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ABSTRACT 

In the chemical and petrochemical industries, spectroscopy-based online analysers are 

becoming common for process monitoring and control applications. A significant challenge in 

using these analysers as part of process monitoring and control loops is the large amount of 

personnel time required for calibration and maintenance of models which involve decision 

inputs such as whether an observation is an outlier, the number of latent variables in a model, 

type of pre-processing and when a calibration model has to be updated. Since no one measure 

works well for all applications, supervision by the process data analyst is required which 

invariably involves some level of subjectivity. In this paper, we focus on the detection of 

multivariate outliers in a calibration set. We propose a method which combines multiple 

outlier detection techniques to identify a set of outlying observations without operator input. 

Apart from the overall methodology, this work introduces several novelties. The system 

uses partial least squares (PLS) instead of principal component analysis (PCA) which is 

normally used for detecting multivariate outliers. A simple modification to the Mahalanobis 

distance was also proposed which appears to be more sensitive to outliers than the 

conventional Mahalanobis distance. The methodology also introduces the concept of a 

desirability function to enable automatic decision making based on multiple statistical 
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measures for outlier detection. The methodology is demonstrated using Raman spectroscopy 

data collected from an industrial distillation process. 

 

KEYWORDS 

Multivariate outliers, Mahalanobis distance, Outlier detection, Desirability function, 

Multivariate Trimming. 

 

Highlights 

 An automated outlier detection system using multiple outlier measures weighted by a 

degree of anomaly function. 

 A novel stopping criteria based on PLS regression model performance is proposed to 

choose the appropriate set of outliers. 

 A simple modification to Mahalanobis distance measure is proposed and found to be 

more sensitive to outliers compared to the standard Mahalanobis distance.  
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1. INTRODUCTION 

In the chemical and petrochemical industries, spectroscopy-based online analysers are 

becoming common for process monitoring and control applications [1, 2]. One of the challenges 

in the widespread usage of these technologies is the substantial amount of personnel time 

required for calibration and recalibration efforts. In addition, several steps in the calibration 

and maintenance of the models involve decision inputs such as deciding whether an 

observation is an outlier, the number of latent variables to be used in the model, the type of 

pre-processing and when to update the calibration models. These decisions are usually made in 

a subjective manner by personnel who use one or more statistical measures to aid them in their 

decision. Thus, this type of work also needs personnel with a high level of expertise and skills 

in building and maintaining calibration models. It is therefore highly desirable to have an 

automated system for carrying out these tasks since such a system can deliver significant cost 

savings whilst also providing a consistent approach to modelling.  

While several statistical measures are available for objectively making the necessary 

decisions, no single measure has been shown to consistently perform for outlier detection or 

for choosing the parameters of a calibration model.  

An outlier can be defined as an “observation that deviates so much from other observations 

as to arouse suspicion that it was generated by a different mechanism” [3].  Outliers present in 

the data can be the result of any number of things including an instrument fault, a process 

disturbance and even instrument drift.  The presence of outliers in a dataset can dramatically 

undermine the analysis and any subsequent results based on the data. When dealing with 

spectroscopic data, which consist of measurements at several wavelengths, the possibility of 

the occurrence of multivariate outliers has to be considered. In other words, the spectrum as a 

whole has to be evaluated to decide if an observation (spectrum) is an outlier.  
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Two of the most frequently occurring deleterious effects of outliers (both univariate and 

multivariate) are that of masking and swamping.  Masking is the effect of outliers, or clusters 

of outliers, present in the data skewing the mean and covariance towards themselves.  This can 

reduce the distances of the outlying observations from the mean, resulting in some of them 

being placed within the region enclosed by the confidence limits and thus be mistakenly 

considered as regular observations. Thus, some of the more extreme outliers which are 

identified even with the skewed mean and covariance can effectively mask the outlier status of 

other less extreme outlying observations.  Once the identified outliers are removed the 'mask' 

is removed since the new values of mean and covariance will lead to a narrower confidence 

region and those outliers that were previously misclassified as normal observations may be 

revealed as outliers [4].  Swamping is the effect caused by outliers, or clusters of outliers, 

present in the data, skewing the mean and covariance away from non-outlier observations.  

This causes the non-outlier samples to have a relatively large distance from the mean and 

hence have the artificial appearance of an outlier in the dataset.  An outlier is said to swamp 

another observation when in the presence of outliers, a normal observation appears to be an 

outlier [5].  

To understand and correct for the presence of outliers in a dataset, identifying their 

presence in the dataset is the first stage. At present the process of identifying an observation as 

being an outlier is, for the most part, a largely subjective process.  It can also be a considerably 

time-consuming practice considering the many different possible outlier detection criteria 

available and especially when multiple or large datasets are required to be analysed. It is 

therefore desirable to have a system that is able to quickly and objectively identify, and 

potentially remove, the samples that are branded as outliers without the requirement of 

subjective decision making and specialist knowledge. 
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Numerous outlier detection methods for multivariate data (which is the focus of this paper) 

currently exist.  The shortcoming of several of them is that they are not able to robustly and 

accurately detect outliers for all possible datasets.  Many of the methods that currently exist 

rely on distance-based measures (for example, Hotelling's T2 and Mahalanobis distance) and 

visualisation techniques.   

Lu et al.[6] proposed an advancement in the detection of univariate outliers through the use 

of the median in place of the mean in a spatial outlier detection algorithm pointing out that the 

median is a more robust estimator of the “centre” of a dataset.  Shekhar et al.[7] offered a 

technique using graph structured datasets through which an attribute value and the average 

attribute value of its neighbours provide a distinction for identifying outliers significantly 

different from those of their neighbourhood.  Wilson wrote on a statistical methodology for 

detecting outliers by ranking observations in order of their dissimilarity to the others in the 

dataset[8].  Though all these techniques have their merit in detecting outliers, there is difficulty 

in establishing any kind of superiority between the methods.  This is because a direct 

comparison between outlier detection methods is not always possible as the efficiency of 

different methods depends on different criteria, such as the dimension of the data set, the type 

of the outliers, the proportion of outliers in the dataset, and the outliers’ degree of anomaly.   

