86 ± 17.64 66.33 ± 7.28 83.88 ± 5.65 81.02 ± 6.60 91.75 ± 4.53 
2 85.78 ± 1.58 64.83 ± 1.98 94.67 ± 1.40 91.85 ± 2.88 94.65 ± 1.26 

3 79.43 ± 1.95 62.85 ± 3.22 92.30 ± 2.45 85.38 ± 2.80 92.39 ± 1.55 

4 74.93 ± 11.13 46.02 ± 7.26 93.27 ± 3.21 82.80 ± 6.20 83.46 ± 7.04 

5 94.36 ± 2.27 90.16 ± 1.84 92.98 ± 2.29 91.48 ± 3.06 94.59 ± 2.30 

6 97.59 ± 0.89 94.70 ± 1.20 99.17 ± 0.45 99.51 ± 0.29 96.91 ± 1.23 

7 80.44 ± 11.27 84.78 ± 8.26 52.64 ± 21.54 68.70 ± 11.37 86.96 ± 7.94 

8 98.34 ± 1.01 97.75 ± 1.32 99.96 ± 0.14 100.0 ± 0.0 99.41 ± 0.12 

9 71.11 ± 19.91 52.78 ± 11.19 3.33 ± 4.68 44.45 ± 17.76 77.78 ± 21.60 

10 83.37 ± 3.68 72.09 ± 2.59 86.83 ± 1.25 83.82 ± 4.04 92.04 ± 2.06 

11 88.64 ± 1.08 76.92 ± 1.49 97.48 ± 0.76 96.83 ± 0.88 96.38 ± 1.16 

12 84.27 ± 3.36 57.65 ± 2.69 86.62 ± 3.38 88.25 ± 3.06 93.16 ± 3.65 

13 99.01 ± 0.87 97.91 ± 1.31 99.16 ± 0.62 99.32 ± 0.82 95.33 ± 3.40 

14 95.41 ± 1.30 93.75 ± 1.79 99.30 ± 0.36 99.61 ± 0.35 99.44 ± 0.50 

15 61.52 ± 3.84 44.91 ± 3.30 97.69 ± 1.17 94.36 ± 2.17 93.10 ± 3.77 

16 90.12 ± 2.16 90.35 ± 4.92 94.94 ± 2.01 96.82 ± 2.15 96.47 ± 2.22 

OA 87.76 ± 0.19 76.12 ± 0.49 94.85 ± 0.48 93.32 ± 0.64 95.19 ± 0.44 

AA 84.82 ± 1.76 74.61 ± 0.99 85.89 ± 1.50 87.76 ± 1.36 92.74 ± 1.37 

K 0.860 ± 0.002 0.727 ± 0.006 0.941 ± 0.005 0.924 ± 0.007 0.945 ± 0.005 

 
 

TABLE II 

MEAN CLASS-BY-CLASS, AVERAGE, OVERALL ACCURACIES (%) AND THE KAPPA COEFFICIENT OF DIFFERENT CLASSIFIERS FOR THE 

PAVIA UNIVERSITY DATA SET WITH 5% OF DATA USED FOR TRAINING, FOLLOWED BY THE STANDARD DEVIATION. 

 

Class 

Classifiers 

SVM 
SRC JSRC NLW-JSRC SS-JSRC 

K0=5 K0=30 K0=30 K0=5 

1 65.92 ± 4.68 48.20 ± 4.72 77.35 ± 11.32 64.56 ± 4.78 80.31 ± 8.20 
2 96.16 ± 1.40 94.04 ± 1.80 99.76 ± 0.34 99.55 ± 0.42 98.29 ± 1.03 