In a 2001 paper, Penny and Joliffe [9] concluded that due to the difficulty with direct 

comparison and the varying degrees of accuracy for any given outlier test when applied to 

different datasets, the best option would be to use various outlier tests together in a “battery” 

combination. This work applies their idea by constructing a battery of multivariate outlier 

detection methods in a way that is part of an automatic and objective system.  

To achieve objectivity in the detection of outliers, a methodology is proposed whereby all 

samples being analysed are subjected to a battery of outlier detection tests. If a sample fails an 

individual test that sample gains an outlier weighting dependent on the samples’ relative 
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degree of anomaly and depending on the particular outlier test failed.  This would mean that 

an observation, which falls beyond a set confidence limit for a particular test, will receive a 

weighting relative to its distance from the limit.  If an observation fails multiple tests, its 

outlier weighting accumulates according to the weightings associated with the particular tests 

that it failed. 

There are essentially two ways to approach the detection and removal of outliers from a 

dataset. One approach is to identify the outliers in one step where a statistical test is used to 

identify the outlying observations which are then removed from the dataset. This approach has 

a potential pitfall. Since the statistical measure which is usually some kind of distance measure 

using the mean and covariance of the dataset can be influenced by the outliers, masking and 

swamping effects can lead to erroneous classification of the observations into outlying or 

regular observations. Though the system applies multiple outlier detection tests in 

combination, it does not use a single-step analysis of the outliers, whereby the detection of 

outliers is undertaken in one step, as is suggested by Davies and Gather [10].  Their proposed 

method, which relies on robust estimation of the sample mean and sample standard deviation, 

can therefore be significantly skewed in the presence of outliers.   

In the methodology proposed in this paper, once all observations are given an associated 

outlier weighting based on their passing or failing the various tests, each sample is given a 

ranking that corresponds with its degree of anomaly (which is informed by their individual 

outlier weightings).  Through this ranking structure, a single observation that deviates the most 

from the rest of the data is removed and the model is recalibrated and the process repeated. 

This method for removal of the most established outlier forms the basis of the multivariate 

trimming process used in the proposed methodology.  The potential advantage of using this 

multivariate trimming approach over conventional methods (where the detected outliers are 

compiled together in a reservoir and then either deleted or returned to the main body of the 
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data based on whether or not they are considered an outlier) is that through the proposed 

approach, the data is not as susceptible to the possible skewing effects of outliers [11].   

In this paper, the focus will be on developing an automated system for outlier detection. In 

particular, an approach will be described for the case where a calibration dataset is available 

and the methodology is used to detect and remove outliers from the dataset as part of the 

model building process. The goal of the proposed approach is to provide a methodology that 

will pick more or less the same set of observations as outliers that would be picked by a 

human expert. The rest of the paper will thus deal specifically with outlier detection. The 

proposed approach has the advantage of being extendable into an integrated automated 

calibration model building approach. Further, the proposed outlier detection approach can be 

easily modified to be applicable for detecting outlying measurements during online process 

monitoring. 

 

In the next section, the outlier tests used as part of the methodology will be described. This 

will be followed by a description of the methodology which combines these tests to decide 

whether an observation is an outlier. The individual tests and the proposed method of 

weighted outlier detection test will be demonstrated by applying them to a dataset which 

consists of Raman spectroscopy measurements taken from a petrochemical distillation unit.  

 

2. THEORY 

The methodology as described in this paper uses 4 outlier detection tests. Three of these 

tests are based on the spectral measurements (X-block), namely scores confidence limits, 

modified Mahalanobis distance and a test based on the Q residuals and Hotelling’s T2 which 



 Automated Outlier Detection 

Page 8 of 34 

 

will be referred to as the leverage test, while one is based on the property of interest (Y-block) 

using the Y-residual value. 

 

2.1 Scores Confidence Limit Test 

 Confidence limits have been commonly used for identifying univariate and multivariate 

outliers. In the latter case, the spectra have to be first transformed into the latent variables 

(LVs) domain. Usually principal component analysis (PCA) is used for this purpose [12]. The 

number of latent variables required to explain the majority (usually >90%) of the variation in 

the dataset is chosen to build the PCA model. Each observation (spectrum) is then 

decomposed using PCA to provide the scores associated with each LV. Based on the scores 

obtained for the entire dataset, confidence intervals are calculated for the scores of each latent 

variable. This is essentially the application of the detection technique for univariate outliers 

since we are examining one LV at a time. For a particular spectrum, the score for each latent 

variable is considered and if the score of any of the latent variables falls beyond the 

confidence interval, the spectrum is flagged as an outlier. In practice, most of the variation in 

the data is captured in the first 2-3 latent variables and it can be expected that the effect of an 

outlier will mostly manifest in the first few LVs. While PCA is commonly used for this type of 

outlier detection, in this study, scores from partial least squares regression (PLSR) are used. 

Since the goal is to remove outlying observations that would have an adverse impact on 

calibration models built with PLS, it is more logical to use the same decomposition method for 

detecting outliers.   

Assuming that the scores for a latent variable follow a normal distribution, the confidence 

interval for the scores can be calculated using the T-statistic which follows the Student’s T-

distribution.  The confidence interval is given by [13]: 
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௜௝ݔ  െ ఈݐ ଶǡ௡ିଵൗ ௝ݏ ൑ ߤ ൑ ௜௝ݔ ൅ ఈݐ ଶǡ௡ିଵൗ   ௝ (1)ݏ

where ݔ௜௝ is the score of the ith observation for the jth latent variable and ݏ௝ is the sample 

standard deviation for the jth latent variable. The n – 1 subscript in the formula refers to the 

degrees of freedom with n being the number of spectra in the dataset and Į is the probability 

that an observation (spectrum) will fall outside the confidence interval.  It is related to the 

confidence level (CL) which is calculated as follows: 

ߙ  ൌ ͳ െ   ͳͲͲ (2)ܮܥ

Spectra with scores values  ݔ௜௝ that fall outside the confidence interval are considered to be 

outliers. In the method proposed here, the traditional confidence limit test is modified to 

combine an absolute limit with a weighting function.  A measure of the “degree of anomaly” 

is calculated based on an observation’s distance from the confidence interval. This approach 

consists of setting two confidence intervals: one at the 95% confidence level (Į = 0.05) and 

another at the 99% confidence level (Į = 0.01).  If the score of the observation falls outside the 

first interval (95%), it is considered as an outlier. Subsequently the degree of anomaly (wi) of 

the identified outlier is calculated using the equation given below.   

௜ݓ  ൌ ۔ۖەۖ
ۓ ௜௝ݔ െ ଽଽΨೆݔଽହΨೆ൫ݔ െ ଽହΨೆ൯ݔ ௜௝ݔ ݂݅   ൐ Ͳݔ௜௝ െ ଽଽΨಽݔଽହΨಽ൫ݔ െ ଽହΨಽ൯ݔ ௜௝ݔ ݂݅   ൏ Ͳ  (3)  

In equation (3), ݓ௜ is the degree of anomaly of spectrum i, ݔ௜௝ is the scores value of the 

observation i for latent variable j and ݔଽହΨ and ݔଽଽΨ are the critical values for the confidence 

limits of 95% and 99% confidence levels respectively.  The subscripts U and L indicate the 

upper and lower confidence limit respectively. The weighting is calculated as the relative 
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difference between the two limits and the test value of the observation. The weighting 

becomes greater than 1 if an observation is over the 99% limit. 

Calculating the level of deviation from the 95% confidence interval in this way allows for a 

relative and continuous weighting to be applied to the outlier detection test. This has the 

advantage over a discrete form of weighting as it reduces the probability for the occasion 

where two or more samples are given the exact same weighting but have different degrees of 

anomaly (as would be the case if there were only one set of confidence intervals beyond which 

all samples received the same weighting). Due to the weighting being based on relative 

difference, weightings from different tests will be comparable. 

 

2.2 Mahalanobis Distance 

Distance-based measures can be used to automatically locate multivariate observations 

which are far from the centre of the dataset.  The Mahalanobis distance (MD) [14] is a measure 

of distance of each observation while accounting for correlations between variables as well as 

the differences in variances between those variables[15].  The Mahalanobis distance (MDi) for 

each multivariate observation (spectrum) i is given by: 

௜ܦܯ ൌ ሾሺ࢞௜ െ ഥ࢞ሻ்ିࡿଵሺ࢞௜ െ ഥ࢞ሻሿଵȀଶ (4)  

where ࢞௜is a column vector containing readings (e.g. absorbance) at different wavelengths of 

the spectrum i, ࢞௜ is the mean spectrum of the dataset and S is the variance-covariance matrix. 

This is the classical Mahalanobis distance formula as used by Penny and Jolliffe in their study 

of multivariate outlier detection tests applied to medical data [16].The squared Mahalanobis 

distance follows a Chi-squared distribution [17].  While in principle, (4) can be applied to the 

spectral dataset, the high correlation between readings at different wavelengths results in S 

being too ill-conditioned for inversion. This problem can be circumvented by first 
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transforming the spectral data matrix to an orthogonal scores matrix through decomposition 

using PCA or PLS. In this case, (4) is used by substituting the raw measurements of spectrum i 

by the corresponding scores vector and S with a diagonal matrix of eigenvalues of the latent 

variables. When using scores instead of the raw measurements, the number of latent variables 

is chosen so that close to 100% of the variance in the spectral data is included. For practical 

purposes, in this study, the number of latent variables were selected so that >99.9% of the 

variance in the X-block or the Y-block (whichever is achieved first) was explained. Those 

observations with a significantly large Mahalanobis distance are indicated as outliers.  

Confidence intervals for the squared Mahalanobis distance have been constructed in 

different ways. One approach is to use the chi-squared statistic. In this case it is assumed that 

the sample size is large enough so that the computed sample mean and covariance matrix are 

very close to the population (expected) values. In other words, the chi-squared distribution is 

achieved in an asymptotic sense. This approach has been used by Shah and Gemperline in 

their analysis of NIR spectra for classifying materials [18] and more recently by Liu and Weng, 

for analysing satellite image data [19].  Confidence intervals based on the F distribution (or the 

equivalent T2 distribution) have been used by a number of researchers to account for the fact 

that the sample mean and covariance matrix are used [20,21,22]. Vervaridis and Kotropoulos [23] 

consider the case where the sample mean and covariance matrix are estimated by including the 

possible outlying points. They showed that the Mahalanobis distance would then follow the 

beta distribution.  

In this study, we have used the chi-squared statistic for calculating the confidence limits. 

The confidence limit for a given confidence level  ܯ஼௅  is given by: 

஼௅ܯ   ൌ ට߯ሺଵିఈȀଶǡ௡ିଵሻଶ  (5)  
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where Ȥ2 is the Chi-squared value with (n-1) degrees of freedom and probability Į.  As with 

the previous test, two confidence limits are set at 95% and 99% giving a boundary and a 

weighting similar to (3) is used for identifying and weighting the outliers:  

௜ݓ  ൌ ௜ܯ െ ଽଽΨܯଽହΨሺܯ െ   ଽହΨሻ (6)ܯ

 

2.3 Modified Mahalanobis Distance 

  The classical Mahalanobis distance is limited in its ability to detect outliers as the 

formula itself is susceptible to the effects of outliers. Specifically the classical Mahalanobis 

distance is susceptible to the effects of masking[24] and swamping.  This is mainly due to the 

reliance of the classical Mahalanobis distance on the mean and variance/covariance which can 

be skewed by outliers. 