3 94.66 ± 4.76 97.26 ± 1.99 90.68 ± 6.41 98.50 ± 0.78 94.32 ± 2.31 

4 99.44 ± 0.51 99.73 ± 0.18 99.98 ± 0.05 99.88 ± 0.15 99.73 ± 0.09 

5 96.36 ± 1.46 91.51 ± 1.53 99.54 ± 0.73 97.68 ± 0.66 98.56 ± 0.45 

6 91.71 ± 1.73 86.11 ± 1.39 97.53 ± 1.69 96.51 ± 1.08 98.63 ± 0.69 

7 90.80 ± 1.95 81.53 ± 3.53 98.75 ± 1.27 96.67 ± 1.25 98.98 ± 1.05 

8 96.33 ± 1.82 93.42 ± 2.27 71.19 ± 5.86 83.13 ± 3.59 91.84 ± 1.68 

OA 93.90 ± 0.95 88.97 ± 0.47 96.79 ± 0.66 95.74 ± 0.32 97.47 ± 0.51 

AA 91.42 ± 1.10 86.47 ± 0.81 91.85 ± 1.63 92.06 ± 0.82 95.08 ± 1.23 

K 0.922 ± 0.012 0.859 ± 0.006 0.959 ± 0.009 0.946 ± 0.004 0.968 ± 0.007 

 

 

It can be seen that in most cases, classifiers containing contextual information (JSRC, NLW-JSRC and SS-JSRC) consistently 

outperform pixel-wise classifiers (SVM and SRC), which demonstrates the robustness of the joint sparsity model for improving the 

classification performance. Although it is claimed that NLW-JSRC helps to improve the classification accuracies over JSRC [37], 

it is impossible to achieve the optimal results without the ‘appropriate’ parameterization for the Gaussian kernel, not to mention the 
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heavy computational complexity when calculating the weight parameters. In comparison with the proposed SS-JSRC method, the 

overall accuracy has increased from 94.58% to 95.19% for Indian Pines and 96.79% to 97.47% for Pavia University, which seems 

not a big improvement. However, it is noted that the improvement of the average accuracy in the proposed method is more 

noticeable since the results of those classes with limited training samples have been enhanced due to the simple pixel removal 

process in the SS-JSRC method. For example, class 9 in the Indian Pines data set is a narrow strip as shown in the ground reference 

map. With the JSRC method, pixels from both class 3 and class 6 are included in the 9 × 9 window, while irrelevant pixels can be 

successfully removed using the SS-JSRC method. 

 
TABLE III 

MEAN CLASS-BY-CLASS, AVERAGE, OVERALL ACCURACIES (%) AND THE KAPPA COEFFICIENT OF DIFFERENT CLASSIFICATION 

FRAMEWORKS FOR THE INDIAN PINES DATA SET WITH 10% OF DATA USED FOR TRAINING, FOLLOWED BY THE STANDARD DEVIATION. 

 

Class Classifiers 

SSA-SVM EMAP-SVM SADL-SVM SVM-EPF BF-SVM JBF-SVM JBF-SS-JSRC 
      K0 = 30 

1 78.96 ± 12.86 87.92 ± 4.79 88.33 ± 8.29 100.0 ± 0.0 86.04 ± 6.22 87.08 ± 8.61 98.54 ± 1.72 

2 96.45 ± 0.82 90.30 ± 1.27 95.12 ± 1.23 97.40 ± 1.20 94.66 ± 0.78 97.67 ± 0.65 97.40 ± 0.71 

3 93.91 ± 2.04 97.08 ± 1.35 96.33 ± 2.27 98.35 ± 0.57 93.99 ± 1.22 98.55 ± 0.62 97.72 ± 1.11 

4 89.09 ± 2.07 92.14 ± 4.86 89.00 ± 4.08 92.99 ± 5.61 88.29 ± 2.32 95.24 ± 2.40 95.67 ± 3.55 

5 93.74 ± 1.33 94.68 ± 2.00 97.18 ± 1.90 99.40 ± 0.43 96.40 ± 2.76 96.71 ± 2.31 97.52 ± 1.92 

6 98.66 ± 0.79 98.82 ± 0.85 99.09 ± 1.00 98.62 ± 1.38 98.23 ± 0.77 97.75 ± 0.71 98.02 ± 0.40 