Rousseeuw[25] proposed a method to calculate a robust Mahalanobis distance using the 

minimum covariance determinant (MCD). This method has been investigated by several 

groups either in the original or in modified forms [22,26,27]. This method is iterative and 

computationally intensive.  

A simple “Robust” Mahalanobis distance measure, which is a modified form of the 

classical Mahalanobis distance, is proposed in this study and consists of replacing the mean 

and covariance with their robust counterparts namely, the median and the interquartile range, 

respectively.  The modified Mahalanobis distance (MDiR) is then given by, 

௜ோܦܯ ൌ ൣሺ࢞௜ െ ഥ࢞௠ሻ்ࡿ௜௤௥ିଵ ሺ࢞௜ െ ഥ࢞௠ሻ൧ଵȀଶ
 (7)  

 

 

where ഥ࢞௠ is the median vector of score values from PCA or PLS and ࡿ௜௤௥ represents the 

square of the interquartile range which is the statistical dispersion measured as the upper 

quartile minus the lower [28].  The ࡿ௜௤௥ is a robust estimate of the spread of the data, since 
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changes in the upper and lower 25% of the data do not affect it.  It is assumed that the use of 

median and IQR in place of the mean and covariance does not affect the distribution of the 

Mahalanobis distance. Though it has not previously been applied to the Mahalanobis distance 

the application of the median in place of the mean in other outlier detection tests, as a more 

robust alternative, was examined by Lu et al [6].  In their study, three different spatial outlier 

detection tests were compared, with one of them using the median in preference to the mean.  

The results showed that the median based robust test was more effective than the other tests in 

the detection of outliers. 

 

2.4 Leverage Outlier Test 

The leverage test is made up of two separate confidence limits based tests.  The first test is 

that which is based on Hotelling’s T2 distribution test [29].  The values of T2 give an indication 

of the samples’ distance from the centre (multivariate mean) of the model [30].  The use of 

Hotelling’s T2 statistic for the identification of outliers in a multivariate system is a popular 

method which has also been used in the construction of control charts [31].  T2 is the sum of the 

normalised squared scores and is defined by: 

 ௜ܶଶ ൌ   (8) ࢀ࢏઩ି૚࢚࢏࢚

where ௜ܶଶ is the Hotelling T2 value for spectrum i, ࢚࢏ is the scores vector for the spectrum and ઩ is the diagonal matrix consisting of the eigenvalues of (or variance explained by) the latent 

variables included in the model. 

It should be noted that the squared Mahalanobis distance is similar to the Hotelling’s T2, 

when the scores are used instead of the raw measurements to calculate (4), and (8) is 

calculated using scores derived from mean-centred spectra and the model explains 100% of 

the variance in the data. This will occur if the number of latent variables included in the model 
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corresponds to the dimensionality of the raw data.  In this study, the robust approaches for the 

calculation of Hotelling’s T2 are not considered. Instead, the outlier detection is carried out by 

using a combination of T2 and the Q residuals. 

As indicated above, the Hotelling T2 is similar to the Mahalanobis distance and thus a 

robust estimate could be obtained using the minimum covariance determinant (MCD). Such an 

approach was used by Vargas[32] and Jensen et al.[33]. However, as stated by Shabbak et al.[34], 

their work is only evaluated based on the number of outliers detected and not whether or not 

those detected observations were indeed true outliers.  

The second test, which forms the other half of the leverage outlier detection test, is based 

on the Q residual (in spectroscopy applications this is commonly referred to as spectral 

residuals).  Q residuals are a lack of fit statistic.  The values for Q residuals denote the amount 

of the variation which remains in each spectrum after projection through the model. Q 

residuals are calculated through the sum of squares of the residual error in the spectra 

reconstructed using the model compared to the measured spectra. The Q residual is therefore 

capable of contributing to the determination as to whether or not any of the lack-of-fit present 

in the model is the result of random variation or the presence of systematic variation. The Q 

residual for spectrum i is given by, 

 ܳ௜ ൌ ௜்ࢋ   ௜ (9)ࢋ

where ࢋ௜ ൌ ෝ࢞௜ െ ࢞௜is error i.e. the difference between the measured spectrum (ݔ௜) and 

corresponding spectrum calculated using the model ( ݔො௜).  
The leverage outlier detection test combines these two sub-tests.  A spectrum that fails 

only one of the subtest is not considered to be an outlier. If the observation fails both tests, 

then it is considered an outlier.  
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The confidence limits required for the making the decision are given below. The limit for 

the Hotelling T2 is given by[35] 

 ௄ܶǡ௡ǡఈଶ ൌ ሺ݊ܭ െ ͳሻሺ݊ ൅ ͳሻ݊ሺ݊ െ ሻܭ   ௄ǡ௡ି௄ǡఈ (10)ܨ

where K denotes the number of latent variables used by the model, n is the number of spectra 

in the data set, ܨ௄ǡ௡ି௄ǡఈ is the critical value of the F distribution with K, n - K degrees of 

freedom with confidence level associated with probability Į as given in (2).  

The limit for the Q residual is given by[36] 

 ܳఈ ൌ ଵ߆ ൥ܿఈඥʹ߆ଶ݄଴ଶ߆ଵ ൅ ͳ ൅ ଶ݄଴ሺ݄଴߆ െ ͳሻ߆ଵଶ ൩ ଵ௛బ
 (11)  

where 

 ݄଴ ൌ ͳ െ ଶଶ߆͵ଷ߆ଵ߆ʹ  (12)  

and 

௜߆  ൌ ෍ ௝௜ߣ ݅ ݎ݋݂   ൌ ͳǡʹǡ͵ெ
௝ୀ௄ାଵ  (13)  

where ca is the critical value of a standard normal random distribution for probability Į, M is 

the maximum number of latent variables i.e. the rank of the spectral matrix and ߣ௝ is the 

eigenvalue associated with latent variable j [30]. For an observation that fails both sub-tests, the 

degree of anomaly given by, 

௜ݓ  ൌ ͲǤͷ ቈ ܳ௜ െ ܳଽହΨሺܳଽଽΨ െ ܳଽହΨሻ ൅ ௜ܶଶ െ ଽܶହΨଶሺ ଽܶଽΨଶ െ ଽܶହΨଶ ሻ቉ (14)  
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2.5 Y Residual Test 

The Y residual test is used to identify outliers in data relating to the dependent variable 

(property of interest).  The error in the estimation of the property value corresponding to 

spectrum i is the difference between the actual (experimentally determined) value ݕ௜ and the 

predicted value ݕො௜ i.e. ߝ௜ ൌ ො௜ݕ െ  ௜. This error difference is used as the basis for this test.  Itݕ

should be noted that this particular test can only be used at the calibration stage of modelling.  

This is due to the need for reference values of y.  The confidence interval corresponding to 

probability Į for the error in the estimate of y is given by  

ఈߝ  ൌ േݐఈଶǡ௡ିଵ Ǥ  (15) ݏ  

where s is the root mean square error. As in the case of the scores confidence test, a weighting 

for the anomaly of the sample is calculated using an equivalent of equation (3).  This test is 

related to the Predicted Error Sum of Squares (PRESS) statistic that is used for the most part 

for making an assessment of the quality in the model predicted but can also be applied to 

outlier detection[37].    

  

2.6 Desirability Function 

Occasionally the data used in a particular analysis may be more sensitive to certain tests 

than others or based on experience it may be found that certain tests are more reliable for 

specific data types[9] .  In such cases it is advantageous to use an additional weighting for the 

individual outlier tests in a manner that reflects the effectiveness of that test. One approach to 

introduce such weighting is the use of a desirability function. In addition to the continuous 

weightings that are associated with each of the outlier detection tests, there is an overall 

weighting used as a measure for the significance of each test.   
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The desirability function approach has been used in multiple output optimisations[38,39] 

which are able to optimise for multiple responses. A comparative study conducted by 

Chakravorty et al. [40] was done on the effectiveness of several multi-response optimisation 

techniques.  It was concluded that the use of a desirability function was the strongest option 

for optimisation.  Although the study focused on the use of these optimisation techniques with 

ultrasonic machining processes the results may be translated to the work carried out in this 

paper. A further study by Costa et al. [41] compared several different desirability functions.  

Included in this comparison was the function by Derringer and Suich.[39]  It was concluded that 

no one method necessarily outperformed another. However, due to certain qualities of the 

function proposed by Ch'ng et al. [42] it was identified as potentially being slightly more 

advantageous. A desirability function of the form given below is used to calculate the global 

desirability (D), 

ܦ  ൌ ሺݓଵ௣భ ൅ ଶ௣మݓ ൅ ڮ ൅   ௡௣೙ሻ (16)ݓ

where w1, w2,…. are the individual desirability (or undesirability in the case of outliers) and p1, 

p2…. are the associated significance parameters. In the context of the weighted outlier 

detection test, wi will be the degree of anomaly calculated for outlier test i and pi will be the 

level of importance (expressed as a fraction) associated with that test. An example would be 

supposing that Mahalanobis Distance was considered as being of high importance to the 

detection of outliers, it would have a high percentage weighting say 60% (p = 0.6). It should 

be noted that as defined in equations 3 and 6, wi will always be greater than one. By utilising 

prior knowledge, if available, a judicial choice of pi can be used to deliver a more reliable 

outcome in terms of identifying the outliers. For this study, the tests were assigned equal 

percentage significance since prior knowledge in terms of the effectiveness of outlier test for 

the type of data sets considered did not exist.  
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The methodology described below is not restricted to the use of the 4 outlier detection 

methods described in this section. Any number and combination of outlier detection methods 

can be used. The four methods used in this study include methods commonly used with added 

novelties such as modification to the Mahalanobis distance (robust version), the introduction 

of measures for weighting the degree of anomaly and the desirability index. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Data 

Build PLS Model 

Weighted Outlier 
Test 

Outliers? 

Remove Outlier with 
Highest Weight 

Max Data 
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Index 

Final Outlier Set 

NO 

NO 

YES 

YES 

Figure 1: Flowchart of the procedure used by the proposed system to effectively detect 

outliers. 
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3. METHODOLOGY 

Figure 1 shows the flowchart illustrating the application of the proposed automatic 

integrated outlier detection method. The first step is to build a PLS model. This can be 

preceded by appropriate pre-processing. However, in this study, no pre-processing of the 

spectra other than mean-centring was performed. The number of latent variables to be chosen 

is based on cross-validation. Many different methods are available to automatically estimate 

the optimal number of latent variables. In this paper the optimal number of factors is 

automatically selected using Wold’s R criterion[43]:  

 ܴ ൌ ሺܽܵܵܧܴܲ ൅ ͳሻܴܲܵܵܧሺܽሻ  
(17)  

The optimum number of LVs was taken to be the number beyond which R > 0.9[44]. Once 

the optimum number of latent variables is chosen based on cross-validation, the scores and 

loadings for this model are calculated. As mentioned earlier, normally PCA is used to identify 

X-block outliers.  Here PLS is used since it can naturally be applied to identification of the y-

outliers. The impact of using PLS instead of PCA is discussed in the results and discussion 

section. 