7 72.17 ± 23.83 95.65 ± 2.90 100.0 ± 0.0 95.75 ± 13.44 96.09 ± 1.37 94.78 ± 3.43 95.22 ± 3.21 

8 98.32 ± 0.99 99.46 ± 0.29 100.0 ± 0.0 99.34 ± 2.08 99.07 ± 0.23 99.61 ± 0.34 99.93 ± 0.15 

9 77.78 ± 23.13 76.67 ± 15.00 95.00 ± 10.62 80.00 ± 42.16 75.00 ± 18.75 88.89 ± 15.93 88.89 ± 9.44 

10 92.77 ± 1.91 89.69 ± 2.38 97.16 ± 1.57 93.39 ± 4.56 93.10 ± 1.81 95.68 ± 1.83 96.14 ± 1.14 

11 95.41 ± 1.45 97.73 ± 0.51 98.70 ± 0.93 96.04 ± 1.15 94.38 ± 1.20 97.45 ± 1.03 98.65 ± 0.73 

12 92.84 ± 3.61 89.97 ± 4.06 93.19 ± 3.05 98.76 ± 0.53 90.45 ± 2.21 95.38 ± 1.87 96.29 ± 1.85 

13 98.58 ± 1.88 99.42 ± 0.16 98.74 ± 0.67 100.0 ± 0.0 98.21 ± 0.71 98.53 ± 1.05 99.11 ± 0.79 

14 98.36 ± 0.62 99.32 ± 0.34 99.30 ± 0.79 96.65 ± 2.17 97.65 ± 1.24 98.93 ± 0.50 99.93 ± 0.05 

15 91.35 ± 5.55 96.93 ± 1.55 97.95 ± 2.23 97.43 ± 3.04 92.34 ± 5.03 94.68 ± 2.71 98.54 ± 0.77 

16 94.00 ± 6.71 89.77 ± 9.40 96.47 ± 4.37 98.93 ± 0.38 92.12 ± 6.86 95.76 ± 2.30 97.65 ± 0.55 

OA 95.28 ± 0.64 95.36 ± 0.36 97.31 ± 0.40 96.93 ± 0.64 94.81 ± 0.39 97.29 ± 0.35 98.05 ± 0.24 

AA 91.40 ± 2.20 93.47 ± 1.62 96.35 ± 0.84 96.44 ± 3.32 92.67 ± 1.85 95.79 ± 1.15 97.20 ± 0.55 

ț 0.946 ± 0.007 0.947 ± 0.004 0.969 ± 0.005 0.9650 ± 0.007 0.941 ± 0.004 0.970 ± 0.004 0.978 ± 0.003 

 

B. Comparison with State-Of-The-Art Spectral-Spatial Classification Frameworks 

After the comparison of different classifiers, the proposed classification framework (JBF-SS-JSRC) is further compared with 

several other state-of-the-art classification frameworks under the same experimental setting used previously. The classification 

maps of various methods for Indian Pines and Pavia University are shown in Figure 7 and Figure 8. Detailed numerical results 

over ten repetitions are shown in Table III and Table IV, respectively, from which four main findings can be identified as follows.  

1) By comparing results between BF-SVM and JBF-SVM, it is found that JBF with the first principal component as the 

guidance image yields better spatial feature extraction performance than conventional bilateral filtering, due mainly to the 

enhanced edge property in the proposed method. By taking the Indian Pines data set as shown in Figure 7(f) and 7(g) as an example, 

there are more misclassified pixels around edges with the normal bilateral filtering.  

2) Better classification results have been achieved with the proposed JBF feature extraction techniques than others such as SSA 
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and SADL for the same classifier. It is also noted that classification results by EMAP occasionally are seen slightly better than 

those obtained by the proposed JBF method. However, the computation cost in EMAP is extremely high (see in Table V).  

3) The proposed classification framework JBF-SS-JSRC outperforms the one using JBF-SVM, which proves the finding in 

Section V-A again that SS-JSRC is superior to the pixel-wise classifier using SVM.  