Once the model is built using PLS, the data is then subjected to a series of outlier detection 

tests which are described in the Theory section. A spectrum that fails any of the individual 

tests will receive a weighting according to the degree of anomaly calculated using the 

appropriate weight function. The overall degree of anomaly (D) for an outlying observation is 

then calculated using the desirability index given by (16).  It should be noted that values of p1, 

p2… are based on a-priori knowledge of the reliability of each outlier detection technique 

which will have to be based on experience. In this study, since at this point such a-priori 

knowledge is not available, the tests are assigned equal significance (i.e. pi values of 1) thus 
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reducing the equation to a sum of the degree of anomaly returned by each of the individual 

tests.   

To minimise the chance of masking and swamping effects causing incorrect identification 

of outliers, a form of multivariate trimming (MVT) is used [45, 46]. While several observations 

can be identified as outliers, only a fraction of them are removed. Using this concept, the 

observations with the k largest values of D where k is a predetermined number are removed. 

In this study, a conservative approach was used whereby only the spectrum with the highest 

overall degree of anomaly D (i.e. k = 1) calculated using (16) is removed from the data set. 

The remainder of the data is then used to develop a new PLS model. The outlier tests are then 

carried out again to identify the observation with the largest overall degree of anomaly. The 

process of building PLS models using the remaining data and identifying a set of outliers is 

repeated until no new outliers are identified or if the number of spectra removed from the 

dataset exceeds a set percentage. The latter limit is introduced since the MVT process can, in 

many cases, continue without converging i.e. without reaching a stage where no new outliers 

are found. This can result in increasing chance for observations to be wrongly identified as 

outliers due to the decrease in the sample size which will affect the accuracy of the scores and 

loadings calculated using PLS as well as the increase in uncertainties in the parameters such as 

standard deviation, Mahalanobis distance etc. If the loop is exited because the maximum 

allowable number of spectra has been removed, then a final PLS model using the remaining 

data is built to generate the model performance data required for the next step. If instead the 

loop was terminated due to no new outliers being found, then the PLS model built prior to the 

outlier detection step will be the final model since the dataset will not have changed after the 

detection step.  

An additional step is used to combat the issue of removing spectra which are not true 

outliers.  It should be noted that in this study, the outliers are considered ultimately from the 
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point of their adverse effect on model performance. The removal of a set of observations 

which are true outliers can be expected to improve model performance. If they are not actual 

outliers, then the impact of having fewer spectra for calibration can lead to increased 

uncertainty in the model parameters which can lead to a possible degradation in model 

performance. Thus, it is logical to only remove the set of observations whose removal will 

result in a positive impact on model performance. For this purpose, the following desirability 

index is proposed:  

௜ܦ  ൌ ቆݕோெௌǡ௠௜௡ݕோெௌǡ௜ ൅ ௜ǡ௠௔௫ቇܨ௜ܨ כ ሺͳ െ ߛ  ௥௜௠ሻ்ܫ݅
(18)  

where the subscript ݅ refers to the ith trimming step, ݕோெௌ is the root mean square error of 

cross-validation (RMSECV), ݕோெௌǡ௠௜௡ is the minimum value of RMSECV amongst the ்ܫ௥௜௠ 

values generated and ܫ௧௥௜௠ is the number of trimming steps at which further outliers are not 

observed. This will have a maximum value which is based on the percentage of data that can 

be trimmed. In this study, this was set to 20% of the total number of observations which 

translates to 19 trimming steps for the dataset considered in this study. ܨ is the F-ratio which 

is given by[47]: 

௜ܨ  ൌ ଶݏோܵܯ  
(19)  

 ௜ǡ௠௔௫ isܨ .ଶ is the mean-square due to residualsݏ ோ is the mean-square due to regression andܵܯ

the maximum value of F obtained over the ܫ௧௥௜௠ steps. The term ሺͳ െ ߛ ௜ூ೅ೝ೔೘ሻ is a penalty term 

introduced to account for the effect of the reduced number of observations on the uncertainties 

in estimates of scores. It can also account for the possibility of variations that belong to the 

population being removed and thus have a negative impact on the future performance of the 

model. The parameter ߛ ൑ ͳ is used to adjust the sensitivity of the desirability index to the 
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number of outliers removed. It should be noted that other measures such as the number of 

latent variables and ܴଶ can be included as part of the desirability index.  

 

4. DATASET 

The dataset consists of Raman spectra collected from a petrochemical distillation column.  

The column is used to remove cyclic and longer chain hydrocarbons from hydrocarbon feed 

which contains paraffins, aromatics and naphthenes.  Raman spectra were collected using a 

Kaiser Holoprobe spectrometer with a remote laser assembly on a translation stage. Each 

spectrum consisted of intensities at Raman shifts spanning 0 – 1892 cm-1 at wavenumber 

intervals of 1 cm-1. Reference values for the concentrations of the hydrocarbon of interest, 

which will be referred to as Component A in this paper, were obtained from samples 

corresponding to the spectral measurements, using a standard reference method followed by 

BP. The dataset consisted of 99 observations encompassing a wide range of process variations. 

Outliers in the spectral data were identified by personnel in BP using visualisation, knowledge 

of process disturbances and by standard PCA. The outliers decided by analysis conducted by 

the personnel are taken as “known” outliers against which the automated system will be 

compared in order to evaluate whether the automated methodology will pick the same set of 

observations as outliers. The dataset was found to have 8 “known” outliers namely 

observations: 1, 2, 3, 39, 40, 41, 42, and 43. The Raman spectra for the 99 observations are 

shown in Figure 2. 
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Figure 2. Raman spectra of the light hydrocarbon stream. 

 

5. RESULTS & DISCUSSION 

As previously mentioned, we use PLS instead of the usual PCA for decomposing the 

spectral data since it allows for the inclusion of the y-outlier test and also since it is a logical 

approach if our intention is to remove spectra that are detrimental to calibration model 

performance. The performances of the individual tests discussed previously were examined 

and the results are discussed below.  Table 1 summarises the results of the individual outlier 

tests based on PLS and PCA. 
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Table 1. Summary of results of individual outlier detection tests based on PLS and PCA. 

I indicates outliers wrongly classified as normal observations and II indicates normal 

observations which have been wrongly classified as outliers. 

 

 PLS PCA 

Test 
Outliers 

Identified 

Misclassified 

Outliers 

Outliers 

Identified 

Misclassified 

Outliers 

“Known” 1-3, 39-43  1-3, 39-43  

Scores 

Confidence 

Limits LV1 

2, 3, 40-43 II: 1, 39 2, 3, 40-43 II: 1, 39 

Scores 

Confidence 

Limits LV2 

3, 40-43, 94, 

97 

I: 94, 97 

II: 1, 2, 39  
42, 43, 59 

I: 59 

II: 1-3, 39, 

40,41 

Classical 

Mahalanobis 
None 

II: All Known 

outliers 
None 

II: All 

known 

outliers 

Modified 

Mahalanobis 
2, 3, 40-43 II: 1, 39 

2, 3, 40-43, 

79, 89, 92 

I: 79, 89, 92 

II: 1, 39 

Hotelling T2 2, 3, 40-43 II: 1, 39 

3, 40-43, 

67, 72, 77, 

79, 89, 92 

I: 67, 72, 77, 

79, 89, 92 

II: 1, 2, 39 

Q residuals 
76, 77, 87-92, 

96, 98, 99 

I: All 

identified 

outliers 

II: All known 

outliers 

32, 40, 70, 

91, 96, 97, 

99 

I: 32, 70, 91, 

96, 97, 99 

II: 1-3, 39, 

41-43 

Q and T2  None II: All 40 

I: None 

II: 1-3, 39, 

40-43 

Y outliers 3, 42, 43, 91 
I: 91 

II: 1, 2, 39-41 
N/A N/A 
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5.1 Scores Confidence Limit Test 

Figure 3 shows the results applying the scores confidence test to the dataset. The horizontal 

lines indicate the 95% confidence interval calculated using (1). Observations which fall 

outside this interval are considered as outliers. From Figure 3(a), it can be seen that the first 

LV picks up 6 observations as outliers (Observations 2, 3, 40-43). It does not pick up the 

“known” outliers 1 and 39 but there is no false identification.  The second LV picks up 7 

observations as outliers (Figure (3(b)) namely 3, 40-43, 94 and 97. Only 5 out of the 8 known 

outliers are detected and spectra 94 and 97 are misclassified as outliers.  

 
 

Figure 3. Scores of the first two latent variables for the Raman data with 95% confidence 

limits (red lines). PLS scores of (a) first latent variable; (b) Second latent variable 
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When PCA was used instead of PLS to compute the scores (data not shown), the first LV 

identified the same set of spectra as outliers as when PLS was used. The second LV picked 

only 3 spectra, 42, 43 and 59 as outliers.  

While it is possible to use more LVs in this fashion, the chances of false identification can 

increase. Thus using 2 or 3 LVs will be a conservative approach to reduce false identification 

though this could reduce the sensitivity in identifying the true outliers.  

 

5.2 Modified Mahalanobis Distance 

Figure 4 shows the results of applying the classical (Figure 4(a)) and modified (Figure 4(b)) 

Mahalanobis Distance test.  Observations that fall outside the 95% confidence limit calculated 

using (6), given by the horizontal line, are considered as outliers.  The conventional MD 

measure does not identify any outliers with the observations falling well within the 95% 

confidence limit. It can be seen that the modified MD identifies 6 out of the 8 known outliers 

namely, 2, 3, 40-43 and does not wrongly classify any of the normal observations. 

When PCA was used, the robust MD measure identified the following as outliers: 2, 3, 40-

43, 79, 89 and 92 thus identifying 5 of the 8 known outliers and wrongly classifying 79, 89 

and 92 as outliers. As was the case with PLS, the classical MD did not identify any of the 

outliers. 

The difference in performance between the classical and modified MD is caused by the use 

of the variance (in the case of the Classical Mahalanobis Distance) and the interquartile range 

(in the case of the modified Mahalanobis distance).  With the presence of extreme outliers in 

the data the variance will be much larger than the actual value. Since the variance is in the 

denominator, this impacts the calculated MD by reducing its value. This has the effect of 

creating a smaller spread of the values. The interquartile range on the other hand is not 
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affected by the magnitude of the extreme observations and therefore tends to be smaller in 

magnitude compared to the variance. This results in a smaller value in the denominator which 

results in a bigger spread in the MD value. Since the critical Chi-Squared values (see (6)) are 

the same for both cases, the bigger spread in the MD values translates into higher sensitivity to 

outlying data.   

 
 

 

 
 

Figure 4. Mahalanobis distances of samples using (a) Classical MD and (b) Modified MD 

measures. 
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5.3 Leverage Outlier Test 

Figure 5 shows the results for the leverage outlier test.  The 95% confidence limits for Q 

(horizontal line) and T2 (vertical line) were calculated using (12) and (11) respectively. If the 

Q residual on its own was used to identify outliers, a total of 11observations will have been 

classified as outliers when PLS is used.  The observations which are classified as outliers are 

76, 77, 87-89, 92, 96, 98, 99.  None of the 8 known outliers were detected. When PCA was 

used 7 spectra were identified as outliers: 32, 40, 66, 70, 91, 96, 99. Only one observation, 40, 

is correctly identified as an outlier. Therefore for this dataset, using the residuals to identify 

the outliers is not effective.  

 
Figure 5. Q residuals vs. Hotelling T2 values of the observations. The vertical red line is 

the 95% confidence limit for T2 and the horizontal line is the 95% confidence limit for the Q 

residuals. 