4) For both data sets, the performance of the proposed JBF-SS-JSRC framework is slightly better than other state-of-the-art 

classification frameworks. For instance, as observed from Table III, the overall accuracy of JBF-SS-JSRC is 2.77%, 2.69%, 0.74% 

and 1.12% higher than that of SSA-SVM, EMAP-SVM, SADL-SVM and SVM-EPF, respectively.  

 

TABLE IV 

MEAN CLASS-BY-CLASS, AVERAGE, OVERALL ACCURACIES (%) AND THE KAPPA COEFFICIENT OF DIFFERENT CLASSIFICATION 

FRAMEWORKS FOR THE PAVIA UNIVERSITY DATA SET WITH 5% OF DATA USED FOR TRAINING, FOLLOWED BY THE STANDARD DEVIATION. 

 

Class Classifiers 

SSA-SVM EMAP-SVM SADL-SVM SVM-EPF BF-SVM JBF-SVM JBF-SS-JSRC 
      K0 = 5  

1 77.95 ± 4.92 99.73 ± 0.50 94.52 ± 3.37 99.45 ± 1.05 98.44 ± 1.88 97.18 ± 2.83 99.63 ± 0.95 

2 91.57 ± 1.91 99.83 ± 0.08 98.84 ± 0.92 99.64 ± 0.96 99.83 ± 0.19 99.72 ± 0.33 99.85 ± 0.49 

3 97.08 ± 2.46 89.66 ± 4.17 97.53 ± 3.53 98.46 ± 2.80 95.48 ± 2.61 98.36 ± 1.17 97.95 ± 2.35 

4 99.78 ± 0.29 99.41 ± 0.29 99.74 ± 0.19 100.0 ± 0.0 99.47 ± 0.61 99.37 ± 0.39 99.91 ± 0.15 

5 96.62 ± 1.09 99.95 ± 0.06 99.23 ± 0.78 99.94 ± 0.12 99.64 ± 0.36 99.60 ± 0.23 99.93 ± 0.03 

6 94.85 ± 1.26 99.93 ± 0.13 97.77 ± 2.44 99.37 ± 1.27 98.00 ± 2.49 97.80 ± 2.09 99.89 ± 0.35 

7 85.60 ± 2.59 99.06 ± 0.52 98.37 ± 0.55 96.38 ± 3.16 98.09 ± 1.40 98.22 ± 0.75 99.62 ± 0.21 

8 98.70 ± 1.16 100.0 ± 0.0 99.93 ± 0.15 99.89 ± 0.17 95.76 ± 3.77 97.19 ± 2.55 96.58 ± 2.74 

OA 93.79 ± 0.73 99.52 ± 0.13 98.70 ± 0.45 99.28 ± 0.60 98.92 ± 0.37 98.94 ± 0.44 99.67 ± 0.06 

AA 92.77 ± 0.69 98.45 ± 0.56 98.24 ± 0.68 99.14 ± 0.64 98.09 ± 0.53 98.43 ± 0.69 99.19 ± 0.17 

ț 0.921 ± 0.009 0.994 ± 0.002 0.984 ± 0.006 0.991 ± 0.008 0.986 ± 0.005 0.987 ± 0.006 0.996 ± 0.001 

 
 

 
Fig. 7.  The Indian Pines data set (a) ground reference and classification maps together with corresponding overall accuracy obtained by (b) SSA-SVM, (c) 

EMAP-SVM, (d) SADL-SVM, (e) SVM-EPF, (f) BF-SVM, (g) JBF-SVM and (h) JBF-SS-JSRC. 
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Fig. 8.  The Pavia University data set (a) ground reference and classification maps together with corresponding overall accuracy obtained by (b) 

SSA-SVM, (c) EMAP-SVM, (d) SADL-SVM, (e) SVM-EPF, (f) BF-SVM, (g) JBF-SVM and (h) JBF-SS-JSRC. 

 

The computing time of these feature extraction techniques is recorded on a personal computer with an Intel Core i5-2400 CPU at 

3.10 GHz using Matlab 2014a (Mathworks) and results are presented in Table V. In addition, the computational complexity of the 

five algorithms in Table V are further listed in Table VI for comparison. Note the computational complexity of JBF is derived from 

fast implementation of PCA and BF, whose computational complexity can both be reduced to O(SB) [54-56]. It is apparent JBF is 

the most efficient one in the group. All in all, the obtained results confirm the strong superiority of joint bilateral filtering and 

SS-JSRC over other popular spectral-spatial classification frameworks. 

 

TABLE V 

COMPUTING TIME (IN SECONDS) FOR DIFFERENT FEATURE EXTRACTION TECHNIQUES. 

Datasets 
Feature descriptor 

SSA EMAP SADL BF JBF 

Indian Pines 22 637 77 66 4 

Pavia University 12 423 9 36 3 

 

TABLE VI 

COMPUTING COMPLEXITY FOR DIFFERENT FEATURE EXTRACTION TECHNIQUES. 

 
Computational  

complexity 
Parameters 

SSA ȅ(B(B-L)L2) B is number of bands, L is window size for embedding 

EMAP ȅ(S(G+4L+2LS)) S, G and L refer respectively to the numbers of pixels, graylevels and filtering levels  

SADL ȅ(k2S+k3) S is the number of pixels and k is the number of variables for regression analysis 

BF ȅ(BS2) S is the number of pixels 

JBF ȅ(SB)  Derived from fast implementation of BF and PCA, S is the number of pixels 
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As deep learning has been proposed as another important approach for feature extraction in hyperspectral imaging [57-58], we 

compare the results from our approach with those from deep learning techniques as follows. For Indiana Pines dataset, the OA for 16 

classes with 10% training ratio is 95.97% when convolutional neural network (CNN) is combined with SVM [58]. This can be 

increased to 97.62% when SVM is replaced by the Extreme Learning Machine (ELM) in comparison to our result at 98.05%. In 

addition, CNN with SP has achieved an OA of 97.45% [59] or 97.56% with 3D CNN [60]. For Pavia University dataset in eight 

classes, the OA from our proposed approach under a training ratio of 5% is 99.67%, where the best results from [60] and [61] are 

99.66% and 99.50%, respectively. As can be seen, the proposed approach has yielded comparable or even slightly better results than 

almost all these deep-learning based approaches, whilst the framework is much simpler than those using CNN as their performance 

can be severely affected by the chosen layers and architectures of the deep learning networks. 

VI. CONCLUSIONS 

In this paper, efforts have been focused on developing effective classification frameworks for hyperspectral images. The task is 

divided into two parts, which are extracting effective features and constructing suitable classifiers. To this end, joint bilateral 

filtering with the first principal component as the guidance image, is proposed to extract spatial features without blurring the edge 

information, where its superiority has been validated by comparing it against the normal bilateral filtering method. On the other 

hand, an alternative classifier SS-JSRC, which is an enhanced version of the JSRC method, is proposed for improving 

classification performances. With the SS-JSRC method, a simple yet powerful pixel removal process, based on the statistics within 

the neighboring window, is added before applying the joint sparsity model. Results have shown that both the classification 

accuracy and the kappa coefficient are seen to improve over those by the JSRC and NLW-JSRC methods, especially for classes 

located at small spatial areas. By combining joint bilateral filtering and the SS-JSRC method together, the classification 

performance of the proposed framework is shown to outperform several typical spectral-spatial classification approaches for both 

Indian Pines and Pavia University data sets. Future work will investigate the possibility of hyperspectral image classification using 

histograms of sparse codes, which has been successfully applied for object detection [51], where classification with limited training 

samples will be particularly focused [62]. In addition, saliency based segmentation and classification will also be investigated, 

using frameworks such as weakly supervised learning, deep learning and multi-instance learning [63-68]. 
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