 

If T2 on its own was used to identify outliers, 6 observations would have been identified as 

outliers if PLS were used: 2, 3, 40-43.  Thus, for this dataset, the T2 test would identify 6 out 

of the 8 known outliers and there are no falsely classified normal spectra. Using PCA (data not 

shown), 11 spectra are classified as outliers: 2, 3, 40-43, 79, 89, 92.  As in the case of PLS, the 
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same 6 out of the 8 outliers are identified but PCA leads to 8 normal spectra being 

misclassified as outliers. Combining the Q and T2 tests together, since there are no common 

points identified as outliers, the overall leverage test identifies none of the outliers when PLS 

is used. PCA leads to 1 outlier, spectrum 40, which is a known outlier. 

This investigation of the 3 X-block outlier tests suggests that using PLS could lead to more 

reliable outlier detection outcomes than PCA and therefore justifies the use of PLS instead of 

PCA for identifying outliers. 

 

5.4 Y Outlier Test 

Figure 6 shows the results for the Y estimate test applied.  The horizontal lines indicate the 

95% confidence interval calculated using (15).  The test identifies 4 observations as being 

outliers: 3, 42, 43 and 91. Thus 3 out of the 8 known outliers are identified and one normal 

observation, 91, is misclassified as an outlier.  

 
Figure 6. Error in estimation of concentration of Component A. Red lines indicate the 95% 

confidence bounds which is used for determining whether an observation is an outlier. 
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The analysis of the individual outlier tests shows that none of them identify all the outliers 

and some of the tests result in wrongly classifying some normal observations as outliers (See 

Table 1). We can expect the performance of these individual methods to vary from one 

dataset to another.   

 

Table2. Output from the automatic outlier detection algorithm is shown for ߛ ൌ ͳ. The 

trimming step at which the desirability index is at a maximum is shown in bold font. Based 

on the desirability index, 6 outliers will be removed in total i.e. outliers identified up to 

iteration 6 are removed. 

 

Trimming 

Step 

Observation 

Removed 

Number of 

LVs 
RMSECV F D 

0 0 2 0.72 405 0.265 

1 3 3 0.67 281 0.186 

2 43 2 0.68 266 0.167 

3 41 2 0.68 200 0.125 

4 42 2 0.18 1592 0.825 

5 40 2 0.18 1095 0.557 

6 2 4 0.07 1570 0.826 

7 89 4 0.08 1545 0.751 

8 1 6 0.05 1649 0.806 

9 39 6 0.05 1162 0.597 

10 92 7 0.04 1473 0.699 

11 48 7 0.03 1724 0.705 

12 91 8 0.03 1453 0.582 

13 90 9 0.03 1010 0.423 

14 49 10 0.03 1127 0.394 

15 47 10 0.02 1249 0.340 

16 38 10 0.02 1347 0.270 

17 95 10 0.02 1449 0.190 

18 59 10 0.02 1548 0.100 

19 87 10 1.87 1416 0.000 

 

 

5.5 Automated Weighted Outlier Detection 

Table 2 shows the output from the automated outlier method for the dataset considered in 

this study. In this case, ߛ was set to 1. The desirability index has a maximum value at 

trimming step 6 (shown in bold), thus indicating that 6 outliers will be removed by the 
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automated outlier detection algorithm. These are the observations that are removed at each 

step up to step 6. The outliers removed are 2, 3, 40-43 which are the same as the ones 

identified by the modified Mahalanobis measure and the Hotelling T2 (See Table 1) in a 

single step. There are no misclassifications. If sequential multivariate trimming is used, we 

would have reached the maximum trimming level i.e. 19 observations would have been 

classified as outliers. 

Table 3. The effect of the magnitude of the sensitivity factor ߛ on the number of 

observations removed as outliers. 

 ࢽ  

No. of 

Outliers 

Removed 

Dmax 

1 6 0.826 

0.9 8 0.865 

0.8 8 0.923 

0.7 11 0.995 

0.6 11 1.091 

0.5 11 1.189 

0.4 11 1.286 

0.3 11 1.383 

0.2 18 1.539 

0.1 18 1.718 

0 18 1.90 

 

The impact of the sensitivity parameter on the number of outliers removed can be seen by 

examining Table 3 in conjunction with Table 1. From Table 3, it can be seen that reducing ߛ 

can increase the sensitivity of the algorithm to outliers. However, this can result in some 

observations being misclassified as outliers. In situations where it is more important to 

identify the outliers, a lower value for ߛ is suggested. It can be seen that when the value is 

between 0.3 – 0.7, the number of outliers identified remains stable at 11. In this case, all the 

outliers identified by personnel by manual analysis, have been captured by the algorithm. 

However, it identifies 3 more outliers namely, observations 48, 89 and 92. The results suggest 

that a wide range of ߛ can be used by the algorithm to identify approximately the same 
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outliers that will be chosen by manual analysis. The risk of misclassifying an observation or 

missing an outlier can be balanced by adjusting ߛ. 

 

6. CONCLUSIONS 

A novel approach to automatically identify outliers has been proposed and demonstrated 

on Raman spectroscopy data obtained from an industrial distillation process. The results from 

this comprehensive approach suggest that this method can provide similar outcomes which 

would be obtained by analysis and decision inputs from data analysts. Apart from the overall 

methodology, this work introduces several novelties. The system uses PLS instead of PCA 

which is normally used for detecting multivariate outliers. Analysis indicates that for 

calibration or recalibration purposes, multivariate outlier detection based on PLS may be 

more advantageous than PCA. A simple modification to Mahalanobis distance was also 

proposed which appears to be more sensitive to outliers than the conventional Mahalanobis 

distance. The methodology also introduces the concept of a desirability function to enable 

automatic decision making based on multiple statistical measures for outlier detection. A 

simple desirability function given by (18) for choosing the set of observations as outliers in 

the calibration dataset was considered. Analysis indicates that the sensitivity parameter ߛ can 

be tuned to make the automated outlier detection system more or less aggressive in terms of 

outlier removal. While this methodology has been considered in this study in the context of 

calibration and re-calibration, it can be extended for online outlier or change detection 

applications. 
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